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ABSTRACT

Let =, A be finite alphabets with the cardinality of £ equal two,

let h, g be homomorphisms from Z* into A* and let al’aZ’bl’bZ € A*.

The Generalized Post Correspondence Problem of length 2 (GPCP(2) for
short) is to determine whether or not there exists a word w in z+

such that alh(w)a2 = blg(w)bz. This paper is the first one in the
sequence of three papers which together demonstrate that GPCP(2) is
decidable. As a special case of this result one gets that the celebrated
Post Correspondence Problem of length 2 is decidable. In this paper

we discuss several special cases of GPCP(2) and we introduce and

study a transformation of GPCP(2) which turns out to be very

fundamental in our solution of the GPCP(2) problem.






INTRODUCTION

The Post Correspondence Problem, considered first by E. Post in [P],
is perhaps the most useful problem as far as undecidable properties of formal
languages are concerned (see, e.g., [H], [HU] and [S1]).
It can be formulated as follows.

Definition. Let Z be an alphabet and let h, g be two homomorphisms
of 2%. The Post Correspondence Problem (PCP for short) is to determine whether
or not there exists a word w in 2° such that h(w) = g(w). If #2 = n then we
say that we deal with the Post Correspondence Problem of length n (PCP(n) for
short). o

The set of solutions of an instance of PCP (that is the set of all words
satisfying the equation h(w) = g{(w) is referred to as an equality language .

The "descriptional power" of PCP stems from the fact that it is able to

code computations by arbitrary Turing machines. This is reflected in the fact
that equality languages form a natural base in several characterizations of the
class of recursively enumerable languages and its various subclasses (see, e.g.,
(BB, [Cl, [ER] and [S21).

One particular aspect of PCP attracted quite a Tot of attention.

Since it is such a simply formulated problem of such a strong descriptional
power it forms an excellent framework for an attempt to formulate a boundary
between "decidable" and "undecidable" (or "computable" and “noncomputable").
In other words one would Tike to establish as small as possible u such that
PCP(u) is undecidable and as big as possible bound 2 such that PCP(z) is
decidable.

The smallest possible u so far is 10, which is derivable from a result
of Matijasevic (see [C1]). As far as ; is concerned the only available (trivial)
observation until now was the fact that PCP(1) 1is decidable.

To establish whether or not PCP(2) is decidable turned out to be a challenging
open problem. There are also several results available which establish the
decidability or undecidability of PCP not depending on the length but rather

on other, more structural properties of the homomorphisms involved. For example,
in [Lel it is proved that PCP remains undecidable when the involved homomorphisms
are codes. Several very interesting results concerning PCP can be found in

[CK] and [KS].

In this paper we consider a more general version of PCP(2) which is defined

as follows.



Definition. Let z, A be alphabets, h, g be two homomorphisms from
¥ dinto 4¥ and let a,,a,,b;,b, be words over A. The Generalized FPost Corvespon-
dence Problem (GPCP for short) is to determine whether or not there exists
a word w in 2" such that alh(w)a2 = blg(w)bz.

*

If 42 = n then we say that we deal with the Generalized Post Correspondence
Problem of length n (GPCP(n) for short). o

Note that if we set a; = a, = b1 = b2 = A then GPCP(n) reduces to
PCP(n).

This paper is the first one of three papers which together prove
that GPCP(2) is decidable. In the present paper we consider several special
cases of GPCP(2) as well as introduce the basic construct of our solution:
the equality collector of a pair of marked homomorphisms.



0. PRELIMINARIES

In this paper we use mostly standard language-theoretic notation
and terminology. Perhaps the following points require additional
comments.

We consider finite alphabets only.

For an integer n, abs(n) denotes the absolute value of n.

For a finite set Z, #Z denotes its cardinality.

A denotes the empty word. For a word x, pref(x) denotes the set of
prefixes of x and, for a positive integer n, prefn(x) denotes the
prefix of x of the length n. If X ¢ pref(y) then we write x pref y;

if either x pref y or y pref x then we write x PREF y. For a language

K, pref(K) = k,) ?ref(w). We have analogous notation for suffixes
we K

replacing everywhere above pref by suf and PREF by SUF. For a
letter c, #Cx denotes the number of occurrences of ¢ in x and
c-pref(x) denotes the maximal prefix of Xx consisting of c¢'s only.
For a nonempty word x, first(x) denotes the first letter of x and
last(x) denotes the last letter of x. For words x, y we say that
they are cyclic éonjugates, denoted x ~ y, if there exist words
Z15 2, such that x = 12, and y = 252 We define tazl(x,y) = (u,w)
if z is the Tongest common prefix of x and y, x = zu and y = zw.
If y=xz then xX\y = z and y/z = X.

As usual to avoid a very cumbersome notation and terminology
we will sometimes use terms "Tetter," "word" and "subword" when we

really mean an occurrence of a letter, an occurrence of a word or

an occurrence of a subword respectively. However, as usual, it



should not lead to a confusion.
An infinite sequence {Xn}nzl of nonnegative integers is ultimately
periodic if there exist integers t = 0 and p = 1 such that xner =X
for each n > t. The smallest t satisfying the above is called the
threshold of {xn} and the smallest p satisfying the above is called
the period of {xn}.
Let {An} be an infinite sequence of objects that is ultimately periodic;
Tet t be its threshold and p its period. We say that this sequence
can be effectively constructed if there exists an algorithm that
constructs the first (t+p) objects of it.
In this paper we consider propagating homomorphisms only, that
is homomorphisms h with the property that for no letter c, h(c) = A.
Thus whenever we write a homomorphism we mean a propagating one.
For a homomorphism h of Z*, maxr(h) = max{|h(c)| : cex}.
For a pair of homomorphisms h, g of z*, maxr{h,q) = max{mazr(h), maxr(q)}.
The following notion and the result (from [EhR1]) are quite basic
in the study of homomorphisms on free monoids.

* *
Definition 0.1. A homomorphism h: 3 - A 1is simplifiable if
* *
there is an alphabet © with #0 < #3 and homomorphisms f:: = o |,

* *
g:0 - A such that h = gf. Otherwise h is called elementary. [

) *
Theorem 0.1. Let h:% - A be an elementary homomorphism with

.,C, 1, k =2 1. Consider U = {h(cl),...,h(ck)}. Assume that

k
* ¥
hic.)xy = h(cj)y for i # 3, vy e A and x, y e U . Then

< !h(cl)h(c )...h(ck)[ - k. 0O

?

