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tions

Thesis directed by Prof. David M. Bortz

Flocculation is the reversible combination and separation of suspended particles in a �uid. It is a

phenomenon ubiquitous in a wide variety of �elds such as meteorology, marine science, astronomy,

polymer science, and biotechnology. Flocculation is an e�cient liquid-solid separation technique

and has a broad range of industrial applications including fermentation, biofuel production, mineral

processing, and wastewater treatment. A common mathematical model for the microbial �occulation

is a 1D nonlinear partial integro-di�erential equation, which has been used successfully in matching

many �occulation experiments.

In this dissertation, we rigorously investigate the long-term behavior of the microbial �occulation

equations. When the long-term behavior of biological populations is considered, many populations

converge to a stable time-independent state. Towards this end, using results from �xed point the-

ory, we �rst derive conditions for the existence of continuous, non-trivial stationary solutions. We

further apply the principle of linearized stability and semigroup compactness arguments to provide

su�cient conditions for local stability of stationary solutions as well as su�cient conditions for insta-

bility. Consequently, we develop a numerical framework for computing approximations to stationary

solutions of the microbial �occulation equations, which can also be used to produce approximate

existence and stability regions for steady states. Furthermore, this numerical framework can be used

to numerically investigate stationary solutions of general evolution equations. We develop several

e�cient and high-precision numerical schemes based on Finite Di�erence and Spectral Collocation

methods to approximate stationary solutions of the microbial �occulation equations. We exploit

spectral accuracy of the Spectral Collocation method for the numerical spectral analysis, which in

turn allows us to heuristically deduce local stability of numerically computed steady states. We

explore the stationary solutions of the model for various biologically relevant parameters and give

valuable insights for the e�cient removal of suspended particles. Lastly, we investigate the inverse



problem of identifying a conditional probability measure in measure-dependent evolution equations

arising in size-structured population modeling. We illustrate that a particular form of the microbial

�occulation equations is one realization of a system satisfying the hypotheses in our framework.
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Chapter 1

Introduction

Flocculation is the process whereby particles (i.e., �ocs) in suspension reversibly combine and sep-

arate. The process is crucial for mineral processing, biochemical polymerization, sewage treatment,

and for many other industrial processes. Flocculation is one of the most signi�cant solid-liquid sep-

aration techniques used in mineral industry (Laskowski & Ralston, 2015). The technique aims at

recovering valuable minerals from liquid ore slurries and attained by addition of charged polymers

(i.e., �occulants) to improve separation, settling and �ltration rates. Flocculation is also essential

in downstream processing, i.e., recovery and puri�cation, of biosynthetic products from natural

sources in the manufacturing of the pharmaceuticals (Ladisch, 2001). The �rst step in downstream

processing is the removal of insoluble materials from fermentation broth containing pharmaceuti-

cals. Consequently, the feed streams containing large amounts of dispersed particles are clari�ed by

�occulation process (Buyel & Fischer, 2014).

Adhesion properties of microorganisms have also been a focus of extensive biological research

(Enmon et al., 2002; Aceto et al., 2014; Haaber et al., 2012). It has been shown that adhesive

features of cells are crucial for many biological processes such as bio�lm formation (Bottero et al.,

2013), tissue invasion during cancer metastasis (Aceto et al., 2014), sexual reproduction (Chen

& Thorner, 2007) and others. For instance, microbial �occulation is a detrimental condition in

bloodstream infections. Aggregates in the bloodstream provide bacteria with antibiotic resistance

making them di�cult to eradicate (Haaber et al., 2012). Moreover, recent studies demonstrate

that bacterial �oc formation initiates blood coagulation, which in turn causes life-threatening septic

shocks (Borenstein, 2008).

1
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(a) (b)

Figure 1.1: Flocs, compactly aggregated cell communities in suspension a) Microscopy image of
microbial �oc in activated sludge formed from �lamentous bacteria1. b) Computer rendering of
Klebsiella pneumoniae �oc imaged in the Younger and Solomon labs (Bortz et al., 2008).

Many microscopic lifeforms in suspension form highly compact cell communities to promote

survival and proliferation. Figure 1.1 illustrates a microscopy image of microbial �oc formed from

�lamentous bacteria and a computer rendering of Klebsiella pneumoniae �oc imaged in the Younger

and Solomon labs (Bortz et al., 2008). Flocculation of microorganisms has been exploited to improve

various processes in microalgal biofuel production (Salim et al., 2011), brewing (Bauer et al., 2010),

winemaking (Caridi, 2006) and wastewater treatment (Bache & Gregory, 2007). Due to its low

energy consumption and relative simplicity compared to centrifugation and �ltration, �occulation

processes are often used to enhance suspended solids removal in �elds such as water treatment and

industrial fermentation.

Activated sludge �occulation process is a widely used inorganic and organic material removal

method in wastewater treatment. Activated sludge process includes two main items: aeration tank

and settling tank (usually referred to as �secondary clari�er�). In an aeration tank, the sewage

water is injected with oxygen to promote bacterial growth and �oc formation (a typical aeration

tank is depicted Figure 1.2a). Consequently, the sewage water is treated in a secondary clari�er

(see Figure 1.2b for illustration of a typical secondary clari�er) to allow suspended biological �ocs

to settle out of the �nal e�uent. Thorough control of �oc formation is crucial for proper operation

of bioreactors and thus for e�cient removal of suspended particles. It is usually desirable to have

larger and denser �ocs that settle faster under gravitational forces. Therefore, one of the most

1Activated sludge �oc formed from �lamentous bacteria. UNBC Blogs site, 4 April 2014, Retrieved from http:

//blogs.unbc.ca

http://blogs.unbc.ca
http://blogs.unbc.ca
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(a) (b)

Figure 1.2: a) Aeration tank in a wastewater treatment plant2b) Secondary clari�ers in a wastewater
treatment plant3

important designs and control parameters in the �occulation process is the size distribution of the

�ocs in a bioreactor. A popular mathematical model describing the time-evolution of the particle

size distribution in a stirring tank is a 1D nonlinear partial integro-di�erential equation based on

the population-balance equations proposed by van Smoluchowski (1917). The model (also known

as population balance equations in the engineering literature) has been successful in matching many

�occulation experiments (Li et al., 2004; Ducoste, 2002; Spicer & Pratsinis, 1996; Nopens et al.,

2005).

In this dissertation, we rigorously investigate the long-term behavior of the microbial �occulation

equations. When the long-term behavior of biological populations is considered, many populations

converge to a stable time-independent state. Towards this end, using results from �xed point the-

ory, we �rst derive conditions for the existence of continuous, non-trivial stationary solutions. We

further apply the principle of linearized stability and semigroup compactness arguments to provide

su�cient conditions for local stability of stationary solutions as well as su�cient conditions for insta-

bility. Consequently, we develop a numerical framework for computing approximations to stationary

solutions of the microbial �occulation equations, which can also be used to produce approximate

existence and stability regions for steady states. Furthermore, this numerical framework can be used

to numerically investigate stationary solutions of general evolution equations. We develop several

2Aeration tank. Downers Grove Sanitary District, 10 May 2015, Retrieved from https://www.dgsd.org/
3Secondary clari�er in a wastewater treatment plant. IndiaMart, 17 March 2017, Retrieved from https://www.

indiamart.com/global-enviro-care/

https://www.dgsd.org/
https://www.indiamart.com/global-enviro-care/
https://www.indiamart.com/global-enviro-care/
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e�cient and high-precision numerical schemes based on Finite Di�erence and Spectral Collocation

methods to approximate stationary solutions of the microbial �occulation equations. We exploit

spectral accuracy of the Spectral Collocation method for the numerical spectral analysis, which in

turn allows us to heuristically deduce local stability of numerically computed steady states. We

explore the stationary solutions of the model for various biologically relevant parameters and give

valuable insights for the e�cient removal of suspended particles. Lastly, we investigate the inverse

problem of identifying a conditional probability measure in measure-dependent evolution equations

arising in size-structured population modeling. We illustrate that a particular form of the microbial

�occulation equations is one realization of a system satisfying the hypotheses in our framework.

The rest of this chapter is organized as follows. In Section 1.1, we present the microbial �occu-

lation equations that will be investigated numerically and analytically in this dissertation report.

Consequently, in Section 1.2, we brie�y overview the results of each chapter.

1.1 Mathematical Preliminaries

The model accounts for four important phenomena that arise in a wide range of applications: frag-

mentation, proliferation, aggregation, and sedimentation. The equations for the microbial �occula-

tion model track the time-evolution of the particle size number density u(t, x) and can be written

as

ut = F(u) (1.1)

where

F(u) := G(u) +A(u) + B(u),

G denotes growth

G(u) := −∂x(gu)− µ(x)u(t, x) , (1.2)
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A denotes aggregation

A(u) :=
1

2

∫ x

0
ka(x− y, y)u(t, x− y)u(t, y) dy

− u(t, x)

∫ x−x

0
ka(x, y)u(t, y) dy , (1.3)

and B denotes breakage

B(u) :=

∫ x

x
Γ(x; y)kf (y)u(t, y) dy − 1

2
kf (x)u(t, x) . (1.4)

The boundary condition is traditionally de�ned at the smallest size 0 and the initial condition is

de�ned at t = 0

g(0)u(t, 0) =

∫ x

0
q(x)u(t, x)dx, u(0, x) = u0(x) ,

where the renewal rate q(x) represents the number of new �ocs entering the population. A �oc size

is usually expressed as volume. Moreover,since the equations model �occulation of particles in a

con�ned space, the �ocs are assumed to have a maximum size x <∞. The function g(x) represents

the average growth rate of the �ocs of size x due to proliferation, and the coe�cient µ(x) represents

a size-dependent removal rate due to gravitational sedimentation and death.

The function ka(x, y) is the aggregation kernel, which describes the rate with which the �ocs of

size x and y agglomerate to form a �oc of size x+ y. Since the �ocs {x− y, y} and {y, x− y} can

aggregate and construct the �oc of x, the factor of 1/2 is included to avoid double-counting. When

x =∞, for the aggregation kernels satisfying the inequality ka(x, y) ≤ 1 + x+ y, existence of mass

conserving global in time solutions were proven (Dubovskii & Stewart, 1996; Fournier & Laurençot,

2005; Menon & Pego, 2005) (for some suitable initial coditions). Conversely, for aggregation kernels

satisfying (xy)γ/2 ≤ ka(x, y) with 1 < γ ≤ 2, it has been shown that the total mass of the system

blows up in a �nite time (referred as a gelation time) (Escobedo et al., 2002). For a review of further

mathematical results, we refer readers to review articles by Aldous (1999), Menon & Pego (2006),

and Wattis (2006) and the book by Dubovskii (1994).

The breakage of �ocs due to fragmentation is modeled by the terms in (1.4), where the frag-
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mentation kernel kf (x) calculates the rate with which a �oc of size x fragments. The breakage

process assumes the fragmentation of a �oc of size x into sizes {x − y, y} and {y, x − y} as two

separate events. Therefore, the factor of 1/2 is included in the second sum to avoid double-counting.

The integrable function Γ(x; y) represents the post-fragmentation probability density of daughter

�ocs for the fragmentation of the parent �ocs of size y. The post-fragmentation probability density

function Γ is one of the least understood terms in the �occulation model. Many di�erent forms are

used in the literature, among which normal and log-normal densities are the most common (Spicer

et al., 1996). Recent modeling and computational work suggests that normal and log-normal forms

for Γ are not correct and that a form closer to an arcsin(x; y) density would be more accurate

(Mirzaev et al., 2016; Byrne et al., 2011). However, in this work we do not restrict ourselves to any

particular form of Γ, and instead simply assume that the function Γ satis�es the mass conservation

requirement. In other words, all the fractions of daughter �ocs formed upon the fragmentation of a

parent �oc sum to unity, ∫ y

0
Γ(x; y) dx = 1 for all y ∈ (0, x]. (1.5)

The microbial �occulation equation, presented in (1.1), is a generalization of many mathematical

models appearing in the size-structured population modeling literature and has been widely used,

e.g., to model the formation of clouds and smog in meteorology (Pruppacher & Klett, 2012), the

kinetics of polymerization in biochemistry (Zi� & Stell, 1980), the clustering of planets, stars and

galaxies in astrophysics (Makino et al., 1998), and even schooling of �sh in marine sciences (Niwa,

1998). For example, when the fragmentation kernel is omitted, kf ≡ 0, the �occulation model

reduces to algal aggregation model used to describe the evolution of a phytoplankton community

(Ackleh & Fitzpatrick, 1997). When the removal and renewal rates are set to zero, the �occula-

tion model simpli�es to a model used to describe the proliferation of Klebsiella pneumonia in a

bloodstream (Bortz et al., 2008). Furthermore, the �occulation model, with only growth and frag-

mentation terms, was used to investigate the elongation of prion polymers in infected cells (Calvez

et al., 2012; Doumic-Jau�ret & Gabriel, 2009; Calvez et al., 2010).

The equation (1.1) has also been the focus of considerable mathematical analysis. Well-posedness

of the general �occulation model was �rst established by Ackleh and Fitzpatrick (Ackleh & Fitz-

patrick, 1997; Ackleh, 1997) in an L2-space setting and later by Banasiak & Lamb (2009) in an
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L1-space setting. Although the population balance equation has received substantial theoretical

work, the derivation of analytical solutions for many realistic aggregation kernels has proven elu-

sive. Towards this end, many discretization schemes for numerical simulations of the PBEs have

been proposed. For instance, to approximate steady state solutions of PBEs, numerical schemes

based on the least squares spectral method (Dorao & Jakobsen, 2006a,b, 2007) and the �nite ele-

ment method (Nicmanis & Hounslow, 1998, 2002; Hounslow, 1990) have been developed. For the

further review of approximation methods, we refer interested readers to the review by Bortz (2015).

Investigating asymptotic behavior of the equation (1.1) has been a challenging task because of

the nonlinearity introduced by the aggregation terms. Nevertheless, under suitable conditions on

the kernels, the existence of a positive steady state has been established for the pure aggregation and

fragmentation case (Laurencot & Walker, 2005). For the case x = ∞, Banasiak (2011) establishes

that for certain range of parameters, the solutions of the �occulation model do blow up in �nite

time. To the best of our knowledge, for the case x < ∞ the long-term behavior of this model

has not been considered. Hence, our main goal in this dissertation is to rigorously investigate the

long-term behavior of the broad class of �occulation models described in (1.1). Consequently, in

the subsequent section, we outline the work presented in this dissertation.

1.2 Outline

When the long-term behavior of biological populations is considered, many populations converge to

a stable time-independent state. It is trivially true that a zero stationary solution of the microbial

�occulation model exists and Figure 1.3a depicts that for su�ciently large removal rates the solutions

of the microbial �occulation equation converge to this trivial zero stationary solution. Conversely,

as illustrated in Figure 1.3b, for su�ciently large renewal rates the solutions diverge. Furthermore,

under some restrictions on the model rates, which balance removal, growth, fragmentation and

renewal rate, one might expect that the solutions of the microbial �occulation equations converge

to a positive stationary size-distribution. In fact, as illustrated in Figure 1.3c, the solutions of

the microbial �occulation equation converge to a nontrivial stationary size-distribution. To this

end, our central objective in Chapter 2 is to prove the existence of positive steady states of this

generalized �occulation model. Using results from �xed point theory we derive conditions for the
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existence of continuous, non-trivial stationary solutions. We further apply the principle of linearized

stability and semigroup compactness arguments to provide su�cient conditions for local stability of

stationary solutions as well as su�cient conditions for instability. The end results of this analytical

development are relatively simple inequality-criteria which thus allows for the rapid evaluation of

the existence and stability of a non-trivial stationary solution. To our knowledge, this work is the

�rst to derive precise stability criteria for such a generalized model.

(a) (b) (c)

Figure 1.3: Transient behavior of solutions of the microbial �occulation equation. a) Convergence
to trivial zero stationary solution. b) Divergence of the solutions c) Convergence to a nontrivial
size-distribution

The �occulation equation (1.1) and all its extensions in the literature can be classi�ed as so-

called evolution equations. Evolution equations are di�erential laws that model time evolution of

physical systems. They are a popular framework for studying the dynamics of biological populations.

Many theoretical methods are available for establishing existence and stability of steady states of

general evolution equations. However, except for very special cases, �nding an analytical form of

stationary solutions for evolution equations is a challenging task. Therefore, the content presented

in Chapter 3 consist of our results in (Mirzaev & Bortz, 2017), where we develop a numerical

framework for computing approximations to stationary solutions of general evolution equations,

which can also be used to produce approximate existence and stability regions for steady states.

In particular, we use the Trotter-Kato Theorem to approximate the in�nitesimal generator of an

evolution equation on a �nite dimensional space, which in turn reduces the evolution equation into a

system of ordinary di�erential equations. Consequently, we approximate and study the asymptotic

behavior of stationary solutions. We illustrate the convergence of our numerical framework by

applying it to a linear Sinko-Streifer structured population model for which the exact form of the

steady state is known. To further illustrate the utility of our approach, we apply our framework



9

to nonlinear �occulation equation (1.1). We also demonstrate that our numerical framework can

be used to gain insight into the theoretical stability of the stationary solutions of the evolution

equations. Furthermore, the open source Python program that we have developed for our numerical

simulations is freely available from our GitHub repository (github.com/MathBioCU ).

In a exploratory study presented in Chapter 4, we develop several e�cient and high-precision

numerical schemes based on Finite Di�erence and Spectral Collocation methods to approximate

stationary solutions of the microbial �occulation equations. We exploit spectral accuracy of the

Spectral Collocation method for the numerical spectral analysis. Particularly, we illustrate that the

eigenvalues of the Fréchet derivative of the operator F , de�ned in (1.1), evaluated at the stationary

solutions can be approximated using spectral collocation method. This in turn allows to heuristically

deduce local stability of numerically computed steady states. Furthermore, we explore the stationary

solutions of the model for various biologically relevant parameters and give valuable insights for the

e�cient removal of suspended particles.

