
Efficient SMT Solving for Hardware Model Checking

by

Hyondeuk Kim

B.E., Ajou University, Korea, 2002

M.S., University of Colorado at Boulder, USA, 2005

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

2010

This thesis entitled:
Efficient SMT Solving for Hardware Model Checking

written by Hyondeuk Kim
has been approved for the Department of Electrical and Computer Engineering

Fabio Somenzi

Professor Aaron Bradley

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the
form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Kim, Hyondeuk (Ph.D., Electrical and Computer Engineering)

Efficient SMT Solving for Hardware Model Checking

Thesis directed by Professor Fabio Somenzi

The Satisfiability Modulo Theories (SMT) problem is a decision problem for the satisfiability of

first-order formulas with background theories. In the last few years, decision procedures for SMT have

been studied intensively, and they are applied successfully to hardwareand software verification, compiler

optimization, scheduling, and other design automation areas. In particular, during our study, we have found

that they are also applicable to constrained random simulation.

SMT solvers have been effectively applied to software verification with predicate abstraction [BMMR01,

LNO06] and bounded model checking [GG08, AMP06]. Only to a lesser extent, they have been applied to

hardware verification. In today’s hardware designs, bit-level and word-level operations are often tightly

intermingled. On some designs, a bit-level model checker may perform betterthan a word-level model

checker or vice versa.

In my dissertation, we study several efficient SMT solving techniques thatcan be applied to hardware

model checking and constrained random simulation. In particular, we present a hybrid approach [KJS07a,

KS06] for integer difference logic that combines finite instantiation method with Bellman-Ford algorithm.

In addition, we present an efficient term-ITE conversion method [KSJ09] that improves SMT solving by

word-level simplifications. Efficiency of these techniques have been shown in our SMT solver SatEEn that

won the 1st places inInteger Difference Logic(IDL) andLinear Integer Arithmetic Logic (LIA) divisions

of SMT Competition 2009.

In SMT-based model checking, an efficient encoding plays an importantrole along with the effi-

cient SMT solving. For hardware model checking, we propose an SMT-based model checking system that

consists of modeling and constraint solving components. The modeling component selectively decides the

encoding method by analyzing the model, and the constraint solving component uses eitherLinear Integer

Arithmetic Logic (LIA) or Bit-Vector (BV) solver for the encoding. On the other hand, hardware model-

iv

ing is nontrivial since the behavior of hardware is described with the detailed event semantics of Standard

Verilog [IEE06]; hence we define a subset of Verilog with restrictions that guarantee behavioral equivalence

between verification condition and simulation of synchronous hardware. The restrictions lead to a concise

verification condition and allow controlled nondeterminism that can be easily eliminated for synthesis. In

addition, we propose an encoding method that improves SMT solving by maximizing the use of word-level

information. For constrained random simulation, we propose to use word-level simplification [KJR+08]

that reduces the bit-width of each variable in the design.

v

Acknowledgements

I am extremely grateful to my advisor Professor Fabio Somenzi for his guidance, encouragement and

patience during my graduate studies. I started to learn how to do research by conquering several peaks and

taking extra credits in the Rocky Mountains with him. Whenever I faced an obstacle during my research,

he has always guided me to the right direction to find a solution to the problem. I also would like to thank

Professor Clark Barrett, Professor Aaron Bradley, Professor Sriram Sankaranarayanan and Professor Manish

Vachharajani for kindly serving as my thesis committee and providing valuablesuggestions that improved

the quality of my thesis.

During my study, I had great opportunities to work on real-world problems informal verification

area. I would like to thank Dr. Chao Wang and Dr. Aarti Gupta for giving such an opportunity to work

on hardware model checking problems in NEC Laboratories. I also would like to thank Dr. Kavita Ravi,

Dr. HoonSang Jin, and Dr. Robert P. Kurshan for giving an opportunity to apply my work to constrained

random simulation in Cadence Design Systems.

The members of our research group made my work more interesting and fun through many discus-

sions. I would like to thank HoonSang Jin, Hyojung Han, and Saqib Sohail for sharing interesting ideas

about my work. Many thanks to HoonSang Jin and Hyojung Han for enjoying the research and hiking

together and encouraging me to finish my thesis.

Finally, I would like to thank my parents for their love and support. Without theirsacrifice, I would

not be able to finish this thesis. I dedicate this thesis to them.

Contents

Chapter

1 Introduction 1

1.1 Background 1

1.2 Thesis Contribution 3

1.3 Thesis Organization 5

2 Preliminaries 7

2.1 Satisfiability Modulo Theories 7

2.1.1 Bit-Vector Logic . 8

2.1.2 Linear Integer Arithmetic Logic .9

2.1.3 BV ∪ LIA Logic . 10

2.1.4 Integer Difference Logic 10

2.1.5 DPLL(T) . 11

2.2 Model Checking 13

2.3 Hardware Description Language 16

3 Finite Instantiation for Integer Difference Logic 17

3.1 Introduction 17

3.2 Preliminaries .. 18

3.3 Minimizing the Abstract Models .. . 20

3.4 Bounds on Solutions 22

vii

3.4.1 Bound Computation . 22

3.4.2 Inconsistency Check for Partial Interpretations 23

3.4.3 Consistency Check for Abstract Models 24

3.5 Algorithm .. 25

3.5.1 The Theory Solver .. 26

3.6 Related Work .. . 32

3.7 Experimental Results 33

3.8 Conclusions 36

4 Efficient Term-ITE Conversion 38

4.1 Preliminaries .. 40

4.2 Term-ITE Conversion 41

4.2.1 Two Methods for Term-ITE Conversion 41

4.2.2 Term-ITE Conversion with Cofactors 43

4.3 Simple Preprocessing 45

4.4 Algorithm .. 46

4.5 Related Work .. . 50

4.6 Experimental Results 50

4.7 Conclusions 53

5 Avoiding Mismatches in Verification of Verilog Designs 54

5.1 Introduction 54

5.2 Verification Conditions for Hardware 55

5.3 Correctness 60

5.4 Discussion 67

5.5 Related Work .. . 69

5.6 Experimental Results 70

5.7 Conclusions 70

viii

6 Selective SMT Encoding for Hardware Model Checking 72

6.1 Introduction 72

6.2 From Hardware Description toBV . 73

6.3 SMT Encoding for Hardware Designs 75

6.3.1 LIA Encoding . 75

6.3.2 SMT Encoding with Combined Theories (BV ∪ LIA) 78

6.4 Model Analysis 80

6.4.1 Analysis of Bit-Select Operations .. . 80

6.4.2 Analysis of Bit-Wise Operation .81

6.4.3 Scoring System .82

6.4.4 Experimental Evaluation .82

6.5 Related Work .. . 84

6.6 Conclusions 84

7 Application of Formal Word-Level Analysis to Constrained Random Simulation 86

7.1 Introduction 86

7.2 Constraint Solving in Simulation .. . 87

7.3 DomRed: Technical Details . 88

7.4 Experimental Results 89

8 Conclusions 91

8.1 Thesis Conclusions 91

8.2 Future Work 92

ix

Bibliography 94

Appendix

A Tables for Comparison 101

x

Tables

Table

3.1 Number of Calls and Conflicts 37

4.1 Number of term-ITE reduction with simple preprocessing 51

5.1 Result of Vl2smt on Verilog designs 71

6.1 Comparison of using selective, SAT, BV, and LIA encodings on evaluation set 85

7.1 Comparison Table of without and with Bound Reduction 89

A.1 Comparison of using BV solvers and LIA solvers on Verilog design 102

A.2 Comparison of using BV solvers and LIA solvers (Bit-Blast) on training set of Verilog designs103

A.3 Comparison of LIA encodings with and without value enumeration 104

A.4 Comparison of LIA encoding with Term-ITEs and LIA encoding with fresh variables 105

A.5 Comparison of LIA with Bit-Blast, pure LIA and BV∪ LIA encoding 106

A.6 Comparison of using BV solvers and LIA solvers (Bit-Blast) on evaluation set of Verilog

designs .106

Figures

Figure

2.1 DPLL(T) algorithm 11

2.2 Theory solver algorithm 12

2.3 4x4 Shidoku problem 15

3.1 Theory solver algorithm 27

3.2 Theory solver algorithm (continued) 28

3.3 SCC without any negative cycle 30

3.4 BARCELOGICTOOLS vs. Sateen on QFIDL . 34

3.5 YICES vs. Sateen on QFIDL . 34

3.6 MATHSAT vs. Sateen on QFIDL . 35

3.7 BARCELOGICTOOLS vs. Sateen on Job Shop Scheduling and Queen suites 36

3.8 YICES vs. Sateen on Job Shop Scheduling and Queen suites 36

3.9 MATHSAT vs. Sateen on Job Shop Scheduling and Queen suites 37

3.10 Sateen with splitting disequalities vs. Sateen on Job Shop Scheduling and Queen suites . . . 37

4.1 Verification conditionF with term-ITEs . 39

4.2 Term-ITE conversion 42

4.3 Term-ITE conversion with cofactor 43

4.4 Term-ITE conversion with simple check 45

4.5 Term-ITE conversion algorithm 47

xii

4.6 Term-ITE conversion algorithm 48

4.7 Term-ITE conversion 49

4.8 Z3 vs. Sateen on QFLIA . 52

4.9 MATHSAT vs. Sateen on QFLIA . 52

4.10 YICES vs. Sateen on QFLIA . 52

4.11 Z3WITH PREPROCESSvs. Z3 on QFLIA . 52

4.12 MATHSAT WITH PREPROCESSvs. MATHSAT on QFLIA 52

4.13 YICESWITH PREPROCESSvs. YICES on QFLIA . 52

4.14 SATEEN vs. Sateen without Theory-Simp on QFLIA . 53

4.15 SATEEN vs. Sateen with naive approach on QFLIA . 53

5.1 Conversion fromMSV description to intermediate form . 57

5.2 Verilog code for a test bench 61

5.3 Nondeterministic behavior of Verilog simulation (a) 63

5.4 Nondeterministic behavior of Verilog simulation (b) 64

5.5 Deterministic Verilog design .. . 69

6.1 BV vs. LIA .. . 73

6.2 Conversion from HDL to SSA form 74

6.3 VAL ENUM vs. No Val Enum . 78

6.4 TERM-ITE vs. Fresh Variable .78

6.5 LIA WITH BIT-BLAST vs. LIA . 81

6.6 BV vs. LIA for Training Set 83

6.7 BV vs. LIA for Evaluation Set 83

Chapter 1

Introduction

1.1 Background

The Satisfiability Modulo Theories (SMT) problem has been the subject of intense scrutiny in the last

few years. On the one hand, emerging applications like model checking of infinite state systems rely on

such decision procedures for tasks like predicate abstraction [BMMR01]. On the other hand, algorithmic

advances have significantly increased the range of problems that can betackled, and hence have stimulated

interest.

Recently, a dramatic performance increase in propositional satisfiability (SAT) solvers has led to the

development of decision procedures that rely on thepropositional abstraction [BDS02] of formulae from

more expressive logics like the logic ofLinear Arithmetic (LA) constraints, Presburger arithmetic, the

logic of array, the logic of bit-vector, or the logic of equality and uninterpreted function symbols (EUF).

In the propositional abstraction of a formula, atomic formulae of the specific theory (e.g.,x − y ≤ 5 or

f(x) = f(y), wheref is an uninterpreted function symbol) is replaced with fresh propositional variables.

Each model of the abstraction maps to a conjunction of literals in the original formula that can be checked for

consistency with theory-specific procedures. If such a procedure establishes consistency, then the given for-

mula is satisfiable and the enumeration terminates. Otherwise, from the proof ofinconsistency a refinement

of the propositional abstraction is extracted and the search is resumed.

There are several ways to combine the propositional reasoning engine with the theory-specific pro-

cedures. One broad classification is intolazy and eager approaches. A lazy solver produces an initial

propositional approximation that is concise and possibly quite coarse; it relies on refinements during the

2

enumeration of solutions. By contrast, an eager solver adds constraints tothe initial propositional abstrac-

tion that embody known relationships among the literals. An example is given by the constraints that encode

transitivity of equality. The most effective solvers often adopt elements ofboth approaches and tailor their

strategies to the theory (theories) at hand.

Despite the recent progress in SMT solving, several challenges still remain to be solved. The chal-

lenges in SMT can be broadly divided into two major parts: enhancement of SMT solving and applicability

of the solver. As mentioned in [NORCR07], one of the big challenges in SMT solving is to obtain hybrid

procedures that combine the benefits of both lazy and eager approaches. Depending on the problem, one

may perform well, and the other may not. One simple way to combine these two approaches is that we

analyze the problem features and apply adaptively one of the two approaches. For the adaptive method, an

intelligent problem analysis method will be required.

Another challenge in SMT solving is on the simplification of the problem. In practice, SMT in-

stances contain a lot of redundancies and retaining them in SMT solving resulted in poor performance of the

solver. Recently, SAT preprocessing techniques [EB05] have been intensively studied, and the techniques

are widely used in most SAT solvers. These techniques are also used in SMT, but they have some limitations

since the theories are not considered for the simplification. InLA logic, the solvers are required to handle

the infinite precision numbers for the soundness of the results. As a result,the solvers use infinite preci-

sion libraries such as GMP [GMP]; however, the cost of using the libraryis expensive due to the complex

computations with the cumbersome numbers. Finding the practical way to avoid using the infinite precision

library, or to lessen the burden for the library is a big challenge inLA logic.

Handling quantifiers and dealing with the combination of logics in SMT still remain to be as inter-

esting research topics. In real world problems, one is often required to use quantifiers or multiple logics to

describe the problem. Although there are several works [BCF+06, GBT07, GdM09] on quantifiers and the

combination of logics, only a few SMT solvers support these features; thus there are still more room for the

improvement.

Although SMT solvers have been widely used in software verification, the challenge still remains in

the hardware verification. In today’s hardware designs, bit-level andword-level operations are often tightly

3

intermingled to describe the model behavior. Recently, bit-vector solvers [BB09, Bru08] have been applied

to hardware verification; however the most bit-vector solvers are basedon the eager approach that encodes

the bit-vector variables and the operations into SAT, and only utilize partial word-level information.

Among these challenges in SMT, we study an efficient SMT solver that combines lazy and eager

approaches, and adopts word-level preprocessing technique to simplify the problem. As an application

of SMT solver, we study an effective SMT-based model checking for hardware verification, and a formal

word-level analysis to constrained random simulation.

1.2 Thesis Contribution

In this section, we describe the contributions of my thesis to SMT solving and its application.

• Finite Instantiations for Integer Difference Logic [KS06, KJS07b]: We describe a theory solver for

Integer Difference Logic (IDL) that is effective when the formula to be decided contains equality

and disequality (negated equality) constraints so that the decision problem partakes of the nature

of the pigeonhole problem. Atomic formulae inIDL constrain the difference between the values of

pairs of integer variables. This logic finds extensive application to problemsinvolving timing and

scheduling constraints, resource allocation, and program analysis.IDL is closely related toReal

Difference Logic (RDL), to the point that a decision procedure for the latter based on propositional

abstraction also works for the former, as long as the coefficients are integers. It is sufficient to

rewrite eachequality constraint (of the formx − y = n) as the conjunction of two inequalities.

However, if an equality constraint is negated, then the conjunction turns intoa disjunction, which

requires case splitting in the enumeration of the propositional solutions. In contrast, we propose

an approach that does not decompose equalities and their negations; rather, it converts the problem

of checking satisfiability of a conjunction of arithmetic atomic formulae into a set ofpropositional

satisfiability checks—whose cardinality is bounded by the number of stronglyconnected compo-

nents (SCC) of a suitable constraint graph. The conversion to propositional satisfiability that we

have proposed is based on the ability to bound the values of the integer variables that appear in the

4

formula. While in general such bounds do not exist, we have shown that todecide satisfiability of

a set of constraints whose graph is a single SCC, it is sufficient to consider a subset of the solutions

for which bounds are easily established. We also showed how the general case can be efficiently

solved given solutions for the individual SCCs of the constraint graph.Experimental study shows

that our new approach greatly improves the efficiency of our decision procedure for problem in-

stances in which disequalities play a significant role, and makes it very competitive with respect to

state-of-the-art tools.

• Efficient Term-ITE Conversion for SMT [KSJ09]: We describe howterm-if-then-else(term-ITE) is

handled in SMT. Term-ITEs allow one to conveniently express verification conditions; hence, they

are very common in practice. However, the theory provers of SMT solvers are usually designed to

work on conjunctions of literals; therefore, the input formulae are rewritten so as to eliminate term-

ITEs. The challenge in rewriting is to avoid introducing too many new variables, while avoiding

as often as possible the exponential explosion that is frequent when a naive approach is applied.

We proposed a solution that is based on the computation of cofactors and theory propagation, and

the experimental shows that the conversion method often produces orders-of-magnitude speedups

in several SMT solvers forLIA problems.

• Avoiding Mismatches in Verification of Verilog Designs: We present a subset of Verilog with re-

strictions that guarantee behavioral equivalence between verification condition and simulation of

synchronous hardware. The restrictions lead to a concise verification condition and allow con-

trolled nondeterminism that can be easily eliminated for synthesis. Under a cycle-based simulation

environment, we prove that every execution trace that may be produced by a standard-compliant

simulator for synchronous hardware is captured in the verification condition, and vice versa.

• Selective SMT Encoding for Hardware Model Checking: We present aselective SMT encoding for

hardware model checking. In particular, we introduce a model analysis method that considers each

bit-vector operation in the design and selects the encoding based on the analysis. In addition, we

present some enhancements to SMT encoding for hardware designs. Our experiments show that our

5

approach selects the right encoding for most of the hardware designs and improves the efficiency

of hardware model checking.

• Application of Formal Word-Level Analysis to Constrained Random Simulation[KJR+08]: We

have presented a new application of using SMT to constrained random simulation. In the con-

strained random simulation, the word-level analysis with SMT solver on word-level model enables

the bit-level solver to avoid size explosion problem. Our main objective is to give bound reduc-

tion to the variables that are used in bit encoding. For bound computation, we use Bellman-Ford

algorithm for thedifferenceconstraints and use simple coefficients checking for other linear arith-

metic constraints. We can also detect a overconstraint from the set ofdifference constraints using

Bellman-Ford algorithm. From the experiment, we found that our simple and fast algorithm can

give huge amount of reduction to the variables in the real problem.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

Chapter 2 introduces Satisfiability Modulo Theories and model checking. Inaddition, we review the

Verilog hardware description language.

Chapter 3 presents an approach to solveIDL problem that contains many disequality constraints. We

describe a theory solver that employs clique generation and finite instantiations to check the feasibility of

a conjunction of inequality and disequality constraints. We present a boundcomputation algorithm that

computes the bounds of integer variables in the constraints.

Chapter 4 presents an efficient term-ITE conversion method for SMT. Wepresent a term-ITE con-

version method that is based on cofactoring and theory simplification. We show the effectiveness of our

approach by applying the method toLIA instances that make extensive use of the term-ITE operator.

Chapter 5 we present a subset of Verilog with restrictionsw that guarantee behavioral equivalence

between verification condition and simulation of synchronous hardware. We show that the restrictions lead

to a concise verification condition and allow controlled nondeterminism that canbe easily eliminated for

6

synthesis.

In chapter 6, we present a selective SMT encoding method for hardware model checking that predicts

the encoding for a hardware design based on model analysis method. We describe the model analysis method

that considers several characteristics of the design. We also presentseveral enhanced encoding techniques

for LIA solvers. We show the experimental evaluation to show the effectiveness of the approach.

In chapter 7, we presents a word-level pre-processor,DomRed, that simplifies the constraints in

constrained random simulation. A bound reduction algorithm is presented that reduces the bound of the

variables that are used in bit-encoding.

In chapter 8, conclusions and some future research directions are presented.

Chapter 2

Preliminaries

In this chapter, we introduce Satisfiability Modulo Theories (SMT) solving and model checking. In

addition, we review the Verilog hardware description language (HDL) thatis commonly used in verification

of hardware.

2.1 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a decision problem that decides the satisfia-

bility of first-order formulas with background theories. SMT solvers find increasing applications in areas

like formal verification in which one needs to reason about complex Booleancombinations of numerical

constraints. The most common approach to this problem leverages the efficiency of modern propositional

satisfiability solvers that work on a propositional abstraction of the given formula. At the same time, they

interact with theory solvers, which check conjunctions of literals for consistency and learn consequences

(new lemmas) from them. This approach has come to be known as DPLL(T) [NO05].

Recently, word-level model checking [Bje09, Joh01, CKZ96] has received growing attention. In

particular, SMT solvers have been effectively applied to software verification with predicate abstraction

[BMMR01, LNO06] and bounded model checking [GG08, AMP06]. Onlyto a lesser extent, they have

been applied to hardware verification. The most natural SMT encodings for hardware description are bit-

vector (BV) and linear integer arithmetic (LIA) encodings.LIA encoding for RTL constructs is presented

in [BBC+06], where control variables are encoded as Boolean variables and datapath variables as integer

variables. In [Bru08], the author presents a bit-vector (BV) solver with a layered approach for RTL design

8

verification.

In this section, we recall the definitions of the logicsBV, LIA, BV ∪ LIA, andIDL which we use to

encode hardware. In addition, we review the DPLL(T) framework and discuss its algorithm.

2.1.1 Bit-Vector Logic

Let VB(n) for n ∈ Z
+ be the set ofBV variables whose domains are bit-vectors withn bits. LetVP

be the set of propositional variables. We assume thati 6= j → VB(i)∩VB(j) = ∅. LetTB(n) be a set ofBV

terms whose values are bit-vectors withn bits. The formulae inBV logic are inductively defined as follows.

• If c ∈ N andc < 2n, thenc[n] ∈ TB(n).

• If x ∈ VB(n), thenx[n] ∈ TB(n).

• If x ∈ VB(n) and0 ≤ j ≤ i < n, thenx[i : j] ∈ TB(i − j + 1), and if t[n] ∈ TB(n), then

∼ t[n] ∈ TB(n). (∼ is the bit-wise negation operator.)

• If t1[n], t2[n] ∈ TB(n), and◦ is an arithmetic or bit-wise operator in{+,−, ·, /,%,&, |}, then

t1[n] ◦ t2[n] ∈ TB(n).

• If t1[i] ∈ TB(i) andt2[j] ∈ TB(j), thenconcat(t1[i], t2[j]) ∈ TB(i+ j).

• A propositional variablea ∈ VP is a formula.

• If t1[n], t2[n] ∈ TB(n), and⋄ is a relational operator in{=, 6=, <,≤, >,≥}, thent1[n] ⋄ t2[n] is a

formula.

• If f1, f2, andf3 are formulae, then¬f1, f1 ∧ f2, f1 ∨ f2 and ite(f1, f2, f3) are formulae, and if

t1[n], t2[n] ∈ TB(n) andf is a formula, thentite (f, t1[n], t2[n]) ∈ TB(n).

Further formulae can be defined as abbreviations. For instance,x[n] ≪ k, a left shift ofx[n] by a

constantk, is defined asconcat(x[n − k − 1 : 0], 0[k]). An atomic formula is one of the formt1[n] ⋄

t2[n], where⋄ is a relational operator. The semantics are defined in the usual way; in particular, arithmetic

9

is modular,x[i : j] is the subfield ofx[n] comprising the bits fromi to j included,concat(t1[i], t2[j])

concatenatest1[i] andt2[j], andite(f1, f2, f3) is equivalent to(f1 ∧ f2)∨ (¬f1 ∧ f3). In addition, theterm

if-then-else(tite) operator is defined by the equivalence, for all formulaef andg and for all termst1[n] and

t2[n], of f(tite(g, t1[n], t2[n])) andite(g, f(t1[n]), f(t2[n])).

ForA,B,C,D,E ∈ VB(2), (2.1) is aBV formula.

(C[2] = A[2] & B[2]) ∧ (D[2] = C[2] + E[2]) . (2.1)

2.1.2 Linear Integer Arithmetic Logic

Let VZ be the set of integer-valued variables. The formulae inLIA logic are inductively defined as

follows.

• An integer numberc ∈ Z is a (constant)LIA term, and a variablex ∈ VZ is anLIA term.

• A variablex ∈ VZ is anLIA term, and the productc · x of an integer numberc ∈ Z and a variable

x ∈ VZ is anLIA term.

• If t1 andt2 areLIA terms, so aret1 + t2 andt1 − t2.

• A propositional variablea ∈ VP is a formula.

• If t1 andt2 areLIA terms, and⋄ is a relational operator in{=, 6=, <,≤, >,≥}, thent1 ⋄ t2 is a

formula.

• If f1, f2, andf3 are formulae, then¬f1, f1 ∧ f2, f1 ∨ f2 andite(f1, f2, f3) are formulae.

• If t1 andt2 areLIA terms, andf is a formula, thentite(f, t1, t2) is anLIA term.

ForA,B,C,D,E ∈ VZ , (2.2) is anLIA formula:

(C = A−B) ∧ (D = C + E) . (2.2)

10

2.1.3 BV ∪ LIA Logic

LetRB be a set of rules forBV logic andRZ be a set of rules forLIA logic. The formulae inBV ∪

LIA are inductively defined as the largest set that satisfies the rules inRB ∪RZ .

ForA ∈ VB(2) andC ∈ VZ , (2.3) is aBV ∪ LIA formula:

C = tite(A[1 :1] = 1[1], 2, 0) + tite(A[0 :0] = 1[1], 1, 0) . (2.3)

With the use ofVP in BV and LIA logics, aBV formula can be easily converted into a Boolean

formula. The conversion is called bit-blasting in which a set of propositionalvariables replaces each bit-

vector. Through bit-blasting, aBV ∪ LIA formula can be converted into anLIA formula, which is often

decided more efficiently.

