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ABSTRACT

A simple theory based upon traveling wave concepts and the
Wienen-Hopf technique 45 developed which describes the cwvient
distrnibutions on tubwlan cylindiical receiving and transmitting antennas.
A close examination of the conditions necessary Lo obtain sufficiently
accurate asymplotic solutions forn neflected cwurent distrnibutions is
glven along with several numerical examples for cooboration. This
along with corresponding modifications to other nelevant temms in the
traveling wave solution forn a finite Length cylindrical antenna allow
gon the consideration of a much wider range of cylindrical antennas
than nowmally possible undern the traditional thin-wire approximations,
ka << 1 and kh 2 1. Specific examples discussed include electriically
short, (kh = 0.4 and Q(h) = 2 2n(2h/a) = 10), practical half-wave,

(kh = m/2and Q(h) = 2 %n(2h/a) = 10), and efectiical thick, (ka = 1

and kh = 3m), necelfving and trhansmitting antennas. Comparisons with
existing theornies Ain these cases and otherns yield very acceptable agree~
meni%. Further, the recelving antenna formulation allows for an arbitrary
angle o4 incidence, 0 < 6. < m, 04 the uniform plane wave and the
thansmitting antenna foumulation gives excellent input conductance data
over an extrhemely wide range of antenna parametens. Discussions are given
forn such related topics as the cwuient distributions on the internal wall
0§ a cybindiical antenna, Loaded cylindrical antennas and the far field
radiation pattem of a cylindiical thansmititing antenna.
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1. Introduction

As is well known, thin-wire conductors are commonly used as radia-—
tors in the design of antenna systems. The radius, a , of each wire
is typically much smaller than its half length, h , which for most
applications is of the order of a wavelength, A. Only in limited situ-
ations, such as the case of probing an unknown field, will the length be
much smaller thaﬁ a free-space wavelength, (i.e., 2h << A ), or as in
the case of a trailing antenna behind an aircraft, will the length be much
greater than a free space wavelength, (i.e., 2h >> A ). Consequently
most linear antenna theories, both analytical and numerical, are
developed with an explicit or implicit assumption that a << A and
2h > A/2, which is commonly referred to as the thin wire assumption.

On the other hand, theories not in this general category, ,usually have
a much more limited ramnge of application, such as for the very short
antenna and the very long antenna.

More recently, the time-transient response, as well as the broad-
band frequency response of a thin-wire structure has become a problem of
considerable importance. For instance, in order to access the suscep-
tibility of a long thin cylindrical metallic enclosure, one must obtain
statistical information concerning the performance of the cylinder as a
receiving antenna, over an extremely wide frequency range as well as an
arbitrary angle of incidence (referring to illumination by an incident
plane wave). Computations not only become excessive when conventional
theories are utilized because virtually thousands of responses are
needed, but also Véry awkward since different methods have to be used
in different frequency ranges. A similar statement, of course, can also

be made for studying the impulse response of an antenna.
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Beginning with Hallén's [1] integrél equation formulation for
the current on a.cylindrical antenna _ and including the work of many
others [2] - [10], the thin-wire approkimations mentioned above have
nearly always been employed. Weinstein [2] did, hoWeverg.observe that
his final approéimate solutions, which were derived under the thin wire
assumptions, could be applied to cylinders having larger values of ka
if the electrical length, kz, were very much .larger. In contrast, the
theory of King and Middleton [11, Chap. II], however, which involves the
iterative solution of an integral equation for the current on a finite
length cylinder, requires explicitly that the parameter, § = 2 n(2h/a),
to be large, h being the half-length of the cylinder. Although the
parameter, {J, relates only to the physical length and radius of the
antenna, this approach still requires the electrical'rgdius, ka , to be
small compared to unity and the electrical length, kh, cannot be very
small nor very large. King also developed a receiving theory [11, Chap. IV]
for antennas having a large Q. A large ) was also the basis for two
electrically short (kh < 1) antenna theories developed by King [11,
Sec.II.31 and IV.8] and [12, Sec. 3.7] which were developed by making
approximations relevant to the short antenna situation in the integral
equation formulation of the problem.

Another means of analysis for the cylindrical antenna problem is
the numerical method of moments technique [13], which has the capability
of compﬁting antenna characteristics without invoking the thin wire
approximations, Realistically, however, the computation time is con~
siderable if the antenna is not thin or the length is more than a few

free space wavelengths.



In this paper, our aim is to develop a simple unified theory for
computing the broadband characteristics of a transmitting and/or receiving
antenna when the parameter, © = 2 n(2h/a) is large. TFor a typical
thin-wire antenna where {! = 2 fn(2h/a) = 10 , our theory is applicable
for antenna4lengths as short as 2h = 0.12X and as long as-2h = 23\ (where for
¢ =10, ka is almost equal to 1), whieh in terms of frequeneyacovers well
over two orders of magnitude and is more than adequate even for
transient computations. We also show that our formulation may be applied
to an electrically thick (up to ka = 1) cylindrical transmitting
antenna or the electrically thick receiving antenna (for the angularly
independent current) and obtain favorable agreement‘with existing
theories even when the parameter = 2 #n(2h/a) is not large.

We begin with a re-examination of the conditions necessary to
obtain simple approximate solutions to cylindrical antenna problems via
the Wiener-Hopf technique. Section 2 discusses a pair of canonical
integrals which characterize cylindrical antenna problems. . Approximate
expressions for these canonical integrals are derived subject to the
condition, Q(z) = 2 %n(2z/a) >> |%n[2kz sin’ (6,/2)1| . The angle, 6, ,
refers to the incident angle of the incoming wave and is more fully
described later. In Section 3 the various currents on both infinite
and semi-infinite cylindrical receiving and transmitting antennas are
given and their relationships to the canonical integrals established.
Data obtained from the approximate expressions is then compared with
numerically evaluated "exact" data in Section 4. A most important
observation in this section is that the parameter, (z) = 2 n(2z/a) ,
in the basic condition of our analysis, need not be very much larger

than lkn[Zkz sinz(ei/z)][ s especially when thicker antennas (ka > 0.1)



are involved. Utilizing the process of summing multiple reflections,
approximate expressions for the receiving and transmitting currents and
the input admittance for finite length cylindrical antennas are formu-—
lated in Section 5. Expressions for the currents flowing on the internal
walls of receiving and transmitting tubular antennas are given in
Section 6. 1In Section 7, numerical results from our theory for specific
antennas are compared with the results of other authors using different
approaches, with acceptable agreement in all the cases considered. The
special case of the electrically short antenna is discussed in Section 8.
General conclusions as well as extensions of our theory to loaded
antennas and the determination of the far field radiation from a trans-
mitting antenna are given in Section 9.