In Chapter 5, we investigate the inverse problem of identifying a conditional probability measure

in measure-dependent evolution equations arising in size-structured population modeling. We for-

mulate the inverse problem as a least squares problem for the probability measure estimation. Using

the Prohorov metric framework, we prove existence and consistency of the least squares estimates

and outline a discretization scheme for approximating a conditional probability measure. For this

scheme, we prove general method stability. The work is motivated by Partial Di�erential Equation

(PDE) models of �occulation for which the shape of the post-fragmentation conditional probability

measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory

to a particular PDE model that arises in the study of population dynamics for �occulating bacterial

aggregates in suspension, and provide numerical evidence for the utility of the approach. Lastly, in

Chapter 6, we �nish with our conclusions and remarks.



Chapter 2

On the existence and stability of

steady-state size-distributions of the

microbial �occulation equations1

When the long-term behavior of biological populations is considered, many populations converge

to a stable time-independent state. Thus, identifying conditions under which a population con-

verges to a stationary state is one of the most important applications of mathematical population

modeling. Hence, our main goal in this chapter is to prove the existence of positive steady states

of the microbial �occulation model (1.1). It is trivially true that a zero stationary solution of the

microbial �occulation model exists, but we are also interested in non-trivial stationary solutions

of the microbial �occulation model. Consequently, in Section 2.1 we �rst show that under some

suitable conditions on the model parameters the equation (1.1) has a unique non-trivial (non-zero

and non-negative) stationary solution.

Once a stationary solution to a model is shown to exist, the next natural question is whether it

is stable or unstable. When the associated evolution equation of a population model is linear, many

of stability properties can be deduced from the spectral properties of this linear operator (Diekmann

et al., 1984; Greiner & Nagel, 1988). However, almost no information about the operator can be

deduced from the spectrum of a nonlinear operator (Appell et al., 2004). Moreover, there is no

1This chapter is being prepared for a publication.

10
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general consensus among mathematicians on how to de�ne spectrum of a nonlinear operator. Thus,

our stability analysis in this work is based on the principle of linearized stability for nonlinear

evolution equations (Webb, 1985; Kato, 1995). Hence, in Section 2.2 we summarize the principle of

linearized stability and linearize the �occulation model around its stationary solutions. In Section

2.2 we also derive conditions for the regularity of the linearized �occulation model. Next, in Sections

2.3 and 2.4 we derive su�ciency conditions for the linearized stability and instability of zero and

non-zero stationary solutions, respectively. Finally, in Section 4.5, we summarize and discuss the

conclusions of this chapter.

2.1 Existence of a positive stationary solution

The �occulation model under our consideration (1.1), accounts for physical mechanisms such as

growth, removal, fragmentation, aggregation and renewal of microbial �ocs. Thus, under some

conditions, which balance these mechanisms, one could reasonably expect that the model possesses

a non-trivial stationary solution. Hence, our main goal in this section is to derive su�cient conditions

for the model terms such that the equation (1.1) engenders a positive stationary solution.

The �occulation model in this form (1.1) was �rst considered by Banasiak and Lamb in (Banasiak

& Lamb, 2009), where they employed the �occulation model to describe the dynamical behavior

of phytoplankton cells. The authors showed that under some conditions the �occulation model is

well-posed, i.e., there exist a unique, global in time, positive solution for every absolutely integrable

initial distribution. For the remainder of this work, we make the following assumptions on the

model rates for which well-posedness of the solutions of the microbial �occulation equations has
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been established by Banasiak & Lamb (2009):

(A1) g ∈ C1(I) g(x) > 0 for x ∈ I = [0, x]

(A2) ka ∈ L∞(I × I), ka(x, y) = ka(y, x)

and ka(x, y) = 0 if x+ y ≥ x ,

(A3) µ ∈ C(I) and µ ≥ 0 a.e. on I ,

(A4) q ∈ L∞(I) and q ≥ 0 a.e. on I ,

(A5) kf ∈ C(I) kf (0) = 0 and kf ≥ 0 a.e. on I ,

(A6) Γ(·, y) ∈ L∞(I), Γ(x; y) ≥ 0 for x ∈ (0, y];

and Γ(x; y) = 0 for x ∈ (y, x) .

Assumption (A1) states that the �oc of any size has strictly positive growth rate. This in turn

implies that �ocs can grow beyond the maximal size x, i.e., the model ignores what happens beyond

the maximal size x (as many authors in the literature have done (Ackleh, 1997; Farkas & Hagen,

2007; Ackleh & Fitzpatrick, 1997)). We also note that although the Assumption (A1) is widely

used in the literature it does generate biologically unrealistic condition g(0) > 0, i.e., the �ocs of

size zero also have positive growth rate. However, this assumption is crucial for our work, and thus

we postpone the analysis of the case g(0) = 0 for our future research. Assumption (A2) states that

for the aggregates of size x and y the aggregation rate is zero if the combined size of the aggregates

is larger than the maximal size. Lastly, Assumption (A3) on µ(x) enforces continuous dependence

of the removal on the size of a �oc and ensures that every �oc is removed with a non-negative rate.

Recall that at a steady state we should have

ut = 0 = F [u] . (2.1)

By Assumption (A1), we know that 1/g ∈ C(I) and thus we can de�ne u = f/g for some f ∈ C(I).

The substitution of this f into (2.1), integration between 0 and an arbitrary x, and rearrangment
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of the terms yields

f(x) = f(0)−
∫ x

0

kf (y)/2 + µ(y)

g(y)
f(y) dy +

∫ x

0

∫ x

z

Γ(z; y)kf (y)

g(y)
f(y) dy dz

+
1

2

∫ x

0

∫ z

0

ka(z − y, y)

g(z − y)g(y)
f(z − y)f(y) dy dz −

∫ x

0

f(z)

g(z)

∫ x

0

ka(z, y)

g(y)
f(y) dy dz . (2.2)

At this point we set

f(0) = 1 = g(0)p(0) =

∫ x

0
q(y)u(y) dy . (2.3)

Note that if there is a function f satisfying the equations (2.2) and (2.3), then u∗ is a steady state

for the modi�ed choice of q(x)

q(x) :=
q(x)∫ x

0
q(y)f(y)
g(y) dy

. (2.4)

We now de�ne the operator Φ as

Φ[f ](x) := 1−
∫ x

0

kf (y)/2 + µ(y)

g(y)
f(y) dy +

∫ x

0

∫ x

z

Γ(z; y)kf (y)

g(y)
f(y) dy dz

+
1

2

∫ x

0

∫ z

0

ka(z − y, y)

g(z − y)g(y)
f(z − y)f(y) dy dz −

∫ x

0

f(z)

g(z)

∫ x

0

ka(z, y)

g(y)
f(y) dy dz . (2.5)

and will use a �xed point theorem to prove the existence of a �xed point f of Φ . This in turn will

allow us to claim that equation (2.1) has at least one non-trivial positive solution.

The use of �xed point theorems for showing existence of non-trivial stationary solutions is not

new in size-structured population modeling. For example, �xed point theorems, based on Leray-

Schauder degree theory, have been used to �nd stationary solutions of linear Sinko-Streifer type

equations (Prüss, 1983a; Farkas & Hinow, 2012). Moreover, the Schauder �xed point theorem has

been used to establish the existence of steady state solutions of nonlinear coagulation-fragmentation

equations (Laurençot & Walker, 2005). For our purposes we will use the Contraction Mapping

Theorem.

We carry out the analysis of this work on the space of continuous functions X = C(I) with

usual uniform (supremum) norm ‖·‖u. We also denote the usual essential supremum of a function

by ‖·‖∞. Since the positive cone in C(I), denoted by (C(I))+, is closed and convex, we choose K

to be (C(I))+. Then Kr = K ∩Br(0), where Br(0) ⊂ X is an open ball of radius r and centered
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at zero, and r has yet to be chosen. Note that since Kr is also Banach space since it is closed

subspace of X . Next, we show that one can choose model rates such that the operator Φ de�ned in

(2.5) maps Kr to Kr and is also contraction. This in turn implies existence of a positive stationary

solution of the operator F . We are now in a position to state the main result of this section in the

following theorem.

Theorem 2.1. Assume that the condition

0 ≤ 1

2
kf (x)− µ(x), (C1)

holds true for all x ∈ I. For su�ciently small choice of
∥∥∥1
g

∥∥∥
1
the operator Φ de�ned in (2.5) has a

unique non-zero �xed point, f∗ ∈ K satisfying

1 ≤ ‖f∗‖u ≤ r (2.6)

for some r ≥ 1. Moreover, for the modi�ed choice of the renewal rate in (2.4), the non-zero and

non-negative function

u∗ =
f∗
g
∈ C(I) (2.7)

is a unique stationary solution of the �occulation model de�ned in (1.1) on K.

Proof. For f ∈ Kr we have

Φ[f ] ≥ 1−
∫ x

0

kf (y)/2 + µ(y)

g(y)
f(y) dy

+

∫ x

0

∫ x

z

Γ(z; y)kf (y)

g(y)
f(y) dy dz −

∫ x

0

f(z)

g(z)

∫ x

0

ka(z, y)

g(y)
f(y) dy dz

≥ 1−
∫ x

0

f(z)

g(z)
(kf (z)/2 + µ(z)) dz +

∫ x

0

kf (y)f(y)

g(y)

∫ y

0
Γ(z; y) dz︸ ︷︷ ︸

=1

dy − ‖f‖2u ‖ka‖∞

∥∥∥∥1

g

∥∥∥∥2

1

≥
∫ x

0

f(z)

g(z)

(
1

2
kf (z)− µ(z)

)
dz + 1− r2 · ‖ka‖∞

∥∥∥∥1

g

∥∥∥∥2

1

,

where ‖·‖1 represents the usual L1 norm on I. The �rst condition of the theorem (C1) guarantees

that

1

2
kf (z)− µ(z) > 0 for all z ∈ I ,
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so we can choose

r =

∥∥∥∥1

g

∥∥∥∥−1

1

‖ka‖−1/2
∞ (2.8)

in Kr such that Φ[f ] ≥ 0, i.e., Φ : Kr → K. On the other hand, using the assumptions (A1)-(A6),

it is straightforward to show that Φ(Kr) ⊂ C(I).

Next we prove that the operator Φ maps Kr to Kr. Consequently, for f ∈ Kr it follows that

0 ≤ Φ[f ](x) ≤ 1−
∫ x

0

kf (y)/2 + µ(y)

g(y)
f(y) dy +

∫ x

0

∫ x

z

Γ(z; y)kf (y)

g(y)
f(y) dy dz

−
∫ x

x

∫ x

z

Γ(z; y)kf (y)

g(y)
f(y) dy dz +

1

2

∫ x

0

∫ z

0

ka(z − y, y)

g(z − y)g(y)
f(z − y)f(y) dy dz

≤ 1 +

∫ x

x

1

g(y)
kf (y)f(y) dy +

∫ x

0

1

g(y)

(
1

2
kf (y)− µ(y)

)
f(y) dy

+
1

2
‖f‖2u · ‖ka‖∞ ·

∥∥∥∥1

g

∥∥∥∥2

1

≤ 1 + ‖f‖u

∥∥∥∥1

g

∥∥∥∥
1

[
‖kf‖u +

∥∥∥∥1

2
kf − µ

∥∥∥∥
u

+ r ‖ka‖∞

∥∥∥∥1

g

∥∥∥∥
1

]
≤ 1 + r

∥∥∥∥1

g

∥∥∥∥
1

[
‖kf‖u +

∥∥∥∥1

2
kf − µ

∥∥∥∥
u

+ ‖ka‖1/2∞
]
.

At this point choosing
∥∥∥1
g

∥∥∥
1
su�ciently small yields r > 1 in (2.8), and thus we can guarantee that

‖Φ[f ]‖ ≤ r

for all f ∈ Kr. Hence the operator Φ maps Kr to Kr.

Next we will prove that the operator Φ is in fact a contraction mapping, i.e., for all f, h ∈ Kr

‖Φ[f ]− Φ[h]‖u ≤ c ‖f − h‖u
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for some c ∈ [0, 1).

|Φ[f ](x)− Φ[h](x)| ≤
∫ x

0

kf (y)/2− µ(y)

g(y)
|f(y)− h(y)| dy +

∫ x

x

kf (y)

g(y)
|f(y)− h(y)| dy

+
1

2

∫ x

0

∫ z

0

ka(z − y, y)

g(z − y)g(y)
f(z − y) |f(y)− h(y)| dy dz

+
1

2

∫ x

0

∫ z

0

ka(z − y, y)

g(z − y)g(y)
h(y) |f(z − y)− h(z − y)| dy dz

+

∫ x

0

f(z)

g(z)

∫ x

0

ka(z, y)

g(y)
|f(y)− h(y)| dy dz

+

∫ x

0

|f(z)− h(z)|
g(z)

∫ x

0

ka(z, y)

g(y)
h(y) dy dz .

Taking the supremum of both sides at this point yields

‖Φ[f ]− Φ[h]‖u ≤ ‖f − h‖u

∥∥∥∥1

g

∥∥∥∥
1

[
‖kf‖u +

∥∥∥∥1

2
kf − µ

∥∥∥∥
u

+
3

2
‖ka‖1/2∞

]
.

Once again by choosing
∥∥∥1
g

∥∥∥
1
su�ciently small, we can guarantee that the constant

c =

∥∥∥∥1

g

∥∥∥∥
1

[
‖kf‖u +

∥∥∥∥1

2
kf − µ

∥∥∥∥
u

+
3

2
‖ka‖1/2∞

]

is less than 1. This in turn implies that the operator Φ de�ned in (2.5) is also a contraction mapping.

Hence, the Contraction Mapping Theorem guarantees the existence of a unique positive �xed point

of Φ satisfying the bounds (2.6). Therefore, the function u∗ = f∗/g is a stationary solution of the

�occulation equations (1.1). Moreover, from the assumption (A1) and the continuity of the �xed

point f∗ it follows that u∗ is non-zero, non-negative and continuous on I.

2.2 Principle of linearized stability and regularity properties of the

linearized semigroup

In this section we summarize the principle of linearized stability as it applies to semigroups in

general and our �occulation equation in particular.
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For a given autonomous ordinary di�erential equation,

u̇ = f(u) ,

the method for determining the local asymptotic behavior of a stationary solution u∗, f(u∗) = 0,

by the eigenvalues of the Jacobian Jf (u∗) is quite well-known. In semigroup theory the analogous

method is known as the principle of linearized stability and was developed in the context of semilinear

partial di�erential equations in (Henry, 1981; Smoller, 1983; Webb, 1985). Later, Kato (1995)

extended this principle to a broader range of nonlinear evolution equations. Before presenting

the principle of linearized stability we introduce some terminology, which can be found in many

functional analysis books (see (Belleni-Morante & McBride, 1998) for instance).

The growth bound ω0(A) of a strongly continuous semigroup (S(t))t≥0 with an in�nitesimal

generator A is de�ned as

ω0(A) := inf

ω ∈ R :
∃Mω ≥ 1 such that

‖S(t)‖ ≤Mωe
ωt for all t ≥ 0

 .

The operator DA(f) denotes the Fréchet derivative of an operator A evaluated at f , which is

de�ned as

DA(u)h = A[u+ h]−A[u] + o(h), ∀u, h ∈ D(A) ,

where o is little-o operator satisfying ‖o(h)‖ ≤ b(r) ‖h‖ with increasing continuous function b :

[0, ∞)→ [0, ∞), b(0) = 0.

The discrete spectrum σD(A) of an arbitrary operator A on a Banach space X, is the subset of

the point spectrum of A,

σp(A) = {λ ∈ C | ∃φ 6= 0 ∈ X s.t. Aφ = λφ} ,

such that λ ∈ σD(A) is an isolated eigenvalue of �nite multiplicity, i.e., the dimension of the set

{ψ ∈ X : Aψ = λψ}
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is �nite and nonzero. Let (T (t))t≥0 be a C0 semigroup on the Banach space X with its in�ntesimal

generator A. Then the limit ω1(A) = limt→∞ t
−1 log (α[T (t)]) is well-de�ned and called the α-

growth bound of (T (t))t≥0. The function α[T (t)] is a measure of non-compactness of the semigroup

T (t) as de�ned as in (Kuratowski, 1966). This measure associates non-negative numbers to operators

(or sets), which tells how close an operator (or a set) is to a compact operator (or set). For example,

for a bounded set M in a Banach space, α[M ] = 0 implies that M (closure of M) is a compact

set. Analogously, for a semigroup (T (t))t≥0, α[T (t)] = 0 indicates that the semigroup is eventually

compact.

With the above de�nitions, we are now ready to present the principle of linearized stability in

the form of the following proposition (see (Webb, 1985) for the complete discussion of the proof of

the following proposition).

Proposition 2.2. De�ne the nonlinear operator N : D(F) ⊂ L1(I)→ L1(I) and let f∗ ∈ D(N ) be

a stationary solution of (1.1), i.e., N [f∗] = 0. If N is continuously Fréchet di�erentiable on L1(I)

and the linearized operator L = DN (f∗) is the in�nitesimal generator of a C0-semigroup T (t), then

the following statements hold:

1. If ω0 (L) < 0, then f∗ is locally asymptotically stable in the following sense: There exists

η, C ≥ 1, and α > 0 such that if ‖f − f∗‖ < η, then a unique mild solution T (t)f , satis�es

‖T (t)f − f∗‖ ≤ Ce−αt ‖f − f∗‖ for all t ≥ 0.

2. If there exists λ0 ∈ σ(L) such that Reλ > 0 and

max

{
ω1(L), sup

λ∈σD(L)\{λ0}
Reλ

}
< Reλ0 , (2.9)

then f∗ is an unstable equilibrium in the sense that there exists ε > 0 and sequence {fn} in X

such that fn → f∗ and ‖T (n)fn − f∗‖ ≥ ε for n = 1, 2, . . . .

