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This research is an investigation of the problem of generalization in neural
networks: how do the task which the network must learn, the architecture of the
network, the training of the network, and the data representations used in that
training, both individually and collectively, affect the ability of a network to learn
the training data and to generalize well to novel data.

A psychological model of speech perception, Liberman and Mattingly’s Mo-
tor Theory, provides the theoretical foundation for the tasks and architectures spec-
ified for the networks used in the research. Linguistic theories of vowel perception
guided the preparation of speech data representations used in training the networks.
Vowel data was collected across varying contexts and speakers to provide a broad’
test of the networks’ ability to generalize to 'highly variable data.

Results of the research show that networks having different task require-
ments but trained with the same number and type of data representations form a
family of networks which exhibit similar generalization across a broad range of hid-
den units. Contradicting commonly accepted guidelines, networks trained with larger
data representations exhibit better generalization than networks trained with smaller
representations, even though the larger networks have a significantly greater capac-
ity. In addition, networks having the same training performance can exhibit different
levels of generalization; researchers interested in generalization must track general-
ization directly. Finally, given an appropriate architecture, training algorithm, and
sufficient training data, the data representation itself is the primary determiner of a

network’s ability to generalize well to new data.
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CHAPTER 1
INTRODUCTION: GENERALIZATION

1.1 Generalization

The essence of intelligence is the ability to learn. Learning includes both
memorization of the concepts which are required to be learned and generalization to
new concepts which have not yet been encountered. Memorization can be thought
of as a search for a function that successfully relates or maps training inputs to their
corresponding outputs. A .function f:X =Y, called 2 mapping, is a rule which
assigns to each element of an input set X 2 unique element f(X) of the output
set Y. Generalization can be thought of as the ability to map novel inputs to the
correct corresponding outputs based upon properties discovered in the training set..”
It should be noted that it is not always possible to generalize from items which have
been memorized. For éxamp}e, in a telephone book we find many people who have
the same last name, while others have the same first name or initials. The ability
to memorize names and the associated telephone numbers does not permit one to
predict the phone number of a person who shares the same surname with one per-
son and a given name with another. In other words, items can be memorized based
upon unsystematic relationships between the ihput and output or upon idiosyncratic
features of the items. Generalization requires that the memorized items have un-
derlying similarities which are capable of being extracted and applied to new items
from the same domain.

In a neural network the capacity of the network, or the number of mapping
functions that can be represented in the search space of the network, is a function of

the architecture of the network and can be measured by the number of connections in



the network. Under appropriate conditions, a system having a large capacity has the
potential to memorize a large training set or to represent a large number of functions.
A system having small capacity is capable of memorizing only a small training set
or representing only a small number of functions. It is possible for a system to be
trained so that it finds a function that successfully relates or maps the training inputs
to their corresponding outputs. That function may not correctly map novel inputs
to their corresponding outputs. For example, a system which has a large capacity
relative to the size of the training set it is required to learn may develop a function
that is based upon idiosyncratic features rather than upon important features in the
training set. Such a system will not generalize well to novel inputs. A number of
researchers [22, 26] maintain that a large capacity system requires a large number
of training examples to narrow the search down to the correct mapping function so
that generalization will occur. Reducing the capacity of the system may reduce the
number of training examples required to achieve a high level of generalization. It',,
may also have the effect of eliminating the desired mapping function from the search
space; the reduced system capacity may not even be able to memorize the training
set.

Clearly there is a complex interaction between these four factors: memo-
rization, generalization, system capacity, and number of training examples. Judd
[13] states that “The business of finding regularities in data and generalizing from
them depends totally on the embedded problem of simply remembering data.” Mem-
orization requires sufficient system capacity. A looser definition of learning does not
require complete memorization. It permits a degree of deviation from the given data.
Even in this case, a large training set size relative to the system capacity is required
to find an appropriate mapping function for generalization to occur. To design and

train neural networks that generalize well to new examples after having been trained
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ona sufﬁciéntly large set of training examples is a major goal of connectionist learn-
ing [12]. There is considerable current interest directed to understanding under what
conditions good generalization occurs in neural networks.

I turn now to a review of existing research into the connectionist generaliza-
tion problem and describe some limitations of that research. The unstated but im-
plicit rationale underlying much of the research into the connectionist generalization
problem is the labor and financial cost involved in the acquisition and preparation
of training data. Since the acquisition and preparation of training data is in many
instances the most labor intensive and least cost effective aspect of a project, there
is an understandably strong desire to reduce the amount of time, labor, and money
that must be spent on this portion of the project. One way to do that is to reduce
the amount of data that is required for training a system and one obvious approach
to accomplishing that is to reduce the capacity of the system.

Following the review of existing research, I will present a brief overview of -
the approach I take in investigating the generalization problem together with some
definitions of key terms critical to an understanding of that approach. I will include

some of the guidelines and hypotheses which guided my research.

1.2 Connectionist Generalization

Probably the most quoted guideline in connectionist literature regarding
the amount of data required to train a network and achieve good generalization is
attributed to Bernard Widrow [42]. Widrow suggested that the size of the training
sample to be used in training a network should be at least 10 times the number of
connection weights in the network. For networks intended to cope with real world
problems, this suggestion immediately places a tremendous strain on the data acqui-

sition resources available for the total research project. Toillustrate, I have developed



networks with between 615 and 22,050 connection weights. Using Widrow’s dataset-
size guideline these networks would required 6,150 examples to 220,500 training
examples! Considering the resources and time required to collect such large amounts
of data it is not surprising that researchers seeking to better understand under what
conditions a network will exhibit good generalization would begin by exploring the
relationship between the size of the network being trained, and the amount of train-
ing data required for the network to exhibit good generalization.

1.2.1 Generalization: architecture and training set size. By far
the greatest amount of research into the connectionist generalization problem has
been concentrated on exploring the impact of architecture and training set size on
connectionist training and generalization. By network architecture I mean the set of
input units, hidden units, and output units together with the connections between
units and the unit groupings which combine to form a network of computing ele-
ments. Because of the difficulties involved in analyzing the behavior of networks .
using nonlinear activation functions,v theoretical work on the relationship between
network architecture and generalization has been limited.

Baum and Haussler [2] follow the theoretical approach to determining an
appropriate sample size for a given network size for a classification task. Assume
the error rate ¢ is defined as 0 < ¢ < 1/8. With N nodes and W weights, if
m > O(-”—:’—log L:’-) random examples chosen from some arbitrary distribution can
be stored in a feedforward network of linear threshold functions so that at least
a fraction 1 — ¢/2 of the training examples are correctly classified, then one can
have confidence approaching certainty that the network will correctly classify 1 —
€ new testing examples selected from the same distribution. This estimate of m
is an upper bound on the number of training simples required. A lower bound
estimate is on the order of W/e. A training set containing approximately 10 times

as many training examples as there are weights in the network is required for a



network having a generalization error rate of 10% or less. It is important to note
that Baum and Haussler are concerned with linear threshold units only and that their
results promise certainty regarding the generalization to be realized in the trained
classifier network. Their results have not been extended to nonlinear functions such
as the sigmoid function. Their results are not significantly different from Widrow’s
suggested value. The individual researcher may be willing to weigh the amount of
effort required to collect and prepare a training set offering certainty of a specific
generalization performance against the possibility of achieving that same degree of
generalization performance with something less than absolute certainty and utilize
a smaller training set size.

A number of empirical results have been reported concerning the appropri-
ate training set size for a fixed size architecture or reducing the capacity of a network
to accomodate a fixed size training set. Examples of the first approach, determining
the appropriate training set size, are provided by Ahmad and Tesauro’s work and -
also by that of Leung and Zue. Ahmad and Tesauro [1] trained a feed-forward net-
work with no hidden units to learn a simple linearly-separable problem. Their task
was to report the majority function, which returns a 1 if the majority of the inputs
are on. They wanted to study the relationship between the size of the network,
the number of training instances, and the generalization exhibited by the network.
The size of the input layer was varied. Their results showed that for a given input
size the failure rate decreased exponentially with the number of training patterns:
f = ae™PS where f is the failure rate and S is the number of training patterns. In
addition, the number of training patterns required to achieve a fixed performance
level was shown to increase linearly with the network size.

Leung and Zue [17] explored the impact of training set size on the training
of a network having a fixed architecture. They used speech data to train a single

hidden layer network having 100 input units representing three spectral frames of



speech data, 32 hidden units, and 16 output units that corresponded to 16 American
English vowels excised from 1,000 sentences spoken by 200 speakers. The network
was trained with sets consisting of from 80 to over 8,000 training tokens. With an
increase in training set size, training recognition results reached an asymptote of
about 80%. Speaker-independent testing showed that the network generalization
increased monotonically with training set size from 30% to 54% with the greatest
increase in accuracy occuring between 80 and 800 training tokens. It is not possible to
compare Leung and Zue’s results against Baum and Haussler’s theoretical estimate,
since Leung and Zue do not achieve appropriate error rates on either the training or
generalization error of the network. They state that their network containing 1392
connections does not exhibit significantly better performance with 8,000 training
tokens than it did with 800 training tokens. This lack of improvement may indicate
that ;heir architecture had insufficient capacity. Further evidence is given by the 80%
asymptotic training recognition. The network does not appear to have had sufﬁcient‘.
capacity even to learn the training aata. In a second experiment they sought to
improve network generalization by increasing the information content of the input
data representation. These efforts will be discussed in Section 1.2.2 below.
Examples of the second empirical approach, reducing the capacity of a

network to accomodate a fixed size training set, involve varying the number of hidden
units, varying the connectivity of the network, and varying the total capacity of the
network. Several researchers have investigated systems which vary the number of
hidden units in the network. For example, in a paper whose focus is primarily the
analysis of hidden unit behavior in a network, Gorman and Sejnowski [10] report
an increase in network generalization with an increase in number of hidden units.
Neural networks were trained to perform the classification of sonar returns from two
undersea targets, a metal cylinder and a similarly shaped rock. The networks had

60 input units and 2 output units. The number of hidden units was varied from 0 to



24. Table 1.1 illustrates their results. From 0 to 12 hidden units, both the training

Table 1.1: Gorman and Sejnowski’s Results

Average Performance
Hidden Training Testing

0 79.3 73.1
2 96.2 835.7
3 98.1 87.6
6 99.4 89.3
12 99.8 90.4

24 100.0 89.2

recognition and the testing generalization increase with the number of hidden units.
The significance of observed increase in network performance with the number of

hidden units was tested, and verified, by an analysis of variance. At 24 hidden

units the training recognition continues to increase while the testing generalization

exhibits a very slight decrease.

Gorman and Sejnowski noted the impact of number of hidden units on per-”
formance and network generalization: the improving recognition and generalization
from 0 to 12 hidden units. They failed, however, to note the essentially similar gen-
eralization exhibited across a range of {from 6 to 24 hidden units - a fourfold increase
in the number of hidden units.

Morgan and Bourlard [26] performed an empirical study of the relationship
between the number of weights in a feedforward network and the ability of the
network to generalize well to new examples. They used both simulated data sets and
speech data to train the networks. For the speech data they used German sentences
spoken by a single speaker: 100 training sentences and 100 testing sentences. Input
to the network was 9 frames of vector-quantized mel cepstra data for a total of 1188
input units. The output layer contained 50 units corresponding to the 50 phonemes
to be recognized. The hidden layer varied from 20 to 200 units. Performance on

the test set was monitored after each epoch and training was discontinued when test

-



set performance showed no further improvement. As the number of hidden units
increased from 20 to 200, performance on the training set increased from 75.7% to

86.7%. Corresponding performance on a novel test set decreased from 62.7% to

59.6%. Their results indicate:

While both studies show the expected effects of overparameterization, (poor gen-
eralization, sensitivity to overtraining in the presence of noise), perhaps the most
significant result is that it was possible to greatly reduce the sensitivity to the
choice of network size by directly observing the network performance on an in-
dependent test set during the course of learning (cross-validation). ...Networks
which require many more parameters than there are measurements will certainly
reach lower levels of peak performance than simpler systems.

‘While Morgan and Bourlard investigated the impact of number of hidden units on
generalization, their_ results may be limited because of the restricted range of hidden
units they chose to investigate. For a network with 1188 input uniﬁs and 50 output
units they only explored a hidden Iayér having from 5 to 200 hidden units (see Table

1.2). From 5 to 200 hidden units, they show an increase in training recognition.

-

Table 1.2: Morgan and Bourlard’s Experiments

Phoneme Recognition
Hidden Training Testing

5 62.8 54.2
20 75.7 62.7
50 73.7 60.6

200 86.7 59.6

An increase in testing generalization, however, is only exhibited from 5 to 20 hidden
units. From 20 to 200 hidden units a small decrease in generalization can be observed.

The possibility that they may well not have been in the right ballpark is
apparent from an examination of these results. Although training recognition was
continuing to rise up to 200 hidden units at no point can it be claimed that the net-
works truly learned the training set; the highest training recognition exhibited is less

than 87%. The slight decrease in testing generalization between 20 and 200 hidden



units can be quite plausibly explained as a result of experimental variation. The fact
that no networks having more than 50 but less than 200 hidden units were explored
makes it extremely difficult to determine the stability of either training recognition
or generalization within this range. The networks could exhibit non-linear perfor-
mance results in this range, for example, performance could increase beyond 86.7%
and then decrease to 86.7%. In addition, it is not at all clear why Morgan and
Boulard did not study networks having more than 200 hidden units, since even the
200 hidden unit network was not succesful. The 86.7% recognition accuracy seems
to indicate that this network had insufficient capacity to learn the training data.
Additional experimentation might have revealed significantly increased training and
testing recognitibn performance with an increase in the nﬁmber of hidden units.
Mozer and Smolensky and also Sietsma and Dow report methods that au-
tomatically reduce the number of hidden units in a network. The rationale for Mozer
and Smolensky’s [27] approach is the observation that learning to criterion is faster
for networks having many hidden units. Generalization is similarly assumed to be
better with fewer hidden units. No evidence is offered in support of this position.
Mozer and Smolensky use a relevance measure which compﬁtes for a given unit the
approximate change in the difference between the network error with the unit and
the network error without the unit. Here the error is a linear function rather than
the usual quadratic function. The network is first trained to some specified margin
around the target value, then the relevance is computed and the unit having the least
relevance is removed from the network. Training then continues and the procedure is
repeated a specified number of times. Examples of the approach are given for tasks
such as the four-bit multiplier problem and the random mapping problem where a
set of random 20-element input vectors is mapped to random 2-element output vec-
tors. For the latter problem the network failed to reach criterion with two hidden

units on 17% of the training runs. A network trimmed to two hidden units using
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the skeletonization process reached criterion on all but 8.3% of the training runs. In
addition, the skeleton network reached criterion much sooner with six hidden units
than did a network having only two hidden units. Its performance did not signifi-
cantly decline as the network was trimmed. It is not clear how well the approach
would scale-up for larger networks using large sets of training data collected from
real-world problems.

Sietsma and Dow [33] developed a technique to test the hypothesis that
multilayered feedforward networks with few hidden units on the first hidden layer
generalize better than networks with many hidden units on the first hidden layer.
They trained a network to classify sine waves of different frequencies. Two test sets
were generated: one consisted of sine waves of different frequencies with different
pﬁase shifts from the training set, while the second consisted of similar sine waves
corrupted with random noise added to the test patterns. The initial network archi-
tecture had 64 input units, 20 hidden units in the first hidden layer, eight hidden ..
units in the second hidden layer, anci three output units. Results were obtained for
training the network with several different initial conditions. The network was then
re-trained while unused or noncontributing units were pruned from the network.
Here pruning was accomplished by programs outside of the network simulator; these
programs read the network state and determined the units suitable for deletion. In
general, Sietsma and Dow found that reduciﬁg networks to the smallest size capable
of classifying the training set degraded the generalization capability of the networks
“... indicating that in some circumstances networks with many hidden units gener-
alize better than networks with few hidden units.”

Examples of approaches which automatically vary the connectivity of the
network are suggested by Hinton [12] and empirical results for such an approach are
reported by Weigend [40]. Hinton suggests a cost term in the training algorithm error

function which penalizes large weights. If the cost term is S w? then the derivative
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corresponds to a weight decay and decreases towards zero.

Weigend, Huberman, and Rumelhart trained a feedforward network with
one hidden layer having non-linear activations and an output layer having linear
activations to predict sunspot activities. Two training algorithm approaches were
used to determine the optimum network size, one of which will be discussed in Section
1.2.2 below. In their approach, it was assumed that the best generalization occurs
when the smallest network still able to fit the training data has been identified. They
began with a network that was “too large” for the problem. No rationale is offered
as to how this was determined. Fach connection in the network has a cost associated
with it:

wk;

The parameter A is used to represent the relative importance of the weight cost
function with respect to the standard performance error term. Use of this cost
function in the training algorithm encourages the reduction and elimination of as”~
many of the weights as possible. This approach is similar to that suggested by
Hinton [12]. It has the disadvantage that network training must be monitored so that
the value of A can be changed as required: start with ) at 0, slowly increase A until
performance begins to decline and thereafter increase or decrease it as appropriate for
2 continued decrease in the training error. They used an average relative variance
measure to show that prediction results from the weight elimination method are
better than results from a network trained without weight elimination: 0.38 versus
0.42, approximately.

The most thorough experiment to date varying the capacity of the network
is reported by Martin and Pittman. Martin and Pittman [22] used real-world data
in their investigation of the neural network generalization problem. They designed
and trained a network to recognize hand-printed letters and digits. Input patterns to

the network consisted of 15X 24 bitmaps of pre-segmented size-normalized grayscale
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arrays for each character. The networks were fully connected and feedforward. The
output units matched the number of categories to be identified. For the digits, they
used training set sizes of 100 to 35,200 samples and a test set size of 4,000 samples.
For the letters they used training set sizes of 500 to 6300 samples and a testing set
of 2,368 samples. In exploring the effect of network capacity on generalization, they
manipulated the architecture of the network in various ways: varying the number
of hidden units, limiting the connectivity between layers, distributing the hidden
units across both 1 and 2 layers, and sharing connection weights between hidden
units. Each of these approaches had only a negligible effect on generalization. Using
nets with fewer hidden units did not improve generalization, nor did limiting the
connectivity between layers: “The fact that we find no advantage to reducing the
number of connections conflicts with Baum & Haussler’s estimates and the under-
lying assumption that capacity plays a strong role in determining generalization.”
Using local receptive fields and shared weights resulted in only a slight improvement -
in generalization and those occurred only in the case of relatively small training set
sizes. The size of the training set, however, appeared to affect the ability of the

networks to generalize to new examples:

Given an architecture that enables relatively high training performance, we find
only small effects of network capacity and topology on generalization perfor-
mance....it is probably better to devote limited resources to collecting a very
large, representative training set than to extensive experimentation with dif-
ferent net architectures. The variations in net capacity and topology we've
examined do not substantially affect generalization performance for sufficiently
large training sets. Sufficiently large should be interpreted as on the order of a
thousand to tens of thousands of samples for hand-printed character recognition.

They report their numeric results in terms of performance versus training set size for
a fixed capacity. They do not report numeric results for performance versus capacity
for a fixed training set size. Consequently, it is not possible to compare the results
obtained in my investigation with the results of their investigation.

Finally, Cheung, Lustig, and Kornhauser [6] took yet another approach to
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investigating the relationship between training set size and generalization. They rea-
soned that back-propagation treats all training patterns as being equally important
during training. Nevertheless, some training patterns are more difficult to master
than others. Based on this rationale they developed a process to select out at each
training cycle the most poorly-trained patterns. They then enlarged the training
set by including additional copies of these selected patterns for use in the continued
training of the network. The dynamic training set that was thus created contained
the original pattern set plus copies of the most recent poorly-trained patterns. Using
two toy domains, such as counting the number of 1’s in a 6 bit pattern, they tested
this approach and showed an increase in genérah'zation with a reduction in error rate
from a 24% error rate to 2 0% error rate. No attempt was made to determine if these
results would scale up to larger networks using larger data sets collected from actual
problems.

In summary, reported results for the‘relationship between network archi-.-
tecture and generalization indicate that either (a) network capacity has no apparent
effect on generalization [22], [17); (b) networks with more hidden units generalize
better [10, 33]; or (c) networks with fewer hidden units generalize better [26]. There
is an obvious disparity of results reported with respect to the relationship between
the architecture of a network and the ability of that network to generalize to new
data. With regard to the relationship between training set size and generalization,
reports indicate that (2) more training examples results in better generalization (1, 6],
or (b) an increase in training set size results in an increase in generalization only
up to a certain point, beyond which additional training examples do not increase
generalization [17]. The latter results appear to indicate that quantity of training
data alone is not sufficient to guarantee good generaﬁzation.'

1.2.2  Generalization: other factors. By far the greatest amount

of research into the connectionist generalization problem has been concentrated on
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exploring the impact of the relationship between the capacity of the network being
trained and the size of the training data set on the network’s ability to exhibit good
generalization. Several researchers have reported on other factors which appear to
affect network generalization: the amount of training a network has received, the
data representation used in that training, and the task the network was required to
learn.

Reports that the amount of training a network receives has a bearing on
generalization have been made by both Weigend, Huberman, and Rumelhart [40] and
also by Morgan and Bourlard [26]. Weigend, Huberman, and Rumelhart trained a
feedforward network with one hidden layer having non-linear activations and an out-
put layer having linear activations to predict sunspot frequency. A large number of
hidden units ‘wa.s allocated to the network architecture. In order to ensure that over-
fitting did not occur with this approach, network performance on a cross-validation
set was monitored and training was discontinued when performance on the cross- -
validation set ceased to im‘prove. The rationale for their approach is that a network
will not be trained to the point where it begins to learn noise present in the training
set. A figure comparing the results of training by this method with the previously
discussed training by weight elimination indicates that “...the fitting of the noise of
this training set happens [sic] to have no effect on the error of this cross-validation
set.” The authors further indicate that the results depended strongly on the spe-
cific training and cross-validation data used. No numerical results were presented to
compare the approach with networks which were supposedly “overtrained”.