=
—_—
(@]
~

=
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In this paper we will often consider equations in a free monoid.
In particular the following type of equations will turn out to be
useful. The following definition and result are from [EhRI.

Definition 0.2. Let I, A be alphabets with #1 = 1. Let fl, fz,

5 *
3,b1,b2, 3 € A

Then a unary 2-fold equation is an equation of the form

91595 be homomorphisms from £* into A* and let al,az,a

alfl(x)azfz(y)a3 = blgl(x)bzgz(y)b3 .................................... (0.1)

in variables x, y. A solution of (0.1) is an ordered pair (u,8) with
*

a, B e & such that

alfl(a)azfz(ﬁ)a3 = blgl(u)bzgz(ﬁ)b3.

If (0.1) has a solution then we say that it is solvable. [

The equation a
alfl(x)a2 = blgl(x)b2 .................................................. (0.2)
which is a special case of the equation (0.1) (set ag = b, = A and f
*
equal 9o equal the identity on = ) is referred to as a wnary 1-fold equation.
Theorem 0.2. 1t is decidable whether or not an arbitrary unary

2-fold equation is solvable. [J

Perhaps the most useful problem in considering decision problems
within formal Tanguage theory is the following problem studied first
by E. Post [ P ].

Definition 0.3. Let & be an alphabet and let h, g be two
homomorphisms of Z*. The Post Correspondence Problem (PCP for short)
is to determine whether or not there exists a word w in 7' such that
h(w) = g(w). If #2 = n then we say that we deal with the Post

Correspondence Problem of length n (PCP(n) for short). 0O



In this and in two follow-up papers ([EhR3 and [EhR4]) we will
demonstrate that even a more general problem than PCP(2) is decidable.
The generalization that we study is defined as follows.

Definition 0.4. Let i, A be alphabets, h, g be two homomorphisms
from z* into A* and let al,az,bl,b2 be words over A. The Generalized
Post Correspondence Problem (GPCP for short) is to determine whether
or not there exists a word w in »' such that alh(w)a2 = blg(w)bz.

If #2 = n then we say that we deal with the Generalized Post Correspondence

Problem of length n (GPCP(n) for short). 0J

Note that if we set a; = a, = b1 = b2 = A then GPCP(n) reduces
to PCP(n).

In this paperﬂwe will be concerned with GPCP(2). It is clear that
as far as the decidability of GPCP(2) is concerned one can restrict oneself
to range alphabets of cardinality two and moreover, one can assume that
the domain alphabet (z) and the range alphabet (a) are identical.
Consequently, unless explicitly stated otherwise, in this paper we
consider homomorphisms of Z* into Z* (endomorphisms oj’z*) where #r = 2.
We also set for this paper ¥ = {0,1}. Moreover we assume that given an
instance I = (n,g,a;,a,,b;,b,) of 6PCP(2), a, PREF by and a,SUF b, since
otherwise I has no solution.

We would Tike to finish this section with the following comment.
Very often in this paper we will have a situation of the following
kind. First, we compute explicitly a positive integer constant C
and then we have a statement like this: "If a word w is such that
|[w| = C then a certain property P of w holds." We do not intend here

to provide the best upper bounds, and so the only meaning of such a

statement is that for every positive integer D = C we have:
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"If a word w is such that |w| =D then P of w holds."

Moreover, after we have computed explicitly constants like these
in a number of similar situations we will switch to the statement of
the kind: "One can effectively compute a positive integer constant C
such that if a word w i§ such that ..... ", leaving the explicit

computation of C to the reader.




1. SOME SPECIAL CASES

In this section we demonstrate the decidability of GPCP(2) in
several special (rather "easy") cases. The results of this section will
be used later on to settle more involved cases.

Theorem 1.1. It is decidable whether or not an arbitrary instance
I = (h,g,a;,a,,b,,b,) of GPCP(2) such that [h(0)| < [g(0)] and
Ih(1)] = |g(1)] has a solution.

Proof.

Consider the following algorithm. Let us generate all the words
over {0,1} in their "natural" order (that is first according to the Tength
and within the given length the words are ordered lexicographically; thus
first few words in this order are 0,1,00,01,10,11,000,...). Each time a
word, say w, is generated we check whether or not w satisfies one of the
following three conditions:

(a). it is not true that alh(w) PREF blg(w),
(b). [by3(n)| - |agh(w)| = abs(lay] = [by]),
(c). w = WqWos Wy A, W, # A and taiz(alh(wl), blg(wl)) = taiz(alh(w), blg(w))‘

If w satisfies one of the conditions (a) through (c) then we say that
w is a stop word and in our generating process we discord words which have
a stop word as a prefix.

(i). Clearly, one can effectively compute a positive integer constant C such
that no word Tonger than C will be generated by our process.

(i1). Now we claim that if I has a solution y then I has also a solution z
such that z is a prefix of one of the stop words produced by our algorithm.

This is proved as follows.

Assume that y is a solution of I such that y is not a prefix of one
of the stop words produced by the algorithm. Then, clearly, no prefix w of
y can satisfy either (a) or (b) and y must be of the form wu where w satis-

fies (c). Consequently WU must also be a solution of I. Iterating this



process we arrive at a solution z that is a prefix of one of the stop words
produced by the algorithm.

The theorem follows now from (i) and (ii). o

Theorem 1.2. Given a positive integer k, it is decidable whether
or not an arbitrary instance I of GPCP(2) has asolutionw such that
#w < k.

Proof.

Let T = (h,g,a;,3,5b;5b,).

We consider separately the following two cases.
(a). [h(0)] = |g(0)].
Note that if x is a word such that #1x < k then
abs(|h(x)] - la(x)]) = t(x), where
t(x) = ([x|- k) aps ([h(0)|-[g(0)]) - kabs (|h(1)[-]a(1)]).
But if w is a solution of I such that #1w < k then we have
abs(In(w)| - (9w} ]) = abs(lay] = [by]) + abs(lay] - |b,])
and consequently we get that

lajasbib,| + kabs ([h(1)]-]g(1)])

| < L2172 .

abs(|h(0)[-]g(0)])

Hence in this case to find a solution of I it suffices to check
all the words over {0,1} shorter than certain effectively computable
positive integer.

(b). [h(0)[ = [g(0)].