Having the explicit statement of the principle of linearized stability in hand, we now show that

the nonlinear operator F de�ned in (1.4) satis�es all the conditions of Proposition 2.2. Towards

this end, we �rst establish the elementary assumption of Proposition 2.2 in the following lemma.

Lemma 2.3. The nonlinear operator F de�ned in (1.4) is continuously Fréchet di�erentiable on

L1(I).
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Proof. The Fréchet derivative of the nonlinear operator F is given explicitly as

DF(φ)[h(x)] = −∂x[gh](x)−
(
µ(x) +

1

2
kf (x)

)
h(x) +

∫ x

x
Γ(x; y)kf (y)h(y) dy

+
1

2

∫ x

0
ka(x− y, y) [φ(y)h(x− y) + h(y)φ(x− y)] dy

− h(x)

∫ x−x

0
ka(x, y)φ(y)dy − φ(x)

∫ x−x

0
ka(x, y)h(y)dy . (2.10)

For the arbitrary functions u1, u2 ∈ L1(I) we have

|DF(u1)h(x)−DF(u2)h(x)| ≤ 1

2
‖ka‖∞

∫ x

0
|u1(y)− u2(y)||h(x− y)| dy

+
1

2
‖ka‖∞

∫ x

0
|h(y)||u1(x− y)− u2(x− y)| dy

+ |h(x)| ‖ka‖∞
∫ x

0
|u1(y)− u2(y)|dy

+ |u1(x)− u2(x)| ‖ka‖∞
∫ x

0
|h(y)|dy

Consequently, taking the integral of both sides with respect to x and an application of Young's

inequality for convolutions (see (Adams & Fournier, 2003, Theorem 2.24)) to the �rst two integrals

yields

‖DF(u1)h(x)−DF(u2)h(x)‖1 ≤ ‖ka‖∞ ‖u1 − u2‖1 ‖h‖1+‖ka‖∞ ‖u1 − u2‖1 ‖h‖1+‖u1 − u2‖1 ‖ka‖∞ ‖h‖1

for all h ∈ L1(I). Then it follows that

‖DF(u1)−DF(u2)‖1 ≤ 3 ‖ka‖∞ ‖u1 − u2‖1 ,

which in turn implies that the nonlinear operator F is continuously Fréchet di�erentiable on L1(I).

In the previous section we have shown that the nonlinear operator F (1.4) has at least one

non-trivial stationary solution, u∗ (in addition to trivial zero stationary solution). To derive sta-

bility results for this stationary solutions we �rst linearize the equation (1.1) around u∗. A simple
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calculation yields that the Fréchet derivative of the nonlinear operator F evaluated at a stationary

solution u∗ (see Theorem 2.1) is given explicitly by

L[h](x) = DF(u∗)[h](x) = −∂x(g(x)h(x))−A(x)h(x) +

∫ x

x
Γ(x; y)kf (y)h(y) dy

−
∫ x−x

0
E(x, y)h(y) dy +

∫ x

0
E(x− y, y)h(y) dy , (2.11)

where

E(x, y) = ka(x, y)u∗(x)

and

A(x) =
1

2
kf (x) + µ(x) +

∫ x−x

0
E(y, x) dy .

We �rst prove that the linear operator L is an in�nitesimal generator of a strongly continuous

semigroup T = (T (t))t≥0. Consequently, we will prove two regularity results for the semigroup

T , which will prove useful in the spectral analysis of the operator L. Particularly, we will show

that under some conditions on the model ingredients the semigroup T is positive and eventually

compact. The main implication of eventual compactness is that the Spectral Mapping Theorem

holds (see (Engel & Nagel, 2000)) for the semigroup T ,

σ (T (t)) \{0} = exp (tσ(L)) , t ≥ 0 .

Consequently, we will use the positivity of the semigroup T in Section 2.4.2, where we employ the

positive perturbation method introduced in (Farkas & Hinow, 2012).

Lemma 2.4. If we de�ne the domain of the linearized operator L as

D(L) =

{
φ ∈ L1(I) | (gφ)′ ∈ L1(I), (gφ)(0) =

∫ x

0
q(x)u(t, x)dx

}
, (2.12)

then the operator L generates a C0 semigroup on D(L).
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Proof. The linear operator L can be written as the sum of an unbounded operator

L1[h](x) = −∂x(g(x)h(x))−A(x)h(x) (2.13)

and bounded operators

L2[h](x) =

∫ x

x
Γ(x; y)kf (y)h(y) dy −

∫ x−x

0
E(x, y)h(y) dy, L3[h](x) =

∫ x

0
E(x− y, y)h(y) dy .

(2.14)

From the fact that g(x), A(x) ∈ C(I) and from the Lemma 2.4 of (Banasiak & Lamb, 2009) it follows

that L1 generates a C0 semigroup on D(L). Consequently, the bounded perturbation theorem of

(Pazy, 1992, �3, Theorem 1.1) yields that the operator L is also an in�nitesimal generator of a C0

semigroup.

Lemma 2.5. For a given stationary solution u∗ ∈ C(I) the operators L2 : D(L) → L1(I) and

L3 : D(L)→ L1(I) de�ned in (2.14) are compact operators.

Proof. We �rst prove that the operator L2 is compact. Then compactness of the operator L3

follows from analogous arguments. Let us denote a unit ball centered at zero in L1(I) by B ={
φ ∈ L1(I) | ‖φ‖1 ≤ 1

}
. Recall that an operator is compact if it maps a unit ball into a relatively

compact set. Consequently, observe that the assumptions (A2) and (A6) together imply that the

operator

∂xL2[h](x) = ka(x, x− x)u∗(x)h(x− x)−
∫ x−x

0
∂x(ka(x, y)u∗(x))h(y) dy

+

∫ x

x
∂xΓ(x; y)kf (y)h(y) dy − Γ(x; x)kf (x)h(x)

is also bounded. Hence L2[B] ⊂ W 1,1(I) and from the Rellich-Kondrachov embedding theorem

(see Adams & Fournier (2003, Theorem 6.3) for a statement of the theorem) it follows that the set

L2[B] is relatively compact.

Lemma 2.6. The operator L de�ned in (2.11) generates an eventually compact C0 semigroup. And

thus, the spectrum of the operator L consists of isolated eigenvalues of a �nite multiplicity only, i.e.,

σ(L) = σD(L).
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Proof. The operator L1 de�ned in (2.13) is well-known operator in size-structured dynamics litera-

ture. If g ∈ C1(I) and A ∈ C(I), then in Farkas & Hagen (2007, Theorem 3.1) it has been shown

that the C0 semigroup generated by the operator L1 is compact for t > 2
∫ x

0
1

g(y) dy. The condition

g ∈ C1(I) follows from our main assumption (A1), and continuity of the function

A(x) =
1

2
kf (x) + µ(x) +

∫ x−x

0
ka(x, y)u∗(y) dy

follows from the assumptions (A1)-(A6). Thus the semigroup generated by L1 is eventually com-

pact. Conversely, in Lemma (2.5) we have shown that the operators L2 and L3 are compact. Hence,

the C0 semigroup generated by the operator L = L1 + L2 + L3 is also compact for t > 2
∫ x

0
1

g(y) dy.

Therefore, the eventual compactness of the semigroup T (generated by L) combined with The-

orem 3.3 of Pazy (1992, �2.3) and Corollary 1.19 of (Engel & Nagel, 2000, �4) together imply that

the spectrum of L consists of isolated eigenvalues of �nite multiplicity.

Lemma 2.7. For a steady state solution u∗ assume that the model rates satisfy the following con-

ditions

∂x (ka(x, y)u∗(x)) ≤ 0 for all x ∈ I and y ∈ (0, x) (2.15)

and

Γ(x; y)kf (y) ≥ ka(x, y)u∗(x) for all x ∈ I and y ∈ [x, x1) (2.16)

Then the operator L generates a positive C0 semigroup.

Proof. In Farkas & Hagen (2007, Theorem 3.3) it has been shown that the operator L1 : D(L)→

L1(I) generates a positive C0 semigroup under the main assumptions (A1)-(A6). On the other

hand, from the conditions (2.15) and (2.16) it follows that

L2[h](x) + L3[h](x) ≥
∫ x

0
ka(x− y, y)u∗(x− y)h(y) dy +

∫ x

x
Γ(x; y)kf (y)h(y) dy

−
∫ x

0
ka(x, y)u∗(x)h(y) dy

≥
∫ x

0
[ka(x− y, y)u∗(x− y)− ka(x, y)u∗(x)]h(y) dy

+

∫ x

x
[Γ(x; y)kf (y)− ka(x, y)u∗(x)]h(y) dy ≥ 0 ,
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which in turn ensures that the operator L2 + L3 is a positive operator. Since the positivity of a

semigroup is invariant under a bounded and positive perturbation of its generator (see (Engel &

Nagel, 2000, �6, Corollary 1.11)), the result follows immediately.

Remark 2.8. Lemma 2.7 has very important consequence. Speci�cally, if the positivity conditions

(2.15) and (2.16) hold and the spectral bound s(L) = sup {Reλ |λ ∈ σ(L)} is not equal to −∞,

then s(L) belongs to the spectrum σ(L) (Engel & Nagel, 2000, �Theorem 1.10). Moreover, the

positivity and eventual compactness of the semigroup T together imply that the spectral bound

s(L) is one of the eigenvalues of L with �nite multiplicity.

2.3 Linearized stability and instability criteria for the zero station-

ary solution

In this section we will derive linearized stability results for the zero stationary solution of the

�occulation equation. In contrast to non-trivial stationary solutions, zero stationary solution always

exists (provided that the well-posedness assumptions (A1)-(A6) hold true). As we have discussed

in Section 2.2 the stability of the steady states depends on the spectral properties of the linear

operator L de�ned in (2.11). We de�ne the operatorM as the linear operator L evaluated at the

trivial stationary solution, u∗ ≡ 0

M[h](x) = −∂x[gh](x)−
(
µ(x) +

1

2
kf (x)

)
h(x) +

∫ x

x
Γ(x; y)kf (y)h(y) dy . (2.17)

The assumptions (A1)-(A6) also ensure that the regularity conditions of Section 2.2 are all

satis�ed. Hence, the operatorM generates a positive, eventually compact and strongly continuous

semigroup. By Remark 2.8 we know that the spectral bound s(M) of the operatorM is a dominant

eigenvalue ofM with �nite multiplicity. Then, by the principle of linearized stability (Proposition

2.2), the stability of the zero stationary solution depends on the sign of this dominant eigenvalue.

Thus, in the subsequent two subsections we derive conditions which guarantee positivity and nega-

tivity of the spectral bound s(M), respectively. For a more thorough discussion of the stability of

the zero stationary solution we refer readers to (Mirzaev & Bortz, 2015a).
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2.3.1 Instability of the trivial stationary solution

The operatorM can be written as the sum of an unbounded operator

M1[h](x) = −∂x[gh](x)−
(
µ(x) +

1

2
kf (x)

)
h(x)

and a bounded operator

M2[h](x) =

∫ x

x
Γ(x; y)kf (y)h(y) dy .

In (Farkas, 2005), the authors have shown that the operator M1 generates a positive, eventually

compact semigroup. Moreover, they have shown that the spectral bound ofM1 is positive if

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s) + 1
2kf (s)

g(s)
ds

)
dx > 1 . (2.18)

On the other hand, we note thatM2 is a positive operator. Then, Corollary 1.11 of (Engel & Nagel,

2000, �6) yields that the operator M = M1 +M2 also generates a positive, eventually compact

semigroup. Furthermore, the following inequality holds for spectral bound ofM1 andM,

s(M1) ≤ s(M1 +M2) = s(M) . (2.19)

Consequently, this implies that the operatorM also has a positive spectral bound provided that the

condition (2.18) is satis�ed. At this point, in Proposition 2.2, choosing λ0 equal to the eigenvalue

ofM corresponding to s(M) and using Lemma 2.6 yields

max

{
ω1(M), sup

λ∈σD(M)\{λ0}
Reλ

}
= sup

λ∈σD(M)\{λ0}
Reλ < Reλ0 .

Then, the operatorM satis�es all the conditions of Proposition 2.2 and thus results of this section

can be summarized in the form of the following condition.

Condition 1. Assume that the assumptions (A1)-(A6) hold true. Moreover, assume that

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s) + 1
2kf (s)

g(s)
ds

)
dx > 1 ,

then the zero stationary solution of the �occulation equation is unstable.
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2.3.2 Stability of the trivial stationary solution

In this section we will prove that under certain condition on model parameters we can ensure that

the spectral bound of M is strictly negative. Since the positivity arguments that we used in the

previous section cannot guarantee negativity of s(M), we use a direct approach to prove that growth

bound of M is strictly negative, ω0(M) < 0. To achieve our goal we use the following version of

the well-known Lumer-Philips theorem (see for instance (Engel & Nagel, 2000, �2, Corollary 3.6)

and Belleni-Morante & McBride (1998, Theorem 2.22)).

Theorem 2.9. (Lumer-Philips) Let a linear operator A on a Banach space (X , ‖·‖) the following

are equivalent:

1. A is closed, densely de�ned. Furthermore, A−λI is surjective for some λ > 0 (and hence for

all λ > 0) and there exists a real number ω such that A− ωI is dissipative, i.e.,

‖f − λ(A− ωI)f‖ ≥ ‖f‖ for all λ > 0 and f ∈ D(A) .

2. Then, (A, D(A)) generates a strongly continuous quasicontractive semigroup (T (t))t≥0 satis-

fying

‖T (t)‖ ≤ eωt for t ≥ 0 .

In the following lemma, we show the operator satis�es the �rst part of the Lumer-Philips theo-

rem. Particularly, we establish that there exist a strictly negative real number w < 0 such that the

operatorM− ωI is dissipative.

Lemma 2.10. Assume that the assumptions (A1)-(A6) hold true. Then the linear operator M

de�ned in (2.17) is closed, densely de�ned operator on the Banach space L1(I), and for su�ciently

large λ > 0 the operatorM− λI : D(M) 7→ L1(I) is surjective. Furthermore, if

µ(x)− q(x)− 1

2
kf (x) > 0 (2.20)

for all x ∈ I, then there exists α > 0 such that the semigroup (T (t))t≥0 generated byM satis�es the

estimate

‖T (t)‖1 ≤ e
−αt for all t ≥ 0 .
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Proof. Since the operator M generates a strongly continuous semigroup (Lemma 2.4), the �rst

argument of the lemma is an immediate consequence of the Generation Theorem of (Engel & Nagel,

2000, �2.3). We now prove that there exist α > 0 such that M + αI is dissipative. For a given

f ∈ D(M) = D(L) and some h ∈ H and λ > 0 we have

f − λ(M+ αI)f = h .

Consequently, multiplying both sides by the sign function of f yields

|f(x)| = f(x) sgn (f(x))

= −λ [g(x)f(x)]′ sgn (f(x)) dx− λ
[

1

2
kf (x) + µ(x)

]
f(x) sgn (f(x))

+ λ sgn (f(x))

∫ x

x
Γ(x; y)kf (y)f(y) dy dx+ λαf(x) + h(x) sgn (f(x)) , (2.21)

where function sgn(f(x)) is de�ned as usual with sgn(0) = 0. For a given f ∈ D(M) the set of

points for which f does not vanish can be written as a �nite union of disjoint open sets Ij = (aj , bj),

i.e., f(x) 6= 0 for all x ∈ ∪nj=1Ij = (0, x). 2 On each interval Ij the function f can be either strictly

positive or strictly negative. Moreover, on the boundaries we have f(aj) = 0 and f(bj) = 0 unless

aj = 0 or bj = x1. Then, integrating both sides of (2.21) on a given interval Ij = (aj , bj) we have

∫ bj

aj

|f(x)| dx ≤ −λg(bj) |f(bj)|+ λg(aj) |f(aj)| − λ
∫ bj

aj

[
−α+

1

2
kf (x) + µ(x)

]
|f(x)| dx

+ λ

∫ bj

aj

∫ x

x
Γ(x; y)kf (y) |f(y)| dy +

∫ bj

aj

|h(x)| dx . (2.22)

2See also (Banks & Kappel, 1989) and (Farkas & Hagen, 2010) for similar partitioning in dissipativity proofs
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Consequently, by summing (2.22) for j = 1, . . . , n we get

∫ x

0
|f(x)| dx ≤ −λg(x1) |f(x1)|+ λg(0) |f(0)| − λ

∫ x

0

[
−α+

1

2
kf (x) + µ(x)

]
|f(x)| dx

+ λ

∫ x

0

∫ x

x
Γ(x; y)kf (y) |f(y)| dy dx+

∫ x

0
|h(x)| dx

≤ −λ
∫ x

0

[
−α− q(x) +

1

2
kf (x) + µ(x)

]
|f(x)| dx

+ λ

∫ x

0
kf (y) |f(y)|

∫ y

0
Γ(x; y) dx︸ ︷︷ ︸

=1

dy +

∫ x

0
|h(x)| dx

= −λ
∫ x

0

[
−α− q(x)− 1

2
kf (x) + µ(x)

]
|f(x)| dx+

∫ x

0
|h(x)| dx .

Hence, provided that we have

− α− q(x)− 1

2
kf (x) + µ(x) > 0 (2.23)

for all x ∈ I, it follows that

‖f‖1 ≤ ‖h‖1 = ‖f − λ(M+ αI)f‖1 .

In fact, if (2.20) holds true, then there exists α > 0 such thatM+αI is dissipative. Consequently,

the result follows immediately from the Lumer-Philips theorem.

As a direct consequence of Proposition 2.2 and the above lemma, we summarize the results of

this section in form of the following condition.

Condition 2. Assume that the assumptions (A1)-(A6) hold true. Moreover, assume that

q(x) +
1

2
kf (x)− µ(x) < 0

for all x ∈ I, then the zero stationary solution of the �occulation equation is locally exponentially

stable.
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2.4 Linearized instability and stability criteria for non-trivial steady

states

In this section we present linearized stability results for the non-trivial stationary solution u∗ 6= 0.