Morgan and Bourlard studied the ability of a network to recognize speech
data. In their investigation performance on the test set was monitored after each
epoch and training was discontinued when the test set performance showed no further

improvement. They report that their results indicate:

...that it was possible to greatly reduce the sensitivity to the choice of network
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size by directly observing the network performance on an independent test set
during the course of learning (cross-validation). If iterations are not continued
past this point, fewer measures are required....

Of studies on other factors which appear to affect network generalization,
reports of the relationship between data representation and the generalization ex-
hibited by a network are also of interest. These fall into two general categories.
The first category consists of reports regarding the effect of representational changes
designed to improve the information content or quality of the data prior to creating
the training patterns. An example is the smoothed spectral representation which
results from the convolution of a two dimensional Gaussian filter with an original
spectral representation of that data. The second category consists of reports regard-
ing changes in data representation which are really changes in the training patterns,
for example, using —1, +1 rather than 0, 1 to represent a binary pattern.

Repérts regarding the relationship between data representation and net-
work generalization are provided by Leung and Zue [17] and also by Kamm and-”
Singhal [14]. Recall that Leung and Zue used speech data to train a single hidden
layer network having 100 input units representing three spectral frames of speech
data to recognize 16 American English vowels. Training reached an asymptote of
about 80% correct. Speaker-independent testing of the trained networks showed
generalization of approximately 54%. In an attempt to improve the generalization
exhibited by the network, Leung and Zue decided to improve the information content
of the input data by providing the network with information about the 122 possible
contexts for the original speech input. This improvement in information content
necessitated an increase in the size of the input representation by an additional 122
units. These additional units require additional weights that serve to increase the
capacitj of the network. Nevertheless, training recognition increased to 95% while
generalization increased to 67%. Obviously increasing the capacity of the network

did not inhibit the ability of the network to exhibit better generalization when it



16

was trained with the larger but more informative speech input.

It could be argued that increasing network capacity by adding additional
input units does not have the same effect as increasing network capacity by adding
additional hidden units. Network capacity is usually measured in terms of the num-
ber of connections in a network. It is not clear how one would differentially compare
the addition of connections resulting from adding input units with the addition of the
same number of connections resulting from adding hidden units. Nor do I know of
any research that would ;support such a contention or such an approach. In the case
of Leung and Zue’s work, it is certainly not clear how one would explain an increase
in both performance and generalization based on some such differential change in
the network capacity resulting from the additional input units. After all, one can
hardly claim that adding input units causes a decrease in network capacity. Such an
argument also fails to take into account the additional information provided to the
network by the added units. . -

Kamm and Singhal report on training feedforward networks using speech
input representations containing 35, 65, 125, and 245 milliseconds of spectral data.
The change in input data representation was made in each instance by mapping
the speech data for the particular temporal input span to 147 input units. Varying
amounts of temporal information were provided to the networks even though no
change was made in the number of input units in the network. Best performance
was exhibited by the network using the 125-ms. data representation.

One final comment on the impact of changes to the quality or information
content of a data representation on network generalization is provided by Martin
and Pittman. They observe that smoothing of the digit and character input data
by convolution with a Gaussian distribution “significantly” improves recognition
accuracy. Unfortunately, they do not report numerical results for the recognition

and generalization for networks trained with either unsmoothed or smoothed data.



17

Neither do they indicate that they pursued this comparison across network size and
training set size. By neglecting to perform this comparison they may have ignored
a factor having potentially far greater impact on network generalization than those
they chose to investigate.

Reports of the relationship between data representation and the general-
ization exhibited by a network which fall into the second category, representation
changes in the training patterns, are typified by those of Ahmad and Tesauro (1] and
Sietsma and Dow [33]. They investigated the effect of changing the input pattern
representation from a binary 0, 1 representation to a binary -1,+1 representation.
This simple change in representation increaSed the generalization significantly (5%
to 10% better for a given training set). It also decreased the time required to train
the network. Sietsma and Dow report on a follow-up test to their work described
above in which the network was trained with random noise added to corrupt the
training patterns. The resultant networks exhibited dramatically better generaliza- , -
tion than networks trained with clean training patterns. For the networks trained
with patterns corrupted by the addition of random noise, they report that pruning
the number of connections in the network had only a minimal effect on improving
network generalization. Sietsma and Dow offer no explanation as to why the addition
of random noise to the training patterns resulted in improved generalization.

Landauer, Kamm, and Singhal [16] report on an investigation of the re-
lationship between the task a network is required to learn and the generalization
exhibited by the network. They utilized speech data to train a network which was
required both to identify the speech input and to auto-associate the speech input.
Their rationale for the combination of a classification task and an auto-association
task was that requiring the network to perform two tasks should supply a much
greater degree of constraint on the representations formed on the hidden units and

-that the additional constraints might result in a solution having better generalization
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for classification. They used a network with 1,125 input units, a variable number of
hidden units (usually 20), a number of output units corresponding to the number of
phonemes to be classified plus 1,125 units for the autoencoded output. A 150 ms.
speech window was stepped across the input in 2 ms. steps. They report prelimi-
nary results indicating that generalization for the two task network was better than
generalization of the network which performed classification only. No numerical re-
sults are presented for either approach. They do not indicate how performance was
measured (across the total task, across the classification task or the auto-association
task only, or by a vote of both tasks).

The reported results for these investigations of the relationship between
other factors (amount of training, data representation, or network task) and the
generalization exhibited by a network have been rather consistent. Reports that
training a network too much can reduce generalization are provided by Weigend et
al and Morgan and Bourlard. Leung and Zue report that a change in the information/
content of the data representation to include context information resulted in a 13%
increase in generalization even though it required in an increase in the size of the
input layer and the capacity of the network. Kamm and Singhal report “improved”
generalization for a pattern data representation containing more temporal informa-
tion but the same size input pattern representation. Finally, Martin and Pittman
report that a change in the preparation of the data by smoothing with a Gaussian
filter results in “improved” generalization. These results regarding the relationship
between changes in the quality or information content of the data representation
and generalization indicate an area where significant improvements in network gen-
eralization can be achieved. The impact of data representation on generalization
reported by Ahmad and Tesauro and, also, Sietsma and Dow indicate that minor
changes in the training pattern data representations can result in significant increases

in generalization of from 5% to 10%. Finally, Landauer et al report that training a
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network to perform more than one task can constrain the network sufficiently that
the internal representations are improved and the network exhibits improved gen-
eralization. Additional research could provide added insight into the relationship
between network task and network generalization.

1.2.3 Generalization: summary of current research. The re-
search regarding the relationship between network architecture and generalization
or training set size and generalization are quite clearly contradictory. Probably the
most rigorous empirical studies were those undertaken by Morgan and Bourlard and
Martin and Pittman. I have already indicated my concerns regarding the incom-
pleteness of Morgan and Bourlard’s work: fheir investigation was extremely limited
in terms of the number of hidden units utilized and apparently terminated at a
point at which training recognition was still increasing while generalization showed
only a2 minimal decrease. Martin and Pittman’s work was far more thorough in its
investigation of the relationship between network architecture and network generals -
ization. Like Morgan and Bourlard’s work, however, it neglected other factors which
can affect network generalization: network task and network training. The results
which have been reported regarding the relationship between data representation
and generalization exhibited by a network indicate that this is an area where signifi-
cant improvements in generalization may be achievable. It should be noted that the
latter is an area of investigation where the majority of the results appear to have
been a serendipitous result of investigations focused on other factors.

None of these studies attempted a truly systematic investigation of the rela-
tionship between network architecture, task, training, training data representations
and network generalization. The interactions between these factors were for the most

part completely ignored.
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1.3 Overview

My research is just such a systematic investigation. How do the architecture
of a network, the task which a network must learn, the training of a network, and the
data representations used in that training affect the ability of a network to generalize
well from previously learned examples to new examples? My research investigates
the potential interactions occurring between these factors and their relationships to
the generalization exhibited by a network.

Unlike Martin and Pittman, I did not attempt to explore the infinity of
potential search spaces that can be created when one tries manually to limit the
connectivity of a network or to specify the sharing of weights between units. The
research is limited to an investigation of feedforward fuﬂy-connectéd networks. I
investigate the relationship between generalization and network architecture not just
by varying the number of hidden}units but by varying the number of hidden layers
and also by varying the tasks of the networks. My guideline was the same overfitting -
guideline used by Martin and Pittman, Morgan and Bourlard, and others: system
models which have too many free paraméters develop functions which fit the training
data too closely and may not generalize well to new measurements. I intended to
manipulate the architecture of the input and output layers as well as that of the
hidden layers. Utilizing an architectural viewpoint only, I initially hypothesized
that training with physically larger representations, which result in increases in the
connectivity and the capacity of the network, reduces recognition performance in a
network.

I investigate the relationship between generalization and network task by
studying networks which have not only the classification task utilized in much of the
research discussed above but which also have several composite tasks similar to that
reported by Landauer et al. In my investigation, I formally define network task to

mean the set of input/output items that the network is required to learn: T = (i,0),
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where ¢ is an input pattern and o is an output pattern. A total task may be a
composition of two or more subtasks. For example, in the network investigated by
Landauer et al, if one group of output nodes o, is used to classify the input, we define
the classification task as T, = (i,0.). Another group of output nodes o, is used to
auto-associate the input pattern with itself, defined as T, = (#,04). The total task
of the network can then be specified as T = T. o T, = (1,0.00,). Here o, and o, are
seen to be both semantically and syntactically different output responses.

One hypothesis with regard to compound tasks is: requiring the network
to perform more than one appropriately related task should supply a much greater
degree of constraint on the representations. formed by the hidden units and thus
should result in a solution exhibiting better generalization. Adding additional related
task requirements forces an increase in the number of input and/or output units and
therefore an increase in the number of connections in the network architecture. Such
an increase in network capacity, according to the overfitting guideline, should result.~
in a reduction in generalization. Accordingly, I hypothesize that adding additional
related tasks should cause a change in generalization. That change may be an
increase in generalization, as a result of the added constraints, or it may be a decrease
in generalization, as a result of an increase in the network capacity.

Beyond these factors, I investigate the relationship between generalization
and network training by using two different training algorithms and several differ-
ent training schedules. The primary training algorithm utilized in this research is
the back-propagation algorithm. For purposes of comparison, however, selected net-
work architectures are trained with both back-propagation and conjugate gradient
training. Different training schedules, induding incrementalv training and training
by task are also investigated. Different training algorithms may facilitate or hinder

the development of generalization.
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I investigate the relationship between generalization and data representa-
tion by focusing my investigation on the effect of representational changes designed
to improve the information content or quality of the data. In this respect, I inves-
tigate the effect of such representational changes on generalization within networks
having the same architecture and similar tasks. The first investigation compares
networks having tasks in which the output data representations are the same but
there are different data representations for the same input. The second comparison is
for networks having tasks in which the input representations are the same but there
are different representations for the same output. I also investigate networks having
similar tasks in terms of the output representations but changes in architecture re-
sulting from increases in the information content of the input data. Consideration
of previous research results indicate that improvements to the information content
or quality of the data is a generally underrated factor which has a significant impact
on the generalization exhibited by a neural network.

It is clear that the rnemorizétion and generalization exhibited by a system
are related to the capacity of the system and the number of training examples used in
training the system. What should be equally clear is that one can have an extremely
large number of training examples, but if those training examples are poor examples
of the concepts which are to be learned, it is unlikely that good generalization will
occur. The quality of the data representation is a frequently-unemphasized factor
which belongs with system capacity and training set size in the pantheon of factors
that affect network generalization.

A system having an extremely large capacity is more than capable of mem-
orizing a very small number of training examples. Whether or not that system can
generalize well from those few memorized examples to new examples depends not
just upon the number of those examples but also upon whether or not those exam-

ples contain sufficient information regarding the similarities underlying the concepts
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necessary for appropriate generalization to occur. If they do not, it is clear that
for generalization to occur the system must be presented with examples which do
contain the necessary information. Simply presenting more of the same insufficiently-
informative training examples will not guarantee that the system will exhibit good
generalization.

On the other hand, a system having a very small capacity cannot be ex-
pected to memorize a large number of training examples. Likewise, this same system
cannot be expected to generalize well from those examples which it does memorize
unless they contain sufficient information regarding the similarities which must be
extracted in order for good generalization to occur. It is not clear how one would
perform an a priori measure of the information content or quality of a data represen-
tation. It is nevertheless important to begin research into tixe relationship between
such representational changes in data and their impact on network generalization.
What is needed is a means of selecting and preparing data representations having -
high information content for use in training a network so that it will achieve the best
generalization possible given the number of training examples available. To borrow
a familiar motto: We need a few good examples!

The ability of connectionist networks to extract the similarities embodied
in the training instances permits them to generalize to new or exceptional situations.
Appropriate representations contain sufficient evidence of the similarities which must
be extracted in order for good generalization to occur. It is possible that an appropri-
ate representation might be physically larger than a less appropriate representation.
As a result the capacity of the network would be increased. According to the over-
fitting guidelines, this should result in a reduction in generalization. Nevertheless, |
hypothesize that training with appropriate, even though larger, representations will

help the network to to generalize better.
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1.3.1 Research focus. A major goal of connectionist learning is to
design and train neural networks that generalize well to new examples from a domain
after having been trained on a sufficiently large set of training examples selected from
that domain. Neither the concepts to be learned nor their representations are stored
in a neural network. Rather, what is stored is the connection strengths between the
units that allow these concepts to be re-created. Generalization in neural networks
is the acquisition of connection strengths which reflect similarities extracted from
the representations used in training the network. As yet we do not understand the
conditions a network requires in order to do a good job of extracting similarities from
the representations used in training the network. We know that, given an appropriate
architecture, training algorithm, and sufficient training data, a connectionist network
generally can find a function that will memorize the training set. What we do not
know is if that function will permit the network to generalize well to data which it
has not seen before. My research is an investigation of this complex question: how do
the task which the network must learn, the architecture of the network, the training
of the network, and the data representation used in that training, both individually
and together, affect the ability of a network not Jjust to learn the training data but
to generalize well to previously unseen data.

Before discussing the specific experimental methodology used in this inves-
tigation it is necessary to consider the problem domain in which this investigation

will be carried out.



CHAPTER 2
TASK: SPEECH PERCEPTION

2.1 Experimental Strategy

The four independent variables used in my investigation of network gen-
eralization include: network task, network architecture, network training, and data
representations. These variables are not all equally easy to manipulate. For exam-
‘Ple, it is easy to manipulate the network architecture; one need only change the
number of hidden units in the network. Likewise it is fairly easy to manipulate the
network training. If back-propagation training is being used one can simply change
the learning rate being used in order to effect a change in training. Training can
also be manipulated by using different training algorithms: back-propagation and”’
conjugate gradient training, for example. Accessing and manipulating network task
or manipulating the qua.ﬁty or information content of the data representations used
in the training are nowhere near as readily accomplished. One could manipulate the
task requirement by requiring a network to accomplish one or the other or both of
two or more arbitrarily specified tasks, for example, identify a randomly presented
vowel spectrum and, at the same time, complete a randomly presented partial pic-
ture of an object. Should a network fail to succeed at the composite task, however,
the failure might be ascribed to the unrelatedness of the subtasks or to the com-
posite nature of the tasks. What is needed is a domain of investigation in which
two or more related tasks can naturally and logically be required of a network. The
more reasonable the relationship between the tasks the more readily analyzable the

relationship between the manipulated network task and the generalization exhibited
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by the network should be. Similar arguments can be made with respect to the re-
lationship between data representation and network generalization. The remainder
of this chapter will be devoted to developing the approach to the manipulation of
network task that was used in this research. Chapter 3 will be devoted to develop-
ing the approach that was used in the manipulation of the quality and information
content of the data representations. I defer the discussion of network architecture
and network training until Chapter 4.

To rigorously manipulate the task required of the network and observe the
resultant effect upon the generalization, I needed to have a domain in which mean-
ingful variations in task requirements could be explored. Certainly it would have
been possible to develop an artificial domain in which to carry out my investiga-
tion. To do so would require making assumptions about the underlying structures
of that domain that might or might not be reasonable when compared to practical
applications of interest to researchers such as visual perception or speech perception .
researchers. Using an artificial dorr;ain could result in criticism of my investiga-
tion based on several objections: the domain could be considered to be a "toy”
domain, objections could be raised concerning the underlying justifications for the
task requirements, and it could be claimed that the results of such an investigation
simply might not scale-up to larger networks using larger representations of collected
experimental data.

Using a real-world domain avoids each of these objections. It also elimi-
nates the time and effort involved in attempting to develop an appropriate artificial
domain; such time and effort could be devoted more profitably to investigating the
question that forms the focus of my research.

My strategy required that I find a real-world domain in which the ability
to generalize from specific instances to 2 common concept was present. In addition,

I needed a domain in which more than one task naturally occurred. Beyond that,
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the domain should permit more than one quality or level of information content of
the data. For such a domain, the tasks carried out in the domain together with
the representations appropriate to the domain would assist in the development of
alternate network architectures appropriate for use in my investigation.

Speech perception satisfies these requirements. Speech perception is a do-
main in which the ability of listeners to generalize from specific instances of a spoken
word to all instances of that word is an ongoing area of research. Speech percep-
tion requires both the ability to listen to and to identify a word. Finally, a variety
of different quality or information content representations can be used for speech
data. These include both unsmoothed and smoothed spectral representations re-
sulting from Fast Fourier Transforms (FFT) of the speech waveforms and differing
temporal spans of the spectral representations. The remainder of this chapter will
be devoted to a discussion of generalization in speech perception. I will show how
the tasks involved in speech perception can be used to construct neural networks -

'

appropriate to my research.

2.2 Generalization: Speech Invariance Problem

How does a listener generalize from the perception of specific instances of
a spoken word to all instances of that word? A human listener can extract from
the constantly varying speech waveform the phonetic segments which convey the
speaker’s linguistic message. From those segments the listener is able to make an
identification of the linguistic message. This identification coincides with that made
for similar phonetic segments uttered by other speakers. If speech were produced in
2 manner where the acoustic utterance consisted of a simple temporal concatenation
of basic acoustic events, the identification problem would be relatively simple: deter-
mine the representation for each of the basic acoustic events and use these canonical

representations to segment and analyze the utterance. Speech is not produced in
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this manner [20]. To understand the obstacles which are overcome in identifying a
speaker’s linguistic message it is necessary to understand something about the rela-
tionship between vocal production and the acoustic characteristics of speech. Speech
is produced by the vocal organs; the lungs, the trachea, the larynx, the throat, the
nose, and articulators such as the tongue and lips which are physically constrained
in their movements. Air from the lungs travels up the trachea, through the larynx
where the vocal cords are located, and into the vocal tract which consists of the
oral cavity and the nasal cavity. If the vocal cords are constricted the air will cause
vibrations in the cords and resulting sounds will have a quality that is referred to
as voiced. Sounds generated without this constriction are called voiceless. By
manipulating the lips, teeth, tongue, and soft palate various constrictions can be
created within the vocal tract and a resulting variety of sounds produced. When
the airstream through the vocal tract is obstructed in some fashion so as to produce
turbulence, the resulting sound is classified as a consonant. When the airstream is
relatively unobstructed and voicing ’is present the resulting sound is classified as a
vowel.

Some differences are occasioned by the movements of the articulators. As
the arhticulators move from one position to another the shape of the vocal tract
changes. Since the shape of the vocal tract determines the resonance frequencies,
changes in shape occasioned by movements of the articulators result in changes in the
resonance frequencies or formant frequencies of a speech sound. Acoustic transitions
(coarticulation effects) arise between phonemes as the speaker utters each one in
context. It has not been possible to find portions of the speech waveform which
uniquely match the perceived phonetic segments or phonemes of the utterance [34].
This is a first obstacle which must be overcome in identifying the linguistic message

of a speaker.
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In addition to being physically constrained in their movements, articula-
tors differ between individuals. They also differ within an individual as that person
grows from infancy to childhood and adulthood. Since the physical characteristics of
articulators vary both between speakers and within speaker, the acoustic representa-
tion of the same speech percept varies as a function of these physical characteristics.
This is a second obstacle which must be overcome in identifying a speaker’s linguistic
message.

Speech sounds also vary temporally as the speaker changes the rate of
speaking or as the surrounding context differs. These three obstacles are among
some of the acoustic-phonetic variability p‘roblems encountered in the perception
of speech. Figures 2.1 and 2.2 depict the spectral representations of the speech
waveforms for the word kill” spoken by two speakers. Note the difference in the
time required by each speaker to pronounce the word. The difference in formant
frequencies (dark bands) for the male voice and the female voice can be readily seen
as can the different formant transitions between the two speakers.

Having briefly considered some of the obstacles which must be overcome in
order for generalization to occur in speech perception, I turn now to a discussion of

the tasks which are involved in the speech perception process.

2.3 Tasks: A Model of Speech Perception

A number of models of speech perception have been proposed by speech re-
searchers. These models can be broadly classified into two contrasting groups: those
which consider the perception of speech to be a separate and distinct process from
the production of speech, and those which consider the perception and production of
speech to be fundamentally and indivisibly related. Since they are not pertinent to
the present investigation, I have confined the discussion of perception-only models

of speech perception to Appendix A.2 for the interested reader.



Figure 2.1: Male speaker - "kill”

ms

30



0

Figure 2.1: Male speaker - "kill”

300

ms

30



Figure 2.2: Female speaker - "kill”

31



32

Several models implicate the production process in the perception of speech.
The Motor Theory model is a popular example of this approach. In its earliest form,
Liberman and Mattingly’s Motor Theory [18], takes as a basic tenet the view that
there is a unique speech mode of perception in which the listener attends not to
acoustic characteristics common to all auditory perception but to special character-
istics specific to speech. These speech-specific characteristics are a result of a unique
encoding of speech mediated by neuromotor commands to the production articu-
lators. Neuromotor commands are assumed to exist in the nervous system of the
speaker and the listener. According to Motor Theory perceptual generalization of
speech occurs through the activation of a neuromotor representation of the phonetic
segment.

The speaker’s signal must be decoded by the listener. An auditory decoder
would process the signal in auditory terms. Such a decoder would require complex
processes to deal with the acoustic transitions and variation in the speech signal.
To the motor theorist this implies an unparsimonious system in which two entirely
separate but equal processes for the encoding and decoding of speech exist side by
side. Motor Theory proposes a single system, with appropriate linkages, in which
perception is mediated by the neuromotor commands of articulation.

