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The Satisfiability Modulo Theories (SMT) problem is a decision problem fer datisfiability of
first-order formulas with background theories. In the last few yeasistbn procedures for SMT have
been studied intensively, and they are applied successfully to hardwdrsoftware verification, compiler
optimization, scheduling, and other design automation areas. In particulgry @ur study, we have found
that they are also applicable to constrained random simulation.

SMT solvers have been effectively applied to software verification witdipate abstraction [BMMRO1,
LNOO06] and bounded model checking [GG08, AMPO06]. Only to a lesstemg, they have been applied to
hardware verification. In today’s hardware designs, bit-level andisavel operations are often tightly
intermingled. On some designs, a bit-level model checker may perform llediera word-level model
checker or vice versa.

In my dissertation, we study several efficient SMT solving techniques#mrabe applied to hardware
model checking and constrained random simulation. In particular, wemtrashybrid approach [KJS07a,
KSO06] for integer difference logic that combines finite instantiation method wélinian-Ford algorithm.
In addition, we present an efficient term-ITE conversion method [KBt28 improves SMT solving by
word-level simplifications. Efficiency of these techniques have beenrsimour SMT solver SatEEn that
won the 1st places iimteger Difference Logic(IDL) andLinear Integer Arithmetic Logic (LIA) divisions
of SMT Competition 2009.

In SMT-based model checking, an efficient encoding plays an importéatalong with the effi-
cient SMT solving. For hardware model checking, we propose an BA4&d model checking system that
consists of modeling and constraint solving components. The modeling cempslectively decides the
encoding method by analyzing the model, and the constraint solving contpgereithetinear Integer

Arithmetic Logic (LIA) or Bit-Vector (BV) solver for the encoding. On the other hand, hardware model-



iv
ing is nontrivial since the behavior of hardware is described with the ddtailent semantics of Standard
Verilog [IEEO06]; hence we define a subset of Verilog with restrictions gloarantee behavioral equivalence
between verification condition and simulation of synchronous hardwdre.rdstrictions lead to a concise
verification condition and allow controlled nondeterminism that can be easily @iedrfor synthesis. In
addition, we propose an encoding method that improves SMT solving by maxgnieruse of word-level
information. For constrained random simulation, we propose to use weetidanplification [KIJR 08]

that reduces the bit-width of each variable in the design.
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Chapter 1

Introduction

1.1 Background

The Satisfiability Modulo Theories (SMT) problem has been the subjectarise scrutiny in the last
few years. On the one hand, emerging applications like model checkindimtarstate systems rely on
such decision procedures for tasks like predicate abstraction [BMJRDA the other hand, algorithmic
advances have significantly increased the range of problems that tackbexl, and hence have stimulated
interest.

Recently, a dramatic performance increase in propositional satisfiabilifly) (8Avers has led to the
development of decision procedures that rely ongiopositional abstraction [BDS02] of formulae from
more expressive logics like the logic dfnear Arithmetic (LA) constraints, Presburger arithmetic, the
logic of array, the logic of bit-vector, or the logic of equality and unintetguiefunction symbols (EUF).
In the propositional abstraction of a formula, atomic formulae of the spec#iaryh(e.g..t —y < 5 or
f(x) = f(y), wheref is an uninterpreted function symbol) is replaced with fresh proposition&bles.
Each model of the abstraction maps to a conjunction of literals in the origimalfarthat can be checked for
consistency with theory-specific procedures. If such a procedtableshes consistency, then the given for-
mula is satisfiable and the enumeration terminates. Otherwise, from the piaobo§istency a refinement
of the propositional abstraction is extracted and the search is resumed.

There are several ways to combine the propositional reasoning engimées theory-specific pro-
cedures. One broad classification is itéay and eagerapproaches. A lazy solver produces an initial

propositional approximation that is concise and possibly quite coarsdiei$ i@ refinements during the



enumeration of solutions. By contrast, an eager solver adds constrathtsitatial propositional abstrac-

tion that embody known relationships among the literals. An example is giverelmptistraints that encode
transitivity of equality. The most effective solvers often adopt elementetif approaches and tailor their
strategies to the theory (theories) at hand.

Despite the recent progress in SMT solving, several challenges stilimdmbe solved. The chal-
lenges in SMT can be broadly divided into two major parts: enhancemem®fsBlving and applicability
of the solver. As mentioned in [NORCRO7], one of the big challenges in SdMirgy is to obtain hybrid
procedures that combine the benefits of both lazy and eager appsodaepending on the problem, one
may perform well, and the other may not. One simple way to combine these twoagpps is that we
analyze the problem features and apply adaptively one of the two aghy@®aFor the adaptive method, an
intelligent problem analysis method will be required.

Another challenge in SMT solving is on the simplification of the problem. In prac®MT in-
stances contain a lot of redundancies and retaining them in SMT solvingaes poor performance of the
solver. Recently, SAT preprocessing techniques [EBO5] have béemsively studied, and the techniques
are widely used in most SAT solvers. These techniques are also usedib8ihey have some limitations
since the theories are not considered for the simplificatio.Aiogic, the solvers are required to handle
the infinite precision numbers for the soundness of the results. As a risultplvers use infinite preci-
sion libraries such as GMP [GMP]; however, the cost of using the liisexpensive due to the complex
computations with the cumbersome numbers. Finding the practical way to awoddths infinite precision
library, or to lessen the burden for the library is a big challendeArogic.

Handling quantifiers and dealing with the combination of logics in SMT still remairetasinter-
esting research topics. In real world problems, one is often requiresetquantifiers or multiple logics to
describe the problem. Although there are several works [BIB: GBT07, GdM09] on quantifiers and the
combination of logics, only a few SMT solvers support these features;ttiae are still more room for the
improvement.

Although SMT solvers have been widely used in software verification, ilalange still remains in

the hardware verification. In today’s hardware designs, bit-levelard-level operations are often tightly
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intermingled to describe the model behavior. Recently, bit-vector solv&89BBru08] have been applied
to hardware verification; however the most bit-vector solvers are @séte eager approach that encodes
the bit-vector variables and the operations into SAT, and only utilize partiedevel information.

Among these challenges in SMT, we study an efficient SMT solver that ceslbézy and eager
approaches, and adopts word-level preprocessing technique to gitin@ifpproblem. As an application
of SMT solver, we study an effective SMT-based model checking &dware verification, and a formal

word-level analysis to constrained random simulation.

1.2 Thesis Contribution

In this section, we describe the contributions of my thesis to SMT solving angdptiation.

¢ Finite Instantiations for Integer Difference Logic [KS06, KIJSO07b]: Wesdibe a theory solver for
Integer Difference Logic (IDL) that is effective when the formula to be decided contains equality
and disequality (negated equality) constraints so that the decision probi¢akes of the nature
of the pigeonhole problem. Atomic formulaelibL constrain the difference between the values of
pairs of integer variables. This logic finds extensive application to probievodr/ing timing and
scheduling constraints, resource allocation, and program analijisis closely related tdreal
Difference Logic (RDL), to the point that a decision procedure for the latter based on prop@dition
abstraction also works for the former, as long as the coefficients areeistedf is sufficient to
rewrite eachequality constraint (of the formx — y = n) as the conjunction of two inequalities.
However, if an equality constraint is negated, then the conjunction turnsiidigjunction, which
requires case splitting in the enumeration of the propositional solutions. nlinast, we propose
an approach that does not decompose equalities and their negatioes;itathnverts the problem
of checking satisfiability of a conjunction of arithmetic atomic formulae into a sptapositional
satisfiability checks—whose cardinality is bounded by the number of straugigected compo-
nents (SCC) of a suitable constraint graph. The conversion to prop@disatisfiability that we

have proposed is based on the ability to bound the values of the integdsl@atiiat appear in the
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formula. While in general such bounds do not exist, we have shown tlolgicide satisfiability of
a set of constraints whose graph is a single SCC, it is sufficient to corsglibset of the solutions
for which bounds are easily established. We also showed how the geaseacan be efficiently
solved given solutions for the individual SCCs of the constraint gr&xperimental study shows
that our new approach greatly improves the efficiency of our decisiocepure for problem in-
stances in which disequalities play a significant role, and makes it very ¢itingowith respect to

state-of-the-art tools.

Efficient Term-ITE Conversion for SMT [KSJ09]: We describe htanm-if-then-els¢term-ITE) is
handled in SMT. Term-ITEs allow one to conveniently express verificatioitions; hence, they
are very common in practice. However, the theory provers of SMT sohser usually designed to
work on conjunctions of literals; therefore, the input formulae are rewrgteas to eliminate term-
ITEs. The challenge in rewriting is to avoid introducing too many new variallége avoiding
as often as possible the exponential explosion that is frequent whemeaagpgproach is applied.
We proposed a solution that is based on the computation of cofactors amy fnepagation, and
the experimental shows that the conversion method often produces-ofdeagnitude speedups

in several SMT solvers fdrlA problems.

Avoiding Mismatches in Verification of Verilog Designs: We present a subk¥®erilog with re-

strictions that guarantee behavioral equivalence between verificatiadition and simulation of
synchronous hardware. The restrictions lead to a concise verificatingition and allow con-
trolled nondeterminism that can be easily eliminated for synthesis. Undelaalmgsed simulation
environment, we prove that every execution trace that may be prodycadtandard-compliant

simulator for synchronous hardware is captured in the verification condéiad vice versa.

Selective SMT Encoding for Hardware Model Checking: We presestective SMT encoding for
hardware maodel checking. In particular, we introduce a model analysrsochéhat considers each
bit-vector operation in the design and selects the encoding based on th&isania addition, we

present some enhancements to SMT encoding for hardware desigrexg@tments show that our
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approach selects the right encoding for most of the hardware desigrismaroves the efficiency

of hardware model checking.

e Application of Formal Word-Level Analysis to Constrained Random SimulgaiR™08]: We
have presented a new application of using SMT to constrained random sonuldn the con-
strained random simulation, the word-level analysis with SMT solver onesel model enables
the bit-level solver to avoid size explosion problem. Our main objective is t® lgpund reduc-
tion to the variables that are used in bit encoding. For bound computationsevBallman-Ford
algorithm for thedifference constraints and use simple coefficients checking for other linear arith-
metic constraints. We can also detect a overconstraint from the défesEnce constraints using
Bellman-Ford algorithm. From the experiment, we found that our simple am@lgsrithm can

give huge amount of reduction to the variables in the real problem.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

Chapter 2 introduces Satisfiability Modulo Theories and model checkingddition, we review the
Verilog hardware description language.

Chapter 3 presents an approach to sdde problem that contains many disequality constraints. We
describe a theory solver that employs clique generation and finite instargiadiameck the feasibility of
a conjunction of inequality and disequality constraints. We present a boamgutation algorithm that
computes the bounds of integer variables in the constraints.

Chapter 4 presents an efficient term-ITE conversion method for SMTprd&ent a term-ITE con-
version method that is based on cofactoring and theory simplification. We tteoeffectiveness of our
approach by applying the methodlitA instances that make extensive use of the term-ITE operator.

Chapter 5 we present a subset of Verilog with restrictionsw that guardteavioral equivalence
between verification condition and simulation of synchronous hardwaeeshdw that the restrictions lead

to a concise verification condition and allow controlled nondeterminism thabeaasily eliminated for



synthesis.

In chapter 6, we present a selective SMT encoding method for haedwadel checking that predicts
the encoding for a hardware design based on model analysis metho@sévidd the model analysis method
that considers several characteristics of the design. We also peesenél enhanced encoding techniques
for LIA solvers. We show the experimental evaluation to show the effectivehtdss approach.

In chapter 7, we presents a word-level pre-procesBomRed, that simplifies the constraints in
constrained random simulation. A bound reduction algorithm is presentedethazces the bound of the
variables that are used in bit-encoding.

In chapter 8, conclusions and some future research directions senped.



Chapter 2

Preliminaries

In this chapter, we introduce Satisfiability Modulo Theories (SMT) solving model checking. In
addition, we review the Verilog hardware description language (HDL)isha@mmonly used in verification

of hardware.

2.1 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a decision problem tkaidés the satisfia-
bility of first-order formulas with background theories. SMT solvers finct@asing applications in areas
like formal verification in which one needs to reason about complex Boalembinations of numerical
constraints. The most common approach to this problem leverages thenefficiemodern propositional
satisfiability solvers that work on a propositional abstraction of the givemdla. At the same time, they
interact with theory solvers, which check conjunctions of literals for mbascy and learn consequences
(new lemmas) from them. This approach has come to be known as DPLLOQ4N

Recently, word-level model checking [Bje09, Joh01, CKZ96] hagived growing attention. In
particular, SMT solvers have been effectively applied to software gatifin with predicate abstraction
[BMMRO01, LNOO06] and bounded model checking [GG08, AMP06]. Otdya lesser extent, they have
been applied to hardware verification. The most natural SMT encodimdsgfdware description are bit-
vector BV) and linear integer arithmetid.[A) encodings.LIA encoding for RTL constructs is presented
in [BBCT06], where control variables are encoded as Boolean variablesaaapath variables as integer

variables. In [Bru08], the author presents a bit-vecBW) solver with a layered approach for RTL design



verification.
In this section, we recall the definitions of the logR¥, LIA, BV U LIA, andIDL which we use to

encode hardware. In addition, we review the DPLL(T) framework ascugs its algorithm.

2.1.1 Bit-Vector Logic

Let Vz(n) for n € Z* be the set oBV variables whose domains are bit-vectors withits. LetVp
be the set of propositional variables. We assumeitiaj — Vg(i)NVp(j) = 0. LetT(n) be a set oBV

terms whose values are bit-vectors witlbits. The formulae iBBV logic are inductively defined as follows.

e If c € Nandc < 27, thenc[n] € Tr(n).
o If z € Vg(n), thenz[n] € Tp(n).

o If x € Vp(n)and0 < j < i < n,thenzfi : j] € Tp(i — j + 1), and ift[n] € Tg(n), then

~ t[n] € Tp(n). (~ is the bit-wise negation operator.)

e If t1[n],ta[n] € Tp(n), ando is an arithmetic or bit-wise operator i, —, -, /, %, &, |}, then

tl[n} o tg[n] S TB(TL).
o If tlm € Tr(1) andtg[j] € Tr(j), thenconcat(tl[i],tg[j]) € Tr(i+ 7).
e A propositional variable, € Vp is a formula.

e If t1[n], ta[n] € Tp(n), ando is a relational operator ifi=, #, <, <, >, >}, thent[n] o ta[n] is a

formula.

o If f1, fo, and f3 are formulae, them f1, fi A fa, f1 V fo andite(f1, f2, f3) are formulae, and if

ti[n], t2[n] € Tp(n) andf is a formula, therite (£, t1[n], t2[n]) € Tr(n).

Further formulae can be defined as abbreviations. For instafice< k, a left shift ofz[n] by a
constantk, is defined asoncat( z[n — k — 1 : 0],0[k]). An atomic formula is one of the form;[n] ¢

t2[n], whereo is a relational operator. The semantics are defined in the usual way ticutey arithmetic



is modular,z[i : j] is the subfield ofc[n] comprising the bits fromi to j included, concat(t,[i], t2[j])
concatenates [i] andty[j], andite( f1, fo, f3) is equivalent td f1 A f2) V (= f1 A f3). In addition, theterm
if-then-else(tite) operator is defined by the equivalence, for all formyfaendg and for all termg; [n] and
ta[n], of f(tite(g, ta[n], t2[n])) andite(g, £ (t1[n]), £ (t2[n])).

ForA,B,C,D,E € Vg(2), (2.1) is aBV formula.

(C[2] = A[2] & B[2]) A (D[2] = C[2] + E[2]) . (2.1)

2.1.2  Linear Integer Arithmetic Logic

Let V; be the set of integer-valued variables. The formulakli&logic are inductively defined as

follows.

An integer numbeet € 7 is a (constantlIA term, and a variable € V is anLIA term.

A variablex € V; is anLIA term, and the produet- x of an integer numbet € Z and a variable

r € Vzis anLIA term.

If ¢t andty areLIA terms, so aré; + to andt; — to.

A propositional variable. € Vp is a formula.

If t, andt, areLIA terms, and> is a relational operator ifi=, #, <, <,>,>}, thent; oty is a

formula.

If f1, fo, andfs are formulae, themf1, f1 A f2, f1 V fo andite( f1, f2, f3) are formulae.

If £, andty areLIA terms, andf is a formula, thetite( f, ¢1, t2) is anLIA term.

ForA,B,C,D,E € Vg, (2.2)is anLIA formula:

(C=A—B)A(D=C+E) . (2.2)
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2.1.3 BV U LIA Logic

Let Rp be a set of rules foBV logic andR, be a set of rules foklA logic. The formulae irBV U
LIA are inductively defined as the largest set that satisfies the ruleg in R .

ForA € Vp(2) andC € Vy, (2.3)is aBV U LIA formula:
C =tite(A[1:1] = 1[1],2,0) + tite(A[0:0] = 1[1],1,0) . (2.3)

With the use ofVp in BV andLIA logics, aBV formula can be easily converted into a Boolean
formula. The conversion is called bit-blasting in which a set of propositigadhbles replaces each bit-
vector. Through bit-blasting, BV U LIA formula can be converted into aiA formula, which is often
decided more efficiently.

Given Ay, A1 € Vp andC € Vg, Eq. (2.4) shows thé&lA formula obtained from Eq. (2.3) by
bit-blasting A[2]:

C = tite(Ay, 2, 0) + tite(Ap, 1,0) . (2.4)

2.1.4  Integer Difference Logic

We define inductivelynteger Difference Logic (IDL) formulae as follows.

e A propositional variable € Vp is a formula.

e ¢ —y <nandx —y = n are formulae, for,y € Vp,n € Z.

e If ¢ andy are formulae, so are A ¢ and—.
The following abbreviations are also defined:

r—y<n = z—y<n-—1 r—y#n = —(r—y=n)
r=y = (x—y=0) r#y = ~(z=y) .

In SMT, a literal is an atomic formula, or the negation of an atomic formulaclaiiseis the dis-
junction of a set of literals, and a formulad@onjunctive normal form (CNF) is the conjunction of a set of

clauses.
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2.1.5  DPLL(T)

DPLL(T) architecture [GHN 04, NOO5] combines DPLL(X), the propositional reasoning engine,
with the theory specific procedure. Given an SMT formpbaith a specific theor§l”, DPLL(T) computes a
propositional abstraction ° of v by replacing the atomic formulae @fwith fresh propositional variables.
A model for¢” maps to a conjunction of literals in that is checked for consistency with the theory solver.
If the model is consistent i, ¢ is satisfiable and the enumeration of the model terminates. Otherwise, the
theory solver returns the explanation of the inconsistency for the refimeshthe propositional abstraction,
and the search is resumed. Checking consistency of the partial int¢éigpretaables the solver to detect the

inconsistency earlier and learn so-caltedory consequence T that often improve the efficiency of the

search.
1 DPLLT(){
2 while (ChooseNextAssignment () == FOUND)
3 while (T) {
4 if (Deduce () ==CONFLICT || TheorySolver () ==CONFLICT) {
5 blevel = AnalyzeConflict ();
6 if (blevel < O) returnUNSAT;
7 else Backtrack (blevel);
8 continue;
9 }
10 if (TheoryConseq () =#) break;
11 }
12 returnSAT;
13 }

Figure 2.1: DPLL(T) algorithm

The pseudo-code of DPLL(T) procedure is presented in Fig. 2.1aljweithm is not much different
from the David-Putnam-Logemann-Loveland (DPLL) procedure [DREA 62]. It works as the DPLL
procedure if the conditiomheorySolver () == CONFLICT is removed and the conditiotheoryConseq
() == 0 is converted intal . The DPLL(T) algorithm is applied toaropositional abstraction ¢ of ¢ where
@ is an SMT formula in CNF. It maintains assignment stackthat records all the assignments currently

in effect and arassignment queudhat records the assignments that are not in effect yet. The procedure
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ChooseNextAssignmenthecks if the queue is empty and selects an unassigned variable to makga@ndec
on the value of the variable if it is empty. If no unassigned variable is selettedlgorithm return§AT,
which meanspy is satisfiable. The newly assigned variable, if it exists, is entered into theegaad its
implications are added in the queue by teduceprocedure. |fDeducedoes not cause a conflict, the
procedureTheorySolver checks if the conjunction of the atomic formula is consistent or not. If either
Deduceor TheorySolverreturnsCONFLICT, thenAnalyzeConflict analyzes the reason of the conflict.
The procedurédnalyzeConflict returns the backtracking level, and if it is less than zero, the algorithm
terminates by giving th&/NSAT result fory; otherwise, the procedui2educeresumes in the backtracking
level. If there is no conflict in boteduceand TheorySolver, the algorithm checks iTheorySolver
generated theory consequences. If theory consequences amatgen the algorithm continues with the

while loop in line 3; otherwise, it continues with the while loop in line 2.

1 TheorySolver (X

2 foreachl € I° {

3 if (I =1 —0) {

4 L = Explanation {, —I0);
5 " =" A =Lg;

6 returnCONFLICT,
7 } else{

8 I=1Ul

9 }

10 }

11 foreachl € L\ I {

12 if(l=r)I*=1U1;
13 }

14 returnNULL;

15 }

Figure 2.2: Theory solver algorithm

The proceduréheorySolverin Fig. 2.2 is called with a conjunction of literals ii whose corre-
sponding propositional literals are true in a (partial) interpretaffoof the propositional formula?. It
decides whether there is an interpretation to the variables in the atomic formigatiséies the conjunction
of all those literals. Lef be the set of all the literals in® and I be the set of literals that is a (partial)

interpretation ofp. The setl is initially empty, and the negation éfe I° is checked with/ for a theory
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consequence. A literdlis a theory consequence 6f denoted! =r [, if listrueinl. If I =p —lis
true, an explanatio i of the theory consequence is generated, wligrés a conjunction of literals. The
negation ofL  is conjoined with,® to prevent this to be happen again. Since a conflict is fourddaith I,
the procedure returns with tt@ONFLICT result. If I =7 -l is not true, the literal € IY is added tal.
The procedure continues to chetk=r —i for eachl € I? until it finds a conflict or all the literals i® are
added tal, a new (partial) interpretation of. With the new interpretatio, eachl ¢ L \ I” is checked for
a theory consequence to deduce more literals. The litezal \ I° is added ta® if I |=7 [. After checking

all the theory consequences, the procedure returnsMith L.