We �rst derive conditions for instability (Section 2.4.1) and then derive conditions for linear stability

(Section 2.4.2).

2.4.1 Linearized instability

Recall that, from Proposition 2.2, instability of the non-trivial stationary solution depends on the

spectral properties of the operator L. Speci�cally, the spectrum of L contains at least one point

λ0 ∈ σ(L) satisfying the instability condition (2.9). Towards this end (as we did in Section 2.3.1),

we �rst show that the operator L has a positive spectral radius.

Lemma 2.11. Assume that the positivity conditions (2.15)-(2.16) hold. Moreover, if the model

parameters satisfy the following condition

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s) + 1
2kf (s) +

∫ x−s
0 ka(s, y)u∗(y) dy

g(s)
ds

)
dx > 1 , (2.24)

then the operator L has a positive spectral radius.

Proof. Recall that the operator L can be written as the sum of the operators L1, L2 and L3.

Moreover, in Lemma 2.7 we have shown that the operator L1 generates a positive semigroup and

the positivity assumptions (2.15) and (2.16) ensure the positivity of the operator L2+L3. Therefore,

from Corollary 1.11 of Engel & Nagel (2000, �6) it follows that the spectral radius of L is always

greater than the spectral radius of the operator L1, i.e.,

s(L1) ≤ s(L1 + L2 + L3) = s(L) . (2.25)

Conversely, provided that the condition (2.24) holds, the arguments of Farkas & Hagen (2007,

Theorem 5.1) can be used to show that the spectral radius of the operator L1 is strictly positive.

This result, combined with the inequality (2.25) implies that the spectral radius of L is strictly

positive.
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We are now ready to present the main result of this section in the form of the following condition.

Condition 3. Under the main assumptions (A1)-(A6) and the positivity conditions (2.15)-(2.16)

the non-trivial steady state solution of the nonlinear evolution equation de�ned in (1.1) is unstable

if ∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s) + 1
2kf (s) +

∫ x−s
0 ka(s, y)u∗(y) dy

g(s)
ds

)
dx > 1 . (2.26)

Proof. Recall that from the proof of Lemma 2.11 it follows that

s(L1) ≤ s(L) ,

where the operators L1 and L are de�ned in (2.11). Note that Farkas & Hagen (2007) have shown

that the operator L1 has a positive spectral radius provided that the condition (2.26) holds true.

Consequently, if the condition (2.26) holds true, it follows that the operator L has a positive spectral

radius. Then from Proposition 2.6 and Remark 2.8 it follows that s(L) ∈ σD(L). Moreover,

Proposition 2.6 together with (Webb, 1985, Remark 4.8) imply that α-growth bound of L is equal

to negative in�nity, ω1(L) = −∞. Therefore, in Proposition 2.2, choosing λ0 equal to the eigenvalue

corresponding to s(L) yields

max

{
ω1(L), sup

λ∈σD(L)\{λ0}
Reλ

}
= sup

λ∈σD(L)\{λ0}
Reλ < Reλ0 ,

and implies that the non-trivial stationary solution p∗ of the nonlinear evolution equation de�ned

in (1.1) is unstable.

Remark 2.12. Let S ⊂ L1(I) be the set of non-trivial stationary solutions and S1 (subset of S)

denote the set of non-trivial stationary solutions existence of which guaranteed by Theorem 2.1.

For a stationary solution u∗ ∈ S1 the modeling terms need to satisfy the conditions (C1) and (C2).

Consequently, plugging x = 0 into (C2) yields the inequality

∫ x

0

q(x)

g(x)
dx ≤ 1 .
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Conversely, the instability condition (2.26) implies that

1 <

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s) + 1
2kf (s) +

∫ x−s
0 ka(s, y)u∗(y) dy

g(s)
ds

)
dx ≤

∫ x

0

q(x)

g(x)
dx ,

which contradicts the existence condition (C2). This in turn implies that stationary solutions in

the set S1 do not satisfy the instability condition. However, we note that S1 is only subset of S,

and thus the results of this subsection areonly valid for non-trivial stationary solutions in the set

S\S1.

2.4.2 Linearized stability

In Section 2.4.1 we have shown that the spectrum of the operator L is not empty. This result,

together with Proposition 2.7 and Remark 2.8 imply that the spectral radius of L is one of the

eigenvalues of the operator L, so it is su�cient to show that all the eigenvalues of L have a negative

real part. However, to the best of our knowledge, the eigenvalue problem

L[φ] = λφ

does not have an explicit solution. This forces us to utilize the positive perturbation method of

Farkas & Hinow (2012) to locate the dominant eigenvalue of L. This method relies on the fact that

compact perturbations do not change the essential spectrum of a semigroup. Towards this end we

will perturb the operator L = L1+L2+L3 (the operators L1, L2 and L3 are de�ned in (2.13)-(2.14))

by a positive compact operator so that we can identify the point spectrum of the resulting operator.

Lemma 2.13. Let us de�ne the operator C as

C[f ](x) = c1

∫ x

0
f(y) dy,

where c1 = ‖ka · u∗‖∞ + ‖Γ · kf‖∞. Then the operator C − L2 − L3 is positive and compact.
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Proof. It is easy to see that C − L2 − L3 is a positive operator, i.e.,

C[f ](x)− L2[f ](x)− L3[f ](x) ≥
∫ x

0
[‖ka · u∗‖∞ − ka(x− y, y)u∗(x− y)] f(y) dy

+

∫ x

x

[
‖Γ · kf‖∞ − Γ(x; y)kf (y)

]
f(y) dy ≥ 0 ∀f ∈

(
L1(I)

)
+
.

Conversely, C is a bounded linear functional, hence it is compact. Then the compactness of C −

L2 − L3 follows from compactness of the operators L2 and L3 (see Lemma 2.5).

Now de�ne the perturbed operator P as P := L+ C − L2 − L3 = L1 + C. Then the eigenvalue

problem for the operator P reads as

λf − P[f ] = λf − L1[f ]− C[f ] = 0 . (2.27)

This equation can be solved implicitly as

f(x) = U1
1

T (λ, x)g(x)
+ U2

c1

g(x)T (λ, x)

∫ x

0
T (λ, s) ds , (2.28)

where

U1 =

∫ x

0
q(y)f(y) dy, U2 =

∫ x

0
f(y) dy

and

T (λ, x) = exp

(∫ x

0

λ+A(y)

g(y)
dy

)
.

Integrating the equation (2.28) on I yields one equation for solving for U1 and U2. Moreover,

multiplying the equation (2.28) by q(x) and integrating over the interval I we obtain the second

equation for solving for U1 and U2. Consequently, these two equations can be summarized in the

following linear system, 
U1A11(λ) + U2 (A12(λ)− 1) = 0

U1(A21(λ)− 1) + U2A22(λ) = 0

, (2.29)



32

where

A11(λ) =

∫ x

0

1

T (λ, x)g(x)
dx, A12(λ) =

∫ x

0

c1

g(x)T (λ, x)

∫ x

0
T (λ, s) ds dx ,

A21(λ) =

∫ x

0

q(x)

T (λ, x)g(x)
dx, A22(λ) =

∫ x

0

c1q(x)

g(x)T (λ, x)

∫ x

0
T (λ, s) ds dx .

If the eigenvalue problem (2.27) has a non-zero solution, then there is non-zero vector (U1, U2)

satisfying the linear system (2.29). On the other hand, if there is non-zero vector (U1, U2) satisfying

the linear system (2.29), then the eigenvalue problem has a non-zero solution. Hence λ ∈ C is an

eigenvalue value of the operator P if and only if

K(λ) = det

 A11(λ) A12(λ)− 1

A21(λ)− 1 A22(λ)

 = A11(λ)A22(λ)−(1−A12(λ)) (1−A21(λ)) = 0 . (2.30)

In structured population dynamics the function K is often referred as a characteristic function of

eigenvalues of an operator, and similar characteristic functions have been derived in (Prüss, 1983b;

Farkas & Hagen, 2007; Farkas, 2005; Farkas & Hinow, 2012; Farkas & Hagen, 2007). The main

advantage of having the characteristic function K is the task of locating the dominant eigenvalue

value of the operator L reduces to locating the roots of the functionK. Hence, in the following lemma

we show that under certain conditions on the model parameters all the roots of the characteristic

function K lie in the left half of the complex plane.

Lemma 2.14. Under the conditions

A12(0) < 1, A21(0) < 1 (2.31)

and

K(0) < 0 (2.32)

the function K does not have any roots with non-negative real part. Furthermore, the function K

has at least one negative real root.
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Proof. It is straightforward to see that

A11(λ) = A12(λ) = A21(λ) = A22(λ) = 0 as λ→∞ ,

so

lim
λ→∞

K(λ) = −1 .

Moreover, observe that for i = 1, 2 and j = 1, 2 the functions Aij : R → R+ are non-increasing,

i.e.,

∂λAij(λ) ≤ 0 .

Consequently, for λ ≥ 0 from (2.31) we have

1−A12(λ) ≥ 1−A12(0) > 0

and

1−A21(λ) ≥ 1−A21(0) > 0 .

Conversely, di�erentiating K(λ) for λ ≥ 0 yields

K ′ = A′11A22 +A11A
′
22 +A′12 (1−A21)︸ ︷︷ ︸

>0

+A′21 (1−A12)︸ ︷︷ ︸
>0

≤ 0 .

Thus the function K restricted to real numbers is non-increasing. This in turn together with the

condition (2.32) implies that the function K does not have any positive real root.

Now for the sake of a contradiction, assume that there is λ1 = a− bi ∈ C with a ≥ 0 and b 6= 0

such that

K(λ1) = 0 . (2.33)

Let us de�ne

G(x) =

∫ x

0

1

g(y)
dy ,



34

then for λ = a− bi we have

A11(λ1) =

∫ x

0

cos [bG(x)]

T (a, x)g(x)
dx+ i

∫ x

0

sin [bG(x)]

T (a, x)g(x)
dx .

This in turn implies that

−A11(a) ≤ Re A11(λ1) ≤ A11(a) . (2.34)

Analogous arguments yields similar inequalities for A12, A21 and A22. On the other hand, if (2.33)

holds true then using (2.34) it follows that

A11(a)A12(a) = |A11(λ1)A12(λ1)| = |(1−A12(λ1)) (1−A21(λ1))|

≥ |1− Re A12(λ1)| |1− Re A21(λ1)|

≥ (1−A12(a)) (1−A21(a)) ≥ 0 (2.35)

Since K(λ) is non-increasing for λ ≥ 0, from (2.32) we have

K(a) ≤ K(0) < 0 . (2.36)

The equation (2.36) is equivalent to

A11(a)A12(a) < (1−A12(a)) (1−A21(a)) ,

which obviously contradicts the equation (2.35). Hence, the function cannot have a complex root

with a non-negative real part.

To establish the last statement of the lemma, observe that the function 1−A12(λ) is continuous

and non-decreasing with

lim
λ→−∞

1−A12(λ) = −∞ .

Conversely, from the condition (2.31) we have 1 − A12(λ) > 0 for λ ≥ 0. Thus by Intermediate

Value Theorem there is λ0 < 0 such that 1 − A12(λ0) = 0. Consequently, evaluating K at λ = λ0
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yields

K(λ0) = A11(λ0)A22(λ0)− (1−A12(λ0)) (1−A21(λ0)) = A11(λ0)A22(λ0) ≥ 0 .

Hence, the function K has at least one negative real root, which completes the proof of the lemma.

With the above lemma in hand, we can now state the main result of this subsection in the form

of the following condition.

Condition 4. Suppose that the conditions

K(0) = A11(0)A22(0)− (1−A12(0)) (1−A21(0)) < 0 ,

A12(0) =
(
‖ka · u∗‖∞ + ‖Γ · kf‖∞

) ∫ x

0

1

g(x)

∫ x

0
exp

(
−
∫ x

s

A(s)

g(s)

)
ds dx < 1

and

A21(0) =

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

A(s)

g(s)
ds

)
dx < 1

hold true. Then, the non-trivial steady state solution u∗ is linearly exponentially stable.

Proof. Lemma 2.14 implies that the operator L1 + C has negative spectral radius,

s(L1 + C) < 0 .

Conversely, from Engel & Nagel (2000, �6, Corollary 1.11), Proposition 2.7 and Lemma 2.13 it

follows that

s(L) = s(L1 + L2 + L3) ≤ s(L1 + L2 + L3 + C − L2 − L3) = s(L1 + C) < 0 .

Consequently, from Engel & Nagel (2000, �6, Theorem 1.15 ) it follows that

ω0(L) = s(L) < 0 .
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Hence, Proposition 2.2 yields that the non-trivial steady state solution u∗ is linearly asymptotically

stable.

2.5 Concluding Remarks

Our primary motivation in this chapter is to investigate the ultimate behavior of solutions of a

generalized size-structured �occulation model. The model accounts for a broad range of biological

phenomena (necessary for survival of a community of microorganism in a suspension) including

growth, aggregation, fragmentation, removal due to predation, and gravitational sedimentation.

Moreover, the number of cells that erode from a �oc and enter the single cell population is modeled

with McKendrick-von Foerster type renewal boundary equation. Although it has been shown that

the model has a unique positive solution, to the best of our knowledge, the large time behavior of

those solutions has not been studied. Therefore, in this chapter we showed that under relatively

weak restrictions the �occulation model possesses a non-trivial stationary solution (in addition to

the trivial stationary solution).

We used the principle of linearized stability for nonlinear evolution equations to linearize the

problem around the stationary solution. This allowed us to infer stability of the stationary solutions

by the spectral properties of the linearized problem. We then used the rich theory developed for

semigroups, to derive the stability and instability conditions for the zero stationary solution. Lastly,

we used compactness and positivity arguments to derive conditions for local stability of the non-

trivial stationary solutions.

Lastly, even though we showed that the �occulation model has at least one non-trivial sta-

tionary solution, our analysis does not state these stationary solutions explicitly. The nonlinearity

introduced to the model by Smoluchowski coagulation equations, makes the task of �nding explicit

stationary solutions challenging even for constant model parameters. On the other hand, when only

Smoluchowski coagulation equation is considered, it has been shown that the model has closed form

self-similar solutions for constant and additive aggregation kernels (Menon & Pego, 2004; Wattis,

2006). Perhaps, under some conditions on the initial distribution and model parameters, solutions

of the �occulation model also converge to self-similar pro�les. Hence, as a future research, we plan

to further investigate self-similar solutions of the �occulation model.



Chapter 3

Numerical Framework for stability

analysis of steady states of general

evolution equations1

Many natural phenomena can be formulated as the di�erential law of the development (evolution)

in time of a physical system. The resulting di�erential equation combined with boundary conditions

a�ecting the system are called evolution equations. Evolution equations are a popular framework

for studying the dynamics of biological populations. For example, they have proven useful in un-

derstanding the dynamics of biological invasions (Schreiber & Ryan, 2011), bacterial �occulation

in activated sludge tanks (Biggs & Lant, 2002), and the spread of parasites and diseases (Gour-

ley et al., 2008). Since many biological populations converge to a time-independent state, many

researchers have used theoretical tools to investigate long-term behavior of these models. Ana-

lytical and �xed point methods have been used to show the existence of stationary solutions to

size-structured population models (Mirzaev & Bortz, 2015b; Farkas & Hinow, 2012) and semigroup

theoretic methods have been used to investigate the stability of these stationary solutions (Farkas

& Hagen, 2007; Mirzaev & Bortz, 2015a; Banasiak, 2011). For many models in the literature, the

principle of linearized stability (Webb, 1985; Kato, 1995) can be used to show that the spectral

1This chapter has been published:
I. Mirzaev & D. M. Bortz, (2017). �A numerical framework for computing steady states of structured population
models and their stability�, Mathematical Biosciences and Engineering, 14, no.4, (February 2017)
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properties of the in�nitesimal generator (IG) of the linearized semigroup determines the stability

or instability of a stationary solution. Moreover, using compactness arguments, spectral properties

of the in�nitesimal generator can be determined from the point spectrum of the IG, which in turn

can be written as the roots of a characteristic equation.

Despite this theoretical development, the derived existence and stability conditions are often-

times rather complex, and accordingly the biological interpretation of these conditions can be chal-

lenging. To overcome this di�culty several numerical methods for stability analysis of structured

population models have been developed (Breda et al., 2004; Engelborghs et al., 2002; Kirkilionis

et al., 2001; De Roos et al., 2010). For instance, Diekmann et al. (Kirkilionis et al., 2001; Diekmann

et al., 2003; De Roos et al., 2010) present a numerical method for equilibrium and stability analysis

of physiologically structured population models (PSPM) or life history models, where individuals

are characterized by a (�nite) set of physiological characteristics (traits such as age, size, sex, energy

reserves). In this method a PSPM is �rst written as a system of integral equations coupled with

each other via interaction (or feedback) variables. Consequently, equilibria and stability bound-

ary of the resulting integral equations are numerically approximated using curve tracing methods.

Later, De Roos (2008) presented the modi�cation of the curve tracing approach to compute the

demographic characteristics (such as population growth rate, reproductive value, etc) of a linear

PSPM. For a fast and accurate software for theoretical analysis of PSPMs we refer interested reader

to a software package by De Roos (2014). An alternative method for stability analysis of physiolog-

ically structured population models, developed by Breda and coworkers (Breda et al., 2013, 2005;

Breda, 2006), uses a pseudospectral approach to compute eigenvalues of a discretized in�nitesimal

generator. This method (also known as in�nitesimal generator (IG) approach) has been employed

to produce bifurcation diagrams and stability regions of many di�erent linear evolution equations

arising in structured population modeling (Breda et al., 2005, 2006, 2009). Unfortunately, not all

structured population models �t into the framework of PSPMs and thus there is a need for a more

general numerical framework for asymptotic analysis of structured population models.