Here we will consider two subcases.
(b.1). It is not true that h(0) ~ g(0).
Now let for a word x

E0x) = max{{h(x)[,]g(x) [} = (k[h(1)] + k|g(1)| + (2k+1)3|h(0)]).
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Assume that w is a solution of I such that #1w < k and Tet us assume

that t(w) > 0. Let a = alh(w)a2 = blg(w)bz.
We will divide all occurrences of letters in o into two categories.

An occurrence of a letter in a belongs to the first category if either

it is "contributed" to o through h from an occurrence of 1 in w, or it

is contributed to o through g from an occurrence of 1 in w or it belongs

to the prefix a; or it belongs to the prefix b1 or it belongs to the suffix a

2
or it belongs to the suffix b2'

Otherwise an occurrence of a letter in o belongs to the second category.
(i). o contains an occurrence of a subword that is longer than
3|h(0)| and consists only of occurrences of letters of the second category.

This is seen gs follows.

Let a l-group in o be a maximal sequence of occurrences of letters
of the first category (maximal meaning that it cannot be prolongated
neither to the left nor to the right without including an occurrence of
a letter of the second category). Similarily we define the notion of

a 2-group in a. Since #1w < k, the number of I-groups in o (not counting groups

resulting from prefixes al’bl and suffixes az,bz) cannot be bigger that 2k. Con-

sequently., the ngmber of-2-groups in a cannot exceed (2k+1). From the definition
of t(w) it follows that the total combined Tength of all the 2-groups
is longer than (2k+1) 3|h(0)| and consequently there exists a 2-group
that is longer than 3 |[h(0)].
(ii). From (i) it follows that either o contains a subword of the
form h(0)h(0)h(0) which in turn contains a subword of the form g(0)g(0),
or a« contains a subword of the form g(0)g(0)g(0) which in turn contains
a subword of the form h(0)h(0). It is easily seen that either of these

cases implies that h(0) ~ g(0); a contradiction.
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Consequently it must be that t(w) < 0, and this implies that
wl = (k1) + K[g(1)] + (2k+1)3[h(0)]).

(b.2). h({0) ~ g(0).

In this case we prove the theorem by induction on k.

Basis. k = 0.

Then I has a solution if and only if the equation

3 0(x)a, = BIG(X)Dy et (1.1)
A A

has a solution where h and g are the restrictions of h and g respectively

to the alphabet {0}. However, (1.1) is a 1-fold equation and so the

theorem follows now from Theorem 0.2.

Induction step. We will show that if the theorem is true for k then it

is also true for (k+1).

Let q = abs([all—{bll) + 3 [h(0)].

(ii1). If I has a solution, then I has a solution w such that
|h(0-prer(w))| < q.

This is rather obvious, because if z is a solution of I such that
|h(0-pref z)| = q then by removing the first occurrence of 0 in 7 one
gets another solution of I.

Now for every £ < g, let IK = (h,g,alh(Ozl),az,blg(oﬂl),bz)u
| (iv). I has a solution w such that #1w =k + 1 if and only if,
for some £ < q, IE has a solution z such that #12 = k.

This follows easily from the construction of IK for £ < q.

Thus, in the case of h(0) ~ g(0), the theorem follows from the
inductive assumption.

Since the division into cases (a) and (b) is exhaustive, the theorem

holds. [J



Ve

Theorem 1.3. Given w ¢ {O,l}*, it is decidable whether or not an
arbitrary instance I of GPCP(2) has a solution belonging to the set {w}+.

Proof.

The problem is trivial if w = A.

Hence assume that w = A.

Let I = (h’g’al’aZ’bl’bZ) be an instance of GPCP(2) and let ﬁ, 3
be homomorphisms from {0}* into {O,l}* defined by Q(O) = h(w) and 6(0) = g(w).
Then, obviously, I has a solution beloncing to {w}+ if and only if the equation
alg(x)a2
has a solution. However, (1.2) is a 1-fold equation and so the theorem

A
= blg(x)b2 ................................................ (1.2)

e

follows from Theorem 0.2. [



-13-

2. PERIODIC INSTANCES OF GPCP(2)

In this section we study the case when (at least) one of the
homomorphisms involved in an instance of GPCP(2) 1is periodic, that
is h(0)h(1) = h(1)h(0). Although this case is not difficult to settle
it plays an important role in the reduction of the general problem
(see [ ]). Also the material of this and the previous section should
help the reader not very familiar with the Post Correspondence Problem
to get the "feeling" for this problem.

Definition 2.1. A homomorphism f on {O,l}* is called periodic
if F(0)f(1) = f(1)f(0). An instance I = (h,g,al,az,bl,bz) of GPCP(2)

is called periodic if either h or g is periodic. [J

Obviously, if f is periodic then there exist a word p and
k k
positive integers kO’ k, such that f(0) =p U and f(1) = p 1.

Theorem 2.1. 1t is decidable whether or not an arbitrary periodic
instance of GPCP(2) has a solution.
Proof.

Let I = (hﬁg,al,az,bl,bz) be a periodic instance of GPCP(2).

We will consider separately several cases.
(a). Both h and g are periodic.
Consider the equation

alhl(x)hz(y)a2 = blgl(x)gz(y)b2 ..................................... (2.1)

where variables x and y range over {0}+ and hl’ hza gl, g, are

homomorphisms of {0} * defined by hl(O) = h(0), 91(0) = g(0), h2(0) = h(1)
and g,(0) = g(1).
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(1). A pair (x,y) = (0", 0™ is a solution of (2.1) if and only

if Onlm is a solution of I.

This 1is proved as follows.
Assume that (0",0™) s a solution of (2.1).

Then we have

n.m _ n m - n m -
alh(O 1 )a2 = alh(O Yh(1 )a2 alhl(o >h2(0 )a2
- n m B n m -
~ n.m
= blg(O 1 )b2'

Similarily we show that if 0" 1™ s a solution of T then (0",0™) is a
solution of (2.1).
(ii). 1If w is a solution of I then also the word 0" 1™ where

n = #Ow and m = #1w is a solution of I.

