Imminent Garbage Collection
John Shultis

CU-CS-305-85

/

——
Lfi‘%ﬂUniversity of Colorado at Boulder
~ DEPARTMENT OF COMPUTER SCIENCE




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
‘ ACKNOWLEDGMENTS SECTION.






IMMINENT GARBAGE COLLECTION
by

Jon Shultis

CU-CS-305-85 July, 1985

University of Colorado, Department of Computer
Boulder, Colorado.

Science,






Imminent Garbage Collection

Jon Shultss
Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract

Imminent garbage collection is a new dynamic storage optimization technique.
Imminent garbage is storage which has been allocated and is accessible, but for which
it can be determined that no future access will be made. We present an efficient algo-
rithm for detecting and reclaiming imminent garbage using a constant amount of
storage overhead per allocated storage structure.






Imminent Garbage Collection
Jon Shultis
Department of Computer Science

University of Colorado
Boulder, CO 80309

Garbage 1s storage which has been allocated during the execution of>a. program
but which is no longer accessible [3]. /mminent garbage is storage which has been
allocated and is accessible, but which will no longer be accessed. A common source
of imminent garbage is the sequence of activation records of a tail-recursive pro-

cedure up to, but not including, the most recent activation.

Imminent garbage collection is the process of detecting imminent garbage and
making it available for re-use. Although the creation of imminent garbage can
sometimes be avoided by static program transformation (for example, by
transforming tail recursion to iteration [1]), this is not always possible, because the
point at which a block of dynamically allocated storage is no longer needed
depends on its dynamic context. Hence imminent garbage collection makes it pos-
sible for some programs to complete which would otherwise be terminated for lack

of storage.

As a simple example, consider the (somewhat artificial) recursive search pro-

cedure below.

function search{node)
begin
if nodet.key < target then return search(noder.left) + 1
elsif nodet.key = target then return nodet.data
else return search(nodet.right)
end if;
end search;

When nodet.key > target, the current activation of search makes a "tail recursive”
call, after which the current activation is no longer needed - it is imminent gar-

bage.



Programs that use large numbers of small procedures generally produce more
imminent garbage than those with a few large procedures, because of the smaller
granularity of allocated storage; it is simply more probable that one or two items

can be discarded at any time than that a large number can.

For example, suppose that, in the procedure search, the expression
search(nodet.left)+1 were replaced by succ{search(nodet.left)). As soon as succ is
entered, the invoking activation of search becomes imminent garbage, whereas in
the original program the incrementing of search(nodet.left) was performed in-line,
requiring the original activation of search to be retained. Although no real benefit
is realized in this case, one need only imagine in place of search a procedure having
many parameters and local storage amounting to several hundred bytes to see the
advantage of retaining the activation record for plus instead of that for search.
Programs that make heavy use of recursion and higher-order functions are espe-

cially good generators of imminent garbage.

We describe an algorithm for imminent garbage collection in statically scoped
languages. For purposes of discussion, we assume that programs are compiled, and
that all non-local branches (including jumps into and out of blocks, label variables,
procedure values, and procedure returns) are represented by explicit closures con-
sisting of an instruction pointer (ip) and an environment pointer (ep). Since we do
not wish to limit our discussion unnecessarily, we assume that activation records
are allocated in a heap, with an explicit free storage list. Our algorithm is easily
adjusted for use with a stack by adding a compaction stage to close up the gaps in

the stack created by the release of imminent garbage.

With these assumptions, the unit of storage allocation is the activation

record; we do not consider individual variables. Hence the problem of detecting



imminent garbage is, for us, the problem of detecting entire activation records that

are no longer needed.

Incidentally, if the language allows the programmer to manipulate explicit
references to objects in an auxiliary heap, the management of that heap is
irrelevant to our discussion. When we recycle an activation record, explicit refer-
ences simply become inaccessible sooner than they would have otherwise. In this
case, imminent garbage collection simply has the nice side effect of making explicit
heap storage available for (independent) reclamation early, in addition to freeing

implicit (activation record) storage.