In this chapter we develop a numerical framework to guide theoretical analysis of structured

population models. We demonstrate that our methodology can be used for numerical computation

and stability analysis of positive stationary solutions of both linear and nonlinear size-structured

population models. Moreover, we illustrate the utility of our framework to produce approximate
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existence and stability regions for steady states of size-structured population models. We also

provide an open source Python program used for the numerical simulations in our GitHub repository

(Mirzaev, 2015). Although, the examples presented in this chapter are size-structured population

models, in Section 3.1, we show that the framework is applicable to more general evolution equations.

The main idea behind the numerical framework is �rst to write a structured population model

in the form of an evolution equation and then use the well-known Trotter-Kato Theorem (Trotter,

1958; Kato, 1959) to approximate the in�nitesimal generator of the evolution equation on a �nite

dimensional space. This in turn allows one to approximate solutions (or spectrum) of the evolution

equation with the solution (or spectrum) of system of di�erential equations. Consequently, we

approximate the stationary solutions of an actual model with stationary solutions of the approximate

in�nitesimal generator on a �nite dimensional space. Approximate local stability of the approximate

steady states are then computed from the spectrum of the Jacobian of ODE system evaluated at

this steady states. Our method is similar to the IG approach in (Breda et al., 2005, 2006, 2009), in

a sense that we also approximate in�nitesimal generator and analyze the spectrum of the resulting

operator to produce existence and stability regions. However, in contrast to IG approach, our

framework also computes actual steady states and is easily applied to nonlinear evolution equations

arising in structured population dynamics.

The rest of the chapter is structured as follows. We describe the theoretical development of our

framework for general evolution equations in Section 3.1.1. Note that readers with more biological

background can skip Section 3.1.1 and directly jump into the application of the framework in Section

3.1.3. In Section 3.1.3, we illustrate the convergence of the approximation method by applying

it to linear Sinko-Streifer model, for which the exact form of the stationary solutions is known.

Moreover, in Section 3.1.2, we show that approximate local stability conditions for a stationary

solution can be derived from the spectral properties of the approximate in�nitesimal generator. To

further illustrate the utility of our approach, in Section 3.2, we apply our framework to a nonlinear

size-structured population model (also known as population balance equations in the engineering

literature) described in (Banasiak & Lamb, 2009; Bortz et al., 2008). Finally, we conclude with

some remarks and a summary of our work in Section 3.3.
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3.1 Numerical Framework

In this section, we demonstrate our numerical methodology for general evolution equations. We

�rst present the numerical scheme used to approximate the in�nitesimal generator of a semigroup.

Subsequently, in Section 3.1.3, we illustrate the convergence of our approach by applying it to linear

Sinko-Streifer equations, for which exact stationary solutions are known.

3.1.1 In�nitesimal generator approximation

Given a Banach space X , consider an abstract evolution equation,

ut = F(u), u(0, •) = u0 ∈ X , (3.1)

where F : D(F) ⊆ X → X is some operator de�ned on its domain D(F) and u0 is an initial

condition at time t = 0. Note that any boundary condition belonging to a given partial di�erential

equation can be included in the domain D(F). The solution to (3.1) can be related to the initial

state u0 by some transition operator T (t) so that

u(t, x) = T (t)u0(x) .

The transition operator T (t) is said to be a strongly continuous semigroup (or simply C0 -semigroup)

if satis�es the following three conditions:

1. T (s)T (t) = T (s+ t) for all s, t ≥ 0

2. T (0) = I, the identity operator on X

3. For each �xed u0 ∈ X ,

lim
t→0+

‖T (t)u0 − u0‖ = 0 .

Moreover, showing that the operator F generates a C0-semigroup is equivalent to establishing well-

posedness of the abstract evolution equation given in (3.1). In general, �nding the explicit form of

the transition operator is challenging. Hence, approximation methods, e.g. Yosida approximants,

are used to study a more complicated evolution equation and the semigroups they generate. One
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of the famous approximation theorems is due to Trotter (1958) and Kato (Kato, 1959) (see (Kato,

1976) for the classical literature on the approximation of generators of semigroups). The goal is to

construct approximating generators Fn on the approximate spaces Xn such that C0-semigroups Tn(·)

generated by Fn approximate the C0-semigroup T (t) generated by F . Although there are multiple

ways to approximate the in�nitesimal generator F , for our purposes we use the approximation

scheme based on Galerkin-type projection of the state space X (Banks & Kappel, 1989; Ito &

Kappel, 1998; Ackleh & Fitzpatrick, 1997). For the convenience of readers, we will summarize the

approximation scheme here.

Let Xn, n = 1, 2, . . . be a sequence of subspaces of X with dim(Xn) = n and de�ne projections

πn : X → Xn and canonical injections ιn : Xn → X . Assume that the projections πn are bounded,

i.e., there exists M̃ > 0 such that

‖πn‖ ≤ M̃ (A1)

for all n = 1, . . . , n. Moreover, assume that

lim
n→∞

πnv = v (A2)

for all v ∈ X . Consequently, for each subspace Xn we choose basis elements {βni }
n
i=1 such that each

element v of subspace Xn can be written in the form v =
∑n

i=1 αiβ
n
i . Moreover, for each subspace

Xn we de�ne the bijective mappings pn : Xn → Rn by

pnv = (α1, · · · , αn)T

and the norm on Rn by

‖v‖Rn =
∥∥p−1

n v
∥∥
X .

Consequently, we de�ne bounded linear operators Pn : X → Rn and En : Rn → X by

Pnv = pnπnv, v ∈ X (3.2)

and

Enz = ιnp
−1
n z, z ∈ Rn , (3.3)
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respectively. Finally, we de�ne approximate operators Fn on Rn by

Fn(z) = PnF (Enz) (3.4)

for all z ∈ Rn.

Accordingly, the Trotter-Kato Theorem states that the semigroup generated by the discrete

operator Fn converges to the semigroup generated by the in�nitesimal generator F . For the con-

venience of the reader, we state the theorem here and refer readers to (Ito & Kappel, 1998) for a

proof.

Theorem. (Trotter-Kato) Assume that (A1) and (A2) are satis�ed. Let (T (t))t≥0 and (Tn(t))t≥0,

n ∈ N, be strongly continuous semigroups on X and Rn with generators F and Fn, respectively.

Furthermore, assume that they satisfy the estimate

‖T (t)‖X , ‖Tn(t)‖Rn ≤Mewt for all t ≥ 0, n ∈ N ,

for some constants M ≥ 1, w ∈ R. Then the following are equivalent:

1. There exists a λ0 ∈ ρ(F) ∩
n⋂
i=1

ρ(Fi) such that for all v ∈ X

∥∥∥En (λ0In −Fn)−1 Pnv − (λ0I −F)−1 v
∥∥∥
X
→ 0 as n→∞ .

2. For all v ∈ X and t ≥ 0,

‖EnTn(t)Pnv − T (t)v‖X → 0

as n→∞, uniformly on compact t intervals.

In general, one establishes the �rst statement for a Trotter-Kato approximation and then uses

the second statement to approximate an abstract evolution equation on a �nite dimensional space.

In their paper, Ito and Kappel (Ito & Kappel, 1998) present the standard ways to establish the �rst

statement of the theorem (see also (Banks & Kappel, 1989; Ackleh & Fitzpatrick, 1997; Ackleh,

1997)). Therefore, here we assume that for a particular problem the �rst statement in the theorem

has already been established and thus the evolution equation in (3.1) can be approximated by the
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following system of ODEs,

u′n(t) = Fn (un(t)) , un(0) = Pnu(0, •) . (3.5)

Consequently, the solution of the IVP is mapped onto the in�nite dimensional Banach space X and

one has the following convergence

lim
n→∞

‖Enun(t)− u‖X = 0 (3.6)

for t in compact intervals.

In general, �nding explicit stationary solutions of abstract evolution equations is a challenging

task. Conversely, many e�cient root �nding methods have been developed for �nding steady states

of a system of ODEs. For large-scale nonlinear systems, many e�cient methods have been developed

as well. Hence, we propose a numerical framework that utilizes those e�cient root �nding methods

to approximate steady state solutions of general evolution equations. The idea is to use an e�cient

and accurate root �nding method to approximate a stationary solution of the evolution equation

(3.1) with the stationary solutions of the IVP in (3.5). Thus, as a consequence of the Trotter-Kato

Theorem, the steady states of (3.5) converge to the steady states of (3.1) as n→∞.

3.1.2 Stability of stationary solutions

Studying the asymptotic behavior of solutions is a fundamental tool for exploring the evolution equa-

tions which arise in the mathematical modeling of real world phenomena. To this end, many math-

ematical methods have been developed to describe long-term behavior of evolution equations. For

instance, for long-time behavior of linear evolution equations, linear semigroup theoretic methods

can be used to formulate physically interpretable conditions. Furthermore, for nonlinear evolution

equations, the principle of linearized stability can be used to relate the spectrum of the linearized

in�nitesimal generator to the local stability or instability of the stationary solution. Nevertheless,

investigating the spectrum of the linearized in�nitesimal generator is cumbersome and requires ad-

vanced functional analysis techniques. In contrast to general evolution equations, the asymptotic

behavior of ordinary di�erential equations are determined by the eigenvalues of the Jacobian and
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well-studied. Hence, in this section we demonstrate that the approximation scheme, presented in

Section 3.1.1, can also be used to give some insights about the stability of stationary solutions of

the general evolution equations.

Stability results discussed in this section are not in a traditional Lyapunov sense. In particular,

since stationary solutions discussed in this chapter are only approximations to actual stationary

solutions, the stability results only hold for �nite time intervals. Therefore, we refer to this kind

of stability as approximate local stability of stationary solutions as this stability is deduced from

numerical approximation of an evolution equation. In mathematical terms, the local numerical

stability of a stationary solution is de�ned as follows.

De�nition 3.1. Stationary solution u∗ of an abstract evolution (3.1) is called approximately locally

stable, if for every closed �nite time interval [0, tf ] and ε > 0, there exists δ > 0 such that a unique

solution of (3.1), u(t, x), with initial condition u0 ful�lling ‖u0 − u∗‖X < δ satis�es

‖u(t, ·)− u∗‖X < ε (3.7)

for all t ∈ [0, tf ].

Having the required de�nition in hand, we now prove the following stability result for general

evolution equations.

Corollary 3.2. Let u∗ denote a stationary solution of the abstract evolution (3.1) and JA(un)

denote the Jacobian of the approximate system of ODEs de�ned in (3.5). If for all su�ciently large

n the eigenvalues of JA(Pnu∗) are strictly negative, then u∗ is approximately locally stable in the

sense of De�nition 3.1.

Proof. Since the in�nitesimal generator approximation scheme, presented in Section 3.1.1, is con-

vergent, for every given ε > 0 and �nite time interval [0, tf ] there exist nε ∈ N such that for

n ≥ nε,

‖u(t, ·)− Enun(t)‖X < ε/2 (3.8)

for all t ∈ [0, tf ] (where the bounded linear function En is de�ned as in (3.3)). Moreover, the

eigenvalues of JA(Pnu∗) are strictly negative for all su�ciently large n. This in turn implies that
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PMu∗ is a locally asymptotically stable solution of (3.5) for some M ≥ nε. That is, for given ε > 0

there is δ > 0 such that

‖uM (t, ·)− PMu∗‖RM = ‖EMuM (t, ·)− u∗‖X < ε/2 (3.9)

for all t > 0 and for all u0 such that ‖PMu0 − PMu∗)‖RM = ‖u0 − u∗‖X < δ (see for instance

(Arnold, 1992, �23)). Consequently, combining (3.8) and (3.9) yields

‖u(t, ·)− u∗‖X ≤ ‖u(t, ·)− EMuM (t, ·)‖X + ‖EMuM (t, ·)− u∗‖X < ε

for all t ∈ [0, tf ] and for all u0 such that ‖u0 − u∗‖X < δ.

We note that although the stability result of Corollary 3.2 holds for arbitrarily large �nite time

intervals, the Corollary does not guarantee Lyapunov stability of stationary solutions.

3.1.3 Numerical convergence results

To verify convergence of the proposed approximation scheme, we apply the framework to the linear

Sinko-Streifer model (Sinko & Streifer, 1967) for which an exact form of the stationary solution is

available. The model describes the dynamics of single species populations and takes into account

the physiological characteristics of animals of di�erent sizes (and/or ages). The mathematical model

reads as

ut = G(u) = −(gu)x − µu, t ≥ 0, 0 ≤ x ≤ x <∞ (3.10)

with a McKendrick-von Foerster type renewal boundary condition at x = 0

g(0)u(t, 0) =

∫ x

0
q(y)u(t, y) dy

and initial condition

u(0, x) = u0(x) .

The variable u(t, x) denotes the population density at time t with size class x. The population

is assumed to have a minimum and a maximum size 0 and x < ∞, respectively. The function
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g(x) represents the average growth rate of the size class x and the coe�cient µ(•) represents a

size-dependent removal rate due to death or predation. The renewal function q(•) represents the

number of new individuals entering the population due to birth.

We note that this boundary condition could also be used to model the surface erosion of �ocs,

where single cells are eroded o� the �oc and enter single cell population. The well-posedness and

stability of equilibrium solutions of the Sinko-Streifer equations has been extensively studied by

many researchers using a wide variety of mathematical conditions (Gurtin & MacCamy, 1974, 1979;

Prüss, 1983b,a; Diekmann et al., 1984; Banks & Kappel, 1989). For numerical simulation of the

model, a convergent numerical scheme has been proposed in (Banks & Kappel, 1989), and inverse

problems for estimation of the parameters of the model have been discussed in (Banks et al., 1987;

Banks & Kunisch, 1989; Fitzpatrick, 1993).

Setting the right side of the equation (3.10) to zero and integrating over the size on (0, x) yields

the exact stationary solution

u∗(x) =
1

g(x)
exp

(
−
∫ x

0

µ(s)

g(s)
ds

)∫ x

0
q(y)u∗(y) dy . (3.11)

Multiplying both sides of (3.11) by q(x) integrating over the size on (0, x), we obtain a necessary

condition for existence of a stationary solution,

1 =

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s)

g(s)
ds

)
dx . (3.12)

The convergence of the approximation scheme presented in Section 3.1.1 for Sinko-Streifer models

has already been established in (Banks & Kappel, 1989). Using the basis functions for n-dimensional

subspace Xn of the state space X = L1(0, x) are de�ned as

βni (x) =

 1; xni−1 < x ≤ xni ; i = 1, . . . , n

0; otherwise

for positive integer n with {xni }ni=0 a uniform partition of [0, x], and ∆x = xnj − xnj−1 for all j. The
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functions βn form an orthogonal basis for the approximate solution space

Xn =

{
h ∈ X | h =

n∑
i=1

αiβ
n
i , αi ∈ R

}
,

and accordingly, we de�ne the orthogonal projections πn : X → Xn

πnh(x) =
n∑
j=1

αjβ
n
j (x), where αj =

1

∆x

∫ xnj

xnj−1

h(x) dx.

Moreover, since the evolution equation de�ned in (3.10) is a linear partial di�erential equation, the

approximate operator Gn on Rn is given by the following n× n matrix

Gn =



− 1
∆x
g(xn1 )− µ(xn1 ) + q(xn1 ) q(xn2 ) · · · q(xnn−1) q(xnn)

1
∆x
g(xn1 ) − 1

∆x
g(xn2 )− µ(xn2 ) 0 · · · 0

0 1
∆x
g(xn2 )

. . .
. . .

...

...
. . . 1

∆x
g(xnn−2) − 1

∆x
g(xnn−1)− µ(xnn−1) 0

0 · · · 0 1
∆x
g(xnn−1) − 1

∆x
g(xnn)− µ(xnn)


.

(3.13)

At this point, one can use numerical techniques to calculate zeros of the linear system

Gnun = 0 . (3.14)

For the purpose of illustration, we set the model rates to

q(x) = a(x+ 1), g(x) = b(x+ 1), µ(x) = c . (3.15)

Plugging this rates into the necessary condition (3.12) yields

a =


ln 2
b b = c

(b− c)/(21−c/b − 1) b 6= c

.

For b = c this is a curve in 3D coordinate system and when b 6= c the surface is illustrated in

Figure 3.1a. To illustrate the utility of our approach, we used the numerical scheme described in

this section to generate existence and stability regions for Sinko-Streifer model. Particularly, the
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(a) (b) (c)

Figure 3.1: Results of the numerical simulations. a) a, b , c values satisfying the necessary condition
(3.12), form a 3D surface (blue surface). Steady states of the Sinko-Streifer model only exist
on the red line b) Comparison of exact stationary solution (for the point marked with red star
in Figure 3.1a) with approximate stationary solution for n = 100. c) Absolute error between
exact stationary solution and approximate stationary solution decays linearly as the dimension of
approximate subspaces Xn increase.

interval (a, b, c) ∈ [0, 1] × [0, 1] × [0, 1] is discretized with ∆a = ∆b = ∆c = 0.01. Consequently,

we checked for the existence of a positive steady state at each of these discrete points. Since

the approximate operator Gn is an n × n matrix, we can check if Gn is a singular matrix using

standard tools. The resulting existence region is depicted in Figure 3.1a forming a nontrivial three-

dimensional curve (red) on the surface de�ned by the necessary condition for existence of the steady

states. Moreover, the existence and stability regions of the Sinko-Streifer model coincide for the

chosen model rates in (3.15).

For the purpose of illustration, we arbitrarily choose b = 0.5 and a = c = 1 (marked with a red

star in Figure 3.1a) as for these values a positive steady state of the Sinko-Streifer model exists.