~

This follows from the obvious fact that a periodic homomorphism f
is permutational in the sense that if u, z are words such that z is a
permutation of u then f(u) = f(w). '

Now the theorem follows from (i), (ii) and from Theorem 0.2.
(b). h is periodic and g is not periodic.
Let p be a word of the minimal Tength such that h(0) = pko and h(l) = pkl
for some positive integers kO and kl' Since g is not periodic, it is
easily seen that it must be elementary.
The form of h implies that solutions of the equation
alh(x)a2 = blg(x)b2 ................................................. (2.2)
in variable x are included in solutions of the equation
alpna2 = blg(x)bz............; ...................................... (2.3)

in variables n and x where n ranges over positive integers.
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Let t be a word of the minimal length such that a].prefPDIQ(t and Tet

1)

t (If either

> be a word of the minimal length such that azeang(tz)bz.
tl or tz does not exist, then solutions of I must be shorter than

certain effectively computable positive integer constant).

We have the following situation:
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Let d = P12P1g and let Py be the word such that P1pPoy = dpl.

Consequently we are led to the equation

m
d'py = UK et e e (2.4)

in variables m and x where m ranges over the positive integers.

Claim 2.1. There exists effectively a positive integer C, such that

1
whenever (m,x) = (q,u) is a solution of (2.4) such that q > C1 then one

can effectively find finite sets of words UO’ U, and W such that

1

for some i =21, u, e U,, u, e U, and y ¢ W.

R
U= Uyl 1 €YYy

2

Proof of Claim 2.1.

Let |p| = r. Let (q,u) be a solution of (2.4), so dqp1 = g(u), and let
u:=XOX1...Xlu|, where XO’Xl""’Xlul e {0,1}s Let ¢ be a function from
{XO’Xl""’X]u]} into {0,1,...,r-1} such that it assigns to each Xi
the position of fiyst(g(xj)) modulo r in the string g(u).

Let k be the minimal positive integer such that the value of w(Xk)
repeats in the sequence w(XO), cees w(X[ui) and Tet £ be the minimal
integer, £ > k, such that w(X£+1) = w(Xk). We assume that u is"large
enough"so that such k and £ exist.

Thus we have the following situation



-18-

To,u ...... : ?xl),.‘... ,Tuxk), ................. (Xgyp) = ()5 omee
g(u) = ]
\ AW 2 “--\_,,____. Tt - s AN __J‘ T

< — <
[(®]
e
(o)
—
o]
i
e



-19-

Let t:={g(Xk...X£){ and let o be the subword of g(u) starting at
first(g(xﬂ+1)) and such that |a| = t. Let o be the remaining

suffix of g(u).

Let y = Xk...XK and let y be the minimal subword of u such that it

starts at X and such that g(y ) contains o« as its prefix. Let

£+1
y  be the remaining suffix of u.

First we prove the following.

(1). v =v.

This is proved by contradiction as follows.

Assume that yl # y. Since |a| = |g(y)]| and we assume that u is
large enough (so that we are still "within" the periodic part dq),

we have o = g(y) and consequently

R o e R o T A (2.5)
and

]
(Y ) Pref QLY ) et e e e (2.6)

Now we consider two possibilities.

(i.1). yprefy . )

Then from the "minimality condition” on y it follows that

!

y =y ; a contradiction.

(i.2). yxp:r’ezfy.

Then (2.6) implies that g(yl) = g(y) which (for the propagating
homomorphism g) is possible only if y' = y; a contradiction.

Consequently it is not true that y’PREFy‘.

Thus there exists a s < £ such that Xk+5 = XK+1+3' Since g is
not periodic, we have g(Xk+S) # 9(X£+1+5 ).

Let e = 90X X pp- - Kppay) = 90X Xprpe - Xppg) -

Then we have the following situation:
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L3R} LI

Thus (2.5) implies that (e\(aa ))pref(e\(cao )) which for
m "big enough" contradicts the basic property of elementary homomorphisms,
see Theorem 0.1.

Consequently it must be that yl =y and so (i) holds.

Thus indeed u is of the form ulyiu2 for some i > 0 where
Uy = XO e Xk—l and U is the appropriate suffix (which we obtain

when we cannot "fit" anymore y into u).

The claim follows now easily. [

Now we check whether there exists a solution (q,u) of (2.4)
such that q < Cl'

If such a solution (q,u) exists we check whether the equation
alpna2 = blg(tl)g(ﬁ)g(tz)b2 in variable n ranging over positive \

integers has a solution.

[

If such a solution n o exists then we check whether n. can

0
be expressed in the form Ny = ko#o(t1 u tz) + kl#l(tl u tz). If it

does than x = tl u’t2 is a solution of I.

Otherwise, that is if one of the above three steps provides a
negative answer, we proceed as follows.

If each solution (g,u) of (2.4) is such that q > C, then

1
consider again equation (2.3).
The claim implies that we can effectively find a finite number of
1’
words of the form Uy ¥ Uy such that x must be of the form tl up y U t2,
i = 1, for one of them. We consider one by one each of those possibilities.

If x = ty yi U, t, is a solution of (2.3), then we have

agh(ty uph(y)h(u, ty)a, = by gt 090 gy ty)byeee e (2.7)
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We set now a; = ay h(t1 ul), aé = h(u2 t2)a2, bi = b1 g(t1 ul), bé = g(u2 tz)b2
and homomorphisms h', g' on {0}* be defined by h'(0) = h(y) and g'(0) = g(y).
Then clearly (2.7) has a solution if and only if the following 1-fold
equation has a solution
..i

] 1 1 I i .i 1
33 h' (0 )a2 = b1 g'(0 )b2 ............................................. (2.8)

Hence by Theorem 0.2 it is decidable whether or not (2.7) has a solution
(in ). If it has, say i = io, then clearly I has a solution, namely
.i
_ 0
X = t1 up Uy t2.

On the other hand, if, for none of the possibilities up y u (2.7)

9>
has a solution then I does not have a solution.

Consequently it is decidable whether or not I has a solution and the
theorem holds in case (b).

(c). g is pef%odic and h 1s not periodic.

This case is analogous to (b).

However (a), (b) and (c) together imply the theorem. o
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3. THE BASIC TRANSFORMATION

In this section we will be concerned with marked homomorphisms,
that is homomorphisms such that their images of 0 and of 1 differ on
the first letter. For these homomorphisms and for instances of
GPCP(2) involving such homomorphisms we present the transformation,
called the equality collector, that will be the most crucial in our
solution of the GPCP(2) problem. The basic properties of this
transformation are studied in this section.