There are two main steps in the detection of imminent garbage. The first step
is to determine when an activation record is in a state of imminent return. Intui-
tively, we need to know when all future execution in the environment defined by an
activation record leads to exiting that environment without referencing any vari-
ables (local or global). The second step is to determine when an activation record
is obscured. Intuitively, an activation record is obscured if its storage will never be
accessed from any other activation. Taken together, imminent return and obscu-

rity define imminent garbage.

1. Imminent Return

In order to define the notion of "imminent return” formally, we need two sub-

sidiary definitions.

Let C be the set of all extant closures <ip,ep>. The set R of resumptions
of an activation record o is the set of instruction pointers corresponding to the
continuation points of procedures executing in the environment defined by a. For-

mally,



r 4 {ip | <ip,a>€C} U {pc| arbase=al},

a

where pc is the current value of the program counter, and arbase is the current
activation record base register. Notice that, in order to compute R_, we must be
able to compute C, which is generally infeasible if the language allows the pro-
grammer to store closures in untagged unions. Similarly, it may not be possible to
identify references as such if an address operation is provided, or if references can
be converted to other data types, as in C. For such languages, imminent garbage

collection is not possible.

Given an instruction pointer :p, we define nso(ip) to be the nezt substantive
operation starting from ¢p. Basically, nso(ip) is found by following any uncondi-

tional branches, ignoring skip instructions, and so forth.

With these definitions, an activation record « is in a state of tmminent return
if
{op | op = nsol(ip) A ip€R_} = {return_from_subroutine}
In other words, the only significant action that can ever be taken in « at any

future time is to return to a caller.

2. Obscurity

[f an activation record « is in a state of imminent return, then no resumption
of a depends on a. If we can determine that no resumption of any other activation
record will ever access a as global data, then « is effectively waiting around for the
control thread to sever it from the rest of the heap; it is imminent garbage. An
activation record that will never be accessed globally is said to be obscured. In

order to define obscurity formally we again need some auxiliary definitions.

The globals of a, denoted by G_, is the set of activation records which are

accessible from a via the static chain. Formally, let s{(a) denote the static link of



a. Then, given that a’s static level is k=0,

G, & {ol'(a) | 15isk}

a

where s/’ denotes the i-fold composition of sl with itself.

G, tells us which activation records are accessible from «; we want to know,
however, from which activation records a given activation record is accessible. To
do this, we simply invert G to get £, the entourage of @. Formally,

E, 2 (B |atGy)

E, specifies the set of activation records from which a could in principle be
accessed. This set, ordered by static level, forms a lower semilattice with a as
least element. In particular, note that there may be several activation records at

relative static level jin a’s entourage.

We get a crude measure of obscurity if we equate "could be accessed” with
"could be accessed in principle™ « is obscure if all of its entourage is in a state of

imminent return. A more general definition of this concept follows.

For each procedure in a program, we can determine statically a point after
which we can guarantee that no further references will be made to global variables
at relative static levels =7; call this the set of j-points of the procedure. A crude
determination of the j-points is to use the end of the procedure for all 7, as we did

above. A more refined determination can be made by live variable analysis [2].

The table of j~points must be computed at compile-time, and retained for use
by the imminent garbage collector at run-time. For a program consisting of p pro-
cedures with a maximum static nesting level of n, the j~-point table requires O(pn)

storage, which is tolerable overhead.

Multiple procedure exits do not pose a serious problem. In place of a single

point for each ; we have a set of points, one for each exit. For each exit, the



corresponding j-point marks the beginning of a basic block ending at that exit.
The interval between the beginning of this block and the corresponding exit is
called a j-block. In what follows, we then say that an instruction pointer ip is past
its j-point if it lies within some j-block.

Define the j-circle of @ to be that subset of its entourage for which a is at
relative static level ;. We can guarantee that o will not be referenced from its
entourage if the next substantive operations of all resumptions of all members of
a’s j-circle are either subroutine returns or are past the j-point of the procedure.

When this occurs, we say that « is obscured.

Finally, we define a to be imminent garbage if it is obscured and in a state of
imminent return. Obscurity guarantees that the local storage of a is not needed
by any resumption of any other activation record. It also guarantees that a’s
static link is no longer needed; that is why we include all levels = in determining
the j-points. a's imminent return guarantees that no resumption of o itself
requires either the local storage of a, or its static link. The only part of « that

remains is its return closure (that is, the return address and dynamic link).