The exact integral expressions appearing in Section 4 are for the
most part, based upon the Wiener-Hopf technique (see for example Nobel

[14], Weinstein [2] and Mittra and Lee [15]). The assumed time variation

is e TUT and the implied Fourier transform pair is given by,
~ o« I
F(a) = J F(z)e ™ dz (1)
—-00

and

z

F(z) =§1ﬁj F(o)e %% 44 . (2)

s



2. The canonical integral in cylindrical antenna problems

As will be shown later, the external current distributions on both
the receiving and transmitting cylindrical antennas can be written in terms

of the canonical integral,

K r -ioz
U(ei;z) B _l-ﬁ (1 - cos ei) J (k+a) (k cos ei+a)K(a) da
o
30 gz <o, 0% 6i < T (3)
The contour, FO,.is shown in Figure 1 and,
o (L)
K(a) = inJy(£a) Hy " (5a) 4)

where

ei is the incident angle of the incoming current wave when (3) is used to
describe a particular current distribution reflected from an end of a cylinder
and z 1is a numerical distance along the axis of the antenna. k = 2n/X and
n are the plane wave wavenumber and the intrinsic impedance, respectively,
of the medium surrounding the antenna. The antenna to be considered is
assumed to have an infinitely-thin, perfectly-conducting wall concentric about
the z-axis at a radius, a. The suppressed time factor is exp(-iwt), where w
is the operating frequency in radians/sec.

We shall also find it useful to define the auxiliary canonical integral,
W(ei;z), which is similar to U(ei;z) in (3) except for the appearance in the
integrand of the additional function, K+(a), defined as the factor of K(o) in

(4) which-is analytic and free .of zeroes 'in the upper half complex a-plane,
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-idaz
K r K+(—0L)e
W(0y32) = =10 (1= cos 8;) J (ko) (k cos 6 +a) K(a) do
T
0
;3 0z <o, 086, <7 (6)

Properties of K+(a) are discussed in Appendix C. We note that the
integral W(ei;z) usually occurs in problems concerning the currents re-
flected from the ends of cylindrical antennas. As shown in (A8) of

Appendix A, when =z >> a, we may approximate (6) by
W(o,3z) = K (k)U(6, 52) (7

where U(ei;z) is our original canonical integral given in (3). Thus
with W(ei;z) given in terms of U(ei;z), our particular use of the form
of W(ei;z) in (6) will be limited to providing exact date (from the
numerical integration of (6)) to compare witﬁ the approximate solutions
to follow.

Subject to the condition,

0.
Q(z) = 2 ln[%f} >> {2n[2kz sinzl[?§}]] (8)

an approximate solution to the canonical integral, U(ei;z), is obtained
to order [0(z)]™? in Appendix A. From (Al7) of Appendix A, this approxi-

mate solution may be stated as

ikz

U(Gi;z) %~e {ln[f(ei;z) ~ iw] - ln[f(ei;z) + im]} (9)

where

—iv
26+ y + in/2 + In(2kz) + e 0 B (-iv,) (10)

f(ei;z)



is a slowly varying function of =z . CW is defined as

CW = - n(ka) - v 3 vy = 0.57721..... (1D)

which is usually taken as a large parameter in the typical thin wire appli-

cation and,

0.
vy = Vo(ei’z) = 2 kz sinz[ij (12)

The function, El’ appearing in (10) is the exponential integral of the
first kind defined in Equation 5.1.1 of [16]. We note that the antenna
parameter, Q(z), is defined in the same way as in [11] where it has been
used as a large parameter for the iterative solution of the antenna prob-
lem.

Another approximate form of the canonical integral, U(ei;z), which
stems from a Taylor series expansion of (9) subject to the basic restriction
stated in (8) is given in (Al18) of Appendix A and repeated here,

o eikz
U(e,s3z) = TT'g?gz?;Y (13)
Even though (9) and (13) are equivalent with respect to the order of approxi-
mation (i.e., [R(z)]172), we shall find (13) to have a more desirable
behavior in the near-grazing, ei ~ 0 , and near the end, z ~ 0, situations.
Otherwise, (9) will appear to be a more accurate result than is (13) for
U(ei;z). |

It is interesting to compare our approximate forms of U(ei;z) to

similar expressions derived by other authors. For the current on an infinitely

long transmitting antenna (ei = 1), Shen, Wu and King [6] by a semi-



analytical, semi-curve fitting technique found a result similar to our

U(6;z) in (9), except that the term, nlkz + /(kz)2 + exp(-2y), replaces

our terms, n(2kz) + exp(—iZkz)El(—iZRZ). Thus for large kz , our approxi-
mate solution for U(m;z) in (9) and that of Shen, et al. [6, Eq. 6] are
quite similar. Weinstein [2] found an approximate solution to an integral
similar to (3), (he called it the "key" integral), but having a different
coefficient outside the integral. Apart from this coefficient (our approach
introduces this term at a later time), Weinstein obtained, through a com-
plicated variational approach, an approximate result equivalent to our

second approximate form of U(ei;z) in (13). Also, in a more recent work
by Chang, Lee and Rispin [17], a further approximation of (13) was obtained
and used in a receiving antenna analysis. However, the analyses of Shen,et al.,
Weinstein and Chang, et al., mentioned above, all assumed the conventional

thin wire restrictions,
ka << 1 (and kz > 1) (14)

Although in [2], Weinstein did observe, a posteriori,that the approximate
form of his "key" integral (similar to (13)) could be used for larger
values of ka if at the same time, kz was very much larger. Thus, the
importance of our work is not so much contained in the approximate formulas
for U(ei;z) in (9) and (13), but rather in the realization of a less
restrictive condition (given in (8)) for the validity of these approximate
formulas. 1In fact, it will be shown in Section 4 that the approximate
formulas for U(ei;z) in (9) and (13) yield remarkably good agreement with
numerically obtained "exact'" results even when Q(z) is of the same order
as |ln(v0)| . Hence, even the "much greater' restriction appearing in

(8) can be significantly relaxed.
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3. Currents on cylindrical antennas

In this section, the currents on infinite and semi-infinite cylindri-
cal receiving and transmitting antennas, given in terms of the canonical

integral, U(Gi;z) in (3) of Section 2, are described.

3.1 Primary receiving current

The longitudinal current averaged over the circumference on an
infinitely long cylindrical antenna due to a plane wave polarized in the
same plane as the antenna and incident at an angle, ei, with respect to
the cylinder axis (which is also the z-axis as shown in Figure 2a), may be

written as [8, eq. 10],

R i

Iw(ei,z) = Eg V(Gi;z) (15)
where,

6. se) = i 4n Jo(kansin,ei) 1kzcosei e e
? kn sin 6. K(kcos®,) ? >
i i
0 < ei <m (16)

JO is the zero order Bessel function and K(a) is given in (4).

k = 2n/X and n are the planelwave propagation constant ahd intrinsic
impedance, respectively, of the surrounding medium. Higher order varia-
tions of the z-directed current with respect to the azimuthal angle, ¢,

and the ¢-directed currents on the cylinder are not treated in this report.
Thus, while V(ei;z) represents the total longitudinal current on an
infinitely long electrically thin (ka << 1) antenna very well, it corresponds
only to the azimuthally uniform longitudinally directed current on an

infinite cylindrical antenna in general.
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- - 2 Q v = <2 a

=}

"

z=0 | 2=0

(a) (b)

4

Figure 2. Infinitely long tubular cylindrical antennas
a. receiving; uniform plane wave incident at an angle, Gi,
with respect to the z (antenna) axis.
b. transmitting; delta function voltage source of strength,

VO volts, located at z = zy -
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In the special case of a thin cylinder, i.e., ka << 1, the Bessel
function and kernmel, K(a) in (4), may be approximated by the leading

terms in their respective small argument expressions to yield,

ikz cos 0O,
i

. _ i b e
V(ei,z) i N

sin 9, ; ka << 1 @17
i
2

sin 6, |2C + im - 2 &n [
i W

where Cw is given in (11).