GivenA0, A1 ∈ VP andC ∈ VZ , Eq. (2.4) shows theLIA formula obtained from Eq. (2.3) by

bit-blastingA[2]:

C = tite(A1, 2, 0) + tite(A0, 1, 0) . (2.4)

2.1.4 Integer Difference Logic

We define inductivelyInteger Difference Logic (IDL) formulae as follows.

• A propositional variablea ∈ VP is a formula.

• x− y ≤ n andx− y = n are formulae, forx, y ∈ VP , n ∈ Z.

• If ϕ andψ are formulae, so areϕ ∧ ψ and¬ϕ.

The following abbreviations are also defined:

x− y < n
.
= x− y ≤ n− 1 x− y 6= n

.
= ¬(x− y = n)

x = y
.
= (x− y = 0) x 6= y

.
= ¬(x = y) .

In SMT, a literal is an atomic formula, or the negation of an atomic formula. Aclauseis the dis-

junction of a set of literals, and a formula inconjunctive normal form (CNF) is the conjunction of a set of

clauses.

11

2.1.5 DPLL(T)

DPLL(T) architecture [GHN+04, NO05] combines DPLL(X), the propositional reasoning engine,

with the theory specific procedure. Given an SMT formulaϕ with a specific theoryT , DPLL(T) computes a

propositional abstractionϕb of ϕ by replacing the atomic formulae ofT with fresh propositional variables.

A model forϕb maps to a conjunction of literals inϕ that is checked for consistency with the theory solver.

If the model is consistent inT , ϕ is satisfiable and the enumeration of the model terminates. Otherwise, the

theory solver returns the explanation of the inconsistency for the refinement of the propositional abstraction,

and the search is resumed. Checking consistency of the partial interpretation enables the solver to detect the

inconsistency earlier and learn so-calledtheory consequencesin T that often improve the efficiency of the

search.

1 DPLL T () {
2 while (ChooseNextAssignment () == FOUND)
3 while (⊤) {
4 if (Deduce () ==CONFLICT || TheorySolver () ==CONFLICT) {
5 blevel = AnalyzeConflict ();
6 if (blevel< 0) returnUNSAT ;
7 else Backtrack (blevel);
8 continue;
9 }
10 if (TheoryConseq () ==∅) break;
11 }
12 returnSAT ;
13 }

Figure 2.1: DPLL(T) algorithm

The pseudo-code of DPLL(T) procedure is presented in Fig. 2.1. Thealgorithm is not much different

from the David-Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62]. It works as the DPLL

procedure if the conditionTheorySolver () ==CONFLICT is removed and the conditionTheoryConseq

() == ∅ is converted into⊤. The DPLL(T) algorithm is applied to apropositional abstractionϕb of ϕwhere

ϕ is an SMT formula in CNF. It maintains anassignment stackthat records all the assignments currently

in effect and anassignment queuethat records the assignments that are not in effect yet. The procedure

12

ChooseNextAssignmentchecks if the queue is empty and selects an unassigned variable to make a decision

on the value of the variable if it is empty. If no unassigned variable is selected, the algorithm returnsSAT ,

which meansϕ is satisfiable. The newly assigned variable, if it exists, is entered into the queue, and its

implications are added in the queue by theDeduceprocedure. IfDeducedoes not cause a conflict, the

procedureTheorySolver checks if the conjunction of the atomic formula is consistent or not. If either

Deduceor TheorySolver returnsCONFLICT , thenAnalyzeConflict analyzes the reason of the conflict.

The procedureAnalyzeConflict returns the backtracking level, and if it is less than zero, the algorithm

terminates by giving theUNSAT result forϕ; otherwise, the procedureDeduceresumes in the backtracking

level. If there is no conflict in bothDeduceand TheorySolver, the algorithm checks ifTheorySolver

generated theory consequences. If theory consequences are generated, the algorithm continues with the

while loop in line 3; otherwise, it continues with the while loop in line 2.

1 TheorySolver (){
2 foreachl ∈ Ib {
3 if (I |=T ¬l) {
4 LE = Explanation (I, ¬l);
5 ϕb = ϕb ∧ ¬LE ;
6 returnCONFLICT ;
7 } else{
8 I = I ∪ l;
9 }
10 }
11 foreachl ∈ L \ I {
12 if (I |=T l) Ib = Ib ∪ l;
13 }
14 returnNULL;
15 }

Figure 2.2: Theory solver algorithm

The procedureTheorySolver in Fig. 2.2 is called with a conjunction of literals inT whose corre-

sponding propositional literals are true in a (partial) interpretationIb of the propositional formulaϕb. It

decides whether there is an interpretation to the variables in the atomic formula that satisfies the conjunction

of all those literals. LetL be the set of all the literals inϕb andI be the set of literals that is a (partial)

interpretation ofϕ. The setI is initially empty, and the negation ofl ∈ Ib is checked withI for a theory

13

consequence. A literall is a theory consequence ofI, denotedI |=T l, if l is true inI. If I |=T ¬l is

true, an explanationLE of the theory consequence is generated, whereLE is a conjunction of literals. The

negation ofLE is conjoined withϕb to prevent this to be happen again. Since a conflict is found inI with l,

the procedure returns with theCONFLICT result. If I |=T ¬l is not true, the literall ∈ Ib is added toI.

The procedure continues to checkI |=T ¬l for eachl ∈ Ib until it finds a conflict or all the literals inIb are

added toI, a new (partial) interpretation ofϕ. With the new interpretationI, eachl ∈ L \ Ib is checked for

a theory consequence to deduce more literals. The literall ∈ L \ Ib is added toIb if I |=T l. After checking

all the theory consequences, the procedure returns withNULL.

2.2 Model Checking

Model checking [CE81, CGP99] is an algorithmic approach to verify the correctness properties of

a finite state system automatically. Given a modelM of a hardware or software system, the transition

system ofM is explored with a temporal propertyϕ to check if the property holds in the model, denoted

M |= ϕ. If the model does not meet the property, denotedM 6|= ϕ, the model checking algorithm provides

a counterexample trace that demonstrates how the property can be violated.

Traditionally, explicit-state model checking [CE81] approach has been widely used, where the set of

states and the transition relations are explicitly represented and the search algorithm explores the states to

check if the state violates the property. Due to the explicit representation of the states, the method often

suffers with the state explosion problem. As an alternative approach, symbolic model checking [McM94,

BCCZ99] approach uses a Boolean formula to represent the set of states and the transition relations, where

the Boolean formula is often represented with Binary Decision Diagrams (BDDs) [Bry86] or propositional

satisfiability (SAT) [MMZ+01, GN02, JS04]. Since BDDs are canonical representation, the BDD-based

model checking may suffer with the size explosion problem; however, oncethe BDDs are built, the model

checking problem can be solved efficiently. On the other hand, SAT- based model checking avoids the

size explosion problem by not using the canonical representation. It converts the Boolean formula into a

Conjunctive Normal Form (CNF) to be solved by propositional SAT solvers.

In SAT-based Bounded Model Checking (BMC), the transition relation ofa model is unrolledk

14

times and conjoined with the set of initial states and the negation of the Linear Time Logic (LTL) property

[WVS83, LP85]. The conjoined Boolean formula in CNF is solved by a propositional SAT solver and is

satisfiable if there exists a counterexample of the lengthk to the property. In contrast to BDD-based model

checking, SAT-based BMC suffers less to the size explosion problem and produces counterexamples of

minimum length for all LTL properties.

Given a modelM, an LTL propertyφ, and a boundk, BMC constructs a Boolean formula denoted

by [[M,¬φ]]k, that is satisfiable if and only if there exists a counterexample of the lengthk to φ; [[M,¬φ]]k

is defined as follows:

[[M,¬φ]]k = I(s0) ∧
∧

0≤i<k

T (si, si+1) ∧ [[¬φ]]k , (2.5)

whereI is the predicate describing the initial states,T is the transition relation, and[[¬φ]]k expresses the

satisfaction of¬φ along that path defined bys0, s1, . . . sk.

In recent years, SMT-based model checking has received growingattention. In SMT-based BMC,

a model is encoded into an SMT formula that is more concise and that preserves more structure of the

model compare to the corresponding Boolean formula. In terms of efficiency of the solver, representing the

model in SMT gives more flexibility to choose a suitable approach for the problem and often increases the

deductive power of the solver. The following example compares SMT and SAT encodings for aShidoku

problem and shows the effectiveness of the SMT encoding.

Consider a4×4 Shidoku problem in Fig. 2.3. The objective of the4×4 Shidoku problem is to fill a

4×4 grid so that each column, each row, and each of the four2×2 blocks contains the digits from 0 to 3 only

one time each. It is well known that Shidoku problem can be encoded into either a SAT or an SMT problem.

Suppose the valuesx0 = 0, x1 = 1, x2 = 3 in the first column are given for the problem in Fig. 2.3. If we

encode the problem into a SAT problem, we introduce Boolean variablesx1
i , x

0
i for each integer variablexi.

The partial encoded SAT problem forx0 = 0, x1 = 1, x2 = 3 andx0 6= x3, x1 6= x3, x2 6= x3 is given

below.

(x1
3 ∨ x

0
3) ∧ (x1

3 ∨ ¬x0
3) ∧ (¬x1

3 ∨ ¬x0
3) . (2.6)

15

x0

x1

x2

x3

Figure 2.3: 4x4 Shidoku problem

As Eq. (2.6) shows, one of the Boolean variables in the clause should be decided to make assignments to the

variablesx1
3 andx0

3.

On the other hand, if the problem is encoded into aLIA formula, the formula is

¬(x3 = 0) ∧ ¬(x3 = 1) ∧ ¬(x3 = 3) ∧ (x3 ≥ 0) ∧ (x3 ≤ 3) . (2.7)

The equalities in Eq. (2.7) can be converted into inequalities, and the converted formula is

((x3 < 0) ∨ (x3 > 0)) ∧ ((x3 < 1) ∨ (x3 > 1)) ∧ ((x3 < 3) ∨ (x3 > 3)) ∧ (x3 ≥ 0) ∧ (x3 ≤ 3) . (2.8)

By applying theory propagation with(x3 ≥ 0) and(x3 ≤ 3) in the unit clauses, Eq. (2.8) is simplified into

(x3 > 1) ∧ (x3 < 3) . (2.9)

From Eq. (2.8), we can infer(x3 = 2).

The comparison of SAT and SMT encodings shows that SMT encoding introduces fewer number

of variables and clauses for the problems that require word-level reasoning. As a result, the size of SMT

encoding is much smaller than the size of SAT encoding. In addition, SMT encoding often gives more

deductive power to the solver by considering the problem in word level.

16

2.3 Hardware Description Language

Verilog is a hardware description language (HDL) used to describe digitalsystems. Verilog HDL

is the most commonly used language in verification, synthesis, and testing of hardware designs. Verilog

describes a hardware design as a hierarchy of modules, where modulescommunicate each other through a

set of declared inputs, outputs, and bidirectional ports. Each module contains net, variable, function, and

task declarations, procedural and parallel blocks, and instances of other modules. A net can be of type

supply0, supply1, tri , triand , trior , tri0 , tri1 , wire, wand, or wor. A variable can be of typereg, integer,

real time, or realtime. A constant is an integer or real number; expressions are made of variables, constants,

and operators, which are categorized into arithmetic, concatenation, reduction, bit-selection, shift, bit-wise,

logical, conditional, and relational operators.

In Verilog, a blocking assignment (=) updates the target variable immediately,while the update of

a nonblocking assignment (⇐) is deferred. A continuous assignment updates the target wire whenever

the values of the operands in the right-hand side of the assignment is changed. A statement may be an

assignment, anif / else conditional statement, acasestatement, a looping statement, or a sequence of

statements enclosed by the keywordsbeginandend.

A procedural block in Verilog can be eitherinital or always. An initial block is executed only once,

and is used to describe the initial values and the updates of memory elements. Onthe other hand, analways

block is executed repeatedly, and is used to describe combinational and sequential logics. The statements in

a procedural block are executed sequentially in the given order, whereas the statements in a parallel block

such asfork-join block are executed concurrently.

The statement in either a procedural or parallel block is controlled by explicit timing controls such as

a delay control (#d) and an event control (@ event identifier , @ (eventexpression), @ (*), or @ *). The

delay control specifies the time duration for executing a statement and the event control defers the execution

of a statement until there is an occurrence of a declared event or value change on a net or variable.

Chapter 3

Finite Instantiation for Integer Difference Logic

3.1 Introduction

Decision procedures for fragments of first-order logic have been the subject of intense scrutiny in the

last few years. On the one hand, emerging applications like model checkingof infinite state systems rely on

such decision procedures for tasks like predicate abstraction [BMMR01]. On the other hand, algorithmic

advances have significantly increased the range of problems that can betackled, and hence have stimulated

interest.

In this chapter, we focus onInteger Difference Logic (IDL), in which arithmetic atomic formulae

constrain the difference between the values of pairs of integer variables. This logic finds extensive appli-

cation to problems involving timing and scheduling constraints, resource allocation, and program analysis.

IDL is closely related toReal Difference Logic(RDL), to the point that a decision procedure for the latter

based on propositional abstraction also works for the former, as long asthe coefficients are integers. It is

sufficient to rewrite eachequality constraint (of the formx− y = n) as the conjunction of two inequalities.

However, if an equality constraint is negated, then the conjunction turns intoa disjunction, which requires

case splitting in the enumeration of the propositional solutions. In contrast, wepropose an approach that

does not decompose equalities and their negations; rather, it converts theproblem of checking satisfiability

of a conjunction of arithmetic atomic formulae into a set of propositional satisfiability checks—whose car-

dinality is bounded by the number of strongly connected components (SCC) of a suitable constraint graph.

The conversion to propositional satisfiability that we propose is based on the ability to bound the

values of the integer variables that appear in the formula. While in general such variables are not bounded,

18

we show that to decide satisfiability of a set of constraints whose graph is a single SCC it is sufficient to

consider a subset of the solutions for which bounds are easily established. We also show how the general

case can be efficiently solved given solutions for the individual SCCs ofthe constraint graph. Experiments

show that our new approach, which combines techniques typical of both the lazy and the eager approaches,

greatly improves the efficiency of our decision procedure for problem instances in which disequalities play

a significant role, and makes it very competitive with respect to state-of-the-art tools.

This chapter is organized as follows: Section 3.2 reviews background and introduces notation. Sec-

tion 3.3 and Section 3.4 discuss the minimizing the abstract models and the bounds on solutions, while

Sect. 3.5 deals with the implementation of our theory solver. After a survey of related work in Sect. 3.6,

experiments are presented in Sect. 3.7, and conclusions are offered in Sect. 3.8.

3.2 Preliminaries

Propositional logic is the fragment ofIDL obtained by omitting the rule that defines arithmetic atomic

formulae. Efficient algorithms to decide the satisfiability of propositional logic formulae are based on the

DPLL procedure [DP60, DLL62], and exploit techniques like clause recording, conflict analysis, nonchrono-

logical backtracking, and fast Boolean constraint propagation [MS96, MMZ+01].

In recent times, decision procedures forIDL, and other fragments of quantifier-free first-order logic,

have been based on the DPLL procedure as well. Given a set of propositional variablesB such that

B ∩ P = ∅, one obtains a propositional formulaϕb from an IDL formulaϕ by replacing each arithmetic

atomic subformula ofϕ with a distinct variable fromB. The resulting formulaϕb is unsatisfiable only if

ϕ is unsatisfiable. Each model ofϕb corresponds to a conjunction of literals ofϕ. Given a decision proce-

dure for the conjunction of arithmetic atomic propositions inIDL (a theory solver), one therefore derives

a complete decision procedure forIDL by enumerating the models ofϕb, extracting from each of them the

corresponding conjunction of arithmetic atomic propositions and their negations, and checking these con-

junctions for satisfiability using the theory solver. In the following, we referto the conjunction of a set of

arithmetic literals as aset ofIDL constraints.

The theory solver rewrites theIDL constraints to be checked according to their form:

19

(1) x− y ≤ n: unchanged;

(2) x = y: unchanged;

(3) x− y = n, with n 6= 0: split into (x− y ≤ n) ∧ (y − x ≤ −n);

(4) ¬(x− y ≤ n): rewritten asy − x ≤ −n− 1;

(5) ¬(x = y): rewritten asx 6= y;

(6) ¬(x− y = n), with n 6= 0: rewritten asx− y 6= n.

Constraints of type 1, 3, and 4 areinequalities (I). Constraints of type 2 areequalities (Q), and

finally, constraints of type 5 and 6 aredisequalities (D). Specifically, constraints of type 5 form the set

D0 ⊆ D. LetC = I ∪Q ∪D.

An edge integer-labeled directed graph is a tripleG = (V,E, λ), whereV is a set of vertices,E ⊆

V × V is a set of edges, andλ : E → Z is an edge labeling function. Astrongly connected component

(SCC) ofG is a maximal subgraphG′ of G such that every two nodes ofG′ are connected by a path inG′.

An SCC istrivial if it consists of one vertex and no arcs. The SCCs ofG define a partition ofV . TheSCC

quotient graph Ĝ = (V̂ , Ê) of G is a directed acyclic graph with one vertex for each SCC ofG and an

edge(A,B) ∈ Ê if and only if there existx ∈ A andy ∈ B such that(x, y) ∈ E.

Given a distinguished source vertexs ∈ V , distances of all vertices froms are well defined provided

there exists nonegative cyclein G; that is, no cycle such that the sum of the labels on the edges along

the cycle is negative. The Bellman-Ford algorithm [CLR90] reports negative cycles if they are present, and

computes the distanceδ(x) of each vertex inV from the sources otherwise. Theslackof an edge(x, y) ∈ E

is given byσ((x, y)) = λ((x, y)) − (δ(y) − δ(x)). It is easy to see that for alle ∈ E, σ(e) ≥ 0 and that

σ((x, y)) = 0 if and only if (x, y) is on a shortest path froms to y in G. Distances and slacks obviously

depend on the choice of source vertex.

Given a (finite) setI of inequality constraints (i.e., of the formx − y ≤ n), their constraint graph

G = (V,E, λ) is a labeled directed graph defined as follows:

• V ⊆ VZ is the set of variables appearing in the constraints inI.

20

• There is an arc(x, y) ∈ E with λ((x, y)) = n if and only if there is a constrainty − x ≤ n in I.

It is well known [CLR90] thatI is satisfiable if and only ifG contains no negative cycle. In fact, adding

both sides of the constraints forming a cycle of lengthw, one gets0 ≤ w, which is not satisfiable when

w < 0. If, on the other hand, no negative cycle exists inG, then one can find a model forI by solving a

single-source shortest-path problem on an augmented graphGa, obtained fromG by adding a new reference

vertexxr and arcs labeled 0 fromxr to all the other vertices. Letδ(x) be the distance ofx ∈ V from xr

in Ga. Thenδ is a model forI. It is also well known that, given a model ofI, α : V → Z, and a

constant,c ∈ Z, the interpretationα′ : V → Z defined byα′(x) = α(x) + c is also a model ofI, because

α′(x)−α′(y) = α(x)−α(y). This observation allows an easy encoding ofrange constraintsin IDL. A set

of constraints{li ≤ xi ≤ ui} is translated to{xi − y ≤ ui} ∪ {y − xi ≤ −li}, wherey is a fresh variable.

The solutionα obtained from the constraint graph is then translated so thatα′(y) = 0. One fresh variable

suffices for multiple range constraints.

Since integer labels imply integer distances, if the right-hand sides of the constraints are integer-

valued, and the constraints are satisfiable when the variables range overthe real numbers, then an integer-

valued solution is also guaranteed to exist. Loosely speaking, the satisfiabilityproblem forinequalities is

the same forIDL and real difference logic (RDL). Adding equality constraints to the inequalities does not

change this state of affairs: Given a constraintx− y = n, one replacesx by y + n; if no immediate incon-

sistencies arise, one continues with the construction of the constraint graph. In contrast, if disequality con-

straints (i.e., negations of equalities) are allowed, an unsatisfiable conjunction of IDL constraints may be sat-

isfiable when regarded as anRDL formula. An example is given by
∧

1≤i≤p(1 ≤ xi ≤ h)∧
∧

1≤i<j≤p(xi 6=

xj), which exemplifies the pigeonhole principle.1

3.3 Minimizing the Abstract Models

Given the set of clausesϕb and a complete model for them produced by the propositional reasoning

engine, we consider now the problem of identifying a minimal (partial) model such that at least one literal

1 This does not contradict what was observed in Sect. 3.1 becausex 6= y translates into(x < y) ∨ (y < x) for RDL, but
translates into(x ≤ y − 1) ∨ (y ≤ x − 1) for IDL.

21

for each clause is true. The intent of finding such minimal model is twofold: to alleviate the task of the

theory solver and to make the exploration of the models ofϕb more efficient. A greedy solution to our

problem is easily obtained by considering each variable in turn and removingit from the model if no clause

becomes unsatisfied as a result. We now describe how such a solution can be implemented efficiently in the

context of the algorithm that enumerates the solutions to the propositional abstraction. That is, we show how

we can take advantage of the information gathered by the propositional SATsolver to significantly speed up

the choice of the minimal model.

Two observations from [RS04] provide the foundation for our method. The first is that no variable

that received its value by implication (rather than decision) by the SAT solvercan be removed from the

model. This fact greatly reduces the number of variables that are candidates for removal. The second

observation concerns the list of watched literals and assumes that only two literals are watched by the SAT

solver [MMZ+01]. It can then be shown that when a complete model is found, at least one watched literal in

every clause is true. Therefore, when considering a variable for removal it is sufficient to check if it provides

the only true literal in the clauses in which the satisfied literal of the variable is watched. The clauses in

which that literal is not watched can be safely ignored. Moreover, conflict clauses recorded by the SAT

solver do not need to be examined because they are known to be satisfied whenever the original clauses are

satisfied.

When a clause in which the candidate literal is watched is examined, a substitute literal that is true

is sought so as to maintain the invariant. If there is no substitute and the other watched literal is false, the

candidate is rejected. On the other hand, if this process manages to empty the watched-literal list of the

candidate (except possibly for conflict clauses), the candidate is removed from the model.

The effect of the minimization procedure is to alter the watched-literal lists of thesolver. However, the

enumeration process can resume from the modified lists without any adverseconsequence. The algorithm

that we have described runs in polynomial time, but only guarantees a minimal set of variables. Reduction

from set covering shows that deciding whether a model of sizek exists for a set of propositional clauses is

NP-complete.

The order in which literals are considered for removal depends on the constraints they represent.

22

The check for consistency of a set of constraints tends to be easier if disequality constraints are the first

candidates for elimination. They are followed by inequality constraints, and finally equality constraints, in

that order.

3.4 Bounds on Solutions

In this section we show how bounds to the solutions of a set of constraints are computed and how

those bounds are used in checking for consistency of (partial) interpretations ofϕb. Two cases must be

distinguished depending on whether the interpretation to be checked is known to be a model ofϕb: If it is

not known to be a model, a cheap check is applied, which can only report inconsistency. Otherwise, a more

expensive, complete check is applied in addition, which decides consistency and computes a model ofϕ if

it exists.

3.4.1 Bound Computation

It was recalled in Sect. 3.2 that from a solutionα to a set of inequality constraints, one can derive

a family of solutions{α + c}. In general, however, not all solutions are obtained one from the otherby

translation. Consider the constraints{(x − y ≤ 1), (y − x ≤ 0)}. The two interpretationsα1(x) = 0,

α1(y) = 0 andα2(x) = 1, α2(y) = 0 satisfy the constraints, though there is noc such thatα1 = α2 + c.

Such solutions are calledindependent. In general, there may be several families of independent solutions,

and therefore, multiple distinct solutions that assign a given value to a distinguished variable. The following

result characterizes these sets of solutions and forms the basis for our treatment of disequality constraints in

IDL.

Theorem 3.1.LetI be a set of inequality constraints. LetG = (V,E, λ) be the constraint graph associated

to I. Suppose thatG contains no negative cycle and consists of one SCC. Letδab be the distance froma to

b in G. For x ∈ V andn ∈ Z, letSn
x be the set of solutionsα : V → Z to I such thatα(x) = n. Then, for

each vertexy ∈ V , there exist boundsyl = n − δyx andyu = n + δxy, such that for every solution inSn
x ,

yl ≤ α(y) ≤ yu.

23

Proof. By definition of SCC, every vertex inV is reachable fromx in G; likewise, x is reachable from

any vertex inG. Let δxy be the distance ofy from x (the length of a shortest path). Such a distance is

defined because there are no negative cycles inG. Adding both sides of all the constraints along the path

yields y − x ≤ δxy. Therefore, for every solutionα ∈ Sn
x , it must beα(y) ≤ n + δxy. Said otherwise,

yu = n+ δxy. For the lower bound, ifδyx be the distance ofx from y in G, then, for every solutionα ∈ Sn
x ,

it must beα(y) ≥ n− δyx; that is,yl = n− δyx.

Satisfaction of disequalities is not affected by translation. Therefore, a set of constraints including

both inequalities and disequalities is satisfiable if and only if there exists a solutionα such thatα(x) = n.

This allows us to limit the search to the setSn
x for an arbitrarily chosenn. Theorem 3.1 asserts that solutions

in this set are bounded. The way this result is exploited depends on whether the set of constraints corresponds

to a model ofϕb. The next two subsections discuss the two cases.

3.4.2 Inconsistency Check for Partial Interpretations

Given a partial abstract interpretation that is not known to be a model ofϕb, we want to check

the corresponding constraints for inconsistency to prune the search space (as in theory propagation) or to

possibly avoid the more expensive check of Section 3.4.3. A set of constraints is assumed to be given along

with ranges for every variable in them. It is also assumed that the graph hasone SCC. If that is not the case,

each SCC is checked in turn: The constraints are inconsistent if at least one SCC is inconsistent. Though

the check described in the next section could be applied in this case, we areinterested in a cheaper criterion.