2.2 Model Checking

Model checking [CE81, CGP99] is an algorithmic approach to verify threectness properties of
a finite state system automatically. Given a modiélof a hardware or software system, the transition
system ofM is explored with a temporal propertyto check if the property holds in the model, denoted
M = . If the model does not meet the property, denatéd~ , the model checking algorithm provides
a counterexample trace that demonstrates how the property can be violated.

Traditionally, explicit-state model checking [CE81] approach has beeelyiged, where the set of
states and the transition relations are explicitly represented and the skpmGtihien explores the states to
check if the state violates the property. Due to the explicit representatiore aftdles, the method often
suffers with the state explosion problem. As an alternative approach,odignmioodel checking [McM94,
BCCZ99] approach uses a Boolean formula to represent the set of atatehe transition relations, where
the Boolean formula is often represented with Binary Decision Diagrams €3 [Hdy86] or propositional
satisfiability (SAT) [MMZT01, GN02, JS04]. Since BDDs are canonical representation, the [Bi3De
model checking may suffer with the size explosion problem; however, thecBDDs are built, the model
checking problem can be solved efficiently. On the other hand, SAedamdel checking avoids the
size explosion problem by not using the canonical representationnveds the Boolean formula into a
Conjunctive Normal Form (CNF) to be solved by propositional SAT solvers.

In SAT-based Bounded Model Checking (BMC), the transition relatiom ofiodel is unrolledk
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times and conjoined with the set of initial states and the negation of the Linear Togie (LTL) property
[WVS83, LP85]. The conjoined Boolean formula in CNF is solved by a psdfpnal SAT solver and is
satisfiable if there exists a counterexample of the lekgththe property. In contrast to BDD-based model
checking, SAT-based BMC suffers less to the size explosion problehperduces counterexamples of
minimum length for all LTL properties.

Given a modelM, an LTL property¢, and a bound:, BMC constructs a Boolean formula denoted
by [M, —¢], that is satisfiable if and only if there exists a counterexample of the léntgtio; [M, =]

is defined as follows:

[M, =61k = I(s0) A N\ Tlsissien) A=l (2.5)

0<i<k

where] is the predicate describing the initial statésjs the transition relation, anfh¢]; expresses the
satisfaction of-¢ along that path defined by, s1, . . . si.

In recent years, SMT-based model checking has received gratiegtion. In SMT-based BMC,
a model is encoded into an SMT formula that is more concise and that peesmiare structure of the
model compare to the corresponding Boolean formula. In terms of effic@frtbe solver, representing the
model in SMT gives more flexibility to choose a suitable approach for thelgmolnd often increases the
deductive power of the solver. The following example compares SMT #ideficodings for e&Shidoku
problem and shows the effectiveness of the SMT encoding.

Consider &t x4 Shidoku problemin Fig. 2.3. The objective of théx4 Shidoku problemis to fill a
4x 4 grid so that each column, each row, and each of theZeiblocks contains the digits from 0 to 3 only
one time each. It is well known that Shidoku problem can be encoded in&y @®AT or an SMT problem.
Suppose the values) = 0,27 = 1,22 = 3 in the first column are given for the problem in Fig. 2.3. If we
encode the problem into a SAT problem, we introduce Boolean variable$ for each integer variable;.
The partial encoded SAT problem fap = 0,21 = 1,20 = 3 andzg # x3, 11 # x3, T2 # x3 IS given

below.

(i V) A (2 v —2d) A (-2l v —ad) . (2.6)
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Figure 2.3: 4x4 Shidoku problem

As Eq. (2.6) shows, one of the Boolean variables in the clause shouktied to make assignments to the
variablesr} andz?.

On the other hand, if the problem is encoded intdaformula, the formula is
—(z3 =0)A=(z3 =1) A(z3 =3) A (23 > 0) A (23 < 3) . (2.7)
The equalities in Eq. (2.7) can be converted into inequalities, and the tedyermula is
((x3 <0) V(23 >0)) A((z3 <1) V(23 >1))A((z3 <3)V(x3>3))A(z3=0)A(23<3) . (2.8)
By applying theory propagation witfx; > 0) and(x3 < 3) in the unit clauses, Eqg. (2.8) is simplified into
(x3 > 1) A (23 < 3) . (2.9)

From Eg. (2.8), we can infdrrs = 2).

The comparison of SAT and SMT encodings shows that SMT encodingdintes fewer number
of variables and clauses for the problems that require word-levebmeas As a result, the size of SMT
encoding is much smaller than the size of SAT encoding. In addition, SMTding@ften gives more

deductive power to the solver by considering the problem in word level.
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2.3 Hardware Description Language

Verilog is a hardware description language (HDL) used to describe diyitdaéms. Verilog HDL
is the most commonly used language in verification, synthesis, and testingdvidra designs. Verilog
describes a hardware design as a hierarchy of modules, where modoiewinicate each other through a
set of declared inputs, outputs, and bidirectional ports. Each moduteicemet, variable, function, and
task declarations, procedural and parallel blocks, and instancebef modules. A net can be of type
supplyO, supplyl, tri, triand , trior , triO, tril , wire, wand, orwor. A variable can be of typeeg, integer,
real time, orrealtime. A constant is an integer or real number; expressions are made dileatiaonstants,
and operators, which are categorized into arithmetic, concatenatiowmticedbit-selection, shift, bit-wise,
logical, conditional, and relational operators.

In Verilog, a blocking assignment (=) updates the target variable immediatkile the update of
a nonblocking assignment) is deferred. A continuous assignment updates the target wire wireneve
the values of the operands in the right-hand side of the assignment isechaAgstatement may be an
assignment, aif / else conditional statement, easestatement, a looping statement, or a sequence of
statements enclosed by the keywobggin andend.

A procedural block in Verilog can be eitheital or always An initial block is executed only once,
and is used to describe the initial values and the updates of memory elemetite @mer hand, aalways
block is executed repeatedly, and is used to describe combinationalguehsial logics. The statements in
a procedural block are executed sequentially in the given ordergeabdhe statements in a parallel block
such adork-join block are executed concurrently.

The statement in either a procedural or parallel block is controlled by é@dqpiing controls such as
a delay control#d) and an event controld eventidentifier, @ (eventexpression) @ (*), or @ *). The
delay control specifies the time duration for executing a statement and thiecewngrol defers the execution

of a statement until there is an occurrence of a declared event or Va@nge& on a net or variable.



Chapter 3

Finite Instantiation for Integer Difference Logic

3.1 Introduction

Decision procedures for fragments of first-order logic have beerutbhjec of intense scrutiny in the
last few years. On the one hand, emerging applications like model cheukimfinite state systems rely on
such decision procedures for tasks like predicate abstraction [BMJRDA the other hand, algorithmic
advances have significantly increased the range of problems that tackbexl, and hence have stimulated
interest.

In this chapter, we focus olmteger Difference Logic (IDL), in which arithmetic atomic formulae
constrain the difference between the values of pairs of integer variables logic finds extensive appli-
cation to problems involving timing and scheduling constraints, resource @locand program analysis.
IDL is closely related t&Real Difference Logic(RDL), to the point that a decision procedure for the latter
based on propositional abstraction also works for the former, as lotigeaoefficients are integers. It is
sufficient to rewrite eachquality constraint (of the formx — y = n) as the conjunction of two inequalities.
However, if an equality constraint is negated, then the conjunction turnsidigjunction, which requires
case splitting in the enumeration of the propositional solutions. In contragbyep®se an approach that
does not decompose equalities and their negations; rather, it convept®biem of checking satisfiability
of a conjunction of arithmetic atomic formulae into a set of propositional satilfyathecks—whose car-
dinality is bounded by the number of strongly connected components (S@3uitable constraint graph.

The conversion to propositional satisfiability that we propose is basedeoatitity to bound the

values of the integer variables that appear in the formula. While in generlahgriables are not bounded,
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we show that to decide satisfiability of a set of constraints whose graphinigla SCC it is sufficient to
consider a subset of the solutions for which bounds are easily establigfeealso show how the general
case can be efficiently solved given solutions for the individual SC@seofonstraint graph. Experiments
show that our new approach, which combines techniques typical of betazi and the eager approaches,
greatly improves the efficiency of our decision procedure for problestairtes in which disequalities play
a significant role, and makes it very competitive with respect to state-edttiteols.

This chapter is organized as follows: Section 3.2 reviews backgrowhéhamoduces notation. Sec-
tion 3.3 and Section 3.4 discuss the minimizing the abstract models and the beusdkitions, while
Sect. 3.5 deals with the implementation of our theory solver. After a surveglated work in Sect. 3.6,

experiments are presented in Sect. 3.7, and conclusions are offerectir38.

3.2 Preliminaries

Propositional logic is the fragment B)L obtained by omitting the rule that defines arithmetic atomic
formulae. Efficient algorithms to decide the satisfiability of propositional logicfilae are based on the
DPLL procedure [DP60, DLL62], and exploit techniques like clausering, conflict analysis, nonchrono-
logical backtracking, and fast Boolean constraint propagation [MB®6Z *01].

In recent times, decision procedures DL, and other fragments of quantifier-free first-order logic,
have been based on the DPLL procedure as well. Given a set of gitiopal variablesB such that
BN P = (), one obtains a propositional formuld from an IDL formulay by replacing each arithmetic
atomic subformula of» with a distinct variable fromB. The resulting formula?® is unsatisfiable only if
¢ is unsatisfiable. Each model gf corresponds to a conjunction of literalsf Given a decision proce-
dure for the conjunction of arithmetic atomic propositiondbr. (a theory solver), one therefore derives
a complete decision procedure 1@L by enumerating the models @f, extracting from each of them the
corresponding conjunction of arithmetic atomic propositions and their negatmid checking these con-
junctions for satisfiability using the theory solver. In the following, we reééethe conjunction of a set of
arithmetic literals as aet of IDL constraints.

The theory solver rewrites tHBL constraints to be checked according to their form:
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(1) x —y < n:unchanged;
(2) x = y: unchanged;

(3) x — y =n,withn # 0: splitinto (z —y <n) A (y —x < —n);

4) —(z—y <n): rewrittenagy —x < —n — 1;
(5) —(x = y): rewritten ast # y;
(6) ~(z —y =n), withn # 0: rewritten ast — y # n.

Constraints of type 1, 3, and 4 aireequalities (/). Constraints of type 2 arequalities (Q)), and
finally, constraints of type 5 and 6 adésequalities (D). Specifically, constraints of type 5 form the set
Dy C D.LetC=IUQUD.

An edge integer-labeled directed graph is a trigle= (V, E, \), whereV is a set of verticesfy C
V x Vis a set of edges, and: E — Z is an edge labeling function. strongly connected component
(SCC) of G is a maximal subgrap&’ of G such that every two nodes 6f are connected by a path d&.

An SCC istrivial if it consists of one vertex and no arcs. The SCCé&afefine a partition of”. TheSCC
quotient graph G = (17, E) of G is a directed acyclic graph with one vertex for each SCC'and an
edge(A, B) € E if and only if there exist: € A andy € B such that(xz,y) € E.

Given a distinguished source vertex V, distances of all vertices fromare well defined provided
there exists nmegative cyclein GG, that is, no cycle such that the sum of the labels on the edges along
the cycle is negative. The Bellman-Ford algorithm [CLR90] reports negaticles if they are present, and
computes the distanééx) of each vertex iV from the source otherwise. Theslackof an edgéz,y) € £
is given byo ((z,y)) = AM(z,y)) — (d(y) — 6(x)). Itis easy to see that for all € F, o(e) > 0 and that
o((x,y)) = 0if and only if (x,y) is on a shortest path fromto y in G. Distances and slacks obviously
depend on the choice of source vertex.

Given a (finite) sefl of inequality constraints (i.e., of the form— y < n), theirconstraint graph

G = (V, E, \) is a labeled directed graph defined as follows:

e V C Vy is the set of variables appearing in the constraints in
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e Thereisan ar€z,y) € E with A\((x,y)) = n if and only if there is a constraint— = < nin I.

It is well known [CLR90] that! is satisfiable if and only if7 contains no negative cycle. In fact, adding
both sides of the constraints forming a cycle of lengthone get®) < w, which is not satisfiable when
w < 0. If, on the other hand, no negative cycle existginthen one can find a model fdrby solving a
single-source shortest-path problem on an augmented gfgptbtained fronG by adding a new reference
vertexz, and arcs labeled 0 from, to all the other vertices. Le%(z) be the distance of € V from z,

in G4. Theny is a model for/. It is also well known that, given a model ¢f o : V — Z, and a
constante € Z, the interpretation’ : V' — Z defined byo/(z) = a(z) + ¢ is also a model of, because
o (z)—d(y) = a(z) — a(y). This observation allows an easy encodingasfge constraintsin IDL. A set
of constraints{l; < x; < w;} is translated tdz; — y < w;} U {y — x; < —1;}, wherey is a fresh variable.
The solutiona obtained from the constraint graph is then translated saitligl = 0. One fresh variable
suffices for multiple range constraints.

Since integer labels imply integer distances, if the right-hand sides of théraiots are integer-
valued, and the constraints are satisfiable when the variables rangdevenl numbers, then an integer-
valued solution is also guaranteed to exist. Loosely speaking, the satisfigbililem forinequalities is
the same foiDL and real difference logidRDL). Adding equality constraints to the inequalities does not
change this state of affairs: Given a constraint y = n, one replaces by y + n; if no immediate incon-
sistencies arise, one continues with the construction of the constraimit grapontrast, if disequality con-
straints (i.e., negations of equalities) are allowed, an unsatisfiable conjun€tL constraints may be sat-
isfiable when regarded as RDL formula. An example is given b, ;. (1 < 2 <h) AN ;< (Ti #

z;), which exemplifies the pigeonhole princigle.

3.3 Minimizing the Abstract Models

Given the set of clausgs’ and a complete model for them produced by the propositional reasoning

engine, we consider now the problem of identifying a minimal (partial) modzg sat at least one literal

! This does not contradict what was observed in Sect. 3.1 beeagéey translates intqz < y) Vv (y < «) for RDL, but
translates intgz <y — 1) V (y <« — 1) for IDL.
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for each clause is true. The intent of finding such minimal model is twofoldll¢eiate the task of the

theory solver and to make the exploration of the modelg'ofmore efficient. A greedy solution to our
problem is easily obtained by considering each variable in turn and remib¥ingy the model if no clause

becomes unsatisfied as a result. We now describe how such a solutioa icaplémented efficiently in the
context of the algorithm that enumerates the solutions to the propositioned@hm. That is, we show how
we can take advantage of the information gathered by the propositionad@ydr to significantly speed up
the choice of the minimal model.

Two observations from [RS04] provide the foundation for our methduk first is that no variable
that received its value by implication (rather than decision) by the SAT scklerbe removed from the
model. This fact greatly reduces the number of variables that are céeslifta removal. The second
observation concerns the list of watched literals and assumes that only tatslaee watched by the SAT
solver [MMZ*01]. It can then be shown that when a complete model is found, at leastatched literal in
every clause is true. Therefore, when considering a variable forvaritdés sufficient to check if it provides
the only true literal in the clauses in which the satisfied literal of the variable ichwd. The clauses in
which that literal is not watched can be safely ignored. Moreover, icorfhuses recorded by the SAT
solver do not need to be examined because they are known to be satiséreuvsr the original clauses are
satisfied.

When a clause in which the candidate literal is watched is examined, a substitatietiisg is true
is sought so as to maintain the invariant. If there is no substitute and the ottodredditeral is false, the
candidate is rejected. On the other hand, if this process manages to emptgtthedvliteral list of the
candidate (except possibly for conflict clauses), the candidate is ezhiigum the model.

The effect of the minimization procedure is to alter the watched-literal lists afdiver. However, the
enumeration process can resume from the modified lists without any asdeersequence. The algorithm
that we have described runs in polynomial time, but only guarantees a miretr@fl\griables. Reduction
from set covering shows that deciding whether a model of sigeists for a set of propositional clauses is
NP-complete.

The order in which literals are considered for removal depends on th&ramts they represent.
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The check for consistency of a set of constraints tends to be easieedfudility constraints are the first
candidates for elimination. They are followed by inequality constraints, aatlyffiequality constraints, in

that order.

3.4 Bounds on Solutions

In this section we show how bounds to the solutions of a set of constramtsoarputed and how
those bounds are used in checking for consistency of (partial) intatjores of . Two cases must be
distinguished depending on whether the interpretation to be checked is\kndve a model of?: If it is
not known to be a model, a cheap check is applied, which can only regorisistency. Otherwise, a more
expensive, complete check is applied in addition, which decides consistadacomputes a model gf if

it exists.

34.1 Bound Computation

It was recalled in Sect. 3.2 that from a solutiarto a set of inequality constraints, one can derive
a family of solutions{a + ¢}. In general, however, not all solutions are obtained one from the bther
translation. Consider the constrainf§z — y < 1),(y — = < 0)}. The two interpretations;(z) = 0,
a1(y) = 0 andas(z) = 1, as(y) = 0 satisfy the constraints, though there ismsuch thaiv; = as + c.
Such solutions are calldddependent In general, there may be several families of independent solutions,
and therefore, multiple distinct solutions that assign a given value to a diistireglivariable. The following
result characterizes these sets of solutions and forms the basis foeaumént of disequality constraints in

IDL.

Theorem 3.1.Let] be a set of inequality constraints. L&t= (V, E, \) be the constraint graph associated
to I. Suppose thad’ contains no negative cycle and consists of one SCCi ,dte the distance from to
binG. Forz € Vandn € Z, let S? be the set of solutions : V' — Z to I such thatw(z) = n. Then, for

each vertexy € V, there exist boundg, = n — 6, andy,, = n + d,,, Such that for every solution i,

y < ay) < yu.
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Proof. By definition of SCC, every vertex iy’ is reachable fromx in G; likewise, x is reachable from
any vertex inG. Let d,, be the distance of from x (the length of a shortest path). Such a distance is
defined because there are no negative cycl€s.i\dding both sides of all the constraints along the path
yieldsy — = < ¢é,,. Therefore, for every solution € S7, it must bea(y) < n + J,,. Said otherwise,

Yu = n+ d4y. For the lower bound, i,,. be the distance af fromy in G, then, for every solution € S7,

it must bea(y) > n — 0y,; thatis,y; = n — 0y,. O

Satisfaction of disequalities is not affected by translation. Thereforet afsonstraints including
both inequalities and disequalities is satisfiable if and only if there exists a sotusoch thaty(z) = n.
This allows us to limit the search to the £t for an arbitrarily chosen. Theorem 3.1 asserts that solutions
in this set are bounded. The way this result is exploited depends on whedtset of constraints corresponds

to a model ofp’. The next two subsections discuss the two cases.

3.4.2 Inconsistency Check for Partial Interpretations

Given a partial abstract interpretation that is not known to be a modef ofve want to check
the corresponding constraints for inconsistency to prune the seaack &ps in theory propagation) or to
possibly avoid the more expensive check of Section 3.4.3. A set of admistis assumed to be given along
with ranges for every variable in them. It is also assumed that the grambke3CC. If that is not the case,
each SCC is checked in turn: The constraints are inconsistent if at leaS8©C is inconsistent. Though
the check described in the next section could be applied in this case, ¢esested in a cheaper criterion.

The quick check for inconsistency is based on two observations: Bhésfthat if all variables in the
SCC have the same range, then the disequalities define a graph whasathrmimber must not exceed
the size of the range for the constraints to be satisfiable. (The chromaticenusniine least number of
colors needed to assign different colors to adjacent vertices in thh.yfHpe second observation is that the
chromatic number of a graph is bounded from below by the size of a cligiree gfraph and from above by

the number of vertices. From these observations, it is easy to provelltheihg theorem.

Theorem 3.2. Let D, be a set of disequality constraints of the farm- z; # 0. LetX = {zy,...,z,} be
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the set of variables iDy. LetL = {l;,...,l,} € Z" andU = {uy,...,u,} € Z" be the bounds on the

variables inX (I; < z; < w;). Fory;, v, € Z, letl’ = {1, ...,7,} be the subset of such that
F={zie X |y <lLiAu <yu} .

Letp = y,—y+1. LetGp = (V, E) be the disequality graph associatedid, such thal” = {vy,...,v,}
and{v;,v;} € Eifandonly ifx; —z; # 0 € Dy orz; —xz; # 0 € Dy. If Gp contains a clique of size

greater thanp then Dy is inconsistent.

Example 3.3. Consider the set of disequality constraids = {(z —y # 0),(y — 2 # 0),(z —x # 0)}
with variablesy, z that have the same range, < y,z < 1, and variablez that has ranged < =z < 0
which is a subset of the common range. {et 0 andy, = 1; thenT' = {x,y, z}. A clique consisting of
variablesz, y, z is present inGp. Since|l’| = 3 > 2 = p, the constraints are inconsistent. An explanation
of inconsistency consists of the disequality constrafis— y # 0), (y — z # 0),(# —z # 0)} and the

inequality constraints that generated the ran@es y,2 < 1,0 < z < 0.