Figure 3.1b indicates that even for n = 100 the �t between approximate and actual stationary

solution is satisfactory (the in�nity norm of the error is 0.004). Moreover, Figure 3.1c illustrates

that as the dimension of the approximate space Xn increases the absolute error between the exact

stationary solution and the approximate stationary solution decreases. Furthermore, the numerical

algorithm has a linear convergence rate. This is due to the fact that we chose zeroth order functions

as basis functions for approximate subspaces. In general, if one desires a higher order convergence

for Galerkin-type approximations, choosing higher order basis functions gives higher convergence

rate (Kappel & Kunisch, 1981).
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3.2 Application to nonlinear population balance equation

In aerosol physics and environmental sciences, studying the �occulation of particles is widespread.

The process of �occulation involves disperse particles in suspension combining into aggregates (i.e.,

a �oc) and separating.

3.2.1 Numerical implementation and results

For the numerical implementation we adopt the scheme developed in Section 3.1.1. Therefore,

the approximate formulation of (1.1) becomes the following system of n nonlinear ODEs for un =

(α1, · · · , αn)T ∈ Rn :

u̇n = Fn(un) = Gnun + PnA(Enun) + PnB(Enun), (3.16)

un(0, x) = Pnu0(x) , (3.17)

where the matrix Gn is de�ned as in Section 3.1.3,

PnA(Enun) =



−α1
∑n−1

j=1 ka(x
n
1 , x

n
j )αj∆x

1
2ka(x

n
1 , x

n
1 )α1α1∆x− α2

∑n−2
j=1 ka(x

n
2 , x

n
j )αj∆x

...

1
2

∑n−2
j=1 ka(x

n
j , x

n
n−1−j)αjαn−1−j∆x− αn−1ka(x

n
n−1, x

n
1 )α1∆x

1
2

∑n−1
j=1 ka(x

n
j , x

n
n−j)αjαn−j∆x


and

PnB(Enun) =



∑n
j=2 Γ(xn1 ; xnj )kf (xnj )αj∆x− 1

2kf (xn1 )α1∑n
j=3 Γ(xn2 ; xnj )kf (xnj )αj∆x− 1

2kf (xn2 )α2

...

Γ(xnn−1; xnn)kf (xnn)αn∆x− 1
2kf (xnn−1)αn−1

−1
2kf (xnn)αn


.

The convergence of the approximate scheme (3.16)-(3.17) has been established by Ackleh (1997).

Therefore, the stationary solutions of the microbial �occulation model (1.1) can be systematically
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approximated by the stationary solutions of the system of nonlinear ODEs given in (3.16). We

used Powell's hybrid root �nding method (Powell, 1970) as implemented in Python 2.7.10 2 to �nd

zeros of the steady state equation (see available code at (Mirzaev, 2015)). For faster convergence

rate, we provided the solver with the exact Jacobian of Fn(un) (see Section 3.1.2, Eqn (3.18) for

the formulation of the Jacobian). For the purpose of illustration, for a post-fragmentation density

function we chose the well-known Beta distribution3 with α = β = 2,

Γ(x, y) = 1[0, y](x)
6x(y − x)

y3
,

where 1I is the indicator function on the interval I. The aggregation kernel was chosen to describe

�ow within laminar shear �eld (i.e., orthokinetic aggregation)

ka(x, y) =
(
x1/3 + y1/3

)3

Other model rates were chosen arbitrarily as

q(x) = a(x+ 1), g(x) = b(x+ 1) µ(x) = cx kf (x) = x ,

where a, b and c are some positive real numbers.

The main advantage of this approximation scheme (3.16)-(3.17) is that it can be initialized very

fast using Toeplitz matrices (Matveev et al., 2015). Fast initialization of the discretization scheme

allows one to check the existence of the steady states at many discrete points e�ciently. This in

turn allows for the generation of the existence and stability regions of the steady states of the PBE

in (1.1). To illustrate the existence regions of the steady states of the PBE, we discretized the

intervals a ∈ [0, 15] , b ∈ [0, 1] and c ∈ [0, 5] with ∆a = ∆b = ∆c = 0.1. We note that for faster

convergence the root �nding method needs an initial seed close to the steady state solution. Since

we have no information about the existing steady state, we seed the root �nding method with 10

2scipy.optimize.fsolve
3Although normal and log-normal distributions are mostly used in the literature, Byrne et al. (2011) have provided

evidence that the Beta density function describes the fragmentation of small bacterial �ocs.
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di�erent uniform initial guesses i.e.,

{
u0(x) = 2i | i = 0, 1, . . . , 9

}
,

before we conclude a positive steady state does not exist for a given point (a, b, c). Consequently,

we checked for the existence of a positive steady state at each of these discrete points. As depicted

in Figure 3.2a, approximate existence region of positive steady states of the PBE forms a three

dimensional wedge like region. Moreover, in Figures 3.2b-3.2d, to deduce stability of each steady

state solution, we checked the spectrum of the Jacobian matrix evaluated at each steady state.

Particularly, if the real part of rightmost eigenvalue of the Jacobian matrix is negative, the steady

state is identi�ed as locally stable (blue region). Conversely, if the real part of the rightmost

eigenvalue of the Jacobian matrix is positive the steady state is identi�ed as unstable (red region).

One can observe that growth (b) and removal (c) rates can balance the smaller renewal rates (a),

and thus locally stable steady states exist. However, as the renewal rate gets larger steady states

�rst become unstable and then cease to exist (yellow region). This is also illustrated in Figure 3.3b,

where steady states start diverging for the larger renewal rates (a).

Figure 3.3a illustrates an example stationary solution for b = 0.5, a = c = 1. To con�rm that

the function depicted in Figure 3.4 is indeed a locally stable steady state, we simulated the system

of ODEs in (3.16)-(3.17) for t ∈ [0, 10] with a collection of arbitrary initial conditions (Figure 3.4a)

close to the steady state solution. One can observe in Figure 3.4 that the stationary solution is

indeed locally stable and thus initial conditions, Figure 3.4, converge to the steady state depicted

in Figure 3.4b. As depicted in Figures 3.4c and 3.4d, convergence is also re�ected in the evolution

of the total number of �ocs (zeroth moment),

M0(t) =

∫ x

0
u(t, x) dx ≈

n∑
i=1

∫ xni

xni−1

αiβ
n
i (x) dx = ∆x

n∑
i=1

αi ,

and total mass of the �ocs (�rst moment),

M1(t) =

∫ x

0
xu(t, x) dx ≈

n∑
i=1

∫ xni

xni−1

αixβ
n
i (x) dx =

∆x

2

n∑
i=1

αi
(
xni + xni−1

)
.

Moreover, to con�rm that the steady state solution is not changing with increasing dimension
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(a) (b)

(c) (d)

Figure 3.2: Existence and stability regions for the steady states of the PBE a) Existence region for
the steady states of the PBE forms a wedge like shape. b) Stability region for b = 0.1, a ∈ [0, 15]
and c ∈ [0, 5]. c) Stability region for b = 0.5, a ∈ [0, 15] and c ∈ [0, 5]. d) Stability region for
b = 1.0, a ∈ [0, 15] and c ∈ [0, 5]. Color bar represents the real part of rightmost eigenvalue of the
Jacobian matrix evaluated at each steady state. Yellow regions represents the region for which a
positive steady state does not exists.
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(a) (b)

Figure 3.3: a) An example steady-state solution of the PBE for b = 0.5, a = c = 1. b) Steady states
for increasing renewal rate and b = c = 1

of approximate spaces Xn, we simulated our numerical scheme for di�erent values of n. Figure

3.5a illustrates that stationary solutions converge to exact stationary solution of (1.1) as n → ∞.

Furthermore, one can observe, in Figure (3.5)b that di�erence between approximate steady states

for di�erent values of n is considerably small.

3.2.2 Conditions for numerical stability of positive steady states

In this section, we derive conditions for approximate local stability of the stationary solution of the

nonlinear population balance equation de�ned in (1.1). In particular, we impose conditions on the

model rates of the population balance equation for which the �rst statement of Corollary 3.2 holds.

Towards this end, we use the well-known Gershgorin theorem for locating eigenvalues of a matrix.

The Gershgorin theorem states that each eigenvalue of A lies in one of the the circular areas, called

Gershgorin disks, in the complex plane that is centered at the ith diagonal element and whose radius

is Ri,

{z ∈ C : |z − aii| ≤ Ri} ,

where

Ri =

n∑
j=1, j 6=i

|aji| .

Since the approximate system for the microbial �occulation model is nonlinear, we linearize the
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(a) (b)

(c) (d)

Figure 3.4: Time evolution of the �occulation model with arbitrary initial conditions. a) Four
di�erent initial conditions are chosen close to the steady state. b) Solution of the PBE for those
initial conditions at t = 10. c) Evolution of the total number M0(t) of the �ocs for t ∈ [0, 10]. d)
Evolution of the total mass M1(t) of the �ocs for t ∈ [0, 10].
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(a) (b)

Figure 3.5: Change in zeroth and �rst moments with increasing dimension of the approximate
space Xn. a) Change in the total number and the total mass of the �ocs with respect to increasing
dimension n. Dashed red lines and dotted green lines corresponds to the total number and the total
mass of the �ocs of the steady state for n = 1000, respectively. b) Steady state solution for n = 100
and n = 500.

system around its stationary solutions. Let u∗ ∈ L1(0, x) be a stationary solution of (1.1) and

denote the projection of the stationary solution u∗ onto Rn by α = Pnu∗ = [α1, · · · , αn]T , then the

Jacobian of the approximate operator Fn de�ned in (3.16) can be written as

JF (α) = Gn + JA(α) + JB(α) , (3.18)
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where Gn is de�ned in (3.13),

JA(α) =



−α1ka(x
n
1 , x

n
1 )∆x −α1ka(x

n
1 , x

n
2 )∆x · · · −α1ka(x

n
1 , x

n
n−1)∆x 0

−α2ka(x
n
2 , x

n
1 )∆x · · · −α2ka(x

n
2 , x

n
n−2)∆x 0 0

...
...

. . .
...

...

−αN−1ka(x
n
n−1, x

n
1 )∆x 0 · · · 0 0

0 0 · · · 0 0



+



−
∑n−1

j=1 ka(x
n
1 , x

n
j )αj∆x 0 · · · 0 0

α1ka(x
n
1 , x

n
1 )∆x −

∑n−2
j=1 ka(x

n
2 , x

n
j )αj∆x 0 · · · 0

α2ka(x
n
1 , x

n
2 )∆x α1ka(x

n
2 , x

n
1 )∆x

. . . 0
...

...
...

. . . −
∑1

j=1 ka(x
n
n−1, x

n
j )αj∆x 0

αn−1ka(x
n
1 , x

n
n−1)∆x αn−2ka(x

n
2 , x

n
n−2)∆x · · · α1ka(x

n
n−1, x

n
1 )∆x 0


,

and

JB(α) =



−1
2kf (xn1 ) Γ(xn1 ;xn2 )kf (xn2 )∆x Γ(xn1 ;xn3 )kf (xn3 )∆x · · · Γ(xn1 ;xnn)kf (xnn)∆x

0 −1
2kf (xn2 ) Γ(xn2 ;xn3 )kf (xn3 )∆x · · · Γ(xn2 ;xnn)kf (xnn)∆x

... 0
. . .

. . .
...

0 · · · 0 −1
2kf (xnn−1) Γ(xnn−1;xnn)kf (xnn)∆x

0 0 · · · 0 −1
2kf (xnn)


To bound the eigenvalues of JF (α) we use Gershgorin theorem. Consequently, the centers and

the radii of Gershgorin disks are given by

aii = − 1

∆x
g(xni )− µ(xni )− 1

2
kf (xni )− αika(xni , xni )∆x−

n−i∑
j=1

ka(x
n
i , x

n
j )αj∆x

and

Ri ≤
1

∆x
g(xni ) + q(xni ) +

i−1∑
j=1

Γ(xnj ;xni )kf (xni )∆x+

n−i∑
j=1

αjka(x
n
j , x

n
i )∆x+

n−i∑
j=1, j 6=i

αjka(x
n
i , x

n
j )∆x ,
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(a) (b)

(c) (d)

Figure 3.6: Eigenvalues of the Jacobian JF (α) multiplied by ∆x for the steady state illustrated in
Figure 3.3a. a) Eigenvalues of the Jacobian plotted in the complex plane for n = 20. b) Eigenvalues
of the Jacobian plotted in the complex plane for n = 50. c) Eigenvalues of the Jacobian plotted in
the complex plane for n = 200. d) Change in the rightmost eigenvalue for increasing n. Dashed
black line corresponds to the rightmost eigenvalue of the Jacobian for n = 1000.
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respectively. Consequently, if we can show that

|aii| > Ri for each i ∈ {1, . . . , n} , (3.19)

then each of the Gershgorin disks lie strictly on the left side of the complex plane. To this end,

inequality (3.19) can be simpli�ed as

µ(xni ) +
1

2
kf (xni ) > q(xni ) +

i−1∑
j=1

Γ(xnj ;xni )kf (xni )∆x+
n−i∑
j=1

αjka(x
n
j , x

n
i )∆x (3.20)

for each i ∈ {1, · · · , n}. Accordingly, taking the limit of (3.20) as n→∞ yields

µ(x) +
1

2
kf (x) > q(x) +

∫ x

0
Γ(y, x)kf (x) dy +

∫ x−x

0
ka(x, y)u∗(y) dy (3.21)

for all x ∈ [0, x] and together with the number conservation requirement (1.5) implies

q(x) +
1

2
kf (x)− µ(x) +

∫ x−x

0
ka(x, y)u∗(y) dy < 0

for all x ∈ [0, x]. Conversely, note that the integral approximations in (3.20) are right Riemann sums.

Therefore, if the functions Γ(y, x) and ka(x, y)u∗(y) are decreasing in y then integral approximations

in (3.20) are underestimation of the integrals in (3.21). Thus, the inequality stated in (3.21) ensures

that the eigenvalues of the Jacobian JF (α) are strictly negative for all su�ciently large n. Now, we

are in a position to summarize the results of this section in the following proposition.

Proposition 3.3. Let u∗ be a stationary solution of the microbial �occulation model (1.1). More-

over, if

q(x) +
1

2
kf (x)− µ(x) +

∫ x−x

0
ka(x, y)u∗(y) dy < 0 (3.22)

for all x ∈ [0, x] and

∂y (ka(x, y)u∗(y)) ≤ 0 and ∂yΓ(y, x) ≤ 0 (3.23)

for all x ∈ [0, x] and y ∈ [0, x], then stationary solution u∗ is approximately locally stable in the
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sense of De�nition 3.1.

To illustrate the utility of the framework developed in this section we applied our approach to

the model rates given in Section 3.2.1 for generation of Figure 3.3a. The Beta distribution used

for the post-fragmentation function Γ is not monotonically decreasing, and thus it does not satisfy

the conditions of Proposition 3.3. However, Figure 3.6a-c illustrates that the model rates satisfy

the conditions of Corollary 3.2. In fact, Figure 3.6d depicts that for the steady state illustrated in

Figure 3.3a the eigenvalues of JF (Pnu∗) have strictly negative real part for n ≥ 5. Therefore, as it

has already been established in Figure 3.4, this steady state solution is locally asymptotically stable

in the sense of Corollary 3.2.

3.3 Concluding remarks

Our primary motivation in this chapter was to show that available numerical tools in the litera-

ture can facilitate theoretical analysis of evolution equations. Towards this end we developed a

numerical framework for theoretical analysis of evolution equations arising in population dynamical

models. The main idea behind this framework is to approximate generators of semigroups of evo-

lution equations and use numerical tools to study stability of steady states of evolution equations.

We demonstrated the utility of our approach by applying the numerical framework to both linear

and nonlinear size-structured population models. In particular, we generated approximate existence

and stability regions of the steady states of both models (which can be di�cult to obtain by using

conventional analytical tools). We showed that our numerical framework can also be used to gain

insight about the approximate local stability (see De�nition 3.1) of stationary solutions. Further-

more, code used for the numerical simulations can be obtained from our GitHub repository under

the open source MIT License (MIT) (Mirzaev, 2015).

Although the stability inequality in (3.7) holds for arbitrarily large �nite time intervals, behavior

of the solutions as t → ∞ is unclear. Hence, we note that the local stability of the stationary

solutions speci�ed in Corollary 3.2 is not in a usual Lyapunov sense. In order to prove Lyapunov

stability of stationary solutions using the approximation scheme presented in Section 3.1.1, one has

to prove uniform convergence of the approximation scheme for all t ≥ 0. Hence, as a future plan we

wish to utilize the numerical framework presented here to establish Lyapunov stability of stationary
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solutions of general evolution equations.



Chapter 4

E�cient numerical approximation of

non-trivial stationary solutions

In Chapter 3 we developed a numerical framework for numerical computation and stability anal-

ysis of positive stationary solutions of size-structured population models. However, the employed

numerical scheme was only �rst order accurate and thus required large approximation dimension

for a reasonable accuracy. Therefore, in this chapter, we wish to improve on the numerical scheme

of Chapter 3. In particular, we develop several e�cient and high-precision numerical schemes to

approximate stationary solutions of the microbial �occulation equations. All the codes employed for

the numerical simulations of this chapter can be found in my GitHub repository (Mirzaev, 2017).

We also note that the results of this chapter have not been published yet and are merely explorations

of numerical issues encountered in the approximation of the stationary solutions of the microbial

�occulation equations.

Recall that at steady state the microbial �occulation equations reduce to �rst order integro-

di�erential equation

∂x(gu∗) =
1

2

∫ x

0
ka(x− y, y)u∗(x− y)u∗(y) dy − u∗(x)

∫ x−x

0
ka(x, y)u∗(y) dy

+

∫ x

x
Γ(x; y)kf (y)u∗(y) dy − 1

2
kf (x)u∗(x)− µ(x)u∗(x) (4.1)

with a boundary condition

61
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g(0)u∗(0) =

∫ x

0
q(x)u∗(x)dx .