The quick check for inconsistency is based on two observations: The first is that if all variables in the

SCC have the same range, then the disequalities define a graph whose chromatic number must not exceed

the size of the range for the constraints to be satisfiable. (The chromatic number is the least number of

colors needed to assign different colors to adjacent vertices in the graph.) The second observation is that the

chromatic number of a graph is bounded from below by the size of a clique ofthe graph and from above by

the number of vertices. From these observations, it is easy to prove the following theorem.

Theorem 3.2. LetD0 be a set of disequality constraints of the formxi − xj 6= 0. LetX = {x1, . . . , xn} be

24

the set of variables inD0. LetL = {l1, . . . , ln} ∈ Zn andU = {u1, . . . , un} ∈ Zn be the bounds on the

variables inX (li ≤ xi ≤ ui). For yl, yu ∈ Z, let Γ = {γ1, . . . , γp} be the subset ofX such that

Γ = {xi ∈ X | yl ≤ li ∧ ui ≤ yu} .

Letρ = yu−yl+1. LetGD = (V,E) be the disequality graph associated toD0, such thatV = {v1, . . . , vn}

and{vi, vj} ∈ E if and only ifxi − xj 6= 0 ∈ D0 or xj − xi 6= 0 ∈ D0. If GD contains a clique of size

greater thanρ thenD0 is inconsistent.

Example 3.3. Consider the set of disequality constraintsD0 = {(x − y 6= 0), (y − z 6= 0), (z − x 6= 0)}

with variablesy, z that have the same range,0 ≤ y, z ≤ 1, and variablex that has range0 ≤ x ≤ 0

which is a subset of the common range. Letyl = 0 andyu = 1; thenΓ = {x, y, z}. A clique consisting of

variablesx, y, z is present inGD. Since|Γ| = 3 > 2 = ρ, the constraints are inconsistent. An explanation

of inconsistency consists of the disequality constraints{(x − y 6= 0), (y − z 6= 0), (z − x 6= 0)} and the

inequality constraints that generated the range,0 ≤ y, z ≤ 1, 0 ≤ x ≤ 0.

The check based on Theorem 3.2 results in one of three outcomes: A suitable clique has been found

and inconsistency is declared; a large enough clique was not found because of the heuristic nature of the

algorithm; a large enough clique is known not to exist. In the first case, an explanation of inconsistency

is derived from the disequalities forming the clique and the inequalities responsible for the bounds. In

the last two cases, the result is inconclusive, because the chromatic number of a graph can be arbitrarily

larger than the size of the largest cliques. However, if a large enough clique does not exist in the graph,

and the interpretation is not known to be a model, we avoid a full check for inconsistency, which is rather

expensive and likely to fail. (If the interpretation is a model, on the other hand, the consistency check must

be performed for the whole decision procedure to be sound.)

3.4.3 Consistency Check for Abstract Models

If the constraints correspond to a model ofϕb, we want to decide consistency and compute a model

of ϕ in case the answer is affirmative. For this, we resort to finite instantiation. Specifically, we can encode

25

each integer variable with enough binary variables to span its range and translate the satisfiability problem

for a conjunction of inequality and disequality constraints into a propositionalsatisfiability problem.

Theorem 3.1 applies when the constraint graph consists of one SCC. If that is not the case, we examine

the SCC quotient graph one SCC at the time. If there is no negative cycle in theconstraint graphG, the only

reason for unsatisfiability is the inability to satisfy the disequalities within some SCC of G. Therefore, if the

finite instantiation of each SCC is satisfiable, the entire set of constraints is satisfiable. This can be shown

as follows.

LetG be the constraint graph. ExtendG by adding one edge for every disequality constraintx−y 6= n

(wheren may be 0) such thatx andy belong to different SCCs. Let� be the preorder defined byu � v

if there is a path inG from u to v. (The preorder is updated after each edge addition.) Ifx � y, add

y − x ≤ −n − 1 to E; if y � x, addx − y ≤ n − 1. If x andy are not comparable in the preorder, add

eithery − x ≤ −n− 1 or x− y ≤ n− 1, but not both. Note that adding these edges does not create cycles,

and therefore does not change the SCCs ofG. (See Sect. 3.5.)

Let Ĝ = (V̂ , Ê) be the SCC quotient graph of the extendedG. Consider the vertices in̂V starting

from the minimal SCCs (those with no predecessors) and proceeding in a chosen topological order. Let

Ai be thei-th SCC in that order and letαi be a solution for the constraints corresponding to its edges.

Inductively assume thatβi−1 is a solution for the constraints in the subgraph induced by
⋃

0<j<iAj . Let k

be the maximum amount by which any constraint corresponding to an edge intoAi is violated. (Letk = 0

if no such violation exists.) Finally, letα′
i = αi − k. Then,βi = βi−1 ∪ α

′ is a solution for the constraints

in the subgraph induced by
⋃

0<j≤iAi.

3.5 Algorithm

We assume a decision procedure forIDL based on propositional abstraction. The givenIDL formula

ϕ is translated into a propositional formulaϕb as described in Sect. 3.2. Apropositional reasoning en-

gine enumerates the models toϕb and calls thetheory solver to determine whether that abstract model

corresponds to a consistent interpretation of the integer-valued variables.

The theory solver forIDL is relatively efficient. Therefore, it is advantageous to call it also on a

26

partial interpretations to terminate the fruitless search of part of the state space, or to learn so-calledtheory

consequences[NO05]. Our implementation follows this approach, though the equality constraints (x−y =

n 6= 0) are split and the full check for inconsistencies due to disequalities is applied only to abstract models.

(See lines 38–42 of Fig. 3.1.) We omit the details of the incremental implementation ofthe Bellman-Ford

algorithm. The interested reader is referred to [WIGG05].

3.5.1 The Theory Solver

The theory solver is called with a collection of arithmetic literals whose corresponding propositional

literals are true in a (partial) interpretation of the propositional formulaϕb; it then decides whether there is

an interpretation to the integer-valued variables that satisfies the conjunctionof all those literals. The first

step is to obtain a set of arithmetic atomic formulae (without negations) from the given set of literals. The

given literals are rewritten and divided intoQ, I, andD as described in Sect. 3.2.

The theory solver, whose pseudocode is shown in Figures 3.1 and 3.2, adopts thelayered approach

of MathSAT [BBC+05b]. ForIDL, it considers three main layers: equalities, inequalities, and disequalities.

Let X= ⊆ X be the set of integer-valued variables appearing in the equalities inQ. The theory solver

creates an undirected equality graphQ = (X=,Γ), where

Γ = {{xi, xj} : xi = xj ∈ Q} .

The vertices ofQ are in the same class if they are made equivalent by the equality constraints. The feasibility

ofQwithD0 is checked by comparing the equivalence class of the two vertices of eachdisequality constraint

in D0. If two vertices are in the same class, an explanation of infeasibility is returned. If the set of equality

constraints is feasible, the variables in the same class are merged into a single variable, and some simplified

constraints inD andI are dropped from the set.

The algorithm continues by checking the feasibility of the set of inequality constraints. LetV ⊆ VZ

be the set of integer-valued variables appearing inI. The theory solver creates a constraint graphG =

(V,E, λ) from I as explained in Sect. 3.2. The Bellman-Ford algorithm is run onG. If a negative cycle is

found, the setI is infeasible; a negative cycle with a subset ofQ provides the explanation of infeasibility.

27

1 TheorySolver (C) {
2 Explanation = EqualitySolver (Q,D0);
3 if (Explanation = SAT) Explanation = InequalitySolver (I);
4 if (Explanation = SAT) Explanation = DisequalitySolver (D);
5 returnExplanation

6 }

7 EqualitySolver (Q,D0) {
8 Q = CreateEqualityGraph (Q);
9 returnExplanation = CheckFeasibilityOfEqualityConstraints (Q,D0);
10 }

11 InequalitySolver (I) {
12 G = CreateConstraintGraph (I);
13 NegCycle = BellmaFordAlgorithm (G);
14 if (NegCycle) return GenerateExplanationFromNegCycle (NegCycle);
15 else returnSAT

16 }

17 DisequalitySolver (D) {
18 SCC = GenerateZeroSlackSCCOfConstraintGraph (G);
19 Explanation = CheckFeasibilityOfZeroSlackSCC (SCC ,D);
20 if (Explanation 6= SAT) returnExplanation;
21 else{
22 SCC ′ = GeneratePositiveSlackSCCOfConstraintGraph (G);
23 return CheckFeasibilityOfPositiveSlackSCC (SCC ′,D);
24 }
25 }

26 CheckFeasibilityOfZeroSlackSCC (SCC ,D) {
27 For eachd ∈ D {
28 Explanation = CheckFeasibilityOfDisequalityConstraint (SCC , d);
29 if (Explanation 6= SAT) returnExplanation;
30 else DropValidConstraint (d,D);
31 }
32 returnSAT ;
33 }

Figure 3.1: Theory solver algorithm

28

34 CheckFeasibilityOfPositiveSlackSCC (SCC ′,D) {
35 for eachSCC ′ ∈ SCC ′ {
36 (L,U) = GenerateBoundsForEachVariableInSCC (SCC ′);
37 Explanation = CheckFeasibilityOfBoundsWithClique(SCC ′,D, L, U);
38 if ((Explanation = UNDECIDED or

Explanation = PROB SAT) and interpretation is a model){
39 CNF = SmallDomainEncodingForConstraintsInSCC (SCC ′,D, L, U);
40 Explanation = SatSolver (CNF);
41 if (Explanation 6= SAT) returnExplanation;
42 }
43 else returnExplanation;
44 }
45 returnSAT ;
46 }

47 GenerateBoundsForEachVariableInSCC (SCC ′) {
48 x = FixValueOfOneVertexInSCC (SCC ′);
49 U = ComputeUpperBoundForEachVariableInSCC (SCC ′,x);
50 L = ComputeLowerBoundForEachVariableInSCC (SCC ′,x);
51 return(L,U);
52 }

53 CheckFeasibilityOfBoundsWithClique (SCC ′,D, L, U) {
54 Γ = GatherVariablesWithSameBounds (D, L, U);
55 ρ = GetBoundForGatheredVariables (Γ);
56 D′ = CollectRelevantDisequalityConstraints (D,Γ);
57 Γ′ = RemoveIrrelevantVariableByCheckingDegree (Γ,D′);
58 if (n(Γ′) ≤ ρ andn(V ar(D)) = n(Γ)) returnPROB SAT ;
59 else if (n(Γ′) ≤ ρ andn(V ar(D)) 6= n(Γ)) returnUNDECIDED ;
60 if (n(D′) < (ρ · (ρ+ 1))/2 andn(V ar(D)) = n(Γ)) returnPROB SAT ;
61 else if (n(D′) < (ρ · (ρ+ 1))/2 andn(V ar(D)) 6= n(Γ)) returnUNDECIDED ;
62 C = GenerateMaxClique (Γ′,D′);
63 if (n(V ar(C)) < ρ andn(V ar(D)) = n(Γ)) returnPROB SAT ;
64 else if (n(V ar(C)) < ρ andn(V ar(D)) 6= n(Γ)) returnUNDECIDED ;
65 else return GenerateExplanationFromMaxClique (SCC ′,C);
66 }

67 SmallDomainEncodingForConstraintsInSCC (SCC ′,D) {
68 return EncodingForBoundsOfEachVariableInSCC (SCC ′) ∪
69 EncodingForInequalityConstraintsInSCC(SCC ′) ∪
70 EncodingForDisequalityConstraints (D);
71 }

Figure 3.2: Theory solver algorithm (continued)

29

Equality constraints are involved in the explanation if the constraints on the negative cycle were obtained by

simplification in the equality layer. If there is no negative cycle inG, the setI ∪ Q is feasible; therefore a

solutionδ : V → Z is returned by the Bellman-Ford algorithm.2

The (simplified) setI combined withD is considered in the next step. LetG0 be the subgraph ofG

such that the edges with non-zero slacks for solutionδ are removed fromG. Since the slacks of the edges

of G0 are zero, the difference between the values of two variables in the same SCC ofG0 is the same in all

solutions to the constraints. In fact, each cycle inG0 is of length 0 [LM05]; hence, ifx andy are on one

cycle ofG0 and the distance fromx to y along the cycle isk, then the distance fromy to x is−k. It follows

that every solution toI must satisfyy− x ≤ k andx− y ≤ −k, that is,y− x = k. In other words, an SCC

of G such that its vertex set induces also an SCC ofG0 has only one family of solutions. (See Sect. 3.4.)

Each disequality constraintd ∈ D is checked for feasibility against each SCC ofG0. If the two

variablesx, y in x − y 6= n (wheren may be 0) are in the same SCC ofG0 andδ(x) − δ(y) = n, then

the setI ∪Q ∪D is infeasible. The violated disequalityd, together with a cycle that containsx andy and

an appropriate subset ofQ constitutes the explanation of infeasibility. If the two variablesx andy in d are

in the same SCC ofG0 andδ(x) − δ(y) 6= n, thend is redundant and is dropped fromD. Disequalities

connecting variables in different SCCs ofG0 are simply passed on to the next phase of the procedure. If no

infeasibility is detected withG0, a final feasibility check is performed by the small domain encoding method

discussed in Sect. 3.4. For each SCC ofG, Theorem 3.1 is used to compute bounds for each variable as

follows.

To compute the upper bound for each variable, a variable in the SCC is chosen arbitrarily as source.

(Variablex in Theorem 3.1.) The distance from it is computed for each variable in the SCCby the Bellman-

Ford algorithm. The lower bound for a variable is computed as its distance from the same source variable

used to compute the upper bound after reversing the edges in the SCC. (Note that one cannot replace the

distances computed by these invocations of the shortest path algorithm with those computed onGa.)

Some inequalities and disequalities may be automatically satisfied for all values of the variables in

2 The algorithm is, in principle, applied to the augmented graphGa described in Sect. 3.2. In practice, no augmentation ofG is
required: it suffices to initialize all distances to 0.

30

 x

 z y

 2 −2

 −1

1

 −1

Figure 3.3: SCC without any negative cycle

their ranges. For instance, if0 ≤ x ≤ 1 and2 ≤ y ≤ 3, thenx 6= y andy − x ≤ 4 are both satisfied. These

constraints are therefore ignored in the successive steps, which consist of a quick check based on finding a

clique of the disequality graph, possibly followed by propositional encoding and satisfiability check.

Some disequalities may be strengthened by converting them into a disjunction of inequalities and

dropping one disjunct that is always false due to the ranges of the variables. For instance,x− y 6= 1, where

1 ≤ x ≤ 2, 0 ≤ y ≤ 0 can be strengthened tox− y ≥ 2 becausex− y ≤ 0 is false forx andy in the given

ranges. The range ofx therefore shrinks to2 ≤ x ≤ 2.

Example 3.4. Consider the SCC without any negative cycle in Fig. 3.3. The edges correspond to the

inequality constraints{(x − y ≤ −1), (y − x ≤ 2), (z − y ≤ 1), (x − z ≤ −2)}. Additionally, there

is a set of disequality constraints{(x − y 6= 0), (y − z 6= 0), (z − x 6= 0), (z − x 6= 1), (y − z 6= −1)}.

Variablex is chosen as source; hence both bounds ofx, xl andxu, are given value 0. Using the Bellman-

Ford algorithm,yu is assigned 2 andzu is assigned 3. Reversing the edges in the SCC,yl is assigned 1

and zl is assigned 2. Therefore, the ranges are{0 ≤ x ≤ 0, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3}. The inequalities

{(x − y ≤ −1), (y − x ≤ 2)} and the disequalities{(x − y 6= 0), (z − x 6= 0), (z − x 6= 1)} are

automatically satisfied for all values of the variables in their ranges. The disequality (y − z 6= 0) is

strengthened to(y − z ≤ −1). Consequently,(y − z = −1) and the disequality(y − z 6= −1) cannot be

satisfied.

31

The application of Theorem 3.2 is described in lines 53–66 of Fig. 3.2. We identify sets of variables

for which Theorem 3.1 produces the same bounds and we check whetherthere are enough disequalities

among the variables in one such set to cause inconsistency.

Specifically, suppose a setΓ = {γ1, . . . , γp} of variables is found such that all variables inΓ have the

same boundsyl andyu. Variables whose range is a subset of the common range are added toΓ.

Let ρ = yu − yl + 1. If |Γ| < ρ, disequalities cannot cause inconsistency of this set of variables. If,

on the other hand, the number of variables exceeds their common range, wecheck whether the disequalities

form a clique of size greater thanρ. We first eliminate fromΓ all variables that appear in fewer thanρ

disequalities of the formγi 6= γj (γi, γj ∈ Γ). If Γ is not empty after this process, we greedily grow a

clique, adding every time the variable appearing in the largest number of disequalities among the surviving

members ofΓ. This greedy algorithm does not always find the largest clique, but is fast and works well in

practice.

In the final step of the theory solver, the constraints and the bounds are converted to a set of clauses

whose satisfiability is established by calling a propositional SAT solver.3 If the clauses are satisfiable,

an interpretation for the integer variables is extracted from the solution. Otherwise, an explanation for the

unsatisfiability is derived as follows from the proof of unsatisfiability returned by the SAT solver, which

consists of a subset of the clauses that are found to be unsatisfiable. (Theunsatisfiable core.)

Every propositional clause in the unsatisfiable core is derived from somearithmetic constraint. If

a clause appears in the unsatisfiable core, the parent constraint is included in the explanation. The bound

constraints on the integer variables also contribute to unsatisfiability. They are accounted for by including

the constraints that form the two shortest path spanning trees found during the computation of the bounds.

Example 3.5. If Example 3.4 continues without disequality strengthening, the constraints{(z−y ≤ 1), (x−

z ≤ −2), (y − z 6= 0), (y − z 6= −1)} and the bounds{0 ≤ x ≤ 0, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3} are converted

to the set of clauses below. The variabley is substituted byι+ 1, and the variablez is substituted byζ + 2.

As a result, the range ofι andζ are 0 ≤ ι ≤ 1, 0 ≤ ζ ≤ 1, and the number of bits used forι andζ during

3 Our current encoding of the ranges is rather unsophisticated. We are implementing a heuristic approach to minimizing the
total number of encoding bits required.

32

the encoding is one instead of two.

ϕ = (¬ζ0 ∨ ι0) ∧ (¬ι0 ∨ ζ0) ∧ (¬ι0 ∨ ¬ζ0) ∧ (ι0 ∨ ζ0).

With the set of clausesϕ, a propositional SAT solver is called. Since the set of clauses is unsatisfiable,

the unsatisfiable coreΩ is returned:

Ω = (¬ζ0 ∨ ι0) ∧ (¬ι0 ∨ ζ0) ∧ (¬ι0 ∨ ¬ζ0) ∧ (ι0 ∨ ζ0).

The inequality constraints that are responsible for the bounds are extracted as an explanation from the SCC

in Fig. 3.3. For the variablesx, y, z in the SCC, the edges that lie on the forward and backward shortest

paths from each variable to the fixed variablex are gathered. Therefore, we get{(y − x ≤ 2), (z − y ≤

1), (x − z ≤ −2)} as an explanation for the bounds{0 ≤ x ≤ 0, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3}. The parent

constraints of the clauses left inΩ are finally gathered; they are{(z− y ≤ 1), (y− z 6= 0), (y− z 6= −1)}.

As a result, the full explanation for the infeasibility is

{(y − x ≤ 2), (z − y ≤ 1), (x− z ≤ −2), (y − z 6= 0), (y − z 6= −1)}.

Five constraints suffice to explain the infeasibility of the original nine constraints.

3.6 Related Work

Propositional abstraction as an approach to satisfiability modulo theories wasproposed in [BDS02].

Notable solvers based on that principle are MathSAT [BBC+05b, BBC+05a], ICS and Yices [dMR02,

DdM06a, DdM06b], Verifun [FJOS03], BarcelogicTools [GHN+04, NO05], SLICE [WIGG05], and SATORI

[IPC03]. ASAP [KOSS04] takes a dual approach, in which satisfiability of the propositional abstraction

guarantees satisfiability of the original quantifier-free Presburger formula, while UCLID [LS04] is an eager

solver. Our propositional enumeration engine is the one of [JHS05, JS05].

Finite instantiations for equality logic are studied in [PRSS02] and extended to difference logic in

[TSSP04]; this last work has several points of contact with ours, but also important differences. The ap-

proach of [TSSP04] is eager, and the ranges are computed once and for all before invoking the propositional

33

SAT solver. In contrast, we advocate a lazy approach and a computation of the ranges that takes place in

the theory solver. Because of that, we may compute ranges more than once,but the size of the range for

each variable in our algorithm is bounded by the sum of the slacks in the SCC,which is much smaller than

n + maxC , wheremaxC is the sum of absolute constants in the formula. In practice, ranges are much

smaller in our algorithm. Moreover, we compute ranges by simply finding shortest paths in the constraint

graph. The algorithm of [TSSP04], on the other hand, enumerates pathsin the constraint graph and is

exponential in the worst case.

Recent work by Ganaiet al. [GTG06] presents a polynomial algorithm for the computation of ranges,

which improves over the one of [TSSP04], but shares the basic approach: Ranges are allocated initially, so

as to be adequate for every formula built from the given set of difference constraints. Disequalities are

converted to disjunctions of inequalities, instead of being retained as such inthe formulation of the problem.

The theory consistency problem is never converted to propositional satisfiability. Instead, range propagation

allows the solver to refine the initial ranges.

MathSAT introduced the notion of layered, incremental theory solver, andthat of delayed theory

combination; DPLL(t) the idea of exhaustive theory propagation, both of which are included in our imple-

mentation. The importance of considering zero-slack SCCs was first pointed out in [LM05], which deals

with RDL. Finally, [WIGG05] discusses an efficient way to implement a recursive,backtrackable Bellman-

Ford algorithm.

3.7 Experimental Results

We have implemented the algorithm presented in Sect. 3.5 in Sateen, a theorem prover for quantifier-

free first-order logic that combines the propositional reasoning engine of [JHS05, JS05] with theory-specific

procedures. A first set of experiments were done with the full set of QFIDL (Quantifier free integer dif-

ference logic) benchmarks from SMT-COMP (Satisfiability Modulo Theories Competition [SMTa]). The

experiments were performed on a 1.7 GHz Pentium 4 with 2 GB of RAM running Linux. Time out was set

at 3600 seconds. Sateen was compared with BarcelogicTools [DPL], Yices-0.1.1 [Yic] and MathSAT 3.3.1

[Mat]. The compared solvers are the ones that were submitted to SMT-COMP in 2005.

34

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

BarcelogicTools : time (s)

Figure 3.4: BARCELOGICTOOLS vs. Sateen on
QF IDL

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

Yices : time (s)

Figure 3.5: YICES vs. Sateen on QFIDL

Figures 3.4–3.6 show scatterplots comparing BarcelogicTools, Yices and MathSAT to Sateen. Points

below the diagonal represent wins for Sateen. Each scatterplot showstwo lines: The main diagonal, and

y = κ · xη, whereκ andη are obtained by least-square fitting. Figure 3.4 shows that Sateen is comparable

to BarcelogicTools. In Figures 3.5 and 3.6, Sateen shows better results compared to Yices and MathSAT,

especially on hard problems. The SMT-COMP benchmark formulae are such that usually the sets of con-

straints passed to the theory solver either contain few disequality constraints, or are such that the disequality

constraints are dealt with by the zero-slack SCC algorithm. The main purposeof these experiments is there-

fore not to show the effectiveness of the newly proposed algorithm forfinite instantiations, but to establish

that Sateen is, overall, a competent solver forIDL, comparable to some of the best tools in the field.

To assess the effectiveness of the finite instantiation approach, we havegenerated two benchmark

suites where disequality constraints play a significant role: the Queens Suiteand the Job Shop Scheduling

Suite. The Queens Suite containsn-Queens problem andn-Super-Queens problem. Then-Queens problem

is a classical combinatorial search problem which consists of placingn queens on an × n board so that

they do not attack each other. In then-Super-Queens problem, each queen’s placement is more restricted

by allowing it also the knight’s moves. The Job Shop Scheduling problem is a randomly generated problem

which checks the feasibility of processing a number of jobs, each consisting of several tasks, on a given set

of machines in a given amount of time. These two sets of benchmarks have disequality constraints that cause

35

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

MathSat : time (s)

Figure 3.6: MATHSAT vs. Sateen on QFIDL

pigeonholing problems. In the experiment on these benchmarks, the timeout was set to 1000 seconds.4

Figures 3.7–3.9 shows that Sateen is often orders of magnitude faster thanthe other solvers on these

problems. The× symbols denotes the experiments on the Queens benchmarks, and the+ symbols denotes

the experiments on the Job Shop Scheduling benchmarks. We also provide the comparison between Sateen

with our proposed algorithm and a version of Sateen that splits disequalities.Figure 3.10 shows that the

finite instantiation algorithm works significantly better than the splitting method.

Table 3.1 shows the number of calls and conflicts involving the equality layer (EQ), the Bellman-Ford

layer (INEQ), the zero-slack SCC layer (ZS), the clique generation layer (CLQ) and the finite instantiation

layer (FI) on selected benchmarks.BV andAF correspond to the number of propositional variables and

atomic formulae, respectively. In the entries of the formX/Y , X is the number of conflicts andY is the

number of calls. The data show that each layer contributes to finding conflicts. In particular, the clique

generation layer is very effective in finding conflicts in the Job Shop Scheduling benchmarks, which enables

the solver to avoid the finite instantiation layer.

4 Although, the results of SMT-COMP [SMTb] in 2006 show that Sateen is still behind the three other solvers above, Sateen
gives significantly better result on then-Queens and Job Shop Scheduling benchmarks.

36

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

BarcelogicTools : time (s)

Figure 3.7: BARCELOGICTOOLS vs. Sateen on Job
Shop Scheduling and Queen suites

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

Yices : time (s)

Figure 3.8: YICES vs. Sateen on Job Shop Schedul-
ing and Queen suites

3.8 Conclusions

We have presented an approach to solving integer difference logic that isparticularly effective when

the constraints to be solved are rich in disequalities. By restricting consideration to a small sufficient set of

solutions, we are able to compute bounds for the integer variables occurring in the constraints. Experiments

indicate that this approach is more effective than splitting disequalities into the disjunction of inequalities.