3.2 Primary transmitting current
The longitudinal current on an infinitely long hollow cylinder due to
a uniform (with respect to the azimuthal angle, ¢ ) delta function voltage

source of strength, VO, at z = z. (see Figure 2b), may be written as

0
[6, Eq. 1],
—iulz—zol
T _ . 2k e . —w < ©
Iw(zo,z) =1 VO J (k2 —a2)K (%) do 3 <z < (18)
Yo

where the contour, FO’ is shown in Figure 1 and K(a) 1is given in (4).
Comparing (18) with the canonical integral definition in (3), we may write

the driven infinite cylinder current as

Iw(zo;z) = VOU(ﬂ;lz—%0|) § —® <z< @ (19)

and use either approximate form of U(m,z) in (9) or (13) to determine
this current provided the restriction in (8) is satisfied. This procedure,
however, does not yield a good result at the source since the condition on
Q(z) is violated. In particular, the real part of the current at the

source needs to be evaluated very accurately, since physically it
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corresponds to the input conductance and hence the power that can be radiated
from the antenna. To this end, it is shown in Appendix B, how an approximate
expression for primary transmitting current similar to that of Shen, et al.
[6] may be constructed. This current expression denoted as US([z—zO[) re-

places the term U(ﬂ;[Z—Z |) in (19) and is given by

0

i iklz—zO[ ‘ '
Us(lz—zol) = T {Qn[fs(|z—z ) - in] - Qn[fs(|z—zo|) + im]} (ZO)

O [

where
£ (Jz=z,|) = 2C_+ vy +in/2+ an[(klz-z |) + V(k[z=2,[)% + exp(-2v = 28) ]
s 0 W 0 0
(21)
Cw and vy are given in (11) and,
g = 33.88 (ké§2 exp (— 3£§6> (22)

From (18) and (20), the input conductance of an infinitely long cylinder

is then given by

G_(ka) = Re {US(O)} = Re{[%—ﬂn(ZCw - g - in/2) - sLn(zcW - g+ i37/2)1}

(23)

It will be shown later in Section 4 that (23) yields a very good input con-
ductance for an infinitely long cylinder as thick as ka = 1.0. Also, we
note that Us(z) in (20) is ;;ymptotic to both forms of U(w;z) in (9)
and (13) for large kz and differs only in the vicinity of the source,

kz = 0.

3.3 Secondary current on a semi-infinite receiving antenna
The secondary current on the external wall of a semi-infinite receiving

cylinder (see Figure 3a), arises from the reflection of the current
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z z ‘{
|
1
<-20 —= ~-20
2720 | _Jtv,
-l N
— o k =
1 .n)
)
'—O
. -
E| 3
Z=O 8 Z:O ’-H
ool ' ‘
\/f (a) | (b)

v
Figure 3. Semi-infinite tubular cylindrical antennas
a. receiving; uniform plane wave incident at an angle, Gi,
with respect to the z (antemna) axis.
b. transmitting, delta function voltage source of strength,

VO volts, located at z = 24
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R
I°° (ei,z) in (15) from the end of the cylinder. From a Wiener-Hopf analysis

this reflected current may be expressed as [17, Eq. 271,

R _ i . 3 _ _
Irefl(ei’z) = Ee V(ei,O) o (l-cos ei)K+( kcos ei)
[ K, (-a) e %
(k+a) (kcos ei+u)K(a) do 3 0=z <e (24)
FO 086, <7
i

The contour FO is shown in Figure 1, and as previously noted, K+(a) comes
from the factorization of XK(a) in (4) into functions analytic in the upper
and lower halves of the complex o plane, i.e., K(o) = K+(a)K_(a). This
factorization is more fully discussed in Appendix C. The superscript R in
(24) signifies the receiving situation. We may write (24) in terms of the

auxiliary canonical integral W(ei;z) in (6), and by virtue of (7), we have

the approximate expression,

R i
Irefl(ei’z) X - Ee V(ei,O)R(Gi)U(ei,z), 0 <z < R
0 < Gi <m (25)
where we have defined the "reflection coefficient",
= kmna.
R(ei) o K+(k)K+(]icosei) (26)

The approximate expression for the reflected current in (25) is valid if the
basic condition in (8) is satisfied. We note that the reflected current
distribution considered here is, as in the primary receiving current dis-
tribution in Section 3.1, the total z-directed current averaged over the
circumference of the cylinder.

One of the obstacles, which in the past has prevented the practical
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application of the Wiener-Hopf technique to thicker antennas, has been the
absence of a tractable expression for K+(a) in the range -k 2 a 2 k
which appears in (26). It is shown in Appendix C, that a curve fitting
procedure involving the factor, K+(u), with compensation for its dominant

irregularity, yields the approximate formula,

K> (a)

A1 + B )]
K, (a) = | (27)

K" (a)

|allL + B G + C(%)Zl

where Ki(a) is the small argument form of K+(u) based upon the assump-

tions that ka << 1 and oa << 1 [1, Sec. 38] given by

0 _ - _ 1 kto
K+(a) = VZCW + im [1 ZCW T in ln(Zk.)] . / (28)

|A| is the magnitude of A given by,

_ 0 . oy (D) -1/2
A=K (0) [11TJO(La)HO (ka) ] . (29)
Br is given by
B =—--¢ (ka) - Re{[2C + im + an(2)]7 1} (30)
r 2m w

and is the real part of a more complicated function, B, given in (Cl9) in
Appendix C. Here Gw(ka) is the input conductance of an infinite
cylindrical antenna having an electrical radius, ka, for which we have the

approximate formula given in (23). Appendix B gives a detailed discussion
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of the exact and approximate forms of G_(ka). And finally, the coeffi-
cient C 1is given in terms of |A| and Br by,

1 - [a]2(1 -B2)

]2 (1 + ) GD

C=

Although (27) is basically a curve-fit solution for K+(a) in the range,
-k < a £ k, the coefficients lA] and Br were obtained in much the same
manner as those in a two-term Taylor series expanion of Ki(a)/K%(a) in
the upper-half of the complex o-plane. The coefficient, C, was obtained
by requiring that the approximate constructed quantity K(a) = K+(a)Ki(a)
(see (C5) and (C6) of Appendix C) using (27) have the same limiting form

as the exact K{(a) in (4) as o =+ = k.

3.4 Secondary current on a semi-infinite transmitting antenna

The secondary current eminating from the end at z = 0 of a semi-
infinite, 0 £ z < «, cylinder having a delta function voltage source of
strength VO at z = z, is usually approximated by the reflection of a

wave incident at ei =.1:[6]; as illustrated in Figure 3b. -Hence, .from

(24) we may write,

T _ T, . . o
Irefl(zo’z) = —Im(zO,O)R(ﬂ)U(ﬂ,z) , 0 <z < (32)

where we have replaced the ‘receiving incident current, Eg~V(ei;O) by

e . . T
the-transmitting incident: current, I;(ZO;O).
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4. Numerical eomparisons: infinite and semi-infinite antennas

4.1 Primary transmitting current

As discussed in Section 3.1, we shall use the modified Shen, et al.