Revised Motor Theory differs from early Motor Theory in that

. the objects of speech perception are the intended phonetic gestures of the
speaker, represented in the brain as invariant motor commands that call for
movements of the articulators through certain linguistically significant configu-
rations [20].

These intended gestures are the primitives of both speech production and percep-
tion. According to Liberman and Mattingly the relationship between production and
perception is not learned, but instead is an innate part of our human heritage. Per-
ception is also said to occur in a specialized speech mode which differs significantly

from the standard mode of auditory perception.
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Liberman and Mattingly’s Motor Theory of speech perception attempts
to deal with the problem of acoustic-phonetic variability by hypothesizing that the
perception and production of speech are inextricably tied in the human speech per-
ception process. The Motor Theory model of speech perception is a model of a
real-world domain which requires that a generalization from a specific auditory in-
put to a common linguistic category be made. In this model we find more than one
task naturally occurs; the human listens to a speech sound, identifies that sound, and
the identification is mediated by the neuromotor commands. My strategy required
that I find a real-world domain in which more than one task naturally occurred.
Motor Theory meets that requirement. In the discussion that follows I will show
how this model assists in the construction of network models which will be used in

my investigation of generalization in neural networks.

2.4 Tasks: Connectionist Implementation

The majority of extant connectionist modéls for speech recognition are sys-
tems whose only task is to classify the speech input. Using the information provided
during training, the network is forced to develop its own internal representation for
classification. How appropriate this internal representation may be is determined
by the generalization exhibited by the network in labeling previously-unseen speech
input. Simple classifier networks can provide good recognition performance on the
data on which they have been trained, but they sometimes do not generalize at all
well to data which they have not seen before. The only task required of the classifier
model is that it map the auditory input, 7,, to an output phonemic classification
or identification of the sound, o.. Using the definition of task presented in Section
1.2.2 above, this identification task can be represented as T, = (i,,0.). In my re-
search, a classifier model is used to provide a comparative network against which the

performance and generalization of multi-task networks can be measured.
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In order for an individual to recognize a spoken word, however, he or she
must have heard the word. By analogy, in order for a network to recognize an input
speech sbﬁnd then the network must have heard or listened to that sound. A question
arises as to how the ability to listen could be actualized in a network architecture.

Recall that Landauver, Kamm, and Singhal [16] (see Section 1.2.2 above)
utilized speech data to train a network which was required both to identify the
speech input and to auto-associate the speech input. They reasoned that requiring
the network to perform two tasks should supply a much greater degree of constraint
on the representations formed on the hidden units and that the additional constraint
might result in a solution exhibiting better generalization for classification of speech.
Their rationale for requiring an auto-associative task of the network was not based on
an analogy with human speech perception. Nevertheless, using an auto-associative
task would be one way of actualizing the requirement that the network hear or listen
to the input speech sound. |

In such an auto-associative network the network is given the task of repro-
ducing the auditory input representation on the output nodes; the auto-associative
task would be represented by T, = (44,%,). In an auto-associative network the hid-
den layers, which usually have fewer degrees of freedom than the input and output
layers, represent a bottleneck for transmission, so the network is forced to develop a
compact encoding of the data in the hidden layers. Simple dimensionality reduction
does not necessarily lead to a better encoding for the purposes of speech recognition.
In addition, people do not necessarily hear the ‘exact’ sound uttered by a speaker.
In my research I extend the auto-associative concept by claiming an a priori group-
associativé relationship between a specific instance of a speech input for a particular
word and all other instances of speech input for that same word, whether spoken
by the same or other speakers. For example, the input nodes are set to the spectral

representation for one speaker pronouncing the vowel “o”. Instead of duplicating
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that input on the output nodes, the output target values aré those of the spectral
representation of a reference pronunciation of the same vowel. Using this approach,
many input speakers pronouncing the vowel “0” are mapped to a single reference
pronunciation. This zippears to be a small change, yet the network could be led down
quite a different path than a simple auto-associative network. ‘Group-association’
differs from auto-encoding in that the network must search for a coding that identi-
fies between-speaker commonalities. In searching for a2 new multi-dimensional space,
the network must derive one that is insensitive to speaker characteristics. By the
group-association process the network can discover the subtle similarities between
the speech of one person and the speech of another. The group-association task
would be representéd by Ty = (4, 0,) where 0, may or may not equal i,.

According to the Motor Theory model of speech perception a human being
listens to a speech sound uttered by a speaker and identifies that sound by means of
the intended phonetic gestures associated with that sound. These intended phonetic
gestures are representéd in the brain as invariant motor commands for movements
of the articulators appropriate to that sound. The intended phonetic gestures pro-
vide the third constraint used in the construction of my network models. While
it is impossible to specify exactly what those intended phonetic gestures are for a
particular sound, it is possible to assign a unique set of abstract phonetic features to
represent phonetic gestures. The articulatory association task would be represented
by T, = (iq,0;), where 1, is the auditory input, o, is the set of abstract articulatory
features associated with that input.

Utilizing the phonemic classification task, the auditory group-association
task, and the articulatory association task I was able to construct three additional
network models for use in my investigation of generalization in neural networks.

Combining the phonemic classification task with the auditory group-association task
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led to the construction of the “Echo” model network. The Echo model has a com-
posite task T = (ig,0. 0 0,), where 1, is the auditory speech input, o, is the output
classifier, and o, is the auditory reference. Combining the identification portion of
the speech perception task iwith the articulatory association task I constructed the
“Mimic” model network. The Mimic model has a composite task T = (ia,0c 0 0r),
where 1, is the auditory speech input, o, is the output classifier, and o, is the set of
abstract articulatory features associated with that input.

By combining all three of these tasks I could have specified a third network
mcﬁdei in which the composite task would be specified as T = (44,0, 0 0, 0 o0-). The
Motor Theory model of speech perception requires that a human being listens to and
identifies a speech sound uttered by a speaker by means of the intended articulatory
gestures associated with that sound. I reasoned that at some point the physical
invocation of those articﬁlatory gestures must be associated with that speech sound.
Such a process could be that which occurs in an infant “babble” situation. Here the
classification task would be described as T, = (i,,0.), the auditory association task
becomes Ty, = (ir,0,), and the articulatory association task is T,q = (i,, Ip).

Accordingly I incorporated the aspect of articulatory input into the fourth
network model which I call the “Full Motor Theory” model. Figure 2.3 shows a
diagram which provides a general network representation of the Full Motor Theory
model used in my research. At the input layér the network either listens or it speaks
(articulates). Both events do not happen at the same time. This network has a
composite task which can be described as follows:

1, = auditory input t, = articulatory input
o, = classifier 0, = auditory reference o, = articulatory features
T = (iq ©1r, 0. 004 0 0;)

lg = —i, 1, = i,
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This total task is a composite of three speech perception tasks: classification of
the speech input (auditory or articulatory), association of that speech input with a
reference auditory representation for the input, and association of the speech input
with a set of abstract articulatory features. In this model, processes for encoding
and decoding speech do not exist separately. Rather, this model provides a single
system, with appropriate linkages, in which the perception of speech is coordinated
with articulation. Note that perception occurs in a specialized speech mode which
differs significantly from perception-only models of auditory perception.

Using Liberman and Mattingly’s motor theory as my model of speech per-
ception, I created and explored the use of multi-architectural, multi-task neural
networks as speech recognition systems. Each of these networks was implemented,
trained, and tested using the same speech database with varied data representations.

I have shown that speech perception satisfies the requirements needed for
my research: it requires the ability to generalize from specific instances to a common
concept; it provides a psychological model, Motor Theory, which naturally embodies
more than one task; and, as will be discussed next, it permits more than one kind

of data representation to be used in carrying out those tasks.



CHAPTER 3
DATA REPRESENTATION: VOWELS

What is required in training and testing neural networks is data which will
provide a good test of the networks’ ability to geﬁeralize. It is not necessary to
investigate the entire set of speech sounds of a language to achieve that goal. Vowels
are an important subset of speech sounds which have been the subject of much
investigation by both speech researchers and connectionist researchers. What was
required in preparing the data was a reasonable means of developing alternate data
representations for that purpose. Existing theories of vowel perception can help in
determining alternate representations for use in training and testing the networks.
Vowels are a good choice for the speech data to be used in my investigation of
generalization in neural networks. Because the collection and preparation of the ‘
data representations was such a complex portion of this research, I will devote this

chapter to a discussion of this topic.

3.1 Theories of Vowel Perception

In the past, vowels have been characterized articulatorily as static vocal
tract shapes and acoustically as points in a first and second formant space [15].
This characterization led to a unifying model of vowel perception in which the vowel
target was conceived of as a canonical form of the vowel which formed the goal state
for a vowel spoken in continuous speech and which is recognized perceptually by the
acoustic information provided by the target frequencies of the first two formants of
the vowel.

New theories of vowel perception have been developed in the past twenty
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years as a result of research which characterizes vowels as articulatory, acoustic, and
perceptual events [36]. An elaborated target theory of vowel perception represents
vowels as target zones in perceptual spaces whose dimensions are specified as formant
- ratios. This theory of vowel perception represents an attempt to deal with the
speaker-normalization problem - the ability to generalize perception across speakers.
A dynamic theory of vowel perception differs from the target theory by emphasizing
the importance of the formant trajectory patterns, or transitions, in the perception
of vowels. This dynamic theory represents an attempt to deal directly with the
temporal nature of speech and problems of coarticulatjon and diphthongization - the
ability to generalize perception within a ’single speaker’s speech.

My research utilizes modified forms of both the target theory and the dy-
namic theory of vowel perception. In the first instance, I utilize one short-term
spectrum, (“l-frame” data), selected from the stable portion of the vowel. This
short-term spectrum is an exeympla.r of the central tendency of the vowel. For the
modified dynamic transitions, I utilize three short-term spectral frames from three
different times in the vowel. These three spectra are exempla,ré which are selected
to represent the temporal sequence in which the vowel unfolds as it is spoken. One
is a frame selected from the on-glide formant transition of the vowel, one from the
stéble portion, and one from the off-glide formant transition. In this “3-frame” rep-
resentation the middle frame is the same as the single frame used in the static target
vowel representétion. The dynamic transitions of the vowel are represented in the
first and last frames which are samples from the on-glide and off-glide transitions.
Thus, representative temporal information for a given target is sampled from the
target’é surrounding temporal context.

Based upon these two theories of vowel perception, the representations used

in my investigation consisted of 1-frame and 3-frame speech input for vowels excised
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from American English!. Network performance was evaluated in three different ways:
(1) how well the network recognizes speech data on which it has been trained; (2)
how well the network generalizes to new speech data spoken by the training speakers;

and (3) how well the network generalizes to speech data spoken by new speakers.

3.2 Speech Database

The speech database used in the training and testing of the networks con-
sisted of a subset of the sounds of English: the twelve vowels which are represented
by the single character Arpabet notation /ile E@aco Uu A R/ as in heed, hid,
hayed, head, had, hod, hawed, hoed, hood, who’d, hud, and heard.

Given the confusion in the field of human speech perception, it is unclear
whether fhe static target-vowel model will be capable.of accurate identification,
though the dynamic model ought to succeed. To make the test as realistic as possible,
it seemed necessary to make the task as strenuous as possible. I wanted to provide a
difficult test of the ability of the networks to generalize by emphasizing the variability
of the speech data used in training. The problem was to identify appropfia,te vowel
contexts that would emphasize speech variability. I especially wanted to identify
contexts that would stress the variability of the dynamic transition representations.

Liberman et al [19] provide an example of two synthesized CV syllables
which are perceived as /di/ and /du/. In the /di/ syllable the onset transition
shows a rising second formant while in the /du/ syllable the onset transition shows a
descending second formant. Contrasting the stops /d/ and /g/ before the vowel /a/,
Liberman and Mattingly [21] show that simply changing the onset glide on the third
formant from descending, /d/, to ascending, /g/, results in the different perceptions.
The differing formant onset transitions occasioned by a word-initial /t/, /k/, or no- '

consonant provide the rationale for the utilization of these phonemes as specifiers of

In order to avoid much tiresome duplication of the phrase ‘American English’, all discussions
pertaining to speech sounds in this and subsequent sections should be interpreted solely as referring
to the speech sounds of American English.
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the initial phonemic context of the words collected in the study [39]. Using stops
for the final phonemic context provided similar offset transitions, while using voiced
phonemes for the final context served to lengthen the vowel.

With these considerations in mind, eight different contexts were used for
each vowel. The individual word contexts for each vowel were selected from a list
of fifteen potential transition environments. These fifteen possible primary contexts

were specified by the phoneme combinations listed in Table 3.1. For example,

Table 3.1: Fifteen Primary Contexts

t \ / b,d,¢g
\/

K == V -- n
/\ -

<3
]

{iIeEQ@acoUnudAiR}
null

possible phoneme combinations are tEll, kId, In etc. Using these contexts provided
good examples of the variability of the vowels.

When it became impossible to find words that conformed to these primary
contexts the transition constraints were relaxed to include the optional contexts

indicated in Table 3.2. Using these specifications, a table containing 180 possible

Table 3.2: Primary and Optional Contexts

t{d,s,st] \ / vlpl, dlt], glk]
\ /
k[sk,g] - -V -- n
/ 0\
-[n] / V1 -

<3
]

{iIleEQ@acoUuaAR}

fl

null

word contexts was created, with 15 possible contexts for each of the twelve vowels
included in the study (Table 3.3).
With the exception of /U/, eight different word contexts were selected from

the possible 15 contexts. For /U/ six different words were utilized. Care was taken to
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.ie -1- - -E- -Q- -R- -A- “u- -U. .o - -2
t-b teepee sibling table™ debit* tab turbine® tub tuba® Toby™ daub® sobbing
t-d teed” sitting stated™ Ted tadpole™ turd stud™ Tudor™® stood™ toad tawdry toddler™
t-g fatigue™ stigma™ . sake | deck tag circle®™  tugboat took™ toga™ talk toggle™
t-n teen™ tin™ attain  ten tan® turn tundra® tuna® tone®* tawny Don
t-l teal till entail*  tell* talent® sterling Tull toolbox™ toll®*  tall*® tolerant
k-b Keebler®kibble® cable® Ceb cab*® curb cub* scoop Cobe scaup cob™
k-d keyed  kid skating Keds cad curdle® cud cooed™ could™ code* cawed® cod*
k-g geek giggle™ cake keg™ gag™ gurgle  McGuckin cougar™ cook™ cocoa® gawk™ cog
k-n keen™  kin™ cane™  kennel* can* Kern cunning racoon™ cone gone®™ con
k-l keel® kill* kale Kelly® Cal uncurl® cull® cool coal call® collar
~-b Hebrew hip* Abe inept  Abner™ herb* hub® hubris oboe* hobnob™
-d heed®™ hidden™ aid* edit™®  add herd™ udder hooted™ hood™ ode awed odd
~g eke ignorant aching™ egg™ Aggies erg ugly™ Ugritic  hook™ ogle  auger®™ hockey™
-n in arcane™ hen* an earn* unknown™ own™ awning™ honor™
-l eel” il ale™ ell alley™  earl* ulcer™ oolong Olson all olive®

The words selected for use in the data collection are starred (*).

ensure that no set of words for a given vowel contained more than two final contexts
of the same class, e.g. no more than two -A- words ended in b. Care was also taken
to ensure that there was at least one example for each initial context. 94 words in
all were selected from this table and used in the collecfion of the speech data from

each speaker. These are marked in Table 3.3 with an asterisk.

3.3 Speaker Population

In order to further test the ability of the networks to generalize, the vari-
ability in the speech data was stressed across speakers and data was collected for
more than one speaker.

The multi-speaker training and cross-validation set included data from
a population of ten speakers, five female and five male. The training and cross-
validation databases, therefore, consist of 940 words. Of these, 700 words are used
in training the networks and 240 words are used in the cross-validation.

To test the speaker-independent generalization of the networks, speech sam-
ples were also collected from three new female and three new male speakers. 564
words were collected from these new speakers, for use in the speaker-independent
testing of the network. Four examples of each vowel for each speaker, fof a total of

288 words, were randomly selected for use in the speaker-independent testing of the
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networks’ ability to generalize to new data spoken by new speakers.

The majority of speakers were selected from the standard college-age popu-
lation group, although three of the females and one of the males fell into the middle-
age group. All of the speakers spoke English as their native language. One of the
speakers was born and spent her youth in Canada. Several of the speakers were non-
native speakers of foreign languages. Half of the speakers reported suffering from

head colds.

3.4 Speech Data Collection ‘

Speech data was collected in the ICS Speech Lab utilizing the computerized
recording faciiities of thelab. The 94 vowel context words were permuted and divided
into two separate lists so that the data collection process might include a short break
halfway through the list for each speaker. In response to computer prompts, speakers
spoke into a Shure SM-10A close-talking microphone. Each prompt was displayed
twice. At the first prompt the speaker practiced saying the word. At the second
prompt, the speakers response was filtered with an elliptical low-pass énalog filter
with 6.4 kHz cut-off frequency and a 360 dB/octave roll-off and recorded. The sample
rate was 16 kHz.

Subsequent to collecting the sampled speech data, it was necessary to pro-
cess the speech waveform data for use as input patterns to train and test the net-
works. Each waveform was displayed using the ICS Speech Lab SPEECHBENCH
software. Initial and final silence portions of the sample were removed and the re-
duced waveform was saved. All subsequent processing was applied to the truncated
digitized speech sample.

Processing of the truncated data began with a manual verification and
segmentation of each of the 1504 tokens used in the three databases. The waveforms

were segmented to demarcate the portion of the waveform which corresponded to the
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vowel. At the recommendation of Dr. Alan Bell of the Department of Linguistics,
all tokens were segmented so that the initial vowel segment label occurred at either
the release of a preceding stop, when a stop was present, or at the beginning of
voicing. The final vowel segment label was positioned at the closure of the vowel.
Readers familiar with speech segmentation will recognize that such labeling results in
an approximate segmentation of the speech waveform; due to coarticulation effects,
an absolute segmentation is difficult to achieve.

Next, it was necessary to extract a spectral frame from the stable portion of
the vowel segment for use in the preparation of 1-frame target vowel representations.
I also wanted to extract spectral frames from the on-glide and off-glide transitions
for use in the 3-frame dynamic transition representations to be used in training and
testing the networks. Having demarcated the vowel portion of the speech waveform, a
variety of approaches was explored in an attempt to determine an effective technique
for placing extraction points within the vowel segment.

I wanted to select a single frame from the stable portion of the vowel. Based
upon a suggestion by Dr. Bell regarding average vowel duration for a typical speaker,
I hypothesized that a point 120 msec. from the initial segment label should be in
a fairly stable portion of the vowel. In order to test the viability of this approach
a program was developed to measure the total time between the initial and the
final segmentation labels for each vowel segment. Plots of these total time measures
showed that all the speakers exhibited consistent production of longer vowels in some
fokens than in others. For example, all the speakers took longer to pronounce the
vowel /e/ in the token "cane” than they did in the token “table”. Within a particular
token, for example "cane”, some of the speakers exhibited time intervals of less than
300 msec. while others exhibited time intervals of more than 500 msec. or more, see
Figure 3.1. For a short vowel such as /I/ the range of times exhibited was from less

than 80 msec. to more than 500 msec. Thus, the within-token duration was such
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Figure 3.1: Comparative Vowel Durations
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that in some instances the 120 msec. point was at the end of, or even beyond, the
closure of the vowel segment while it was at the beginning or in the middle of the
vowel segment in other instances. Obviously, a fixed duration approach would put
the selected extraction point in very different portions of the vowel, depending upon
the vowel context and the speaker. This approach to the placing of extraction labels
was not deemed viable.

‘I then tried two automatic approaches to determining the extraction labels.
The first approach required a Fast Fourier Transform (FFT) of the speech waveform.
The resulting spectral representation was subjected to a minimum Euclidean distance
measure between adjacent spectral frames to locate the most stable portion of the
spectrum. The Euclidean distances were computed for all words spoken by four
of the speakers. Examination of the spectral representation of the tokens showed
that selecting a frame using the minimum Euclidean distance approach resulted in
many instances in selecting a frame froﬁ the final portion of the diphthongs /e/ and
/o/. The selected frame was reflecting the second /1/ or /A/ vowel of the diphthong
rather than the initial vowel. This approach also was not considered viable.

The second automatic approach computed the point at which the amplitude
of the speech waveform was at a maximum. In many instances this procedure proved
to be a reasonable approach to selecting an extraction point. In other instances the
maximum amplitude occurred in the /I/ or /A/ rather than in the initial vowel of a
diphthong. This approach also was not deemed viable.

Visual examination of the speech waveforms indicated that simply extract-
ing a frame at a point halfway between the onset and offset marks might be a viable
approach. A third automatic approach was investigated which simply labeled the
vowel segment according to this interval. Visual examination of the resulting speech
waveforms of all words spoken by four speakers showed that the point midway be-

tween the initial and final marks was in the stable portion of the waveform for over



48

80% of the words. This was a reasonably good extraction point for the target vowel
spectral {rame representation. The words in which this was not the case were noted.
For these words the appropriate fraction of interval location for the stable target
vowel extraction point was estimated from a comparison of the waveforms for the
four speakers. Using these estimates as a guideline, the exceptional words were then
examined for all of the speakers. In the majority of instances the halfway point
proved to be a reasonable approximation for the location of the stable target vowel
extraction point for all speakers. When necessary, the actual location of the target
extraction point was determined by a criteria which specified the point as being
between the second and fourth pulse of the ’typical’ vowel representation for that
speaker.

Using a similar approach resulted in the specification of formant transition
selection points at 1/3 and 2/3 of the labeled vowel-interval. These points gave
formant transition evidence of the effect of the vowel’s contextual'environment inall .
cases. ‘

As a result of the above study, it was decided that the frame selected for
use as the 1-frame target vowel representation and for use as the middle frame in
the 3-frame dynamic transition representation would be extracted from the labeled
vowel segment at a point located halfway between the start and end labels of the
segment. The exception was the less than 20% of the vocabulary whose extraction
point was manually labeled. For training with dynamic transition data the frames
selected for use included this single frame plus those spectral frames at the 1/3 and
2/3 vowel-interval points.