Further improvements in efficiency are expected from a more sophisticated encoding scheme for the finite

instances that we are currently developing.

37

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

MathSat : time (s)

Figure 3.9: MATHSAT vs. Sateen on Job Shop
Scheduling and Queen suites

10-1

100

101

102

103

10-1 100 101 102 103

P
ro

po
se

d
: t

im
e

(s
)

Sateen with splitting disequalities : time (s)

Figure 3.10: Sateen with splitting disequalities vs.
Sateen on Job Shop Scheduling and Queen suites

Benchmark BV AF SAT EQ INEQ ZS CLQ FI
diamonds.10.5.i.a.u 0 121 UNSAT 0/0 90/1199 0/0 0/0 0/0

DTP k2 n35 c245s2 0 490 SAT 0/0 709/7200 0/0 0/0 0/0
inf-bakery-mutex-18 76 328 UNSAT 71/1498 84/1533 25/2070 0/0 0/0
FISCHER9-10-ninc 1146 686 SAT 54/55 0/1 0/0 0/0 0/0

queen30-1 0 1365 SAT 0/0 0/1 0/1 0/0 0/1
superqueen60-1 0 5664 SAT 0/0 0/1 0/1 0/0 0/1

jobshop30-2-20-20-4-4-12 0 2820 UNSAT 0/0 632/1264 0/631 1/631 0/1
jobshop40-2-20-20-4-4-12 0 4960 SAT 109/258 3/1343 109/1282 58/1172 0/1
jobshop50-2-25-25-4-4-11 0 7700 UNSAT 0/0 1802/3604 0/1801 1/1801 0/0
jobshop60-2-30-30-4-4-12 0 11040 SAT 239/538 3/2773 239/2682 88/2442 0/1

Table 3.1: Number of Calls and Conflicts

Chapter 4

Efficient Term-ITE Conversion

Satisfiability Modulo Theories (SMT) solvers find increasing applications in areas like formal veri-

fication in which one needs to reason about complex Boolean combinations ofnumerical constraints. The

most common approach to this problem leverages the efficiency of modern propositional satisfiability solvers

that work on a propositional abstraction of the given formula. At the same time, they interact with theory

solvers, which check conjunctions of literals for consistency and learn consequences (new lemmas) from

them. This approach has come to be known as DPLL(T) [NO05].

Among the logics for which theory solvers have been developed in recenttimes, linear arithmetic

is one of the most useful and well-researched. Many current solversadopt some variant of the simplex

algorithm. In particular, the backtrackable version of [DdM06a, DdM06b] fits well in the DPLL(T) scheme

and has shown good results in practice for both integer and real-valued variables.

The Boolean dimension of many SMT instances, however, continues to posea challenge to solvers.

In this chapter, we address this problem. In particular, we focus on thoseinstances that make extensive use

of the term-if-then-else (ITE) operator. This operator facilitates the analysis of problems in which paths

through control-flow graphs must be translated into SMT formulae. It is notsurprising, therefore, that many

of the available benchmark instances for linear arithmetic are rich in term-ITEs. Given a code fragment that

containsif statements, a verification condition can be naturally formulated with ITEs as shown in Fig. 4.1.

Two major approaches can be envisioned to deal with term-ITEs. On the onehand, one can modify

the theory solver to deal with conditional expressions. Without ITEs, every assignment to an atom of the

SMT formula adds to a conjunction of literals that is analyzed by the theory solver. With ITEs, this is no

39

main(void){

y = 1;

}

}

if(x = 0){

.

.

.

y = 2;

y = 3;

y = 4;

assert(y ≤ 2);

t-ite

t-ite

y

=

t-ite

y ≥ 3

1

x = 1

x = 0

x = 2

2

3 5

∧

}else if(x = 1){

}else if(x = 2){

}else {

F

Figure 4.1: Verification conditionF with term-ITEs

longer the case. In order to analyze the atom, the conditional expressionsof the ITEs need to be assigned.

On the other hand, one can eliminate all the ITEs from the formula by rewriting.The problem here is that

the rewritten formula may retain a lot of redundancies depending on how onerewrites it. We address this

problem by a procedure based on cofactoring and theory simplification. Although our approach may cause

a blow-up, it often simplifies the formula in practice. Our approach is applied tolinear arithmetic logic in

this chapter; however, it can be easily applied to other logics like the logic of equality and uninterpreted

function symbols (EUF), the logic of bit-vector, or the logic of arrays. Onlythe terminal cases are different

in each logic. Our experiments show that our approach is promising and often speeds up a solver by orders

of magnitude. The experiments also demonstrate the effectiveness of theory simplification.

The rest of this chapter is organized as follows. Section 4.1 defines notation and summarizes the main

concepts. Section 4.2 discusses motivation and outlines our approach to theproblem. Section 4.3 presents

the simplifications applied before invoking the term-ITE conversion. Section 4.4 presents an algorithm for

term-ITE conversion with theory reasoning. After a survey of related work in Sect. 4.5, experiments are

presented in Sect. 4.6, and conclusions are offered in Sect. 4.7.

40

4.1 Preliminaries

We consider the satisfiability problem for linear arithmetic logic, which is the quantifier-free fragment

of first-order logic that deals with linear arithmetic constraints. LetVR be the set of real-valued variables.

The formulae in linear arithmetic logic are inductively defined as the largest set that satisfies the following

rules.

• A propositional variablea ∈ VP is a formula.

• A real numberc ∈ R is a (constant)LA term.

• The productcx of a real numberc ∈ R and a real-valued variablex ∈ VR is anLA term.

• If t1 andt2 areLA terms, so aret1 + t2 andt1 − t2.

• If t1 andt2 areLA terms, andf is a formula, thentite(f, t1, t2) is anLA term.

• If t1 andt2 areLA terms, and∼ is a relational operator in{=, 6=, <,≤, >,≥}, thent1 ∼ t2 is a

formula.

• If f1, f2, andf3 are formulae, then¬f1, f1 ∧ f2, f1 ∨ f2 andite(f1, f2, f3) are formulae.

The semantics are defined in the usual way; in particular,ite(f1, f2, f3) is equivalent to(f1∧f2)∨(¬f1∧f3).

An atomic formula is one of the formt1 ∼ t2. A positive literal is an atomic formula or a propositional

variable; anegative literal is the negation of a positive literal.

A model for a formulaf is an assignment of values to the variables in the formula that is consistent

with the type of each variable and that makes the formula true. A formula that has at least one model is

satisfiable. In recent years, decision procedure forLA, and other fragments of quantifier-free first-order

logic, have been based on the DPLL procedure. Given a formulaF, the propositional abstractionFb of

F is built by substituting each atomic formula with a new propositional variable. As the DPLL procedure

provides a model forFb, a theory solver for LA is invoked with the set of atomic formulae that are assigned.

The theory solver checks the feasibility of the set. If the set is feasible, then the model is also a model in

theory. If the set is infeasible, then the explanation of the infeasibility is returned to the DPLL procedure.

41

The procedure continues until it finds a complete model, or decides thatF is unsatisfiable in the given

theory.

4.2 Term-ITE Conversion

An LA formula can often be expressed more concisely by using term-ITEs. For example, Fig. 4.2

shows that the formulaf in (a) is equivalent to the more verbose formulaf ′ in (b). Despite the conciseness

afforded by term-ITEs, aLA formula with term-ITEs is often converted into a formula without them, so that

the formula may be solved by an SMT solver based on the propositional abstraction.

4.2.1 Two Methods for Term-ITE Conversion

A common way to eliminate these term-ITEs is to introduce a fresh constant that replaces the term-

ITE. In particular, anLA formulaf(tite(g, t1, t2)) is converted to the equisatisfiable

f(c) ∧ ite(g, t1 = c, t2 = c) , (4.1)

wherec is a constant that does not appear in the given formula. The advantage of this conversion is that

it does not blow up; however, it often retains redundancies in the converted formula. For example, the

formula tite(g, 1, 2) = tite(h, 3, 4) can be reduced to⊥, whereas the conversion generatesite(g, c = 1, c =

2)∧ ite(h, c = 3, c = 4) that contains a redundancy. To remove the redundancy, additional theory reasoning

is required. A naive approach to the term-ITE conversion will be to combineevery term in the left-hand

side of the relational operator with the terms in the right-hand side depending on the conditional terms of

term-ITEs. In particular, anLA formulaf(tite(g, t1, t2)) is converted according to following conversion rule

[JDB95].

f(tite(g, t1, t2)) ⇐⇒ ite(g, f(t1), f(t2)) . (4.2)

This approach removes the redundancy in the above example on the fly; however, as Fig. 4.2 illustrates, the

converted formula may grow exponentially large in the worst case.

42

A x y B u v

ite

ite

ite

= = = =

t-ite t-ite

x u x v y u y v

A

B B

(a) (b)

f ′f

=

Figure 4.2: Term-ITE conversion

43

= ite

x z y z

x

y

z

t-ite

t-ite
= =

¬A

A

w

A

f f ′

Figure 4.3: Term-ITE conversion with cofactor

4.2.2 Term-ITE Conversion with Cofactors

As an alternative to the approaches described in Sect. 4.2.1, term-ITE conversion can be done by

computing cofactors.

Definition 4.1. Letf(x1, ..., xn) be an LA formula, where eachxi is a positive literal. Then,

fxi
= f(x1, ..., xi−1,⊤, xi+1, ..., xn)

f¬xi
= f(x1, ..., xi−1,⊥, xi+1, ..., xn)

are the positive and negative cofactors off with respect toxi.

Theorem 4.2(Boole). Letf(x1, ..., xn) be an LA formula. Thenf(x1, ..., xn) = (xi∧fxi
)∨(¬xi∧f¬xi

) =

ite(xi, fxi
, f¬xi

) .

According to Theorem 4.2, the following rule can be used to rewrite anLA formula:

f(tite(g, t1, t2)) ⇐⇒ ite(x, fx(tite(g, t1, t2)), f¬x(tite(g, t1, t2))) . (4.3)

By computing the cofactors off , the conversion may greatly simplify the converted formula. In Fig. 4.3,f

is simplified to⊥ using (4.3). In particular, the cofactorsfA ⇐⇒ (tite(B, 3, 5) = 4) andf¬A ⇐⇒ (5 =

4) ⇐⇒ ⊥ are first computed. Thenf is simplified to(A ∧ fA), and finally reduced to⊥ by cofactoring

fA with respect toB.

44

This kind of simplification can often be applied to theLA problems in SMT-LIB [SMTa]. As the

previous example shows, the simplification for equality is easily done by comparing two constants. On

the other hand, if fresh constants are introduced, redundancy may remain in the converted formula: a fresh

constantc replaces the termtite(ite(A,B,⊥), tite(¬A, x, 3), 5) in f . Thenf is rewritten in two steps: first

as

(c = 4) ∧ ite(ite(A,B,⊥), c = tite(¬A, x, 3), c = 5) ,

and then as

(c = 4) ∧ (c′ = c) ∧ ite(ite(A,B,⊥), ite(¬A, c′ = x, c′ = 3), c = 5) ,

wherec′ is another fresh constant. Removing the redundancy from the convertedformula requires theory

reasoning. While such reasoning is uncomplicated in this example, in generalthe new constants may make

it cumbersome. Although the cofactoring method may give a huge reduction, itmay blow up if there is little

simplification. Compared to the approach that introduces a fresh constant, itis more aggressive.

Definition 4.3. Letx be a literal andh be a formula. We writex |=T h if h is a consequence ofx in theory

T , and we callh a theory consequenceof x.

The cofactoring method can be further extended with theory reasoning. Using the theory propagation

method [NO05], an assignment to an atomic predicate may entail assignments to other atomic predicates.

For example, inLA, if we make an assignment to(x < 0) = ⊤, then(x < 3) = ⊤ and(x > 1) = ⊥. The

following rules show how theory propagation may help in the simplification of the converted formula:

x |=T h

fx(tite(h, t1, t2)) ⇐⇒ fx(t1)
(4.4)

x |=T ¬h

fx(tite(h, t1, t2)) ⇐⇒ fx(t2)
. (4.5)

As we compute the cofactors in the term-ITE conversion, we make an assignment to the cofactoring literal.

If the cofactoring literal is an atomic formula and the computed cofactor is also an atomic formula, then

theory reasoning can be invoked to check the relation between these two atoms. The following consequence

of Theorem 4.2 gives an idea of how this simplification can be done; it will be used in Sect. 4.4.

45

204

B 201

203A

t-ite

t-ite

=

⊥

f

202

Figure 4.4: Term-ITE conversion with simple check

Theorem 4.4. Given a formulaf of theoryT and a literalxi, if xi |=T fxi
, thenf ⇐⇒ xi ∨ f¬xi

. If

xi |=T ¬fxi
, thenf ⇐⇒ ¬xi ∧ f¬xi

.

4.3 Simple Preprocessing

Before we execute term-ITE conversion for anLA formulaf , terminal cases for term-ITE are detected

and basic simplification is carried out. Leta ∈ VP ; let t1, t2, andt3 be terms and letc1, c2, andc3 be

constants. In theLA formula, we detect special cases liketite(⊤, t1, t2) ⇐⇒ t1, tite(⊥, t1, t2) ⇐⇒

t2, tite(a, t1, t1) ⇐⇒ t1. We also simplify nested term-ITEs such astite(a, tite(a, t1, t3), t2) ⇐⇒

tite(a, t1, t2), tite(a, tite(¬a, t3, t2), t1) ⇐⇒ tite(a, t2, t1). For arithmetic terms,(0 + t1) ⇐⇒ t1, (0 ·

t1) ⇐⇒ 0, (1 · t1) ⇐⇒ t1, (−(−t1)) ⇐⇒ t1, (c1 + c2) ⇐⇒ c3, wherec3 is the sum ofc1 andc2.

Furthermore, if a formulaf has a root node that is a relational operator applied to term-ITEs and has

leaves that are all constants, then it can be simplified. For simplicity, we only check the case where either of

the children of the root node is a constant. Example 4.5 shows such a case.

Example 4.5. Let f be a formula shown in Fig. 4.4. The formulaf is an equality with term-ITEs. As

Fig. 4.4 shows, the terms on the left-hand side of the root node are all constants and the one on the right-

hand side is also a constant. In such a case, we compare all the constantsin the left hand side for equality

with the constant on the right,204. Clearly, (202 = 204) ⇐⇒ ⊥, (201 = 204) ⇐⇒ ⊥ and

(201 = 203) ⇐⇒ ⊥; hencef = ⊥.

46

4.4 Algorithm

We assume that an SMT solver adopts the rewriting procedure. Given anLA formulaF with term-

ITEs, an SMT solver convertsF into F′ by removing all term-ITEs inF. The SMT solver then decides the

satisfiability ofF′. In this section, we describe howF is converted intoF′.

As the pseudocode of Fig. 4.5 shows, the main function of term-ITE conversion is called with anLA

formulaF. The formulaF is represented as a directed acyclic graph (DAG), where each node is aBoolean

operator, a relational operator, an arithmetic operator, a term-ITE, or anatom. The conversion is applied to

each relational operator in the DAG, and the procedure ends whenF′ no longer contains term-ITEs. The

main function starts by selecting the candidates for the conversion in the DAG.Each candidate is a relational

operator that has a term-ITE as a descendant, and the candidates are gathered inF . As Line 4 in Fig. 4.5

shows, the term-ITE conversion is invoked withf ∈ F , and all the term-ITEs are removed fromf . After

the conversion off , the converted formulaf ′ is either a Boolean ITE or an atom. The procedure ends when

all f ∈ F have been considered. At that point,F has been converted intoF′, which does not contain any

term-ITEs.

As TermIteConversion is invoked withf ∈ F , a cofactoring variablev is searched for inf at Line 10.

We select an atom as a cofactoring variable that resides in the conditional term of the term-ITE. Withv,

we recursively compute the cofactor off . In general, the cofactors are computed for the children off with

respect tov, and a new formulafv is created with new children. As shown in Line 38 of Fig. 4.6, iff is a

relational operator, we compute the cofactorslv andrv for the children off . After computing the cofactors,

we check for simple cases withlv andrv. The simple check detects terminal cases for the termslv andrv

with respect to the type(=, <,≤, >,≥) of f . Figure 4.4 shows an example of simplification. If a terminal

case is not found, a new formulafv is generated withtype(f), lv andrv. The newly generated formula,

fv is either an atom or a relation operator with term-ITEs. In the latter case, term-ITE conversion is called

with fv, again. In Line 47 of Fig. 4.6, iffv is an atom, theory reasoning is done withv. As Theorem 4.4

shows, ifv |=T fv, thenf in Line 13 of Fig. 4.5 is simplified tov ∨ f¬v. Likewise, if v |=T ¬fv, thenf is

simplified to¬v ∧ f¬v. Whenf is either a term-ITE or a Boolean ITE, the cofactor for each term off is

47

1 TermIteConversionMain (F) {
2 F := GatherCandidateForTermIteConversion (F);
3 for (eachf ∈ F in topological order){
4 f ′ := TermIteConversion (f);
5 F′ := UpdateFormula (F, f ′);
6 }
7 returnF′;
8 }

9 TermIteConversion (f) {
10 while (v := GetCofactorVariable (f)) {
11 fv := CofactorRecur (f , v);
12 f¬v := CofactorRecur (f , ¬v);
13 f := Ite (v, fv, f¬v);
14 }
15 returnf ;
16 }

17 CofactorRecur (f , v) {
18 if (f = v) {
19 fv := ⊤;
20 } else if (f = ¬v) {
21 fv := ⊥;
22 } else if (is relation(f)) {
23 fv := CofactorRelRecur (f , v);
24 } else if (is term ite(f)) {
25 fv := CofactorTiteRecur (f , v);
26 } else{ /* +,−,× */
27 C := children(f);
28 For eachc ∈ C {
29 d := CofactorRecur (c, v);
30 Add(D, d);
31 }
32 fv := NewFormula (type(f),D); /* type(f) is either+,−,×. */
33 SimplifyArithFormula(fv);
34 }
35 returnfv;
36 }

Figure 4.5: Term-ITE conversion algorithm

48

37 CofactorRelRecur (f , v) {
38 lv := CofactorRelRecur (left(f), v);
39 rv := CofactorRelRecur (right(f), v);
40 fv := SimpleCheckWithTerms (type(f), lv, rv);
41 if (fv = NoSimplification){
42 fv := NewFormula (type(f), lv, rv);
43 if (is term ite(lv) or is term ite(rv)) {
44 fv = TermIteConversion (fv);
45 }
46 }
47 if (is atom(fv)) {
48 if (v |=T fv) { /* theory reasoning */
49 fv := ⊤
50 } else if (v |=T ¬fv) { /* theory reasoning */
51 fv := ⊥
52 }
53 }
54 returnfv;
55 }

56 CofactorTiteRecur (f , v) {
57 fc := CondTerm(f); ft := ThenTerm(f); fe := ElseTerm(f);
58 if (fc = ⊤) {
59 return CofactorRecur (ft, v);
60 } else if (fc = ⊥) {
61 return CofactorRecur (fe, v);
62 } else if (ispred(fc)) {
63 if (v |=T fc) { /* theory reasoning */
64 return CofactorRecur (ft, v);
65 } else if (v |=T ¬fc)) { /* theory reasoning */
66 return CofactorRecur (fe, v);
67 }
68 }
69 cv := CofactorRecur (fc, v);
70 tv := CofactorRecur (ft, v);
71 ev := CofactorRecur (fe, v);
72 fv := Ite (cv, tv, ev);
73 returnfv;
74 }

Figure 4.6: Term-ITE conversion algorithm

49

computed as shown in Line 58 of Fig. 4.6. As in the cofactoring on the relational operator, a terminal case

is checked for the conditional termfc. If fc is an atomic predicate, theory reasoning is done withv andfc

using Rules 4.4–4.5 of Sect. 4.2.2. If a terminal case is not found, then the cofactors for the terms off are

computed to obtainfv.

f

55t-ite

x

36

t-ite

y¬A⊥A B

≤

5536

fA = ⊤

55t-ite

f¬A

B x y

x 55 y 55A ⊤ B

≤≤

f¬AB = ⊤ f¬A¬B = ⊥

≤≤

f ′

A ⇐⇒ (x ≥ 50), B ⇐⇒ (y ≤ 58)

ite

ite

Figure 4.7: Term-ITE conversion

Example 4.6. If f is a relational operator such thatD(f) contains term-ITEs, we convertf into f ′ such

that there is no term-ITE inD(f ′). In Fig. 4.7, letA ↔ (x ≥ 50) andB ↔ (y ≤ 58). We first traverse

D(f) to find a cofactoring variable. We pick an atomic formulaA as cofactoring variable and compute the

cofactors off with respect toA. As we proceed,fA = (36 ≤ 55) = ⊤ andf¬A is constructed with a new

term-ITE. Since there still exists a term-ITE inD(f¬A), we look for another cofactoring variable inf¬A. We

selectB and compute the cofactors forf¬A. As a result, we getf¬AB = (x ≤ 55) andf¬A¬B = (y ≤ 55).

SinceA |=T f¬AB and¬B |=T ¬f¬A¬B, f¬AB = ⊤ andf¬A¬B = ⊥. Finally, the converted formulaf ′

gets reduced toite(A,⊤, B) as shown in Fig. 4.7.

50

4.5 Related Work

Early references on the treatment of ITEs are [Kar88], [BRB90] and[JDB95]. For SMT preprocess-

ing, HTP [Roe06] introduces several preprocessing techniques such as unate predicate detection, variable

substitution and symmetry breaking. Yices [DdM06a, DdM06b] uses a Gaussian elimination to reduce the

size of initial tableau of equality constraints. In [YM06], Yuet al. describes a static learning technique that

analyzes the relationship of the linear constraints. In Karplus’s technicalreport [Kar88], a new canonical

form for ITE DAGs is introduced using two-cuts, andITE normalization using recursive transformation is

shown in [NO08].

4.6 Experimental Results

We have implemented the algorithm presented in Sect. 4.4 in Sateen [KJS07b, KJR+08, VIS], a

theorem prover for quantifier-free first-order logic that combines the propositional reasoning engine of

[JHS05, JS05] with theory-specific procedures. Experiments are done with the full set of QFLIA (Quan-

tifier free linear integer arithmetic logic) benchmarks from SMT-COMP (Satisfiability Modulo Theories

Competition) [SMTa]. The experiments were performed on an Intel 2.4 GHz Quad Core with 4 GB of RAM

running Linux. Time out was set at 1000 seconds. Sateen was comparedwith Z3.2 [SMTa], MathSAT-

4.2[BBC+05b, SMTa] and Yices-1.0.16 [Yic]. Z3.2 and MathSAT-4.2 are the ones that were submitted to

SMT-COMP in 2008. We used most recent version of Yices that is available.

In QF LIA benchmarks, there are two benchmark sets,nec-smtandrings, that are rich in term-ITE

operators. More than 90 percent of the QFLIA benchmarks belong to those two sets. The instances in

thenec-smtset are generated by the SMT-based BMC engine of F-Soft [IYG+05]; the instances inrings

encode associativity properties on modular arithmetic.

Figures 4.8–4.10 show scatterplots comparing Z3, MathSAT and Yices to Sateen. Points below the

diagonal represent wins for Sateen. Each scatterplot shows two lines:The main diagonal, andy = κ ·

xη, whereκ and η are obtained by least-square fitting. Figure 4.8 shows that Sateen is often an order

of magnitude faster than Z3. In Fig. 4.9 and 4.10, Sateen is often a few orders of magnitude faster than

51

Table 4.1: Number of term-ITE reduction with simple preprocessing

Benchmark Before S.P. After S.P. rate(%)
bftpd login/prp-74-50.smt 38773 34085 12
checkpass/prp-10-46.smt 17240 14949 13
checkpass/prp-63-50.smt 25376 21893 14

checkpasspwd/prp-38-42.smt 12196 10354 15
getoption/prp-2-200.smt 11269 9791 13

getoptiondirectories/prp-0-110.smt 72892 62457 14
getoptiongroup/prp-72-49.smt 15021 12094 20
handlersigchld/prp-20-46.smt 7800 6824 13

int from list/prp-34-41.smt 7184 5888 18
useris in group/prp-23-48.smt 22549 17939 20

MathSAT and Yices.

We further evaluated our preprocessor by generating simplified formulaefrom thenec-smtbench-

marks and running Z3, MathSAT, and Yices on them. All solvers took less than a second on each simplified

problem. Figures 4.11–4.13 show scatterplots comparing Z3, MathSAT and Yices with preprocessor and

without preprocessor. The times for the solvers with preprocessor include preprocessing time. As Fig-

ures 4.11–4.13 show, our preprocessor is also effective for other solvers.

Table 4.1 shows the number of term-ITE reductions with the simple preprocessing on randomly se-

lected benchmarks. The first column gives the name of the benchmarks, thesecond one is the initial number

of term-ITEs, and the third one is the number of term-ITEs after the simple preprocessing. The last col-

umn gives the rate of the reduction. On average, we achieved 15% term-ITE reduction with the simple

preprocessing of Section 4.3.

Finally, we compared our approach to the naive approach of Eq. 4.2. AsFig. 4.15 shows, our approach

is significantly better. In addition, we disabled theory simplification in the algorithmand ran the experiment

on the problems where the simplifications play a significant role. Figure 4.14 shows that Sateen with theory

simplification is consistently better than the one without simplification.