The check based on Theorem 3.2 results in one of three outcomes: Alesgiigbe has been found
and inconsistency is declared; a large enough clique was not fourdiseof the heuristic nature of the
algorithm; a large enough clique is known not to exist. In the first casexplareation of inconsistency
is derived from the disequalities forming the clique and the inequalities redperfor the bounds. In
the last two cases, the result is inconclusive, because the chromatic mafrebgraph can be arbitrarily
larger than the size of the largest cligues. However, if a large enougleatiges not exist in the graph,
and the interpretation is not known to be a model, we avoid a full check fonsistency, which is rather
expensive and likely to fail. (If the interpretation is a model, on the other hthedconsistency check must

be performed for the whole decision procedure to be sound.)

3.4.3 Consistency Check for Abstract Models

If the constraints correspond to a modekdf we want to decide consistency and compute a model

of ¢ in case the answer is affirmative. For this, we resort to finite instantiaticecifBlly, we can encode
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each integer variable with enough binary variables to span its range asthteathe satisfiability problem
for a conjunction of inequality and disequality constraints into a propositsatéfiability problem.

Theorem 3.1 applies when the constraint graph consists of one SC&LiH tiot the case, we examine
the SCC quotient graph one SCC at the time. If there is no negative cycledornis&raint grapld:, the only
reason for unsatisfiability is the inability to satisfy the disequalities within some SCC ©herefore, if the
finite instantiation of each SCC is satisfiable, the entire set of constraints igaddeis This can be shown
as follows.

Let G be the constraint graph. Exteatby adding one edge for every disequality constrainty # n
(wheren may be 0) such that andy belong to different SCCs. Let be the preorder defined hy < v
if there is a path inG from « to v. (The preorder is updated after each edge additiony # y, add
y—x<-n—1t0F;ify <z, adde —y < n — 1. If z andy are not comparable in the preorder, add
eithery —x < —nm — 1 orz —y < n — 1, but not both. Note that adding these edges does not create cycles,
and therefore does not change the SCGS ofSee Sect. 3.5.)

LetG = (17, E) be the SCC quotient graph of the extendédConsider the vertices i starting
from the minimal SCCs (those with no predecessors) and proceeding iosarclopological order. Let
A; be thei-th SCC in that order and let; be a solution for the constraints corresponding to its edges.
Inductively assume that;_; is a solution for the constraints in the subgraph inducet)py;; 4;. Letk
be the maximum amount by which any constraint corresponding to an edgé;iilgwiolated. (Letk = 0
if no such violation exists.) Finally, let; = «; — k. Then,3; = 3;_1 U ¢ is a solution for the constraints

in the subgraph induced Ry, _;; 4.

3.5 Algorithm

We assume a decision procedurelidt. based on propositional abstraction. The gilieh formula
¢ is translated into a propositional formuld as described in Sect. 3.2. gropositional reasoning en-
gine enumerates the models ¢¢ and calls thetheory solver to determine whether that abstract model
corresponds to a consistent interpretation of the integer-valued variable

The theory solver fotDL is relatively efficient. Therefore, it is advantageous to call it also on a
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partial interpretations to terminate the fruitless search of part of the state,spao learn so-callettheory
consequencefNOO05]. Our implementation follows this approach, though the equality canttrg —y =

n # 0) are split and the full check for inconsistencies due to disequalities is dpplig to abstract models.
(See lines 38-42 of Fig. 3.1.) We omit the details of the incremental implementattbe 8fllman-Ford

algorithm. The interested reader is referred to [WIGGO05].

3.5.1 The Theory Solver

The theory solver is called with a collection of arithmetic literals whose correipg propositional
literals are true in a (partial) interpretation of the propositional formpitat then decides whether there is
an interpretation to the integer-valued variables that satisfies the conjun€@dirthose literals. The first
step is to obtain a set of arithmetic atomic formulae (without negations) fromviea get of literals. The
given literals are rewritten and divided infg, I, andD as described in Sect. 3.2.

The theory solver, whose pseudocode is shown in Figures 3.1 andd8j&sahdayered approach
of MathSAT [BBC"05b]. ForIDL, it considers three main layers: equalities, inequalities, and disequalities.
Let X_ C X be the set of integer-valued variables appearing in the equaliti€s ifthe theory solver

creates an undirected equality graph- (X_,T"), where

I'={{z;,z;} xi =2 € Q} .

The vertices of2 are in the same class if they are made equivalent by the equality constrdiatieasibility
of @ with Dy is checked by comparing the equivalence class of the two vertices oflesstiuality constraint
in Dy. If two vertices are in the same class, an explanation of infeasibility is retuthtne set of equality
constraints is feasible, the variables in the same class are merged into a anghey and some simplified
constraints inD and/ are dropped from the set.

The algorithm continues by checking the feasibility of the set of inequalitgtcaimts. Letl” C V
be the set of integer-valued variables appearind.inThe theory solver creates a constraint graph=
(V,E, ) from I as explained in Sect. 3.2. The Bellman-Ford algorithm is rud-otf a negative cycle is

found, the sef is infeasible; a negative cycle with a subsetpprovides the explanation of infeasibility.
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1 TheorySolver() {

2 Ezplanation = EqualitySolver @, Dy);

3 if (Explanation = SAT) Explanation = InequalitySolver {);
4 if (Explanation = SAT) Explanation = DisequalitySolver D);
5 returnExplanation

6 )

7 EqualitySolver @, Dy) {

8 Q = CreateEqualityGraphy);

9 return Ezplanation = CheckFeasibilityOfEqualityConstraint8,(Dy);
10 }

11 InequalitySolverX) {
12 G = CreateConstraintGrapli){
13 NegCycle = BellmaFordAlgorithm (7);

14 if (NegCycle) return GenerateExplanationFromNegCyd&qdCycle);
15 else returrbAT
16 }

17 DisequalitySolver) {
18 SCC = GenerateZeroSlackSCCOfConstraintGragiy, (
19 Explanation = CheckFeasibilityOfZeroSlackSCG('C, D);

20 if (Ezplanation # SAT) return Explanation;

21 else{

22 SCC' = GeneratePositiveSlackSCCOfConstraintGragh (
23 return CheckFeasibilityOfPositiveSlackSCE(C’, D);

24 ;

25 }

26 CheckFeasibilityOfZeroSlackSCS(C, D) {

27 For eachl € D {

28 Ezxplanation = CheckFeasibilityOfDisequalityConstrair@('C, d);
29 if (Explanation # SAT) return Explanation;

30 else DropValidConstraintl(D);

31 }

32 returnSAT;

33 }

Figure 3.1: Theory solver algorithm
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34 CheckFeasibilityOfPositiveSlackSCE{C’, D) {
35 for eachSCC’ € SCC' {

36 (L,U) = GenerateBoundsForEachVariableInSGC'(");
37 Explanation = CheckFeasibilityOfBoundsWithCliqué(C'C’, D, L, U);
38 if (Explanation = UNDECIDED or
Ezplanation = PROB_SAT) and interpretation is a mode])
39 CNF = SmallDomainEncodingForConstraintsinSC&C’, D, L, U);
40 Explanation = SatSolver CNF);
41 if (Ezplanation # SAT) return Explanation;
42 }
43 else returrBzplanation;
44 }
45 returnSAT,
46 }

47 GenerateBoundsForEachVariablelnSGC(”) {

48 x = FixValueOfOneVertexInSCCYCC");

49 U = ComputeUpperBoundForEachVariableInSGT'(’ x);
50 L = ComputeLowerBoundForEachVariableInSCSOC’ ,z);
51 return(L, U);

52 }

53 CheckFeasibilityOfBoundsWithCliqué¢C’, D, L, U) {

54 I' = GatherVariablesWithSameBound3,(L, U);

55 p = GetBoundForGatheredVariabld3){

56 D' = CollectRelevantDisequalityConstraint®,[);

57 " = RemovelrrelevantVariableByCheckingDegré&e D’);

58 if (n(T") < pandn(Var(D)) = n(T")) return PROB_SAT,

59 elseif @(I'") < pandn(Var(D)) # n(T")) return UNDECIDED;

60 if (n(D") < (p-(p+1))/2andn(Var(D)) = n(T")) return PROB_SAT;
61 elseif @(D') < (p-(p+1))/2andn(Var(D)) # n(T")) return UNDECIDED;
62 C = GenerateMaxCliqud(, D’);

63 if (n(Var(C)) < pandn(Var(D)) = n(T")) return PROB_SAT;

64 else if @(Var(C)) < pandn(Var(D)) # n(T')) return UNDECIDED;
65 else return GenerateExplanationFromMaxClige€(’,C);

66 }

67 SmallDomainEncodingForConstraintsinSCXC'C’, D) {

68 return EncodingForBoundsOfEachVariableInSGC (') U
69 EncodingForinequalityConstraintsiInSGCIC’) U

70 EncodingForDisequalityConstraint®);

71 }

Figure 3.2: Theory solver algorithm (continued)
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Equality constraints are involved in the explanation if the constraints on tlainegycle were obtained by
simplification in the equality layer. If there is no negative cycl&inthe set/ U @ is feasible; therefore a
solutions : V' — Z is returned by the Bellman-Ford algorithim.

The (simplified) sef combined withD is considered in the next step. L& be the subgraph aff
such that the edges with non-zero slacks for solutiane removed fronds. Since the slacks of the edges
of G are zero, the difference between the values of two variables in the sa@efI¢, is the same in all
solutions to the constraints. In fact, each cycl&inis of length 0 [LMO5]; hence, ifc andy are on one
cycle of Gy and the distance from to y along the cycle i, then the distance fromto x is —k. It follows
that every solution td must satisfyy — z < k andz — y < —k, thatis,y — = = k. In other words, an SCC
of G such that its vertex set induces also an SCGg@has only one family of solutions. (See Sect. 3.4.)

Each disequality constraint € D is checked for feasibility against each SCC@&f. If the two
variablesz, y in x — y # n (wheren may be 0) are in the same SCC@f, ando(x) — 6(y) = n, then
the setl U Q U D is infeasible. The violated disequalitly together with a cycle that containsandy and
an appropriate subset ¢f constitutes the explanation of infeasibility. If the two variabtesndy in d are
in the same SCC offy andd(z) — d(y) # n, thend is redundant and is dropped from. Disequalities
connecting variables in different SCCs@f are simply passed on to the next phase of the procedure. If no
infeasibility is detected witldz, a final feasibility check is performed by the small domain encoding method
discussed in Sect. 3.4. For each SCQfTheorem 3.1 is used to compute bounds for each variable as
follows.

To compute the upper bound for each variable, a variable in the SCC isrchdsitrarily as source.
(Variablez in Theorem 3.1.) The distance from it is computed for each variable in thelfy@& Bellman-
Ford algorithm. The lower bound for a variable is computed as its distancetfre same source variable
used to compute the upper bound after reversing the edges in the SGE tifsibone cannot replace the
distances computed by these invocations of the shortest path algorithm vsighdbmputed oty .)

Some inequalities and disequalities may be automatically satisfied for all values wdiriables in

2 The algorithm is, in principle, applied to the augmented gr@phdescribed in Sect. 3.2. In practice, no augmentatiofi &f
required: it suffices to initialize all distances to 0.
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Figure 3.3: SCC without any negative cycle

their ranges. For instance,(f< x < 1 and2 < y < 3, thenx # y andy — = < 4 are both satisfied. These
constraints are therefore ignored in the successive steps, whicistooins quick check based on finding a
cligue of the disequality graph, possibly followed by propositional engpdimd satisfiability check.

Some disequalities may be strengthened by converting them into a disjunctioaqoflities and
dropping one disjunct that is always false due to the ranges of the lewidior instance; — y # 1, where
1 <x<2,0<y<0canbe strengthened io— y > 2 because: — y < 0 is false forz andy in the given

ranges. The range aftherefore shrinks t@ < = < 2.

Example 3.4. Consider the SCC without any negative cycle in Fig. 3.3. The edges pormego the
inequality constraint (z —y < —1),(y —z < 2),(z —y < 1),(x — z < —2)}. Additionally, there
is a set of disequality constrain{§z —y # 0),(y — 2z # 0),(z —x # 0),(z —x # 1),(y — z # —1)}.
Variable z is chosen as source; hence both bounds,af; and z,,, are given value 0. Using the Bellman-
Ford algorithm, 1, is assigned 2 and,, is assigned 3. Reversing the edges in the S @ assigned 1
and z; is assigned 2. Therefore, the ranges &fe< = < 0,1 < y < 2,2 < z < 3}. The inequalities
{(x —y < —1),(y — 2z < 2)} and the disequalitie§(z —y # 0),(z —x # 0),(z —x # 1)} are
automatically satisfied for all values of the variables in their ranges. Theqdaéy (y — z # 0) is
strengthened tdy — = < —1). Consequentlyy — z = —1) and the disequalityy — z # —1) cannot be

satisfied.
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The application of Theorem 3.2 is described in lines 53-66 of Fig. 3.2. Witifigeets of variables
for which Theorem 3.1 produces the same bounds and we check whietherare enough disequalities
among the variables in one such set to cause inconsistency.

Specifically, suppose a set= {v1, ...,7,} of variables is found such that all variabledimave the
same boundsg; andy,,. Variables whose range is a subset of the common range are added to

Letp =y, — i + 1. If |T'| < p, disequalities cannot cause inconsistency of this set of variables. If,
on the other hand, the number of variables exceeds their common rangeeakewhether the disequalities
form a clique of size greater thgn We first eliminate froml" all variables that appear in fewer than
disequalities of the formy; # ~; (v:,7; € I). If I' is not empty after this process, we greedily grow a
cliqgue, adding every time the variable appearing in the largest number gudilttes among the surviving
members of". This greedy algorithm does not always find the largest clique, busisafed works well in
practice.

In the final step of the theory solver, the constraints and the boundeaverted to a set of clauses
whose satisfiability is established by calling a propositional SAT sdlvelf the clauses are satisfiable,
an interpretation for the integer variables is extracted from the solution.n@tiee an explanation for the
unsatisfiability is derived as follows from the proof of unsatisfiability re¢ariy the SAT solver, which
consists of a subset of the clauses that are found to be unsatisfidideinJatisfiable core)

Every propositional clause in the unsatisfiable core is derived from swithenetic constraint. If
a clause appears in the unsatisfiable core, the parent constraint iseith@futhe explanation. The bound
constraints on the integer variables also contribute to unsatisfiability. Tleegcaounted for by including

the constraints that form the two shortest path spanning trees found) dia€icomputation of the bounds.

Example 3.5.1f Example 3.4 continues without disequality strengthening, the constfdintsy < 1), (z—
2 < =2),(y—2z#0),(y—2# —1)} and the bound$0 < = < 0,1 <y < 2,2 < z < 3} are converted
to the set of clauses below. The variaples substituted by + 1, and the variable: is substituted by + 2.

As a result, the range efand( are0 < ¢ < 1,0 < ¢ < 1, and the number of bits used foand ¢ during

% Our current encoding of the ranges is rather unsophisticated. We plenirnting a heuristic approach to minimizing the
total number of encoding bits required.
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the encoding is one instead of two.

@ = (=0 V t0) A (=0 V Go) A (Lo V —Co) A (vo V Co)-

With the set of clauses, a propositional SAT solver is called. Since the set of clauses is undagsfia

the unsatisfiable cor® is returned:

Q= (=0 Vo) A (=0 V Co) A (Lo V =Co) A (2o V Co)-

The inequality constraints that are responsible for the bounds are extrastan explanation from the SCC

in Fig. 3.3. For the variables:, y, z in the SCC, the edges that lie on the forward and backward shortest
paths from each variable to the fixed variableare gathered. Therefore, we gty — = < 2),(z —y <
1), (x — z < —2)} as an explanation for the bound® < = < 0,1 <y < 2,2 < z < 3}. The parent
constraints of the clauses left §hare finally gathered; they aré(z —y < 1),(y — 2z #0),(y — z # —1) }.

As a result, the full explanation for the infeasibility is

{(y—2<2),(z-y<1),(@-2<-2),(y—2#0),(y—z# -1}

Five constraints suffice to explain the infeasibility of the original nine condsain

3.6 Related Work

Propositional abstraction as an approach to satisfiability modulo theorigsra@ssed in [BDS02].
Notable solvers based on that principle are MathSAT [BB&b, BBC 053], ICS and Yices [dMR02,
DdMO06a, DdM06b], Verifun [FIOS03], BarcelogicTools [GFiB4, NO05], SLICE [WIGGO05], and SATORI
[IPCO3]. ASAP [KOSSO04] takes a dual approach, in which satisfiabilitthe propositional abstraction
guarantees satisfiability of the original quantifier-free Presburgerdlar, while UCLID [LS04] is an eager
solver. Our propositional enumeration engine is the one of [JHS05].JS05

Finite instantiations for equality logic are studied in [PRSS02] and extendeifféoedce logic in
[TSSPO04]; this last work has several points of contact with ours, Isotienportant differences. The ap-

proach of [TSSP04] is eager, and the ranges are computed oncer afidbkfore invoking the propositional
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SAT solver. In contrast, we advocate a lazy approach and a computétibe mnges that takes place in
the theory solver. Because of that, we may compute ranges more tharbahtee size of the range for
each variable in our algorithm is bounded by the sum of the slacks in the\8@¢ch is much smaller than

n + maxC, wheremazC' is the sum of absolute constants in the formula. In practice, ranges are much
smaller in our algorithm. Moreover, we compute ranges by simply finding stgéghs in the constraint
graph. The algorithm of [TSSP04], on the other hand, enumerates ipaths constraint graph and is
exponential in the worst case.

Recent work by Ganat al. [GTGO06] presents a polynomial algorithm for the computation of ranges,
which improves over the one of [TSSP04], but shares the basic agprBanges are allocated initially, so
as to be adequate for every formula built from the given set of diffsyaonstraints. Disequalities are
converted to disjunctions of inequalities, instead of being retained as stiehfiormulation of the problem.
The theory consistency problem is never converted to propositiondiaaitity. Instead, range propagation
allows the solver to refine the initial ranges.

MathSAT introduced the notion of layered, incremental theory solver,thatdof delayed theory
combination; DPLL(t) the idea of exhaustive theory propagation, bothhiélware included in our imple-
mentation. The importance of considering zero-slack SCCs was first gantdn [LMO05], which deals
with RDL. Finally, [WIGGO05] discusses an efficient way to implement a recurbiaektrackable Bellman-

Ford algorithm.

3.7 Experimental Results

We have implemented the algorithm presented in Sect. 3.5 in Sateen, a theoverfor quantifier-
free first-order logic that combines the propositional reasoning en@jdei805, JS05] with theory-specific
procedures. A first set of experiments were done with the full set of[@~Quantifier free integer dif-
ference logic) benchmarks from SMT-COMP (Satisfiability Modulo Then@empetition [SMTa]). The
experiments were performed on a 1.7 GHz Pentium 4 with 2 GB of RAM runniimgx. Time out was set
at 3600 seconds. Sateen was compared with BarcelogicTools [DPIgs-0id..1 [Yic] and MathSAT 3.3.1

[Mat]. The compared solvers are the ones that were submitted to SMTRIQRI005.
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Figures 3.4-3.6 show scatterplots comparing BarcelogicTools, Yices atitS/T to Sateen. Points
below the diagonal represent wins for Sateen. Each scatterplot showmes: The main diagonal, and
y = k- 2", wherex andn are obtained by least-square fitting. Figure 3.4 shows that Sateen is ainepar
to BarcelogicTools. In Figures 3.5 and 3.6, Sateen shows better resuigmped to Yices and MathSAT,
especially on hard problems. The SMT-COMP benchmark formulae ahetsatusually the sets of con-
straints passed to the theory solver either contain few disequality constoaiate such that the disequality
constraints are dealt with by the zero-slack SCC algorithm. The main puoptsese experiments is there-
fore not to show the effectiveness of the newly proposed algorithrfirfide instantiations, but to establish
that Sateen is, overall, a competent solver2lr, comparable to some of the best tools in the field.

To assess the effectiveness of the finite instantiation approach, wegbaeeated two benchmark
suites where disequality constraints play a significant role: the Queensafdithe Job Shop Scheduling
Suite. The Queens Suite contain®ueens problem and Super-Queens problem. TheQueens problem
is a classical combinatorial search problem which consists of placiggeens on & x n board so that
they do not attack each other. In theSuper-Queens problem, each queen’s placement is more restricted
by allowing it also the knight's moves. The Job Shop Scheduling problemeisdomly generated problem
which checks the feasibility of processing a number of jobs, each compdtseveral tasks, on a given set

of machines in a given amount of time. These two sets of benchmarks hagedlity constraints that cause
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pigeonholing problems. In the experiment on these benchmarks, the timasseito 1000 seconis.

Figures 3.7-3.9 shows that Sateen is often orders of magnitude fasténé¢hatiher solvers on these
problems. Thex symbols denotes the experiments on the Queens benchmarks, andyh#ols denotes
the experiments on the Job Shop Scheduling benchmarks. We also pra/mtatparison between Sateen
with our proposed algorithm and a version of Sateen that splits disequakiigsre 3.10 shows that the
finite instantiation algorithm works significantly better than the splitting method.

Table 3.1 shows the number of calls and conflicts involving the equality layg), (Ee Bellman-Ford
layer (INEQ), the zero-slack SCC layer (ZS), the clique generation [@leQ) and the finite instantiation
layer (FI) on selected benchmarkBV and AF correspond to the number of propositional variables and
atomic formulae, respectively. In the entries of the fakmY’, X is the number of conflicts and is the
number of calls. The data show that each layer contributes to finding denflic particular, the clique
generation layer is very effective in finding conflicts in the Job Shop @&divey benchmarks, which enables

the solver to avoid the finite instantiation layer.

4 Although, the results of SMT-COMP [SMTb] in 2006 show that Sateen is it the three other solvers above, Sateen
gives significantly better result on theQueens and Job Shop Scheduling benchmarks.
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3.8 Conclusions

ing and Queen suites

We have presented an approach to solving integer difference logic thattisularly effective when

the constraints to be solved are rich in disequalities. By restricting consateta a small sufficient set of

solutions, we are able to compute bounds for the integer variables ocginrtime constraints. Experiments

indicate that this approach is more effective than splitting disequalities into thmction of inequalities.

