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SUMMARY

A graphical method for determining the size of a resonant, rectangular
microstrip patch for a specified frequency is given. Using an expression
obtained from the reflection coefficient of a TEM-wave in a semi-infinite
microstrip patch, the resonance condition of a given mode for a patch of
finite size, is derived in a manner analogous to that of a rectangular,
waveguide cavity. Radiation is shown to be in the form of both surface-
waves and sky-waves, and is dependent of the angles of incident for waves
jmpinging onto the edges of the patch. By varying the aspect ratio, it
is also possible to modify the Q-factor of a resonant patch.

1.0 INTRODUCTION
In the design of a microstrip patch antenna, it is sometimes necessary to

consider the trade-offs regarding the aspect ratio of the patch. For
instance, to what extent one can enhance the radiation from a patch antenna
operating near resonance by adjusting its aspect ratio, is ultimately \
related to the efficiency of such an antenna. It is our purpose in this
paper to provide some physical insights into the radiation mechanism of a
microstrip patch antenna by examining in detail the canonical problem of a
TEM-wave incident obliquely frominside the region of a semi-infinite patch
placed on the surface of a grounded dielectric slab. From an analogy of
this type of antenna to that of a resonant rectangular waveguide cavity,
condition for the resonance of a given mode is derived. Provided that the
edge effect from all four edges can be separated, our method yields
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explicitly design criteria for devising a low Q-anténna. In the process,
some of the misconceptions regarding the role of surface-wave and sky-wave,
the dynamic nature of the end-admittance, etc. also will be clarified.

2.0 ANOTHER LOOK ON THE RESONANCE OF A RECTANGULAR WAVEGUIDE CAVITY
Since the electromagnetic field associated with a microstrip patch antenna

typically is concentrated in the region between the patch and the ground
plane, it is not unreasonable to expect that such an antenna operating

near its resonance is similar to a resonant rectangular waveguide cavity
[1-3]. It is well-known that the resonant frequency of the TE -mode

in a cavity having a dimension of 2hx 2% xd (meters)B, and fi]?ég’aith a
lossless dielectric material of permittivity £ and permeability p (Fig.1),

is governed by the following equation [4].

2 %

1 2
oe)® = [EELa ) + Bl 1 5 pa= 12,3, (1)

where w = 2nf 1is the angular frequency of an even mode, (The modes of
interest here are restricted to those having no variation in the z-direction).
Equation (1) can be used to determine the resonant frequency of a q pih'

mode once h and & are known,or alternatively, the aspect ratio h/%, if both

w and & are specified. However, it provides no clue as to how the resonance
of a cavity can be effected if the boundary condition on one or more wave-

guide walls are somehow modified.

In order to examine the resonance phenomenon in more detail, we consider
first the propagation of individual plane waves in such a cavity. Assuming
for the moment a TE-wave of the form

. 1
E;nc = E, exp{-ik [ax + (n? - 62)*y1} exp(int) (2)

where ky = w(ueo)% is the free-space wave number and n = (81/€0)% is the
refractive index of the dielectric material, is incident onto the wall on
the Teft in Fig. 1, i.e., y = 0; 0 <z <d, at an angle ¢ =sin'](a/n) with
respect to the y-axis, we can obtain without any difficulty, the form of
the reflected wave as N

£} = E;(a) exp{-ik [ax - (n*0®)"y])
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where I'(a) = |T| exp(ix) is defined as the Fresnel reflection coefficient
of a plane wave incidence, For a perfectly-conducting wall, T'(a) = -1 and
x{a) = -m, and for a more general case when the wall is Tined with some
constant impedance surface, the magnitude of I', i.e. |T| is typically equal
or less than unity. Thus, for a wave.zig-zagging between the two side
walls at y = 0 and y = 2%, a constructive interference can occur only if
the total phase change after a complete bounce equals to integer multiple
of 4 for an even distribution,

2k z(n2 2y -x(@) =2pm 3 p=1,2,--- . (3)
A transverse resonance is said to have been achieved when this condition
is met. Alternatively, we can write with a superscript y

kOQ' - éy)’ /:é)Y)(O‘) = [2pm + X(y)(a)]/z(nz"az)%; p=1,2,--- (4)

Again, X(Y) = -1 for a perfectly-conducting wall. Obviously, the same
situation exists in the x-direction, with the only exception that the

incident angle is now m/2-¢ instead of ¢ . Thus, by replacing a with

(nz-az)%, we obtain the transverse resonance in the x-direction as

ioh A, 1890 = roan o i@2a s a =152, (5)
Elimination of o from (4) and (5) yields immediately the govern1ng
equation in (1) for a perfectly-conducting cavity where X % i) = -,

y

However, it is not possible to achieve this if either X or x is a
function of the incident angle ¢and hence, a. Instead, we have to retort
to graphical methods in that event. As an example, Fig. 2 shows the
function ?g(a); p =1,2 for the case of a lossless waveguide cavity
filled with a dielectric material € = 480, as a varies from 0 to 2.