52

10-1

100

101

102

103

10-1 100 101 102 103

S
at

ee
n

: t
im

e
(s

)

Z3.2 : time (s)

Scatter plot for SMT QF-LIA benchmark

Figure 4.8: Z3 vs. Sateen on QFLIA

10-1

100

101

102

103

10-1 100 101 102 103

S
at

ee
n

: t
im

e
(s

)

MathSAT-4.3 : time (s)

Scatter plot for SMT QF-LIA benchmark

Figure 4.9: MATHSAT vs. Sateen on QFLIA

10-1

100

101

102

103

10-1 100 101 102 103

S
at

ee
n

: t
im

e
(s

)

YICES : time (s)

Scatter plot for SMT QF-LIA benchmark

Figure 4.10: YICES vs. Sateen on QFLIA

10-1

100

101

102

103

10-1 100 101 102 103

Z
3

w
ith

 p
re

pr
oc

es
s

: t
im

e
(s

)

Z3 : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Figure 4.11: Z3 WITH PREPROCESSvs. Z3 on
QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

M
A

T
H

S
A

T
 w

ith
 p

re
pr

oc
es

s
: t

im
e

(s
)

MATHSAT : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Figure 4.12: MATHSAT WITH PREPROCESSvs.
MATHSAT on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Y
IC

E
S

 w
ith

 p
re

pr
oc

es
s

: t
im

e
(s

)

YICES : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Figure 4.13: YICESWITH PREPROCESSvs. YICES
on QFLIA

53

10-1

100

101

102

103

10-1 100 101 102 103

S
at

ee
n

: t
im

e
(s

)

Sateen without Theory-Simp: time (s)

Scatter plot for SMT QF-LIA benchmark

Figure 4.14: SATEEN vs. Sateen without Theory-
Simp on QFLIA

10-1

100

101

102

103

10-1 100 101 102 103

S
at

ee
n

: t
im

e
(s

)

Sateen with naive approach: time (s)

Scatter plot for SMT QF-LIA benchmark

Figure 4.15: SATEEN vs. Sateen with naive approach
on QFLIA

4.7 Conclusions

We have presented an algorithm for the term-ITE conversion in first-order theories like the theory of

linear arithmetic. The approach is based on the computation of cofactors andtheory simplification. The

simplification is done by detecting special cases in the formula or using theory propagation on the atomic

predicates. Experiments show that this approach is very effective in mostQF LIA benchmarks and often

speeds up SMT solvers. On the other hand, since our approach may still blow up in general, we are working

on combining it with a less aggressive approach, based on (4.1), that does not blow up.

Chapter 5

Avoiding Mismatches in Verification of Verilog Designs

5.1 Introduction

There have been numerous efforts to put the Verilog hardware description language (HDL) on a rig-

orous semantic basis for simulation, synthesis, and formal verification. On the one hand, several different

semantics have been proposed to describe the execution of a subset of Verilog. On the other hand, Ver-

ilog coding guidelines have been practically used to avoid the mismatches between pre- and post-synthesis

simulations.

A verification condition for a Verilog design may be described in terms of event semantics; however,

expressing the event semantics in a logical formula often leads to a complex condition to verify. On the

other hand, cycle-based semantics describe the execution of Verilog in terms of sequences of stable states

attained in every clock cycle. With cycle-based semantics, we show that a concise verification condition for

a hardware model may be generated that captures exactly the set of execution trace that may be produced by

a standard-compliant simulator. In the past, several cycle-based approaches have been proposed; however,

the semantics are often not completely defined and do not guarantee to avoidthe mismatches between the

verification condition and the simulation of the model.

We define a subset of Verilog that describes synchronous hardwareunder appropriate semantic restric-

tions. The restrictions are compatible with common coding guidelines. They guarantee that formal verifiers,

simulators, and synthesis tools all interpret a model in the same way. (We prove behavioral equivalence

between the verification condition and the simulation model.) The restrictions allow controlled nondeter-

minism, which is useful for high-level verification, but can be easily eliminatedfor synthesis. Finally, they

55

lead to a concise verification condition for the model as an SMT formula.

The rest of this chapter is organized as follows. Section 5.2 presents a subset of Verilog calledMSV.

Section 5.3 proves the correctness of our translation. Section 5.4 discusses strengths and limitations. After

a survey of related work in Sect. 5.5, conclusions are offered in Sect. 5.7.

5.2 Verification Conditions for Hardware

In this section, we define a languageMSV (Minimal Synchronous Verilog) that is a subset of the

Verilog hardware description language (HDL) [Ver] suitable for the modeling of synchronous hardware. A

description inMSV consists of a single module that contains variable declarations and procedural blocks.

A variablex with a width of n ∈ Z+ bits can be of typeinput or reg, and a variable of typereg can

be designated as output. A constantc is a natural number; expressions are made of variables, constants,

and operators, which are categorized into arithmetic, concatenation, reduction, bit-selection, shift, bit-wise,

logical, conditional, and relational operators. All Verilog operators are supported except case equality (===)

and inequality (!==). Although the subset we consider includes essentialfeatures of Verilog, it does not

support delays, strengths, and other features that are not needed for RTL verification of synchronous designs.

In MSV, as in Verilog, a blocking assignment (=) updates the target variable immediately, while

the update of a nonblocking assignment (⇐) is deferred. A statement may be an assignment, anif / else

conditional statement, or a sequence of statements enclosed by the keywords begin andend. A procedural

block consists of a trigger and a statement.

Procedural block triggers are restricted to three types inMSV:

• always@ ∗

• initial #0 #0

• always@ (posedge clock)

The purpose ofalways @ ∗ blocks is to describe combinational logic, whileinitial #0 #0, andalways

@ (posedge clock) blocks are used to describe the initial values and the updates of memory elements. In

always@ (posedge clock), clock is a distinguished input.

56

Valid MSV descriptions obey semantic constraints, some of which are best describedin terms of an

intermediate form. LetV be the set of variables in a description. LetV̄ be a set of variables of typereg

disjoint fromV and letβ : V → V̄ be an injective function. We writēv for β(v). An MSV description

is put in intermediate form by replacing each nonblocking assignmenta ⇐ b with ā = b. The result is

converted into Static Single Assignment (SSA) form [CFR+89].

The example in Fig. 5.1 shows the conversion fromMSV description to the intermediate form. The

three procedural blocks at the top are converted into the intermediate format the bottom by replacing each

nonblocking assignment with a blocking assignment (i.e, fromz ⇐ y to z̄ = y), and the result is converted

into SSA form. We assume henceforth that descriptions are in intermediate form.

LetBC be the set of combinational blocks of typealways@ ∗. LetBA be the set of sequential blocks

of typealways@(posedge clock),BI be the set of initial blocks of typeinitial #0 #0, andBS = BA ∪BI

be the set of sequential blocks. LetVC ⊆ V be the set of target variables inBC andVS ⊆ V be the set of

target variables inBS . Let VA ⊆ VS be the set of target variables inBA, andVI ⊆ VS be the set of target

variables inBI whereVS = VA ∪VI . LetVR ⊆ V ∪ V̄ be the set of variables of typereg. We define several

terms useful to describe the semantics ofMSV.

Definition 5.1. The condition for an assignment is the predicate that has to be true for the assignment to

execute.

Definition 5.2. Let V +

C be the set of variables in the intermediate form ofBC . The dependency graph for

BC is a directed graphGD = (V +

C , E). If an assignmentα has a target variabledi ∈ V +

C and if a variable

sj ∈ V +

C appears in the right-hand side ofα, or in the condition of anif / elsestatement containingα, then

(sj , di) ∈ E.

We impose the following restrictions forBC andBS .

(1) VC ∩ VS = ∅.

(2) The dependency graphGD is acyclic.

57

initial #0 #0 z = 0;

always @(posedge clk) begin
z ⇐ 0;
if (v)

z ⇐ 1;
end

always @(posedge clk) begin
if (u)

z = x;
else

z ⇐ y;
w = z;

end

initial #0 #0 z1 = 0;

always @(posedge clk) begin
z̄1 = 0;
if (v0)

z̄2 = 1;
z̄3 = φ(z̄2, z̄1);

end

always @(posedge clk) begin
if (u0)

z2 = x0;
else

z̄4 = y0;
z3 = φ(z2, z1);
z̄5 = φ(z1, z̄4);
w1 = z3;

end

Figure 5.1: Conversion fromMSV description to intermediate form

58

(3) LetB+

C be the set of blocks inBC in intermediate form. If variablevi is defined inb ∈ B+

C andvj

is used inb, j ≥ i. If a variablev is in VR, v0 is not used in the intermediate form ofBC ∪BS .

(4) If a target variablev ∈ VC occurs in a blockb1 ∈ BC , v does not occur as a target in another block

b2 ∈ BC .

(5) All the assignments to a variablev in a blockb ∈ BC are of the same type: either all blocking, or

all nonblocking.

(6) If a target variablev ∈ VA \ V̄ is in b1 ∈ BA, v cannot be used inb2 ∈ BA or b3 ∈ BC .

(7) If a target variablev ∈ VI \ V̄ is in b1 ∈ BI , v cannot be used inb2 ∈ BI or b3 ∈ BA.

We impose these restrictions to enableBC to describe combinational logic and to allowBS to have

nondeterminism that can be easily controlled by the designer. In particular,Restrictions 1, 2, 3, 4, and 5

enableBC to describe combinational logic. Restrictions 6 and 7 are imposed to limit nondeterministic be-

havior caused by the interleaving of sequential blocks. The restrictions are compatible with common design

guidelines [Cum02] used in industry (e.g., blocking assignments for combinational logic and nonblocking

assignments for memory elements) and allow us to produce concise verificationconditions. The role of each

restriction is made clear in Sect. 5.3.

The semantics ofMSV descriptions complying with the restrictions above are defined with respect to

a finite state machine. LetV ′
S = {v′1, . . . , v

′
m} be the primed version ofVS = {v1, . . . , vm}, whereVS and

V ′
S are the current and next state variables inBS . LetW = {w1, . . . , wp} be the variables of typeinput and

Z = {z1, . . . , zn} ⊆ VC ∪VS be the variables that are designated as output. A finite state model is a 7-tuple

〈VS ,W, V
′
S , Z, I, T,Q〉, whereI(VS) is the initial state predicate,T (VS ,W, V

′
S) is the transition relation,

andQ(VS ,W,Z) is the output relation. The initial state predicate is defined by

I(VS) = ∃W .ϕ(VS ,W) , (5.1)

where

ϕ(VS ,W) =
∧

1≤i≤m(vi = ρi(W)) , (5.2)

59

that is, the initial value of each state variable is a function of the input variables. The transition relation is

defined by

T (VS ,W, V
′
S) = ∃VC .

∧
1≤i≤m(v′i = δi(VS , VC ,W)) , (5.3)

that is, the next value of each state variable is a function of the current state and the input. The output

relation is defined by

Q(VS ,W,Z) =
∧

1≤i≤n(zi = γi(VS ,W)) , (5.4)

that is, the value of each output variable is a function of the current state and the input variables.

We use the intermediate form of anMSV description that is in SSA form to deriveBV formulae

for (5.2), (5.3), and (5.4). The SSA form of a sequential program enables us to convert each assignment

in the program into an equality with an enabling condition. In contrast to a sequential program, anMSV

description contains multiple blocks and two different types of assignments. In the following, we describe

how to generate theBV formulae that describe the conflict arbitration of two different types of assignments

in multiple blocks.

LetBB ⊆ BA be the set of blocks that contain blocking assignments to a state variablev ∈ VA; let

BN ⊆ BA be the set of blocks that contain nonblocking assignments tov. Suppose|BA| = k, |BB| = r,

and|BN | = s. We generater equalities forv ands equalities for̄v. In eachbj ∈ BB, we introduce a new

variablevj for v and generate aBV equality forv that is defined by

vj [n] = tite(c1, e1[n], tite(c2, e2[n], . . . , tite(cp, ep[n], v[n]))) , (5.5)

where eachci (1 ≤ i ≤ p) is a condition to assignei to vj by a blocking assignment. Likewise, for each

bk ∈ BN , we introduce a new variablēvk for v̄ and generate aBV equality forv̄,

v̄k[n] = tite(d1, f1[n], tite(d2, f2[n], . . . , tite(dq, fq[n], v[n]))) , (5.6)

where eachdi (1 ≤ i ≤ q) is a condition to assignfi to v̄k by a nonblocking assignment. Finally, we

generate aBV formula

ite(
∨

1≤k≤sDk,
∨

1≤k≤s(Dk ∧ v′[n] = v̄k[n]), ite(
∨

1≤j≤r Cj ,

∨
1≤j≤r(Cj ∧ v

′[n] = vj [n]), v′[n] = v[n])) , (5.7)

60

where eachDk is the disjunction of conditions to assign tov̄k in eachbk ∈ BN and eachCj is the disjunction

of conditions to assign tovj in eachbj ∈ BB. The formula describes the conflict arbitration amongr

blocking ands nonblocking assignments tov in BA, where the nonblocking assignment takes precedence

over the blocking assignment. The formula (5.7) conjoined withr equalities generated by (5.5) ands

equalities generated by (5.6) is the transition relation forv.

The BV formula for each state variable is generated and the conjunction of these formulae is the

transition relation that is equivalent to (5.3). The output relation (5.4) and (5.2) of the initial state predicate

are generated in a similar manner.

Continuing the example of Fig. 5.1, supposeu, v ∈ VB(1) andw, x, y, z ∈ VB(4). For the targetz,

we generateBV formulae

(z̄1[4] = 0[4]) ∧ ite(v0[1] = 1[1], z̄2[4] = 1[4] ∧ z̄3[4] = z̄2[4], z̄3[4] = z̄1[4]) (5.8)

in the first procedural block and

ite(u0[1] = 1[1], z2[4] = x0[4], z̄4[4] = y0[4]) ∧ (z3[4] = tite(u0[1] = 1[1], z2[4], z1[4]))∧

(z̄5[4] = tite(u0[1] = 1[1], z1[4], z̄4[4])) (5.9)

in the second procedural block. Then, we generate anite formulaite(⊤∨v0[1] = 1[1]∨u0[1] = 0[1], z′[4] =

z̄3[4] ∨ (u0[1] = 0[1] ∧ z′[4] = z̄5[4]), z′[4] = z3[4]), which is simplified toz′[4] = z̄3[4] ∨ (u0[1] =

0[1] ∧ z′[4] = z̄5[4]). The simplified formula conjoined with (5.8) and (5.9) is the transition relation forz

wherez1 is the current state variable.

5.3 Correctness

In this section we show that for anMSV module operated in synchronous mode, the set of behav-

iors that may be produced by a standard-compliant Verilog simulator [IEE06] that satisfies an atomicity

requirement to be introduced shortly is captured by theBV formulae described in (5.2), (5.3), and (5.4).

The assumption of synchronous operation is enforced by having a suitable Verilog test bench drive

the module under consideration. A template for the test bench is shown in Fig. 5.2. It consists of the

61

module Testbench;
<input declaration list>; // e.g., reg [2:0] a; reg [3:0] b; ...
<output declaration list>; // e.g., wire q; wire [4:0] r; ...
reg clock;
initial begin

clock = 0;
#0<input list> = inputF (0);
$strobe($time,<input list>,<output list>);
#1 forever begin

clock=0;
<input list> = inputF (0);
$strobe($time,<input list>,<output list>);
#1 clock=1;
#1;

end
end
function [NBITS-1:0] inputF (input dummy);
begin: inputF

// returns input values for current $time
end
endfunction
dut dut0 (clock,<input list>,<output list>);

endmodule

Figure 5.2: Verilog code for a test bench

62

instantiation of theMSV moduledut, the declarations of its inputs and outputs, a variableclock, an initial

block that applies stimulus todut and samples its outputs, and a functioninputF , which produces the input

values—either 0 or 1, but not×.

At simulation timet = 0, the simulator sets theclock to zero in theinitial block. The simulator then

calls the functioninputF that generates new inputs. The target variables ininitial #0 #0 blocks ofdut are

updated first and the target variables in combinational blocks ofdut are updated to reflect the new inputs

and the updates. The zero delays in theinitial block of the test bench and ininitial #0 #0 blocks ofdut

impose the update order. After the updates, thestrobe task reports the values of the inputs and the outputs

of dut. Then the simulation time is increased tot = 1 and the theforever loop is evaluated: theclock

stays at zero and the functioninputF generates new inputs. The target variables in combinational blocks

of dut are updated to reflect the new inputs. After the updates, thestrobe task reports the values of the

inputs and the outputs ofdut. Now, the simulation time is increased tot = 2: theclock is changed to one

and all the sequential blocks indut are triggered, causing updates of their target variables. The evaluation

of the forever loop repeats as the simulation proceeds. In this simulation environment just described, the

following lemma holds.

Lemma 5.3. Every variable ofdut attains a stable value at every simulation time; hence the simulation

time always advances.

Proof. By Restriction 2, there is no cycle in the dependency graph of combinationallogic. By induction,

the number of evaluations of each combinational block is finite because it onlydepends on the finite number

of changes on its inputs. Hence, the outputs of each combinational block stabilize.

On the other hand, since all the sequential blocks are evaluated only once, there is a finite number of

update events in the sequential blocks. As a result, simulation time can always advance.

Corollary 5.4. Just before the time is advanced fromt to t + 1 (t = 0, 1, . . .), there is only one evaluation

event scheduled and it is for the always block in the test bench.

Proof. Since there is no delay indut, the only event scheduled before the time is advanced fromt to t + 1

is the evaluation event of the always block in the test bench.

63

1 initial #0 #0 begin
2 $monitor ($time, a, b, c);
3 a = 0;
4 b = 0;
5 #1 a = 1;
6 b = 1;
7 #1 $finish;
8 end

9 always @ * begin
10 d = b;
11 c = aˆd;
12 end

Figure 5.3: Nondeterministic behavior of Verilog simulation (a)

Thanks to Lemma 5.3, the notions of initial and final values of a variable at a certain time are well

defined.

Definition 5.5. Theinitial value of a variablev ∈ VC ∪ VS at timet is the value ofv when time advances

to t. Thefinal valueof v at timet is the value ofv immediatley before time advances tot+ 1.

While Lemma 5.3 shows that thedut model evolves from one stable state to another, it says nothing

about what states may be produced. Standard-compliant simulators are allowed to produce different results

for a variety of reasons. While the ability to describe nondeterministic behavior is sometimes an advantage,

it also poses significant challenges to designers and tool implementors.

According to the standard, assignments in different always blocks that are triggered simultaneously

may be interleaved arbitrarily, as long as sequential consistency is preserved. If at timet the simulator exe-

cutes at least one nonblocking assignment tov, the final value ofv at timet is assigned by the nonblocking

assignment that is executed last. Otherwise, if any blocking assignment tov is executed, the final value ofv

is assigned by the blocking assignment that is executed last. If no assignment to v is executed, the final value

of v is its initial value. For example, the value ofc in Fig. 5.3 is either 0 or 1 at time 1. If the assignments

are executed in the order of5 → 10 → 6 → 11, the value ofc is 1; if they are executed in the order of

5 → 6 → 10 → 11, the value ofc is 0.

This freedom to interleave processes makes it very difficult for designers to describe behavior that is

unambiguously combinational. In practice, most synthesis tools partly limit and partly ignore the nondeter-

64

always @ * begin
a = 0;
if (b & c) a⇐ 1;

end

Figure 5.4: Nondeterministic behavior of Verilog simulation (b)

ministic behavior of a model and always derive a deterministic netlist. Ignoringa nondeterministic behavior

in the synthesis tools may cause pre- and post-synthesis simulation mismatches [MC99]; however, this is

often not detected since most simulators execute blocks atomically. If a block isnot executed atomically, the

user of a synthesis tool may have a problem describing combinational logic,and the verification condition

for a model may get unnecessarily cumbersome; hence, we impose an atomicityrule.

Definition 5.6 (Atomic evaluation). A block, eitherinitial or always, conforming withMSV is evaluated

atomically if the simulator executes the events in the block without any suspension until itreaches the end

of the block.

Assumption 1(Atomicity rule). Every block conforming withMSV is evaluated atomically.

In practice, most standard-compliant simulators implement the atomicity rule and most synthesis

tools assume it for models restricted toMSV.

Although the atomicity rule prevents some of the undesired outcomes, a simulator may still generate

a nondeterministic outcome without restriction 5, which says that the assignmentsin a combinational block

are either all blocking, or all nonblocking. If different assignment types are allowed, the block may not

describe combinational logic. In Fig. 5.4, suppose the value ofb changes from 0 to 1 first, and the value ofc

then changes from 1 to 0 at the same simulation time. Then, the always block may be evaluated twice, with

the nonblocking assignmenta ⇐ 1 executed in the first evaluation, but not in the second. The value ofa

stabilizes to1, which is assigned by the nonblocking assignment. Since the value ofa is determined by the

unstable input, the combinational block does not describe combinational logic. Restriction 5 prevents this.

Given the simulation environment fordut, we show that the relation between the input and output

65

values extracted by thestrobe task and the values of the state variables in the simulation is captured by the

BV formulae described in (5.2), (5.3), and (5.4). As we assumed for generating theBV formula, the only

possible source of nondeterminism in simulation is the interleaving of sequentialblocks. A variable of type

reg may have an initial value× if it is not assigned in aninitial block. Restriction 3 guarantees that the

initial value× is not propagated to other variables; hence we can ignore the value×.

We first show that the final value of each target variable in a combinationalblock is uniquely deter-

mined by the final values of the inputs to that block. Then, we show that the value assigned to each target

variable by a sequential block is uniquely determined by the initial values of theinputs to that block, and the

final value of each target in sequential blocks may be any of the values assigned by the blocks that assign to

the target. This argument is captured in the following lemmas.

Lemma 5.7. The final value of a variablev ∈ VC at timet is uniquely determined by the final values at

timet of the inputs to the unique blockb ∈ BC that assigns tov.

Proof. By Lemma 5.3, every target variable in a combinational block attains a stable value. By the atom-

icity rule, when the input of a combinational block changes, the block is always triggered; hence the last

evaluation of the block occurs after all the inputs attain the stable values. By Restriction 3, every target vari-

able in a combinational block gets assigned whenever the block is evaluated.According to the standard, the

sequential order of the nonblocking (blocking) assignments in a block is preserved when they are executed

by a simulator; hence by Restriction 5, the update event during the last evaluation is not superseded by any

subsequent update. By Restriction 4,b is the only block that assigns tov.

Lemma 5.8. The final value assigned by a blockb ∈ BA to a targetv ∈ VA at timet is uniquely determined

by the initial values of the inputs tob at timet.

Proof. By Restrictions 6 and 7, a target variable in a sequential block is not dependent on the target assigned

by a blocking assignment in another sequential block, and the value of a target assigned by a nonblocking

assignment is only available in the next clock cycle; hence the inputs of a sequential block do not change

while the block is evaluated and the execution order of the blocks does not affect the value of the target in

66

the block. Since every sequential block is evaluated once in one clock cycle, the final value assigned by a

block b ∈ BA to v ∈ VA is uniquely determined by the initial values of the inputs.

Lemma 5.9. LetBN ⊆ BA be a set of sequential blocks such that eachb ∈ BN contains a nonblocking

assignment to a targetv ∈ VA that is executed by the simulator at timet. LetBB ⊆ BA be a set of sequential

blocks such that eachb ∈ BB contains a blocking assignment tov that is executed by the simulator at time

t. If BN 6= ∅, the final value ofv is the final value assigned by one of the blocks inBN . If BN = ∅ and

BB 6= ∅, the final value ofv is the final value assigned by one of the blocks inBB. If BN ∪ BB = ∅, the

final value ofv is its initial value.

Proof. By Lemma 5.8, eachb ∈ BN ∪BB assigns a final value tov. In addition, all the blocks inBN ∪BB

are triggered at the same time and can be evaluated in arbitrary order by the simulator. Therefore, any block

in BN ∪BB can be the last block that is evaluated. IfBN 6= ∅, the final value ofv is the final value assigned

by the block that is executed last among the blocks inBN ; hence the final value ofv is the final value

assigned by one of the blocks inBN . If BN = ∅ andBB 6= ∅, the final value ofv is assigned by the block

that is executed last among the blocks inBB; hence the final value ofv is the final value assigned by one of

the blocks inBB. If BN ∪BB = ∅, no block assigns a final value tov; hence the final value ofv is its initial

value.

Now, we describe a cycle-based transition relation that is valid under the simulation environment. At

every clock cycle when thestrobe task is evaluated, the values of new inputs and the outputs are reported

and the current state values of the state variables can be extracted fromdut. The next state value of each

state variable is determined by the new inputs and the current state variables,and the cycle-based transition

relation is the conjunction of the transition relations for the state variables. Theinitial value of each state

variable is determined by the new inputs, and the cycle-based initial state predicate is the conjunction of the

initial state predicates for the state variables.

Theorem 5.10. The transition relation between the input and output values extracted by thestrobetask

and the values of the state variables in each clock cycle is captured by theBV formula ofdut, which is the

conjunction of(5.3)and (5.4).

67

Proof. By Lemma 5.8 and Lemma 5.9, the next state value of a state variablev is determined by new inputs

and the current state variables. In a sequential blockb ∈ BA that contains an assignment tov, a cycle

based transition relation forv in b is defined. If all the assignments tov in b are blocking, the transition

relation is equivalent to (5.5). If there exists a nonblocking assignment tov in b, the transition relation for

v̄ is defined by (5.6) wherēv = β(v). If there arer blocks that contain blocking assignments tov ands

blocks that contain nonblocking assignments tov, the transition relation forv is equivalent to (5.7) conjoined

with (5.5) and (5.6). The conjunction of all the transition relations for the statevariables is the cycle based

transition relation that is equivalent to (5.3). The value of a target variablein VC that is designated as output

is determined by new inputs and the current state variables as described in Lemma 5.7. The value of a

target variable inVS that is designated as output is determined as the the normal target variable inVS is

determined as described above. The cycle based output relation fordut is equivalent to (5.4), where each

zi = γ(VS ,W) is an output relation for an output variablezi ∈ VC ∪ VS .

The relation between the input values and the initial state values of the state variables att = 0 is

captured by (5.2). This can be proved by reasoning similar to that used in Theorem 5.10.