[6] formula denoted as Us(z) in (20) for the primary current on a
cylindrical transmitting antenna. And since Shen has already compared his
approximate expression with numerically "exact" data in [6] for values of
ka wup to 0.08 with good agreements, we shall only consider cases in which
0.1 < ka £ 1.0 to justify the extension of the theory to this range. In
Figure 4, we show the real and imaginary components of the current distri-
bution on an infinitely long cylinder as predicted by the modified Shen
formula in (20) with VO = 1 volt, for the particular wvalues of the electri-
cal radii, ka = 0.1, 0.5, and 1.0. '"Exact" data for these cases obtained
from the numerical integration of (18) is also shown in Figure 4 (as
circles). And it may be observed that the real component of the current
distribution predicted by (20) compares very favorably with the exact
numerical data over the entire range of kz shown especially for the
smaller values of ka. The imaginary component of the current distribution
predicted by (20) compares favorably with the exact data only when the
ratio, 2z/a, somewhat exceeds unity.

As mentioned earlier, the purpose of Shen's and our curve-fitting pro-
cedures leading to (20) for the primary transmitting current was to obtain a
good value for the real part of the current at the source, i.e., the input
conductance of an infinitely long cylindrical antenna. To demonstrate the
level of success attained in this respect we offer Figure 5, which shows
the input conductance of an infinitely long cylinder as obtained from the
real part of US(O) in (23) and the "exact" numerically evaluated input

conductance from the exact integral expression stated in (BLl) of Appendix



19

| I I l I I | ]
14 |- —~
-
Z .
L ]
o =
m\
O
o E
O = —]
g -
Z
Z —
w o
- Q.
Z
< (')_—
O
=z —O-_|
—
- | .
z o N ISR Y NN IS EN N
© o 1 2 3 4 5 6 T 8kz
< O [ I D NS S S S—
. & - ~
25—2-—— o 93 o @
o = O
= —_4l-© o -
- O O
T <
s o
-6 o —
@)
“8[0 | l | L | | |~
Figure 4. Current distribution on an infinitely long cylindrical trans-.

mitting antenna with a delta function voltage source at z =zo==0.

Approximate distribution from the modified Shen [6]

formula denoted by Us(lz-—zol) in eq. (20).

) "Exact" numerically evaluated data from eq. (18).
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B as functions of ka over the range 1074 < ka < 1. Obviously, excellent
agreement is obtained. In fact, the error, which is also shown in Figure

5, never exceeds 2% over the entire range.

4.2 Reflection coefficient R(Gi)

The behavior of the "exact" numerically evaluated (using the formula
of Mittra and Lee [15, Sec. 5-2.(3)1) K+(a) is shown in Figure 6 as a
function of o in the range -k < o < k for the specific cases : ka =
0.01, 0.05, 0.1, 0.5, and 1.0. This variation in o when o = -k cos Oi
corresponds to the range 0< %_<mu The behavior of our approximate form
of K+(a) in (27) is so close to the exact we have not included this data
in Figure 6 but have elected to show, 'in Figure 7, the error between the
approximate and "exact'' values of K+(a) for the same range and set of
parameters as those in Figure 6. The magnitude and phase error illustrated
in Figure 7 is seen to be quite small, typically below 1% and +5%, respec-
tively. And it should be noted, that this magnitude error is many times
smaller than the magnitude error of the normally accepted small argument
approximation, Ki(u) in (28). For example, at ka = 0.01 Kg(kj differs
from the exact value of K+(k) .by about 1.5%, while our approximate form
of K+(k) from (27) possesses an error of less than 0.1%. And as the
value of ka 1increases, the error in Ki(k) increases quite rapidly,
reaching over 200%Z at ka = 1.

Obviously, the quantity of more crucial importance is the so-called
"yeflection coefficient", R(ei) in (26). Figure 8 shows the magnitude
and phase of R(ei) as calculated using the "exact" numerically determined
values of K+(k) and K+(—k cos ei) (again_from the formula of Mittra
and Lee [15, Sec. 5-2.(3)]) as a function of ka over the range

107% < ka < 1 for the incident angles ei = w/36, n/4, w/2, 3n/4 and 7.



21

(%) 40oddd

*I9pUTTAD aeTngnil SuoT AT9ITUIIUT UB JO 90uUBIONPuUod indul °¢ 2an3Iig

| =Ol

cx_ .‘
>_0l ¢ -0l

I
<

|
©

14

"4 XIANEdAV 40 (T9) -dF Woda
HONVIONANOD QHIVATVAZ XTIVOIWAWAN ,,IOVXH,

.Nmmv ‘0T NI VIAW¥0od [9] NHHS

THTATIAOW HHI WO¥A HONVIONANOD HILVWIX0dddV

— — —

l
©

I
Q

|
N

(c-OIX SOYW) JONVLIONANOD LNdNI



22

! !
4.0 \ EEUE - —
w 3.0 \ . __ka=00I
D , = )
- 0.05
=2
o | | | :
< 20 . 0.10
= .
0.50
MO Ky (a)] =
1.00
0 | | l
-1.0 -0.5 0 0.5 1.0 %
60°
| | |
50°

DH
®)
°

PHASE (deg)
N W
2 3

O
°

OO

Figure 6. Magnitude and phase of K+(a) in the range, -k<a<k, calcu-
lated from the exact formula for K+(a) in [15, 5-2,(3)],
(See eq.(Cll) of Appendix C of this report.)
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Magnitude and phase of the "reflection coefficient,"

R(Gi) = (n/2ﬂ)K+(k)K+(—k.cosﬁi), calculated from the exact
formula for K+(a) in [15, Sec 5-2.(3)] (See eq. (Cll) of

Appendix C of this report.)
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Data for R(ei) using the approximate formula for K+(u) in (27) is not
included in Figure 8 because of the very close agreement it has with the
exact data. Instead, we show the error of this approximation with regard
to the exact in Figure 9 for the same range and set of parameters as in
Figure 8. The magnitude error is seen to be at most about 3% and typically

much less while the very small phase error is never more than #5°.

4.3 Reflected current distributions

Denoting the reflected current due to a unit incident current of the

. N v
form explikz cos ei] as Irefl(ei’z) , we have from (6) and (24) the ex-
pression,

IN (6,,z) = - A (-k cos 0.,) W(6,32) ; 0 <z < =

refl i’ 27 T+ i i? ’ - -

0 < ei < T (33)

in both the receiving and transmitting situations. We note that (33) is

an exact expression for the normalized reflected current in the receiving
situation (0 syei < w) and is a very good approximation for the normalized
reflected current in tﬁe transmitting situation (ei=ﬂ) when the delta
function voltage source is located sufficiently away from the end. From

(7) and (26), the approximate form of (33) is given by

N . 3 .
Irefl(ei’z) - _R(el)U(eisz) ’ O

IA
N
IA

8

0 (34)

1A
@
1A
3

To demonstrate the accuracy attained with our approximate formulas,
Figures 10-14 show the behaviors of the "exact" reflected currents in (33)
(with K+(—k cos ei) numerically determined using the formula of Mittra

and Lee [15, Sec. 5-2.13] and W(ei;z) in (6) numerically integrated) and
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Legend for Figures 10-14

. " 1" . . N .
®) ei=ﬂ Exact" numerically determined Irefl(ei’z) from (33)
O =1/2 found by using the formula of Mittra and Lee [15, Sec.
O =n/4 5-2.(3)] for K+(u) and by the numerical integration of
o =1/36 W(ei;z) given in (6).