Further improvements in efficiency are expected from a more sophisticatediag scheme for the finite

instances that we are currently developing.
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Benchmark BV AF SAT EQ INEQ ZS CLQ FI
diamonds.10.5.i.a.u 0 121  UNSAT 0/0 90/1199 0/0 0/0 0/0
DTP_k2_n35c245s2 0 490 SAT 0/0 709/7200 0/0 0/0 0/0
inf-bakery-mutex-18 76 328 UNSAT 71/1498 84/1533 25/2070 0/0  0/0
FISCHER9-10-ninc | 1146 686 SAT 54/55 0/1 0/0 0/0  0/0

queen30-1 1365  SAT 0/0 0/1 0/1 0/0 011

5664  SAT 0/0 0/1 0/1 0/0 011

0
superqueen60-1 0
0 2820 UNSAT 0/0 632/1264  0/631 1/631 0/1
0
0
0

jobshop30-2-20-20-4-4-122

jobshop40-2-20-20-4-4-122 4960 SAT 109/258 3/1343 109/1282 58/1172 0/1
1 7700 UNSAT  0/0  1802/3604 0/1801 1/1801 0/0
2

11040 SAT 239/538 3/2773  239/2682 88/2442 0/1

jobshop50-2-25-25-4-4-1]
jobshop60-2-30-30-4-4-1]

Table 3.1: Number of Calls and Conflicts



Chapter 4

Efficient Term-ITE Conversion

Satisfiability Modulo Theories (SMT) solvers find increasing applicationgéaslike formal veri-
fication in which one needs to reason about complex Boolean combinationsrarical constraints. The
most common approach to this problem leverages the efficiency of modgrogitional satisfiability solvers
that work on a propositional abstraction of the given formula. At the same thmg interact with theory
solvers, which check conjunctions of literals for consistency and leamsegjuences (new lemmas) from
them. This approach has come to be known as DPLL(T) [NOO5].

Among the logics for which theory solvers have been developed in réioees, linear arithmetic
is one of the most useful and well-researched. Many current sohgept some variant of the simplex
algorithm. In particular, the backtrackable version of [DdM06a, DdM@@well in the DPLL(T) scheme
and has shown good results in practice for both integer and real-vaduiedles.

The Boolean dimension of many SMT instances, however, continues taapdsdlenge to solvers.
In this chapter, we address this problem. In particular, we focus on thesaces that make extensive use
of the term-if-then-else (ITE) operator. This operator facilitates the analysis of problems in whathsp
through control-flow graphs must be translated into SMT formulae. It ismgtrising, therefore, that many
of the available benchmark instances for linear arithmetic are rich in term-IGiZen a code fragment that
containgf statements, a verification condition can be naturally formulated with ITEs amshd-ig. 4.1.

Two major approaches can be envisioned to deal with term-ITEs. On thieamtk one can modify
the theory solver to deal with conditional expressions. Without ITEsyyeagsignment to an atom of the

SMT formula adds to a conjunction of literals that is analyzed by the theorgisoWith ITEs, this is no
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main(void){ F

o
y=1

Yelseif(x =1){ y

y=2 —> ‘
Yelseif(x = 2){ o 1
=3 r=1 2
o p=y

belse { oy

y=4
}

assert(y < 2);

Figure 4.1: Verification conditioff with term-ITEs

longer the case. In order to analyze the atom, the conditional expresditres|TES need to be assigned.
On the other hand, one can eliminate all the ITEs from the formula by rewritihg.problem here is that
the rewritten formula may retain a lot of redundancies depending on howeamnées it. We address this
problem by a procedure based on cofactoring and theory simplificatibimough our approach may cause
a blow-up, it often simplifies the formula in practice. Our approach is applididear arithmetic logic in
this chapter; however, it can be easily applied to other logics like the logiquility and uninterpreted
function symbols (EUF), the logic of bit-vector, or the logic of arrays. GQhlyterminal cases are different
in each logic. Our experiments show that our approach is promising amdspfézds up a solver by orders
of magnitude. The experiments also demonstrate the effectiveness of siraptification.

The rest of this chapter is organized as follows. Section 4.1 defines mogatibsummarizes the main
concepts. Section 4.2 discusses motivation and outlines our approachptolihem. Section 4.3 presents
the simplifications applied before invoking the term-ITE conversion. Sectibpresents an algorithm for
term-ITE conversion with theory reasoning. After a survey of relatetkwo Sect. 4.5, experiments are

presented in Sect. 4.6, and conclusions are offered in Sect. 4.7.
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4.1 Preliminaries

We consider the satisfiability problem for linear arithmetic logic, which is the tfierrfree fragment
of first-order logic that deals with linear arithmetic constraints. Ugtbe the set of real-valued variables.
The formulae in linear arithmetic logic are inductively defined as the largégtaesatisfies the following

rules.

A propositional variable € Vp is a formula.

A real number € R is a (constant). A term.

The productz of a real number € R and a real-valued variablee V5 is anLA term.

If t; andt, areLA terms, so aré; + to andty — to.

If ¢; andt, areLA terms, andf is a formula, thenite( f, ¢, t2) is anLA term.

If ¢; andt, areLA terms, and~ is a relational operator if=, #, <, <,>, >}, thent; ~ {2 is a

formula.

If f1, fo, andfs are formulae, them f1, f1 A fa, f1 V f2 andite( f1, fa, f3) are formulae.

The semantics are defined in the usual way; in particitégyt;, f2, f3) is equivalenttd f1 A fo) V(= f1 A f3).
An atomic formula is one of the form; ~ t,. A positive literal is an atomic formula or a propositional
variable; anegative literal is the negation of a positive literal.

A model for a formulaf is an assignment of values to the variables in the formula that is consistent
with the type of each variable and that makes the formula true. A formula tsatHaast one model is
satisfiable In recent years, decision procedure gk, and other fragments of quantifier-free first-order
logic, have been based on the DPLL procedure. Given a forfutae propositional abstractia, of
F is built by substituting each atomic formula with a new propositional variable. ADWLL procedure
provides a model fof;,, atheory solverfor LA is invoked with the set of atomic formulae that are assigned.
The theory solver checks the feasibility of the set. If the set is feasible,tileemodel is also a model in

theory. If the set is infeasible, then the explanation of the infeasibility ismetuto the DPLL procedure.
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The procedure continues until it finds a complete model, or decidesttimtinsatisfiablein the given

theory.

4.2 Term-ITE Conversion

An LA formula can often be expressed more concisely by using term-ITEs. xGorpe, Fig. 4.2
shows that the formuld in (a) is equivalent to the more verbose formyfan (b). Despite the conciseness
afforded by term-ITEs, &A formula with term-ITEs is often converted into a formula without them, so that

the formula may be solved by an SMT solver based on the propositionahetistr.

42.1 Two Methods for Term-ITE Conversion

A common way to eliminate these term-ITEs is to introduce a fresh constant fhates the term-

ITE. In particular, arLA formula f (tite(g, t1, t2)) is converted to the equisatisfiable

fle)nite(g,t1 = c,ta =c¢) (4.2)

wherec is a constant that does not appear in the given formula. The advarftdige conversion is that
it does not blow up; however, it often retains redundancies in the caavéormula. For example, the
formulatite(g, 1,2) = tite(h, 3,4) can be reduced ta, whereas the conversion generategy,c = 1,¢ =

2) Nite(h, ¢ = 3, ¢ = 4) that contains a redundancy. To remove the redundancy, additionay tie@soning

is required. A naive approach to the term-ITE conversion will be to coméwueey term in the left-hand
side of the relational operator with the terms in the right-hand side dependittgeaconditional terms of
term-ITEs. In particular, ahAformulaf (tite(g, ¢1, t2)) is converted according to following conversion rule

[JDBY5].

f(tlte(g7t17t2)) — Ite(gaf(t1)7f(t2)) : (42)

This approach removes the redundancy in the above example on thevilsvdmas Fig. 4.2 illustrates, the

converted formula may grow exponentially large in the worst case.
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Figure 4.3: Term-ITE conversion with cofactor

4.2.2 Term-ITE Conversion with Cofactors

As an alternative to the approaches described in Sect. 4.2.1, term-I'M&rstmm can be done by

computing cofactors.
Definition 4.1. Let f(z1, ..., z,,) be an LA formula, where eadh is a positive literal. Then,
fo, = f(@1, e, @im1, T, Tig 1y ey Tn)
oz, = fl@r, o, mict, Ly Tig, oy o)
are the positive and negative cofactorsfolvith respect tac;.

Theorem 4.2(Boole) Let f(z1,...,x,) be an LAformula. Thelfi(z1, ..., zy) = (ziA fo,)V(mZiA fog,) =

ite(.Ti, fwl ) f—\wl)
According to Theorem 4.2, the following rule can be used to rewriteaformula:
f(tite(g, t1,t2)) < ite(z, fo(lite(g, t1,t2)), f-a(tite(g, t1,22))) - (4.3)

By computing the cofactors gf, the conversion may greatly simplify the converted formula. In Fig. #.3,
is simplified to_L using (4.3). In particular, the cofactofg < (tite(B,3,5) =4)andf_4 < (5=
4) <= 1 are first computed. Thefiis simplified to(A A f4), and finally reduced td_ by cofactoring

fa with respect taB.
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This kind of simplification can often be applied to th& problems in SMT-LIB [SMTa]. As the
previous example shows, the simplification for equality is easily done by camgp&vo constants. On
the other hand, if fresh constants are introduced, redundancy mainrintlae converted formula: a fresh
constant replaces the terrtite(ite(A4, B, 1), tite(—A, x,3),5) in f. Thenf is rewritten in two steps: first

as
(c=4) Nite(ite(A, B, 1), c =tite(—A,x,3),c=5) ,
and then as
(c=4)A(d =c) Nite(ite(A, B, L),ite(=A,d =2, =3),c=5) ,

wherec is another fresh constant. Removing the redundancy from the confertedla requires theory
reasoning. While such reasoning is uncomplicated in this example, in gémersw constants may make
it cumbersome. Although the cofactoring method may give a huge reductioayiblow up if there is little

simplification. Compared to the approach that introduces a fresh consiamhate aggressive.

Definition 4.3. Letx be a literal andh be a formula. We write =7 h if h is a consequence afin theory

T, and we callh atheory consequencef x.

The cofactoring method can be further extended with theory reasonsigg the theory propagation
method [NOO5], an assignment to an atomic predicate may entail assignmentsrtatotiic predicates.
For example, irLA, if we make an assignment{e < 0) = T, then(x < 3) = T and(z > 1) = L. The

following rules show how theory propagation may help in the simplification of tmeerted formula:

xT |:T h
fo(tite(h, t1,t2)) <= fu(t1) (4.4)
e (4.5)

fz(tite(h,t1,t2)) <= fo(ta)
As we compute the cofactors in the term-ITE conversion, we make an assigtoribe cofactoring literal.
If the cofactoring literal is an atomic formula and the computed cofactor is alstanic formula, then
theory reasoning can be invoked to check the relation between these . dtbe following consequence

of Theorem 4.2 gives an idea of how this simplification can be done; it willdeel in Sect. 4.4.
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R

Figure 4.4: Term-ITE conversion with simple check

Theorem 4.4. Given a formulaf of theoryT" and a literal z;, if z; =1 fz,, thenf <= z;V f,. If

X ):T _‘fxia thenf <— -ua; A fﬁxi.
4.3 Simple Preprocessing

Before we execute term-ITE conversion forlahformula f, terminal cases for term-ITE are detected
and basic simplification is carried out. Lete Vp; let ¢4, to, andts be terms and let;, co, andcs be
constants. In th&A formula, we detect special cases liie(T,t1,t2) <= t, tite(L,t1,t2) <=
to, tite(a,t1,t1) <= t;. We also simplify nested term-ITEs such #e(a, tite(a, t1,t3),t2) <=
tite(a, t1,t2), tite(a, tite(—a, t3, t2),t1) <= tite(a,t2,t1). For arithmetic terms0 +¢;) <= t1,(0-
t1) <= 0,(1-t1) < t1,(—(—t1)) < t1,(c1 +c2) <= c3, Wherecs is the sum of; andc,.

Furthermore, if a formulg has a root node that is a relational operator applied to term-ITEs and has
leaves that are all constants, then it can be simplified. For simplicity, we oatkdhe case where either of

the children of the root node is a constant. Example 4.5 shows such a case.

Example 4.5. Let f be a formula shown in Fig. 4.4. The formufais an equality with term-ITEs. As
Fig. 4.4 shows, the terms on the left-hand side of the root node are altasuesand the one on the right-
hand side is also a constant. In such a case, we compare all the constdinésleft hand side for equality
with the constant on the righg04. Clearly, (202 = 204) <«— 1, (201 = 204) «<— 1 and

(201 =203) <= L;hencef = L.
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4.4  Algorithm

We assume that an SMT solver adopts the rewriting procedure. GiveA &ormula F with term-
ITEs, an SMT solver convert$ into ' by removing all term-ITEs irf. The SMT solver then decides the
satisfiability ofF’. In this section, we describe hdWis converted intd”.

As the pseudocode of Fig. 4.5 shows, the main function of term-ITE csioveis called with alLA
formulad. The formula¥ is represented as a directed acyclic graph (DAG), where each nodoidean
operator, a relational operator, an arithmetic operator, a term-ITE, atoam. The conversion is applied to
each relational operator in the DAG, and the procedure ends @hao longer contains term-ITEs. The
main function starts by selecting the candidates for the conversion in the Bagh.candidate is a relational
operator that has a term-ITE as a descendant, and the candidatetharedyanF'. As Line 4 in Fig. 4.5
shows, the term-ITE conversion is invoked withe F', and all the term-ITEs are removed frofn After
the conversion of', the converted formulgd’ is either a Boolean ITE or an atom. The procedure ends when
all f € F have been considered. At that poifithas been converted inff, which does not contain any
term-ITEs.

As TermlteConversion is invoked with € F', a cofactoring variable is searched for irf at Line 10.
We select an atom as a cofactoring variable that resides in the conditiomabteéhe term-ITE. Withv,
we recursively compute the cofactor pf In general, the cofactors are computed for the childrefiwith
respect ta, and a new formuld, is created with new children. As shown in Line 38 of Fig. 4.6f it a
relational operator, we compute the cofactigrandr,, for the children off. After computing the cofactors,
we check for simple cases with andr,. The simple check detects terminal cases for the tégrasdr,
with respect to the typé=, <, <, >, >) of f. Figure 4.4 shows an example of simplification. If a terminal
case is not found, a new formuja is generated withype(f), I, andr,. The newly generated formula,
fv is either an atom or a relation operator with term-ITEs. In the latter case, TEnadnversion is called
with f,,, again. In Line 47 of Fig. 4.6, if, is an atom, theory reasoning is done withAs Theorem 4.4
shows, ifv =7 f,, thenf in Line 13 of Fig. 4.5 is simplified te v f—,. Likewise, ifv =1 —f,, thenf is

simplified to—v A f-,. Whenf is either a term-ITE or a Boolean ITE, the cofactor for each terni isf



}

TermlteConversionMair®) {

F' = GatherCandidateForTermlteConversian;(
for (eachf € F in topological order)

f' = TermlteConversionf);

F' .= UpdateFormulaZ, f');
}

returng’;

9 TermlteConversionf)) {

15
16 }

while (v := GetCofactorVariablef() ) {
fv := CofactorRecur f, v);
f-» = CofactorRecur f, —v);

} f=lte @, fo, f-);

returnf;

17 CofactorRecurf, v) {

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 }

if(f=v){
Jo=T,
telseif (f=-w){
foi=1
} else if (isrelation(f) ) {
f» := CofactorRelRecurf{, v);
} else if (istermite(f) ) {
f» = CofactorTiteRecur f, v);
felse{ /¥ +,— x*
C = children(f);
Foreacl € C {
d := CofactorRecurq, v);
Add(D, d);
¥
fv = NewFormula (typef(), D); /* type(f) is either+, —, x. */
SimplifyArithFormulaf,);
¥

returnf,;

Figure 4.5: Term-ITE conversion algorithm
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37 CofactorRelRecurf( v) {

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 }

1, := CofactorRelRecurléft(f), v);
r, := CofactorRelRecurr{ght(f), v);
f. := SimpleCheckWithTerms (typg, L., 7);
if ( f, = NoSimplification ){

f. = NewFormula (type(), L, 7);

if (is_termite(l,) or is_termite(r,) ) {

f» = TermlteConversionf,);
}

}
if (is_atom(f,) ) {
if (v =7 fu ) { I* theory reasoning */

foi=T
}elseif (v =7 —f, ) { /* theory reasoning */
foi=1
}
}
returnf,;

56 CofactorTiteRecurf(, v) {

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 )

fe = CondTerm{); f: := ThenTerm(); f. := ElseTermf);
if(f.=T){
return CofactorRecurf(, v);
telseif (fo=1){
return CofactorRecurf{, v);
} else if (ispred(f.) ) {
if (v =1 f.) { /*theory reasoning */
return CofactorRecurf(, v);
}elseif (v =r —f.)) { /* theory reasoning */
return CofactorRecurf{, v);
¥
}

¢, := CofactorRecur f., v);
t, := CofactorRecur f;, v);
e, .= CofactorRecur f., v);
fo = 1te (cy, ty, €4);
returnf,;

Figure 4.6: Term-ITE conversion algorithm
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computed as shown in Line 58 of Fig. 4.6. As in the cofactoring on the rel&tgesator, a terminal case
is checked for the conditional terifa. If f. is an atomic predicate, theory reasoning is done widimd f,
using Rules 4.4-4.5 of Sect. 4.2.2. If a terminal case is not found, theothetars for the terms of are

computed to obtairf,.

fr =T f-a
E—
36 55 @ 55
B x y
I f‘ﬁAB =T Jonp =1
f>\ A
A T B T 55 Y 55

A < (z>50),B <= (y<58)

Figure 4.7: Term-ITE conversion

Example 4.6. If f is a relational operator such thab(f) contains term-ITEs, we conveftinto f’ such
that there is no term-ITE iD(f’). In Fig. 4.7, letA < (z > 50) and B < (y < 58). We first traverse
D(f) to find a cofactoring variable. We pick an atomic formulas cofactoring variable and compute the
cofactors off with respect tad. As we proceedfs = (36 < 55) = T and f- 4 is constructed with a new
term-ITE. Since there still exists a term-ITELN - 4), we look for another cofactoring variable jf, 4. We
selectB and compute the cofactors fgr, 4. As a result, we gef-ap = (z < 55) and f_4-p = (y < 55).
SinceA =1 f-ap and—B Er ~f-a-B, f-ap = T and f_4—p = L. Finally, the converted formulg’

gets reduced tate(A, T, B) as shown in Fig. 4.7.
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4.5 Related Work

Early references on the treatment of ITEs are [Kar88], [BRB90][ABdB95]. For SMT preprocess-
ing, HTP [Roe06] introduces several preprocessing techniquésasuanate predicate detection, variable
substitution and symmetry breaking. Yices [DdM06a, DdM06b] uses aggauslimination to reduce the
size of initial tableau of equality constraints. In [YMO6], ¥tial. describes a static learning technique that
analyzes the relationship of the linear constraints. In Karplus's techrgipalt [Kar88], a new canonical
form for ITE DAGs is introduced using two-cuts, aliE normalization using recursive transformation is

shown in [NOOS8].

4.6 Experimental Results

We have implemented the algorithm presented in Sect. 4.4 in Sateen [KISHbO&KIVIS], a
theorem prover for quantifier-free first-order logic that combines tlepgsitional reasoning engine of
[JHSO05, JS05] with theory-specific procedures. Experiments are @ih the full set of QAELIA (Quan-
tifier free linear integer arithmetic logic) benchmarks from SMT-COMP (Sabgity Modulo Theories
Competition) [SMTa]. The experiments were performed on an Intel 2.4 Gliidedl@ore with 4 GB of RAM
running Linux. Time out was set at 1000 seconds. Sateen was compihed3.2 [SMTa], MathSAT-
4.2[BBC*05h, SMTa] and Yices-1.0.16 [Yic]. Z3.2 and MathSAT-4.2 are the onaswvtiere submitted to
SMT-COMP in 2008. We used most recent version of Yices that is available

In QF_LIA benchmarks, there are two benchmark seeg-smtandrings, that are rich in term-ITE
operators. More than 90 percent of the QA benchmarks belong to those two sets. The instances in
the nec-smtset are generated by the SMT-based BMC engine of F-Soft TId%}; the instances inings
encode associativity properties on modular arithmetic.

Figures 4.8-4.10 show scatterplots comparing Z3, MathSAT and Yices terSd®ints below the
diagonal represent wins for Sateen. Each scatterplot shows two [iesmain diagonal, ang = « -
z", wherex andn are obtained by least-square fitting. Figure 4.8 shows that Sateen is oftemler

of magnitude faster than Z3. In Fig. 4.9 and 4.10, Sateen is often a fewsasflenagnitude faster than
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Table 4.1: Number of term-ITE reduction with simple preprocessing

Benchmark Before S.P. After S.P. rate(%)
bftpd_login/prp-74-50.smt 38773 34085 12
checkpass/prp-10-46.smt 17240 14949 13

checkpass/prp-63-50.smt 25376 21893 14
checkpaspwd/prp-38-42.smt 12196 10354 15

getoption/prp-2-200.smt 11269 9791 13
getoptiondirectories/prp-0-110.smt 72892 62457 14
getoptiongroup/prp-72-49.smt 15021 12094 20
handlersigchld/prp-20-46.smt 7800 6824 13
int_from_list/prp-34-41.smt 7184 5888 18
useris_in_group/prp-23-48.smt 22549 17939 20

MathSAT and Yices.