Definition 3.1. A homomorphism f of {O,l}* 1s marked if

First(f(0)) = first(f(1)). 0O

* *
Definition 3.2. If f:{0,1} - {0,1} 1is a marked homomprphism,
i, J e {0,1) and first(f(i)) = j then we say that i is the j-index of f

and we write i = j-ind(f). 0O

Definition 3.3. For a pair of marked homomorphisms h, g of
. .
{0,1} we define the function Mg from {0,1} into {0,1} by:

for 1, j € {0,1}, w, (i) =3 if and only if first(h(i)) = first(g(j))

h,g
and first(g(i)) = first(h(j)). We write u rather than Mhg whenever h,g

are understood. [J

It is easily seen that “h,g is a well defined function for marked
homomorphisms h, g.

Suppose that we are given a pair of words (a,8) such that one
is a (proper) prefix of another one, say o is a proper prefix of 8.
Assume also that we are given two marked homomorphisms h and g and we

want to find two words u and w such that o h(u) = gg(w). A very
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natural way to proceed is as follows. Since g is "ahead" we look at
the first Tetter of the "difference" between g and o, say ¢ (thus ac
is a prefix of g). Since h is marked, ¢ uniquely defines a letter
from {0,1}, say il’ such that we must consider uh(il) if we want

to "catch up" with B. We iterate this procedure until we get a word

11"'7r1 such that either «o h(11...1

1..,i ). If ah(i,...1_ ) =B we are done; otherwise we do now
ry 1 "

the same on the "g side," that is we construct a sequence of letters

» ) =B or g is a proper prefix
1

o h(i

, such that either o h(11...1r1) = 39(31...351) or

ah(il...i ) is a proper prefix of 8g(j,...J. ). We iterate this
r 1 Sq

rocedure again, starting now on the "o side". Either this process
& P

Jla \]23 AR ] JS

ends successfully (that is we find sequences 11...1r and jl"'js such

that alﬁ(il...i ) = Bg(jl""js))’ or it will continue "infinitely Tong"

r
or it blocks (that is we perform a step the consequence of which is
that the word on the o side and the word on g side are not anymore
related by the prefix relation).

Essentially this situation is formalized now.

Definition 3.4. Let h, g be marked homomorphisms from {0,1}*
into {0,1}* and let a, B € {O,l}*. For a nonnegative integer i we
(1)

define (u,B) inductively as follows.

h,g
: (0) .
0: (CﬂaB) h’g (haA)(gaA)-
o (0) . 2(0)
The h-projection of (a,B)h g’ denoted by ((«,8), q)h or
simply by (a,B)éO) whenever g is understood, is defined by (u,B)ﬁO)= A.

The g-projection of (a,B)éOg , denoted by ((u,g)goé)g or simply by
(O) E) 3

(a,B)g whenever h is understood, is defined by (a,B)éO) = A
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(1) S¢ defined if and only if

i+ 1 (a,8), g

ah(h,@ﬁ”)mﬁFeg“uﬁ)g>)amiuhﬁuﬁ)ﬁ% #Bﬂ@hggi”‘

If (a,s)éigl) is defined and ¢ ¢ {0,1} then

(a). 1F ahl(a,8)t )cpreragl(a,m 1)) then (w8) {71 = (a,0)|1) (h,coimatn)),
and

(b). 47 89((as8)\ N)cpreran((ae)i1) then (w,6) {7V = (a,){1) (g, c-mal0))

If (a,e)éigl) is defined then the h-projection of it and the g-projection

of it are defined by:

if (a) hotds then (a.8){™*1) = (a,0){ Pe-tna(h) and ()8 ) =(a,8)éi),

and

i (b) holds then (e,8) ) = (ue)(V) and (a,e) T = (o) T eninat).
For i = 0 we say that

(,8) V) 4 sucocaspur i an((a,e){™) = £9((a,e)!1)), and

(a,B)(i) blocks if it is not true that uh((a,g)ﬁj%PREF Bg((a,g)éi)). 0

*
Definition 3.5. Let h, g be marked homomorphisms from {0,1}
* *
into {0,1} and let o, 8 € {0,1} . The (a,R) -sequence (with respect to h,q),
denoted by (a,B)h g’ is defined as follows.

(a). Assume that i > 0 is such that (a,B)(1) is successful (note that
. ) h,g
= (d’B)été and we say that (u,B)h is

i is unique). Then (a,B) g

h,g

successful.

(b). Assume that i = 0 is such that (a,B)ﬁ1% blocks (note that i is
. _ (1) ’ —

unique). Then (“’B)h,g (a,B)h,g and we say that (u’8>h,g blocks.

(c). If there is no i satisfying either (a) or (b) then (a,e)h g is

the infinite (to the right) word over the alphabet
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{(h,a), (h,0), (h,1), (g,n), (g,0), (g,1)} such that for each i = 0,

(a,B)(;)g is its prefix.

The h-projection of (a,8), _, denoted by ((«,8), ), or simply
h,g h,g’h

by (a,B)h whenever g is understood, is defined by:

i

if (a) holds then (u,s)h (a,B)éi),

i

if (b) holds then (a,B)h (a,8)£1), and

if (c) holds then (a,B)h is the infinite (to the right) word over

{0,1} such that for each i = 0, (u,@)é1) is its prefix.

The g-projection of (u,B)h g’ denoted by ((a,8), ) or simply

h,97g
by (a,8)_, whenever h is understood, is defined by:

g .
if (a) holds then (a,s)g = (a,B)é1),
if (b) holds then (a,s)g = (a,B)éT), and

.

if (c) holds then (a,B)g is the infinite (to the right) word over {0,1}

such that for each i > 0, (a,s)é1) is its prefix. [

Here are two rudimen%acy Eropertiei of (a,B) - sequences.

Lemma 3.1. Let h, g be marked homomorphisms from {0,1}* into
{0,1}* and fet o, B € {O,l}*. If (Q’B)h,g is infinite then it is
ultimately periodic.

Proof,

Obvious. [

Lemma 3.2. Let h, g be marked homomorphisms from {0,1}* into
*
{0,1} . It is decidable whether or not (u,B)h g is successful or

%
(u,B)h g blocks or (a,B)h g is infinite for arbitrary words o, 8 ¢ {0,1} .

3
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Proof.

Obvious. [

Now we define the construction that is perhaps the most
important construction of our solution of GPCP(2).