Once the extraction labels were located within the vowel segment the speech
waveforms were then brocessed to provide a representation similar to that developed

by the human auditory system.
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3.5 Preparing the Data Representation

In order to understand the motivation for the auditory processing used in
preparing the spectral representations it is first necessary to consider briefly how
the human auditory system processes sounds. While little is understood about how
auditory processing of speech sounds is accomplished at the higher levels, there is
some knowledge which is pertinent to my research. Research on auditory process-
ing capabilities at the single neuron level has been carried out for more than three
decades. Results indicate that the response patterns of neurons in the Al (Auditory
cortical field I) region are frequency and infensity sensitive with the characteristic
frequency of the neuron related to the place of resonance along the cochlear par-
tition to which it is ultimately connected [5, 9]. There appear to be quantitative
differences in the selectivities for human speech sounds in different a,uditofy cortical
areas and the cortical auditory system is highly segregated cochleotopically [5]. The
interested reader can find a more detailed discussion of how the human auditory -
system processes sounds in Appendix B.

What is significant for my research is the preservation of frequeﬂcy and in-
tensity selectivity along the auditory pathway, the existence of selectivities for human
speech sounds, and the apparent functional preference for the detection of similar-
ities rather than change in the input. With these constraints in mind, the speech
waveform was subjected to FFT processing using a 16 msec. Hamming window and
a 3 msec. window shift with a 128-point FFT representation output. Intensity was
measured in log dB. The FFT output was then converted from a 128-point linear
frequency scale to a 128-point bark scale [43]. The bark scale representation was
then compressed to a 48 point scale and smoothed via a two-dimensional Gaussian
filter with a standard deviation of 15 msec. in the time dimension and approximately
3 .barks in the frequency dimension. The smoothed representation was then again

compressed to create a 32 point “brad” [31] scale representation. Using this 32 point
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brad representation of all of the speech tokens, databases were created containing
speaker, context, and vowel information together with the three frames of brad scale
FFT data based upon the extraction point labels. These speech databases were used
in the preparation of all the smoothed patterns used in training and testing. Figures
3.2 and 3.3 show examples of the smoothed 1-frame auditory representation for each
of the twelve vowels spoken by the female speaker (Section 2.2). An alternate ver-
sion of the database was created by performing the same signal processing with the
exception that the bark scale representation was not smoothed via a two-dimensional

Gaussian filter.

‘3.6 Preparing the Training and Testing Patterns

3.6.1 Preparing the auditory patterns. The lovg dB intensity val-
ues for the spectral representations in the database had a potential range which
varied from a minimum of 0 to 2 maximum of 255. The actual range across all
speakers for all the speech tokens collected varied from 2 minimum of 0 to a maxi-
mum of 72. The articulatory patterns and the phonemic classification patterns both
used a binary 1/0 representation. While one could use the actual intensity values in
the auditory patterns, the disparity between those values and the on/off (1/0) nature
of the other pattern units used for articulatory and phonemic label representations
leads to obvious problems in attempting to train the network using back-propagation
techniques. In order to avoid the possibility of activations from the auditory pat-
terns swamping the activations from the articulatory and phonemic patterns and
to avoid difficulties in determining the error criterion, the auditory patterns had to
be mapped to the range [0.0,1.0]. It is unlikely that the human brain normalizes
the intensity of a speech waveform based upon some anticipated maximum intensity
value. It did not seem appropriate to so normalize the data in order to map it to the

desired range. Other representations, such as normalizing within speaker or within
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token, would potentially eliminate important speech discrimination information. A
representation which maps the potential range, 0 to 255, to the range 0 to 1, while
preserving reasonable intensity distinctions within the range actually occuring in the
database was used: a = log(b + 1)/log(256).

Auditory training and testing patterns were generated from these spectral
auditory representations. All but the three highest-frequency brad points, which
represented frequencies above 6 kHz and were beyond the cutoff of the lowpass
filter, were used for each frame. The resulting 1-frame patterns have 29 points. The
3-frame patterns were created with 87 points; the lowest 29 points for each of the
three selected frames were used to create this pattern. Figure 3.4 shows the discrete
activation pattern for the 3-frame dynamic transitions representation for the vowel
/1/ in the word "kill” as spoken by the female speaker (see Section 2.2).

3.6.2 Preparing the articulatory patterns. In addition to prepar-
ing the auditory patterns it was necessary to prepare articulatory patterns for use.-
in the training input of the Full Motor Theory model and for the output of the Full
Motor Theory model and the Mimic model. Speech sounds have traditionally been
classified by linguists in terms of the articulatory features of which they are com-
posed, e.g. voice, place, stop, nasal, lateral, sibilant, height, back, syllabic [15]. Such
feature descriptors bear only superficial resemblance to the articulatory parameters
used in producing the speech sound and little resemblance to auditory parameters
which might be used in perceiving the sound. Other approaches to specifying articu-
latory features are equally inadequate. The motor theory model of speech perception,
however, postulates a relationship between phonemic percept and articulatory and
auditory parameters. Two of the nine pattern units allocated to the articulatory
patferns were reserved for future use and were arbitrarily set to ‘off” and ‘on’. The
seven unit binary, distributed abstract articulatory representation seen in Ta:ble 3.4

was specified for each of the twelve vowels used in this research.
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3.7 Allocating the Patterns

As described in Section 3.3, two sets of data were collected for use in
creating the patterns used in training and testing. The first, or multi-speaker, set
generated patterns from the vowel speech tokens collected from ten speakers, five
female and five male. This data was used in the multi-speaker training and cross-
validation testing of the networks. The second speaker-independent set generated
patterns from the vowel speech tokens collected from six different speakers, three
male and three female. This data was used in the speaker-independent generalization
testing of the networks.

Recall from Section 2.4 that the network had the task of associating the
speech input with a reference auditory representation for that sound. To provide the
set of reference auditory representations, a reference speaker was selected at random
from among the ten speakers in the multi-speaker data set; this speaker was female.
A reference token for each vowel as spoken by that speaker was then selected at .
random from among the tokens prodilced by the reference speaker. These reference
tokens were used to-generate the reference auditory spectral patterns to which the
input patterns were to be mapped.

The selection of such a reference speaker at random could result in the
selection of a speaker whose vocal characteristics were significantly different from
those of the remaining speakers. This could make the search for an appropriate
mapping function more difficult and thus limit the ability of the network to learn
the training set and generalize to novel data. I wanted to understand what effect
this arbitrary selection might have on the training recognition and generalization
capabilities of the network. One could train a network several times, each time
with a different set of reference patterns provided by a randomly-selected speaker
and then compare the results of each training. An alternative way to test this effect

would be to train a network twice, once using the randomly selected auditory spectral
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patterns as target patterns and then, from exactly the same initial conditions, use
target auditory patterns which reflect the spectral patterns of all of the speakers
in the training set. Such patterns might be called vowel centroid patterns. An
additional output representation was created using auditory centroid patterns for
the vowels. .

Input patterns to be used in training the networks were selected randomly
from the multi-speaker data with a total of 72 training tokens used for each speaker,
including the reference tokens for the reference speaker. The remaining tokens,
excluding the reference tokens for the reference speaker, were used in the multi-
speaker cross-validation testing of the networks. Of the speaker-independent data,
slightly better than half (288) of the available tokens were selected at random for

use in the speaker-independent testing.

3.8 Preparing the Human Recognition Baseline Data

I wanted to provide a baseline against which the generalization of the net- ’
works could be compared. The obvious choice is to give the data to people, who
are currently the best ‘experts’ available for such tasks. The data used for speaker-
independent testing was utilized for this purpose. One half of the tokens for each
of the speakers in the speaker-independent test set were allocated for the human
baseline experiment. The problem was to provide an auditory stimulus tvha,t would
make the human identification task as easy as possible without providing informa-
tion about the surrounding consonantal context. Vowel extraction was specified in
the following manner: (1) the portion to be extracted should include, at 2 minimum,
all of the waveform between the 1/3 and 2/3 of vowel-interval extraction points in-
clusive; (2) to provide transitions into and out of this portion, where possible an
additional minimum of 2 to 3 pulses of the waveform prior to and subsequent to the

1/3 to 2/3 vowel interval should also be extracted; (3) the extracted vowel segment
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should be ’played’ and checked for vowel identifiability and duration; (4) if neces-
sary, the extracted area of the vowel waveform was extended to increase the vowel
duration without crossing into consonantal contextual regions of the waveform. The
information provided to the human listener in the baseline experiment was signifi-
cantly greater than that provided the networks trained with either the 1-frame or
the 3-frame auditory data. |
Having examined in detail the collection and preparation of the speech
data and the data representations in training the networks and in implementing the
human recognition comparison experiment, I now turn to an examination of the
architecture of the neural networks and the training and testing méthodology and

guidelines used in my research.



CHAPTER 4 :
ARCHITECTURE, TRAINING AND MEASURES

I now describe the the architectural variations tested during the investi-
gation. As appropriate, I indicate the task and data representation manipulations
which provided the rationale for those variations. I then present the detailed specifi-
cation of the various network architectures. Following this architectural specification,
I will describe how the networks were trained and how performance and generaliza-

tion were measured.

4.1 Architectural Variations

The relationship between generalization and network architecture was in-
vestigated both by manipulating the hidden structure for each of the network types/
ahd by comparing networks having the same hidden structure but differing input
and output architectures. Recall that the input and output architecture of a net-
work reflects the task which a network is required to perform. In Section 2.4 I
presented a general description of each of the four network models that are used
in my research: the full Motor Theory model, the Echo model, the Mimic model,
and the Classifier model. In my research I compare the training performance and
generalization exhibited within a network for each of the subtasks ascribed to that
network and across networks for each of the different network types.

The time limitations involved in collecting and processing the speech data
required that the amount of training and testing data available be limited to approx-
imately 700 training patterns, 240 multi-speaker testing patterns, with 574 patterns

available for speaker-independent testing. I wanted to determine the architectural
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design which would exhibit the best generalization for each of the network models.
The two basic guidelines for the design of neural networks which are used
by many connectionist researchers are:

(1) The overfitting guideline: If a network can learn a problem, then the fewer
the number of free parameters in the network, the better the network is likely
to generalize.

(2) The dataset-size guideline: The larger the number of free parameters in a
network, the more data needed to train it.

Keeping these guidelines and the fixed size of my training set in mind, it seemed clear
that I should allocate the smallest number of hidden units possible that still enabled
the network to learn the training set. According to the guidelines, that network also
should exhibit the best generalization.

In accord with the target vowel theory of vowel perception and the dynamic

theory of vowel perception, I wanted to study the effect of using both 1-frame and

-
”

3-frame spectral representations upon the ability of a network to recognize vowels;
I’ explored the relationship between network generalization and data representation
by training the networks with at least four different input representations, the 1-
frame smoothed and unsmooted data representations and the 3-frame smoothed
and unsmoothed data representations. Limited exploration of generalization after
training with 5-frame smoothed input data representations was also undertaken. The
full Motor Theory network and the Echo network were, in all instances, limited to a
1-frame auditory output.

The architectural specification for both the input and the output layers
of the network reflect the representations used in training the network. Using 3-
frame spectral input data requires using three times as many auditory input units
as is required for 1-frame speech input data. According to the design guidelines this

implies that
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* More pattern training data might be required in order to achieve the same
level of performance in the 3-frame input networks as in the 1-frame input
networks.

¢ The 3-frame networks, having a larger input layer, might require more hidden
units and, therefore, might not generalize as well as the smaller l-frame

networks for a given set of training instances.

4.2 Architecture Specification

Figure 4.1 shows the general description for the full Motor Theory Model
of speech perception as presented in Section 2.4. T will present the architectural
specification for this model. The variations for each of the remaining three models
are indicated in terms of this specification.

The model is implemented as a feedforward fu]ly-cbnnected multi-layer net-
work with a sigmoid activation function on the hidden and output units. At the input
layer the network either receives a ‘motor’ pattern of articulatory éctivation or an-
acoustic signal, but not both. The network has three tasks that it is required to
accomplish: classify the input phonemically, associate the input with an auditory
spectral representation, and associate the input with a set of articulatory features.
These task requirements together with the input and output speech representations
serve to specify the architecture of the input and output layers of the network.

I begin with a discussion of the output architecture. Since the speech data
consists of twelve English vowels, twelve binary localist output units were allocated
to code the phonemic labels. As noted previously (Section 3.6) the spectral represen-
tations use 29 real-value points to represent each short-term segment. The auditory
output nodes, therefore, consist of 29 real-value units. The distributed articulatory
features listed in Table 3.4 were represented by seven binary units allocated for

this purpose. Two additional binary units were allocated for future extensions of
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this work. One was always ‘on’, while the other was always ‘off’. The output layer
consists of a total of 50 units, 21 of which are binary and 29 of which are real-valued.

The input layer for the full Motor Theory model includes an auditory group
and an articulatory group. As in the output layer, nine binary units were allocated
for the representation of the articulatory features. For experiments utilizing the 1-
frame target vowel spectral input, a set of 29 real-value units was allocated to the
auditory representation. Experiments utilizing the 3-frame dynamic input allocated
87 real-valued units to the auditory representation. Recall that at the input layer
the network either receives a ‘motor’ pattern of articulatory activation or an acoustic
signal, but not both. To facilitate the network’s ability to distinguish between the
two types of input a single binary unit was allocated to indicate whether articulatory
activation was on or off.

The three remaining models, the Echo, Mimic, and Classifier models, only

-
»

received acoustic input. Consequently, the input architecture for each of these models
was determined by the input representation used in training the network: a l-framé
representation had 29 real-value inputs while a 3-frame representation had 87 real-
value inputs. In the Echo model the network classifies this auditory input in addition
to associating it with a 1-frame auditory spectral representation. On the output
layer the Echo model had 12 binary units allocated for phonemic classification and
29 real-value units allocated for auditory representation. The Mimic model classifies
the input in addition to associating it with the reference articulatory representation.
The output layer of the Mimic model includes 12 binary units allocated for phonemic
classification and 9 binary units allocated for articulatory features. In the Classifier
model the network simply classifies the input. 12 binary units are allocated for the
phonemic classification on the output layer.

As the preceeding discussion makes clear, much of the input/output archi-

tecture of the networks was determined by the Motor Theory model. The remainder
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was determined by decisions regarding the spectral and articulatory data used in
training the networks. Nevertheless, there was still much room available for research
into the relationship between the hidden structure of the network and generalization
exhibited by the network. The hidden structure is not sub Jject to the same design
constraints as the input and output layers and so had to be experimentally deter-
mined. For each network model, the relationship between the number of hidden
units and hidden layers used and the generalization exhibited by the network was
open for exploration.

I now discuss how the networks were trained and how their recognition

performance and generalization were measured.

4.3 Training and Measures

The networks were implemented and trained with Yoshiro Miyata’s Star-
Net neural network simulator. The primary training technique is back-propagation.
1 With the exception of the experiments described in Section 5.8.2, training was
accomplished with random presentation of the training patterns and Hmited manip-
ulation of the learning rate. Three types of patterns and pattern units were used in
the output units: real-value, binary-localist, ané, binary-distributed. Establishing a
single error criterion that would provide an appropriate measure of error across all of
these three different types of units quickly proved to be a difficult task. Since I was
interested in the ability of the networks to exhibit good generalization, I decided to
track the training performance of the networks and the multi-speaker and speaker-
independent generalization that the networks exhibited rather than tracking training
error. Training recognition and multi-speaker and speaker-independent generaliza-

tion were measured at regular intervals during the training process. Training was

! A limited comparison with conjugate gradient training was performed for the 1-frame Classifier
networks.
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discontinued after 40,000 epochs. The epoch limitation was an empirical determina-
tion resulting from the extensive training time required to reach that point and the
limited increase in generalization that appeared to occur for most of the networks
beyond that point.

The next question to be answered was: how can one measure the general-
ization which is accomplished by a connectionist network? Testing a network with
a cross-validation testing pattern set is generally considered to be a global measure
of generalization. In my research there are two measures of generalization. The
first measure utilizes multi-speaker data and measures the ability of the network to
generalize to new speech input for previously-encountered spea.kers. This is the kind
of cross-validation testing that is usually used to measure the ability of a network to
exhibit good geﬁeralization to novel inputs from the same domain. A second, more
difficult, generalization measure utilizes speaker-independent data and measures the
ability of the network to generalize to new input for never-before-encountered speak-
ers. This is a test of the network’s abiI}ty to generalize to novel inputs from a similar,
but not the same, domain.

The usual approach to determining the correctness of a network output pat-
tern requires comparing the actual output pattern with the desired target pattern
for all output nodes. For two of the four network models the output layer contains
both binary-valued units and real-valued units. A moment’s reflection on the distinc-
tion between binary-valued units and real-valued units should reveal the difficulties
that such an approach would create for determining the appropriate recognition of
a speech input. An output pattern which contains an exact replica of the desired
target spectral representation could be misclassified as a result of otherwise minimal

‘e'rrors between the binary output units. This potential for misclassification militates
against using the total task for measuring the performance of a network.

As an alternative, recognition measures were computed for each task in the
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network. Another measure was computed by task vote of all the tasks in the network.
Thus four recognition measures were computed for the Full Motor Theory networks,
three recognition measures were computed for the Mimic and Echo networks, and
one recognition measure was computed for the Classifier network. The performance
based on each of these measures will be discussed in Chapter 5. In the course of
my research there were many different networks to be trained and evaluated. It
was decided that recognition results would be more comparative across networks if
phonemic clasgiﬁcation was determined by a simple maximum activation test across
the twelve phonemic classifier units rather than by using signal detection techniques
to determine optimum thresholds for each classifier node in each network. The con-
tinuous articulatory feature values were converted to binary values by a simple 0.5
threshold test on the activation values. The output articula.tbry pattern was com-
pared to the set of reference articulatory patterns associated with each vowel using
a city-block measure to determine recognition of the closest vowel. The real-value .
auditory spectral association performance was measured using a Nearest Neighbor
algorithm with a Euclidean distance measure against the set of twelve target audi-
tory spectral patterns associated with each vowel. For the voting measure, each task
was allocated one vote. For the phonemic classification task, there were no cases
of two or more phonemes exhibiting the same maximum value; the phonemic vote
was always given to the winner for that task. For the spectral representation, if
there were two or more patterns at an equal distance from the target pattern then
the vote was split between them. Otherwise the vote went to the phoneme having
the spectral pattern closest to the target. For the articulatory representation, if
the actual output pattern matched the target pattern the vote went to the target
phoneme otherwise the vote was divided among the phonemes having equally close
representations to the desired target pattern.

Performance measures do not specifically reflect the relationship between
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the generalization exhibited by a network and the individual factors which affect
that generalization: architecture, task, training data representations, and training
of that network. I utilized statistical multiple regression techniques to isolate those
experimental factors which are the primary determiners of the networks’ ability to
exhibit good generalization.

One additional measure was used in comparing the performance of the
networks: learning efficiency. Learning efficiency is a measure which can be used to
provide a comparison of networks based upon the number of connection weights in
the networks and the learning rates at which the networks are trained.

In general, ignoring external factors such as computer speed, user load, etc.,
if two networks can learn a data set under exactly the same conditions and at the
same learning rate then one can expect that the network having the larger number of
connections will take longer to learn the training set. Similarly, if two networks are
architecturally alike and can learn the training data under the same conditions but at
differing learning rates then one can éxpect that the network learning at the higher
learning rate will learn the data faster than the network learning at a lower learning
rate. How “efficiently” the network connections are learned is, therefore, directly
related to the learning rate and inversely related to the number of connections in
the network. The “connection learning efficiency” can be defined as ¢ = F (n,7),
where n is the number of connections in the network and 7 is the learning rate used
in training the network. If we approximate F with a simple exponential function,
je. ¢ = a(n/n) then, letting @ = 1.0, we can obtain an approximate measure of
the network’s connection learning efficiency. For example, consider the case of two
networks, both having the same input and output layers. Each network contains
the same number of hidden units. One of the networks has a single hidden layer
while the other has two hidden layers. The single hidden layer network has slightly

more connections than the two hidden layer network, for example, 2870 versus 2690,
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but the rate at which it learns each connection is an order of magnitude faster
than the rate at which the two hidden layer network learns each connection - 0.1
versus 0.01. The connection learning efficiency for the single hidden layer network is
34.8 # 107° while the connection learning efficiency for the two hidden layer network
is 3.7%1075. The single hidden layer network exhibits a connection learning efficiency
approximately 10 times greater than that exhibited by the two hidden layer network.

This concludes the discussion of the experimental framework and method-
ology used in my investigation. I turn now to a discussion of the results of that

investigation.



CHAPTER 5
EXPERIMENTAL RESULTS

5.1 Research Focus

To reprise, my research investigates the question: how do the task which
the network must learn, the architecture of the network, the training of the network,
and the data representation used in that training, both individually and collectively,
affect the ability of a network not just to learn the training data but to generalize well
to previously unseen data. The research is embedded in an experimental framework
which utilizes three multi-task connectionist models derived from the Motor Theory
of sbeech perception and a standard classifier model for speech recognition. The
speech data used in training and testing the four networks consists of 12 Americar%‘,
English vowels. 3-frame vowel pattern representations are based on the dynamic-
transitions model of vowel perception, while 1-frame vowel representations are based
on the target model of vowel perception. Both smoothed and unsmoothed versions
of the input data were used for training and testing.

In Chapter 1, I presented the guidelines and hypotheses used in my re-
search. As a courtesy to the reader, I briefly reiterate them here. I then present
baseline measures of the difficulty of the learning task required of the networks.
These measures provide a lower bound against which the performance of the net-
works can be compared. This is followed by a discussion of the performance of the
best networks for each of the four network models and for each type of data rep-
resentation. The best networks show the actual upper bound on the performance
exhibited by the networks. With these upper and lower bounds in mind, I then

discuss the relationship between the generalization exhibited by the networks and
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each of the four factors involved in the investigation: architecture, task, training,

and data representation.