5.4 Discussion

We have shown that the verification condition for synchronous hardware is encoded concisely into a

BV formula that agrees with standard-compliant simulators. The only nondeterministic behavior described

in theBV formula is the one that is caused by the interleaving of the sequential blocks.Other nondetermin-

istic behaviors that are cumbersome to describe in theBV formula are avoided by Restrictions 4, 6, 7, and

the atomicity rule.

For instance, without Restriction 4, the target of multiple assignments from different blocks may

change its value nondeterministically every time one of those blocks is evaluated. While all sequential

blocks are evaluated once per clock cycle, a combinational block may be evaluated at timet even when the

final values of its inputs are the same at timest−1 andt. With just one block assigning to a target, it does not

matter whether it is re-evaluated in such a case, because the assigned value does not change. With multiple

68

assignments, it is hard to tell whether a new value may be assigned if only finalvalues are considered.

Restrictions 6 and 7 guarantee that the values computed by sequential blocks do not depend on their

order of evaluation. Hence, they restrict the nondeterministic behaviors that are arise from the interleaving

of sequential blocks. Furthermore, the atomicity rule prevents the nondeterministic behavior caused by the

interleaving of the assignments in different blocks inMSV. Without the atomicity rule, the simulator may

generate a trace that is not captured by theBV formula.

Although MSV excludes some features of Verilog, it includes commonly used ones; hencemost

synchronous Verilog designs can be converted intoMSV descriptions. For example, acasestatement can

be converted into anif / else conditional statement, and a function describing combinational logic can be

converted into a combinational block inMSV if the function does not read global variables. In addition, Re-

striction 5 onMSV can be weakened by allowing a mixture of different assignment types that still describes

combinational logic. Restriction 6 can be also weakened by allowing the targetof a blocking assignment to

be used outside of its block if that may not cause a hold time violation; however,the restrictions are kept

simple, since most synchronous designs can be described within them.

In practice, more restrictive Verilog coding guidelines [MC99, Cum02] areused for describing hard-

ware designs. The guidelines are useful to avoid many pre- and post-synthesis simulation mismatches caused

by nondeterministic behavior in the design. InMSV, a nondeterministicMSV description can be easily ex-

cluded by imposing the restriction that prevents multiple assignments to the same target in sequential blocks.

Given the simulation environment for a deterministicMSV description, thestrobe task reports a unique ex-

ecution trace during the simulation. For the synthesized circuit of the description, the unique execution trace

is achieved by assigning the initial values to the state variables by theinitial blocks of the description; hence

there is no pre- and post-synthesis simulation mismatch for a deterministicMSV description. Furthermore,

the unique execution trace is also captured in theBV formula of the description and vice versa.

The example in Fig. 5.5 shows that without initial block, simulation may produce incorrect results,

namelya = 1000 With initialization, however, a mismatch between pre- and post-synthesis models

signals a bug in either the synthesis or verification tools.

69

initial #0 #0 a⇐ w;
always @(posedge clock) if (a) a⇐ 1; elsea⇐ 0;

Figure 5.5: Deterministic Verilog design

5.5 Related Work

In [Cho97], the author defined Synchronous Verilog (SV), a subset of the language that describes

synchronous circuits. In contrast to our approach, the author aims at checking the behavioral equivalence

between an intermediate form of anSV program and its synthesized circuit. In particular, a nondeterministic

SV program is converted into a deterministic Verilog program by adding zero delays to theSV program;

hence the user ofSV has no control over nondeterministic behavior. Furthermore, equivalence between the

Verilog program and the synthesized circuit is not proved. The author assumes that the initial values of the

state variables in the synthesized circuit are all zeros; however, this may cause a mismatch between the RTL

and the synthesized circuit.

In [Gor], the author definedV0, a subset of Verilog that has both event and trace semantics. The event

semantics describes the execution of aV0 program in terms of propagation of changes to variables, and the

trace semantics describes the execution in terms of sequences of states. The state in the trace semantics

changes in every simulation cycle as it does in our cycle based transition relation. The ultimate goal of this

work is to prove that the restrictions inV0 prevent nondeterministic behavior inV0 programs and hence

guarantee the consistency of the event and trace semantics; however, the preliminary report does not address

semantic restrictions ofV0 that guarantee the consistency.

In [MKMR10], the authors focus on a detailed event semantics of Verilog rather than deriving an

efficient verification condition for synchronous circuit. The execution of Verilog is described in rewriting

logic that is implemented in the Maude tool. The tool can be used to verify the results of simulators or other

formal tools.

70

5.6 Experimental Results

We have implemented a translator calledVl2smt that uses Icarus Verilog [Ica] as front end, accepts

anMSV design as input, and generates aBV formula for the verification condition of the design. We used

Vl2smt to perform equivalence checking ofcf-cordic design from Opencores [Ope]. The originalcf-cordic

Verilog design (1143 lines of code) is composed of 13 modules, 30always@ (posedge clock), 313 con-

tinuous assignments, and 30initial blocks In the optimized design, we reduce the number of modules and

continuous assignments to 5 and 196 manually. Although multiple modules and continuous assignments are

not allowed inMSV, Vl2smt supports these features of Verilog. The originalcf-cordic code is converted

into theMSV code by changing theinitial type toinitial #0 #0. To check the equivalence of the original

and optimized designs, we generated the equivalence checking problem inBV formula byVl2smt. The

generatedBV formula is composed of 30 state variables and the equivalence is proved bythe BV solver

(Boolector-1.4 [Boo]) in less than a second. Although the hierarchy of the design is flattened in theBV

formula, the file size of theBV formula (185kb) is not much larger than the file size of its original code

(50kb). To evaluate our tool, we used the Verilog designs from VIS Verilog benchmarks [VVB] and Open-

cores. Forcf-fir , altmult-accum, andFPMult designs, we generated the equivalence checking problems

as described above. For others, we generated Bounded Model Checking (BMC) problems with invariants.

Table 5.1 shows the number of lines and the file size of each Verilog design, and shows the file size of the

BV formula and the number of state variables in the formula. It also shows the unrolling depth, the CPU

time, and the result of model checking. The pass result indicates that the invariant holds in the design, and

the fail result indicates that the invariant fails at boundk. The unsat result indicates that the invariant holds

up to the boundk.

5.7 Conclusions

In this chapter, we presentedMSV with restrictions and proved behavioral equivalence between the

verification condition and the simulation model. The restrictions allow us to generate a concise verification

condition to be checked by an SMT solver. With controlled nondeterminism inMSV, nondeterministic

71

design lines V(byte) BV(byte) |VS | k time(s) result

cf-fir 428 12584 43921 16 - 0.1 pass
altmult-accum 166 3770 16835 8 - 0.1 pass

FPMult 236 7186 50728 14 - 0.1 pass
Timeout 196 6111 13220 10 80 181.53 unsat

FIFO 171 5016 31370 37 8 258.8 unsat
Am2910 116 3183 11378 9 100 13.79 unsat
MinMax 60 1537 4502 3 300 595.85 unsat
DAIO 259 8277 19991 14 14 0.7 fail

Blackjack 136 4261 40930 24 13 4.8 fail
Vending 252 6065 16237 10 2 0.1 fail

Table 5.1: Result of Vl2smt on Verilog designs

behavior of anMSV model can be easily eliminated and the mismatches between pre- and post synthesis

simulations can be avoided.

Chapter 6

Selective SMT Encoding for Hardware Model Checking

6.1 Introduction

In Chapter 5, we have presentedMSV with restrictions. In this chapter, we study the translation of

MSV into a verification condition to be checked by SMT solvers. In today’s hardware designs, bit-level

and word-level operations are often tightly intermingled. On some designs, abit-level model checker may

perform better than a word-level model checker or vice versa. Depending on the characteristics of the

design, we selectively choose an encoding method (either bit-level or word-level) to improve the efficiency

of hardware model checking. We present a model analysis method for theencoding selection and evaluate

the method on a set of hardware verification problems.

This work is motivated by the results shown in Fig. 6.1. We have encoded each pair of Verilog design

and property into SMT for bounded model checking (BMC). In particular, we usedBV andLIA encodings

for each design. The details of these encoding methods will be discussed inSect. 6.3. The Verilog designs

we used are from VIS Verilog benchmarks [VVB], Opencores [Ope] and Altera design examples [Ter].

We comparedBV solvers (Boolector-1.4 [Boo], Z3-2.8 [Z3], Beaver [Bea] with Precosat-456r2 [Pre]) and

LIA solvers (MathSAT-4.3 [Mat], Yices-1.0.28, Z3-2.8) for the encodings. These solvers are the ones that

performed best on our BMC problems. In the experiment, the timeout was setto 1000 seconds. Figure 6.1

shows the comparison of average CPU times of the solvers for the two encodings. Table A.1 in Appendix A

shows the detailed results of the comparison.

The points above the diagonal are wins for theBV solvers, and the ones below are wins for theLIA

solvers. As the scatterplot shows, some of the designs work well withBV encoding, and others work well

73

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

LI
A

 :
tim

e
(s

)

BV : time (s)

Figure 6.1: BV vs. LIA

with LIA encoding. This indicates that we need different encodings depending on the design.

We introduce a model analysis method that considers each bit-vector operation in the design and

selects the encoding based on the analysis. In addition, we present several enhancements to SMT encoding

for hardware designs. Our experiments show that our approach selects the right encoding for the hardware

design and improves the efficiency of model checking.

The rest of this chapter is organized as follows. Section 6.2 describes thetranslation toBV logic.

Section 6.3 describes the encoding methods. Section 6.4 presents a model analysis method. After a survey

of related work in Sect. 6.5, conclusions are offered in Sect. 6.6.

6.2 From Hardware Description to BV

In this section, we outline the conversion from hardware description toBV formula. Hardware is

assumed to be described in a subset of the Verilog hardware description language (HDL) [Ver] suitable

for the modeling of synchronous hardware. The subset supports the mixture of blocking and non-blocking

assignments in the procedural blocks, and allows non-deterministic interleaving of procedural blocks. We

impose restrictions to the description to ensure that the evaluation of each procedural block is not affected

by the interleaving of the assignments in different procedural blocks. The restrictions are compatible with

74

common design guidelines used in the industry (e.g., blocking assignments for combinational logic and

non-blocking assignments for memory elements) and allow us to produce concise verification conditions.

Although the subset we consider includes essential features of Verilog,it does not support delays, strengths,

and other features that are not needed for RTL verification of synchronous designs.

We represent a hardware description as a Concurrent Control Flow Graph (CCFG) [KGW10] in Static

Single Assignment (SSA) form [CFR+89]. With the CCFG, we generate a set of constraints inBV logic for

blocking and non-blocking assignments in each procedural block. If there is a conflict among the constraints

that is caused by different assignments in multiple procedural blocks, we generate an additional conflict

arbitration constraint.

initial #0 #0 z = 0;

always @(posedge clk)
if (v) z ⇐ 1;

always @(posedge clk) begin
w = y;
if (u) w = x;
z ⇐ w;

end

initial #0 #0 z1 = 0;

always @(posedge clk) begin
if (v0) z̄1 = 1;
z̄2 = φ(z̄1, z1);

end

always @(posedge clk) begin
w1 = y0;
if (u0) w2 = x0;
w3 = φ(w2, w1);
z̄3 = w3;

end

Figure 6.2: Conversion from HDL to SSA form

In Fig. 6.2, the two procedural blocks at the top are converted into the SSAform at the bottom.

In each procedural block, we generate theBV formula for each target variable. Supposeu, v ∈ VP and

w, x, y, z ∈ VB(4). For the targetz, we generate theBV formula

ite(v0, z̄1[4] = 1[4] ∧ z̄2[4] = z̄1[4], z̄2[4] = z1[4])) (6.1)

75

in the first procedural block, and

w1[4] = y0[4] ∧ ite(u0, w2[4] = x0[4] ∧ w3[4] = w2[4],

w3[4] = w1[4]) ∧ z̄3[4] = w3[4] (6.2)

in the second procedural block. Then, we introducez′ for z and generate a conflict arbitration constraint

z′[4] = z̄2[4] ∨ z′[4] = z̄3[4]. This formula conjoined with (6.1) and (6.2) is the transition relation for the

description, wherez1 andz′ are the current and next state variables forz.

6.3 SMT Encoding for Hardware Designs

In Sect. 6.2, we showed how a hardware description is converted into aBV formula. In this sec-

tion, we discuss the translation fromBV encoding toLIA encoding and toBV ∪ LIA. SMT encoding for

hardware design (RTL Verilog) was first presented in [Bru08] wherebothBV andLIA encodings for com-

binational circuits were introduced. We review those basic encoding methods forLIA, and introduce several

enhancements.

6.3.1 LIA Encoding

In LIA encoding, each bit-vectorx[n] is encoded into an integer variableX with a bound constraint

0 ≤ X < 2n.

For an equalityz[n] = concat(x[i], y[j]) with theconcat term and bit-vectorsx[i], y[j], z[n] where

n = i+ j, we generate

Z = 2j ·X + Y . (6.3)

For an equalityz = x[i : j] with the bit-select term and bit-vectorsx[n], z[i− j + 1] wheren > i ≥

j ≥ 0, three fresh variablesXh,Xm,Xl that correspond to the bit-vectorsx[n− 1: i+1], x[i :j], x[j− 1:0]

are introduced to generate

(X = 2i+1 ·Xh + 2j ·Xm +Xl) ∧ (0 ≤ Xh < 2n−i−1)∧

(0 ≤ Xm < 2i−j+1) ∧ (0 ≤ Xl < 2j) ∧ (Z = Xm) . (6.4)

76

When converting an arithmeticBV term into anLIA term, we need to deal with overflow. We introduce

either a fresh variable or a term-ITE operator. In particular, for an addition operationz[n] = x[n] + y[n]

with x[n], y[n], z[n], we may generate either

(Z = X + Y − 2n · α) ∧ (0 ≤ α ≤ 1) (6.5)

with a fresh variableα, or

(Z = tite(X + Y ≥ 2n, X + Y − 2n, X + Y)) (6.6)

with a term-ITE operator. For an equalityz[n] = k[n] · x[n] with multiplication, wherex[n], z[n] are

bit-vectors,k[n] is a constant, andα is a fresh variable, we generate

(Z = k ·X − 2n · α) ∧ (0 ≤ α ≤ k − 1) . (6.7)

For an equalityz[n] = x[n] ⋄ y[n] with a bit-wise term and the bit-vectorsx[n], y[n], z[n] where⋄ ∈

{&, |}, we introduce fresh variablesX0, ..., Xn−1, Y0, ..., Yn−1, Z0, ..., Zn−1 for the bit-vectors. Suppose⋄

is &. Then, we generate

(Z =

n−1∑

i=0

2i · Zi) ∧ (X =

n−1∑

i=0

2i ·Xi) ∧ (Y =

n−1∑

i=0

2i · Yi)∧

n−1∧

i=0

(Zi = 1) ↔ ((Xi = 1) ∧ (Yi = 1)) .

Having reviewed the basic encoding method we present two enhancements:selective value enumer-

ation and term-ITE introduction forBV arithmetic terms.

The basic encoding methods often introduces the productk · X wherek is a constant andX is a

variable. The coefficientk may be large, and large coefficients often degrade the performance ofLIA solvers

because they often require many pivots in the simplex-based ILP (IntegerLinear Programming) algorithm

[DdM06b, NW88]. We tackle the problem with selective enumeration. If the range ofX is small enough to

express it with few term-ITEs, term-ITEs replace the multiplication. For instance, if 0 ≤ X ≤ 1 in (6.3),

then the new encoding with a term-ITE is

Z = tite(X = 1, 2j + Y, Y) .

77

For arithmetic terms, we saw two types of encoding in (6.5) and (6.6). TheLIA encodings for an

equalityz[n] =
∑m

i=1
xi[n] with a general arithmetic term can be

(Z = (
m∑

i=1

Xi) − 2n · α) ∧ (0 ≤ α ≤ m− 1) , (6.8)

and

tm−1 = tite(tm ≥ (m− 1) · 2n, tm − (m− 1) · 2n, tm)

∧ tm−2 = tite(tm−1 ≥ (m− 2) · 2n,

tm−1 − (m− 2) · 2n, tm−1) ∧ · · · ∧

t2 = tite(t3 ≥ 2 · 2n, t3 − 2 · 2n, t3)∧

Z = tite(t2 ≥ 2n, t2 − 2n, t2) ∧ tm =
m∑

i=1

Xi . (6.9)

We prefer (6.9), which introduces term-ITEs, to (6.8), because (6.8) often introduces a large coefficient for

the fresh variableα.

For multiplication, the encoding in (6.7) also introduces a large coefficient for α. As an alternative,

we use the encoding

tNt−1 = tite(k ·X ≥ 2Nt−1 · 2n, k ·X − 2Nt−1 · 2n, k ·X)∧

tNt−2 = tite(tNt−1 ≥ 2Nt−2 · 2n, tNt−1 − 2Nt−2 · 2n, tNt−1)

∧ · · · ∧ t1 = tite(t2 ≥ 2 · 2n, t2 − 2 · 2n, t2)∧

Z = tite(t1 ≥ 2n, t1 − 2n, t1) . (6.10)

The conditions of the term-ITEs in (6.10) enumerate the different overflowcases. If a condition is true, the

value ofk · X overflows; hence, the true branch of the term-ITE subtracts a power of2 from the value of

k ·X to satisfy the condition0 ≤ k ·X < 2n.

The number of term-ITEsNt required for encoding a multiplicationk[n] · x[n] in LIA is given by

Nt = ⌈log2(k)⌉ .

78

For aBV equalityz[n] = k1[n] · x[n] + k2[n] · y[n],the number of term-ITEs isNt = ⌈log2(k1)⌉ +

⌈log2(k2)⌉ + 1 with the first method andNt = ⌈log2(k1 + k2)⌉ with the second method. Since

⌈log2(k1 + k2)⌉ ≤ ⌈log2(k1)⌉ + ⌈log2(k2)⌉ + 1 ,

we use the second method. The number of term-ITEs in (6.9) can be reduced fromm− 1 to ⌈log2(m)⌉.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

V
al

 E
nu

m
 :

tim
e

(s
)

No Val Enum : time (s)

Figure 6.3: VAL ENUM vs. No Val Enum

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

T
er

m
-I

T
E

 :
tim

e
(s

)

Fresh Const : time (s)

Figure 6.4: TERM-ITE vs. Fresh Variable

The results of Yices (LIA) on the hardware verification problems in Fig. 6.1 with and without the

enhanced encodings are shown in Fig. 6.3 and Fig. 6.4. In the experiments, the timeout was set to 1000

seconds. Figure 6.3 compares the encodings with and without value enumeration. Figure 6.4 compares

the encodings with and without term-ITE introduction. Points below the diagonal represent wins for the

enhanced encoding. Each scatterplot shows two lines: The main diagonal,andy = κ ·xη, whereκ andη are

obtained by least-square fitting. Figure 6.3 shows that the encoding with the value enumeration outperforms

the one without. Figure 6.4 shows that the encoding with the term-ITE introduction often outperforms the

one without significantly. Tables A.3 and A.4 in Appendix A show the detailed results of the comparisons.

6.3.2 SMT Encoding with Combined Theories (BV ∪ LIA)

In this section, we describe the conversion fromBV encoding toBV ∪ LIA encoding. Since rep-

resenting bit-wise operations inLIA is rather inefficient, when aBV variable is involved in both arith-

79

metic and bit-wise operations, it may be convenient to split it into aBV variable and anLIA variable con-

strained so as to always have the same value. For example, given theBV formula c[n] = a[n] & b[n]

∧d[n] = c[n] + e[n], where the bit-vectorc[n] is used both in bit-wise and arithmetic terms, if we con-

vert the formula toBV ∪ LIA, the equality with the bit-wise term remains as is, and the equality with the

arithmetic term is converted into theLIA formula

(0 ≤ C < 2n) ∧ (0 ≤ D < 2n) ∧ (0 ≤ E < 2n)∧

(D = tite((C + E ≥ 2n), (C + E − 2n), C + E)) ,

whereC,D, andE are fresh variables for the bit-vectorsc[n], d[n], ande[n]. Since the fresh variableC

corresponds to the bit-vectorc[n], we generate the interface constraint

C = tite(c[n− 1 : n− 1] = 1[1], 2n−1, 0)+

tite(c[n− 2 : n− 2] = 1[1], 2n−2, 0) + · · ·+

tite(c[0 : 0] = 1[1], 1, 0)

for the relation betweenc[n] andC, and conjoin it with theLIA formula. Overall, theBV ∪ LIA encoding

for theBV formulac[n] = a[n] & b[n] ∧ d[n] = c[n] + e[n] is:

(c[n] = a[n] & b[n])∧

(0 ≤ C < 2n) ∧ (0 ≤ D < 2n) ∧ (0 ≤ E < 2n)∧

(D = tite((C + E ≥ 2n), (C + E − 2n), C + E))∧

C = tite(c[n− 1:n− 1] = 1[1], 2n−1, 0)+

tite(c[n− 2:n− 2] = 1[1], 2n−2, 0) + · · ·+

tite(c[0 :0] = 1[1], 1, 0) . (6.11)

Furthermore, given theBV ∪ LIA encoding, theBV formula in the encoding can be converted into

an equisatisfiable Boolean formula by bit blasting. In particular, for the bit-vectorsa[n], b[n], andc[n] in

(6.11), a set of propositional variablesVP = {an−1, an−2, . . . , a0, bn−1, bn−2, . . . , b0, cn−1, cn−2, . . . , c0}

80

are generated. TheBV formula(c[n] = a[n] & b[n]) is converted into

(cn−1 ↔ (an−1 ∧ bn−1)) ∧ (cn−2 ↔ (an−2 ∧ bn−2)) ∧ · · · ∧ (c0 ↔ (a0 ∧ b0)) ,

and eachBV formulac[k : k] = 1[1] where1 ≤ k < n is converted into a propositional variableck in the

interface constraint.

6.4 Model Analysis

Figure 6.1 shows that choosing the proper encoding is important. Given a hardware design, we

analyze the model to choose the encoding method betweenBV andLIA (plus, possibly, bit blasting). If

the model contains many bit-wise and bit-select operators, or it uses only a narrow data path, then theBV

encoding is more likely to be suitable for the model. On the other hand, if the modelcontains a large

number of arithmetic and relational operators with a wide data path, theLIA encoding may be preferable.

In practice, we often encounter designs with a mixture of bit-wise, bit-select,and arithmetic operators.

On those problems, it is hard to applyLIA solvers even though they contain a large number of arithmetic

operators with wide data paths. On the other hand, there is still a chance to apply LIA solver if certain

conditions are met. We discuss these conditions in the following.

6.4.1 Analysis of Bit-Select Operations

The bit-select operators in hardware designs often produceLIA encodings that are hard for SMT

solvers. As shown in (6.4), each bit-select operator generates three fresh variables possibly with large coef-

ficients. If there are multiple bit-select operations applied to one bit-vector, there is no benefit in encoding

them inLIA. In [Bru08], the author showed degradation of performance in anLIA solver as the number of

slices of a bit-vector grows. When a slice includes either the MSB (most significant bit) or the LSB (least

significant bit) of a bit-vector, only two fresh variables are needed. However, theLIA encoding may not be

efficient depending on the location of the slice. According to our experiments, if the bit-vector is decom-

posed only into two and the slicing bit is close to the MSB, thenLIA encoding can be still effective. In

practice, the slice is often applied close to the MSB of the data path.

81

6.4.2 Analysis of Bit-Wise Operation

Bit-wise operators makeLIA encoding much harder compared to the encodings for otherBV opera-

tors. There is not much choice but to bit-blast the bit-vectors in the bit-wise operations. On the other hand,

some designs contain a large number of arithmetic operations with wide data pathsand small numbers of

bit-wise operations. In those designs,BV ∪ LIA encoding can be used to encode the bit-wise operation

with BV logic, and still maintain the arithmetic operations withLIA encoding. Unfortunately, SMT solvers

for BV ∪ LIA encoding do not perform well compared to other solvers (BV or LIA) according to our ex-

periments. Instead of using theBV ∪ LIA encoding, we apply bit blasting for the bit-wise operations and

useLIA encoding for the arithmetic operations. For each bit-vector subjected to bothbit blasting and arith-

metic operations, we introduce an interface constraint as discussed in Sect. 6.3.2. The experimental results

in Fig. 6.5 compareLIA encoding with and without bit blasting for the Palu design [VVB]. As Fig. 6.5

shows,LIA encoding with bit blasting gives much better performance compared to pureLIA encoding. We

also comparedLIA encoding with bit blasting andBV ∪ LIA encoding. The solver withBV ∪ LIA encoding

timed out for most of the Palu problems whereas the solver withLIA with bit blasting solved all the problems

within the timeout (1000 seconds). Table A.5 in Appendix A shows the detailed results of the comparison.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

LI
A

 w
ith

 B
it-

B
la

st
 :

tim
e

(s
)

LIA : time (s)

Figure 6.5: LIAWITH BIT-BLAST vs. LIA

82

6.4.3 Scoring System

The model analysis method decides the encoding method based on a scoring system. LetScoreB be

the score forBV encoding andScoreL be the score forLIA encoding. Letwa, wbw, wbs, andwr be the

weights for the arithmetic, relational, bit-wise, and bit-select operators, withwbw > wbs > wa > wr . We

give a larger value towbw andwbs because the numbers of bit-wise and bit-select operators have a stronger

impact on the effectiveness of theLIA encoding than the numbers of arithmetic and relational operators

have on the effectiveness of theBV encoding. The score is computed for each relational expressioner in the

transition system based on (6.12) and (6.13), in whichbw(er) is the number of bit-wise operators,bs(er)

is the number of bit-select operators,ar(er) is the number of arithmetic operators,re(er) is the number of

relational operators, andbits(er) is the number of bits iner.