Definition 3.6. Let (h,g) be an ordered pair of marked
homomorphisms such that both the sequence (h(0), g(u(0))) ‘and the

n,q
sequence (h(1), g(u(1))) are successful. Then the equality collector of

h,g

(h,g), denoted as ecol (h,g), is the pair of homomorphisms (h,g) on
*

{0,1} defined by

h(0)

9(0)

il 4
b=l [e]
—~ o~

(aw] =
— —
~—~ O
o ~—r
— “
() w2
~— —
v =
« —~
—~ O
hod —r
—~ ~—
o ~—
S o=
~ «
~

=
—
—
~—
it
f—
—
=
—
—t
~—
-
(e
—
=
—~
fam—
~——
—
—
-
«

Remark. Throughout the paper, given a pair of homomorphisms h, g

we will use the "bar notation" (h,g) to denote ecol (h,q). [

7

The usefulness of the (iterative) application of the ecol
function relies on the following property. First we need a definition.
Definition 3.7. For a pair of homomorphisms (h,g) of {0,1}*
we define its suffix index , denoted by o(h,q), as

o(h,9) = # sufth(0),h(1)} + #suf{g(0),9(1)}. o

Lemma 3.3. Let (h,g) be an ordered pair of marked homomorphisms
such that ecol(h,g) = (h,g) exists. Then
(a). both h and g are marked,
(b). o(h,g) = o(h,g).

Proof.

(a) is obvious.
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To prove (b) we proceed as follows.
(b.1). We will demonstrate that there exists a function (perhaps partial) from
suf{h(o), h(1)} onto suf{g(0), g(1)}.
(b.1.7.). We construct a function fl from sufg(O) into suf{h(0), g(0)}.
Assume that v is .a nonempty suffix of E(O). Let 5(0) = j]"'jk’
k=1, jl,...,jk € {0,1} and let v = js...jk for some s € {1,...,k}.

Let-ﬁ(O) =i '1"“’18 € {0,1}. Consider now the contribution

11y
o from js through g to gg(0) = HE(O). Let ¢ be the leftmost (occurrence of a)
letter in p and let it be the element of H(O) such that its contribution

§ through h to HH(O) = gg(0) includes c. Let z be the suffix of 5 starting
'at c. Clearly z is well defined. We let z to be the value of our function

applied to v.

Thus we have the following situation:

_ 1 t 2
h(0) t :
/ \
/
/ \
1
// \
\
// 5 \
7 e ™
/ Z o\
/ e ™
\ —
VM ] 99(0)
\ o) /
\ /
\ /
\ /
\ /
\ /
\ /
(0) \/
N Jg i
e d

=< S
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Clearly, o PREF z ; since it js difficult to depict both possibilities in

one figure we illustrate the possibility of z pref p only.

(b.1.2). Similarly we construct a function f2 from suf§(1) into
suf{h(0), h(1)}.

Combining inverses of functions fl and fz we get a binary relation f
which is a subset of the Cartesian product suf{h(0), h(1)} x suf{g(O),'g(l)}.
Note, hovewever, that (in the notation from above) z uniquely determines
v and so f must be a function (perhaps partial) which is onto.

(b.2). Analogously to (b.1) we show that there exists a function (perhaps
partial) from suf{g(0), g(1)} onto suf{H(O), E(])}.
The part (b) of the Temma follows directly from (b.1) and (b.2). [

We will consider now instances of GPCP(2) involving marked homomor-
phisms only.
Definition 3.8. An instance I = (h,g,al.az.bl.bz) of GPCP(2)

is called marked if both h and g are marked. [J

Remark. In the rest of this paper, even if not explicitly

stated, we deal with marked instances of GPCP(2) only.

Definition 3.9. Let I = (h,g,al,az,bl,bz) be a marked instance of
GPCP(2) such that both the sequence (h(O},g(u(O)))h g and the sequence
(h(1)>9(u(1)))h g are succesful. The tall equation of 1, denoted as

ETai](T)’ is the equation

h(x)az = Q(Y)_bz
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* .
in variables x, y ranging over {0,1} . A pair of words (u,w) is called

a short solution of ETai](I) if h(u)a2 = g(w)b2 and moreover,

Ih(u)a,| < {azbzl + [hh(0)] + [hh(1)|. The set of all short solutions

The notion of the equality collector is extended now to
instances of GPCP(2) as follows.

Definition 3.10. Let I = (h,g,al,az,bl,bz) be a marked instance of
GPCP(2) such that the sequence (al’bl)h,g is successful, the sequence
(h(O),g(u(O)))h’g is successful, the sequence (h(l),g(u(l)))mg is success-
ful and SOZ(ETai?(I)) # 0. Then an equality collector of 1, denoted ecol I,

is an instance )] = (E}@}E&,u,ﬁi,w) of GPCP(2) such that (h,g) = ecol(h,q),

a,= (al’bl)h’ b1 = <a1’bl> and (u,w) e SOZ(ETai1(I))‘ The set of

g
all equality collectors of I is denoted by ECOL(I). 0O

Clearly we can iterate ecol and ECOL constructions; we will
use ecozi and ECOLi (for a positive integer i) to denote the i'th
iteration of ecol or ECOL function respectively. Note that, in
general, ecozi or ECOLi may be undefined.

Definition 3.11. If I is a marked instance of GPCP(2) such
that ECOL(I) = @ then we say that I is successful; otherwise we say

that I is wunsuccessful. [J

The following result "justifies" the use of ECOL transformation
as a tool in solving the GPCP(2).

Theorem 3.1. Let I be a marked instance of GPCP(2) such that
ECOL(I) is not empty. One can effectively compute a positive integer

constant C such that: I has a solution if and only if either I has
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a solution not longer than C or there exists a J in ECOL(I) such
that J has a solution.
Proof.

Let I = (h,g,al,az,b ,b,) and Tet

1’72
C = [n(E@Da(b)] + [aya,bb,| + 2([h(h(0))] + [n(A(1))]).

Assume that for two words o, B € {O,I}Jr we have

where |y| > C.

Then clearly v is of the form

.- a;h(a;) h(‘11112"‘11r1) R U B LY
by (by) Wipdngedis )| 90 dgg )} folwby
for some t > 1 where (u,w) e SOZ(ETai](I))'
Let o = i11121"'1t1‘
Then clearly we have
o = Eiﬁka)u and g = Eiii(o)w ....................................... (3.1)

(a). Assume that o = 8 is a solution of I such that
]alh(a)azl = ‘blg(u)bgl > C.
Then from (3.1) it follows that o is a solution of the instance
J = (F}g}gi,u,gi,w) e ECOL(I).
(b). Assume now that J = (ﬁ;“}é&,u,Eg,w) e ECOL(I) has a solution 6;

hence

5&5(6)u = Bi@(ﬁ)w ................................................... (3.2).