We further evaluated our preprocessor by generating simplified fornfidarethe nec-smtbench-
marks and running Z3, MathSAT, and Yices on them. All solvers took lessalscond on each simplified
problem. Figures 4.11-4.13 show scatterplots comparing Z3, MathSAT iaed With preprocessor and
without preprocessor. The times for the solvers with preprocessordeg@teprocessing time. As Fig-
ures 4.11-4.13 show, our preprocessor is also effective for avhears.

Table 4.1 shows the number of term-ITE reductions with the simple prepingess randomly se-
lected benchmarks. The first column gives the name of the benchmarkgcibred one is the initial number
of term-ITEs, and the third one is the number of term-ITEs after the simplequegsing. The last col-
umn gives the rate of the reduction. On average, we achieved 15% t&metluction with the simple
preprocessing of Section 4.3.

Finally, we compared our approach to the naive approach of Eq. 4 RigA4.15 shows, our approach
is significantly better. In addition, we disabled theory simplification in the algoré&hthran the experiment
on the problems where the simplifications play a significant role. Figure 4dssiat Sateen with theory

simplification is consistently better than the one without simplification.



52

Scatter plot for SMT QF-LIA benchmark Scatter plot for SMT QF-LIA benchmark
10° Nan 10° KK
~ % X%
X X%@X% K e RO X
@02 P 5 @02 2 3 X
o ><>S?< K o X x
£ £ X,
= N X X = X %
210t F 210t by <
3 3 %
5 . 5 L
1 10 g %
X X
X
10 XX 10t X
10t 1° 10t 1?2 10® 10t 10 1t 1?2 1@
Z3.2 : time (s) MathSAT-4.3 : time (s)
Figure 4.8: Z3 vs. Sateen on QFA Figure 4.9: MATHSAT vs. Sateen on QEIA
Scatter plot for SMT QF-LIA benchmark Scatter plot for SMT QF-LIA nec benchmark
10° 10° x
K
X s ﬂé
G0 S10°
o x X »
£ X x = g <
glol o q%10l
g a
n % <
10° Fox 10
(2]
N
X X
10? 10t ‘
10t 1® 10t 1?2 10° 10t 1® 1t 1?2 1e?
YICES : time (s) Z3 : time (s)
Figure 4.10: YCEsvs. Sateen on QEIA Figure 4.11: Z3WwITH PREPROCESSVS. Z3 on
QF.LIA
__Scatter plot for SMT QF-LIA nec benchmark Scatter plot for SMT QF-LIA nec benchmark
210° @0
£ )
= £
M? 107
g ]
8 2
S <]
&10" o0t
= o
E £
H
5100 $10° -
T o
% X > X
O—l i i i 10—1
10t 18 10° 10t 1® 10t 1? 10°
MATHSAT : time (s) YICES : time (s)

Figure 4.12: MATHSATWITH PREPROCESSVS. Figure 4.13: YICESWVITH PREPROCESYS. YICES
MATHSAT on QF.LIA on QFELIA



53
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4.7 Conclusions

We have presented an algorithm for the term-ITE conversion in first-tiheeries like the theory of
linear arithmetic. The approach is based on the computation of cofactothemy simplification. The
simplification is done by detecting special cases in the formula or using thegpagation on the atomic
predicates. Experiments show that this approach is very effective in@tetlA benchmarks and often
speeds up SMT solvers. On the other hand, since our approach majostilijpin general, we are working

on combining it with a less aggressive approach, based on (4.1), taandoblow up.



Chapter 5

Avoiding Mismatches in Verification of Verilog Designs

51 Introduction

There have been numerous efforts to put the Verilog hardware diéscrignguage (HDL) on a rig-
orous semantic basis for simulation, synthesis, and formal verification. ©onth hand, several different
semantics have been proposed to describe the execution of a subsstlaf.vVOn the other hand, Ver-
ilog coding guidelines have been practically used to avoid the mismatches hgiveee@nd post-synthesis
simulations.

A verification condition for a Verilog design may be described in terms oftesemantics; however,
expressing the event semantics in a logical formula often leads to a compidiian to verify. On the
other hand, cycle-based semantics describe the execution of Verilogns ¢dérsequences of stable states
attained in every clock cycle. With cycle-based semantics, we show thateewerification condition for
a hardware model may be generated that captures exactly the setuti@xéi@ce that may be produced by
a standard-compliant simulator. In the past, several cycle-basedaappohave been proposed; however,
the semantics are often not completely defined and do not guarantee tdtevomsmatches between the
verification condition and the simulation of the model.

We define a subset of Verilog that describes synchronous hardwees appropriate semantic restric-
tions. The restrictions are compatible with common coding guidelines. Thegmpearthat formal verifiers,
simulators, and synthesis tools all interpret a model in the same way. (We pbethavioral equivalence
between the verification condition and the simulation model.) The restrictions atlotkoled nondeter-

minism, which is useful for high-level verification, but can be easily elimin&edynthesis. Finally, they
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lead to a concise verification condition for the model as an SMT formula.
The rest of this chapter is organized as follows. Section 5.2 presentsetsi Verilog calledSV.
Section 5.3 proves the correctness of our translation. Section 5.4 disaissngths and limitations. After

a survey of related work in Sect. 5.5, conclusions are offered in S&ct. 5

5.2 Verification Conditions for Hardware

In this section, we define a langualytsV (Minimal Synchronous Verilog) that is a subset of the
Verilog hardware description language (HDL) [Ver] suitable for the niadeof synchronous hardware. A
description inMSV consists of a single module that contains variable declarations and pracbbhcks.

A variable z with a width of n € Z* bits can be of typénput or reg, and a variable of typeeg can

be designated as output. A constaris a natural number; expressions are made of variables, constants,
and operators, which are categorized into arithmetic, concatenatiowmticedbit-selection, shift, bit-wise,
logical, conditional, and relational operators. All Verilog operators apperted except case equality (===
and inequality (!==). Although the subset we consider includes ességditires of Verilog, it does not
support delays, strengths, and other features that are not need®€lLfverification of synchronous designs.

In MSV, as in Verilog, a blocking assignment (=) updates the target variable immigdiatéle
the update of a nonblocking assignmest)(is deferred. A statement may be an assignmentf Aelse
conditional statement, or a sequence of statements enclosed by the kepegirdandend. A procedural
block consists of a trigger and a statement.

Procedural block triggers are restricted to three typdddV:

e always@ x
e initial #0 #0
e always@ (posedge clock

The purpose ofilways @ x blocks is to describe combinational logic, whitgtial #0 #0, andalways
@ (posedge clockblocks are used to describe the initial values and the updates of memorynederire

always@ (posedge clock clock is a distinguished input.
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Valid MSV descriptions obey semantic constraints, some of which are best deserilgechs of an
intermediate form. Lel” be the set of variables in a description. Létbe a set of variables of typeg
disjoint fromV and let3 : V — V be an injective function. We write for 3(v). An MSV description
is put in intermediate form by replacing each nonblocking assignmesat b with @ = b. The result is
converted into Static Single Assignment (SSA) form [CRR].

The example in Fig. 5.1 shows the conversion figl8V description to the intermediate form. The
three procedural blocks at the top are converted into the intermediateataha bottom by replacing each
nonblocking assignment with a blocking assignment (i.e, feom y to Z = y), and the result is converted
into SSA form. We assume henceforth that descriptions are in intermediate for

Let B¢ be the set of combinational blocks of tyglvays@ x. Let B4 be the set of sequential blocks
of typealways@(posedge clock B; be the set of initial blocks of typaitial #0 #0, andBs = B U By
be the set of sequential blocks. gt C V' be the set of target variables By andVy C V be the set of
target variables ilBs. Let V4 C Vs be the set of target variables iy, andV; C Vg be the set of target
variables inB; whereVyg = V4, U V7. LetVr C V UV be the set of variables of typeg. We define several

terms useful to describe the semantic$43V.

Definition 5.1. The condition for an assignment is the predicate that has to be true for tignassnt to

execute.

Definition 5.2. Let Vg be the set of variables in the intermediate formByf. The dependency graph for
B¢ is a directed graptGp = (Vg, E). If an assignment has a target variablel; € VC+ and if a variable
55 € Vg appears in the right-hand side af or in the condition of aiif / else statement containing, then

(Sj, dl) € FE.
We impose the following restrictions fd8- and Bg.
1) VenVg = 0.

(2) The dependency graghy is acyclic.



initial #0 #0 z = 0; always @ (posedge clk) begin
if (w)
always @ (posedge clk) begin 2=
z<0; else
if (v) z <=y,
z <=1, w =z,
end end
initial #0 #0 z; = 0; always @(posedge clk) begin
if (uo)
always @ (posedge clk) begin 29 = 0,
z1 = 0; else
if (vo) Z4 = Yo,
Zo =1, 23 = @(22, 21);
Z3 = ¢(22,71); Z5 = ¢(21, Z4);
end w1 = 23,
end

Figure 5.1: Conversion fromSV description to intermediate form
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(3) Let B/, be the set of blocks i8¢ in intermediate form. If variable; is defined inb € B, andv,

is used in, 5 > i. If avariablev is in Vg, vg is not used in the intermediate form Bf: U Bg.

(4) If atarget variable € V- occurs in a block; € B¢, v does not occur as a target in another block

by € Be.

(5) All the assignments to a variabdein a blockb € B¢ are of the same type: either all blocking, or

all nonblocking.
(6) If atarget variabler € V4 \ Visinb; € B4, v cannot be used i, € B4 orbz € Be.

(7) If atarget variable € V; \ Visinb; € By, v cannot be used ity € B; orbz € Ba.

We impose these restrictions to enable to describe combinational logic and to allawg to have
nondeterminism that can be easily controlled by the designer. In parti®eatrictions 1, 2, 3, 4, and 5
enableB¢ to describe combinational logic. Restrictions 6 and 7 are imposed to limit nondetstic be-
havior caused by the interleaving of sequential blocks. The restrictiercoanpatible with common design
guidelines [CumO02] used in industry (e.g., blocking assignments for comhiadtimgic and nonblocking
assignments for memory elements) and allow us to produce concise verificatiditions. The role of each
restriction is made clear in Sect. 5.3.

The semantics dfISV descriptions complying with the restrictions above are defined with respect to
a finite state machine. L&t = {v{,...,v;,} be the primed version dfs = {v1, ..., vy}, whereVs and
V¢ are the current and next state variable®in Let W = {w, ..., w,} be the variables of typ@put and
Z ={z,...,2n} € Vo UVg be the variables that are designated as output. A finite state model is a 7-tuple
(Vs, W, V4§, Z,1,T,Q), wherel(Vs) is the initial state predicatd(Vs, W, V{) is the transition relation,

andQ(Vs, W, Z) is the output relation. The initial state predicate is defined by

where

p(Vs, W) = /\1§igm(vi =pi(W)) , (5.2)
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that is, the initial value of each state variable is a function of the input vagaBlee transition relation is
defined by

T(Vs, W, Vg) =3Ve. /\1§i§m(vé =6;(Vs, Vo, W) (5.3)

that is, the next value of each state variable is a function of the currdetastd the input. The output
relation is defined by

Q(Vs, W, 2) = Algign(?«'i =7%(Vs, W)) , (5.4)
that is, the value of each output variable is a function of the current stdttha input variables.

We use the intermediate form of SV description that is in SSA form to derivdV formulae
for (5.2), (5.3), and (5.4). The SSA form of a sequential prograabls us to convert each assignment
in the program into an equality with an enabling condition. In contrast to aesgiql program, atMSV
description contains multiple blocks and two different types of assignmantbelfollowing, we describe
how to generate thBV formulae that describe the conflict arbitration of two different types sigasnents
in multiple blocks.

Let Bg C By be the set of blocks that contain blocking assignments to a state variablé,; let
By C By be the set of blocks that contain nonblocking assignments 8upposeéB4| = k, |Bg| =7,
and|By| = s. We generate equalities forv ands equalities foro. In eachb; € Bp, we introduce a new

variablev; for v and generate BV equality forv that is defined by
vj[n] = tite(cq, e1[n], tite(cz, e2[n], . . . , tite(cy, ep[n], v[n]))) , (5.5)

where eacle; (1 < i < p) is a condition to assign; to v; by a blocking assignment. Likewise, for each

b € By, we introduce a new variabig, for v and generate BV equality fora,
Ug[n] = tite(dy, fi[n],tite(da, fa[n], ..., tite(dy, fqn],v[n]))) , (5.6)

where eachl; (1 < i < ¢) is a condition to assigrf; to v by a nonblocking assignment. Finally, we

generate 8V formula

ite(V1<<s Dis Vi<pes (D A V' [0] = 0[n]), ite(V, <<, Cj,

\/1§j§r(Cj A'[n] = vi[n]), v'[n] =v[n])) , (5.7)
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where eaclDy, is the disjunction of conditions to assignitpin eachb, € By and eaclt; is the disjunction
of conditions to assign te; in eachb; € Bp. The formula describes the conflict arbitration among
blocking ands nonblocking assignments toin B4, where the nonblocking assignment takes precedence
over the blocking assignment. The formula (5.7) conjoined witqualities generated by (5.5) ard
equalities generated by (5.6) is the transition relation,for

The BV formula for each state variable is generated and the conjunction of thesalée is the
transition relation that is equivalent to (5.3). The output relation (5.4) arg) 6f the initial state predicate
are generated in a similar manner.

Continuing the example of Fig. 5.1, suppase € Vg(1) andw, z,y,z € Vp(4). For the target,

we generat®V formulae

(z1]4] = 0[4]) Nite(vo[1] = 1[1], Z2[4] = 1]4] A z3[4] = 22[4], Z3]4] = Z1[4]) (5.8)

in the first procedural block and

ite(uo[1] = 1[1], 22[4] = wo[4], Z4[4] = yo[4]) A (23[4] = tite(uo[1] = 1[1], 22[4], 21 [4]))A

(z5[4] = tite(ug[1] = 1[1], z1[4], z4[4])) (5.9)

in the second procedural block. Then, we generaitedarmulaite(T Vug[1] = 1[1]Vug[1] = 0[1], 2’[4] =
Z3[4] V (uo[1] = O[1] A 2'[4] = z5[4]), 2'[4] = =3[4]), which is simplified toz'[4] = Z3[4] V (uo[1] =
0[1] A 2'[4] = z5[4]). The simplified formula conjoined with (5.8) and (5.9) is the transition relatior: for

wherez; is the current state variable.

53 Correctness

In this section we show that for aiSV module operated in synchronous mode, the set of behav-
iors that may be produced by a standard-compliant Verilog simulator [I[EtB@6 satisfies an atomicity
requirement to be introduced shortly is captured byBReformulae described in (5.2), (5.3), and (5.4).

The assumption of synchronous operation is enforced by having alsuifatilog test bench drive

the module under consideration. A template for the test bench is shown in.Big.t5consists of the
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module Testbench;
<input declaration list; // e.g., reg [2:0] a; reg [3:0] b; ...
<output declaration list; // e.g., wire q; wire [4:0] r; ...
reg clock;
initial begin
clock =0;
#0 <input list> = inputF (0);
$strobe($timesinput list>,<output list>);
#1 forever begin
clock=0;
<input list> = inputF (0);
$strobe($timesinput list>,<output list>);
#1 clock=1;
#1,;
end
end
function [NBITS-1:0] inputF (input dummy);
begin: _inputF
/ returns input values for current $time
end
endfunction
dut dutO (clocksinput list>,<output list>);
endmodule

Figure 5.2: Verilog code for a test bench
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instantiation of theM'SV moduledut, the declarations of its inputs and outputs, a varighbek, aninitial
block that applies stimulus tut and samples its outputs, and a functioputF, which produces the input
values—either 0 or 1, but not.

At simulation timet = 0, the simulator sets thdock to zero in thenitial block. The simulator then
calls the functiorinputF that generates new inputs. The target variablésiiial #0 #0 blocks ofdut are
updated first and the target variables in combinational blocldubfare updated to reflect the new inputs
and the updates. The zero delays initiigal block of the test bench and initial #0 #0 blocks ofdut
impose the update order. After the updates,sinebe task reports the values of the inputs and the outputs
of dut. Then the simulation time is increasedtte= 1 and the theforever loop is evaluated: thelock
stays at zero and the functiamputF generates new inputs. The target variables in combinational blocks
of dut are updated to reflect the new inputs. After the updatesstiiobe task reports the values of the
inputs and the outputs afut. Now, the simulation time is increasedie= 2: theclock is changed to one
and all the sequential blocks @ut are triggered, causing updates of their target variables. The evaluation
of the forever loop repeats as the simulation proceeds. In this simulation environment jasibeels the

following lemma holds.

Lemma 5.3. Every variable ofdut attains a stable value at every simulation time; hence the simulation

time always advances.

Proof. By Restriction 2, there is no cycle in the dependency graph of combinatimgial By induction,
the number of evaluations of each combinational block is finite because itlepsnds on the finite number
of changes on its inputs. Hence, the outputs of each combinational blddlizsta

On the other hand, since all the sequential blocks are evaluated onlytbeis a finite number of

update events in the sequential blocks. As a result, simulation time can aldwarsa. O]

Corollary 5.4. Just before the time is advanced frento ¢ + 1 (¢t = 0, 1, .. .), there is only one evaluation

event scheduled and it is for the always block in the test bench.

Proof. Since there is no delay itut, the only event scheduled before the time is advanced frimm + 1

is the evaluation event of the always block in the test bench. O]
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1 initial #0 #0 begin 9 always @ * begin
2 $monitor ($time, a, b, ¢); 10 d="b;

3 a=0; 11 c=a"d;

4 b=0; 12 end

5 #la=1,

6 b=1;

7 #1 $finish;

8 end

Figure 5.3: Nondeterministic behavior of Verilog simulation (a)

Thanks to Lemma 5.3, the notions of initial and final values of a variable attaicéime are well

defined.

Definition 5.5. Theinitial value of a variablev € Vs U Vg at timet is the value ofy when time advances

to t. Thefinal value of v at timet is the value of immediatley before time advancesité 1.

While Lemma 5.3 shows that tltit model evolves from one stable state to another, it says nothing
about what states may be produced. Standard-compliant simulators aredaltoproduce different results
for a variety of reasons. While the ability to describe nondeterministic behiavdometimes an advantage,
it also poses significant challenges to designers and tool implementors.

According to the standard, assignments in different always blocks thadtiggered simultaneously
may be interleaved arbitrarily, as long as sequential consistency isyedsdirat timet the simulator exe-
cutes at least one nonblocking assignment, tie final value oy at timet is assigned by the nonblocking
assignment that is executed last. Otherwise, if any blocking assignmeid &xecuted, the final value of
is assigned by the blocking assignment that is executed last. If no assigiomémnexecuted, the final value
of v is its initial value. For example, the value ofn Fig. 5.3 is either 0 or 1 at time 1. If the assignments
are executed in the order 6f— 10 — 6 — 11, the value ofc is 1; if they are executed in the order of
5— 6 — 10 — 11, the value ot is 0.

This freedom to interleave processes makes it very difficult for dessgnadescribe behavior that is

unambiguously combinational. In practice, most synthesis tools partly limit atigt gaore the nondeter-
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always @ * begin

a = 0;

if(b&c) a<1;
end

Figure 5.4: Nondeterministic behavior of Verilog simulation (b)

ministic behavior of a model and always derive a deterministic netlist. Ignarimandeterministic behavior
in the synthesis tools may cause pre- and post-synthesis simulation mismatc2@3]{Mowever, this is

often not detected since most simulators execute blocks atomically. If a blookesecuted atomically, the
user of a synthesis tool may have a problem describing combinational &ogidhe verification condition

for a model may get unnecessarily cumbersome; hence, we impose an atouhécity

Definition 5.6 (Atomic evaluation) A block, eitherinitial or always conforming withMSV is evaluated
atomically if the simulator executes the events in the block without any suspension teitlites the end

of the block.

Assumption 1 (Atomicity rule). Every block conforming witMSV is evaluated atomically.

In practice, most standard-compliant simulators implement the atomicity rule andsyrikesis
tools assume it for models restrictedMISV .

Although the atomicity rule prevents some of the undesired outcomes, a simulatstilingenerate
a nondeterministic outcome without restriction 5, which says that the assignimentembinational block
are either all blocking, or all nonblocking. If different assignment typee allowed, the block may not
describe combinational logic. In Fig. 5.4, suppose the valdecbBinges from 0 to 1 first, and the valuecof
then changes from 1 to 0 at the same simulation time. Then, the always blockenesglbated twice, with
the nonblocking assignment< 1 executed in the first evaluation, but not in the second. The value of
stabilizes tol, which is assigned by the nonblocking assignment. Since the valuesafetermined by the
unstable input, the combinational block does not describe combinational Restriction 5 prevents this.

Given the simulation environment falut, we show that the relation between the input and output
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values extracted by thetrobe task and the values of the state variables in the simulation is captured by the
BV formulae described in (5.2), (5.3), and (5.4). As we assumed for g&ngitheBV formula, the only
possible source of nondeterminism in simulation is the interleaving of sequielaiiids. A variable of type
reg may have an initial value if it is not assigned in aimitial block. Restriction 3 guarantees that the
initial value x is not propagated to other variables; hence we can ignore the xalue

We first show that the final value of each target variable in a combinatidoek is uniquely deter-
mined by the final values of the inputs to that block. Then, we show that the @asigned to each target
variable by a sequential block is uniquely determined by the initial values dflis to that block, and the
final value of each target in sequential blocks may be any of the valsegmas by the blocks that assign to

the target. This argument is captured in the following lemmas.

Lemma 5.7. The final value of a variable € V- at timet is uniquely determined by the final values at

timet of the inputs to the unique blodke B that assigns to.