This in turn can be expressed in the form of a boundary value problem.

du∗
dx

= F (x, u∗), u∗(0) =

∫ x

0
q(x)u∗(x)dx/g(0) . (4.2)

If we set ∫ x

0
q(x)u∗(x)dx = 1

and adjust the renewal rate to the obtained steady state as in Chapter 2, we get an initial value

problem

du∗
dx

= F (x, u∗), u∗(0) = 1/g(0) . (4.3)

Using Picard's Existence Theorem for IVPs, one can show that the IVP (4.3) has a unique solution

for a suitably chosen interval around the initial condition. Therefore, the above IVP is well-posed.

Note that we still need results of Chapter 2 for the existence of a positive stationary solution since

Picard's Existence Theorem does not guarantee positivity of solutions of (4.3).

The solutions of the IVP (4.3) can be approximated using various numerical schemes such as

�nite di�erence, �nite element, and spectral methods. One of the straightforward ways to approx-

imate solutions of IVPs is using �nite di�erence methods. Hence, in Section 4.1, we present a

numerical scheme based on �nite di�erence method. We compare accuracy and rate of convergence

of several multistep Finite Di�erence methods up to order four.

In Section 4.2, we develop another numerical scheme to approximate the solutions of the IVP

(4.3). The numerical scheme is based on spectral collocation method and thus yields very accurate

results even for small approximation dimensions. We exploit spectral accuracy of the method for the

numerical spectral analysis. In particular, we illustrate that the eigenvalues of the Fréchet derivative

(2.10) evaluated at the stationary solutions can be approximated using spectral collocation method.

This in turn allows to heuristically deduce local stability of numerically computed steady states.

Furthermore, in Section 4.3, we explore the stationary solutions of the model for various biologically

relevant parameters and give valuable insights for the e�cient removal of suspended particles.

Unless otherwise stated, all the model rates and parameters used for the simulations in this
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(a) (b)

Figure 4.1: Results of numerical simulation of Finite Di�erence methods. a) Rate of convergence
(compared to u200

∗ (x)) for di�erent Finite Di�erence Methods. a) Steady state solution for Cg = 1
and γ̇ = 1 using Trapezoidal method.

chapter are given in Appendix A.

4.1 Finite Di�erence Methods

This initial value problem can be easily approximate using Euler's method

un+1 = un + ∆xF (xn, un) . (4.4)

Integrals in the IVP can be approximated using a second order Trapezoidal method

∫ x

0
f(s) ds ≈ ∆x

2

N−1∑
i=0

(f(xi+1) + f(xi)) ,

Therefore, the resulting system is implicit and thus has to be solved using a root �nding algorithm,

e.g., Newton's algorithm. In principle, since the IVP (4.3) is a well-posed, the root �nding algorithm

should converge to the unique solution of IVP provided that the algorithm is seeded su�ciently close

to the solution of the IVP.

Euler's method can be easily modi�ed to the �rst order Backward Euler method,

un+1 = un + ∆xF (xn+1, un+1) . (4.5)

the second order Trapezoidal Method,
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un+1 = un +
∆x

2
(F (xn, un) + F (xn+1, un+1)) , (4.6)

the third order Adams-Bashforth method

un+1 = un +
∆x

12
(23F (xn, un)− 16F (xn−1, un−1) + 5F (xn−2, un−2)) , (4.7)

and the fourth order Milne's Method,

un+1 = un−1 +
∆x

3
(F (xn−1, un−1) + 4F (xn, un) + F (xn+1, un+1)) , (4.8)

The rate of convergences of the above methods are illustrated in Figure (4.1a). Backward Euler

method and Trapezoidal method perform better compared to Euler's Method. However, increasing

the order of the method to third order with Adams-Bashforth and fourth order with Milne's method

did not improve the rate of convergence and accuracy. In fact, both Adams-Bashforth and Milne's

methods marginally underperformed Trapezoidal method. An example steady state solution for

Cg = 1 and γ̇ = 1, computed using Trapezoidal method, is depicted in Figure 4.1b.

Although the Trapezoidal method, the best of the �ve methods listed above, has convergence

rate of 1.55, it achieves three digit precision (10−3) only after N = 70. In the subsequent section,

we show that this rate of convergence and accuracy can be signi�cantly improved using spectral

collocation methods.

4.2 Spectral collocation method

In this section, we develop a numerical scheme to approximate non-trivial stationary solutions

of the general size-structured �occulation model, (1.1). The approximation scheme is based on

spectral collocation method. Spectral collocation method, also known as pseudospectral methods,

is a subclass of Galerkin spectral methods (Fornberg, 1998; Trefethen, 2000). Spectral methods

have higher accuracy compared to Finite di�erence and Finite Element methods and thus have

widespread use for the numerical simulation of partial di�erential equations. The main idea behind

the method is to express numerical solutions as a �nite expansion of some set of basis functions



65

on a number of points on the domain (i.e., collocation points). Convergence of the approximations

depend only on the smoothness of the solutions and thus the method can attain high precision even

with a few grid points.

We approximate the stationary solution u∗(x) as linear combination of Nth degree polynomials

{φj(x)}Nj=0, i.e.,

[INu∗] (x) =

N∑
j=0

u∗(xj)φj(x) ,

for some collocation points {xj}Nj=0 ⊂ I. Furthermore, we require that this approximation is exact

at collocation points, i.e.,

φj(xk) =


1 if j = k

0 otherwise

.

The polynomials {φj(x)}Nj=0 satisfying the above requirements are called cardinal functions. Straight-

forward way to compute such polynomials is using Lagrangian interpolation, i.e.,

φj(x) =
π(x)

π′(xj)(x− xj)
, (4.9)

where π(x) = ΠN
j=0(x− xj). Consequently, derivative can be computed as

d

dx
[INu∗] (x) =

N∑
j=0

u∗(xj)φ
′
j(x) .

This in turn implies that derivative at xi can be computed as linear combination of {u∗(xj)}Nj=0.

Plugging in collocation points into above equation yields the di�erentiation matrix [D]i, j = φ′j(xi).

Entries of D can be computed explicitly as

Dij =
π′(xi)

π′(xj)(xi − xj)

for o�-diagonal entries i 6= j and

Djj =

N∑
k = 0, k 6= j

1

xj − xk
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(a) (b)

Figure 4.2: a) Error in approximation of the steady states of linear Sinko-Streifer. Compared to
existing analytical solution. b) Example steady state solutions for linear Sinko-Streifer equations
and nonlinear microbial �occulation equations

for diagonal entries. Let ~u denote the vector

[
u∗(x0) · · · u∗(xN )

]T
,

then derivatives at collocation points are given by

[
u′∗(x) · · · u′∗(xN )

]T
= D~u .

When a smooth function is interpolated by polynomials in N equally space points, the ap-

proximations sometimes fail to converge as N → ∞, which is also known as Runge phenomenon.

Moreover, when using uniform gird points, the elements of the di�erentiation matrix not only fail

to converge but they get worse and diverge as N → ∞. For the spectral collocation methods,

it is a general consensus to cluster the grid points roughly quadratically toward the endpoints of

the interval (Fornberg, 1998). Therefore, for collocation points we use unevenly space grid points.

Unless, otherwise speci�ed, we employ non-uniform shifted Chebyshev-Gauss-Lobatto grid points,

xj =

(
1− cos

(
jπ

N

))
x

2
∀i = 0, 1, . . . , N . (4.10)

Points
{

cos
(
jπ
N

)}N
j=0

are in fact extrema of Nth Chebyshev polynomial on the interval −1 ≤ x ≤ 1.

At this point we can approximate steady states of Sinko-Streifer model presented in Section
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(a) (b)

Figure 4.3: Comparison of integral approximations. a) Absolute error compared to approximate
solution for N = 200. b) Rate of convergence of the methods for N ≤ 50.

(3.1.3). Recall that for this model the analytical stationary solution can be calculated exactly (see

Mirzaev & Bortz (2017) for the derivation) as

u∗(x) =
1

g(x)
exp

(
−
∫ x

0

µ(s)

g(s)
ds

)
. (4.11)

In Figure 4.2a, we compared numerical approximations of the stationary solution to exact solution

given in (4.11). The absolute error decreases exponentially fast for increasing approximation di-

mension N . Numerical approximation attains machine precision for N ≥ 20. Moreover, an example

steady state solution of Sinko-Streifer model is given in Figure 4.2b.

For the numerical approximations of the steady state of the microbial �occulation model (1.1)For

integral approximations we tried three di�erent integration methods on non-uniform grids. Namely,

Trapezoidal rule ∫ x

0
f(s) ds ≈ 1

2

N−1∑
i=0

(xi+1 − xi) (f(xi+1) + f(xi)) ,

Simpson's rule as implemented in scipy.integrate.simps and Gaussian quadrature

∫ x

0
f(s) ds ≈

N∑
i=0

wif(xi) .

We require Gaussian quadrature to be exact for chosen cardinal functions {φi(x)}Ni=0, which yields

weights

wi =

∫ x

0
φi(s) ds .

Moreover, in the evaluation of the integrals in (1.3) one has to evaluate [INu∗] (x) at non-
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(a) (b)

Figure 4.4: a) Computation times for the numerical schemes with di�erent integral approximation
methods b) Error comparison of the previous method developed in Chapter 3 with the improved
method developed here.

collocation points, i.e.,

[INu∗] (xk − xi) =

N∑
j=0

u∗(xj)φj(xk − xi) . (4.12)

Once φj(xk − xi) are calculated explicitly using (4.9), the approximations at non-collocation points

(4.12) can be evaluated as linear combination of entries of ~p. For e�cient implementation the

elements φj(xk − xi) can be initialized as entries of three dimensional array, i.e.,

[Φ]k,i,j =


φj(xk − xi) if k ≥ i

0 otherwise

.

Consequently, approximation for (4.12) can be obtained as

[INu∗] (xk − xi) =

N∑
j=0

[Φ]k,i,j~uj ,

which is simply dot product of three dimensional array Φ with the vector ~u.

Furthermore, we have plotted computation times required for the execution of each method with

respect to approximation dimension N . The approximations based on Trapezoidal and Simpson's

rule perform similarly on computation times. However, the approximation based on Gaussian

Quadrature becomes very ine�cient with the increasing approximation dimension N .

Spectral collocation methods are very sensitive to the node distribution. Consequently, in Figure
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4.5, we have compared the precision of the schemes for unevenly space grid points with di�erent

clustering at the ends of the interval. Node distributions were selected from a well-known one-

parameter family of node density functions,

µγ(x) =
cγ

(1− x2)γ
,

where γ < 1 and cγ = π−1/2Γ(1.5 − γ)/Γ(1 − γ) (Fornberg, 1998). Consequently, nodes {xj}Nj=0

were generated satisfying

j

N
=

∫ xj

−1
µγ(x) dx .

Note that for γ = 0 this density function generates evenly spaced grids and for γ = 0.5 it generates

Chebyshev-Gauss-Lobatto grid points given in (4.10). All the grid points are in the interval [−1, 1]

and thus were mapped to the interval [0, x] using an a�ne map,

x→ (x+ 1)
x

2
.

Figures 4.5a and 4.5b illustrate that both numerical schemes with Simpson's rule and Gaussian

quadrature favor node distributions close to γ = 0.5. Node distribution with γ = 0.5 roughly

corresponds to quadratic clustering of the nodes towards the ends of the interval, which is consistent

with the results in the literature (Fornberg, 1998; Trefethen, 2000).

Furthermore, in Figure 4.6, we tested out the numerical schemes on di�erent quadratically

clustered node distributions. For our purposes, we have considered the following grids: zeros of

Nth order Chebyshev polynomial, extrema of Nth order Chebyshev polynomial, zeros of Nth

order Legendre polynomial and extrema of Nth order Legendre polynomial. Figures 4.6a and

4.6b illustrate that both numerical schemes with Simpson's rule and Gaussian quadrature perform

qualitatively the same on di�erent grid points. Di�erent choices of node distributions a�ect initial

convergence of both schemes signi�cantly. However, for large N both numerical schemes attain

about the same precision.

Overall, Spectral Collocation method developed in this section have at least quadratic rate of

convergence and achieve much higher precision compared to Finite Di�erence methods developed

in Section 4.1. In particular, Spectral Collocation method with Simpson's rule for quadrature is
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(a) (b)

Figure 4.5: Error comparison for unevenly spaced grid points with di�erent density. a) Numerical
scheme with Simpson's rule b) Numerical scheme with Gaussian quadrature

(a) (b)

Figure 4.6: Error comparison for di�erent unevenly spaced grid points. a) Numerical scheme with
Simpson's rule b) Numerical scheme with Gaussian quadrature

accurate and takes considerably less computation time. Therefore, in the subsequent sections, we

will only employ this method for steady state approximations.

Furthermore, as illustrated in Figure 4.4b, the best numerical scheme of this chapter is much

more accurate compared to the numerical scheme utilized in Chapter 3. Particularly, the numerical

scheme of this chapter achieves three digit precision for N ≥ 20, which is achieved by the numerical

scheme of the previous chapter for only N ≥ 140.

4.3 Numerical Exploration of Steady States

In this section, we explore the stationary solutions of the model for various biologically relevant

parameters and give valuable insights for the e�cient removal of suspended particles.
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(a) (b)

Figure 4.7: Results of some numerical simulations. Dashed red and solid blue lines correspond
to the stationary of the linear Sinko-Streifer and the nonlinear microbial �occulation equations,
respectively. a) Steady state solutions for increasing growth rate b) Steady state solutions for
decreasing shear rate

(a) (b)

Figure 4.8: E�ect of the shear rate on the average �oc size and the renewal rate. a) Increasing
the shear rate results in stationary distributions with smaller average �oc size. b) For each given
growth rate of a microbial �oc, increasing the shear rate decreases the average �oc size.

Stationary solutions of the linear and nonlinear case for several di�erent values of Cg are depicted

in Figure 4.7a. It is interesting to note that for increasing values of Cg the growth dominates and

thus stationary solution of the nonlinear case approaches the stationary solutions of the linear case.

Analogously, as one could expect, results in Figure 4.7b indicate that as γ̇ → 0 the stationary

solutions of the microbial �occulation model converge to that of essentially linear Sinko-Streifer

model.

Thorough control of �oc formation is crucial for proper operation of bioreactors used in fermen-

tation industry and waste water treatment. For e�cient removal of suspended particles, it is usually

desirable to have larger and denser �ocs that settle faster under gravitational forces. Therefore, in

Figures 4.8a and 4.8b, we investigated the e�ects of the shear rate on the average �oc size. One can
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(a) (b)

Figure 4.9: E�ect of growth and shear rates on the renewal rate, Cq. a) Renewal rates form a
smooth surface. Marked red star corresponds to the point Cg = 1, γ̇ = 1 and Cq = 8.5 b) Steady
states for marked red star and some points below and above the marked point.

observe in Figure 4.8a that increasing the shear rate results in increased fragmentation of the �ocs

and thus drives the stationary distribution into the smaller size range, which is also consistent with

the results of (Flesch et al., 1999). Moreover, results in Figure 4.8b indicate that for each given

growth rate of a microbial �oc one can adjust the shear rate to yield an optimal average �oc size.

As it is stated in Theorem 2.1, for the existence of a positive stationary solution the renewal rate

has to be modi�ed according to equation (2.4). Consequently, in Figure 4.9a, for di�erent growth

and shear rates we computed the renewal rate Cq based on the equation (6.2). Computed renewal

rates lie on a smooth three-dimensional surface. Moreover, the results indicate that the renewal

rate is directly proportional to both growth and shear rates.

The numerical algorithm described in this chapter can be easily modi�ed to �nd steady states of

the boundary value problem in (4.2). In this general case, the results of Chapter 2 do not guarantee

the existence of a positive steady state. However, Figure 4.9b depicts that positive steady states exist

for the points not lying on the surface illustrated in Figure 4.9a. This in turn suggests well-posedness

of the boundary value problem given in (4.2) for su�ciently smooth model rates. Therefore, as the

future plan, we wish to further investigate well-posedness of this boundary value problem.
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(a) (b) (c)

Figure 4.10: Spectrum of the linearized operator for Cg = 1 and γ̇ = 10 a) Spectrum approximation
for N = 50. b) Spectrum approximation for N = 100. c) Convergence of the leading eigenvalues.

4.4 Numerical spectral analysis

In Chapter 2, using the principle of linearized stability, we showed that the local stability of a

stationary solution of the microbial �occulation equations depends on the spectrum of the Fréchet

derivative of the (1.1) evaluated at the stationary solutions. However, de�ning the spectrum of

an operator is rather cumbersome using analytical techniques. Moreover, stability criteria found

depend on the existence of analytical stationary solutions. This in turn makes derived stability

criteria hard to validate. Therefore, in this section, we illustrate that the eigenvalues of the Fréchet

derivative evaluated at the stationary solutions can be approximated using numerical techniques.

This in turn allows deducing local stability of numerically computed steady states.

The Fréchet derivative of the nonlinear operator F in the equation (1.1) evaluated at a steady

state solution u∗ is given explicitly by

L[h](x) = DF(u∗)[h](x) = −∂x(g(x)h(x))−A(x)h(x) +

∫ x

x
Γ(x; y)kf (y)h(y) dy

−
∫ x−x

0
E(x, y)h(y) dy +

∫ x

0
E(x− y, y)h(y) dy , (4.13)

where

E(x, y) = ka(x, y)u∗(x)

and

A(x) =
1

2
kf (x) + µ(x) +

∫ x−x

0
E(y, x) dy .
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(a) (b)

Figure 4.11: Numerical simulations of the microbial �occulation equations for Cg = 1 and γ̇ = 10.
a) Initial size distributions. Solid black line represents the steady state solution for Cg = 1 and
γ̇ = 10. b) Transient behavior of the zeroth and the �rst moment of the solution.

Hereby, we refer to the operator (4.13) simply as linearized operator.