We can now use Fig. 2 to demonstrate how one can determine the acceptable
aspect ratios of a cavity, once the desirable resonant frequency is speci-
fied. For instance, if our interest is to find the value of h/&fora resonant

TE210 ,
curve that the value of o has to be a = uy = 1.69 in order to achieve a

-mode when koz is chosen to be 1.5, we first determine from the p =1

transverse resonance in the y-direction. The resultant wave then zig-zags
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Fig. 2. Characteristic function F_(o) for a rectangular waveguide
cavity, €. = 4. P
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between the two walls y =0 and 22 at an angle ¢ = sin'](ay/n) ~ 58° with
respect to the y-axis, until it hits the wall at x =0 or x =h. The angle

of fncidence1at these two walls is 32°, which in turn yields an a value of
a = (nz-ocz)E = 1.07 as plotted in the same graph. For this value, we then
determine from the p =2 curve that f;é(ax) and hence, koh has to be 2.77 in
order to achieve a transverse resonance in the x-direction. Consequently,
the aspect ratio is given by h/& = 1.85. Computational procedure for yield-
ing this result is labeled in sequence from (1) to (7) in Fig. 2, and

indeed checks with the one obtained directly from (1).

At this point, one may ask what is to be gained from this seemingly more
complicated procedure. Clearly, the graphical method can be easily gener-
alized to the case when one or more waveguide walls are lined with a differ-
ent impedance surface, since the expression for yx(a) is known explicitly.
More important however, is the fact that the two angles of incidence (i.e.
o and ay) for waves impinging onto the cavity walls are now built into the
solution process. If, for instance, we know certain incidence angles have
to be avoided in order to minimize absorption, we can simply block out the
undesirable regions in the diagram in searching for the approproate aspect
ratios.

3. RECTANGULAR MICROSTRIP PATCH ANTENNA
As shown in Fig. 3, the structure of a microstrip patch is equivalent to

that of a rectangular waveguide cavity, with all the four sides opened up
and the dielectric slab together with the bottom plate extended out. Since
the dimensions of the patch are typically larger than the slab thickness,
the field is mainly confined to the region under the patch. This allows us
to view the structure as an open resonator and to determine its resonant
condition by considering the bouncing of the waves in the region under the
patch. Following the discussion in the previous section, we can immediately
conclude that the same computational procedure would apply, provided of
course a new reflection:coefficient. I = |T|exp(ix) is derived and used in
conjunction with the characteristic equations (4) and (5). We must realize
however, because the exterior region consists of a grounded dielectric slab

capable of supporting surface-wave mode(s), appropriate physical mechanisms
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Fig. y. Geometry of a rectangular wayeguide cavity
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must be built into the solution of T(a). Thus, before we proceed any
further in discussing the resonant condition, we should investigate first
the canonical problem of wave propagation in a semi-infinite, perfectly-
conducting patch. For the discussion to be followed, we should assume a
TEM wave of the same form as (2) is incident obliquely in the parallel-
plate region between the patch and the ground plane at an angle ¢ =sin'](a/n)
with respect to the y-axis. This field is then partially reflected from
the edge of the patch and partially radiated into the open region external
to the patch. As we mentioned before, a grounded dielectric slab in the
absence of the conducting patch can support a finite number of surface-waves,
the exact number of which depends upon the so-called "numerical aperture"
defined as V = (urer-l)% kod of the structure. Among these, the LSE]-mode
with the electric field polarized in the z-direction actually has no cut-
off. This, in addition to the radiation field, one would at least expect
the excitation of this wave as a direct result of the TEM-wave incidence.
However, unlike a two-dimensional problem where one assumes no variation

in the x-direction, both the surface-wave and the radiation field in the
open region can propagate in one direction, while exponentially decay in
another direction. For instance, since the total solution has to have the
same variation of exp(-ikoax) along the x-direction as. the incident wave,
the far-field observed at a fixed\elivation angle 6 in any cross-section
has to behave Tike f(e)exp(iko[l-az]zr) in air where r is the radial
distance from the parallel-strip waveguide opening. Depending upon the
incident wave, the quality a = n sin ¢ can vary from 0 to n. Therefore,
for a < 1, the "scattered" field indeed propagates radially away from the
waveguide opening (Fig. 4a), but for 1 <a <n, the scattered field decays
exponentially instead (Fig. 4b). 1In a very similar fashion, the field com-
ponents associated with a surface-wave of wave number ap must behave 1like
exp[—ko(ag-l)z] exp{-iko[ax -(ag—uz)%y]} in air. Thus, for ap< a < n, an
exponential decay of field in both y and z direction, is again observed.