5.2 Guidelines and hypotheses

The guidelines available to assist in this research were the following:
The overfitting guideline: If a network can learn a problem, then the fewer
the number of free parameters in the network the better the network is likely
to generalize.
The dataset-size guideline: The larger the number of free parameters in a
network the more data needed to train it.

The following hypotheses were also investigated:
Adding additional tasks should cause a change in generalization. That
change may be an increase in generalization as a result of the added con-
straints, or it may be a decrease in generalization as a result of an increase
in the network capacity, : -
Training with appropriate, even though larger, representations will help the

network to generalize better.

5.3 Baseline measures of performance

In order to judge the difficulty of the learning task it is important to have

baseline measures of recognition performance. Two baseline measures were collected

to indicate the difficulty involved in recognizing the vowel data. The first is a mea-

sure of how difficult it is for humans to recognize the isolated vowel tokens. This

involved presenting selected examples from the speaker-independent database to hu-

- man subjects for recognition. The second measure was obtained by determining the

recognition performance of an accepted speech recognition system.

Using 144 speech tokens extracted from the speaker-independent testing
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database, four subjects attempted to recognize the selected vowels under the follow-
ing experimental conditions:

o Vowel excerpts were presented by computer program.

* At each presentation a2 numbered list of twelve words containing the twelve
vowels to be identified were displayed on the computer terminal, e.g. heed,
hid, ete.

o Listeners had the option of being able to listen to each vowel sound from
one to three times before entering their identification of the vowel.

o Listeners identified the presented vowel by typing in the identifier (0 ... 9, a,
b) corresponding to the word containing the vowel sound they had identified
in response to a prompt for identification.

o The selected vowel identification was echoed back to the listener and the
listener was able to either continue to the next vowel presentation or to
correct their identification if they felt they had made a mistake.

A training block in which five vowel sounds were presented was used to familiarize
the subjects with the task. Subjects were permitted to repeat the training program
as many times as desired until they felt comfortable with the procedure. The full
identification program was then presented to the subject. Recall that the 144 speech
tokens were deliberately extracted so as to make identification of the vowel as easy
as possible for the listener. Nevertheless, average vowel recognition performance by
the four listeners was only 54%.

Tajchman [37] describes an experiment in which human listeners were asked
to listen to and identify vowel segments extracted from the TIMIT database. The
procedure used for extracting the vowel segments is not specified. The average human
recognition performance for 5 individuals for this task was 60%, closely paralleling
tl_xe performance of my subjects.

The second baseline measure was the K-nearest Neighbor algorithm. This
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is a widely accepted process for recognizing speech. A set of baseline measurements
using a K-nearest Neighbor algorithm were made on the multi-speaker and speaker-
independent testing databases. The Nearest Neighbor (k = 1) and the best K-nearest
Neighbor recognition performances were as follows:

Nearest Neighbor Performance (k = 1):

multi-speaker = 46.3Y

41.0Y%

speaker-independent

Best K-nearest Neighbor Performance:

47.5) at k

L]
i

multi-speaker 43,

speaker-independent = 42.7}, at k = 15
Note that the best K-nearest Neighbor performance for multi-speaker data occurs
at k = 43 while the best performance for speaker-independent data occurs at k =
15. The K-nearest Neighbor algorithm resulted in an automated speech recognitior}‘
rate of less than 50% for both multi-'spea.ker and speaker-independent data.

The lower bound for the recognition task established by the human recog-
nition baseline is 54%. The lower bound for recognition established by the K-nearest
Neighbor algorithm is 42.7%. Based on these results it seems reasonable to expect

that network speaker-independent generalization results should be between 42.7%

and 54%.

5.4 Performance of the Best Networks
In discussing the results of the investigation attention will be focused upon
the performance and generalization exhibited both within and across network mod-
~els. In order to place those results in the proper perspective it is important to have

some understanding of the best performance exhibited by a given network model for a
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given data representation. Table 5.1 presents comparative measures of the best per-
formance and generalization exhibited by each of the network models investigated in
my research. These are presented for each of the four models using 1-frame smoothed
and 3-frame smoothed training data and for the Full Motor Theory model and the

Classifier model using 1-frame unsmoothed and 3-frame unsmoothed training data.

Table 5.1: Best Performance Networks

Data Network Hidden Train Multi- Spkr-
Type Type Units %  Spkr % Indep %
1-Smooth Full 80 98 68 59
Echo 70 97 65 57
Mimic 80 98 68 60
Classifier 90 . 96 63 60
3-Smooth Full 70 100 78 72
Echo 85 100 75 72
Mimic 95 100 77 72
Classifier 80 100 70 74
1-Unsmooth Full - 90 100 75 70
Classifier 70 100 68 69
3-Unsmooth Full 70 100 71 65
Classifier 90 100 80 71

The number of hidden units used in the best network is as specified in the
table. Each of these networks has a single hidden layer. Figures 5.1 and 5.2 provide
graphic comparisons of the performance of these networks.

For the networks trained with 1-frame smoothed data, the Full Motor The-
ory and Mimic networks exhibit the best multi-speaker and speaker-independent
generalization: 68%, and 59%/60% respectively. For the two network models trained

- with 1-frame unsmoothed data, best generalization results are exhibited by the Full

 Motor Theory model: multi-speaker generalization of 75%, and speaker-independent

generalization of 70%. Comparing the 1-frame smoothed with the 1-frame un-

smoothed results indicates that the networks trained with the unsmoothed data
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performed significantly better.

All of these 1-frame results exceed the human recognition baseline (54%) by
more than 5% and the K-nearest neighbor baseline (42.7%) by more than 16%. These
1-frame results are also extremely good when compared to performance reported
by other researchers. For example, Muthusamy and Cole [28] reported speaker-
independent generalization results of 51.40% on vowels after training a simple clas-
sifier network using a conjugate gradient algorithm with a single frame of data from
the TIMIT database. These are not strictly comparable with my results since their
network was trained and tested using data from a much larger group of speakers.

Networks trained with 3-frame smoothed data exhibited significantly in-
creased generalization capabilities over the 1-frame smoothed data networks: ap-
proximately a 10% increase for multi-speaker generalization, from 68% to 78%, and
approximately a 13% increase for speaker-independent generaljzation, 59% versus
72%. Again, the Full Motor Theory and Mimic networks are virtually identical in
exhibiting the best multi-speaker generalization and speaker-independent general;’
ization for the 3-frame smoothed data networks: 77%/78%, and 72%, respectively.
For the two network models trained with 3-frame unsmoothed data, best results are
- obtained with the Classifier network which exhibits multi-speaker generalization of
80%, and speaker-independent generalization of 71%.

Across all of these networks the best overall generalization is exhibited by
the 3-frame unsmoothed Classifier network (80%, 71%) while the 3-frame smoothed
Full Motor Theory network exhibits almost the same performance (78%, 72%).
Muthusamy and Cole reported speaker-independent generalization results of 55.66%
after training a network with three frame vowel data from the TIMIT database.

These results were all based upon a twelve vowel phonemic classification.
Although presented with prompts designed to elicit differing responses for the vow-

els /a/ and /c/, for example - ‘hod’ and ‘hawed’, none of the 16 subjects used in
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the data collection process actually distinguished between these two vowels. Using
an 1l-vowel performance measure in which these two vowels are grouped together
the best training recognition, multi-speaker generalization, and speaker-independent

generalization for the networks are shown in Table 5.2.

Table 5.2: Best Performance Networks - 11 Vowels

Data Network Hidden Train Multi- Spkr-
Type Type Units %  Spkr % Indep %
1-Smooth Full 80 98 73 64
Echo 70 97 72 63
Mimic 80 98 73 65
Classifier 90 96 68 64
3-Smooth Full 70 100 81 76
Echo 85 100 79 76
Mimic 95 100 82 76
Classifier 80 100 74 78
1-Unsmooth Full 90 100 79 73
Classifier 70 100 73 74 L
3-Unsmooth Full 70 100 78 68

Classifier 90 100 84 73

The best multi-speaker generalization and speaker-independent generaliza-
tion for the 1-frame smoothed data networks again occur with the Full Motor The-
ory and Mimic networks: 73%, and 64%/65% respectively. For the two network
models trained with 1-frame unsmoothed data, best results are obtained with the
Full Motor Theory model which exhibits multi-speaker generalization of 79%, and
speaker-independent generalization of 73%.

For the 3-frame smoothed data networks, the Full Motor Theory and Mimic
networks are again virtually identical in exhibiting the best multi-speaker general-
ization and speaker-independent generalization: 81%/82%, and 76%, respectively.

For the two network models trained with 3-frame unsmoothed data, best results
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are again obtained with the Classifier network which exhibits multi-speaker gener-
alization of 84% and speaker-independent generalization of 73%. Across all of these
networks the 3-frame smoothed Full Motor Theory and Mimic networks exhibit the
best overall generalization (81%/82%, 76%).

The 11-vowel class recognition measure, which is a more accurate reflection
of the collected speech data, results in an increased multi-speaker generalization of
5% or better and an increased speaker-independent generalization of 4% or better
for the networks trained with 1-frame smoothed data. For the networks trained with
1-frame unsmoothed data there is an increase in generalization of 3% or more in
both multi-speaker and speaker-independent testing. A similar increase can be seen
in the case of the networks trained with 3-frame smoothed data. For the networks
trained with 3-frame unsmoothed data, an increase of 4% or better can be seen
in multi-speaker generalization and 2% or better occurred in épeaker-independent

generalization.

-

Using a still broader classification based upon the abstract a.rticula.tory
features specified for each of the twelve vowels in the speech data, it is possible to
determine the performance characteristics of the best networks in terms of the fol-
lowing eight phonetic characteristics: front-high, front-mid, front-low, center-mid,
center-low, back-high, back-mid, and back-low. The corresponding phonetic perfor-
mance measures for the networks are shown in Table 5.3. The best multi-speaker and
speaker-independent generalization for the 1-frame smoothed data networks again
occur with the Full Motor Theory and Mimic networks: 80%/81%, and 76%/77%,
respectively. For the two network models trained with 1-frame unsmoothed data, the
best results are obtained with the Full Motor Theory model which exhibits multi-
speaker generalization of 84%, and speaker-independent generalization of 81%.

For the 3-frame smoothed data networks the Mimic network alone shines

in exhibiting the best multi-speaker generalization (89%) and speaker-independent



Table 5.3: Best Performance Networks - 8 Phonetic Classes

Data Network Hidden Train Multi- Spkr-
Type Type Units %  Spkr % Indep %
1-Smooth Full 80 99 80 76 -
Echo 70 98 79 77
Mimic 80 99 81 77
Classifier 90 98 77 74
3-Smooth Full 70 100 86 82
Echo 85 100 85 82
Mimic 95 100 89 83
Classifier 80 100 80 83
1-Unsmooth Full 90 100 84 81
Classifier 70 100 80 79
3-Unsmooth Full 70 100 82 78
Classifier 90 100 88 81

79
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generalization (83%). For the two network models trained with 3-frame unsmoothed
data, the best results are again obtained with the Classifier network which exhibits
multi-speaker generalization of 88%, and speaker-independent generalization of481%.
The network exhibiting the best overall performance is the 3-frame smoothed Mimic
network (89%, 83%).

Comparing the 8-phonetic-classes measure with those of the 11-vowel and
the 12-vowel measures, reveals even greater improvements in generalization. For
the networks trained with 1-frame smoothed data there is a minimum increase in
multi-speaker generalization of 7% and 12%, respectively, and 2 minimum increase
in speaker-independent generalization of 10% and 14% respectivély. In the case of
the 1-frame unsmoothed data networks the minimum improvements in multi-speaker
generalization are 5% and 9%, respectively, with corresponding minimum improve-
ments in speaker-independent generalization of 5% and 10%. The 3-frame smoothed

data networks show minimum improvements of 5% and 8% for both generalization

’

-

measures, while 3-frame unsmoothed data networks show minimum improvements
of 5% and 9%.

Across all three measures - 12-vowel, 11-vowel, and 8-phonetic-classes - the
3-frame smoothed data representation consistently leads to the highest levels of gen-
eralization: 78%/72%, 82%/76%, and 89%/83%. From these results it would appear
that the 3-frame smoothed data representation is the most appropriate representa-

tion used in training and testing these networks.

5.5 Exposition Approach
I will now discuss the results of my investigation into the relationship be-
tween the generalization exhibited by a network and the four independent factors:

architecture, task, training, and data representation. Unfortunately, attempting to
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disentangle the effects of each of these four factors is almost as difficult as the prob-
lem faced by speech researchers as they seek to understand the variability problem of
speech perception (Section 2.2). For example, it is possible to ascribe changes iﬁ net-
work performance to differences in network architecture when all three of the other
factors can be held fixed and only the hidden structure of the network is changed.
However, it is much more difficult to untangle the effects of each factor when dis-
cussing the differences in network performance exhibited when a network is trained
with differing input representations which require differing input architectures (for
example, the 1-frame data representation versus the 3-frame data representation).
Given the definition of task provided in Section 1.2.2,T = (%, 0) it can also be argued
that such a change in input data also results in a change in task, since the i of the
network trained with the l-frame representation differs from the i of the network
trained with the 3-frame representation. In so far as possible, I will try to untangle
the experimental results with regard to each factor. Where there is an interaction of 3
factors, such as the data representation change which results in subsidiary changes
in the architecture and task of the network, I will discuss the results in terms of what
I believe is the primary factor effecting changes in performance and generalization
while noting the possibility of effects from subsidiary factors. The reader may, of
course, disagree as to which is the primary factor in a particular situation. I can
only beg the reader’s indulgence in attempting to follow the pathway which I will

wend through this rather amazing thicket.

5.6 Architecture

I begin with the experimental results of the investigation into the relation-
ship between the architecture of the network and its ability to generalize well to
novel data. Here it is possible to isolate the factor of architecture by keeping the

inputs and outputs constant. Although the training parameters are held constant, it
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is obvious that the initial state of the network connections vary as the architecture of
the hidden structure varies. In a fully-connected strictly feedforward network there
are two basic approaches to varying the hidden structure of the network. Firsi, one
can vary the number of hidden units used in that structure and, second, one can vary
the number of hidden layers over which those units are distributed. I first discuss
the results exhibited by networks having a single hidden layer and a varying number
of hidden units. These results are then compared to those obtained from networks
having the same number of hidden units but with those hidden units distributed
over more than one hidden layer.

5.6.1 Architecture: one hidden layer.  Using the 1-frame smoothed
data representation, I first describe in detail the results for the Full Motor Theory
model network as the architecture of the hidden layer is varied. I then discuss the
results for each of the remaining three network models as the architectures of their
hidden layers are varied. Similar results are discussed for each of the three remain-
ing data representation types: 3-frame smoothed, 1-frame unsmoothed, and 3-fram;e
unsmoothed. Wherever possible I will limit repetitious discussion by describing per-
formance in terms of similarities to previously described behavior. Consideration
will be given to the relationship between architecture and generalization capability
of the networks as it is revealed within each data representation type. With respect
to the overfitting guideline, in order to compare these results with those reported by
others, the multi-speaker generalization is of greatest interest. Speaker-independent
generalization presents results for vowel identification for tokens selected from a dif-
ferent speaker domain than that used in training the networks. This is an even
broader test of generalization than that reported by most researchers.

Recall that the training set consisted of 700 training patterns selected from

the multi-speaker database. 240 patterns were selected from the same database for
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multi-speaker testing. 574 patterns were used for testing speaker-independent gener-
alization. According to the dataset-size guideline, I needed to develop an architecture
which could be trained by 700 training patterns. It was obvious from the begiﬁning
that Widrow’s suggested training sample size (10 times the number of coﬁnections
in a network) probably could not be used in this investigation. 700 training patterns
{vould limit the 1-frame Full Motor Theory network to a maximum of 8 hidden units
and the 3-frame Full Motor Theory network to a maximum of 5 hidden units!

A series of experiments were run to determine the number of hidden units
required for a single-hidden-layer Full Motor Theory network to learn the training
set. All of the networks were trained for 40,000 epochs. To minimize the effect
of minor variations in performance, mean performance was computed over the last
20,000 training epochs. I wanted to determine experimentally the minimum number
of hidden units and hidden layers that the networks would require in order to learn
the t.raining set and generalize well to new speech data. Initially, memorizing the )
training set was defined as exhibiting at least a 90% recognition rate on trdniné
data.

Figure 5.3 depicts the mean training recognition, multi-speaker generaliza-
tion, and speaker-independent generalization results versus number of hidden units
- for the experiments in which Full Motor Theory networks were trained with 1-frame
smoothed speech input. Performance and generalization results are also presented
in Table 5.4.

All of the sixlgle:hidden-layer 1-frame networks having 40 or more hidden
units exhibit a 90% or better recognition rate on the training data. Interestingly,
while the overfitting guideline would lead us to believe that the best generalization
would occur in such a network which has the smallest number of hidden units (40),
it is apparent that as good or better multi-speaker generalization occurs when there

are more than that number of hidden units in the hidden layer. This is true in the



Table 5.4: 1-frame Smoothed Data - Full Motor Theory Model
Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

30 85 54 50
40 90 59 49
50 94 59 52
60 96 61 56
70 96 62 54
- 80 97 64 57
90 97 60 56

150 97 62 58
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case of speaker-independent generalization, as well. For example, the best mean
multi-speaker generalization, 64%, occurs with 80 hidden units while the best mean
speaker-independent generalization, 58%, occurs with 150 hidden units.

It can be argued that the 40 hidden unit network really did not memorize
the training set, since the networks having more hidden units correctly recognize
97% of the training items. The mean training recognition rate across all of the
networks which satisfy the initial 90% or better training recognition rate learning
criterion is 95%. This can be used to establish a new recognition criterion of 95%.
Using this more stringent criterion does not significantly change the outcome. Full
Motor Theory networks having from 60 to 150 hidden units in the hidden layer each
exhibit better than a 95% training recognition rate. Multi-speaker generalization
results for each of these networks range from 60% to 64%, respectively, with a mean
multi-speaker generalization for these five networks of 62%. Similar results hold
for the speaker-independent generalization: a range of 54% to 58% with a mean _
speaker-independent generalization of 56%. )

What is most striking about these networks is the comparative equivalency
of the generalization results. Each network was trained from different initial con-
ditions. The initial connection weights differed for each network. The number of
hidden units for each network differed greatly (60 - 150 hidden units). The num-
ber of connections to be learned varied from 5,340 to 13,350 and vet each of these
networks was able to satisfy the new 95% training recognition rate criterion using
exactly the s#me amount of training data. In all five of these networks the training
recognition deviates by less than 1% from the average, 96.6%. In all five of the
networks the multi-speaker generalization ranges from 60% to 64%. In all five of
the networks the speaker-independent generalization ranges from 54% to 58%. The

capacity of the largest network is more than twice that of the smallest. Nevertheless,

the smallest network did not generalize any better; this contradicts the overfitting
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guideline.

Finally, it should be noted that the networks containing 80, 90, and 150
hidden units, respectively, each exhibit the same mean training recognition rate,
97%. The largest network does exhibit a slightly lower mean multi-speaker general-
ization, 62% versus a high of 64%, but a slightly higher mean speaker-independent
generalization, 58% versus a low of 56%. With exactly the same training recognition
rate it would appear to be difficult to ascribe the slightly lower multi-speaker gener-
alization to the network’s having over-learned the training set, especially in light of
the slightly higher level of speaker-independent generalization. A

Similar results were obtained with the Echo, Mimic, and Classifier networks
trained with 1-frame smoothed speech input. Figures 5.4, 5.5, and 5.6 show the
mean training recognition, multi-speaker generalization, and speaker-independent
performance versus number of hidden units for each of these network models. Tables

5.5, 5.6,and 5.7 ! present the same data in tabular form.

Table 5.5: 1-frame Smoothed Data - Echo Model

Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

30 90 57 35
40 93 59 47
50 93 63 53
60 95 59 50
70 95 62 54
80 95 61 53
90 95 63 52
150 95 60 52

For the Echo model, networks having from 60 to 150 hidden units all exhibit

95% training recognition. However, networks having from 70 to 150 hidden units

!Table 5.7 does not show performance values for all of the Classifier network values seen in
Figure 5.6.
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exhibit better multi-speaker and speaker-independent generalization than does the

network having 60 hidden units.

Table 5.6: 1-frame Smoothed Data - Mimic Model

Mean Phoneme Recognition

Hidden Train Multi  Spkr-
Units % Spkr % Indep %

30 88 59 50
40 93 67 51
50 94 58 49
60 95 63 51
70 96 62 53
80 97 66 57
90 97 63 55
150 97 63 58

For the Mimic model, networks having from 60 to 150 hidden units all
exhibit 95% or better training recognition. A network having 80 hidden uﬁits exhibits
much better overall generalization than does the network having 60 hidden units
while a network having 150 hidden units exhibits at least as good multi-speaker
generalization. Both the 80 hidden units network and the 150 hidden units network

exhibit better speaker-independent generalization: 57%/58% versus 51%.

Table 5.7: 1-frame Smoothed Data - Classifier Model

Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units % Spkr % Indep %

30 91 61 48
40 93 59 54
50 95 59 57
60 95 61 54
70 95 62 55
80 96 61 53
90 95 61 56

150 95 62 55
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For the Classifier model, networks having from 50 to 150 hidden units all
exhibit 95% or better training recognition. Networks having 70, 90, and 150 hidden
units all exhibit the best overall generalization: 62%/55%, 61%/56%, and 62%/55%
versus 59%/57% for the 50 hidden unit network.

Neither the overfitting guideline nor the dataset-size guideline appear to
apply to the four network models trained with 1-frame smoothed data. The exper-
imental results indicate that across a broad range of hidden units, the initial state
of the network did not significantly affect the ultimate results of training. These
networks exhibit comparable levels of generalization across a broad range of hid-
den units. The insensitivity of network performance to variations in the number of
hidden units is one of the more striking results of these experiments.

A series of similar experiments were run. using 3-frame smoothed input.
Again, all networks were trained for 40,000 epochs and mean performance was com-
puted over the last 20,000 training epochs.