Proof. By Lemma 5.3, every target variable in a combinational block attains a stable. vBjuthe atom-
icity rule, when the input of a combinational block changes, the block isyawr@gggered; hence the last
evaluation of the block occurs after all the inputs attain the stable valuese&tyi®ion 3, every target vari-
able in a combinational block gets assigned whenever the block is evalAatamtding to the standard, the
sequential order of the nonblocking (blocking) assignments in a bloclegepred when they are executed
by a simulator; hence by Restriction 5, the update event during the lastgwalis not superseded by any

subsequent update. By Restrictiorb4s the only block that assigns to O

Lemma 5.8. The final value assigned by a blogk B4 to a targetv € V4 at timet is uniquely determined

by the initial values of the inputs toat timet.

Proof. By Restrictions 6 and 7, a target variable in a sequential block is not depean the target assigned
by a blocking assignment in another sequential block, and the value afet tesigned by a nonblocking
assignment is only available in the next clock cycle; hence the inputs ofueestal block do not change

while the block is evaluated and the execution order of the blocks doedéfactt the value of the target in
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the block. Since every sequential block is evaluated once in one clotd tiye final value assigned by a

blockb € B4 towv € V4 is uniquely determined by the initial values of the inputs. O]

Lemma 5.9. Let By C B4 be a set of sequential blocks such that each By contains a nonblocking
assignment to a target € V4 that is executed by the simulator at timd_et Bz C B4 be a set of sequential
blocks such that eadhe Bg contains a blocking assignment#dhat is executed by the simulator at time
t. If By # (), the final value ob is the final value assigned by one of the block®iq. If By = () and
Bpg # 0, the final value of is the final value assigned by one of the block®in. If By U Bg = (), the

final value ofv is its initial value.

Proof. By Lemma 5.8, each € By U B assigns a final value ta In addition, all the blocks iBy U Bg
are triggered at the same time and can be evaluated in arbitrary order lipthatsr. Therefore, any block
in By U Bg can be the last block that is evaluatedBlf; # (), the final value of is the final value assigned
by the block that is executed last among the block®ip; hence the final value of is the final value
assigned by one of the blocks Bw. If By = () andBg # 0, the final value ob is assigned by the block
that is executed last among the blockd3p; hence the final value af is the final value assigned by one of
the blocks inBg. If By U Bg = (), no block assigns a final value tohence the final value afis its initial

value. O

Now, we describe a cycle-based transition relation that is valid under théasiomuenvironment. At
every clock cycle when thstrobe task is evaluated, the values of new inputs and the outputs are reported
and the current state values of the state variables can be extracteddtorihe next state value of each
state variable is determined by the new inputs and the current state varaiidhge cycle-based transition
relation is the conjunction of the transition relations for the state variablesinitis value of each state
variable is determined by the new inputs, and the cycle-based initial staiegieeid the conjunction of the

initial state predicates for the state variables.

Theorem 5.10. The transition relation between the input and output values extracted bstithiee task
and the values of the state variables in each clock cycle is captured BMliermula ofdut, which is the

conjunction of(5.3)and (5.4).
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Proof. By Lemma 5.8 and Lemma 5.9, the next state value of a state vatigbbietermined by new inputs
and the current state variables. In a sequential bloek B4 that contains an assignment#pa cycle
based transition relation far in b is defined. If all the assignments toin b are blocking, the transition
relation is equivalent to (5.5). If there exists a nonblocking assignmentri@, the transition relation for
v is defined by (5.6) where = g(v). If there arer blocks that contain blocking assignmentsutand s
blocks that contain nonblocking assignments,tthe transition relation fos is equivalent to (5.7) conjoined
with (5.5) and (5.6). The conjunction of all the transition relations for the stt@bles is the cycle based
transition relation that is equivalent to (5.3). The value of a target variablg that is designated as output
is determined by new inputs and the current state variables as describedhind.5.7. The value of a
target variable in/s that is designated as output is determined as the the normal target varidilasin
determined as described above. The cycle based output relatidatfig equivalent to (5.4), where each

z; = v(Vs, W) is an output relation for an output variablge V- U Vg. O]

The relation between the input values and the initial state values of the stablesratt = 0 is

captured by (5.2). This can be proved by reasoning similar to that usdteorédm 5.10.

54 Discussion

We have shown that the verification condition for synchronous haelisancoded concisely into a
BV formula that agrees with standard-compliant simulators. The only nondetstimlrehavior described
in the BV formula is the one that is caused by the interleaving of the sequential blotkst nondetermin-
istic behaviors that are cumbersome to describe irBtidormula are avoided by Restrictions 4, 6, 7, and
the atomicity rule.

For instance, without Restriction 4, the target of multiple assignments fromreliff blocks may
change its value nondeterministically every time one of those blocks is evaludfade all sequential
blocks are evaluated once per clock cycle, a combinational block mayahsaésd at time even when the
final values of its inputs are the same at timed and¢. With just one block assigning to a target, it does not

matter whether it is re-evaluated in such a case, because the assigreedoggdunot change. With multiple
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assignments, it is hard to tell whether a new value may be assigned if onlydinak are considered.

Restrictions 6 and 7 guarantee that the values computed by sequentia ttookt depend on their
order of evaluation. Hence, they restrict the nondeterministic behaviarsité arise from the interleaving
of sequential blocks. Furthermore, the atomicity rule prevents the nondetstic behavior caused by the
interleaving of the assignments in different blocksM&V. Without the atomicity rule, the simulator may
generate a trace that is not captured byBheformula.

Although MSV excludes some features of Verilog, it includes commonly used ones; meose
synchronous Verilog designs can be converted M&V descriptions. For example,casestatement can
be converted into aif / else conditional statement, and a function describing combinational logic can be
converted into a combinational block SV if the function does not read global variables. In addition, Re-
striction 5 onMSV can be weakened by allowing a mixture of different assignment typestiheescribes
combinational logic. Restriction 6 can be also weakened by allowing the @rgdilocking assignment to
be used outside of its block if that may not cause a hold time violation; howtieerestrictions are kept
simple, since most synchronous designs can be described within them.

In practice, more restrictive Verilog coding guidelines [MC99, Cum02]used for describing hard-
ware designs. The guidelines are useful to avoid many pre- and pabiesis simulation mismatches caused
by nondeterministic behavior in the design.MiBV, a nondeterministi#SV description can be easily ex-
cluded by imposing the restriction that prevents multiple assignments to the sastértaeguential blocks.
Given the simulation environment for a determinidl8V description, thestrobe task reports a unique ex-
ecution trace during the simulation. For the synthesized circuit of the déearifhe unique execution trace
is achieved by assigning the initial values to the state variables byitlz¢ blocks of the description; hence
there is no pre- and post-synthesis simulation mismatch for a determiiSticdescription. Furthermore,
the unique execution trace is also captured inBReformula of the description and vice versa.

The example in Fig. 5.5 shows that without initial block, simulation may produaaiiect results,
namelya = 1000.... With initialization, however, a mismatch between pre- and post-synthesis models

signals a bug in either the synthesis or verification tools.
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initial #0 #0 a < w;
always @ (posedge clock) it a < 1; elsea < 0;

Figure 5.5: Deterministic Verilog design

55 Related Work

In [Cho97], the author defined Synchronous Veril&y], a subset of the language that describes
synchronous circuits. In contrast to our approach, the author ainteeeking the behavioral equivalence
between an intermediate form of &V program and its synthesized circuit. In particular, a nondeterministic
SV program is converted into a deterministic Verilog program by adding zdeysli¢éo theSV program;
hence the user @V has no control over nondeterministic behavior. Furthermore, equaalestween the
Verilog program and the synthesized circuit is not proved. The ausumaes that the initial values of the
state variables in the synthesized circuit are all zeros; however, thisamag @ mismatch between the RTL
and the synthesized circuit.

In [Gor], the author defineW0, a subset of Verilog that has both event and trace semantics. The event
semantics describes the execution &fGaprogram in terms of propagation of changes to variables, and the
trace semantics describes the execution in terms of sequences of stagestaf€hin the trace semantics
changes in every simulation cycle as it does in our cycle based transititiomel@he ultimate goal of this
work is to prove that the restrictions M0 prevent nondeterministic behavior W0 programs and hence
guarantee the consistency of the event and trace semantics; howeyseltminary report does not address
semantic restrictions of0 that guarantee the consistency.

In [MKMR10], the authors focus on a detailed event semantics of Veritlger than deriving an
efficient verification condition for synchronous circuit. The executibWerilog is described in rewriting
logic that is implemented in the Maude tool. The tool can be used to verify thesesgimulators or other

formal tools.
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5.6 Experimental Results

We have implemented a translator calMi@smt that uses Icarus Verilog [Ica] as front end, accepts
anMSYV design as input, and generateB\a formula for the verification condition of the design. We used
VI2smt to perform equivalence checking dfcordic design from Opencores [Ope]. The origicélcordic
Verilog design (1143 lines of code) is composed of 13 modulegl®@ys @ (posedge clock 313 con-
tinuous assignments, and Bitial blocks In the optimized design, we reduce the number of modules and
continuous assignments to 5 and 196 manually. Although multiple modules anduugiassignments are
not allowed inMSV, VI2smt supports these features of Verilog. The origioftordic code is converted
into theMSV code by changing thimitial type toinitial #0 #0. To check the equivalence of the original
and optimized designs, we generated the equivalence checking probBYhformula by VI2smt. The
generatedV formula is composed of 30 state variables and the equivalence is proviag BY solver
(Boolector-1.4 [Boo]) in less than a second. Although the hierarchy etd#sign is flattened in thgV
formula, the file size of th&V formula (185kb) is not much larger than the file size of its original code
(50kb). To evaluate our tool, we used the Verilog designs from VIS \@blenchmarks [VVB] and Open-
cores. Forcf-fir, altmult-accum, andFPMult designs, we generated the equivalence checking problems
as described above. For others, we generated Bounded Moddti@inéBMC) problems with invariants.
Table 5.1 shows the number of lines and the file size of each Verilog desidrshaws the file size of the
BV formula and the number of state variables in the formula. It also shows todingrdepth, the CPU
time, and the result of model checking. The pass result indicates that dréimvholds in the design, and
the fail result indicates that the invariant fails at boundrhe unsat result indicates that the invariant holds

up to the bound.

57 Conclusions

In this chapter, we present®ddiSV with restrictions and proved behavioral equivalence between the
verification condition and the simulation model. The restrictions allow us to genai@ncise verification

condition to be checked by an SMT solver. With controlled nondeterminisMSV, nondeterministic
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| design [lines|V(byte)| BV(byte)| [Vs|| k [time(s)] result]

cf-fir 428 | 12584 | 43921 | 16 | - 0.1 | pass
altmult-accum 166 | 3770 | 16835 | 8 - 0.1 | pass
FPMult 236| 7186 | 50728 | 14 | - 0.1 | pass

Timeout 196 | 6111 | 13220 | 10 | 80 | 181.53| unsat
FIFO 171| 5016 | 31370 | 37 | 8 | 258.8 | unsat
Am2910 116 | 3183 | 11378 | 9 |100| 13.79 | unsat
MinMax 60 | 1537 4502 3 | 300{ 595.85| unsat
DAIO 259 | 8277 | 19991 | 14 | 14| 0.7 fail
Blackjack | 136 | 4261 | 40930 | 24 | 13| 4.8 fail
Vending 252 | 6065 | 16237 | 10 | 2 0.1 fail

Table 5.1: Result of VI2smt on Verilog designs

behavior of anMSV model can be easily eliminated and the mismatches between pre- and possisynthe

simulations can be avoided.



Chapter 6

Selective SMT Encoding for Hardware Model Checking

6.1 Introduction

In Chapter 5, we have present®tbV with restrictions. In this chapter, we study the translation of
MSV into a verification condition to be checked by SMT solvers. In today’sward designs, bit-level
and word-level operations are often tightly intermingled. On some desidn]evel model checker may
perform better than a word-level model checker or vice versa. pgron the characteristics of the
design, we selectively choose an encoding method (either bit-level a-Mreel) to improve the efficiency
of hardware model checking. We present a model analysis method fenteling selection and evaluate
the method on a set of hardware verification problems.

This work is motivated by the results shown in Fig. 6.1. We have encodédoeacof Verilog design
and property into SMT for bounded model checking (BMC). In particwer usedBV andLIA encodings
for each design. The details of these encoding methods will be discusSedtin6.3. The Verilog designs
we used are from VIS Verilog benchmarks [VVB], Opencores [Opg] Altera design examples [Ter].
We comparedV solvers (Boolector-1.4 [Boo], Z3-2.8 [Z3], Beaver [Bea] with Preas456r2 [Pre]) and
LIA solvers (MathSAT-4.3 [Mat], Yices-1.0.28, Z3-2.8) for the encodinbisese solvers are the ones that
performed best on our BMC problems. In the experiment, the timeout was $600 seconds. Figure 6.1
shows the comparison of average CPU times of the solvers for the twoirgsodiable A.1 in Appendix A
shows the detailed results of the comparison.

The points above the diagonal are wins for B\ solvers, and the ones below are wins for tha

solvers. As the scatterplot shows, some of the designs work wellBMtencoding, and others work well
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Figure 6.1: BV vs. LIA

with LIA encoding. This indicates that we need different encodings dependitigeaesign.

We introduce a model analysis method that considers each bit-vectoitioparathe design and
selects the encoding based on the analysis. In addition, we presera ssmfencements to SMT encoding
for hardware designs. Our experiments show that our approachsséieaight encoding for the hardware
design and improves the efficiency of model checking.

The rest of this chapter is organized as follows. Section 6.2 describesatigtation toBV logic.
Section 6.3 describes the encoding methods. Section 6.4 presents a nadglsanethod. After a survey

of related work in Sect. 6.5, conclusions are offered in Sect. 6.6.

6.2 From Hardware Description to BV

In this section, we outline the conversion from hardware descriptiddvtdormula. Hardware is
assumed to be described in a subset of the Verilog hardware descriptgueaze (HDL) [Ver] suitable
for the modeling of synchronous hardware. The subset supports therenof blocking and non-blocking
assignments in the procedural blocks, and allows non-deterministic intedeafvprocedural blocks. We
impose restrictions to the description to ensure that the evaluation of eamddpral block is not affected

by the interleaving of the assignments in different procedural blocke.ré&strictions are compatible with
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common design guidelines used in the industry (e.g., blocking assignmentsnidiirational logic and
non-blocking assignments for memory elements) and allow us to produceseameification conditions.
Although the subset we consider includes essential features of Vatittmgs not support delays, strengths,
and other features that are not needed for RTL verification of spncus designs.

We represent a hardware description as a Concurrent Control Faph@CCFG) [KGW10] in Static
Single Assignment (SSA) form [CFRB9]. With the CCFG, we generate a set of constrain®\irogic for
blocking and non-blocking assignments in each procedural block.rd tea conflict among the constraints
that is caused by different assignments in multiple procedural blocks,ewergte an additional conflict

arbitration constraint.

initial #0 #0 z = 0; always @ (posedge clk) begin
w =y,
always @(posedge clk) if (u) w = x;
if (v) z < 1; z <= w;
end
initial #0 #0 z; = 0; always @(posedge clk) begin
w1 = Yo,
always @ (posedge clk) begin if (ug) we = x0;
if (vg) 21 = 1; w3 = qb(wg,wl);
Zy = ¢(Z1, 21); Z3 = ws;
end end

Figure 6.2: Conversion from HDL to SSA form

In Fig. 6.2, the two procedural blocks at the top are converted into the 8@ at the bottom.
In each procedural block, we generate B\ formula for each target variable. Suppaser € Vp and

w,z,y,z € Vp(4). For the target, we generate thBV formula

ite(vg, 71[4] = 1[4] A 2[4] = £1[4], Z2[4] = 21[4])) (6.1)



75

in the first procedural block, and

wi[4] = yol[4] A ite(up, wa[4] = xo[4] A w3[4] = wal4],

ws[4] = wi[4]) A z3[4] = ws[4] (6.2)

in the second procedural block. Then, we introduCéor > and generate a conflict arbitration constraint
2'[4] = Z[4] v 2'[4] = z3[4]. This formula conjoined with (6.1) and (6.2) is the transition relation for the

description, where; andz’ are the current and next state variables:for

6.3 SMT Encoding for Hardware Designs

In Sect. 6.2, we showed how a hardware description is converted B frmula. In this sec-
tion, we discuss the translation froBV encoding toLIA encoding and t®8V U LIA. SMT encoding for
hardware design (RTL Verilog) was first presented in [Bru08] wiert BV andLIA encodings for com-
binational circuits were introduced. We review those basic encoding nefood A, and introduce several

enhancements.

6.3.1 LIA Encoding

In LIA encoding, each bit-vectar|n| is encoded into an integer variabl with a bound constraint
0< X <2m,

For an equalityz[n] = concat(x[i], y[j]) with the concat term and bit-vectors|[i], y[j], z[n] where
n =1+ j, we generate

Z=2.X4Y . (6.3)

For an equality: = z[i : j] with the bit-select term and bit-vectar$n], z[i — j + 1] wheren > i >
j >0, three fresh variable¥}, X,,, X; that correspond to the bit-vectorg: — 1:7 + 1], z[i: j], z[j — 1:0]

are introduced to generate

(X =21 X, +27 - X + X)) A (0 X, < 277 HA

(0< X, <27 A0S Xy <2)VAN(Z =X,n) . (6.4)
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When converting an arithmet®V term into arLIA term, we need to deal with overflow. We introduce
either a fresh variable or a term-ITE operator. In particular, for antiaddoperationz|n] = z[n| + y[n]

with z[n], y[n], z[n], we may generate either
(Z=X+4Y-2"-a)AN(0<a<]) (6.5)
with a fresh variabley, or
(Z =tite(X +Y > 2" X +Y — 2", X +Y)) (6.6)

with a term-ITE operator. For an equalityn] = k[n] - z[n] with multiplication, wherez[n], z[n] are

bit-vectors k[n] is a constant, and is a fresh variable, we generate
(Z=k-X-2"-a0)N0<a<k-1). (6.7)

For an equality:[n] = x[n] ¢ y[n] with a bit-wise term and the bit-vectotsn|, y[n], z[n] whereo €
{&, |}, we introduce fresh variableX, ..., X,,—1, Yo, ..., Yn—1, Zo, ..., Z,,—1 for the bit-vectors. Suppose

is &. Then, we generate

(Z:ST~Zi)/\(X:T§2i-Xi)/\(Y:nZ_:12i~}Q)/\
i=0 i=0 i=0
n—1
i=0

Having reviewed the basic encoding method we present two enhancesestgive value enumer-
ation and term-ITE introduction fdV arithmetic terms.

The basic encoding methods often introduces the producX wherek is a constant an is a
variable. The coefficierit may be large, and large coefficients often degrade the performahta sélvers
because they often require many pivots in the simplex-based ILP (Intéggar Programming) algorithm
[DdMO6b, NW88]. We tackle the problem with selective enumeration. If #mge ofX is small enough to
express it with few term-ITEs, term-ITEs replace the multiplication. For ingtaifi®@ < X < 1in (6.3),

then the new encoding with a term-ITE is

Z =tite(X = 1,22 +V,Y) .
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For arithmetic terms, we saw two types of encoding in (6.5) and (6.6). LTAeencodings for an
equalityz[n] = ", z;[n] with a general arithmetic term can be

(Z:(iXi)—Q”-oz)/\(Ogagm—l), (6.8)
i=1

and

trot = tite(t > (m — 1) - 2%t — (m — 1) - 2%, tmy)
Atm—g = tite(ty_1 > (m —2) - 2",
o1 — (M —2) - 2% b 1) A A
ty = tite(ts > 22" t5 — 2 2" t3)A

Z =tite(ty > 2"ty — 2", 1) Aty = _X; . (6.9)

We prefer (6.9), which introduces term-ITEs, to (6.8), because (&&) introduces a large coefficient for
the fresh variablex.
For multiplication, the encoding in (6.7) also introduces a large coefficient.fcAs an alternative,

we use the encoding

ty,_1 = tite(k - X > 2N toon o x —oNemhoon g XA
tN,—o = tite(tn,_1 > 2N 72. 2% by, —2MNT2 9" k)
Ao ANt =tite(ty > 22" 1o — 22" [ t5)A
Z =tite(t; > 2"t — 2", t1) . (6.10)
The conditions of the term-ITEs in (6.10) enumerate the different ovedbses. If a condition is true, the
value ofk - X overflows; hence, the true branch of the term-ITE subtracts a pow&frofn the value of

k - X to satisfy the conditiof < k- X < 2".

The number of term-ITE#/; required for encoding a multiplicatiofn] - «[n] in LIA is given by

Ny = [loga (k)] -
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For aBV equalityz[n] = ki[n] - z[n] + k2[n] - y[n],the number of term-ITEs i/, = [loga(k1)] +

[loga(k2)] + 1 with the first method an®V; = [loga (k1 + k2)] with the second method. Since

[loga(k1 + k2)] < [loga(k1)] + [loga(k2)] + 1,

we use the second method. The number of term-ITEs in (6.9) can be deflamen — 1 to [logz(m)].
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The results of YicesL(A) on the hardware verification problems in Fig. 6.1 with and without the
enhanced encodings are shown in Fig. 6.3 and Fig. 6.4. In the experjrtientameout was set to 1000
seconds. Figure 6.3 compares the encodings with and without value extiomerFigure 6.4 compares
the encodings with and without term-ITE introduction. Points below the didgepaesent wins for the
enhanced encoding. Each scatterplot shows two lines: The main diagodal= ~ - ", wherex andn are
obtained by least-square fitting. Figure 6.3 shows that the encoding withltireeenumeration outperforms
the one without. Figure 6.4 shows that the encoding with the term-ITE introductien outperforms the

one without significantly. Tables A.3 and A.4 in Appendix A show the detailsdltg of the comparisons.