-32-

However we have

alh(alh(é)u)a2 = alh(al)hh(é)h(u)a2
= b,g(by)gg(8)g(w)b,
= blg(b19(6)w)b2
Thus (3.2) implies that ¢ = Eiﬁké)u = Ei@?@)w is a solution of I.
The theorem follows now from (a) and (b). O

We will consider now the case when the ecol transformation can
be applied "ad infinitum."

Lemma 3.4. Let (h,g) be an ordered pair of marked homomorphisms
such that for each i =z 1, ecozi(h,g) is defined. Then the sequence
(h,g), ecol (h,q),ecol’ (h,g), ... is ultimately periodic and it can be
effectively constructed.

Proof.

This is a straightforward consequence of Lemma 3.3. 0O

We will use the notation trace (h,g) to denote the sequence
(h,g), ecol (h,q), ecoZZ (h,g), .... and if this sequence is infinite
then we use thres (h,g) to denote the length of its threshold part
and per (h,g) to denote the length of its period part.

In our solution of the GPCP(2) (in the case of marked instances)
we will iteratively apply the ECOL transformation until we reach the
"stable situation" which is formally defined as follows.

Definition 3.12. Let I = (h,g,al,az,bl,bz) be an instance
of marked GPCP(2) such that ¢race (h,g) is infinite and let ¢hres (h,g)

Then ecozr+1 (h,g) is called stable.
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~

We say that J = (ﬁ,ﬁ,al,az,gl,ﬁ ) is a stable version of 1 whenever

J ¢ ecoL™t!

(I); the set of all stable versions of I is denoted by STABLE(I).
We also say then that J is a stable instance of GPCP(2) (with respect to

I). o

The next three results describe some basic properties of stable
instances of GPCP(2).
Lemma 3.5.
(a). Let (h,g) be a pair of marked homomorphisms such that ¢race (h,g)
is infinite. Let thres (h,g) = r. Then, for i =z r + 1,
slecor’(h,g)) = olecor’ (h,9)).
(b). Let I = (h’g’al’aZ’bl’bz) be a stable instance of GPCP(2).
Then o(h,g) = o(ecol (h,g)).
Proof.
(a). Since trace (h,g) is ultimately periodic, for i = r + 1, ecoli(h,g) =
ecoli+p(h,g) where p = per(h,q).
Thus Lemma 3.3 implies that for i =2 r + 1,
s(ecot’ (h,9)) = alecor’ t (h,9)).

(b). This follows directly from (a). 0O



Definition 3.13. Two languages K1 and K2 are said to be prefiz
compatible, denoted Kl peom KZ’ if for every x ¢ K1 there exists a y ¢ K2

such that x PREF y and for every x ¢ K2 there exists a y € K, such that

1
x PREF y. [

Lemma 3.6.

A A i A A

(a). Let (h,g) be a pair of marked homomorphisms such that trace (h,q)
A

is infinite. Let thres (Q,g) =r. Letizr+1and let
ecozi (h,g) = (h,g). Then
{9(0), 9(1)} peom(suf({h(0), h(1)})) and
{h(0), h(1)} peom(suf({g9(0), g(1)})).

(b). Let I = (h,qg,a ,az,b1 bz) be a stable instance of GPCP(2). Then
{g(0), 9(1)} peom(suf({h(0), h(1)})) and
(h(0), h(1)3 peom(auf(19(0), 9(1)3)).
Proof.
(a). We refer the reader to the proof of Lemma 3.3 (especially to the
(b.1) part of it where the basic construction is described in detail); we
will use the notation from there. By Lemma 3.5 it follows that the function f
is a bijection from suf{h(0), h(1)} onto suf{g(0), g(1)3.
Note that the basic construction from the proof of Lemma 3.3 assigns to
each element x from {g(0), g(1)} a nonempty subset of the set
suf{h(0), h(1)} such that x PREF z for each z in thié subset. Since
f is total we also know that, by the same construction, for every element
from the set suf{h(0), h(1)} there exists an element x in the set
{g(0), g(1)} such that z PREF x. Consequently {g(0), g(1)} peom(suf{h(0), h(1)3}.
Analogously we show that {h(0), h(1)} pcom(suf{g(0), g(1)}).
Thus (a) holds.

(b). This is a simple corollary of (a). [

Lemma 3.7.

(a). Let (h,g) be a pair of marked homomorphisms such that ecol (h,qg)
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exists. Then it cannot be that Zast (h(0)) = Zast (h(1)) = Zast (g(0)) =
last (g(1)).
(b). Let I = <h’g’a1’a2’b1’b2) be a stable instance of GPCP(2). Then
it cannot be that Zast (h(0) = Zast (h(1)) = last (g(0)) = last (g(1)).
Proof.
(a). We prove it by contradiction.
If Zast (h(0)) = Zast (h(1)) = Zlast (g(0)) = Zlast (g(1l)) then, obviously,
neither the sequence (h(0), g(”(o)))h,g is successful nor the sequence
(h(l),g(u(l)))h,g is successful. Consequently, ecol (h,g) is not defined;

a contradiction.

(b). This is a simple corollary of (a). [

We end this section with the following result on the effectiveness
of the STABLE(I) operation.

Lemma 3.8. Given an arbitrary marked instance I of GPCP(2)
one can effectively decide whether or not STABLE(I) = @;
moreoveyr, if STABLE(I) # @ it can be effectively constructed.

Proof.

It follows essentially from Lemma 3.2 and Lemma 3.4. [
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4. MORE SPECIAL CASES

In this section we solve more special cases of GPCP(2). The cases
considered in this section (or their solutions) are connected to the ECOL
transformation. |

Theorem 4.1. It is decidable whether or not an arbitrary
unsuccessful instance of GPCP(2) has a solution.

Proof.

This proof consists of considering quite a number of cases.
Although in all the cases the intuitive idea of the proof is rather
clear the formal proofs become quite tedious.%ﬁFor this reason we
try to explain the intuitive idea of the proof in several typical
("crucial") cases, leaving the rest of the proof to the reader. We
hope that after reading our outline the interested reader can construct
(if necessary) the formal proof of the theorem.

Let I = (h’g’al’aZ’bl’bZ) be an unsuccessful instance of
GPCP(2).

(a). 1If sol (ETail(I)) = f then, clearly, if I has a solution then

it is not Tonger than certain effectively computable positive integer
constant. Hence in this case one can decide whether or not I has a
solution,

(b). Assume that (al,b1
We consider separately two cases.