Figure 5.7, shows the mean training recognition, multi-speaker generai-
ization, and speaker-independent generalization results for each of the Full Motor
Theory networks trained with 3-frame smoothed speech data input. The actual
performance and generalization values are listed in Table 5.8. Like the 1-frame
networks, the Full Motor Theory networks trained with 3-frame smoothed speech
data input also exhibit a rather striking comparability in training recognition and
generalization, even though each network was trained from different initial weight
states.

Networks having from 60 to 150 hidden units all exhibit 99% training recog-
nition. The number of connections to be learned varied from 8,820 to 22,050. Multi-
speaker generalization results for each of thése five networks ranges from 70% to
74%, respectively with an average generalization of 72.6%. Each of these networks

differs from that average by less than 3%. Best speaker-independent generalization,
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Table 5.8: 3-frame Smoothed Data - Full Motor Theory Model
Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

30 - 97 69 67
40 98 68 63
50 98 69 64
60 99 70 67
70 99 74 71
80 99 73 68
90 99 73 71

150 99 73 71
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71%, occurs for networks having 70, 90, and 150 hidden units. Contradicting the
overfitting guideline, networks having from 70 to 150 hidden units exhibit quite simi-
lar multi-speaker and speaker-independent generalization, all of which is better than
that exhibited by the 60 hidden unit network.

Similar arguments can be made with respect to the Echo, Mimic, and Clas-
sifier networks which have been trained with 3-frame smoothed input. Figures 5.8,
5.9, and 5.10 show the mean training recognition, multi-speaker generalization, and
speaker-independent generalization results by number of hidden units. Correspond-

ing values for these networks are listed in Tables 5.9, 5.10, and 5.11 2. For the
Table 5.9: 3-frame Smoothed Data - Echo Model

Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units % Spkr % Indep %

35 98 69 61

45 99 70 65 ”
55 99 71 67

65 99 68 68

75 99 75 65

85 99 73 69

95 99 71 70

150 98 72 70

Echo model, networks having from 35 to 150 hidden units all exhibit 98% or better
training recognition. The best multi-speaker generalization occurs in the network
éontajning 75 hidden uhits, 75%, while the best speaker-independent generalization
occurs in the networks containing either 95 or 150 hidden units, 70%.

For the Mimic model, networks having from 35 to 150 hidden units all
exhibit 99% or better training recognition. The best multi-speaker generalization
occurs in the network containing 85 hidden units, 75%, while the best speaker-

independent generalization occurs in the networks containing either 95 or 150 hidden

?Values reported here are for selected Classifier networks only.
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Table 5.10: 3-frame Smoothed Data - Mimic Model

Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

35 99 69 62
45 99 73 65
55 99 74 69
65 99 72 69
75 99 73 69
85 100 75 67
95 99 74 70

150 99 72 70
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units, 70%.

Table 5.11: 3-frame Smoothed Data - Classifier Model

Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

30 98 68 61
40 99 73 64
50 99 72 66
60 99 69 66
70 99 71 65
80 99 69 69
150 99 71 69

For the Classiﬁer model, networks having from 30 to 150 hidden units all
exhibit 98% or bette’r training recognition. The best multi-speaker generalization oc-
curs in the network containing 40 hidden units, 73%. The best speaker-independent
generalization occurs in the networks containing either 80 or 150 hidden units, 69%.1,

Neither the overfitting guidéline nor the dataset-size guideline appear to
apply to the four network models trained with 3-frame smoothed data. The results
indicate that across a broad range of hidden units, the configuration of the network
did not significantly affect the ultimate results. These networks exhibit comparable
levels of generalization across a broad range of hidden units. |

A series of similar experiments were run using 1-frame unsmoothed speech
data input. These experiments were limited to a subset of the models: the Full
Motor Theory model and the Classifier model. Like the smoothed data sets, the
unsmoothed data training set contained 700 training examples. Again, all of the
networks were trained for 40,000 epochs and mean performance was computed over
the last 20,000 training epochs. |

Figure 5.11 shows the mean training recognition, multi-speaker gener-

alization, and speaker-independent generalization results versus number of hidden
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units for the Full Motor Theory networks trained with 1-frame unsmoothed input.
The corresponding numbers may be seen in Table 5.12. Full Motor Theory net-
Table 5.12: 1-frame Unsmoothed Data - Full Motor Theory Model
Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

15 91 59 49
30 98 60 55
50 100 69 63
80 100 66 62
90 100 71 67
150 100 70 65

works having from 50 to 150 hidden units each exhibit 100% training recognition.
Multi-speaker generalization results for these networks range from 66% to 71%. For
speaker-independent generalization, results range from 62% to 67%. While the over-
fitting guideline would lead us to believe that the best generaﬁzatibn would occur’
in such a network which has the smallest number of hidden units, 50 units, better
overall generalization occurs when there are 90 hidden units in the hidden layer.
Each of these networks was trained from the same initial conditions as the
corresponding 1-frame smoothed input networks. These networks also exhibit com-
parable levels of generalization across a broad range of hidden units. Also evident is
a broader range of variation in multi-speaker and speaker-independent generalization
than was seen in the networks trained with 1-frame smoothed speech input data.
A similar pattern of results was found in tests of the Classifier networks
trained with 1-frame unsmoothed input. Figure 5.12 shows the mean training recog-
nition, multi-speaker generalization, and speaker-independent generalization results
versus number of hidden units for these networks. Corresponding values appear in
Table 5.13. Classifier networks having from 50 to 150 hidden units each exhibit

100% training recognition. Multi-speaker generalization ranges from 65% to 68%
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Table 5.13: 1-frame Unsmoothed Data - Classifier Model

Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

15 95 57 50
30 99 63 56
50 100 65 - 63
70 100 68 63
90 100 65 63
150 100 68 60

across these four networks. Speaker-independent generalization ranges from 60% to
63%. Contradicting the overfitting guideline, the network exhibiting the best overall
generalization is the one containing 70 hidden units.

For these two models, neither the overfitting guideline nor the dataset-size
guideline appear to apply to the networké fra.ined with 1-frame unsmoothed data.
The insensitivity of network perforrqance to variations in number of hidden units,~
can be seen in these networks also.

Yet another series of experiments were run using 3-frame unsmoothed input.
Figure 5.13 shows the mean training recognition, multi-speaker generalization, and
speaker-independent generalization results for Full Motor Theory networks trained
with different numbers of hidden units. Corresponding values appear in Table 5.14.
Networks containing 50, 70 and 90 hidden units each exhibit training recognition of
100%. Contradicting the overfitting guideline, it is clear that the network having 90
hidden units exhibits the best overall generalization.

A similar pattern of results was found with the Classifier networks trained
with 3-frame unsmoothed input data. Figure 5.14 depicts the mean training recogni-
tion, multi-speaker generalization, and speaker-independent generalization exhibited
by these networks. Corresponding values are listed in Table 5.15. Networks contain-

ing from 30 to 90 hidden units each exhibit 100% training recognition. Contradicting
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Table 5.14: 3-frame Unsmoothed Data - Full Motor Theory Model
Mean Phoneme Recognition

Hidden Train Multi- Spkr-
Units %  Spkr % Indep %

15 98 61 50
30 99 68 63
50 100 67 58
70 100 68 63
90 100 76 66

Table 5.15: 3-frame Unsmoothed Data - Classifier Model

Mean Phoneme Recognition

Hidden Train Maulti- Spkr-
Units %  Spkr % Indep %

15 98 60 52
30 100 70 63
50 100 75 64
70 100 71 66

- 90 - 100 76 68
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the overfitting guideline, the network exhibiting the best overall generalization is the
one containing 90 hidden units.

Neither the overfitting guideline nor the dataset-size guideline appear to
apply to the two models trained with 3-frame unsmoothed data. These networks
exhibit comparable levels of training recognition and generalization across a broad
range of hidden units.

§.6.2 Architecture: multi-hidden-layers.  All of the preceeding re-
sults were for single-hidden-layer networks trained with back-propagation using a
learning rate of 0.1. It has been suggested that networks having more than one
hidden layer might be capable of exhibiting better training and generalization per-
formance. The rationale underlying such a suggestion is that the added layers provide
the network with additional dimensions in which to reorganize the material to be
learned.

Little is known about the relationship between network generalization andl‘
architecture for multi-hidden-layer nétworks. This is doubtless due to the multitude
of potential architectures that can be specified once one opens the door to the possi-
bility of having more than one hidden layer. One approach is to fix the total number
of hidden units to be used in the network. The hidden units can then be distributed
over the multiple hidden layers and a comparison made between the resulting perfor-
mance and the performance exhibited by a single-hidden-layer network having the
same total number of hidden units.

In addition to investigating single-hidden-layer networks, a limited inves-
tigation of both two hidden layer and three hidden layer networks was carried out.
The multi-hidden-layer networks proved to be much more sensitive to learning rate
than were single-hidden-layer networks. This sensitivity to learning rate of the multi-
hidden-layer networks will be described in greater detail in Section 5.8.1. Suffice it

to say at this point that it was necessary to explore the effect of learning rate on
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the training of the multi-hidden-layer networks in order to establish an appropriate
rate at which to train the networks. While all of the single-hidden-layer networks
were trained with a learning rate of 0.1, it was necessary to train the two and three
hidden layer networks with a learning rate of 0.01.

Figure 5.15 shows the mean performance of a two-hidden-layer network
having 70 hidden units distributed over ihe two hidden layers compared with the
mean performance of a single-hidden-layer network containing the same number of
hidden units. The training recognition rate and the multi-speaker generalization
exhibited by the two-hidden layer network trained with a learning rate of 0.01 are
essentially equivalent to that exhibited by the single-hidden-layer network conté.ining
70 hidden units and trained with a learning rate of 0.1. The single-hidden-layer
network has slightly more connections than the two hidden layer network - 2870
versus 2690 - but the rate at which it learns each connection is an order of magnitude
faster than the rate at which the two hidden layer network learns each connection - 1
0.1 versus 0.01. '.

Using the learning efficiency measure described in Section 4.3, the learning
efficiency for the single-hidden-layer network is, approximately, 34.8 +1078 while the
learning efficiency for the two hidden layer network is 3.7+ 10~6. The single-hidden-
layer network exhibits a learning efficiency approximately 10 times greater than that
exhibited by the two-hidden-layer network.

For a three-hidden-layer Full Motor Theory network trained with the same
input data, training recognition and generalization results éimilar to those exhibited
by single-hidden-layer networks were observed. The learning efficiency for the 90
hidden unit single-hidden-layer network was an order of magnitude greater than
that for the three-hidden-layer network, 10.7 * 10~ versus 1.8 * 105

Both two-hidden-layer and three-hidden-layer networks were trained with

3-frame smoothed speech data. The results of these experiments were essentially the
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same as those reported above in the case of the 1-frame smoothed data training.
The multi-hidden-layer networks proved to be extremely sensitive to learning rate.
The training recognition and the multi-speaker generalization were no better than
that exhibited by the single hidden layer networks. Considering the difference in
learning efficiency, all remaining experiments were carried out using single-hidden-
layer networks.

These empirical results are similar to the theoretical results reported by
Judd [13]: for a given number of hiaden units, it is better to contain those units in
a single-hidden-layer than to distribute them over two or more hidden layers. There
appears to be no difference in the training recognition and generalization results as
a result of this restriction. In addition, the learning efficiency of the single-hidden-
layer networks was an order of magnitude greater than that of the multi-hidden-layer
networks.

5.6.3 Architecture: conclusions. The experimental results indicate
that interestingly comparable levels of training recognition, multi-speaker general-
ization, and speaker-independent generalization are exhibited across all of these net-
works trained with four different data representations. The overfitting guideline
which states that if a network can learn a problem, then the fewer the number of
{ree parameters in the network the better the network is likely to generalize simply
does not apply in the case of these networks. For the networks that satisfied not just
the initial training recognition criterion but an even higher empirically determined
training recognition criterion, those having more free parameters appeared to train
and generalize as well or even better than those having fewer free parameters.

Likewise, as the experimental results exhibit, the dataset size guideline
which holds that the larger the number of free parameters in a network the more
data needed to train it also does not apply in the case of these networks. It is quite

possible that additional data might have permitted the networks to learn a better
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mapping function and, thus, to generalize better. That is not the point being made
here. What is pertinent to the current discussion is the fact that, for the given
training data, networks having more free parameters trained and generalized as well,
if not better, than networks having fewer free parameters.

It is worthwhile to note that networks which exhibit either the same or
only minimally different training recognition can exhibit markedly different general-
ization. For example, the 1-frame smoothed Echo networks having 60 and 70 hidden
units each exhibit a training recognition of 95%. The 60 hidden unit network ex-
hibits generalization of 59% and 50% versus 62% and 54% for the 70 hidden unit
network. Similarly, the 3-frame smoothed Mimic networks having 35 and 95 hidden
units exhibit a training recognition of 99%; the generalization for the former is 69%
and 62% versus 74% and 70% for the latter. It is important that researchers track
generalization directly rather than merely tracking error rate br training recognition.
This point will be discussed further in Section 5.8.4.

One additional result, which parallels the results reported by Judd [13], is
that for a given number of hidden units, it appears to be better to contain those
units in é single-hidden-layer than to distribute them over two or more hidden layers.
There appears to be no difference in the training recognition and generalization
results as a result of this restriction and, in the case of the networks investigated here,
the learning efficiency of the single-hidden-layer networks was an order of magnitude

greater than that of the multi-hidden-layer networks.

5.7 Task

I turn now to a discussion of the results pertaining to the relationship
between the task of the network and the ability of the network to generalize well to
novel data. The composite tasks are described in Section 2.4.

As described in Section 4.3 above, a procedure external to the network
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simulator was used to compute a classification measure for each subtask. In ad-
dition, a classification measure was computed by a majority vote of all subtasks.
Here we find a single task, classification, having multiple realizations across various
architectural/data representations. The correlations between each of these subtask
recognition measures and the total vote recognition measure were extremely high,
r > .99. In addition, the phoneme classification measure, which occurred in each
of the four network models, was virtually always within less than 0.5% of the to-
tal vote recognition measure. This provided a convenient means of directly reading
the phoneme classification accomplished by each of the networks. The phoneme
classification measure was used in developing a multiple regression analysis.

Recall that I had hypothesized that adding additional tasks should cause
a change in generalization. That change, as a result of the added constraints, may
be an increase in generalization, or, as a result of an increase in the network capac-
ity, it may decrease generalization. As the hypothesis indicates, variations in task
necessitate variations in network architecture. In Section 4.2, the composite task
was used, in combination with the appropriate data representation, to specify the
architectural details of each network. It can be argued that the architecture and
data representation factors can also be implicated in the results described. I contend
that the primary factor in the current discussion is the network task. At least in the
case of architectural manipulation, my contention received solid support from the
lack of effect of architectural manipulation discussed in Section 5.6.

5.7.1 Task: analysis of the experiments. In Section 5.6.11 pre-
sented the experimental results for the training recognition, multi-speaker generaliza-
tion, and speaker-independent generalization exhibited for each of the four network
models trained with 1-frame and 3-frame smoothed speech input and 1-frame and
3-frame unsmoothed speech input. I have already discussed the striking similarity of

these results for each of the network models. In comparing models having the same
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hidden structure trained with the same auditory input an interesting similarity of
training recognition and generalization results can be seen. This is true even for
the Full Motor Theory networks which have a slightly larger input architecture as
a result of the added articulatory feature input. For example, Table 5.16 shows
the comparative results for all the networks trained with 1-frame smoothed auditory
input data representations.

Notice that as the number of hidden units increases from 30 to 60 there is
an increase in training recognition until an average training recognition of 96% is
achieved across all four network types. A similar increase can be seen in multi-speaker
generalization, with an average generalization of 62%. An increase in speaker-
independent generalization to an average of 53% occurs across the same range of
hidden units. From 70 to 150 hidden units the networks exhibit virtually no change
in either training recognition or multi-speaker generalization. There is a gradual
increase in speaker-independent generalization from an average 53% to 56% across
this range. There are markedly comparable levels of performance across differing
network types having the same number of hidden units once the networks contain
70 or more hidden units.

The comparable levels of performance and the similarity of results is made
even more striking by examination of a multiple regression analysis of the networks’
training recognition and generalization. First, all of the networks trained with 1-
frame smoothed speech data input were analyzed using a multiple regression analysis
where the input architecture, number of hidden units, and output architecture were
used as independent variables. The 1-frame representation is reflected in the input
architecture, which is the same for all but the Full Motor Theory model. The tasks
assigned to the networks differ primarily in the differing outputs for each of the
four models. The architectures of the networks differ primarily in the number of

hidden units in each network and, secondarily, in the aspects of the input and output



Table 5.16: 1-frame Smoothed Data - All Models

Mean Phoneme Recognition

Hidden Network Train Multi-  Spkr-
Units  Type % Spkr % Indep %
30 Full 85 54 50

Echo 90 57 55
Mimic 88 59 50
Classifier 91 61 48
40 Full 90 59 49
Echo 93 59 47
Mimic 93 67 51
Classifier 93 59 54
50 Full 94 59 52
Echo 93 63 53
Mimic 94 58 49
Classifier 95 59 57
60 Full 96 61 56
Echo 95 59 50
Mimic 95 63 51
Classifier 95 61 54
70 Full 96 62 54
Echo 95 62 54
Mimic 96 62 53
Classifier 95 62 55
80 Full 97 64 57
Echo 95 61 53
Mimic 97 66 57
Classifier 96 61 53
90 Full 97 60 56
Echo 95 63 52
Mimic 97 63 55
Classifier 95 61 56
150 Full 97 62 58
Echo 95 60 52
Mimic 97 63 58
Classifier 95 62 55

115
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architecture which reflect the tasks of the network. The training recognition, multi-
speaker generalization, and speaker-independent generalization are the dependent
variables. The t-values and associated probabilities for this analysis are listed in

Table 5.17.

Table 5.17: 1-frame Smoothed Data - Multiple Regression Analysis

Measure X t-value Probability
Training Input 0.18 .8550
Hidden 7.17 .0001*
Output 0.42 .6761
Multi-spkr Input 0.72 4748
Hidden 4.66 .0001*
Output 0.15 .8845
Spkr-indep Input 1.32 .1978
Hidden 4.85 .0001*
Output 1.11 2772

* significant at p < .02

The criterion of p < .05, which is commonly accepted as the threshold to
reject the null hypothesis in the analysis of human data may not be appropriate for
the analysis of data resulting from computational models. Models do not exhibit the
same random variation. In order to assure that the analysis provides results which
are truly significant I have established a threshold of p < .02 for rejection of the null
hypothesis.

The results of this analysis indicate that for all four network models the dif-
fering tasks required of the networks, reflected in the input and output architectures,
are not significant predictors of variance in network performance. The primary pre-
dictor of training recognition, multi-speaker generalization, and speaker-independent
generalization variance is the number of hidden units in the networks. An exami-

nation of Table 5.16 indicates that initial increases in the number of hidden units
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result in increasing training and generalization performance for all models.

These four different network types differ in the required tasks. They are
similar in that each network is required to perform the phoneme classification task.
They are also similar in the input data with which they are trained. The networks can
be grouped together based upon these similarities, a phoneme classification subtask
and input data representation, and upon a common indifference to the total task
required of each. Such a grouping of networks can be labeled a “family” of networks.
The 1-frame smoothed input networks form a family of networks.

A similar multiple regression analysis with the input architecture, number
of hidden units, and output architecture used as the independent variables and the
training recognition, multi-speaker generalization, and speaker-independent gener-
alization as dependent variables was performed for all of the networks trained with
3-frame smoothed input. The t-values and associated probabilities for this analysis

are detailed in Table 5.18.

Table 5.18: 3-frame Smoothed Data - Multiple Regression Analysis

Measure X t-value Probability
Training Input 0.24 8125
Hidden 2.08 .0064*
Output 0.49 .6285
Multi-spkr Input 0.25 .8044
Hidden 4.75 .0001*
Output : 0.05 9572
Spkr-indep Input 0.73 4719
Hidden 7.74 .0001*
Output 0.47 .6324

* significant at p < .02

The results of this analysis indicate that for all four models the primary
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predictor of variance not just in training recognition, but also in multi-speaker gen-
eralization and speaker-independent generalization, is the number of hidden units
in the hidden structure of the networks. Like the 1-frame input networks, initial
increases in the number of hidden units in these 3-frame input networks result in
increasing training and generalization performance for each model.

Once again, there was no difference in training recognition, multi-speaker
generalization, or speaker-independent generalization based upon a difference in the
task of the model. Like the 1-frame networks, the 3-frame networks have a common
phoneme classification subtask and can be said to form a family of networks whose
primary predictor of variance in performance is the number of hidden units.

As the above analyses show the 1-frame smoothed input networks and the
3-frame smoothed input networks form families in which the members exhibit re-
markably similar training recognition and generalization. One explanation for this
somewhat surprising grouping is that it could be a result of the smoothed nature of
the input data. Martin and Pittman [22] attributed similarity in performance for
their networks to such an explanation. A statistical analysis of the networks trained
with unsmoothed data may shed light on this question.

A multiple regression analysis was performed for the two network models,
the Full Motor Theory model and the Classifier model, trained with 1-frame and 3-
frame unsmoothed data. The results were similar to those described above with the
exception that the results regarding hidden units were somewhat unclear. Bearing
in mind the limited number of data points available, I performed a linear regression
analysis using number of hidden units as an independent variable. The results of
this analysis for the networks trained with 1-frame unsmoothed data can be seen in
Table in Table 5.19.

For the two models trained with 1-frame unsmoothed data the results are

somewhat unclear. The significance of variation in the number of hidden units on



119

Table 5.19: 1-frame Unsmoothed Data - Linear Regression Analysis

Measure X t-value Probability
Training Hidden 2.21 .0544
Multi-spkr Hidden 3.32 .0089*
Spkr-indep Hidden 24.09 .0392

* significant at p < .02

training recognition and speaker-independent generalization do not meet the strin-
gent criterion of p < .02. They are significant at p < .05, the commonly accepted
threshold for rejection of the null hypothesis. As was discussed in Section 5.6.1,
the 1-frame unsmoothed data results in greater experimental variation in perfor-
mance than does the 1-frame smoothed data. In Section 3.1 it was noted that the
1-frame target vowel data reflects a static theory of vowel perception that may not
be appropriate for the recognition of vowels. If this 1-frame data representation is
less appropriate than the 3-frame representation then the utilization of unsmoothed
data, while resulting in an increase in performance, (see discussion below in Section
5.9.2 for additional comments regarding this phenomenon) may also tend to mask
the underlying commonalities between the models for the limited set of networks
that have been investigated here. I contend that the analysis does not argue against
the conclusion that these networks form a family based upon a similarity in input
data and phoneme classification subtask.