6.3.2 SMT Encoding with Combined TheoriesBV U LIA)

In this section, we describe the conversion fr&v encoding toBV U LIA encoding. Since rep-

resenting bit-wise operations IdA is rather inefficient, when 8V variable is involved in both arith-
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metic and bit-wise operations, it may be convenient to split it inBVavariable and a.lA variable con-
strained so as to always have the same value. For example, giv@Vtf@mulacjn] = a[n] & b[n]
Ad[n] = c[n] + e[n], where the bit-vector[r] is used both in bit-wise and arithmetic terms, if we con-
vert the formula taBV U LIA, the equality with the bit-wise term remains as is, and the equality with the

arithmetic term is converted into thhéA formula

0<C<2")ANO0<D<2")AN(0<E <2")A

(D =tite((C+E>2"),(C+E~-2"),C+E)) ,

whereC, D, and E are fresh variables for the bit-vectots:], d[n]|, ande[n]. Since the fresh variablé'

corresponds to the bit-vecton], we generate the interface constraint

C =tite(c[n — 1:n—1] = 1[1],2""1,0)+
tite(c[n —2:n— 2] = 1[1]’2"_2’0) S

tite(c[0 : 0] = 1[1],1,0)

for the relation betweenn| andC, and conjoin it with theLIA formula. Overall, theBV U LIA encoding

for theBV formulac[n| = a[n| & bln| A d[n] = ¢[n] + e[n] is:

(c[n] = a[n] & b[n])A
0<C<2")ANO0<D<2")AN(0<E <2")A
(D =tite((C+E>2"),(C+E—-2"),C+E))A
C =tite(c[n — 1:n — 1] = 1[1],2"71,0)+
tite(c[n — 2:m — 2] = 1[1],2"72,0) + - - - +
tite(c[0:0] = 1[1],1,0) . (6.11)
Furthermore, given thBV U LIA encoding, theéBV formula in the encoding can be converted into

an equisatisfiable Boolean formula by bit blasting. In particular, for thedwstersa[n|, b[n], andc[n| in

(6.11), a set of propositional variablé® = {a,,—1, an—2, ..., a0, bp—1,bn-2,..,bo,Cn-1, Cn—2,...,¢c0}
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are generated. TH8V formula(c[n] = a[n| & b[n]) is converted into

(Cnfl — (anfl A bnfl)) A (Can — (aan A bnf2)) JANCERIVAN (CO — (aO A bO)) )

and eaclBV formulac|k : k] = 1[1] wherel < k < n is converted into a propositional variaklg in the

interface constraint.

6.4 Model Analysis

Figure 6.1 shows that choosing the proper encoding is important. Givemdavare design, we
analyze the model to choose the encoding method betB®eandLIA (plus, possibly, bit blasting). If
the model contains many bit-wise and bit-select operators, or it uses oaly@wndata path, then tHgVv
encoding is more likely to be suitable for the model. On the other hand, if the ncod&hins a large
number of arithmetic and relational operators with a wide data path,lthencoding may be preferable.

In practice, we often encounter designs with a mixture of bit-wise, bit-sedect,arithmetic operators.
On those problems, it is hard to apglyA solvers even though they contain a large number of arithmetic
operators with wide data paths. On the other hand, there is still a chancelyolaf solver if certain

conditions are met. We discuss these conditions in the following.

6.4.1  Analysis of Bit-Select Operations

The bit-select operators in hardware designs often prodliseencodings that are hard for SMT
solvers. As shown in (6.4), each bit-select operator generates thatevariables possibly with large coef-
ficients. If there are multiple bit-select operations applied to one bit-vectne b no benefit in encoding
them inLIA. In [Bru08], the author showed degradation of performance ihlarsolver as the number of
slices of a bit-vector grows. When a slice includes either the MSB (most signifbit) or the LSB (least
significant bit) of a bit-vector, only two fresh variables are needed. é¥ew thel IA encoding may not be
efficient depending on the location of the slice. According to our expetsnérthe bit-vector is decom-
posed only into two and the slicing bit is close to the MSB, thé&h encoding can be still effective. In

practice, the slice is often applied close to the MSB of the data path.
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6.4.2  Analysis of Bit-Wise Operation

Bit-wise operators makklA encoding much harder compared to the encodings for &keopera-
tors. There is not much choice but to bit-blast the bit-vectors in the bit-wiseatipns. On the other hand,
some designs contain a large number of arithmetic operations with wide datsapdtssnall numbers of
bit-wise operations. In those desigridy U LIA encoding can be used to encode the bit-wise operation
with BV logic, and still maintain the arithmetic operations witth encoding. Unfortunately, SMT solvers
for BV U LIA encoding do not perform well compared to other solv&¢ Or LIA) according to our ex-
periments. Instead of using ti/ U LIA encoding, we apply bit blasting for the bit-wise operations and
useLIA encoding for the arithmetic operations. For each bit-vector subjected tdhdtlasting and arith-
metic operations, we introduce an interface constraint as discussecti® Se2. The experimental results
in Fig. 6.5 comparé.lA encoding with and without bit blasting for the Palu design [VVB]. As Fig. 6.5
shows,LIA encoding with bit blasting gives much better performance compared td_jpNrencoding. We
also compared|A encoding with bit blasting anBV U LIA encoding. The solver witBV U LIA encoding
timed out for most of the Palu problems whereas the solveriAtwith bit blasting solved all the problems

within the timeout (1000 seconds). Table A.5 in Appendix A shows the detadkdts of the comparison.
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6.4.3  Scoring System

The model analysis method decides the encoding method based on a sgstémg. d_etScores be
the score folBV encoding andscore;, be the score foLIA encoding. Letw,, wpw, wps, andw; be the
weights for the arithmetic, relational, bit-wise, and bit-select operators,wgth> wps > wg > wr. We
give a larger value ta,,, andwys because the numbers of bit-wise and bit-select operators have a stronge
impact on the effectiveness of th&A encoding than the numbers of arithmetic and relational operators
have on the effectiveness of tB& encoding. The score is computed for each relational expressiarthe
transition system based on (6.12) and (6.13), in whicke, ) is the number of bit-wise operatoris;(e;)
is the number of bit-select operatos;(e, ) is the number of arithmetic operatorg,e, ) is the number of

relational operators, ardts(e, ) is the number of bits im,.

Scorez = bw(e,) x bits(e,) X wpw + bs(e,) X bits(e,) X wps - (6.12)

Score, = ar(e,) x bits(e,) X wy + re(e,) X bits(ey) X w, . (6.13)

A bit-select operator that decomposes the data path into only two and wioiisg it is close to the MSB
is considered a weak bit-select and is not countdd(n, ).

Given the scoreScorez andScore;, and their thresholdh 3 andth 7, we compare the score with its
threshold and decide the encoding metho&dbére, > th;, andScores < thg, then we seledtlIA encod-
ing, otherwise we sele&V encoding. When encoding A, the bit-vectors in the bit-wise operations are
bit-blasted, and the bit-vectors only in the relational operators are alstabied. The selective bit blasting

in LIA encoding often improves the efficiency of SMT solvers.

6.4.4 Experimental Evaluation

We have implemented a translator calMi@smt that uses Icarus Verilog [Ica] as front end, accepts
a Verilog design as input, and generates an SMT formula for the verificediodition of the design. The
translator chooses the encoding method for a given design beB¥eandLIA with bit blasting as discussed
in Sect. 6.4.3. We used the set of designs of Fig. 6.1 as training set foratlietor. All results are for the

solvers listed as in Sect. 6.1 with a timeout of 1000 seconds. Figure 6.6 shewsmparison of average
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CPU times oBV andLIA solvers with the designs classified according to the predicted encodinganetho
The symbob is used for designs witBV encoding prediction, and the symbolis used for the design with
LIA encoding prediction. The scatterplot shows that most designs for BVancoding was predicted to
work better actually end up above the diagonal, while most designs for whicbncoding was predicted
to work better actually end up under the diagonal. This result show¥Bsint predicts the right encoding

for most of the problems in the training set. Table A.2 in Appendix A shows tieslelé results of the

selection.
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A set of hardware model checking problems from VIS Verilog benchmprk'B], Opencores [Ope]
and Altera design examples [Ter] disjoint from the training set was usedvaduation ofVI2smt. The
result of the evaluation in Fig. 6.7 shows thd2smt predicts the right encoding method for each of these
model checking problem. Table A.6 in Appendix A shows the detailed resulkeavaluation.

Table 6.1 shows the average number of bits, the numbers of arithmetic, ralabdgswise, and bit-
select operations, the scores, and the encoding predictions for thdsnmodiee training (T-Model) and

evaluation (E-Model) sets.



84

6.5 Related Work

As we discussed in Sect. 6.3, the baklé encoding for combinational circuits was presented in
[Bru08]. In contrast to our selective approach for hardware eatifin, they adopted the layered approach
inside the solver that deals with EUF, the incompBY& and the completelA encodings. In [Bje09], the
author presented a word-level reduction method for industrial netligioagion. He focused on simplifying
the netlist as much as possible by applying word-level reductions to equaditdisequality comparators.
Then, the simplified netlist was bit-blasted, and solved with either SAT or BDDKJJIP09], the authors
appliedBV solvers to equivalence checking of a system-level model and an RTgndés [WSBKO07], the
authors presented a normalization technique to simplify the word-leveligeserof an arithmetic circuit
for SAT-based BMC. In [PICBO05], the authors presented a simplificatiethod for RTL-SAT instances
with the combination of interval-arithmetic and Boolean reasoning. Earliereredes of word-level hard-
ware verification include [BD02], [Dre04], and [ZKCO01]. Finally, thethors of [XHHLBOS8] presented an
algorithm selection approach that selects one among the SAT solversitioates best on a representative

set of problem instances.

6.6 Conclusions

The choice of the right encoding style has great effect on the efficigihhmodel checkers at the word
level. In this chapter, we have presented a selective SMT encodin@fdwhre model checking. The ap-
proach is based on a model analysis method that selects the encodingsluledo several characteristics
of the model. In particular, the effects of bit-vector and bit-select opersitave been studied. Experi-
ments show that our approach selects the right encoding for most ofsfgndeThis greatly improves the
efficiency of hardware model checking. Enhanced encoding techsigave also been introduced and their

effectiveness demonstrated experimentally.
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| T-Model [bit] ar [ re [bw] bs [Scorep [ Scores | Enc]

Am2910 11| 1 13/ 0| 0 66.4 0 BV
Bakery [ 5] O 23 /0| 0 54.8 0 BV
Blackjack | 5| 4 15| 0| 0 | 2054 0 BV
Cube 4| 0 |106| 0| O | 179.2 0 BV
FPMult [11]| 44 | 50 | 20| 22| 1167.6| 8181 | BV
Palu 18| 12 | 19 | 9 | 4 | 663.6 | 9216 | BV
RetherRTF 5| O 8 0| O 25 0 BV
Swap 3| 0 11 /0| 0 14 0 BV
Miim 4| 19 | 22 | 4| 2 | 257.2 516 | BV
Timeout |51| 1 200 0| O 513 0 LIA
cf_fir 9106 | 69 | 0 | 12| 2461.2 0 LIA
FIFOs |60| O 46 | 0| O 984 0 LIA
FIR 17| 40 4 0| 9 | 1715.2 0 LIA
DSPAdder|23| 94 | 34 | 0| O | 2378.8 0 LIA
MinMax | 48| 2 21 | 0| O | 5404 0 LIA
| E-Model [bit] ar [ re [bw] bs [Scorep [ Scores | Enc]
cf_cordic |16|8712|2606| 0 |314| 205754 90112 | BV
Daio 2116 | 11 | 0| 1 116 0 BV
Dekker | 2| O 4 0| O 3.2 0 BV
Unidec | 4| O 55 | 0 | 28| 352 3584 | BV
socram |46| O 10 | 0| O | 657.6 0 LIA
AltMult 8| 58 | 48 | 0| 0 | 1247.2 0 LIA

Table 6.1: Comparison of using selective, SAT, BV, and LIA encodimgevaluation set



Chapter 7

Application of Formal Word-Level Analysis to Constrained Random Simulation

7.1 Introduction

During our study of decision procedures for SMT, we have found ttiheyt are also applicable to
constrained random simulation. Constrained random simulation is in incredsimgnd with hardware
designers and verification engineers. As the name indicates, it is the simab#aesign under specified
constraints. The user is required to capture the behavior of the envinbimfde design as constraints and
the simulation tools simulate the design under these constraints with the aid oboursitvers embedded
in them. Commercial tools, such as Specman, have been popular for pgpth@rcapability. To address
the need for constrained random simulation, modern hardware descigiguages (HDL), such as System
Verilog, have incorporated constraint specification as part of thetagyn

The overwhelming benefit of constrained random simulation over the traalitisnting of test-
benches is the automation. Once the constraints are specified, the corssthan in the simulator enu-
merates the valid scenarios instead of a human. Further, by specifyingteveigthe search space, the user
can indicate whether the constrained space should be sampled uniformbcdicsareas should be focused
on.

Given that constraint solving comprises the bulk of constrained rangtoulation time, the efficiency
and performance of constraint solvers is critical. Traditional constsaiiving techniques, such as integer
linear programming and constraint programming, far lag the performansienofators. Boolean engines,
e.g., BDDs, have been applied quite successfully to this problem{'@Spby taking advantage of the finite

state nature of HDL constraints. More recently, Kitchen and Keuhlman@{kave provided a word-
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level technique based on Markov-chain Monte Carlo methods. The ditalabthis technique to industrial
strength designs is yet to be proven.

In our constraint solvealueGen, we have incorporated both BDD and SAT-based Boolean en-
gines. BDDs provide the advantage of fast generation of uniformly dig&ibsolutions. However, some
constraints have very large BDDs that cause memory explosion during simul&8iT solvers are less
vulnerable to size explosion. On the other hand, each solution generatitth lwe exponentially slower
than BDDs.

In this chapter, we present a word-level pre-proced3omRed, thatValueGenapplies to the con-
straints to reduce the size of their representation in the Boolean enginespré@iprocessing is a static
analysis technique that uses an SMT-like framewdkmRed combines a SAT solver and a linear arith-
metic solver that handles primarily integer difference logic, with a minor extarisipositive and negative
coefficient inequalities. The input to the tool is a Boolean combination of lindgngetic constraints and
bit-vector constraints. The output is a set of variables and their redimeeins. The constraints with
reduced-domain variables are then passed on to the Boolean engsuésgen smaller Boolean represen-
tations for constraint solving. We present experimental results of agpimRed within ValueGen on

our simulation testcases.

7.2 Constraint Solving in Simulation

Constraints are Boolean combinations of linear arithmetic and bit-vector expressionssyndvari-
ables. The expressiveness of the specified constraints is limited by thebklibg used. For example, a

System Verilog constraint is

constraint cl {src_addr >= 0 &% src_addr < 65536 &&
payl coad_l en >= 0 && payl oad_| en < 4096 &&
dest _addr - src_addr >= 4096 && dest addr < 65536}

Constraint solving is the task of generating values for the design varidialesatisfy the constraints. In the
above examplesr c_addr = 512, payl oad_| en = 1024, dest _addr = 4608 is a set of legal values.

Our constraint solveyalueGen, is invoked dynamically during simulation i.e., every time the simulator
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encounters a user call to generate new values for variables app#acioigstraints, the simulator calls the
constraint solver. Tight integration is required between the two to maintaaiesitiy.

Constraints are typically written on the inputs of the design and may deperairanisternal design
signals étatevariables). During constraint solving, the solver is required to geneasies that satisfy both
the constraints as well as the states values.

Each set of related HDL constraints, when encountered, is parsed bintolator, and sent Malue-
Genthrough a word-level API along with the state values. Intern&iueGenmaintains a applies several
optimizations at the word-level, including partitioning based on non-overgpgriable support and con-
stant propagation. Finally, it bit-blasts the word-level constraints and ttedl8oolean engines (BDD or
SAT) on the Boolean representation.

The optimizations inValueGenresult from syntactic and very minor semantic analysis of the con-
straints. They do not include the ability to deduce that the tightest rangbssaf_ addr andsr c_addr
in the above examplddomRedaddresses exactly this deficiency. It extracts a subset of invarianssi-
mantic analysis of the constraints. If an invariant yields variable bounctteuhs, then the reduced number

of bits are applied to encode the respective variables, the default nainhies are used otherwise.

7.3 DomRed: Technical Details

ValueGen providesDomRed with a quantifier-free first order logic formula with linear arithmetic
constraints. ArLA constraint is of the formazq + ... + apz, < ¢, Wherexe {=, <, <, >, > #}. A
difference constraint is a special case of an LA constraint whose form isz; < c. A positive-(negative-
)inequality is another special case of an LA constraint whére; > 0,z; > 0,¢ > 0 (Vi.a; < 0,2; <
0, c < 0). We are working on the extension to bit-vector constriants.

As in the SMT-framework, the first order logic formula is abstracted amasigely into a proposi-
tional formula and given to the SAT solver. The SAT solver extracts afdevel-zero assignments, which
corresponds to a set of LA constraints. From this set, we gdifference constraints, analyze them with
the Bellman-Ford algorithm described in [KS06] and derive reducead®dor the variable domains if

possible. Among the LA constraints left over, positive- and negatiedfient inequalites may also yield
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Table 7.1: Comparison Table of without and with Bound Reduction

# of bits CPU (sec) MEM (Mbytes)

Design || Sim. cycles| w.o.| with [ % | w.o.| with| % | w.o.| with [ %
designl 5000000f 112| 101| 10| 683.0| 549.4| 20| 40.8| 34.2| 16
design2 1000000f 335| 321| 4| 325.5| 319.2| 2 70.6| 539| 24
design3 50000 491 | 301| 39| 412.3| 333.4| 19| 103.1| 935| 9
design4 1000000 54 40| 26 || 180.9| 174.1| 4 37.2| 37.8| -2
design5 1000000 64 60| 6 86.1| 44.0| 49 33.2| 336]| -1
design6 1000000 64 60| 6 75.9| 48.1| 37 33.2| 33.7| -1
design7 1000000 16 14| 12 || 340.2| 344.6| -1 37.0| 338| 9

design8 44000 7 5129 967.2| 966.7| 0 || 115.0| 116.4| -1
design9 400000| 8484 | 8428 | 1| 607.1|559.6| 8| 62.3| 620| O
design10 40| 160 97| 39| 648.5| 603.3| 7| 809.1| 756.2| 7
designll 2500| 374| 335|10| 234.6| 186.3| 21 || 370.7| 282.1| 24

reduced upper (lower) boundsef equal toc/a;. The remaining LA constraints are conservatively marked
as not yielding any domain reduction.

Example: Users commonly declare design inputs a$ , meaning a 32-bit finite integer, causing the
Boolean representation of the example in Section 7.2 to contain 96 bits. IrnrapplgmRed the equality
constraint is translated into two inequalities in the usual manner. Inequaléenaoded with one bit each
in the SAT solver. All these bits appear in the set of level-zero assignm8irise they all correspond to
difference constraints, the Bellman-Ford algorithm yields the intefvatsl 439] for sr c_addr, [0, 4095
for payl oad_l en and[4096, 65535] for dest _addr . The Boolean encoding will then requité, 12 and
16 bits respectively, totalling4 bits in the resulting Boolean expression (more than 2X reduction).

DomRed may also indicate t&/alueGenthat the constraints are infeasible (over-constrained situa-
tion) if the SAT solver or the LA solver detects it. This is of great valu&/atueGen since it can avoid

building the Boolean representations altogether.

7.4 Experimental Results

We integrated our toddbomRedinto ValueGen which, in turn, is integrated with our simulator. Our

benchmark set includes both System-C and System Verilog examples. TleenSy®xamples are smaller
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in size;40 out of 68 showed improvements, the rest showed no degradation. The detailedfteddelts is
not presented here for lack of space. The System Verilog examplsstohindustrial-strength customer
benchmarks. Of tha4 System Verilog examples that we experimented withshowed improvement and
are presented in Table7.1, the remair23ghowed no degradation.

We use three parameters to measure the performance impact of afgptyimiged—number of bits,
CPU times and memory usedalueGenswitches between the BDD and SAT solver based on the Boolean
representation size to maximize the size constraints that can be solved and @ffienipeed of constraint
solving (better with BDDs). Our experimental results show the improvemest thke default optimized
algorithm. However, this makes comparing the Boolean representation siwks lsince different solvers
may be used wheBomRed is applied. We are working on addressing this problem to obtain a tighter
comparison.

Column 1 of Table7.1 specifies the design, Column 2 shows the number of simualaties, Columns
3-5 show the reduction of the number of bits in the constraints. Note that thieamwof bits is measured for
the constraints only and the design may have several thousand more litshinS&—8 show the CPU times
and Columns 9-11 the memory reduction. The time takeBDtyRedis negligibly small and hence, not

presented here. The CPU time includes simulation time ond/lih cases, hence the CPU time improve

ment for most examples is for constraint solving alone.

The table shows that the reduction in the number of bits is sometimes substarnti&9&fp Smaller
constraints yield better CPU times and memory reductions. GivetraRedtakes negligible time]1/34
examples show improvement on applyidbgmRed and the remainin@3 examples are no worse off, we
conclude thaDomRedis a cheap preprocessing technique and that it is always beneficigdlfoia@ hese
results are encouraging and as part of future work, we hope to applypowerful static analysis to reduce

the size of the Boolean representation even further.



Chapter 8

Conclusions

8.1 Thesis Conclusions

In this thesis, we have presented several efficient SMT solving teabsitipat can be applied to
hardware model checking and constrained random simulation. To impreafftbiency of SMT solvers,
we have presented a hybrid method that combines lazy and eager dmg®olacaddition, we have presented
an SMT preprocessing technique that simplifies the original formula in weel. [EThe presented SMT
solving techniques are applied to hardware model checking and coestn@indom simulation, and the
experimental results show the effectiveness of these approaches.

In Chapter 3, we have presented a finite instantiation approach combinedheitellman-Ford
algorithm to solve integer difference logic. The approach is particulafsctfe when the constraints
are rich in disequalities. We have presented a bound computation algorithimefinteger variables in
the constraints including the disequalities by restricting consideration to a arffadlent set of solutions.
Experiments show that the approach is more effective compared to theairsplits the disequality in the
disjunction of inequalities.