ScoreB = bw(er) × bits(er) × wbw + bs(er) × bits(er) × wbs . (6.12)

ScoreL = ar(er) × bits(er) × wa + re(er) × bits(er) × wr . (6.13)

A bit-select operator that decomposes the data path into only two and whose slicing bit is close to the MSB

is considered a weak bit-select and is not counted inbs(er).

Given the scoresScoreB andScoreL and their thresholdsthB andthL, we compare the score with its

threshold and decide the encoding method. IfScoreL > thL andScoreB < thB, then we selectLIA encod-

ing, otherwise we selectBV encoding. When encoding inLIA, the bit-vectors in the bit-wise operations are

bit-blasted, and the bit-vectors only in the relational operators are also bit-blasted. The selective bit blasting

in LIA encoding often improves the efficiency of SMT solvers.

6.4.4 Experimental Evaluation

We have implemented a translator calledVl2smt that uses Icarus Verilog [Ica] as front end, accepts

a Verilog design as input, and generates an SMT formula for the verificationcondition of the design. The

translator chooses the encoding method for a given design betweenBV andLIA with bit blasting as discussed

in Sect. 6.4.3. We used the set of designs of Fig. 6.1 as training set for the predictor. All results are for the

solvers listed as in Sect. 6.1 with a timeout of 1000 seconds. Figure 6.6 showsthe comparison of average

83

CPU times ofBV andLIA solvers with the designs classified according to the predicted encoding method.

The symbol◦ is used for designs withBV encoding prediction, and the symbol× is used for the design with

LIA encoding prediction. The scatterplot shows that most designs for whichBV encoding was predicted to

work better actually end up above the diagonal, while most designs for whichLIA encoding was predicted

to work better actually end up under the diagonal. This result shows thatVl2smt predicts the right encoding

for most of the problems in the training set. Table A.2 in Appendix A shows the detailed results of the

selection.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

LI
A

 :
tim

e
(s

)

BV : time (s)

Figure 6.6: BV vs. LIA for Training Set

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

LI
A

 :
tim

e
(s

)

BV : time (s)

Figure 6.7: BV vs. LIA for Evaluation Set

A set of hardware model checking problems from VIS Verilog benchmarks [VVB], Opencores [Ope]

and Altera design examples [Ter] disjoint from the training set was used for evaluation ofVl2smt. The

result of the evaluation in Fig. 6.7 shows thatVl2smt predicts the right encoding method for each of these

model checking problem. Table A.6 in Appendix A shows the detailed results ofthe evaluation.

Table 6.1 shows the average number of bits, the numbers of arithmetic, relational, bit-wise, and bit-

select operations, the scores, and the encoding predictions for the models in the training (T-Model) and

evaluation (E-Model) sets.

84

6.5 Related Work

As we discussed in Sect. 6.3, the basicLIA encoding for combinational circuits was presented in

[Bru08]. In contrast to our selective approach for hardware verification, they adopted the layered approach

inside the solver that deals with EUF, the incompleteBV, and the completeLIA encodings. In [Bje09], the

author presented a word-level reduction method for industrial netlist verification. He focused on simplifying

the netlist as much as possible by applying word-level reductions to equality and disequality comparators.

Then, the simplified netlist was bit-blasted, and solved with either SAT or BDDs.In [KJJP09], the authors

appliedBV solvers to equivalence checking of a system-level model and an RTL design. In [WSBK07], the

authors presented a normalization technique to simplify the word-level description of an arithmetic circuit

for SAT-based BMC. In [PICB05], the authors presented a simplificationmethod for RTL-SAT instances

with the combination of interval-arithmetic and Boolean reasoning. Earlier references of word-level hard-

ware verification include [BD02], [Dre04], and [ZKC01]. Finally, the authors of [XHHLB08] presented an

algorithm selection approach that selects one among the SAT solvers that performed best on a representative

set of problem instances.

6.6 Conclusions

The choice of the right encoding style has great effect on the efficiency of model checkers at the word

level. In this chapter, we have presented a selective SMT encoding for hardware model checking. The ap-

proach is based on a model analysis method that selects the encoding by considering several characteristics

of the model. In particular, the effects of bit-vector and bit-select operations have been studied. Experi-

ments show that our approach selects the right encoding for most of the designs. This greatly improves the

efficiency of hardware model checking. Enhanced encoding techniques have also been introduced and their

effectiveness demonstrated experimentally.

85

T-Model bit ar re bw bs ScoreL ScoreB Enc
Am2910 11 1 13 0 0 66.4 0 BV
Bakery 5 0 23 0 0 54.8 0 BV

Blackjack 5 4 15 0 0 205.4 0 BV
Cube 4 0 106 0 0 179.2 0 BV

FPMult 11 44 50 20 22 1167.6 8181 BV
Palu 18 12 19 9 4 663.6 9216 BV

RetherRTF 5 0 8 0 0 25 0 BV
Swap 3 0 11 0 0 14 0 BV
Miim 4 19 22 4 2 257.2 516 BV

Timeout 51 1 20 0 0 513 0 LIA
cf fir 9 106 69 0 12 2461.2 0 LIA
FIFOs 60 0 46 0 0 984 0 LIA
FIR 17 40 4 0 9 1715.2 0 LIA

DSPAdder 23 94 34 0 0 2378.8 0 LIA
MinMax 48 2 21 0 0 540.4 0 LIA

E-Model bit ar re bw bs ScoreL ScoreB Enc
cf cordic 16 8712 2606 0 314 205754 90112 BV

Daio 2 16 11 0 1 116 0 BV
Dekker 2 0 4 0 0 3.2 0 BV
Unidec 4 0 55 0 28 352 3584 BV
soc ram 46 0 10 0 0 657.6 0 LIA
AltMult 8 58 48 0 0 1247.2 0 LIA

Table 6.1: Comparison of using selective, SAT, BV, and LIA encodings on evaluation set

Chapter 7

Application of Formal Word-Level Analysis to Constrained Random Simulation

7.1 Introduction

During our study of decision procedures for SMT, we have found thatthey are also applicable to

constrained random simulation. Constrained random simulation is in increasingdemand with hardware

designers and verification engineers. As the name indicates, it is the simulationof a design under specified

constraints. The user is required to capture the behavior of the environment of the design as constraints and

the simulation tools simulate the design under these constraints with the aid of constraint solvers embedded

in them. Commercial tools, such as Specman, have been popular for providing this capability. To address

the need for constrained random simulation, modern hardware descriptionlanguages (HDL), such as System

Verilog, have incorporated constraint specification as part of their syntax.

The overwhelming benefit of constrained random simulation over the traditional writing of test-

benches is the automation. Once the constraints are specified, the constraint solver in the simulator enu-

merates the valid scenarios instead of a human. Further, by specifying weights on the search space, the user

can indicate whether the constrained space should be sampled uniformly or specific areas should be focused

on.

Given that constraint solving comprises the bulk of constrained random simulation time, the efficiency

and performance of constraint solvers is critical. Traditional constraintsolving techniques, such as integer

linear programming and constraint programming, far lag the performance ofsimulators. Boolean engines,

e.g., BDDs, have been applied quite successfully to this problem[YSP+99] by taking advantage of the finite

state nature of HDL constraints. More recently, Kitchen and Keuhlmann[KK07] have provided a word-

87

level technique based on Markov-chain Monte Carlo methods. The scalability of this technique to industrial

strength designs is yet to be proven.

In our constraint solver,ValueGen, we have incorporated both BDD and SAT-based Boolean en-

gines. BDDs provide the advantage of fast generation of uniformly distributed solutions. However, some

constraints have very large BDDs that cause memory explosion during simulation. SAT solvers are less

vulnerable to size explosion. On the other hand, each solution generation could be exponentially slower

than BDDs.

In this chapter, we present a word-level pre-processor,DomRed, thatValueGenapplies to the con-

straints to reduce the size of their representation in the Boolean engines. The pre-processing is a static

analysis technique that uses an SMT-like framework.DomRedcombines a SAT solver and a linear arith-

metic solver that handles primarily integer difference logic, with a minor extension to positive and negative

coefficient inequalities. The input to the tool is a Boolean combination of linear arithmetic constraints and

bit-vector constraints. The output is a set of variables and their reduceddomains. The constraints with

reduced-domain variables are then passed on to the Boolean engines, resulting in smaller Boolean represen-

tations for constraint solving. We present experimental results of applying DomRedwithin ValueGenon

our simulation testcases.

7.2 Constraint Solving in Simulation

Constraints are Boolean combinations of linear arithmetic and bit-vector expressions on design vari-

ables. The expressiveness of the specified constraints is limited by the HDLbeing used. For example, a

System Verilog constraint is

constraint c1 {src_addr >= 0 && src_addr < 65536 &&

payload_len >= 0 && payload_len < 4096 &&

dest_addr - src_addr >= 4096 && dest_addr < 65536}

Constraint solving is the task of generating values for the design variablesthat satisfy the constraints. In the

above example,src addr = 512, payload len = 1024, dest addr = 4608 is a set of legal values.

Our constraint solver,ValueGen, is invoked dynamically during simulation i.e., every time the simulator

88

encounters a user call to generate new values for variables appearingin constraints, the simulator calls the

constraint solver. Tight integration is required between the two to maintain efficiency.

Constraints are typically written on the inputs of the design and may depend on some internal design

signals (statevariables). During constraint solving, the solver is required to generatevalues that satisfy both

the constraints as well as the states values.

Each set of related HDL constraints, when encountered, is parsed by the simulator, and sent toValue-

Gen through a word-level API along with the state values. Internally,ValueGenmaintains a applies several

optimizations at the word-level, including partitioning based on non-overlapping variable support and con-

stant propagation. Finally, it bit-blasts the word-level constraints and callsthe Boolean engines (BDD or

SAT) on the Boolean representation.

The optimizations inValueGen result from syntactic and very minor semantic analysis of the con-

straints. They do not include the ability to deduce that the tightest ranges ofdest addr andsrc addr

in the above example.DomRedaddresses exactly this deficiency. It extracts a subset of invariants from se-

mantic analysis of the constraints. If an invariant yields variable bound reductions, then the reduced number

of bits are applied to encode the respective variables, the default numberof bits are used otherwise.

7.3 DomRed: Technical Details

ValueGen providesDomRed with a quantifier-free first order logic formula with linear arithmetic

constraints. AnLA constraint is of the forma1x1 + . . . + anxn ⊲⊳ c, where⊲⊳∈ {=,≤, <,>,≥, 6=}. A

differenceconstraint is a special case of an LA constraint whose form isxi − xj ⊲⊳ c. A positive-(negative-

)inequality is another special case of an LA constraint where∀i.ai ≥ 0, xi ≥ 0, c ≥ 0 (∀i.ai ≤ 0, xi ≤

0, c ≤ 0). We are working on the extension to bit-vector constriants.

As in the SMT-framework, the first order logic formula is abstracted conservatively into a proposi-

tional formula and given to the SAT solver. The SAT solver extracts a set of level-zero assignments, which

corresponds to a set of LA constraints. From this set, we gatherdifference constraints, analyze them with

the Bellman-Ford algorithm described in [KS06] and derive reduced bounds for the variable domains if

possible. Among the LA constraints left over, positive- and negative-coeffient inequalites may also yield

89

Table 7.1: Comparison Table of without and with Bound Reduction

of bits CPU (sec) MEM (Mbytes)
Design Sim. cycles w.o. with % w.o. with % w.o. with %

design1 5000000 112 101 10 683.0 549.4 20 40.8 34.2 16
design2 1000000 335 321 4 325.5 319.2 2 70.6 53.9 24
design3 50000 491 301 39 412.3 333.4 19 103.1 93.5 9
design4 1000000 54 40 26 180.9 174.1 4 37.2 37.8 -2
design5 1000000 64 60 6 86.1 44.0 49 33.2 33.6 -1
design6 1000000 64 60 6 75.9 48.1 37 33.2 33.7 -1
design7 1000000 16 14 12 340.2 344.6 -1 37.0 33.8 9
design8 44000 7 5 29 967.2 966.7 0 115.0 116.4 -1
design9 400000 8484 8428 1 607.1 559.6 8 62.3 62.0 0
design10 40 160 97 39 648.5 603.3 7 809.1 756.2 7
design11 2500 374 335 10 234.6 186.3 21 370.7 282.1 24

reduced upper (lower) bounds ofxi equal toc/ai. The remaining LA constraints are conservatively marked

as not yielding any domain reduction.

Example: Users commonly declare design inputs asint, meaning a 32-bit finite integer, causing the

Boolean representation of the example in Section 7.2 to contain 96 bits. In applying DomRed, the equality

constraint is translated into two inequalities in the usual manner. Inequalities are encoded with one bit each

in the SAT solver. All these bits appear in the set of level-zero assignments.Since they all correspond to

difference constraints, the Bellman-Ford algorithm yields the intervals[0, 61439] for src addr, [0, 4095]

for payload len and[4096, 65535] for dest addr. The Boolean encoding will then require16, 12 and

16 bits respectively, totalling44 bits in the resulting Boolean expression (more than 2X reduction).

DomRedmay also indicate toValueGen that the constraints are infeasible (over-constrained situa-

tion) if the SAT solver or the LA solver detects it. This is of great value toValueGen since it can avoid

building the Boolean representations altogether.

7.4 Experimental Results

We integrated our toolDomRed into ValueGen, which, in turn, is integrated with our simulator. Our

benchmark set includes both System-C and System Verilog examples. The System-C examples are smaller

90

in size;40 out of68 showed improvements, the rest showed no degradation. The detailed table of results is

not presented here for lack of space. The System Verilog examples consist of industrial-strength customer

benchmarks. Of the34 System Verilog examples that we experimented with,11 showed improvement and

are presented in Table7.1, the remaining23 showed no degradation.

We use three parameters to measure the performance impact of applyingDomRed—number of bits,

CPU times and memory used.ValueGenswitches between the BDD and SAT solver based on the Boolean

representation size to maximize the size constraints that can be solved and optimize the speed of constraint

solving (better with BDDs). Our experimental results show the improvement over the default optimized

algorithm. However, this makes comparing the Boolean representation sizes harder since different solvers

may be used whenDomRed is applied. We are working on addressing this problem to obtain a tighter

comparison.

Column 1 of Table7.1 specifies the design, Column 2 shows the number of simulation cycles, Columns

3–5 show the reduction of the number of bits in the constraints. Note that the number of bits is measured for

the constraints only and the design may have several thousand more bits. Columns 6–8 show the CPU times

and Columns 9–11 the memory reduction. The time taken byDomRed is negligibly small and hence, not

presented here. The CPU time includes simulation time only in2/11 cases, hence the CPU time improve-

ment for most examples is for constraint solving alone.

The table shows that the reduction in the number of bits is sometimes substantial, upto 39%. Smaller

constraints yield better CPU times and memory reductions. Given thatDomRedtakes negligible time,11/34

examples show improvement on applyingDomRed and the remaining23 examples are no worse off, we

conclude thatDomRed is a cheap preprocessing technique and that it is always beneficial to apply it. These

results are encouraging and as part of future work, we hope to apply more powerful static analysis to reduce

the size of the Boolean representation even further.

Chapter 8

Conclusions

8.1 Thesis Conclusions

In this thesis, we have presented several efficient SMT solving techniques that can be applied to

hardware model checking and constrained random simulation. To improve the efficiency of SMT solvers,

we have presented a hybrid method that combines lazy and eager approaches. In addition, we have presented

an SMT preprocessing technique that simplifies the original formula in word level. The presented SMT

solving techniques are applied to hardware model checking and constrained random simulation, and the

experimental results show the effectiveness of these approaches.

In Chapter 3, we have presented a finite instantiation approach combined withthe Bellman-Ford

algorithm to solve integer difference logic. The approach is particularly effective when the constraints

are rich in disequalities. We have presented a bound computation algorithm for the integer variables in

the constraints including the disequalities by restricting consideration to a small sufficient set of solutions.

Experiments show that the approach is more effective compared to the one that splits the disequality in the

disjunction of inequalities.

In Chapter 4, we have presented an algorithm for the term-ITE conversion in SMT preprocessing.

The approach is based on the computation of cofactors and theory simplification. The simplification is done

by detecting special cases in the formula or using theory propagation on theatomic predicates. Experiments

show that the approach is very effective in most QFLIA benchmarks in SMT-LIB and often speeds up SMT

solvers.

In Chapter 5, we have presentedMSV with restrictions and proved behavioral equivalence between

92

the verification condition and the simulation model. The restrictions allow us to generate a concise verifica-

tion condition to be checked by an SMT solver. With controlled nondeterminism inMSV, nondeterministic

behavior of anMSV model can be easily eliminated and the mismatches between pre- and post synthesis

simulations can be avoided.

In Chapter 6, we have presented a selective SMT encoding for hardware model checking. The ap-

proach is based on a model analysis method that selects the encoding by considering several characteristics

of the model. Experiments show that our approach selects the right encoding for most of the designs and

hence improves the efficiency of hardware model checking. Enhancedencoding techniques have also been

introduced and their effectiveness demonstrated experimentally.

In Chapter 7, we have presented a new application of using SMT to constrained random simulation.

To avoid size explosion problem in the bit-level solver of the constrained random simulation, we applied

the word-level analysis with SMT solver on the model. We use the Bellman-Fordalgorithm and simple

coefficient checking to reduce the bounds of the variables used in bit encoding. Experiments show that our

simple and fast algorithm can give huge amount of reduction to the variablesin the real problem.

8.2 Future Work

AlthoughMSV is a small subset of Verilog, our toolVl2smt supports more features such as multiple

modules, continuous assignments, and case statements. The tool can be further extended to handle more

Verilog features such asfork-join , repeat, function, task, assign, deassign, wait, etc. On the other hand,

we need further study on the behavior of each Verilog feature to describe the behavior correctly into a

verification condition. More restrictions for the additional Verilog feature will be required to generate a

concise verification condition with the correct behavioral description. For instance, a function describing

combinational logic should not contain a global variable since only the inputs of the function are considered

as a member of sensitivity list. (A procedural block in System Verilog such asalways combalso addresses

some of the problems describing the correct behavior.) For handling delays and event controls,MSV will

be required to have more fine-grained semantics.

We have shown that the verification condition for a hardware design encoded inBV, LIA or BV ∪ LIA

93

logic is more concise than the SAT encoding; however, the verification condition may still get large if the

design contains a memory whose depth is large and the memory elements are accessed or updated frequently

in the design. Whenever the memory element is accessed or updated with an index variable, the values of

the index variable needs to be enumerated for the encoding; the enumerationgenerates a large number of

constraints. To preserve the conciseness of the SMT encoding, the logics of arrays and EUF can be used for

encoding memories in hardware designs.

Bibliography

[AMP06] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software using
SMT solvers instead of SAT solvers. InThirteenthInternationalSPIN Workshopon Model
Checkingof Software(SPIN’06), Vienna, Austria, March 2006.

[BB09] Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-vectors and
arrays. InTACAS ’09: Proceedingsof the FifteenthInternationalConferenceon Tools and
Algorithmsfor theConstructionandAnalysisof Systems, pages 174–177, Berlin, Heidelberg,
2009. Springer-Verlag.

[BBC+05a] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. van Rossum, and R. Sebas-
tiani. Efficient satisfiability modulo theories via delayed theory combination. InSeventeenth
Conferenceon ComputerAided Verification (CAV’05), pages 335–349. Springer-Verlag,
Berlin, July 2005. LNCS 3576.

[BBC+05b] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebas-
tiani. An incremental and layered procedure for the satisfiability of linear arithmetic logic. In
InternationalConferenceon ToolsandAlgorithmsfor ConstructionandAnalysisof Systems
(TACAS’05), pages 317–333, Edinburgh, UK, April 2005. LNCS 3440.

[BBC+06] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders Franźen, Ziyad Hanna,
Zurab Khasidashvili, Amit Palti, and Roberto Sebastiani. Encoding RTL constructs for Math-
SAT: a preliminary report.Electr.NotesTheor.Comput.Sci., 144(2):3–14, 2006.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. InFifth
InternationalConferenceon ToolsandAlgorithmsfor ConstructionandAnalysisof Systems
(TACAS’99), pages 193–207, Amsterdam, The Netherlands, March 1999. LNCS 1579.

[BCF+06] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed theory combi-
nation vs. Nelson-Oppen for satisfiability modulo theories: A comparative analysis. InLPAR,
pages 527–541, 2006.

[BD02] R. Brinkmann and R. Drechsler. RTL-datapath verification usinginteger linear program-
ming. InASP-DAC’02: Proceedingsof the2002Asia andSouthPacificDesignAutomation
Conference, pages 741–746, 2002.

[BDS02] C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order formulas
by incremental translation to SAT. In E. Brinksma and K. G. Larsen, editors, Fourteenth
Conferenceon ComputerAided Verification (CAV’02), pages 236–249. Springer-Verlag,
Berlin, July 2002. LNCS 2404.

95

[Bea] URL: http://www.eecs.berkeley.edu/ jha/beaver.html.

[Bje09] P. Bjesse. Word level bitwidth reduction for unbounded hardware model checking.Form.
MethodsSyst.Des., 35(1):56–72, 2009.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C
programs. InPLDI 01: ProgrammingLanguageDesignandImplementation, Snowbird, UT,
June 2001.

[Boo] URL: http://fmv.jku.at/boolector.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package.
In Proceedingsof the27thDesignAutomationConference, pages 40–45, Orlando, FL, June
1990.

[Bru08] R. Bruttomesso.RTL Verification:FromSAT to SMT(BV). PhD thesis, University of Trento,
2008. Available at ”URL: http://www.inf.unisi.ch/postdoc/bruttomesso”.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEETransactions
onComputers, C-35(8):677–691, August 1986.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. InProceedingsWorkshopon Logicsof Programs, pages 52–
71, Berlin, 1981. Springer-Verlag. LNCS 131.

[CFR+89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method
of computing static single assignment form. InPOPL’89:Proceedingsof theSixteenthACM
SIGPLAN-SIGACTsymposiumonPrinciplesof programminglanguages, pages 25–35, New
York, NY, USA, 1989. ACM.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, Cambridge, MA,
1999.

[Cho97] C.-T. Chou. Synchronous Verilog: A proposal, 1997. Available at
http://home.pacbell.net/ctchou/sv0.ps.gz.

[CKZ96] E. Clarke, M. Khaira, and X. Zhao. Word level model checking–avoiding the pentium FDIV
error. In33rdDesignAutomationConference(DAC’96), DAC’96, pages 645–648, New York,
NY, USA, 1996.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.An Introductionto Algorithms. McGraw-
Hill, New York, 1990.

[Cum02] C. Cummings. The fundamentals of efficient synthesizable finite. state machine design using
NC-Verilog and Build Gates. InICU ’02: Proceedingsof the 2002 InternationalCadence
UsersGroupConference, San Jose, CA, USA, 2002.

[DdM06a] B. Duterte and L. de Moura. A fast linear-arithmetic solver forDPLL(T). In Eighteenth
InternationalConferenceon Computer-AidedVerification (CAV’06), pages 81–94, Seattle,
WA, August 2006. LNCS 4144.

[DdM06b] B. Dutertre and L. de Moura. Integrating Simplex with DPLL(T).Technical Report SRI-CSL-
06-01, SRI International, 2006.

96

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communicationsof theACM, 5:394–397, 1962.

[dMR02] L. de Moura and H. Reuß. Lemmas on demand for satisfiability solvers. InFifth International
SymposiumontheTheoryandApplicationof SatisfiabilityTesting(SAT’02), Cincinnati, OH,
May 2002.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. Journalof the
Associationfor ComputingMachinery, 7(3):201–215, July 1960.

[DPL] URL: http://www.lsi.upc.edu/ oliveras/bclt-main.html.

[Dre04] R. Drechsler. Using word-level information in formal hardware verification.Autom.Remote
Control, 65(6):963–977, 2004.

[EB05] N. Eén and A. Biere. Effective preprocessing in SAT through variable andclause elimination.
In EighthInternationalConferenceonTheoryandApplicationsof SatisfiabilityTesting(SAT
2005), pages 61–75, St. Andrews, UK, June 2005. Springer-Verlag. LNCS 3569.

[FJOS03] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof explication. In
W. A. Hunt, Jr. and F. Somenzi, editors,FifteenthConferenceonComputerAidedVerification
(CAV’03), pages 355–367. Springer-Verlag, Berlin, July 2003. LNCS 2725.

[GBT07] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfiability
modulo theories. InCADE, pages 167–182, 2007.

[GdM09] Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In21stInternationalConferenceon Computer-AidedVerification(CAV’09), pages
306–320, Grenoble, France, 2009.

[GG08] M. Ganai and A. Gupta. Completeness in SMT-based BMC for software programs. InDesign,
AutomationandTestin Europe(DATE’08), Munich, Germany, March 2008.

[GHN+04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast deci-
sion procedures. In R. Alur and D. Peled, editors,SixteenthConferenceon ComputerAided
Verification(CAV’04), pages 175–188. Springer-Verlag, Berlin, July 2004. LNCS 3114.

[GMP] URL: http://gmplib.org.

[GN02] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. InProceedingsof the
ConferenceonDesign,AutomationandTestin Europe, pages 142–149, Paris, France, March
2002.

[Gor] M. J. C. Gordon. Synthesizable Verilog: syntax and semantics. Available at
http://www.cl.cam.ac.uk/users/mjcg/Verilog/V/V.ps.gz.

[GTG06] M. K. Ganay, M. Talupur, and A. Gupta. SDSAT: Tight integration of small domain encoding
and lazy abstraction in a separation logic solver. InInternationalConferenceon Tools and
Algorithmsfor ConstructionandAnalysisof Systems(TACAS’06), pages 135–150, Vienna,
Austria, March 2006. LNCS 3920.

[Ica] URL: http://www.icarus.com/eda/verilog.

97

[IEE06] IEEE Standardfor Verilog HardwareDescriptionLanguage,IEEE STD 1364-2005, 2006.
Available at http://ieeexplore.ieee.org.