If « is in a state of imminent return, then all resumptions fa of a have the
effect of setting the program counter to ra and activation base to a, executing some
instructions that have no effect on the outcome of the program, and then setting pc
and arbase to the values in «’s return closure. So, all we need to do to eliminate
the remaining dependence on a is to replace each closure containing a resumption

of @ by «'s return closure!

3. A Practical Algorithm

Since we are interested in collecting imminent garbage when available storage

is exhausted, a practical algorithm should require either no additional storage. a



fixed amount of storage, or a fixed amount of storage per activation record. The
algorithm we present here uses three bits plus two small natural numbers in each
activation record, one bit plus two small natural numbers in each object allocated
in the explicit heap, if one exists, and a fixed table of size O(pn + t), where p is the
number of procedures in the program, n is the maximum nesting level, and ¢ is the
number of data types for which explicit heap storage is required. The algorithm
detects imminent garbage in one traversal of the heap, and recycles it in a second
traversal. During the recycle pass the heap is prepared for the next detection pass,
so there is no explicit initialization pass. The detection pass takes O(inc + ec)
time, where ¢ is the number of activation records (objects in the implicit heap), eis
the number of objects in the explicit heap, and ¢ is the average number of closures
stored in an object. The recycle pass takes O(i+e) time. If we discount ¢ und nas
being fixed small numbers for any given program, the overall time performance is

O(ri+¢e), i.e. linear in the number of allocated objects.

At compile time, we construct a table of templates, one for each procedure and
one for each type of object for which explicit heap storage is required. A template
is simply the collection of data needed to navigate through an activation record or
other program object to find closures and references to other objects that may con-
tain closures.

Procedure templates also include a vector of j-points for that procedure,
indexed by relative static level starting at 0. So, for example, any resumption of a
procedure at an address greater than or equal to the third entry in the procedure’s
J-point vector is guaranteed to reference global variables at a relative static level of
at most three. Since the details of templates depend heavily on the specific pro-

gramming language, we do not describe them further here.



An ‘mminent return indicator bit, an obscured bit, and a processed bit are
included in each activation record to guide the traversal. The number of the
corresponding template is also stored in each activation record, along with the
current processing position in the template. The processed bit, template number,

and position are also kept in each explicit heap object.

Assume that all indicator bits are initially set. The imminent return indicator
of an activation record is cleared if a resumption of that record is found for which
the next substantive operation is not a return_from_subroutine (figz. 1). The
obscured bit of an activation record is cleared if some resumptioﬁ may make refer-

ences to global variables in that activation record (fig. 2).

An adaptation of the Schorr-Waite algorithm [4] is used for traversing the
heap (fig. 3). The traversal requires three auxiliary pointer variables, named
current, parent, and femp. The variable current points to the structure being pro-

cessed, and parent refers to the structure where processing should be resumed after

procedure imminent_return(ip.ep);

begin

if {nso{ip) # return_from_subroutine) then
clear{eptimminent_return_indicator);

end imminent_return;

figure 1

procedure obscured(ip,ep);
var no_levels_needed:0..n;
begin
no_levels_needed := min { k |ip=templates[ept.templateno].j_points[k] };
while no_Jevels_needed >0 loop
ep := eptstatic_Jink;
clearfept.obscured);
no_levels_needed := no_levels_nceded - L:
end loop:
end obscured;

ficure 2



current := make_root(pc,arbase);
parent := nil;
currentt.position := 1;

detect: loop
(ip,ep) := closure_at(base = > current,
offset = > templates[currentt.template_no].closures[currentt.position]);
if nil_closure(ip,ep) then -- resume processing parent
exit when parent=nil; -- end of detection pass
(ip.ep) := closure_at(base = > parent,
offset = > templates[parentt.template_no].closures[parentt.position]);
cycle_up;
increment currentt.position;
else
imminent_return(ip,ep);
obscured({ip,ep});
if ept.processed is set then
clear{ept.processed);
cycle_down;

currentt.position := 1;
else
incremeunt currentt.position;
end if;
end if;

end loop detect;

figure 3
the processing of current is complete. The position in the parent structure’s tem-
plate where processing should resume is represented by a small natural number

(essentially an offset in the template), and is stored in parentt.position.