)h is not successful.
»9

(b.1). (al’bl)h,g blocks.
Then clearly a solution of I cannot be longer than an effectively computable

constant and so one can effectively decide whether or not I has a solution.
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(b.2). (al’bl)h,g is infinite.
Thus by Lemma 3.1 (al’bl)h,g is ultimately periodic; let o be the
threshold part of (al’bl)h,g and let g be the period part of
(al’bl)h;g' Then Tet o, be the h-projection of « (that is the
sequence of second components from the subsequence of o consisting of
letters whose first component is h), Bh be the h-projection of g, ag
be the g-projection of « and Bg be the g-projection of g.

Let Z be the set of all ordered pairs (u,w) of words over
{0,1} such that either |u| < lBhi or |w| < lBgl and
alh(uh) h(Bh)h(u) a, ='blg(ag)g(Bg)h(w) b2‘ If Z is empty then a solution
of I cannot be ]onger than Ziugi; so one can effectively decide
whether or not I has a solution when Z = 0.

Hence assume that Z = @; clearly Z can be effectively constructed.

Let hl,g1 be homomorphisms of {O}* defined by hl(O) = B and

91(0) = Bg' For every (u,w) e Z consider the equation
ahhl(x)u = aggl(x)w ............................................... (4.1)
Assume that I has a solution y Tonger than 2o g|. Clearly then

there exists a m = 1 such that for some (u,w) ¢ Z we have

Then clearly x = 0" is a solution of (4.1) for the proper choice of
(u, w).

On the other hand if x = Om, m =1, is a solution of one of

(the finite number of) equations of type (4.1), then ahBﬁLl= agegvv
is a solution of I.
Since (4.1) is a 1-fold equation, Theorem 0.2 implies that one can

effectively decide whether or not I has a solution Tonger than 2|a 8.
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This ends the proof of case (b.2).
(c). Assume that (al’bl)h,g is successful.
We consider separately several cases.
(c.1). Both (h(0), g(u(O)))h’g and (h(l),g(u(l)))h’g

Clearly in this case one can effectively compute a positive integer

block.

constant C such that if I has a solution then it is shorter than C.

This case can be solved analogously to the case (b.2). Now a

is infinite and (h(1), g(u(1))) blocks.

"Tong enough" solution of I will Took as follows:

first one successfully completes the (al,b sequence,

1)
then one runs the threshold part of (h(O),g(u(O)))h 0’
then one runs (a number of times) the period part of
(h(0), g(u(0))),  and
finally one matches the "suffix part" (aZ’bz)“"

Hence one can construct a 1-fold equation analogous to (4.1)
that solves the "I problem" for long enough solutions.

(c.3). (h(1), g(u(l)))h g is infinite and (h(O),g(u(O)))h,g blocks.

This case is symmetric to the case (c.2).

(c.4). (al’bl)h . is successful, (h(0), g(u(0))) is successful
and (h(l),g(u(l)))h’g

One has a number of cases here; we will consider only one of them

h,g
is infinite.

(the most involved one) leaving all other to the reader.
(c.4.1). Consider a solution which looks like this.
First one completes the (al’bl)h g sequence,

then one completes (perhaps several times) the (h(O),g(u(O)))h g

sequence,
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then one starts the (h(1), g(”<1)))h,g sequence, runs (perhaps several
times) its period and then one matches it (using an appropriate
(u,w)) with the suffix part (az,bz).

To decide whether or not I has a solution of this form one

proceeds as follows.

Let (al’bl)h = al’(al’bl)g = bl'

Let hl’ 91 be homomorphisms of {O}* defined by
h, (0) = 0(h(0),g(1(0))), and g;(0) = u(0)(h(0),9(u(0)))
Let « be the threshold part of (h(1), g(u(1)))

g
h.g and g be the period
part of this sequence. Let 0y Bh be the h-projections of o and 8

respectively and let G Bg be the g-projections of o and g respectively.

Let Z be the set of all ordered pairs (u,w) of words over {0,1}
such that either |u| < IBh] or fw| < IBgl and
h(ah) h(eh)h(u) 3, = g(ag)g(sg)h(w)bz. Clearly if Z is empty then I has a
solution of the type that we consider in (b.4.1) only if it has a
solution of this type shorter than certain effectively computable
positive integer constant; so one can effectively decide whether or
not I has a solution when Z = ¢.

Hence assume that Z = §; clearly Z can be effectively constructed.

Let h,.9, be homomorphisms of {0} defined by hZ(O) = 8, and

g,(0) = By
Now for every (u,w) e Z consider the equation
Eihl(x)<ﬂ1h2(y)u = Eigl(x) aggz(y)»v ................................ (4.2).

Similarly to the case (b.2) we can see that I has a "long enough"
solution if and only one of the (finite number of) equations (4.2) has

a solution. Since (4.2) is a 2-fold equation, Theorem 0.2 implies that
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one can effectively decide whether or not I has a long enough solution.
This settles case (c.4.1).

(c.5). (a,,b is successful, (h(0), g(u(0))) is successful and

1 1)h,g
(h(1), g(u(1))), g blocks.

n,g

This case is easy to handle; it is similar to the case (b.2).

(c.6). (al,b is successful, (h(0), g(u(0))) is infinite and

l)h,g
(h(l),g(u(l)))h q is successful.

H

h,g

This case is symmetric to (c.4).

is successful, (h(0), g(u(0))) blocks and

(c.7). (al,b hyg

1)h,g
(h(l),g(u(l)))h . is successful.

This case is symmetric to (c.5).
Since (a), (b) and (c) exhaust all possibilities, the theorem

holds. [

Theorem 4.2. It is decidable whether or not an arbitrary
marked instance I = (h,g,al,az,bl,bz) of GPCP(2) such that h(i) = g(j)
for some i, j.ef{0,1} has a solution.

Proof.

If ECOL(I) = @ then the theorem follows from Theorem 4.1.

If ECOL(I) = @ then let us consider ecol (h,g) = (h,g). Since
for some i, j ¢ {0,1} we have that h(i) = g(j), it must be that either
[h(0)] = 1qg(0)] =1 or |h(1)| = |g(1)] = 1 and consequently, by
Theorem 1.1 we can decide whether or not there exists an element of

ECOL(I) that has a solution. Hence the theorem follows from

Theorem 3.1. [J
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