. N . . , ,
Approximate form of Irefl(ei’z) given in (35), with
R(ei) from (26) determined by the approximate K+(a)
formula in (27) and the approximate formula (13) used for
U(ei;z).

(8

e o ———  Approximate form of I ;z) given in (35), with

refl ' i’

R(ei) from (26) determined by the approximate K+(u)
formula in (27) and the approximate formula in (9) used
for U(ei;z).
. . ikz
Note: 1In Figures 10-14, the traveling wave phase factor, e s
has been suppressed to aid in improving the clarity of

the information presented.



28

Figure 10. Magnitude and phase of the current reflected from the end
0.01.

of a semi-infinite tubular cylinder where ka =

(See accompanying Legend for further details.)
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Figure 11.

Magnitude and phase of the current reflected from the end
= 0.05.

of a semi-infinite tubular cylinder where ka

(See ‘accompanying Legend for further details.)
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Figure 13. Magnitude and phase of the current reflected from the end

' of a semi-infinite tubular cylinder where ka = 0.5. (See

accompanying Legend for further details.)
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the approximate reflected currents in (34) using (27) for K+(u) in (26)
for R(ei) and using both (9) and (13) for U(ei;z) as function of kz
in which ei = 1w/36, w/4, w/2, and w for the values of ka equal to
0.01, 0.05, 0.1, 0.5, and 1.0, respectively. We note that in every cése,
the data obtained from the use of (9) for U(ei;z) appears to be closer
to the numerical data than does results using (13) for U(ei;z). This is
somewhat misleading, since in the finite le;gth cylinder situation where
multiple reflections of currents from the end are characterized by waves
incident at an angle, Gi =7, and subsequently summed (see Section 5)
slightly better results are obtained with (13) used for U(ei;z). This
apparent incongruity must be a result of the summation procedure producing
an error which is more compensitive for the error in (13) for U(ei;z)

than it is for the error in (9). A more detailed clarification of this

point will be forthcoming.
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Section 5. Approximate expressions for the external currents on finite-
length cylindrical antennas

Expressions for the currents on finite length cylindrical antennas
are constructed by summing the primary and subsequent secondary currents

reflected from the ends of the antenna.

5.1 Finite receiving antenna

Our theory can now be applied to the finite length receiving antenna
with the understanding that only the average (over the circumference) z-
directed current is obtained. As noted by Kao [18] specifically for normal
incidence of the plane wave, this zero-order current is not coupled to any
higher order variations of the current with respect to the azimuthal angle,
¢ , and may be considered independently from these higher order currents.
Rispin and Chang [19] have also noted this to be true for arbitrary polari-
zation and arbitrary incidence of the uniform plane wave.

The constituative currents on a finite length (-h < z < h), cylindri-
cal receiving antenna with radius, a, are shown pictorially in Figure 15.

i

Beginning with the plane wave induced primary current, Ee

V(ei;z), shown in
Figure 15a, the reflections of this current from the end at z = -h and
the z = +h end are determined to be —V(ﬂ—ei;h)R(Gi)U(ei,h+z) and
—V(Gi;h)R(ﬂ—ei)U(ﬂ—ei,h—z), respectively, as illustrated in Figure 15b.
These reflected currents then propagate toward opposite ends of the cylin-
der (analogous to waves incident at an angle 7 with respect to a parti-
cular end) at which point they reflect again as —V(ﬂ—ei;h)R(ei)U(ei;Zh)
R(m)U(6;h-z) and —V(Gi;h)R(ﬂ—ei)U(ﬂ—ei;2h)R(ﬂ)U(ﬂ;h+z), respectively.
Continuing this procedure leads to an infinite number'of reflected currents

eminating from each end of the cylinder, as suggested in Figure l5c. The

infinite series expressing the current reflected from a particular end of
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the cylinder are in the form of simple geometric series which may be readily
summed. Hence, we arrive at the following expression for the total exter-—

nal current on the finite length cylindrical receiving antenna,

IR(ei;z) - Eg{V(Si;z) - V(r-6,n)R(8)U(B 3hrtz) - CR(ﬂ—ei)R(ﬂ)U(ﬂ,h+z)

- V(8 3h)R(1-0 )0 (1-0, ,h-z) - CR(ei)R(n)U(ﬂ,h—z)} (35)

where

[V(ei;h)R(ﬂ—ei)U(ﬂ—ei;2h)R(ﬂ)U(ﬂ;2h)-V(ﬁ—ei;h)R(ei)U(ei;Zh)]
1 - [R(m)U(m;2h)]2

R
C (ei) =

(36)

represents the total incident current (with an analogous wave incidence of
~ei = 7) upon the end z = +h due to current reflections eminating frém the
end at 2z = -h. CR(ﬂ-ei) has a similar interpretation with the ends
interchanged. The terms involving R(ei)U(ei,h+z) and R(ﬂ—Gi)U(ﬁ-ei;h'Z)
represent the initial reflections of the primary current wave incident at
the angles, ei and w - ei, respectively. Thus, except for the primary
term, V(ei;z), all the other terms in (35) represent reflected currents
from the ends of the cylinder. Our expression for the receiving antenna
current in (35) agrees in form with that of Weinstein [2] and can be shown
to be consistent with our earlier result in [17] under the conventional
thin wire approximations. A complete formal agreement between our result
and that of Shen [7] occurs only when the terms U(ei;z) and U(ﬂ—ei,z)

in (35) are approximated by Us(z) in (20) with the constant, g, deleted.
The approximation of these terms in this manner is implicit in Shen's [7]

analysis.
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The limiting form of the current on a finite length receiving antenna
as the angle, ei, approaches grazing incidence, i.e., ei +~ 0 or mw, based
upon both approximate forms of U(ei;z) in (9) and (13) is discussed in
Appendix D. And it is found that, while our theory is not expected to be
valid in this range because of the apparent violation of the restriction,
Q(z) >> [ln(vo)[ in (8), the approximate form of U(ei;z) in (13) actually
produces the very physically acceptable result of a vanishing current as
ei+0‘or' #,  Also a smaller, magnitude-wise, result for the current near
the ends of a cylinder for a fixed incident angle, ei, is obtained in
Appendix D, when (13) is used for U(ei;z) rather than (9). These con-
siderations are. very important in the cases when the incident angle ei
is near grazing, i.e., 61 =0 or m, and when the length of the antenna
becomes electrically short.