[IPC03] M. K. Iyer, G. Parthasarathy, and K.-T. Cheng. SATORI – afast sequential SAT engine for
circuits. InProceedingsof the InternationalConferenceon Computer-AidedDesign, pages
320–325, San Jose, CA, November 2003.

[IYG+05] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P.Ashar. F-Soft: Soft-
ware verification platform. InSeventeenthInternationalConferenceon Computer-Aided
Verification(CAV’05), pages 301–306, 2005.

[JDB95] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking for processor verification.
In Proceedingsof the InternationalConferenceon Computer-AidedDesign, pages 2–6, San
Jose, CA, November 1995.

[JHS05] H. Jin, H. Han, and F. Somenzi. Efficient conflict analysis forfinding all satisfying as-
signments of a Boolean circuit. InInternationalConferenceon Tools and Algorithms for
ConstructionandAnalysisof Systems(TACAS’05), pages 287–300, April 2005. LNCS 3440.

[Joh01] P. Johannsen.SpeedingUp HardwareVerification by AutomatedDataPathScaling. PhD
thesis, Christian-Albrechts-University, Kiel, 2001.

[JS04] H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. InInternationalConferenceon
TheoryandApplicationsof SatisfiabilityTesting(SAT 2004), Vancouver, Canada, May 2004.

[JS05] H. Jin and F. Somenzi. Prime clauses for fast enumeration of satisfying assignments to
Boolean circuits. InProceedingsof theDesignAutomationConference, pages 750–753, Ana-
heim, CA, June 2005.

[Kar88] K. Karplus. Representing Boolean functions with if-then-else DAGs. In TechnicalReport
UCSC-CRL-88-28,Boardof Studiesin ComputerEngineering,University of California at
SantaCruz,SantaCruz,CA 95064, December 1988.

[KGW10] S. Kundu, M. K. Ganai, and C. Wang. Contessa: Concurrency testing augmented with sym-
bolic analysis. In22ndInternationalConferenceon Computer-AidedVerification(CAV’10),
pages 127–131, Edinburgh, UK, 2010.

[KJJP09] A. K̈olbl, R. Jacoby, H. Jain, and C. Pixley. Solver technology for system-level to RTL equiv-
alence checking. InDATE, pages 196–201, 2009.

[KJR+08] H. Kim, H. Jin, K. Ravi, P. Spacek, J. Pierce, R. P. Kurshan, and F. Somenzi. Application
of formal word-level analysis to constrained random simulation. InTwentiethConferenceon
ComputerAided Verification (CAV’08), pages 487–490, Princeton, NJ, July 2008. LNCS
5123.

[KJS07a] H. Kim, H. Jin, and F. Somenzi. Disequality management in integer difference logic via finite
instantiations.JournalonSatisfiability,BooleanModelingandComputation, 3:47–66, 2007.

[KJS07b] H. Kim, H. Jin, and F. Somenzi. Disequality management in integer difference logic via finite
instantiations.JournalonSatisfiability,BooleanModelingandComputation, 3:47–66, 2007.

98

[KK07] N. Kitchen and A. Kuelhmann. Stimulus generation for constrained random simulation. In
IEEE/ACM Int. ConferenceonComputerAidedDesign(ICCAD), November 2007.

[KOSS04] D. Kroening, J. Ouaknine, S. Seshia, and O. Strichman. Abstraction-based satisfiability solv-
ing of Presburger arithmetic. In R. Alur and D. Peled, editors,SixteenthConferenceon
ComputerAided Verification(CAV’04), pages 308–320. Springer-Verlag, Berlin, July 2004.
LNCS 3114.

[KS06] H. Kim and F. Somenzi. Finite instantiations for integer difference logic. In FormalMethods
in ComputerAidedDesign(FMCAD’06), pages 31–38, San Jose, CA, November 2006.

[KSJ09] H. Kim, F. Somenzi, and H. Jin. Efficient term-ITE conversion for satisfiability modulo theo-
ries. InTwelfth InternationalConferenceonTheoryandApplicationsof SatisfiabilityTesting
(SAT 2009), pages 195–208, Swansea, UK, June 2009. Springer-Verlag. LNCS 5584.

[LM05] S. Lahiri and M. Musuvathi. An efficient Nelson-Oppen decision procedure for difference con-
straints over rationals. InThird InternationalWorkshopon PragmaticalAspectsof Decision
Proceduresin AutomatedReasoning(PDPAR’05), pages 2–9, Edinburgh, UK, July 2005. To
appear in ENTCS.

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast predicate abstraction.
In EighteenthInternationalConferenceon ComputerAided Verification, CAV’06, volume
4144 ofLectureNotesin ComputerScience, pages 413–426. Springer, 2006.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. InProceedingsof theTwelfth AnnualACM SymposiumonPrinciplesof
ProgrammingLanguages, pages 97–107, New Orleans, January 1985.

[LS04] S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In R. Alur and D. Peled,
editors,SixteenthConferenceon ComputerAided Verification (CAV’04), pages 475–478.
Springer-Verlag, Berlin, July 2004. LNCS 3114.

[Mat] URL: http://www.smtcomp.org/2009.

[MC99] D. Mills and C. Cummings. RTL coding styles that yield simulation and synthesis mismatches.
In SNUG ’99: Proceedingsof the 1999SynopsysUsersGroupConference, San Jose, CA,
USA, 1999.

[McM94] K. L. McMillan. SymbolicModel Checking. Kluwer Academic Publishers, Boston, MA,
1994.

[MKMR10] Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grigore Roşu. A formal
executable semantics of Verilog. InEighthACM/IEEE InternationalConferenceon Formal
MethodsandModelsfor Codesign(MEMOCODE’10), pages 179–188. IEEE, 2010.

[MMZ +01] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. InProceedingsof theDesignAutomationConference, pages 530–535,
Las Vegas, NV, June 2001.

[MS96] J. P. Marques-Silva and K. A. Sakallah. Grasp—a new searchalgorithm for satisfiability. In
Proceedingsof theInternationalConferenceonComputer-AidedDesign, pages 220–227, San
Jose, CA, November 1996.

99

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its ap-
plication to difference logic. InSeventeenthConferenceon ComputerAided Verification
(CAV’05), pages 321–334. Springer-Verlag, Berlin, July 2005. LNCS 3576.

[NO08] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. InACM
TransactionsonProgrammingLanguagesandSystems,1(2):245-257, October 2008.

[NORCR07] Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-Carbonell, and Albert Rubio. Chal-
lenges in Satisfiability Modulo Theories. In Franz Baader, editor,EighteenthInternational
Conferenceon Rewriting Techniquesand Applications, RTA’07, volume 4533 ofLecture
Notesin ComputerScience, pages 2–18. Springer, 2007.

[NW88] G. L. Nemhauser and L. A. Wolsey.Integer and combinatorialoptimization. Wiley-
Interscience, New York, NY, USA, 1988.

[Ope] URL: http://opencores.org.

[PICB05] G. Parthasarathy, M. K. Iyer, K.-T Cheng, and F. Brewer. RTL SAT simplification by Boolean
and interval arithmetic reasoning. InICCAD ’05: Proceedingsof the 2005 IEEE/ACM
InternationalconferenceonComputer-aideddesign, pages 297–302, 2005.

[Pre] URL: http://fmv.jku.at/precosat.

[PRSS02] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property: How small can
it be? Journalof InformationandComputation, 178(1):279–293, October 2002.

[Roe06] K. Roe. The heuristic theorem prover: Yet another SMT modulotheorem prover. InEighteenth
InternationalConferenceonComputer-AidedVerification(CAV’06), pages 467–470, Seattle,
WA, aug 2006.

[RS04] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In International
ConferenceonToolsandAlgorithmsfor ConstructionandAnalysisof Systems(TACAS’04),
pages 31–45, Barcelona, Spain, March-April 2004. LNCS 2988.

[SMTa] URL: http://smtcomp.org/.

[SMTb] URL: http://www.csl.sri.com/users/demoura/smt-comp/results-qfidl.shtml.

[Ter] URL: http://www.altera.com/support/examples/verilog/verilog.html.

[TSSP04] M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allociation for separation logic.
In R. Alur and D. Peled, editors,SixteenthConferenceon ComputerAided Verification
(CAV’04), pages 148–161. Springer-Verlag, Berlin, July 2004. LNCS 3114.

[Ver] URL: http://www.verilog.com.

[VIS] URL: http://vlsi.colorado.edu/∼vis.

[VVB] Vis verification benchmarks. http://vlsi.colorado.edu/∼vis.

[WIGG05] C. Wang, F. Ivancic, M. Ganai, and A. Gupta. Deciding separation logic formulae by SAT and
incremental negative cycle elimination. InLogic for ProgrammingArtificial Intelligenceand
Reasoning(LPAR’2005), Montego Bay, Jamaica, December 2005.

100

[WSBK07] M. Wedler, D. Stoffel, R. Brinkmann, and W. Kunz. A normalization method for arithmetic
data-path verification. InIEEETrans.onCAD of IntegratedCircuitsandSystems, volume 26,
pages 1909–1922, 2007.

[WVS83] P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computation paths. In
Proceedingsof the24thIEEE Symposiumon Foundationsof ComputerScience, pages 185–
194, 1983.

[XHHLB08] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT.Journalof Artificial IntelligenceResearch, 32:565–606, 2008.

[Yic] URL: http://yices.csl.sri.com.

[YM06] Y Yu and S. Malik. Lemma learning in SMT on linear constraints. In A. Biere and C. P.
Gomes, editors,Proceedingsof TheoryandApplicationsof SatisfiabilityTesting– SAT 2006,
pages 142–155, August 2006.

[YSP+99] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz. Modeling design constraints and bi-
asing in simulation using BDDs. InIEEE/ACM Int. Conferenceon ComputerAided Design
(ICCAD), pages 584–590, 1999.

[Z3] URL: http://research.microsoft.com/en-us/um/redmond/projects/z3.

[ZKC01] Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A unified approach to RTL satisfiability. InIn
Proc.DATE, pages 398–402, 2001.

Appendix A

Tables for Comparison

In this chapter, we list the tables comparing the different encodings for hardware designs used in

Chapter 5. Table A.1 shows the detailed results of Fig. 6.1. The table shows the model names with different

unrolling depths and the CPU times ofBV and LIA solvers. TheBV solvers used are Z3-2.8 (Z3-B),

Boolector-1.4 (BL-B) and Beaver (BE-B). The LIA solvers used are Yices-1.0.28 (YI-L), Z3-2.8 (Z3-L)

and MathSAT-4.3 (MA-L). The fifth column (AVG-B) shows the average CPU times of theBV solvers, and

the ninth column (AVG-L) shows the average CPU times of theLIA solvers. The last row shows the number

of timeouts for each solver. The timeout was set to 1000 seconds. Table A.2shows the detailed results

of Fig. 6.6. The table shows the selected encodings for the designs and theCPU times of theBV andLIA

solvers. Table A.2 shows the detailed results of Fig. 6.3. Table A.4 shows thedetailed results of Fig. 6.4.

Table A.5 shows the detailed results of Fig. 6.5. Table A.6 shows the detailed results of Fig. 6.7.

102

Model Z3-B BL-B BE-B AVG-B YI-L Z3-L MA-L AVG-L
am2910-tr50 16.48 4.48 3.79 8.25 156.47 22.69 8.13 62.43
am2910-tr100 86.76 13.79 11 37.18 1000 219.51 32.35 417.29
am2910-tr150 327.62 27.5 20.45 125.19 1000 1000 87.98 695.99

bakery-tr5 8.16 3.83 2.64 4.88 11.03 9.87 24.61 15.17
bakery-tr10 234.83 13.62 7.37 85.27 389.46 501.75 281.5 390.9
bakery-tr15 1000 34.61 15.68 350.1 1000 1000 1000 1000

blackjack-tr30 44.01 34.49 17.26 31.92 505.61 117.33 1000 540.98
blackjack-tr40 108.52 77.76 37.04 74.44 1000 560.18 1000 853.39
blackjack-tr50 154.72 133.41 53.99 114.04 1000 1000 1000 1000

cube-tr10 24 1.52 1.46 8.99 5.04 4.68 29.14 12.95
cube-tr15 78.71 5.34 5.32 29.79 34.46 57.54 1000 364
cube-tr20 699.04 254.92 285.03 413 243.23 693.54 1000 645.59

FPMult-tr5 0.54 0.85 0.84 0.74 1000 237.42 1000 745.81
FPMult-tr10 4.02 3.82 3.93 3.92 1000 1000 1000 1000
FPMult-tr15 19.44 10.85 14.33 14.87 1000 1000 1000 1000

palu-tr10 2.59 1.81 1.9 2.1 17.97 16.53 1000 344.83
palu-tr20 8.31 4.57 5.75 6.21 375.95 123.24 1000 499.73
palu-tr30 18.54 8.56 8.66 11.92 1000 560.6 1000 853.53

retherRTF-tr70 26.89 42.8 48.28 39.32 60.4 241.73 93.18 131.77
retherRTF-tr80 34.32 48.53 55.46 46.1 37.55 415.85 248.03 233.81
retherRTF-tr90 50.82 55.67 64.27 56.92 37.28 111.95 99.67 82.97

swap-tr5 0.48 0.06 0.07 0.2 0.68 0.8 1.47 0.98
swap-tr10 179.01 110.7 173.95 154.55 1000 1000 911.76 970.59
swap-tr15 1000 1000 1000 1000 1000 1000 1000 1000

vMiim-tr100 102.75 10.35 12.75 41.95 1000 158.29 165.2 441.16
vMiim-tr150 148.92 15.12 24.25 62.76 1000 920.71 469.75 796.82
vMiim-tr200 428.16 24.4 46.1 166.22 1000 1000 919.44 973.15

cf-fir-tr10 230.05 191.18 122.82 181.35 0.99 9.28 5.26 5.18
cf-fir-tr20 453.72 212.53 52.03 239.43 6.84 154.42 21.52 60.93
cf-fir-tr30 627.57 764.11 82.02 491.23 14.2 129.14 60.54 67.96
FIFOs-tr8 10.27 258.8 461.73 243.6 13.3 16.28 8.99 12.86
FIFOs-tr10 73.49 1000 1000 691.16 64.96 79.92 41.27 62.05
FIFOs-tr12 331.54 1000 1000 777.18 335.74 526.53 174.58 345.62

fir-tr5 54.52 403.43 307.9 255.28 19.73 17.13 24.16 20.34
fir-tr10 1000 1000 1000 1000 48.47 33.51 80.93 54.3
fir-tr15 1000 1000 1000 1000 86.11 53.13 181.69 106.98

minMax-tr100 1000 76.73 85.3 387.34 12.68 15.38 25.73 17.93
minMax-tr200 1000 287.66 276.4 521.35 66.27 72.95 168.23 102.48
minMax-tr300 1000 595.85 656.93 750.93 167.33 153.58 419.96 246.96

adder-chain-tr10 1000 1000 547.35 849.12 17.02 26.01 117.4 53.48
adder-chain-tr15 1000 1000 1000 1000 43.59 89.11 528.92 220.54
adder-chain-tr20 1000 1000 1000 1000 127.71 488.07 1000 538.59

timeout-tr40 123.9 44.46 35.48 67.95 48.62 16.21 146.01 70.28
timeout-tr60 295.95 87.15 74.54 152.55 106.33 64.34 102.63 91.1
timeout-tr80 1000 181.53 123.49 435.01 443.05 164.24 1000 535.76

Timeout 11 8 7 5 14 8 15 5

Table A.1: Comparison of using BV solvers and LIA solvers on Verilog design

103

Model Sel Z3-B BL-B BE-B AVG-B YI-L Z3-L MA-L AVG-L
am2910-tr50 16.48 4.48 3.79 8.25 216.06 31.49 8.53 85.36
am2910-tr100 BV 86.76 13.79 11 37.18 1000 143.39 33.38 392.26
am2910-tr150 327.62 27.5 20.45 125.19 1000 1000 64.79 688.26

bakery-tr5 8.16 3.83 2.64 4.88 11.09 9.75 24.43 15.09
bakery-tr10 BV 234.83 13.62 7.37 85.27 391.94 500.94 280.62 391.17
bakery-tr15 1000 34.61 15.68 350.1 1000 1000 1000 1000

blackjack-tr30 44.01 34.49 17.26 31.92 448.84 119.9 606.51 391.75
blackjack-tr40 BV 108.52 77.76 37.04 74.44 871.67 306.77 1000 726.15
blackjack-tr50 154.72 133.41 53.99 114.04 1000 718.58 1000 906.19

cube-tr10 24 1.52 1.46 8.99 5.02 4.23 15.18 8.14
cube-tr15 BV 78.71 5.34 5.32 29.79 30.61 18.87 1000 349.83
cube-tr20 699.04 254.92 285.03 413 457.29 380.94 1000 612.74

FPMult-tr5 0.54 0.85 0.84 0.74 1000 117.23 1000 705.74
FPMult-tr10 BV 4.02 3.82 3.93 3.92 1000 1000 1000 1000
FPMult-tr15 19.44 10.85 14.33 14.87 1000 1000 1000 1000

palu-tr10 2.59 1.81 1.9 2.1 2.87 6.28 1000 336.38
palu-tr20 BV 8.31 4.57 5.75 6.21 12.89 12.84 1000 341.91
palu-tr30 18.54 8.56 8.66 11.92 20.56 136.29 1000 385.62

retherRTF-tr70 26.89 42.8 48.28 39.32 26.86 180.79 175.62 127.76
retherRTF-tr80 BV 34.32 48.53 55.46 46.1 17.26 167.96 130.51 105.24
retherRTF-tr90 50.82 55.67 64.27 56.92 26.84 132.37 177.71 112.31

swap-tr5 0.48 0.06 0.07 0.2 0.67 0.89 1.49 1.02
swap-tr10 BV 179.01 110.7 173.95 154.55 1000 1000 912.29 970.76
swap-tr15 1000 1000 1000 1000 1000 1000 1000 1000

vMiim-tr100 102.75 10.35 12.75 41.95 1000 158.05 163.88 440.64
vMiim-tr150 BV 148.92 15.12 24.25 62.76 1000 859.99 466.77 775.59
vMiim-tr200 428.16 24.4 46.1 166.22 1000 1000 917.49 972.5

cf-fir-tr10 230.05 191.18 122.82 181.35 1.03 9.42 5.09 5.18
cf-fir-tr20 LIA 453.72 212.53 52.03 239.43 6.68 154.15 21.22 60.68
cf-fir-tr30 627.57 764.11 82.02 491.23 14.27 129.38 60.62 68.09
FIFOs-tr8 10.27 258.8 461.73 243.6 13.18 16.21 8.98 12.79
FIFOs-tr10 LIA 73.49 1000 1000 691.16 64.67 79.69 40.76 61.71
FIFOs-tr12 331.54 1000 1000 777.18 334.65 534.38 174.35 347.79

fir-tr5 54.52 403.43 307.9 255.28 19.66 17.43 24.22 20.44
fir-tr10 LIA 1000 1000 1000 1000 48.71 33.62 81.2 54.51
fir-tr15 1000 1000 1000 1000 85.06 52.87 182.5 106.81

minMax-tr100 1000 76.73 85.3 387.34 12.71 15.36 25.85 17.97
minMax-tr200 LIA 1000 287.66 276.4 521.35 65.35 73.36 168.13 102.28
minMax-tr300 1000 595.85 656.93 750.93 167.86 153.7 419.8 247.12

adder-chain-tr10 1000 1000 547.35 849.12 17.02 26.01 110.48 51.17
adder-chain-tr15LIA 1000 1000 1000 1000 43.59 89.11 521.46 218.05
adder-chain-tr20 1000 1000 1000 1000 127.71 488.07 1000 538.59

timeout-tr40 123.9 44.46 35.48 67.95 16.06 30.82 21.36 22.75
timeout-tr60 LIA 295.95 87.15 74.54 152.55 210.91 65.51 55.3 110.57
timeout-tr80 1000 181.53 123.49 435.01 365.8 49.36 563.09 326.08

Timeout 11 8 7 5 12 7 13 4

Table A.2: Comparison of using BV solvers and LIA solvers (Bit-Blast) on training set of Verilog designs

104

Model Val Enum No Val Enum
cf-fir-tr100 162.4 588.82
cf-fir-tr101 164.63 469.67
cf-fir-tr102 169.6 568.52
cf-fir-tr103 178.28 633
cf-fir-tr104 186.45 688.95
cf-fir-tr105 186.48 612.76
cf-fir-tr106 187.76 659.92
cf-fir-tr107 236.13 643.59
cf-fir-tr108 278.38 893.66
cf-fir-tr109 207.1 848
cf-fir-tr110 206.58 698.94

fir-tr10 48.26 48.78
fir-tr15 84.22 84.53
fir-tr20 114.03 114.27
fir-tr25 179.66 180.09
fir-tr30 236.46 237.75
fir-tr35 331.2 331.38
fir-tr40 411.84 409.91
fir-tr45 506.41 507.9
fir-tr50 678.02 684.64
fir-tr5 19.45 19.49

adder-chain-tr10 11.72 11.82
adder-chain-tr11 15.9 16.34
adder-chain-tr12 16.89 17.28
adder-chain-tr13 28.8 28.57
adder-chain-tr14 26.93 27.11
adder-chain-tr15 48.78 49.12
adder-chain-tr16 48.33 49.63
adder-chain-tr17 64.25 64.83
adder-chain-tr18 62.01 62.03
adder-chain-tr19 102.63 101.96
adder-chain-tr20 72.82 73.85

Table A.3: Comparison of LIA encodings with and without value enumeration

105

Model Term-ITE Fresh var
cf-fir-tr100 162.4 1000
cf-fir-tr101 164.63 1000
cf-fir-tr102 169.6 1000
cf-fir-tr103 178.28 1000
cf-fir-tr104 186.45 1000
cf-fir-tr105 186.48 1000
cf-fir-tr106 187.76 1000
cf-fir-tr107 236.13 1000
cf-fir-tr108 278.38 1000
cf-fir-tr109 207.1 1000
cf-fir-tr110 206.58 1000

fir-tr10 48.26 102.01
fir-tr15 84.22 158.76
fir-tr20 114.03 229.35
fir-tr25 179.66 755.39
fir-tr30 236.46 407.44
fir-tr35 331.2 479.38
fir-tr40 411.84 977.49
fir-tr45 506.41 761.67
fir-tr50 678.02 1000
fir-tr5 19.45 44.54

adder-chain-tr10 11.72 109.83
adder-chain-tr11 15.9 196.06
adder-chain-tr12 16.89 294.2
adder-chain-tr13 28.8 509.37
adder-chain-tr14 26.93 607
adder-chain-tr15 48.78 1000
adder-chain-tr16 48.33 1000
adder-chain-tr17 64.25 1000
adder-chain-tr18 62.01 1000
adder-chain-tr19 102.63 1000
adder-chain-tr20 72.82 1000

Table A.4: Comparison of LIA encoding with Term-ITEs and LIA encoding with fresh variables

106

Model LIA with Bit-Blast LIA BV ∪ LIA
palu-tr5 0.21 0.75 43.78
palu-tr10 1.25 9.3 1000
palu-tr15 2.97 26.7 1000
palu-tr20 5.45 75.29 1000
palu-tr25 9.32 152.82 1000
palu-tr30 21.61 330.01 1000
palu-tr35 27.14 477.78 1000
palu-tr40 31.44 723.35 1000
palu-tr45 53.48 1000 1000
palu-tr50 80.23 1000 1000
palu-tr55 60.24 1000 1000
palu-tr60 101.81 1000 1000
palu-tr65 194.64 1000 1000
palu-tr70 195.73 1000 1000
palu-tr75 332.02 1000 1000
palu-tr80 311.31 1000 1000
palu-tr85 289.03 1000 1000
palu-tr90 300.2 1000 1000
palu-tr95 642.66 1000 1000
palu-tr100 659.18 1000 1000

Table A.5: Comparison of LIA with Bit-Blast, pure LIA and BV∪ LIA encoding

Model Sel Z3-B BL-B BE-B AVG-B YI-L Z3-L MA-L AVG-L
cordic-tr8 71.63 101.62 150.06 57.75 1000 0.15 0 333.38
cordic-tr10 BV 463.07 147.19 251.78 203.42 1000 1000 1000 666.67
cordic-tr12 312.37 124.56 197.71 145.64 1000 1000 1000 666.67

daio-receiver-tr50 2.36 2.62 1.24 1.66 11.89 12.81 12.39 8.23
daio-receiver-tr60 BV 7.57 3.15 1.62 3.57 34.6 17.28 19.07 17.29
daio-receiver-tr70 6.46 3.69 1.8 3.38 28.05 26.4 28.56 18.15

dekker-tr50 13.59 4.61 3.23 6.07 53.25 27.12 37.28 26.79
dekker-tr60 BV 41.58 5.6 4.23 15.73 120.06 41.48 75.08 53.85
dekker-tr70 40.59 7.25 5.08 15.95 95.32 72.17 128.33 55.83
Unidec-tr50 125.84 5.86 6.92 43.9 1000 1000 533.34 666.67
Unidec-tr60 BV 202.41 7.5 7.79 69.97 1000 1000 598.78 666.67
Unidec-tr70 229.63 9.05 8.81 79.56 1000 902.36 1000 634.12
soc-ram-tr4 29.84 227.29 604.97 85.71 31.31 34.71 8.7 22.01
soc-ram-tr5 LIA 167.2 807.33 1000 324.84 71.54 67.27 17.23 46.27
soc-ram-tr6 196.8 1000 1000 398.93 158.39 324.62 29.31 161

altmult-accum-tr5 232.71 394.1 8.81 208.94 1.8 5.44 3.9 2.41
altmult-accum-tr7 LIA 1000 1000 1000 1000 283.76 115.63 42.91 133.13
altmult-accum-tr9 1000 1000 1000 1000 592.33 1000 187.89 530.78

Timeout 2 3 4 2 6 5 3 0

Table A.6: Comparison of using BV solvers and LIA solvers (Bit-Blast) on evaluation set of Verilog designs