We note that the value of ap is determined from

2 ¥, 2 2 % 2 2 .=
e,,(ocp,e-l) = (n 'ap,e) tan[ (n “°‘p,e) kod] (6)
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Fig. 4. Transmission and reflection of a TEM-wave obliquely incident

onto the edge of a semi-infinite patch,
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for LSE surface-waves, and from

2 )t e (02 w2 ) cotl(n?od ) k] (7)

Mel,m p,m

for LSM surface-waves (if they exist).

The above discussion points to a very important feature, unique to the
study of oblique incidence. That is, whether the opening at the end, i.e.
y =0, will actually allow the TEM-wave in the parallel plate region to
radiate into the open-space or not depends upon the angle of the incident
wave. A complete reflection of the wave is therefore entirely possible,
if the angle of incidence ¢ = sin'](a/n) is greater than some critical
angle ¢ = sin'l(ap,max/n) where “p,max is obtained from the surface-wave
mode having the largest value of 0y Such a phenomenon is certainly not
unlike a plane-wave incident obliquely from a lossless medium having a
large refractive index to a medium with a smaller refractive index. Beyond

critical angle, reflection coefficient has magnitude of unity.

Based upon these observations, an analytical theory involving the use of
the Wiener Hopf technique as applied to two coupled integral equations for
charge and longitudinal distributions on the patch, is developed in a com-
panion paper. We found that the reflection coefficient is given as [5]

F(k030t.) =|I‘3le1x - 2 2 3
= exp{i[2 tan~! ——?—9§~%tanh A\ - tan”] (h éa ) + 01}
[n"-a"]

o -1
(8)

where the functions A and § are two infinite integrals

o 2
un®,u_ + pu_tanh u k d
Ak ;a)—iﬁj in’a (—>—=o ) 2 (9)
0

)
L, n 'n u0 +un tanh unkod | A to
© T2y 2 ‘
1 (1+n“)us tanh u k d
U(ko;u) = % nz-oc2 { Qnt— > 0 no 5 dkz 573 (10)
0 un(n uytu, tanh unkod A"=(n"-a")
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1 1
2 2 -1)2, y_ = (AZ + qz -nz)2 with the argument of us

and uj = (A +a n

defined by Re ue.z 0. It is not difficult to show that in the complex
A-plane, the two integrands possess branch cuts of logarithmic nature at
A= ii(az-l)% , and at A = % Aa and A where Ae 0= i(az-a2 ) and

% apm are the solutions of (6) and (7) repregenting thepfﬁ LSE and LSM
surface wave modes. Now since the value of o varies according to the inci-
ent angle of the TEM wave, location of these singularities and hence, the
value of the two integrals can change accordingly. Assuming the thickness
of the slah is such that only the LSE]-mode can propagate, we can

consider three possible ranges of incident angle: (i) 1< ay <o <n,
(ii) 1 <a <ap< ny (iii) a <1 <a_ < n. In the first case, uy is real

and the integrand is not only real, but smoothly varying (except near

A= /ﬁz - az) along the path of integration. Hence, the value of A,y

and consequently, x(a) are all real. The magnitude of T is therefore

unity, and the incident power is completely reflected back. As we mentioned
before, this situation is very similar to a plane-wave incident onto a
dielectric interface beyond the critical angle. As in the case of a dielec-
tric waveguide, the phenomenon certainly can be utilized to guide an electro-
magnetic wave along x-direction when the semi-infinite patch is truncated
and a transverse resonance is imposed. On the other hand, for the case (ii)
when 1 <a <ap, the branch point ) = Xe will appear on the positive real

axis. The integration from X = 0 to Ae is now complex, as the logarithmic
function in the integrands is real and negative. The magnitude of T is

also less than unity, as part of the power is now used to excide the surface
wave.

A similar situation also exists in case (iii) where a <1 <up, because the
logarithmic singularity associated with Uy also appears on the real axis.
The magnitude of T would have to be even smaller, since power can now
radiate into the open region in the form of "sky-waves."

From the form of T, one can also define the apparent end-admittance of
such a structure as
IV B
Ya(a) =Y, TiT 1Y0 tan[x(a)/2] | amn
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where Y, = (n]d)'1 ohm/m is the characteristic admittance of the TEM-wave
in a parallel-plate waveguide. It suffices to note that this admittance
is a function of both frequency and angle of incidence, and it is usually
not valid to replace it by the value corresponding to the normal incidence.