The results of a similar analysis for the two network models trained with
3-frame unsmoothed data can be seen in Table 5.20. Although not as clear as the re-
sults for the corresponding networks trained with 3-frame smoothed data, they indi-
cate that for these network models also the primary predictor of training recognition,
multi-speaker generalization, and speaker-independent generalization variance, is the

number of hidden units in the networks. For these networks there was no difference
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Table 5.20: 3-frame Unsmoothed Data - Linear Regression Analysis

Measure X t-value Probability
Training Hidden 3.406 .0114*
Multi-spkr Hidden 3.292 .0133*
Spkr-indep Hidden 3.464 .0105*

* significant at p < .02

In training recognition, multi-speaker generalization, or speaker-independent gener-
alization that depended upon a difference in the task of the network model. These
networks form a family based upon a similarity in input data, 3-frame unsmoothed
input, and a common phoneme classification subtask.

5.7.2 Task: conclusions. As a result of these analyses I conclude
that, with respect to the networks investigated in this research at least, networks
using the same data input and having a common phoneme classification task form
families of networks. These families exhibit a common indifference to to the total
task required of each model. The difference in training recognition and generalization
performance of the members of a particular family can only be statistically ascribed
to differences in the number of hidden units used in the network. Based upon the
analysis of networks trained with four different types of data input it does not appear
reasonable to ascribe the common behavior of network family members to the input
representation with which they are trained.

On the basis of these results then, the first hypothesis that adding addi-
tional tasks should cause a change in generalization which may be an increase in
generalization (as a result of the added constraints) or it may be a decrease in gen-
eralization (as a result of an increase in the network capacity) must be rejected.
Apparently adding constraints by requiring additional tasks of a network did not

cause an increase in network generalization. The increase in network capacity which
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resulted from the increase in output architecture required by the additional tasks
also did not cause a decrease in network generalization. Generalization simply did

not change as a result of adding additional tasks to a network.

5.8 Training

There is an extensive body of literature reporting on a variety of different
approaches to the training of neural networks. Consequently only a limited investi-
gation was carried out exploring the relationship between training factors and the
ability of the network to generalize well to new data. This investigation includes
a limited manipulation of the learning rate, the training schedule, an alternative
training algorithm, and quantity of training data. I turn now to the question of the
relationship between factors affecting the training of the network and the ability of
the network to generalize well to novel data.

5.8.1 Training: learning rate.  As mentioned in Section 5.6.1, multi-
hidden-layer networks proved to be sensitive to learning rate. Figure 5.16 presents
the dynamic behavior of three 1-frame Classiﬁer networks where 50, 70, or 90 hidden
units were distributed among two hidden layers. The networks were trained with a
learning rate of 0.1, the learning rate used in training single-hidden-layer networks.
Note that the network having 50 hidden units was incapable of even beginning to
learn the training data. The training recognition of the networks having 70 and 90
hidden units first increases to a high of approximately 87%. The training recognition
then begins to exhibit an oscillatory behavior with recognition alternately decreas-
ing then increasing. The overall trend in each case indicates a decrease in training
recognition from the original high. The networks obviously are incapable of learning
the speech training data.

Figure 5.17 shows the performance of the 70 hidden unit two-hidden-layer

network when it is trained with a learning rate of 0.01. Reducing the learning rate
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by an order of magnitude permitted the network to learn the training data. These
results indicate that multi-hidden-layer networks are more sensitive to learning rate
than single-hidden-layer networks. It is necessary to find an appropriate learning
rate when training these networks.

A study was undertaken to investigate the effect of varying the learning
rate on the training of single-hidden-layer networks. The networks used for this
study were Classifier networks trained with 3-frame smoothed input. For a given
number of hidden units, the initial state of the network was the same in each case.
The networks were trained using two learning rates which differed by an order of
magnitude, 0.1 and 0.01.

Figure 5.18 depicts the performance exhibited for a network having 80
hidden units when trained with a learning rate of 0.1 (top) and when trained with
a learning rate of 0.01 (bottom). Training performance in the case of a .1 learning
rate is essentially flat across the final 25,000 epochs. Generalization, on the other
hand, exhibits 2 slight upward trend throughout the training period. Both training
performance and generalization in the case of a .01 learning rate are essentially flat
across the last 30,000 epochs. Similar results are exhibited for each of the other
networks when comparing training with a learning rate of .1 to training with a
learning rate of.01.

Figure 5.19 compares the mean training recognition, multi-speaker gener-
alization, and speaker-independent generalization exhibited by the two sets of net-
works. It is apparent from the figure that networks trained with the lower learning
rate exhibit lower performance in all three categories. A multiple regression analysis
of the networks was performed using number of hidden units and learning rate as
the independent variables. Training recognition, multi-speaker generalization, and
speaker-independent generalization were used as the dependent variables. The re-

sults are somewhat mixed as to the impact of each of the independent variables upon
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the dependent variables, as can be seen in Table 5.21. Clearly, as far as training

Table 5.21: Effect of Learning Rate on Classifier Networks

3-frame Smoothed Data Classifier Networks

Measure X t-value Probability
Training Hidden 2.69 .0196*
Learning Rate 1.25 .2357
Multi-spkr Hidden 1.68 .1193
Learning Rate 272 .0186*
Spkr-indep Hidden 3.69 .0031*
Learning Rate 2.78 .0165*

* significant at p < .02

recognition is concerned, the number of hidden units is the primary predictor of
variance in the performance results. This reflects the increase in training recogni-
tion performance resulting from the increase in number of hidden units. In terms
of multi-speaker and speaker-independent generalization the training rate assumes
a predictive role. I hesitate to draw strong conclusions from such a limited investi-
gation and such mixed results. It appears that consideration should be given to the
effect of both the design of the network’s hidden structure and also to the effect of
the learning rate upon the network’s ability to generalize.

5.8.2 Training: schedule of training. As indicated previously the
networks described in Section 5.6.1 were trained with random presentation of the
training patterns. Two alternative schedules of training were also explored: incre-
mental training by number of vowel patterns and training by task.

By incremental training I mean the following: first, the network is trained
to learn one example of each vowel spoken by each speaker; then the number of
examples is increased by an additional example of each vowel spoken by each speaker

and the network is retrained using the expanded training set; this last step is repeated
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until the network is trained with the full training set. While there is no theoretical
motivation for training a network by the incremental increase in training set size,
previous experience indicated that such training can sometimes lead to somewhat
better or faster training. Here I tried an incremental approach to training a Full
Motor Theory network. The results of this investigation quickly indicated that the
network only achieved recognition rates equivalent to those achieved with random
presentation of the entire pattern set. Training also took longer using the incremental
approach. As a result, this approach was pursued no further.

An approach with somewhat greater theoretical motivation is that of train-
ing the network in a manner akin to that in which a child appears to learn language.
First, children hear speech sounds, then they “babble”, and finally, understand and
recognize spoken language. Using this approach I first tried training a Full Motor
Theory network to perform the auditory association task until recognition reached
an asymptote. The task of articulatory association was added until there was no
further improvement in articulatory recognition. Finally, the task of phonemic la-
beling was included in the training regime. This task-oriented approach to training
was tried both without and with freezing the appropriate connection weights for the
tasks being trained. Suffice it to say that neither approach resulted in any increase
in the ultimate training recognition of the network as measured across any of the
three tasks and both approaches took longer to effect final training than did the
simple all-at-once random presentation approach.

One final aspect should be mentioned with regard to training schedule.
As noted previously, the majority of networks investigated were trained for 40,000
epochs. Figure 5.17 showed the results of training a two-hidden-layer with a learning
rate of .01 for up to 128,000 epochs. Note that, in contrast to the results reported by
Morgan and Bourlard [26] (Section 1.2.1), this network does not appear to exhibit

reduced generalization as a result of extensive training. This result is true for all of
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the networks in this research which were extensively trained.

5.8.3 Training: alternative algorithm. For purposes of compari-
son, Classifier networks fed with 1-frame smoothed input data were trained using
the conjugate gradient algorithm in addition to standard back-propagation. The ran-
dom seed used to generate the connection weights was the same for both algorithms.
The software used for this training was provided to us by Mark Fanty at the Oregon
Graduate Institute. The conjugate gradient training was significantly faster than
the back-propagation training algorithm. However, the results of this training are
somewhat questionable. The training recognition and multi-speaker generalization

results are summarized in Table 5.22. While the results for multi-speaker gener-

~ Table 5.22: Conjugate Gradient Training versus Back-Propagation

Conjugate Gradient Back-Propagation

Hidden Train Multi- Train  Multi-
Units %  Spkr % %  Spkr %
10 61.6 57.9 74.6 53.0
15 58.7 56.3 78.9 52.6
20 60.9 56.7 81.6 58.1
25 59.6 53.8 88.2 60.3
30 60.3 55.0 91.3 60.7
35 61.1 57.9 91.6 58.7
40 59.1 52.9 93.5 59.4
45 61.6 55.8 93.2 59.8

alization are comparable across the two algorithms, the training recognition results
simply are not. I was never able to resolve the differences between the two training
algorithms in this respect. David Shaw, a doctoral student in Psychology, who was
also using this software and experiencing similar problems, passed along the results

of these experiments to Mark Fanty at OGI. The response was as follows:

All T can suggest is that the conjugate gradient descent pushes the network to a
local minimum for some reason....One other person reported a similar problem.
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Different random seeds did not help.3

5.8.4 Training: data quantity. Seventy out of 94 tokens for each of
ten speakers, for a total of 700 tokens, were allocated to the training set. If one can
reduce the size of the training sct and still achieve equivalent training recognition and
generalization, it is possible to reduce the amount of time required to train a network.
Networks were trained with 1-frame and 3-frame smoothed data representations
using either a full training set or a reduced training set. In the reduced training set
two tokens/vowel/speaker had been removed resulting in a training set containing
460 tokens.

As Figure 5.20 shows, training 1‘ec6g11iti011 for a network trained with a full
training set and a network trained with a reduced training set are essentially the same
in the case of 1-frame smoothed auditory input data. Multi-speaker generalization
using the same multi-speaker testing set is the same: 64%. In the case of speaker-
independent generalization, however, there is a slight degradation in generalization:

54% versus 57%. It would appear that the full training set is not providing the
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network with that much more evidence of underlying similarities than is the reduced
training set. These results do not indicate that providing additional 1-frame training
data would have resulted in an improvement in network performance.

In the casc of a network trained with 3-frame smoothed auditory input
data the situation shown in Figure 5.21 is somewhat different. Once again the
training recognition results are essentially the same. The generalization for both
multi-speaker and speaker-independent data are significantly degraded for the net-
work trained with the reduced training set: 68% versus 74% for the multi-speaker

data and 63% versus 71% for the speaker-independent data. Obviously, the under-
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Figure 5.21: 3-frame Performance as a Function of Training Set Size

lying similarities being identified by the network given the reduced 3-frame training
set were not as universal as those identified for the full training set. As a result of
these experiments it did not appear fruitful to pursue the possibility of training the
networks by further reducing the training set. These results indicate that providing
additional 3-frame training data might have resulted in an improvement in network
performance.

Recall from Section 1.2.1 that Cheung et al reported on an approach to
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improve network generalization by dynamically enlarging the training set through a
process that includes additiona] copies of training patterns which were more poorly
trained than others. I tried a modified version of this approach in which a subset
containing the most poorly trained patterns was selected every 100 cycles instea,d
of every cycle. The resulting network exhibited little better than a 1% performance
increase on the training set, no improvement in generalization, and ﬁperceptibly
longer training time. Based on this experience, I did not find this a promising line
of investigation.

5.8.5 Training: conclusions.  Of the three aspects of my investiga-

tion touched upon thus far: architecture, task, and training, the results regarding

In contrast to the results reported by Morgan and Bourlard, the networks
investigated in this research did not exhibit 2 decrease in generalization as a resy]t
of overtraining. A network trained up to 128,000 epochs showed no evidence of poor
generalization.

The investigations into different training schedules and an alternative train-
ing algorithm were essentially unproductive. With respect to the effect of varying

the number of training exemplars for a given training class, the negative results of

enlarged training set.
One result occurred repeatedly throughout the Investigation. Figure 5.22

shows the training recognition and generalization exhibited by a Full Motor Theory
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network having 150 hidden units and trained with 1-frame unsmoothed data. The
figure also shows the mean square training error rate and the mean square multi-
speaker and speaker-independent error rates. Several items of interest are evident
in this figure. First, although the training error rate decreases to a minimum and
then increases slightly, the training recognition increases to a high level and remains
relatively stable thereafter. Second, the mean square multi-speaker and speaker-
independent error rates decrease to a minimum and remain relatively stable; yet the
multi-speaker and speaker-independent generalization continue to increase through-
out the training of the network! The increase in generalization contrasts strongly
with the stable error rates. If the network were attempting to fit noise in the data
the network would exhibit a decrease in generalization with increased training. Ob-
viously the network is not exhibiting effects resulting from overtraining. Apparently
the network is able to reorganize the error on the individual units in a manner that
results in an improvement in generalization while the mean square error across all
units remains stable. Similar results were observed in other networks as well. These
results suggest that researchers should take the precaution of tracking both train-
ing performance and generalization during the network training process rather than

simply tracking the training error rate.

5.9 Data Representation

I complete my report of the experimental results of the investigation by
describing the results pertinent to the question of the relationship between the data
representations used in training the network and the ability of the network to gener-
alize well to previously unseen data. Comparisons are made both within and between

the smoothed data and the unsmoothed data.
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5.9.1 Data representation: 1-frame versus 3-frame. I hypothe-
sized that training with appropriate representations will help the network to general-
ize better. Experiments were run to determine the effect of different representations
on generalization. In the case of 1-frame versus 3-frame representations the differing
representations required a different input architecture. Shifting from a 1-frame to a
3-frame architecture also had the effect of increasing network capacity. According
to the dataset-size guideline, training an increased capacity network with a fixed
size training set should have resulted in a decrease in generalization. My hypothesis
contradicts this guideline by asserting that the appropriateness of the data represen-
tation is of greater significance than the physical size of that representation. This
was suggested by the results of Cheung et al [6].

I first consider the performance exhibited by networks trained with 1-frame
smoothed data and 3-frame smoothed data. The results show that for a given model
the training recognition, multi-speaker generalization, and speaker-independent gen-
eralization vary as a function of the 1-frame versus 3-frame input representations.

In Sections 5.4 and 5.6.1, I discussed the fact that the 3-frame input
representation required no more hidden units than the smaller 1-frame input rep-
resentation in order for a network to exhibit good training recognition and gener-
alization results. For example, in the case of the best Full Motor Theory networks
the 3-frame representation actually results in a slightly higher training recognition,
100% versus 98%, significantly better multi-speaker generalization, 78% versus 68%,
and significantly better speaker-independent generalization, 72% versus 59%. Fig-
ure 5.1 compares the training recognition, multi-speaker generalization, and speaker-
independent generalization results for the best networks trained with smoothed data.
It is worthwhile to note that the best 1-frame Full Motor Theory network has a total
of 7,120 connections while the best 3-frame Full Motor Theory network has a total

of 10,290 connections - 3,170 more connections to be learned during the training
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process. Nevertheless, utilizing the same number of training patterns, the 3-frame
network is able to learn the training set better than the 1-frame network. It is also
able to generalize that knowledge to previously unseen multi-speaker data signifi-
cantly better than the 1-frame network, 78% versus 68%, a difference of 10%. This
difference in generalization ability to previously unseen data is even more striking
when one considers the speaker-independent data. The 3-frame network exhibits
72% recognition of new speaker-independent data while the 1-frame network only
exhibits 59% recognition of the same data, a difference of 13% in generalization.

Comparison of Figures 5.3 and 5.7 show that similar results for the mean
trainihg recognition, the mean multi-speaker generalization, and the mean speaker-
independent generalization were obtained for all of the smoothed data Full Motor
Theory Networks. Similar results can be seen in the other network models across
the 1-frame and 3-frame input representations. It can be seen that, given the same
number of hidden units and the same network task, the network trained using the
3-frame input representation, in general, exhibits a higher training recognition and
better generalization than the 1-frame representation.

An analysis of all of the network models trained with both the 1-frame
smoothed data and the 3-frame smoothed data was performed using a multiple re-
gression procedure in which the input architecture/input data representation, the
output architecture, and the hidden structure of the networks serve as indepen-
dent variables and training recognition, multi-speaker generalization, and speaker-
independent generalization are dependent variables. The results of this analysis are
summarized in Table 5.23.

The analysis shows that across all four of the network models trained with
smoothed data the primary predictors of variance are the number of hidden units and

the input representation used in training the network. I have previously noted that



Table 5.23: All Smoothed Data Networks - Multiple Regression Analysis

Measure X t-value Probability
Training Input 6.73 .0001*
Hidden 7.25 .0001%
Qutput 0.06 .9505
Multi-spkr Input 17.25 .0001*
Hidden 6.88 .0001*
Output 2.31 .0245
Spkr-indep Input 21.83 .0001*
Hidden 8.56 .0001*
Output 1.56 .1241

* significant at p < .02
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initial increases in the number of hidden units result in increasing training and gen-
eralization results for each model. A change from a 1-frame to a 3-frame smoothed
input representation also makes a difference. The 1-frame representation provides
information only about the vowel target (Section 3.1), while the 3-frame representa-
tion provides additional information regarding the dynamic vowel transitions and is
considered to be a potentially more appropriate representation for vowel perception
by students of vowel perception theory.

Experiments were conducted using an extended 5-frame smoothed input
consisting of five spectral frames in which two additional frames are selected at
the starting and ending vowel segmentation points. The results indicate that this
additional 3-frame information provided no further improvement in mean training
recognition (99%) and, in fact, results in a 3% degradation in mean generalization .
when compared with the results for the 3-frame network (Figure 5.23). In contrast
to the results exhibited by the 1-frame network, the 5-frame network does exhibit sig-
nificantly better training recognition and generalization results. With respect to the
smoothed 1-frame and 3-frame data representations, I conclude that, as the above
discussion indicates, the hypothesis which states that training with appropriate rep-
resentations will help the networks to generalize better is valid. With respect to the
smoothed 1-frame and 3-frame data representations, this hypothesis is equally valid.
With respect to the 3-frame and 5-frame data representations, it would appear that
the two representations are equally appropriate. Appropriateness of representation
cannot be measured in terms of the physical size of the representation; it can only
be estimated by an a posteriori comparison of network performance.

Let us now consider the results for the 1-frame versus 3-frame represen-
tations in the case of unsmoothed data. Comparing the performance between the
Classifier networks trained with 1-frame and 3-frame unsmoothed data shows similar

variation to that seen with the 1-frame and 3-frame smoothed networks. For the full
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Motor Theory networks trained with unsmoothed data, a slightly different pattern
was observed. Both the 1-frame and 3-frame networks exhibit reasonably similar
behavior. It is not clear why this should be so. One potential explanation is based
upon the concept of task. On this view the additional tasks required of the Full
Motor Theory network so constrained the internal representations developed by the
network that the network was unable to take advantage of any additional informa-
tion that might have been provided by the 3-frame unsmoothed data. An alternative
explanation based upon the concept of appropriate representation combined with the
task of a network will be developed in the next section.

5.9.2 Data representation: smoothed versus unsmoothed. Fig-
ure 5.24 compares the effect of training a Full Motor Theory network with 1-frame
smoothed versus 1-frame unsmoothed data. Using unsmoothed data leads to better
training recognition, multi-speaker generalization, and speaker-independent general-
ization than does the smoothed representation. Figure 5.25 depicts similar results
for the 1-frame Classifier network. In Figure 5.26, however, the situation is reversed
for the 3-frame Full Motor Theory network. Using the smoothed training data leads
to equivalent training recognition and somewhat better multi-speaker and speaker-
independent generalization than does the unsmoothed data representation. In Figure
5.27, the 3-frame Classifier networks given smoothed and unsmoothed training data
are equivalent in their training recognition and generalization.

A multiple regression analysis of training recognition and generalization
results for the 1-frame Full Motor Theory and Classifier networks trained by both
smoothed and unsmoothed data is shown in Table 5.24. Obviously both number
of hidden units and the smoothed/unsmoothed data representation are significant
predictors of variance. As Figure 5.24 and Figure 5.25 indicate, for the 1-frame
networks, training with the unsmoothed data results in better training recognition

and generalization. The analysis supports that conclusion.
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Table 5.24: All 1-frame Data Networks - Multiple Regression Analysis

Measure X t-value Probability
Training Hidden 4.51 .0001*
Unsmooth/Smooth 4.22 .0002*
Multi-spkr Hidden 4.22  .0001*
Unsmooth/Smooth 5.25 .0001*
Spkr-indep Hidden 4.72 .0001%*
Unsmooth/Smooth 4.85 .0001*

* significant at p < .02
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A multiple regression analysis of recognition and generalization results for
the 3-frame full Motor Theory and Classifier networks as trained by both smoothed

and unsmoothed data is shown in Table 5.25.