And, finally, we note the symmetrical behavior of (35) with respect

to the incident angle of the uniform plane wave and the positiomn, z,
R
(0, 3-2) = TN(n=8;+2) (37)

5.2 Finite transmitting antenna

In much the same manner, the current on a finite length (~h < z < +h)
cylindrical transmitting antenna of -radius, a, due to a delta function
voltage source of strength, VO, at z = z, (see Figure 16) may be
expressed in terms of a primary current and the multiply reflected currents
from the ends. Figure 16a illustrates the primary current, which we shall

approximate by Us(lz—z from (20), eminating from the delta function

o)

voltage source at =z = z These waves are incident upon the ends of the

0
cylinder at an angle of 7 respective to the particular end. Hence, the

initial reflections of the primary current from z = -h and 2z = +h are,
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—VOUS(ﬂ,h+zO)R(ﬂ)U(ﬂ5h+Z) .and —VOUS(ﬂ,h—zO)R(ﬂ)U(ﬂ,h—z), respectively, as is
shown in Figure 16b. The reflections of these currents from the respec-

tive opposite ends and the subsequent reflections which follow (Figure

16¢c) lead to a pair of infinite series, which are again summable. The

final result for the transmitting current distribution is given by,

T
I (z452) = vO{US(lz—zOI)
- U (b2 OR(MU (n3htz) - CT(h+zO)R(ﬁ)U(ﬂ;h+z)

- U_(h-2 )R(1)U(n3h-z) - CT(h-zO)R(ﬂ)U(ﬂ;h—z)} (38)

where
Us(z)[R(ﬂ)U(ﬂ;Zh)]2 - US(Zh—z)R(ﬂ)U(ﬂ;Zh)
¢ (2) = 1 - [R(m)U(m;2h)]2 (39)
represents the sum of the currents incident upon the z = -h and +h ends

of the antenna when 2z is taken as h+zO and h—zo, respectively, due to
current reflections eminating from the opposite end. Note that the initial
reflection of the primary current from each end is explicitly stated in
{38), the overall form of the traﬁsmitting current expression being the
same as that for the receiving current in (35). Our transmitting current
expression in (38) can be shown to be equivalent in form to those of many
other authors [1, Sec. 35.7], [2], [6] and others.

However, unlike the expressions of these authors, our expression is
more general and flexible, since we claim it may be used for electrically
short as well as electrically thick antennas as long as the basic condi-

tion in (8), Q(z') = 2 1In(2z'/a) << Iln(Zkz')I is satisfied (note here
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z' refers to the distance to the source, z-z., and the distances to the

0
cylinder ends, htz and h-z) and appropriately accurate values of R(m)
are used. And in this report, we often take the nominal measure, z'= h.

We note the symmetry in (38) with respect to the source and observa-

tion points, i.e.,
T T
I (zo;—z) =1 (—zO;z) (40)

An approximate formula for the input admittance of an asymetrically
driven cylindrical antenna of length, 2h, obtained by setting z=zO and

V0 = 1 volt in (38) is given by

Y = - 1 =
in G iB US(O)

- U_(ibz JR(MU(n3htz) - CT(h+z0)R(ﬂ)U(n;h+zo)
- U_(h=z)R(MU(T3h-2,) - CT(h—zO)R(w)U(n;h—zo) (41)

Here G 1is the input conductance and B is a "relative'" input suscep-
tance. The qualification to a 'relative" input susceptance is necessary,
due to the fact we employ a delta function voltage source for the excita-
tion and the mathematically predicted behavior of the imaginary part of
the input current for this excitation should exhibit a logarithmic singu-
larity [20] and [21]. This singularity would indicate an infinite capaci-
tance, the so-called "knife-edge capacitance" [22]. However, the parti-
cular way in which the primary current term, Us(z), was derived (discussed
in Section 3.2) does not allow the possibility of such a singularity in

this current at the source. In a realistic sense, though, this slice
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capacitance is due to an idealization in the mathematical model rather
than a physically occurring phenomenon in the practical situation and in
general does not pose any difficulties in experimental studies. Thus,

the absence of such a singularity in our formulation is not unwelcomed.
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6. Approximate expressions for the internal currents on cylindrical
antennas

Thus far our theory has considered only the external current distri-
butions on cylindrical antennas, hence, it is appropriate at this time to
include a complementary discussion of the current distributions on the
internal walls of receiving and transmitting cylindrical antennas. By
combining the external and internal current distributions, the total cur-
rent on the antenna may be found. But a more important use of a knowledge
of the internal current occurs in some electromagnetic compatibility
studies where it is desirable to know the amount of penetration into a
long thin metallic enclosure. In many cases, the penetration is into the
end of a cylinder and one needs to know the induced current on the inter-

nal wall of the cylinder.

6.1 Internal current on a semi-infinite receiving antenna

The TMOn mode currents on the internal wall of a semi-infinite
(0 £ z £ ©) eylinder due to a plane wave incident at an angle, ei, are
easily determined by a Wiener-Hopf analysis [17, Eq. 27] to be given by

R - gt .0) [Ek (- -
{1,,652) . = By V(6.30) [T~ (l-cos 6,)K, (-k cos 6,)]

D

0

IA
N
1A

8

J K (_a)e—iuz
+ do
r (k+u)(kcos@i+u)K(u) >

1

0 (42)

IA
@

IA
=

where E;V(Gi;O) is the incident current at the end and is given in (15).

The contour, T is shown in Figure 1 and K+ is the "plus" factor of

l’
K(a) in (4), which is discussed in Appendix C. Since the contour, Pl,

encloses only simple poles of [K(a)]-!, the integral may be easily
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evaluated and (42) may be written in the form,

R i v “Yon®
{T_,(6,52)3, = B, V(8,30) nzl Ty, (850 (43)

S

where TO is a transmission coefficient given by,
n

(Yon—ik)

- K, (iy. ) (44)
+
(YOn 1kcosei) + " 'on

ko _
TOn(Gi) = 41 > (1 cosei)K+( kcosei) an

and,

1 - 1 2 — 2

Yy, =1 /(DOH/a) k (45)
is the propagation constant of the TMOn circular waveguide mode. And
finally, on is the nEE ordered zero of the Bessel function, JO.

Several approximations are possible to allow us to state the internal
current in a more convenient form. The first of which is from the approxi-
mate splitting of the asymptotic form of the kernel, K(a), for large oaa

" and-is given by

K+(u) ~ vi/(k+ta)a ; for oa large (46)

Numerical data comparing (46) with the exact value of K+(a) from the
formula of Mittra and Lee [15, Sec. 5-2.(3)] has shown good agreement
for a 2 iYOl up to ka = 1.0 . Also for e—Yonz<< 1, the infinite sum
may be truncated at n=N and the subsequent loss of information for the
smaller vélues of z may be somewhat compensated for, by approximating

the summation in (43) at 2=0 wusing relevant Taylor series expansions

for ka < 1 in the manner described in Appendix E. The summation in (43)
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may then be approximately written as

4

1 om
5 (l—cosei)K+(—kcosei) Z Sm(ei)(lka) 3 z=0
J T e 0% - 47)
& On
n=1 N -Y . 2 -y z
Z TOn(ei)e on ;e on o 1
n=1
where
sl(ei) = 0.5831 (48)
1
Sz(ei) = -0.1364 [2 + cos ei] (49)
S.(6,) = -0.0498 [Z-— ~1-cos 6, - cos?p.] (50)
371 8 2 i i
_ 9 11 21 28 _ 3
84(61) = 0.0198 [16-+ g cos ei 5 cos ei cos Gi] (51)

which is sufficiently accurate for most engineering applications up to

ka = 1.