Fach closure <ip,ep> in currentt is examined in turn, using the offsets listed
in  templates[currentt.template_no] as a guide. (mminent_return{ip,ep) and
obscure(ip,ep) are computed, and then ept's processed bit is checked. If it is ser. it
is cleared and the structure at ep is processed, otherwise processing proceeds to the

next closure by incrementing currentt.position.

To begin processing ep, ep is replaced by parent, parent is replaced by current,
and current is replaced by ep, using femp as an intermediary in the exchange (fig.

4a). When the processing of currentis complete, the original configuration of these



10

pointers is recovered by cycle_up (fig. 4b). After the parent has been thus restored
as the current structure, processing proceeds to the next closure by incrementing
currentt.position. The processing of references to structures in the explicit heap is
essentially the same, treating the reference as though it were the environment

pointer of a closure.

When the detection traversal is complete, all structures involved in the
traversal have had their processed bits cleared. Any activation record having a set
immanent_return_gndicator or obscured bit is, in fact, in a state of imminent return
or obscured, respectively, since no evidence to the contrary was‘ unearthed during
the traversal.

Imminent garbage is moved to the free list during the collection traversal (fig.
5). Those activation records for which both the imminent_return_indicator and
obscured bits are set are linked onto the free list, using the static link field (since

their return closures must be preserved until the end of the traversal). Each clo-

procedure cycle_down;

begin

temp := current,
current 1= ep;
ep := parent;
parent := temp

ead; -- cycle_down

figure 4a

procedure cycle_up;

begin

temp := parent;
parent := ep,;
ep := current;
current := temp
end; -- cycle_up

figure 4b



sure <ip.ep> such that both ept.imminent_return_sndicator and ept.obscured are

set 1s replaced by ept.return_closure.

The processed bits, which were cleared during detection, are reset during col-
lection. so that they are all set at the beginning of each cycle. However, if the
fmminent_return_indicator and obscured bits are reset during collection, then some
activation records will be mistaken for imminent garbage. Instead, these bits are
cleared unless they are both set (i.e., they ure left intact for imminent garbage, and
cleared otherwise). The subsequent cycle must then reverse the sense of these bits.
The modifications needed to make imminent_return and ObJCi;fcd set and clear

currentt.position := 1;
collect: loop
(ip,ep) := closure_at(base = > current,
offset = > templates[currentt.template_no].closures[currentt.position]);
if nil_closure(ip,ep) then -- resume collecting parent
exit collect when parent = nil; -- end collect pass
(ip,ep) := closure_at(base = > parent,
offset = > templates[parentt.template_no].closures[parent?.position]);
cycle_up;
increment currentt.position;
elsif eptimminent_return_jindicator is set
A eptobscured is set then -- eptis imminent garbage
if ept.processed is cleared then -- first encounter
link_to_freelist{ep);
set(ept.processed);
end if;
closure_nt(base = > current,
offset = > templates{currentt.template_no|.closures[current.position]) :=
return_closure(ept);
elsif ept.processed is set then
increment currentt.position;
else
cycle_down;
set{currentt.processed);
clear(currentt.imminent_return_jndicator);
clear(currentt.obscured);
currentt.position := 1;
end if;
end loop collect;

figure 5



12

these bits on alternate cycles are straightforward exercises.

4. A Better Algorithm

There is a major flaw in the algorithm presented above. The closures con-
tained in imminent garbage have been allowed to affect the decision about whether
or not other structures are obscured, when in fact those closures will never be used.
A second collection cycle may well discover more imminent garbage, and a third
still more. etc. Eventually, of course, things must stabilize, but we would prefer to

find as much imminent garbage as possible in a single cycle.

As it happens, the flaw originates in our original definition of R, the resump-
tions of a, which considered all closures having « as environment pointer. If we
want to detect as much imminent garbage as possible, then we must limit con-
sideration to those closures that are not contained either in imminent garbage, or
in explicit heap structures that are accessible only through imminent garbage. Of
course, restricting the set of resumptions to just these valid resumptions makes the
entire set of definitions recursive. The ultimate affect on our algorithm would be

to have it make repeated traversals to achieve a fixed point!