To further investigate the property of r(k aa) as a function of incident
angle, we have included in Fig. 5 the plot of 1 -|r| which represents the
portion of power radiated into the open region in the form of both sky-
waves and surface waves, and the phase of the reflected wave, i.e. X(ko;a)
for a dielectric slab of relative permittivity € = n2 = 10 and thickness

d = 1.27 mm. The frequency of operation is chosen as 8 gHz. As expected,
the amount of radiated power reduced to zero when o >ap which for the
present example, has a value of 1.02. The maximum amount of radiated power
is about 16% and occurs when the wave is incident normally in the parallel-
plate region between the patch and the ground plane. The phase of F(ko;a)
on the other hand, increases monotonically from a negative value at a = 0,
to zero at a = 2.16, and then to a positive value beyond o = 2.16. The
rate of increase is more rapid as o increases,i.e.,the incidence wave
becomes more grazing.

For a microstrip of finite width, the information we obtained from Fig. 5
can now be used in determining the propagation constant of a guided mode
along the microstrip structure. As we mentioned earlier, assuming the two
edges of the strip can be reasonably separated, a wave can zig-zag along the
strip with a propagation constant o along the x-direction, provided a trans-
verse resonance can be established. For the fundamental mode p = 0, the
requirement is obtained from (3) as
1

ko2 (n? = of) = x(k 50 .
Now since x(ko;a) in the present example is negative for a < 2.16, the
propagation constant of the fundamental mode, p =0, has to be greater than
2.16 for any length of k 2. This is actually not surprising, as we know
from the theory of a th1n-w1re the value of o should approach [(n +1)/2]%
= 2,35 as «Oﬁ + 0 [6]. (Note that the present theory also hreaks down
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Fig. 5. Amplitude and phase of the reflected wave inside
a semi infinite patch, ¢_= 10, d = 1.27 mm and
f = 8 gHz. r
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when (koz)2 << 1 because the two edges of such a strip can no longer be
separated). More important however, is the fact that it is possible to
propagate a p =0 guided mode along the structure, eyven when the width of
the strip is much smaller than a free-space wavelength. In this sense,
the fundamental mode of a microstrip structure acts more like a parallel
plate transmission line, rather than a rectangular waveguide which cannot
support any p =0 mode.

4.0 RESONANT MICROSTRIP PATCH: DESIGN CONSIDERATION
We are now finally in the position to discusss some of the design consider-

ations of a resonant microstrip patch. As in the case of a rectangular
waveguide cavity, the aspect ratio of a patch for achieving a qub
resonance at a given frequency can be obtained graphically from the charac-

teristic equation

7 (0) = 2pm +x‘ ‘OL)

St 2(n2-a2)% s p=0,1,2,... (4)

in the y-direction, and its counterpart, ga(¢42-a2) in the x-direction.

In Fig. 6, the function '?5 and ?i' are plotted against a, for a dielectric
slab of permittivity e = 10 €0 and thickness d =1.27 mm operating at

8 gHz. We note that since the smallest possible o for a guiding mode is
[(n2+])/2]% and since it is not possible to have both o and (n2 1

greater than this value, we can immediately discount the possibility of having

—ocz')E to be

a resonant mode where p=g=0. For p =1 and g =0 mode, the procedure is iden-
tical to the one we discussed earlier in conjunction with the TEZ]O—mode
of a resonant waveguide cavity. Following the sequence of steps from (1)
to (7) as demonstrated in Fig. 6, we conclude that for k0g=2.26, the corre-
sponding electric length in the x-direction has to be koh = 1.8, or an

1]

aspect ratio of h/% = 0.8. Notice that the corresponding angle of incidence

is respectively, o, = 0.6 and o, = 3.1. In Fig. 7, the values of ko2 VS,
the corresponding values of koh are shown for the fundaméntal mode

(p =1, q =0). We note that, even though koﬁ can vary over a very wide range,
the corresponding range of koh is much smaller and in any case cannot be

less than 1.73.
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Fig. 6. Characteristic function Fp(a) for a microstrip patch
€ = 10, d = 1.27 mm and f =8 gHz.
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Fig. 7. Accéptab]e aspect ratio for the fundamental resonance
of a rectangular microstrip patch antenna

28-16



We may now return to the question of whether we can enhance the radiation

of a resonant microstrip path by adjusting its aspect ratio. Recalling

from Fig. 5 that radiation of energy occurs only when o is less than

o = 1,02, it is apparent in the present example that energy will be
radiated from thetwo edges at x = 0 and x = 2h, but not at the other two

in the y-direction. Thus according to our earlier observation that more
energy can be radiated by decreasing the angle of incidence, we would
increase the width % at the same time, decrease the length h, although the
degree of improvement becomes somewhat marginal as we keep continuing this
process, On the other hand, if we decrease kox instead of increasing it,
we find from Fig. 6 that both the value of o and ay become quickly greater
than ap, and no radiation would -occur within the stated limit of the present
theory. The microstrip patch in this case acts more 1ike a high Q resonator
than a low Q antenna.
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