6.2 Internal currents on a semi-infinite transmitting antenna
The current which penetrates into the end of a semi-infinite
(0 £ z £ ») cylindrical transmitting antenna having a delta function
volts, at z=z is associated with TM

0 0 On

circular waveguide modes and may be written in an analogous manner with

voltage source of strength, V

respect to the receiving case as,

T T ik K+(—°°)e—mz
{Ism(z)}int = Im(zo;o) - K+(k) J W2 =a)K () da 3 022z <o (52)

o]
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where Iz(zo;o) is the incident current from (19) at the end. Again

the contour, T is given in Figure 1 and K+ is the plus factor of

1’
K(a) din (4) discussed in Appendix C. The integral may be evaluated ex-
actly by finding the residues of the poles of [K(a)]™! enclosed by Ty

and (52) may then be approximated by,

(L@, v ) I T m e O 53

g% int 0°s %0 on "’ € (33)
n=1

where we have replaced the exact incident current, Iz(zo;O) with the

approximate quantity, V Us(zo) from (20). T and Yon have been de-

0 On

fined in (44) and (45), respectively. Again, as in the receiving formula-

tion, we may approximate the summation in (53) with the expression in (47).
It should be noted that there would also be internal wall currents

on the semi-infinite transmitting antenna which would not come from pene-

tration at the cylinder end but rather would be excited directly by the

source. For a delta function voltage source, this internal current can

be shown to possess a logarithmic singularity at the feed-point similar

to the logarithmic singularity of the external current at the input. For

a more realistic excitation, such as a finite gap, however, the internal

current would be well-behaved everywhere and would be directly related to

a capacitive susceptance component (assuming there to be negligible radiation

from the open end of the cylinder which in turn implies, e—YOle << 1)

of the overall input admittance. And since we have not addressed ourselves

to the task of specifically defining a ''realistic" input susceptance, the

internal current in the vicinity of the voltage source and its effect on

the input admittance will not be pursued any further in this report.



46

6.3 Internal current on a finite-length receiving antenna
From the external receiving current expression in (35), we may write
the internal penetrating current near z=-h using the transmission
characterization in (43) as,
® - +
R i YOn(h z)

. _ R
I (8y52) = By nzl {V(n-8_,+h) T, (8,) + C (1-6,) T (1)} e

5 z = =h (54)

while the penetrating current near the opposite end at z=+h 1is obtained
by replacing ei with n—ei and (h+z) with (h-z) 1in the above ex-
pression. The first term in the {brackets} above corresponds to TMOn

mode currents on the internal walls of the cylinder due to the primary

current term, Eg V(ﬂ-ei;+h), while the second term corresponds to TM

On
mode currents due to the total external current incident upon z=-h
arising from reflections eminating from the opposite end at z=+h.
These latter currents are analogous to waves incident at an angle,

8. = w. Hence, the transmission coefficient for these incident currents

1

is evaluated at ei = 7. The expression in (47) may be used to approxi-
mate the summations in (54), thereby reducing the computational efforts
required to find the internally penetrating current. Note, it is implicit
in this formulation, that there is no internal interaction between the
—y012h :

ends of the cylinder, thus implying that e << 1.

6.4 Internal current on a finite-length transmitting antenna

The internal penetrating current near the ends of a finite length
(-h £ z £ h) cylindrical transmitting antenna may be obtained by applying
the transmission characterization in (53) to the respective incident

currents from (38) with the result,
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H
~
N
Q
+1

h) = V0 {Us(h * zO) + CT(h * zo)}

© =Y, (htz)
On
nzl Ton(ﬂ) e (55)

Analogous to the receiving case, the first term in (55) corresponds to

TMOn mode currents on the internal walls of the cylinder due to the
primary current, VO US(|z - zO') at =7h while the second term
corresponds to TM mode currents due to the total external current

On

incident upon 2z =%h arising from reflections eminating from the opposite
end. Again, (47) may be used to approximate the summations in (55) and
-YOl(hizO)

the restriction, e << 1, is also implied in this formulation.

6.5 End conductance of a finite length cylindrical antenna

A quantity related to the internally penetrating current on a cylin-
drical antenna is the input conductance for a TMOn mode incident upon
one of the ends of the antenna. Unlike the cases treated by Weinstein
[2, Chap. 1], Levin and Schwinger [23], Jones [24] and others, our analysis
for the end conductance, discussed in Appendix F, deals with a TMOn mode
under cut—off,kthe radiation in this case necessarily coming from tunneling.
The end conductance in this situation is relevant and very important to
EMC studies involving the penetratién into the end of a cylindrical en-
closure [25]. A detailed discussion of this quantity is left to Appendix
F, where the end conductance as seen by an evanescent TMOn mode inside

and near the end of a finite length cylinder based upon Wiener-Hopf

analyses and the multiple reflection concept is derived.
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Section 7 Numerical results for the finite length cylindrical antenna

Dﬁe to the restriction our theory places upon the electrical radius
of ka £ 1, the currents on the internal wall of the finite length
cylindrical receiving or transmitting antenna are, in general, very much
smaller in magnitude than the currents on the external wall, except in
the near vicinities of the ends. From Section 6, it may be ascertained,
that the internal current is significant only within a distance, 2a,
(equal to ome cylinder diameter) from either end. And since we cannot
rely upon results from our external éurrent expressions so close to the
ends, where the internal currents are significant, the formation of total
current distributions from the combinations of our receiving and trans-
mitting external current distributions in (35) and (38), respectively,
with the corresponding internal current distributions in (54) and (55)
would be of little advantage. Hence, in most cases, the external current
formulas in (35) and (38) will be sufficient to describe the current
distribution, whether it be the total or external only, on finite length
receiving or transmitting antennas, respectively. On the other hand, the
internal current distributions given in (54) and (55) for the finite
length receiving and transmitting cylindrical antennas may be accurately
calculated using the approximate formula in (47) at practically any point

on the antenna.

7.1 Current distribution on a receiving antenna

In order tovexamine differences in our receiving theory resulting
from the use of either approximate form of U(ei;z) in (9) or (13) we
have included Figure 17 which shows the magnitude of the induced current

at the center of a receiving antenna where Q(h) = 10, illuminated by
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a normally incident (Qi = TM/2) plane wave polarized parallel to the
‘antenna as a function of the electrical length, using both (9) and (13)
in the finite length receiving antenna current expression in (35). As
expected, the agreement between both results is very good except near
resonances and anti-resonances. And comparisons with existing analytical
and numerical results for cylindrical antennas in which the condition,
Q(h) >> ]Qn(vo)] in (8), is satisfied, have indicated that our theory
yields slightly better results in almost every case when (13) is used
for U(ei; 2. TFor these reasons, in what foliows we shall present only
results obtained from the use of (13) for U(ei;z) in the receiving
and transmitting expreésions in (35) and (38), respectively.