There is, however, a better solution. Recall that, during collection, the return
closures of imminent garbage replace the closures that refer to that imminent gar-
bage. When processing a closure <ip,ep> in the detection pass, if ept appears to
be imminent garbage, then we (effectively) replace <ip,ep> by ept.return_closure,
anticipating the replacement that will occur if ept does turn out to be imminent

garbage.

[n practice, no actual replacement is done. Instead, we arrange the templates
so that the return closure field is the next-to-last entry, and the static link is last.

(The reason for putting the static link last will be explained presently.) eptis then



13

processed starting at the return closure field, but its processed bit is not cleared,

since it hasn't been completely processed.

A potential problem with this approach is that the only opportunity in the
algorithm for processing a structure is when a closure referring to that structure is
encountered. If a structure is passed over because it appears to be imminent gar-
bage. but its obscured bit is later cleared, there may be no other closure referring
to that structure, in which case it will never be processed, when it clearly should

be.

To ensure that all structures that must be retained are processed, the activa-
tion record pointed to by the static link of currentt is processed whenever that
activation record’s obscured bit is found to be cleared (fig. 8). This happens
regardless of whether or not that activation record is marked as having been pro-
cessed already, because an invocation of ebscured may mark the static chain lead-
ing from an activation record to a greater depth than was marked when that record
was originally processed. The amount of redundant processing entailed by chasing
static links is reduced by processing only the static link of any record that has been
previously processed. To make it as .easy as possible to process only the static link
field, we assume that this is the last item in the corresponding template, so that
the end of the template is encountered immediately after processing of the static

link is complete.

Because the static link is not a closure, the ip returned by closure_at for this
field is nid. The nil ip signals that the computation of imminent_return and
obscured should be bypassed, and that ept's static link should be processed even if

ept's processed bit is cleared.



14

current := make_root(pc,arbase);
parent := nil;
currentt.position := 1;

detect: loop
(ip,ep) := closure_at(base = > current,
offset = > templutes[currentt.template_no].closures[currentt.position]);
if nil_closure(ip,ep) then -- resume processing parent
exit when parent=nil; -- end of detection pass
(ip,ep) := closure_at(base => parent,
offset = > templates[parentt.template_no].closures[parentt.position]);
cycle_up;
increment currentt.position;
elsif ip=nil then -- processing static link field
if ept.obscured is cleared then -- chase static link
cycle_down;
if currentt.processed is set then
clear(ept.processed);
current t.position := 1;
else
currentt.position := static_link_field; -- last entry in template
end if;
else -- don't chase static link
increment currentt.position;
end if;
else -- processing a closure field
imminent_return(ip,ep);
obscured(ip,ep);
cycle_down;
if currentt.processed is set then
if currentt.imminent_return_indicator is set
A current t.obscured is set then -- looks like garbage to me!
currentt.position := return_closure_field; -- next to last entry in template
else -- process the whole record
clear{currentt.processed);
currentf.position := 1;
end if;
else -- process only the static link field
currentt.position := static_Jink_field;
end if;
end if;
end loop detect;

figure 8
By allowing records to be processed more than once, have we introduced the
possibility of nontermination? No. Only the static links of previously processed

records are comsidered, and these form a lower semilattice, so it is not possible to



15

traverse a cycle in the heap by following these links. In short, our suggestion that
we process only the static links to reduce the amount of redundant processing is a

gross understatement!

The modified detection algorithm requires a small modification to the collec-
tion algorithm, because the processed bits of imminent garbage are never cleared.
All that is required is to clear them when they are first encountered and linked
onto the free list, instead of setting them. In subsequent cycles, the sense of these
bits must then be reversed, as with the obscured and z’mmz'nen.t__return_indicator

bits.

Acknowledgements

I thank Paul Harter for his thoughtful comments on an early draft of this

paper.



16

References

1. J. Darlington and R. M. Burstall, A System Which Automatically Improves
Programs, Acta Informatica 6, (1976), 41-60.

2. M. S. Hecht, Flow Analysis of Computer Programs, North Holland, New York,
1977.

3. D.E. Knuth, Fundamental Algorithms, 2nd Edition, Addison-Wesley, 1973.

4. H. Schorr and W. M. Waite, An Efficient Méchine-independent Procedure for
Garbage Collection in Various List Structures, Comm. ACM 10, 8 (Aug.

1967), 501-5086.