In Chapter 4, we have presented an algorithm for the term-ITE conweirsiSMT preprocessing.
The approach is based on the computation of cofactors and theory sintiglificBhe simplification is done
by detecting special cases in the formula or using theory propagation atotiné predicates. Experiments
show that the approach is very effective in most QA benchmarks in SMT-LIB and often speeds up SMT
solvers.

In Chapter 5, we have present®tEV with restrictions and proved behavioral equivalence between
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the verification condition and the simulation model. The restrictions allow us ta@tere concise verifica-
tion condition to be checked by an SMT solver. With controlled nondeterminigvts, nondeterministic
behavior of arlMSV model can be easily eliminated and the mismatches between pre- and possisynthe
simulations can be avoided.

In Chapter 6, we have presented a selective SMT encoding for heednadel checking. The ap-
proach is based on a model analysis method that selects the encodingledog several characteristics
of the model. Experiments show that our approach selects the right egdodimost of the designs and
hence improves the efficiency of hardware model checking. Enhamaaatling techniques have also been
introduced and their effectiveness demonstrated experimentally.

In Chapter 7, we have presented a new application of using SMT to cimestneandom simulation.
To avoid size explosion problem in the bit-level solver of the constrainedora simulation, we applied
the word-level analysis with SMT solver on the model. We use the Bellman-&gatithm and simple
coefficient checking to reduce the bounds of the variables used indutlery. Experiments show that our

simple and fast algorithm can give huge amount of reduction to the variatties real problem.

8.2 Future Work

AlthoughMSYV is a small subset of Verilog, our towl2smt supports more features such as multiple
modules, continuous assignments, and case statements. The tool cathéedxtended to handle more
Verilog features such dsrk-join , repeat, function, task, assign deassign wait, etc. On the other hand,
we need further study on the behavior of each Verilog feature to destiréb behavior correctly into a
verification condition. More restrictions for the additional Verilog featui# e required to generate a
concise verification condition with the correct behavioral descriptiorr.if&iance, a function describing
combinational logic should not contain a global variable since only the infth® dunction are considered
as a member of sensitivity list. (A procedural block in System Verilog suciveasys comb also addresses
some of the problems describing the correct behavior.) For handlingsdetad/event controldMSV will
be required to have more fine-grained semantics.

We have shown that the verification condition for a hardware desigrdeddaBV, LIA or BV U LIA
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logic is more concise than the SAT encoding; however, the verificationittmmdnay still get large if the
design contains a memory whose depth is large and the memory elements asedaraipdated frequently
in the design. Whenever the memory element is accessed or updated witteawvamidble, the values of
the index variable needs to be enumerated for the encoding; the enumgetienates a large number of
constraints. To preserve the conciseness of the SMT encoding, the tdgicrays and EUF can be used for

encoding memories in hardware designs.
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Appendix A

Tables for Comparison

In this chapter, we list the tables comparing the different encodings fowaae designs used in
Chapter 5. Table A.1 shows the detailed results of Fig. 6.1. The table shewwmtel names with different
unrolling depths and the CPU times B and LIA solvers. TheBV solvers used are 723-2.Z3-B),
Boolector-1.4 BL-B) and BeaverBE-B). TheLIA solvers used are Yices-1.0.28I{L ), Z3-2.8 ¢£3-L)
and MathSAT-4.3MA-L ). The fifth column AVG-B) shows the average CPU times of B¢ solvers, and
the ninth columnAVG-L ) shows the average CPU times of thé solvers. The last row shows the number
of timeouts for each solver. The timeout was set to 1000 seconds. Tabkhévs the detailed results
of Fig. 6.6. The table shows the selected encodings for the designs aG®thémes of theBV andLIA
solvers. Table A.2 shows the detailed results of Fig. 6.3. Table A.4 showteth#ed results of Fig. 6.4.

Table A.5 shows the detailed results of Fig. 6.5. Table A.6 shows the detasiaitsref Fig. 6.7.



Model | Z3-B [ BL-B | BE-B [AVG-B| YI-L [ Z3-L [MA-LL [AVG-L |

am2910-tr50 | 16.48 | 4.48 | 3.79 | 8.25 |156.47| 22.69| 8.13 | 62.43
am2910-tr100| 86.76 | 13.79| 11 37.18 | 1000 |219.51| 32.35| 417.29
am2910-tr150| 327.62| 27.5 | 20.45| 125.19| 1000 | 1000 | 87.98 | 695.99
bakery-tr5 8.16 | 3.83 | 264 | 488 | 11.03| 9.87 | 24.61| 15.17
bakery-tr10 |234.83| 13.62| 7.37 | 85.27 |389.46|501.75| 281.5| 390.9
bakery-trl5 | 1000 | 34.61| 15.68| 350.1 | 1000 | 1000 | 1000 | 1000
blackjack-tr30 | 44.01 | 34.49 | 17.26 | 31.92 | 505.61| 117.33| 1000 | 540.98
blackjack-tr40 | 108.52| 77.76 | 37.04 | 74.44 | 1000 |560.18| 1000 | 853.39
blackjack-tr50 | 154.72| 133.41| 53.99 | 114.04| 1000 | 1000 | 1000 | 1000
cube-tr10 24 152 | 146 | 899 | 5.04 | 468 | 29.14| 12.95
cube-tr15 78.71| 5.34 | 5.32 | 29.79 | 34.46| 57.54| 1000 | 364
cube-tr20 | 699.04| 254.92| 285.03| 413 |243.23/693.54| 1000 | 645.59
FPMult-tr5 054 | 0.85 | 0.84 | 0.74 | 1000 |237.42| 1000 | 745.81
FPMult-tr10 402 | 3.82 | 3.93 | 3.92 | 1000 | 1000 | 1000 | 1000
FPMult-trl5 | 19.44 | 10.85| 14.33| 14.87 | 1000 | 1000 | 1000 | 1000
palu-tr10 259 | 1.81 1.9 2.1 17.97 | 16.53 | 1000 | 344.83
palu-tr20 8.31 | 457 | 5.75 | 6.21 |375.95/123.24| 1000 | 499.73
palu-tr30 18.54| 8.56 | 8.66 | 11.92 | 1000 | 560.6 | 1000 | 853.53
retherRTF-tr70| 26.89 | 42.8 | 48.28 | 39.32 | 60.4 |241.73| 93.18 | 131.77
retherRTF-tr80| 34.32 | 48.53 | 55.46 | 46.1 | 37.55|415.85|248.03| 233.81
retherRTF-tr90| 50.82 | 55.67 | 64.27 | 56.92 | 37.28 |111.95| 99.67 | 82.97
swap-tr5 0.48 | 0.06 | 0.07 0.2 0.68 0.8 1.47 | 0.98
swap-trl0 | 179.01| 110.7 | 173.95| 154.55| 1000 | 1000 |911.76| 970.59
swap-trl5 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
vMiim-tr100 |102.75/ 10.35| 12.75| 41.95 | 1000 |158.29| 165.2 | 441.16
vMiim-tr150 |148.92| 15.12| 24.25| 62.76 | 1000 |920.71| 469.75| 796.82
vMiim-tr200 |428.16| 24.4 | 46.1 | 166.22| 1000 | 1000 |919.44| 973.15
cf-fir-tr10 230.05/191.18| 122.82| 181.35| 0.99 | 9.28 | 5.26 | 5.18
cf-fir-tr20 453.72| 212.53| 52.03 | 239.43| 6.84 |154.42| 21.52| 60.93
cf-fir-tr30 627.57| 764.11| 82.02 | 491.23| 14.2 |129.14| 60.54 | 67.96
FIFOs-tr8 10.27 | 258.8|461.73| 243.6 | 13.3 | 16.28| 8.99 | 12.86
FIFOs-tr10 | 73.49| 1000 | 1000 | 691.16| 64.96 | 79.92 | 41.27 | 62.05
FIFOs-tr12 |331.54| 1000 | 1000 | 777.18| 335.74| 526.53| 174.58| 345.62
fir-tr5 54,52 |403.43| 307.9| 255.28| 19.73 | 17.13 | 24.16| 20.34
fir-tr10 1000 | 1000 | 1000 | 1000 | 48.47 | 33.51| 80.93| 54.3
fir-trl5 1000 | 1000 | 1000 | 1000 | 86.11 | 53.13|181.69| 106.98
minMax-tr100 | 1000 | 76.73| 85.3 | 387.34| 12.68 | 15.38 | 25.73| 17.93
minMax-tr200 | 1000 | 287.66| 276.4 | 521.35| 66.27 | 72.95|168.23| 102.48
minMax-tr300 | 1000 | 595.85| 656.93| 750.93| 167.33| 153.58| 419.96| 246.96
adder-chain-tr1Q 1000 | 1000 | 547.35| 849.12| 17.02| 26.01| 117.4| 53.48
adder-chain-tr1% 1000 | 1000 | 1000 | 1000 | 43.59 | 89.11 | 528.92| 220.54
adder-chain-tr2Q0 1000 | 1000 | 1000 | 1000 |127.71| 488.07| 1000 | 538.59
timeout-tr40 | 123.9| 44.46| 35.48 | 67.95 | 48.62 | 16.21 | 146.01| 70.28
timeout-tr60 | 295.95| 87.15| 74.54 | 152.55| 106.33| 64.34 | 102.63] 91.1
timeout-tr80 | 1000 | 181.53| 123.49| 435.01| 443.05| 164.24| 1000 | 535.76
Timeout \ 11 \ 8 \ 7 \ 5 \ 14 \ 8 \ 15 \ 5 \

Table A.1: Comparison of using BV solvers and LIA solvers on Veriloggies
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[ Model  [Sel| Z3-B [ BL-B [ BE-B [AVG-B | YI-L [ Z3-L [MA-L [AVG-L |
am2910-tr50 16.48| 4.48 | 3.79 | 8.25 |216.06| 31.49| 8.53 | 85.36
am2910-tr100| BV | 86.76 | 13.79| 11 37.18 | 1000 | 143.39 33.38 | 392.26
am2910-tr150 327.62| 27.5 | 20.45| 125.19| 1000 | 1000 | 64.79 | 688.26
bakery-tr5 8.16 | 3.83 | 2.64 | 4.88 | 11.09| 9.75 | 24.43| 15.09
bakery-tr10 | BV |234.83| 13.62 | 7.37 | 85.27 | 391.94| 500.94| 280.62| 391.17
bakery-tr15 1000 | 34.61| 15.68| 350.1 | 1000 | 1000 | 1000 | 1000
blackjack-tr30 44.01| 34.49| 17.26| 31.92 |448.84| 119.9 | 606.51| 391.75
blackjack-tr40 | BV | 108.52| 77.76 | 37.04| 74.44 |871.67| 306.77| 1000 | 726.15
blackjack-tr50 154.72| 133.41| 53.99| 114.04| 1000 | 718.58| 1000 | 906.19
cube-tr10 24 152 | 146 | 899 | 502 | 423 | 15.18| 8.14
cube-tr15 BV | 78.71| 534 | 532 | 29.79 | 30.61| 18.87 | 1000 | 349.83
cube-tr20 699.04| 254.92| 285.03] 413 |457.29| 380.94| 1000 | 612.74
FPMult-tr5 054 | 0.85 | 0.84 | 0.74 | 1000 [117.23] 1000 | 705.74
FPMult-trd0 | BV | 4.02 | 3.82 | 3.93 | 3.92 | 1000 | 1000 | 1000 | 1000
FPMult-tr15 19.44| 10.85| 14.33| 14.87 | 1000 | 1000 | 1000 | 1000
palu-trl0 259 | 1.81 1.9 2.1 2.87 | 6.28 | 1000 | 336.38
palu-tr20 BV | 8.31 4.57 5.75 6.21 | 12.89| 12.84| 1000 | 341.91
palu-tr30 18.54| 8.56 | 8.66 | 11.92 | 20.56|136.29 1000 | 385.62
retherRTF-tr70 26.89| 42.8 | 48.28| 39.32 | 26.86 | 180.79| 175.62| 127.76
retherRTF-tr80| BV | 34.32 | 48.53 | 55.46| 46.1 | 17.26|167.96| 130.51| 105.24
retherRTF-tr90 50.82 | 55.67 | 64.27 | 56.92 | 26.84 | 132.37|177.71| 112.31
swap-tr5 0.48 | 0.06 | 0.07 0.2 067 | 0.89 | 1.49 | 1.02
swap-trl10 BV [179.01] 110.7|173.95| 154.55| 1000 | 1000 |912.29| 970.76
swap-trl5 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
vMiim-tr100 102.75| 10.35| 12.75| 41.95 | 1000 | 158.05| 163.88| 440.64
vMiim-tr150 | BV | 148.92| 15.12 | 24.25| 62.76 | 1000 |859.99| 466.77| 775.59
vMiim-tr200 428.16| 24.4 | 46.1 | 166.22| 1000 | 1000 |917.49| 972.5
cf-fir-tr10 230.05/ 191.18| 122.82| 181.35| 1.03 | 9.42 | 5.09 | 5.18
cf-fir-tr20 LIA | 453.72| 212.53| 52.03 | 239.43| 6.68 | 154.15| 21.22 | 60.68
cf-fir-tr30 627.57| 764.11| 82.02 | 491.23| 14.27 | 129.38| 60.62 | 68.09
FIFOs-tr8 10.27 | 258.8 | 461.73| 243.6 | 13.18| 16.21| 8.98 | 12.79
FIFOs-tr10 |LIA | 73.49| 1000 | 1000 | 691.16| 64.67 | 79.69 | 40.76 | 61.71
FIFOs-tr12 331.54| 1000 | 1000 | 777.18| 334.65| 534.38| 174.35| 347.79
fir-tr5 54,52 |403.43| 307.9| 255.28| 19.66 | 17.43 | 24.22 | 20.44
fir-tr10 LIA | 1000 | 1000 | 1000 | 1000 | 48.71| 33.62| 81.2 | 54.51
fir-trl5 1000 | 1000 | 1000 | 1000 | 85.06| 52.87 | 182.5| 106.81
minMax-tr100 1000 | 76.73| 85.3 | 387.34| 12.71| 15.36| 25.85| 17.97
minMax-tr200 | LIA | 1000 | 287.66| 276.4 | 521.35| 65.35| 73.36 | 168.13| 102.28
minMax-tr300 1000 | 595.85| 656.93| 750.93| 167.86| 153.7 | 419.8 | 247.12
adder-chain-tr10 1000 | 1000 |547.35| 849.12| 17.02 | 26.01 | 110.48| 51.17
adder-chain-tr15LIA | 1000 | 1000 | 1000 | 1000 | 43.59| 89.11 |521.46| 218.05
adder-chain-tr20 1000 | 1000 | 1000 | 1000 |127.71|488.07| 1000 | 538.59
timeout-tr40 123.9| 44.46 | 35.48| 67.95 | 16.06| 30.82| 21.36| 22.75
timeout-tr60 | LIA | 295.95| 87.15 | 74.54 | 152.55|210.91| 65.51| 55.3 | 110.57
timeout-tr80 1000 | 181.53| 123.49| 435.01| 365.8 | 49.36 | 563.09| 326.08
] Timeout \ \ 11 \ 8 \ 7 \ 5 \ 12 \ 7 \ 13 \ 4 \

Table A.2: Comparison of using BV solvers and LIA solvers (Bit-Blast) aiming set of Verilog designs



104

] Model | Val Enum | No Val Enum |
cf-fir-tr100 162.4 588.82
cf-fir-tr101 164.63 469.67
cf-fir-tr102 169.6 568.52
cf-fir-tr103 178.28 633

cf-fir-tr104 186.45 688.95
cf-fir-tr105 186.48 612.76
cf-fir-tr106 187.76 659.92
cf-fir-tr107 236.13 643.59
cf-fir-tr108 278.38 893.66

cf-fir-tr109 207.1 848
cf-fir-tr110 206.58 698.94
fir-tr10 48.26 48.78
fir-trl5 84.22 84.53
fir-tr20 114.03 114.27
fir-tr25 179.66 180.09
fir-tr30 236.46 237.75
fir-tr35 331.2 331.38
fir-tr40 411.84 409.91
fir-tr45 506.41 507.9
fir-tr50 678.02 684.64
fir-tr5 19.45 19.49
adder-chain-tr1Q0 11.72 11.82
adder-chain-tr11 15.9 16.34
adder-chain-tr12 16.89 17.28
adder-chain-trl3 28.8 28.57
adder-chain-tr14 26.93 27.11
adder-chain-trl% 48.78 49.12
adder-chain-trl¢ 48.33 49.63
adder-chain-trl7 64.25 64.83
adder-chain-trl8 62.01 62.03
adder-chain-trl9 102.63 101.96
adder-chain-tr2Q 72.82 73.85

Table A.3: Comparison of LIA encodings with and without value enumeration
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] Model | Term-ITE | Fresh var |
cf-fir-tr100 162.4 1000
cf-fir-tr101 164.63 1000
cf-fir-tr102 169.6 1000

cf-fir-tr103 178.28 1000
cf-fir-tr104 186.45 1000
cf-fir-tr105 186.48 1000
cf-fir-tr106 187.76 1000
cf-fir-tr107 236.13 1000
cf-fir-tr108 278.38 1000

cf-fir-tr109 207.1 1000

cf-fir-tr110 206.58 1000
fir-tr10 48.26 102.01
fir-trl5 84.22 158.76
fir-tr20 114.03 229.35
fir-tr25 179.66 755.39
fir-tr30 236.46 407.44
fir-tr35 331.2 479.38
fir-tr40 411.84 977.49
fir-tr45 506.41 761.67
fir-tr50 678.02 1000
fir-tr5 19.45 4454

11.72 109.83
15.9 196.06
16.89 294.2
28.8 509.37
26.93 607
48.78 1000
48.33 1000
64.25 1000
62.01 1000
102.63 1000
72.82 1000

adder-chain-tri(
adder-chain-tr1]
adder-chain-tr1]
adder-chain-trl3
adder-chain-tr14
adder-chain-tr1§
adder-chain-trl16
adder-chain-tr17
adder-chain-tr18
adder-chain-trl14
adder-chain-tr2(

OO0~ Cr+H-0o1—C

Table A.4: Comparison of LIA encoding with Term-ITEs and LIA encodinthviresh variables
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[ Model [LIAwithBit-Blast | LIA [BV ULIA |

palu-tr5 0.21 0.75 43.78
palu-tr10 1.25 9.3 1000
palu-trl5 2.97 26.7 1000
palu-tr20 5.45 75.29 1000
palu-tr25 9.32 152.82| 1000
palu-tr30 21.61 330.01] 1000
palu-tr35 27.14 477.78/ 1000
palu-tr40 31.44 723.35/ 1000
palu-tr45 53.48 1000 1000
palu-tr50 80.23 1000 1000
palu-tr55 60.24 1000 1000
palu-tr60 101.81 1000 1000
palu-tr65 194.64 1000 1000
palu-tr70 195.73 1000 1000
palu-tr75 332.02 1000 1000
palu-tr80 311.31 1000 1000
palu-tr85 289.03 1000 1000
palu-tr90 300.2 1000 1000
palu-tr95 642.66 1000 1000
palu-tr100 659.18 1000 1000

Table A.5: Comparison of LIA with Bit-Blast, pure LIA and BV LIA encoding

] Model \ Sel\ Z3-B \ BL-B \ BE-B \AVG-B \ YI-L \ Z3-L \MA-L \AVG-L \
cordic-tr8 71.63|101.62| 150.06| 57.75 | 1000 | 0.15 0 333.38
cordic-tr10 BV |463.07| 147.19| 251.78| 203.42| 1000 | 1000 | 1000 | 666.67
cordic-tr12 312.37| 124.56| 197.71| 145.64| 1000 | 1000 | 1000 | 666.67

daio-receiver-tr5( 236 | 262 | 124 | 166 | 11.89| 12.81| 12.39| 8.23

daio-receiver-tr6Q BV | 7.57 | 3.15 | 1.62 | 3.57 34.6 | 17.28| 19.07 | 17.29

daio-receiver-tr7( 6.46 | 3.69 1.8 3.38 | 28.05| 26.4 | 28.56| 18.15
dekker-tr50 13.59| 4.61 | 3.23 | 6.07 | 53.25| 27.12| 37.28 | 26.79
dekker-tr60 BV | 41.58| 5.6 423 | 15.73 |120.06| 41.48 | 75.08 | 53.85
dekker-tr70 4059 | 7.25 | 5.08 | 15.95 | 95.32| 72.17 | 128.33| 55.83
Unidec-tr50 125.84| 5.86 | 6.92 | 43.9 | 1000 | 1000 |533.34| 666.67
Unidec-tr60 BV [202.41] 7.5 7.79 | 69.97 | 1000 | 1000 |598.78| 666.67
Unidec-tr70 229.63| 9.05 | 8.81 | 79.56 | 1000 |902.36| 1000 | 634.12
soc-ram-tr4 29.84 | 227.29/604.97| 85.71 | 31.31| 34.71| 8.7 | 22.01
soc-ram-tr5 | LIA | 167.2|807.33] 1000 | 324.84| 71.54 | 67.27| 17.23 | 46.27
soc-ram-tré 196.8| 1000 | 1000 | 398.93|158.39| 324.62| 29.31| 161

altmult-accum-tr5 232.71| 394.1| 8.81 | 208.94| 1.8 5.44 3.9 2.41

altmult-accum-tr7 LIA | 1000 | 1000 | 1000 | 1000 |283.76| 115.63| 42.91 | 133.13

altmult-accum-trg 1000 | 1000 | 1000 | 1000 |592.33| 1000 |187.89| 530.78

 Tmeowt | | 2 | 3 | 4 | 2 | 6 | 5 ] 3 ] 0 |

Table A.6: Comparison of using BV solvers and LIA solvers (Bit-Blast) wal@ation set of Verilog designs