The current distributions on a half-wave, kh = m/2, receiving
antenna where Q(h) = 2 4n(2h/a) = 10 for the incident angles,
ei = /36, /6, /3 and W/2 as calculated from (35) are .shown in
Figure 18. For comparison, first order results from the King-Middleton
theory [11, Chap. iV, Sec. 7] and results from King's three term theory
[5] for the normal incidence case, Gi = /2, are also shown. The
agreement between the latter King theory and ours in this particular case
is excellent. And the overall agreement betweenvall theories is quite
acceptable. We note that in spite of the condition in (8) which requires
$2(h) = 2 %n(2h/a) > I%n(vo)l » the current distribution predicted by our
formulas in the near-grazing situation, ei = m/36 , is at a physically
anticipated small level. This is further exemplified in Figure 19, where
for the same antenna as in Figure 18 the currents at z =0, h/3 and
2h/3 are illustrated as a function of the incident angle, ei « And we
note the near sinusoidal variation of the current with respect to the

incident angle, ei » as would be expected for a thin half-wave dipole.
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normalized to the incident electric field and the wavelength,
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/3 from eq. (35) with (13)
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m/2 Three term theory of King [5]

m/2 First order King-Middleton theory
[II, Sec. IV.7]
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The currents on the internal wélls of the same receiving antenna

(kh = 7/2, Q(h) = 10) at the end, z = -h, and slightly away from the
end, z =-h + 2a, as calculated from (54) with (47) are shown in

Figure 20 as a function of the incident angle, ei .. The internal current
at the end, 2z = -h , represents an infinite summation of all the TMOn
mode currents at thié point and is equal in theory to the negative of the
external current at this end. While the internal current at z = -h + 2a
is predominantly associated with the TMOl circular waveguide mode, all

the higher order modes being much more attenuated at this point. Thus
beyond 2z = ~h + 2a , the internal current will decay essentially as

—YOl(h+z)
e

The current distribution on an electrically thick (ka = 1.0)
receiving antenna three wavelengths in length as calculated from (35) is
shown in Figure 21 for the incident angles, ei =m/36 ,7/6 ,m/3, and
m/2 . Note that this distribution corresponds only to the external
azimuthally uniform z-directed current on the cylinder. Note also that
since Q(h) = 2 n(2h/a) - 5.87 and |an(vg) | = 2.64, 0.93, 2.24, and
3.63 for the respective angles considered, the condition that
Q(h) >> ]2n(v0)| as originally required in the anaiytical development,
no longer héldé;“ However, the cbérespondence with the data fromVWu, et al.,
[35] based upon the integral equation and product integration formulation
of Kao [18] for the azimuthally uniform z-directed current also shown in
Figure 21 for the same anten;a with a normally incident plane wave is
surprisingly good. Again we bring attention to the relatively small Jlevel
of current on the antenna predicted by our theory at near-grazing
incidence, Gi = m/36. The behavior of the current at z =0, h/3 and

2h/3 with respect to the incident angle, Gi » 1s shown in Figure 21 and
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is seen to exhibit the physically expected result of zero current at
- grazing incidence, ei =0 and T . The currents on the internal walls

3r, ka = 1) at the end, 2z = -h, and

of this receiving antenna (kh
slightly away from the end, z = -h + 2a, as calcuiated from (54) with
(47) are shown in Figure 23 as a function of the incident angle, ei .

Comments similar to the ones given for the internal currents illustrated

in Figure 20 are also applicable to this much thicker and longer antenna..

7.2  Current distribution on a transmitting antenna

As discussed at the beginning of this section, the total (internal
+ external) current distribution on those cylindrical antenmas (both
transmitting and receiving) for which out theory is applicable is for all
practical purposes given by the external current distribution alone,
except in the near vicinity of the ends. An additional exceptioﬁ to this,
.which is particular to the transmitting antenna, is the region very close
to the source where internal currents are directly excited by the source,
itself. A brief disuession of this localized intérnal cﬁrrent has
already been given in Section 6.4, where it was deemed inappropriate to
pursue an in depth study of this current, which is of secondary importance.

The current distribution on a center-driven half-wave antenna where
f2(h) = 2 %n(2h/a) = 10 as calculated from (38) is shown in Figure 24
along with corresponding data from the three-term theory of King [5] and
the approximate second ordeg iteration procedure of King and Middleton
[11, Chap. II, Sec. 22]. The agreement between our results and the latter
theory with regard to the real component of the current is excellent.
And although the agreement between the imaginary components is acceptable,

the discrepancy here was not totally unexpected since in the process of



59

o ) N
|
|

@

D

n

TRANSMITTING ANTENNA CURRENT (ma/V)
4 ,

ok ] 2hy _ ]
ath =210 (5) =10, kh=w/s2

2 | | I

0 0.2 0.4 06 0.8 1.0

z/h |

Figure 24. Current distribution on a thin, center fed, half wave

transmitting antenna.
from eq. (38) with (13) used for U(T ;z).

_ approximate second order King-Middleton theory
[11, Chap. II, Sec. 22]

~— — — — King three-term theory [5]



60

achieving an accurate value for the real component of the primary current
discussed in Section 3.2, a less accurate "physically acceptable" value
of the imaginary current near the source resulted. The correspondence
between the three~term theory of King (which may be judged to be less
accurate [5] than the King-Middleton resulté) and our theory is also
quite acceptable.

Perhaps more important than the transmitting current distribution,
is the input admittance to the antenna. Therefore, in Figures 25 and 26
we show the input conductance and susceptance, respectively, as calcu-
lated from (41) for a center-driven cylindrigal antenna where
Q(h) = 2 gn(2h/a) = 10, as a function of the electrical length, kh .
Corresponding admittance data from the three-term theory of King [5] and
second order results from the iterative method of King and Middleton
[11, Chap. II, Sec. 30] are also shown in these figures. The agreement
between the conductances predicted by all three theories in Figure 25 is
seen to be very good. The agreement between the input susceptances is
also very good for the smaller values of kh where the "realistic"
imaginary component of the primary current is small compared to
imaginary current arising from the multiple reflections from the ends.
At the larger values of kh, where ka 1is proportionally larger, we
find larger discrepancies between our results and the King three term
and King-Middleton results. Here the imaginary component of the primary
current significantly affects the overall input susceptance; And siﬁce
our approximate expression for the primary transmitting current in (20)
is not expected to accurately estimate the "realistic'" wvalue for the
imaginary input current, this discrepancy will alsovappear in the finite

length antenna susceptance calculated from (41) in which (20) is used.
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However, in practical situations the input susceptance may be eliminated
by appropriate matching leaving the input condﬁctance essentially -
unchanged and the most important quantity of consideration.

To provide further comparison of our theory with existing approaches
we offer Figure 27 which shows the input conductance to a center-driven
cylindrical antenna where the ratio of antenna half-length to radius is
h/a = 100 as calculated by (41) and the corresponding numerically
evaluated (via the moment method) results of Harrington and Mautz [26].
The agreement between our results and the accurate numerically-determined
data is excellent. Further evidence to substantiate our theory is given
in Figure 28, which is the same as the previous figure except the driving
point is now located at z = *h/2 . Excellent correspondence with the
numerically determined data of Harrington and Mautz [26] is once more
attained.

We extend our considerations to much thicker antennas with Figure
29, which shows the input conductance of cylindrical antennas as calcu-
lated from (41) for the radii normalized to wavelength, a/\ = 0.0159,
0.078, and 0.164 (ka = 0.1, 0.49 and 1.03, respectively) as a function
of the normalized half-length, h/\, between 0.1 and 0.5 . 4E§\
although these antennas are out of the applicable range of our theory due
to the basic condition in (8), we find behavior still consistent with the
numerically-obtained results of Chang [27] and [28] (one-sided delta
function excitation data), and the experimental results of Hartig [29].
This further enhances the feeling that thederived result actually has a
much wider application than had been assumed analytically. And we note the
very good agreement between our theory and ﬁhe others for the larger values

of h/)A, where the ratio of h/a is also larger.
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a function of the normalized length, 2h/A .
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Figure 27. Input conductance of a center fed cylindrical antenna as