Table 5.25: All 3-frame Data Networks - Multiple Regression Analysis

Measure X t-value Probability
Training Hidden 2.90 .0081*
Unsmooth/Smooth 1.197 .2467
Multi-spkr Hidden 3.88 .0007*
Unsmooth/Smooth 1.09 .2876
Spkr-indep Hidden 5.35 .0001%*
Unsmooth/Smooth 2.60 .0157*

* significant at p < .02

It is clear from this analysis that in the case of 3-frame data there is no
advantage to the network by training with either smoothed or unsmoothed data
except for a slight effect in the case of speaker-independent generalization. This was
depicted in Figure 5.26 where the unsmoothed data resulted in poorer generalization
and in Figure 5.27 where the generalization is approximately equal for both data
types. The results of a multiple regression analysis of all of the networks trained
with both smoothed and unsmoothed data can be seen in Table 5.26. The analysis
shows once again the previously discussed effect of the hidden units on training
recognition and generalization. The significant effect of the input representation for
network training performance and generalization can be clearly seen. What is of
interest here is the fact that the difference between the smoothed and unsmoothed
input data representations is only statistically significant for training recognition.
It is not significant for either multi-speaker or speaker-independent generalization.
One cannot help but wonder if similar results would be exhibited by an analysis of

other research purporting to exhibit the beneficial effect of training networks with
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Table 5.26: All Data Networks - Multiple Regression Analysis

Measure X t-value Probability
Training Input 6.77 .0001*
Hidden 6.32 .0001*
Output 0.51 .6085
Unsmooth/Smooth 4.63 .0001%*
Multi-spkr Input 13.43 .0001*
Hidden 6.42 .0001*
Output 1.62 .1085
Unsmooth/Smooth 2.03 .0454
Spkr-indep Input 13.11 .0001*
Hidden 7.29 .0001*
Output 0.96 .3416
Unsmooth/Smooth 1.58 .1175

* significant at p < .02
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so-called noisy data.

One explanation for the contradictory results exhibited in the 1-frame and
3-frame unsmoothed network performance was offered in Section 5.9.1. That expla-
nation was based upon task and the constraints that tasks can place upon general-
ization exhibited by a network. An alternative explanation can be based upon the
concept of an appropriate representation. On this view, a 3-frame dynamic repre-
sentation is considered to be a more appropriate representation for vowel perception
than is a 1-frame representation. For smoothed data, the 3-frame representation re-
sults in better training recognition and better generalization than does the 1-frame
representation. Similar results have been exhibited in the case of the 1-frame to 3-
frame unsmoothed data representation comparison. Comparing the smoothed to the
unsmoothed data representation, however, the 1-frame unsmoothed representation
results in better performance than does the 1-frame smoothed representation while
the 3-frame unsmoothed representation results in somewhat poorer performance than
the 3-frame smoothed representation in the case of the Full Motor Theory network
and, at best, equivalent performance in the case of the Classifier network.

Sietsma and Dow [33] indicated that the addition of pattern noise to train-
ing patterns resulted in better performance in networks trained with such patterns.
In the smoothed data representations, the noise present in the original input has
been blurred. In the unsmoothed data representations this is not the case. In con-
trast to being trained with smoothed representations, networks trained with 1-frame
unsmoothed data may be responding in a fashion similar to networks which have
been trained with patterns having added pattern noise. If the 1-frame representa-
tion is an inappropriate representation then the retention of this unblurred noise in
the data may have an effect similar to the addition of pattern noise to a training
pattern. This does not imply that the 1-frame unsmoothed data is a more appropri-

ate representation than the 1-frame smoothed data representation. Rather, it would
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seem to have implications with respect to how networks are currently trained. After
all, why should training a network with the addition of pattern noise help the net-
work to learn better? This is certainly a question worthy of future research. Until
it 1s answered, it is inappropriate to conclude that the 1-frame unsmoothed data
representation is a more appropriate representation than the 1-frame smoothed data
representation. In light of existing theories of vowel perception and our knowledge
of how the the human auditory system seeks similarities rather than dissimilarities
in data an unsmoothed representation seems inappropriate.

For the 3-frame representation, the retention of the original signal noise in
the unsmoothed representation may, in fact, serve to make it more difficult for the
network to discern transition information. Again, in light of our knowledge of how
the human auditory system seeks similarities rather than dissimilarities in data, this
would seem to be true. From the experimental results, it is clear that the 3-frame
unsmoothed representation hinders the network in learning to generalize. In the Full
Motor Theory network, where additional constraints are placed upon the network by
the multiple tasks, the combination of additional constraints plus the retained noise
in the data representation might make it more difficult for the network to learn the
required tasks and to generalize well.

5.9.3 Data representation: target representation. Recall that
the reference auditory spectral target patterns to which input patterns were mapped
were selected at random from tokens spoken by a randomly selected reference speaker
(Section 3.7). Random selection could potentially stress the mapping function the
network is required to learn because the speaker might be unrepresentative of the
population. This would hinder the ability of the network to learn the training set and
to generalize to previously unseen data. I wanted to know how this selection of au-
ditory reference patterns might affect the generalization capabilities of the network.

While I could simply train a network to a second reference speaker and compare the
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results, a more appropriate way to test this effect would be to train a network twice,
once using the randomly selected spectral patterns and a second time using target
patterns which reflect the spectral properties of all of the speakers in the training set.
This was done by computing vowel centroid patterns. These are patterns in which
the intensity repesentation at each frequency point is the average across all of the
intensity values at that point for all examples of that vowel spoken by all speakers
in the training set.

Figure 5.28 compares the mean training performance and generalization
for a 1-frame network trained with reference speaker target patterns with the mean
training performance and generalization for a 1-frame network trained with centroid
target patterns. Training performance is virtually the same in both instances. The
multi-speaker generalization of the network trained using centroid patterns (65%)
1s obviously superior to that of the network trained using randomly selected refer-
ence patterns (59%). The speaker independent generalization is also improved (56%
versus 52%).

The impact of training to a centroid target disappears in the case of a 3-
frame network. Figure 5.29 compares the training performance and generalization
for a 3-frame network trained with vowel centroid target patterns with a 3-frame
network trained with reference target patterns. Here, both training recognition and
generalization results are essentially the same.

Obviously, shifting from a randomly selected reference speaker to a centroid
target has an effect on the ability of the network to learn a training set and to
generalize in networks trained with l-frame input data. In the case of networks
trained with 3-frame input data the potential advantage appears to have already
accrued to the network through the use of the larger input representation. No
further advantage is gained by using the centroid representation. It is clear that

some, but not all, of the information provided the network by the 3-frame input
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information can also be provided to the network by means of an appropriately chosen
target representation, in this case the centroid vowel patterns. Choice of target
representation can make a difference!

5.9.4 Data representation: conclusions. Comparing the perfor-
mance between the networks trained with 1-frame and 3-frame smoothed data indi-
cates that the 3-frame data representation, felt to be more appropriate by students
of vowel perception theory, is also more appropriate for the training of the four net-
work models used in this research. Using the 3-frame smoothed data representation
for training the networks clearly results in networks exhibiting better generalization
than does the 1-frame smoothed data representation. In the case of the unsmoothed
data representations, similar results are seen for the Classifier networks. The appar-
ently nonconforming behavior evidenced in the case of Full Motor Theory networks
trained with the unsmoothed data has already been discussed above. In a network
such as the Full Motor Theory network, where there are additional constraints placed
upon the network by the added tasks, the combination of additional constraints plus
the retained noise in the representation may, in fact, make it more difficult for the
network to discern the transitional information and learn the required tasks and,
thus, generalize well.

While using a centroid target rather than a randomly selected reference
speaker target makes no difference in performance for 3-frame representations, it does
result in better performance for the less appropriate 1-frame input representation.
The choice of target representation can make a difference

Finally, with the exception of the somewhat unclear evidence surrounding
the interaction between training, pattern noise, and network task, in the case of un-
smoothed vowel data representations, the hypothesis, which states that training with
appropriate, even though larger, representations will help the network to generalize

better must be deemed valid.



CHAPTER 6
CONCLUSIONS

My research has been an investigation of this complex question: how do
the architecture of the network, the task which the network must learn, the training
of the network, and the data representation used in that training, both individually
and collectively, affect the ability of a network to learn the training data and to
generalize well to previously-unseen data. Utilizing a standard classifier model for
speech recognition and three multi-task connectionist models whose tasks are derived
from the Motor Theory of speech perception to classify 12 American English vowels,
I explored thié question in depth.

The experimental results regarding the relationship between the architec-
ture of the network and the generalization exhibited by a network were discussed in
Section 5.6. Each of the network models, when trained with a fixed size training set,
exhibited comparative levels of performance and generalization across a broad range
of hidden units. Networks having fewer hidden units did not generalize as well as
networks having more hidden units, even though the increase in number of hidden
units implied a concomitant increase in total network capacity. For networks having
exactly the same training recognition, better generalization was generally exhibited
by those networks which had more hidden units. This was true for networks trained
with each of the four representations used in this research (1-frame, 3-frame, both
smoothed and unsmoothed). These results concerning network architecture contra-
dict the overfitting guideline, which states if a network can learn a problem, then the
fewer the number of free parameters in the network the better the network is likely

to generalize. The dataset-size guideline which states the larger the number of free
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parameters in a network the more data needed to train it also does not apply.

With respect to the relationship between the task required of a network
and the generalization exhibited by that network I showed in Section 5.7 that all
four network models, having from one to three tasks and trained with the same input
representation, proved to be a family of networks whose primary predictor of per-
formance variance was the number of hidden units in the networks. Increasing the
number of hidden units resulted in a significant increase in training recognition and
generalization. This family relationship held true across all four of the representa-
tions used in this investigation. The tasks required of the networks, and the differing
input and output architectures and concomitant changes in network capacity result-
ing from those tasks, did not affect the performance and generalizatioh exhibited by
the networks. The hypothesis that adding additional tasks should cause a change in
generalization was specifically rejected by these results.

A possible objection can be made to this conclusion in the case of the 1-
frame networks trained with vowel centroid data. It should be noted that this is
not an instance where additioknal tasks were required of the network. There is no
change in network capacity; rather there is a change in the output representation
of a particular task. The improved performance in this case is more appropriately
ascribed to a change in the information content of the data representation than to a
change in the network task.

The question remains as to why these additional task constraints did not
help the network to develop better internal representations and thus to generalize
better. One possible answer is that the Motor Theory of speech perception is in-
correct. This explanation would certainly serve to explain why the additional task
constraints did not help the full Motor Theory model develop better internal rep-
resentations and thus to generalize better than the other network models. What

it does not explain is why all of the network models were able to develop internal
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representations which resulted in essentially similar training performance and gen-
eralization. As a consequence, it is my firm opinion that a rejection of the Motor
Theory of speech perception on the basis of this research would be inappropriate.
An alternative explanation might be that the Motor Theory model was
implemented incorrectly. Some support for this explanation can be gained by noting
that both the auditory association task and the articulatory association task can be
described as classification tasks. In fact, classification measures were developed and
used for these tasks as well as for the specific phonemic classification task included
in the model. The phonemic classification task mapped a real-value distributed
input representation to a binary localist phonemic output. The auditory association
task mapped this same input to a similar output. The articulatory association task
mapped this same input to a binary, distributed articulatory output. All the network
knows is what it can derive from the presented information. The output is trained
with twelve sets of information in which the same phonemic feature occurs with the
same auditory and articulatory representation. I sought to develop better internal
representations by forcing a network to identify commonalities from the auditory
signals. This was done by mapping all instances of a particular vowel to a reference
instance for that vowel. It may have been better to auto-associate the auditory input.
Such an approach would have mapped the 700 training inputs to 700 training outputs
in which there were commonalities across the phonemic and articulatory subtasks
but differences in the auditory subtask. I will take up this question regarding task
constraints and generalization once again, after I present my conclusions regarﬁing
the relationship between data representation and network generalization, below.
The experimental results regarding the relationship between the training of
the network and the generalization exhibited by a network were discussed in Section
5.8. I described the impact of learning rate in back-propagation training. I also

compared back-propagation training with conjugate gradient training. Reducing the
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number of training examples for a less appropriate 1-frame training set does not have
a significant effect on the performance and generalization exhibited by the networks.
On the other hand, reducing the number of training examples for a more appropriate
3-frame training set significant reduces the performance and generalization exhibited
by the networks. I also showed a divergence in performance measures: even though
the training error rate reaches a minimum and remains relatively stable does rot
mean that the network has reached the maximum level of generalization. Improve-
ment in network generalization can continue as the network reorganizes the mean
square error across the output units. Most significantly, I verified the necessity for
tracking generalization directly rather than observing training error rate or training
recognition.

In Section 5.9 I showed that training networks with the 3-frame smoothed
representation resulted in better performance and generalization than exhibited by
either the 1-frame smoothed data representation or the unsmoothed data represen-
tations. The use of speech noise and of a centroid target representation to enhance
the performance and generalization exhibited by the less appropriate 1-frame data
representation was also discussed. From this I conclude that choice of target pattern
representation can make a difference in the generalization exhibited by a network.

The answer to why additional task constraints did not help the networks
to generalize better can be found in the area of data representation. The Motor
Theory model of speech perception proposes that speech perception is mediated by
the neuromotor commands of articulation. As was pointed out in Section 3.6.2 it is
extremely difficult to determine the articulatory parameters used in the production
of a particular instance of a given speech sound. Accordingly, the approach used to
represent those parameters in the current research consisted of specifying a unique
abstract representation for each vowel as it might have been spoken. Perhaps a

better approach, at least for purposes of multi-speaker training and generalization
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testing, would have been to specify a particular representation for each vowel as
it was spoken in all contexts by each speaker. It is not clear what implications
such an approach might have had for speaker-independent generalization since there
| is no way that the networks could have guessed the unique abstract articulatory
representations that would have been assigned to speakers that it had not previously
encountered. An alternative might have been to provide a set of articulatory features
in which some aspects unique to each speaker and some aspects which reflected
commonalities appropriate to each spoken vowel were combined. Such an approach
would have provided both the full Motor Theory network model and the Mimic
network model with additional information which might have resulted in improved
performance and generalization exhibited by each of these network models.

In research, as well as in life, hindsight is often better than forsight. At
the beginning of this project all previous experience and research seemed to indicate
that the most significant effect on network generalization would be that provided
by constraints resulting from the specification of the network tasks. At the end‘
of this project, after having explored the relationship between network task and
generalization using networks trained with four different data representations, it
is clear that this is simply not the case. Decisions regarding data representations
obtain an even greater significance than they were originally given. In preparing the
data representations, considerable emphasis was placed upon developing as good an
auditory representation as possible. As was discussed, the impossibility of obtaining
a set of accurate articulatory features led to a decision to represent them with a
set of unique abstract features. At the conclusion of this project, however, it is my
considered opinion that the articulatory data representations used in training the full
Motor Theory network provided insufficient information to the network. The network
was unable to take advantage of the added articulatory task constraint. With the

use of the auto-associative auditory task and the further enhanced articulatory data
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representations perhaps the results of future research will be different; networks
trained with such enhanced representations might exhibit clear differences based
upon the tasks required of the networks.

It is clear from this investigation of the relationship between network archi-
tecture, network task, network training, training data representation and the gen-
eralization exhibited by a network that given an appropriate architecture, training
algorithm, and sufficient training data, the data representation itself is the primary

determiner of a network’s ability to generalize well to new data.
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APPENDIX A
OTHER MODELS OF SPEECH PERCEPTION

A.1 Perception-only models

Perception-only models assume that ordinary auditory processes are suf-
ficient to explain the perception of speech sounds. In feature detector theory, the
first of these models, the search for auditory feature detectors was motivated by
the existence of specialized visual feature detectors [8]; the existence of analogous
specialized auditory feature detectors was assumed. It is further assumed that the
feature detection process is neither learned nor modifiable; rather, it is innate. The
feature detection process utilizes specialized auditory receptors to analyze the acous-
tic signal into a set of independent acoustic features. These acoustic features are then
passed to a higher level processor which compares and evaluates them with respect
to known features that define perceptual units in long-term memory. The results of
this process, the input acoustic features and potential matching prototypes, are then
passed on to a higher level processor for further evaluation [29].

Feature detector theory finesses the noninvariance problem by assigning
its resolution to higher level processors[8]. Feature detector theory explains cate-
gorical perception by permitting detector outputs to vary according to differences
in within-category stimuli and assigning higher order processing elements the role
of quantizing, and thus categorizing, those feature detector outputs [7, 8]. Feature
detector theory does not attempt to explain how the higher level processes obtain
their knowledge of known perceptual features nor how these perceptual features are
then related to higher level symbolic concepts. From a systems viewpoint, feature

detector theory provides only a partial explanation of the speech perception process.
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Blumstein and Stevens propose a perception-only model in which an invari-
ant acoustic property can be found for each feature. The properties correspond to
phonetic dimensions of the speech sounds used in language. On their view, the in-
ventory of possible speech sounds is constrained by both the articulatory mechanism
and the perceptual mechanism [34]. The implication is that these invariant acoustic
properties can be derived directly from the input signal by means of unique property
detectors with which the auditory system is equipped [3].

In contrast to feature detector theory, Blumstein and Stevens’ approach
has the advantage that it acknowledges the existence of constraints imposed by
the physical articulatory and auditory mechanisms involved in the perception and
production of speech. Their model does not utilize these constraints in the perception
process nor does it provide an explanation of the process by which knowledge of
acoustic features is acquired or the process by which they are related to conscious
language percepts.

Property integration theory [4] rejects the hierarchical processing approach"
used in feature detector theory. Instead it posits a central decision unit which utilizes
information about selected acoustic events, passed to it via the peripheral property
detectors, to make a decision regarding the identification of the input signal. Prop-
erty integration theory is based upon alearning theory in which language is acquired
through experience with words.

Property integration theory has a distinct advantage over feature detector
theory in that it provides an explanation as to how knowledge of the pertinent
properties is acquired and utilized in the speech perception process. Unlike Blumstein
and Stevens, however, it does not seek to incorporate constraints on speech sounds
imposed by the physical articulatory and auditory mechanisms into the decision

process.

I'now turn to an examination of one of the models in which the perception
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of speech sounds is assumed to be fundamentally and inextricably tied together with

the production of speech.

A.2 Perception-production models

In analysis by synthesis, the production and perception of speech are con-
ceived of as a single system. Here the perception of speech involves an internal
synthesis of patterns generated by the same phonological rules used by the pro-
duction system. The input pattern is iteratively matched against the synthesized
patterns until an appropriate match is found [35]. On this view, the noninvariance
problem is accomodated by means of an i‘te;ative matching process.

Analysis by synthesis is obviously a computationally-intensive model of
speech perception. The time required to find and synthesize an appropriate match
for a speech utterance should be virtually immediate if the analysis-by-synthesis
model is to correspond to human speech perception capabilities (approximately 50
phonemes/second [4]). We know, however, that the human brain is only capable of °
sequentially executing approximately 100 instructions/second [23]. Assuming that
more than two instructions would be involved in iteratively synthesizing and match-
ing patterns, the human brain does not appear to be fast enough to meet the com-
putational demands of the analysis-by-synthesis model.

The other main perception-production model of speech perception is Liber-
man and Mattingly’s Motor Theory of perception. This model is discussed in detail

in Chapter 2.



APPENDIX B
HUMAN AUDITORY SYSTEM

An extensive body of literature is available describing the neurophysiology
and psychoacoustic characteristics of the human auditory system, [24, 32, 38, 39]. In
the discussion that follows I will present a brief review of the auditory periphery and
cortex and what is known about its functionality. I then turn to the more specific
problem of how human speech sounds are represented in the neural output of the
auditory periphery. The auditory nerve is the main pathway by which speech input
reaches the higher processing centers of the brain.

Sound is funneled into the ear via the pinna and the external auditory
meatus or ear canal (Figure B.1). The sound wave strikes the tympanic membrane’,
and its movement in turn causes the three small ossicles of the middle ear, the
malleus, incus, and stapes to move. The stapes is attached to the oval window of the
cochlea and movement of the stapes causes displacement of the fluid within the upper
chamber, the scala vestibuli. There is an opening, the helicotrema, at the apical end
of the cochlear spiral between the scala vestibuli and the lower chamber, the scala
tympani, which serves to equalize the fluid displacement between the two chambers.
Since the net volume of fluid within the cochlea must remain constant, there is an
equal amount of fluid displaced at the round window, the membrane opening between
the scala tympani and the middle ear. The two canals are otherwise separated by
two membranes, Reissner’s membrane and the basilar membrane, which together
form the cochlear duct. This duct is closed at the helicotrema. Lying on the basilar
membrane is the organ of Corti within wh;’ch the auditory receptors, the hair cells,

are found.
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There are three rows of outer hair cells which lie close to the cochlear wall
and one row of inner hair cells. The wave which results from the displacement of the
fluid within the cochlea moves along the cochlear spiral and the basilar membrane
moves in response to that wave. The tips of the stereocilia projecting from the
hair cells on the basilar membrane interact with the tectorial membrane, which lies
directly above them and between the basilar membrane and Reissner’s membrane.
Present understanding of the reception process indicates that the shearing deflection
of the stereocilia by the tectorial membrane causes electrochemical changes in the
receptor cells and resulting stimulation of the associated auditory nerve fibers. The
tapered shape of the basilar membrane together with its variant stiffness causes it to
respond differentially and in a nonlinear fashion to the fluid displacement for different
frequencies of sound, with maximal sensitivity to high frequencies at the base and
maximal sensitivity to low frequencies at the apex [25, 30]. The response functions
of the basilar membrane also vary with sound pressure level with broader responses
being seen at high-amplitude levels [11]. For the basilar membrane nonlinea.rity"
occurs at sound pressure levels in the normal speech range.

From the above discussion, it can be seen that the sound transduction
process is both mechanical and electrical in nature. What is of interest to my research
from the above discussion are the following observations: the auditory parameters
operate within a system whose task is the perception of sound; this auditory unit,
which is physically constrained (e.g. by fluid displacement requirements and by
basilar membrane shape and variant stiffness) exhibits tonotopic organization of
the basilar membrane and a nonlinear response to different sound frequencies and
intensities.

While little is understood about how auditory processing of speech sounds is

accomplished at the higher auditory levels there is some knowledge which is pertinent

to my research. For more than three decades research on the auditory processing
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capabilities of a listener at the single neuron level has been carried out. Results
indicate that the response patterns of neurons in the AI (Auditory cortical field I)
region are frequency and intensity sensitive with the characteristic frequency of the
neuron related to the place of resonance along the cochlear partition to which it
is ultimately connected [5, 9]. There appear to be quantitative differences in the
selectivities for human speech sounds in different auditory cortical areas and the
cortical auditory system is highly segregated cochleotopically [5]. It is suggested
that the function of sensory cortex is the detection of similarities among stimuli, not

the detection of differences [41].