Spectral methods are powerful tools for the numerical approximation of nonlinear di�erential

and integral eigenvalue problems. We approximate the linearized operator using the pseudospectral

method developed in Section 4.2. The eigenvalues of the resulting matrix approximate part of

the spectrum of the operator (4.13). The spectral accuracy of the method allows one to work

with low-dimensional approximations and still relish e�cient performance of the available software

packages.

Figures 4.10a and 4.10b illustrate approximate spectrum, N = 50 and N = 100, of the linearized

operator for Cg = 1 and γ̇ = 10. Although those two spectral approximations di�er qualitatively,

Figure 4.10c depicts fast convergence of the leading eigenvalue of the linearized operator.

In Figure 4.11, we numerically simulated the microbial �occulation equation (1.1) for di�erent

initial conditions. In particular, we used the approximation scheme described in Section 4.2 for

discretization of size x and applied the method of lines to integrate the resulting system of ODEs.

We used growth and shear rates Cg = 1 and γ̇ = 10, respectively. Recall that the leading eigenvalue

of the steady state for this parameters converges to ≈ −7.2. For all the initial conditions given in

Figure 4.11a the solutions converged to the stationary solutions represented by a solid black line. As

depicted in Figure 4.11b, local stability of the stationary solution is also re�ected in the evolution
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Figure 4.12: Leading eigenvalues of the linearized operator for di�erent growth and shear rates
(N = 50). Yellow region represents the parameter combinations for which a positive stationary
solution has not been found.

of the total number of �ocs (zeroth moment),

M0(t) =

∫ x

0
p(t, x) dx ,

and total mass of the �ocs (�rst moment),

M1(t) =

∫ x

0
xp(t, x) dx .

In Figure 4.12, we computed the leading eigenvalues of the linearized operator for di�erent

growth and shear rates. Yellow region represents the parameter combinations for which a positive

stationary solution has not been found. For small growth rates increasing the shear rate yields no

steady state. Conversely, for larger growth rates increasing the shear rate yields steady states with

leading eigenvalues further to the left in the complex plane. Furthermore, for the small growth and

shear rates, the leading eigenvalues of the steady states are signi�cantly close to zero. Consequently,

in Figure 4.13, we have simulated the microbial �occulation equations for Cg = 0.1 and γ̇ = 5. As

illustrated in Figure 4.13a, the leading eigenvalue of this steady state converges to ≈ −3.13. One

can observe in Figure 4.13c that for the green initial size distribution, chosen su�ciently close to

the steady state (solid black line), zeroth and �rst moments converge to the moments of the steady

state. However, for other initial size distributions, chosen marginally further to the steady state,
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(a) (b) (c)

Figure 4.13: Numerical simulations of the microbial �occulation equations for Cg = 0.1 and γ̇ = 5.
a) Convergence of the leading eigenvalue b) Initial size distributions. Solid black line represents
the steady state solution for Cg = 0.1 and γ̇ = 5. c) Transient behavior of the zeroth and the �rst
moment of the solution.

the zeroth moment is converging to the moment of some other steady state. This in turn suggests

existence of multiple locally stable stationary solutions. Hence, we conjecture that the leading

eigenvalue of the linearized operator (4.13) de�nes the basin of attraction of the steady state and

thus wish to investigate this behavior further.

4.5 Concluding remarks

We developed numerical schemes based on �nite di�erence and spectral collocation methods to

approximate nontrivial stationary solutions of the microbial �occulation equations. Trapezoidal

method on evenly spaced grid yielded the most accurate results. Moreover, we found that employ-

ing higher order �nite di�erence methods did not improve the accuracy of the numerical scheme.

Consequently, in Section 4.2, we developed a numerical scheme based on spectral collocation method.

We implemented several di�erent integral approximations. Our �ndings indicate that the spectral

collocation method with Simpson's rule for integral approximation yields fast and precise approx-

imations with an at least quadratic rate of convergence. Moreover, we tested the algorithm on

several di�erent unevenly spaced grid points. Although di�erent grids a�ect initial convergence of

the numerical schemes, for large N the numerical schemes attain about the same accuracy.

In Section 4.4 we exploit high precision of the approximation scheme developed for the numer-

ical spectral analysis. In particular, we illustrated that the eigenvalues of the Fréchet derivative

evaluated at the stationary solutions can be accurately approximated using numerical techniques
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of this chapter. This in turn allowed us to heuristically deduce local stability of positive steady

states of the microbial �occulation equations. Furthermore, using our numerical scheme we were

only able to �nd locally stable non-trivial stationary solutions. Perhaps, the positive steady states

of the microbial �occulation equations satisfying

g(0)p(0) =

∫ x

0
q(y)u∗(y) dy = 1 ,

existence of which is guaranteed by Theorem 2.1, are always locally stable. Hence, as a future

research, we plan to further investigate the stability of non-trivial steady states of the microbial

�occulation equations.

Furthermore, in Section 4.3, we numerically investigated physically relevant parameter ranges.

In particular, we studied the e�ects of the shear rate on the average �oc size. Our results, consistent

with the results in the literature (Flesch et al., 1999; Spicer et al., 1998; Spicer, 1997), indicate that

increasing the shear rate of the stirring tank results in increased fragmentation and thus decreases

the steady-state average �oc size.



Chapter 5

An Inverse Problem for a Class of

Conditional Probability

Measure-Dependent Evolution

Equations1

In this chapter, we examine an inverse problem involving a general conditional probability measure-

dependent partial di�erential equation (PDE) arising in structured population modeling. We con-

sider a general abstract evolution equation with solution b on a Banach space H, de�ned on an

interval Q ⊂ R+ ∪ {0}, depending on the conditional probability measure F :

bt = g(b, F ) (5.1)

b(0, x) = b0(x) ∀x ∈ Q (5.2)

for t ∈ T = [0, tf ] with tf <∞.

Although estimation of conditional probability measures in statistics is common (Dagan, 1982;

1This chapter has been published:
I. Mirzaev, E.C. Byrne & D.M. Bortz. �An Inverse Problem for a Class of Conditional Probability Measure-Dependent
Evolution Equations�, Inverse Problems, 32, no. 9 (July 2016)
Note that a preliminary version of some of the results in this chapter appeared in the dissertation of Dr. Erin Byrne.
Those results have been substantially revised and extended and are detailed in this publication.
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Hall et al., 2004; Krishnaswamy et al., 2014; Iori et al., 2015), results on the estimation of probability

distributions within the context of size-structured models are not widespread. Banks et al. (Banks

& Fitzpatrick, 1991; Banks et al., 1999) formulated a Sinko-Streifer model such that growth rates

vary probabilistically across individuals of the population and presented inverse problem techniques

for estimation of this growth distribution using aggregate population data. Banks & Bihari (2001)

developed an inverse problem framework for identifying a single probability measure in general

measure-dependent dynamical systems. Later, Banks & Bortz (2005) extended this framework to a

class of dynamical systems with distributed temporal delays and countable number of probability

measures. All these inverse problem techniques are based on a Prohorov metric framework, for

reviews of which we refer readers to (Banks et al., 2012; Banks & Thompson, 2015).

Our study of the class of models in (5.1)-(5.2) is motivated by our interest in fragmentation

phenomena, which arise in a wide variety of areas including algal populations (Banasiak & Lamb,

2009; Ackleh & Fitzpatrick, 1997; Ackleh, 1997), cancer metastases (DeVita et al., 2008; Ilana et al.,

2006; Wycko� et al., 2000), and mining (Gamma & Jimeno, 1993; Persson et al., 1994). The most

prominent approach to model fragmentation is based on structured population equations, which can

be traced back to the works of Smoluchowski (van Smoluchowski, 1917, 1916) and Becker & Döring

(1935). The solutions of the forward problem of structured population models has been extensively

studied in over the years, and the mathematical techniques for their analysis are highly developed.

For the review of these mathematical techniques we refer interested readers to the books by Webb

(1985) and Metz & Diekmann (1986). For the applications of the theory in an engineering context

we recommend the book by Ramkrishna (2000).

Inverse problems for structured population models have also received a substantial interest in

recent years (Gyllenberg et al., 2002; Pilant & Rundell, 1991; Engl et al., 1994; Perthame & Zubelli,

2007). E�cient methodologies for the estimation of growth and mortality rates in physiologically

structured Sinko & Streifer (1967) equation has been developed and used to measure the lethal

e�ects of pesticides in insect populations (Banks et al., 2008, 2007a). Estimation of the model rates

in a size-structured Bell and Anderson model (Bell & Anderson, 1967), describing the dynamics

of proliferation and death processes of a population of cells, has also been widely investigated.

Perthame et al. (Perthame & Zubelli, 2007; Doumic et al., 2009) developed an inverse problem

methodology for determining the cell division (birth) rate from the measured stable size distribution
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of the population. Their approach is based on a novel regularization technique relying on generalized

relative entropy estimates (Michel et al., 2005). Later, this methodology was further extended to

recover fragmentation rates in growth-fragmentation equations by Doumic et al. (Doumic & Tine,

2012; Bourgeron et al., 2014). For the same model, Luzyanina et al. (Luzyanina et al., 2008, 2006,

2007) formulated a numerical method, based on a maximum likelihood approach, for the robust

identi�cation of the cell division rates from CFSE (a type of cell division tracking dye) histogram

time-series data. Moreover, several improvements and extensions of this numerical approach has

been suggested in (Banks et al., 2010b).

Bortz et al. (2008) developed a size-structured partial di�erential equation (PDE) model for

bacterial �occulation, the process whereby �ocs, i.e., aggregates, in suspension adhere and separate.

For the breakage term in that PDE model, the fragmentation of each parent particle will generate

child particles according to a post-fragmentation conditional probability distribution. In the litera-

ture, it is widespread to assume that this distribution is normally distributed for all parent �oc size

(Lu & Spielman, 1985; Pandya & Spielman, 1982). However, Byrne et al. (2011) focused only on the

fragmentation and developed a microscale mathematical model which contradicts this result and

predicted that the distribution is non-normal and conditionally dependent on parent size. Thus it is

clear that there is a need for a methodology to identify this conditional distribution from available

data.

Building upon the work in (Banks & Bortz, 2005), in this chapter we present and investigate an

inverse problem for estimating the conditional probability measures in size-structured population

models from size-distribution measurements. In Section 5.1, we formulate the inverse problem as a

least squares problem for the probability measure estimation. We use the Prohorov metric (conver-

gence in which is equivalent to weak convergence of measures) in a functional-analytic setting and

show existence and consistency of the estimators for the least squares problem. Consequently, in

Section 5.2, we develop an approximation approach for computational implementation and prove

convergence of this approximate inverse problem. We show the convergence of solutions of the

approximate inverse problem to solutions of the original inverse problem. In Section 5.3, we illus-

trate that the �occulation dynamics of bacterial aggregates in suspension as one realization of a

system satisfying the hypotheses in our framework. Furthermore, we present numerical examples

to demonstrate the feasibility of our inverse methodology for arti�cial data sets.
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5.1 Least squares problem for estimation of conditional probability

distributions

In this section, we consider the inverse problem for inferring a conditional probability distribution

from aggregate population data. First, in Section 5.1.1, we formulate the inverse problem as a least

squares problem for the probability measure estimation. Consequently, in Section 5.1.2, we will

develop the theoretical results needed to prove the existence and consistency of the estimates of the

least squares problem. Accordingly, we will state some assumptions which are motivated by the

features of the validating data.

5.1.1 Theoretical framework for the least squares problem

Let P(Q) be the space of all probability distributions on (Q, A ), where A is the Borel σ-algebra

on Q. Since we are primarily concerned with the systems with unknown conditional probability

measures, we restrict the space of probability distributions to those that can be solutions to our

inverse problem. Towards this end, we de�ne regular conditional probability measures F : Q×Q→

[0, 1] such that F (·, y) is a probability measure in P(Q) for all y ∈ Q. We then de�ne our space of

solutions to the inverse problem F (Q×Q) as the set of all conditional probability measures de�ned

on Q, i.e, F ∈ F (Q×Q) if and only if F (·, y) ∈P(Q) for all y ∈ Q.

We de�ne a metric on the space F to create a metric topology, and we accomplish this by making

use of the well-known Prohorov metric (see Billingsley (1968) for a full description). Convergence

in the Prohorov metric is equivalent to weak convergence of measures and we direct the interested

reader to (Gibbs & Su, 2002) for a summary of its relationship to a variety of other metrics on

probability measures. For F, F̃ ∈ F and �xed y, we use the Prohorov metric ρproh to denote the

distance ρproh(F (·, y), F̃ (·, y)) between the measures. We extend this concept to de�ne the metric

ρ on the space F (Q×Q) by taking the supremum of ρproh over all y ∈ Q,

ρ(F, F̃ ) = sup
y∈Q

ρproh(F (·, y), F̃ (·, y)) .

The most widely available, high-�delity data for �occulating particles are in the form of particle

size histograms from, e.g., from �ow-cytometers, Coulter counters, etc. Accordingly, we will de�ne
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our inverse problem with the goal of comparing with histograms of �oc sizes. Let nj(ti) represent

the number of �occulated biomasses with volume between xj and xj+1 at time ti. We assume that

the data is generated by an actual post-fragmentation probability distribution. In other words, nd

is representable as the partial zeroth moment of the solution

ndji =

∫ xj

xj−1

b(ti, x;F0) dx+ Eji (5.3)

for some true conditional probability-measure F0 ∈ F . The random variables Eji represent mea-

surement noise. We also assume, as it is commonly assumed, that the random variables Eji are

independent, identically distributed, with mean E[Eji] = 0 and variance

V ar[Eji] = σ2 <∞ (5.4)

(which is generally true for �ow-cytometers (Darzynkiewicz et al., 1994)). Thus our inverse problem

entails �nding a minimizer F ∈ F of the least squares cost functional, de�ned as

J(F ; nd) =

Nt∑
i=1

Nx∑
j=1

(∫ xj

xj−1

b(ti, x;F ) dx − ndji

)2

, (5.5)

where the data nd ∈ RNx×Nt consists of the number of �ocs in each of the Nx bins for �oc volume

at Nt time points. The superscript d denotes the dimension of the data, d = Nx×Nt. The function

b is the solution to (5.1)-(5.2) corresponding to the probability measure F .

For a given data nd, the cost functional J may not have a unique minimizer, thus we denote

a corresponding solution set of probability distributions as F ∗(nd). We then de�ne the distance

between two such sets of solutions, F ∗(nd1
1 ) and F ∗(nd2

2 ) (for data nd1
1 and nd2

2 ) to be the well-

known Hausdor� distance (Kelley, 1955)

dH(F ∗(nd1
1 ), F ∗(nd2

2 )) = inf{ρ(F, F̃ ) : F ∈ F ∗(nd1
1 ), F̃ ∈ F ∗(nd2

2 )} .

5.1.2 Existence and consistency of the least squares estimates

In this section we establish existence and consistency of the estimates of the least squares problem

de�ned in (5.5). In particular, we will �rst show that for a given data set nd with dimension d, the
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least squares estimator de�ned in (5.5) has at least one minimizer. Next, we will investigate the

behavior of minimizers of (5.5) as more data is collected. Speci�cally, we will show that the least

squares estimator is consistent, i.e., as the dimension of data increases (Nt →∞ and Nx →∞) the

minimizers of the estimator (5.5) converge to true probability measure F0 generating the data nd.

5.1.2.1 Existence of the estimator.

In this section we prove that the cost functional de�ned in (5.5) possesses at least one minimizer.

We use the well-known result that a continuous function on a compact metric space has a minimum.

In particular, �rst we show that (F , ρ) is a compact metric space. Next, we establish continuous

dependence of the solution b on the conditional probability measure F .

For much of the following analysis, we require the operator g to satisfy a Lipschitz-type condition.

We detail that condition in the following.

Condition 5.1. Suppose that b and b̃ are solutions to the evolution equation (5.1)-(5.2). For �xed

t, the function g : H ×F → H must satisfy

∥∥∥g(b, F )− g(b̃, F̃ )
∥∥∥ ≤ C ∥∥∥b− b̃∥∥∥+ T (F, F̃ ),

where C > 0, and T (F, F̃ ) is some functional such that |T (F, F̃ )| < ∞ and T (F, F̃ ) → 0 as

ρ(F, F̃ )→ 0.

We begin by proving that (F , ρ) is a compact metric space.

Lemma 5.2. (F , ρ) is a compact metric space.

Proof. Consider a Cauchy sequence {Fn} ∈ F . Then ∀ ε > 0, ∃N such that ∀n,m ≥ N ,

sup
y∈Q

ρproh (Fn(·, y), Fm(·, y)) < ε.

It is easy to see we have a Cauchy sequence {Fn(·, y)} ∈ P(Q) which converges uniformly in

y ∈ Q. From results in (Banks & Thompson, 2015, Corollary 2.16), P(Q) is a compact met-

ric space with respect to the Prohorov metric, and thus there exists F (·, y) ∈ P(Q) such that
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ρProh(Fn(·, y), F (·, y)) < ε for all n ≥ N . Thus

sup
y∈Q

ρproh (Fn(·, y), F (·, y)) < ε

and (F , ρ) is a complete metric space. Analogously, we can show that (F , ρ) is sequentially

compact. Therefore, we conclude that (F , ρ) is a compact metric space.

Now that we have a compact metric space, it remains to show that the cost functional on that space

is continuous with respect to the function F . It su�ces to prove point-wise continuity.

Lemma 5.3. If t ∈ T , F ∈ F , and the operator g in (5.1) satis�es Condition 5.1, then the unique

solution b to (5.1) is point-wise continuous at F ∈ F . Moreover, since F is compact space the

unique solution b is uniformly continuous on F .

Proof. For the function b to be point-wise continuous at F , we need to show that ‖b(t, ·;Fi)− b(t, ·;F )‖ →

0 as ρ(Fi, F )→ 0 for {Fi} ∈ F and �xed t. We begin by re-writing (5.1) as an integral equation

b(t, x) = b0(x) +

∫ t

0
g(b(s, x), F )ds .

For �xed t, consider b to be a function of F

b(t, x;F ) = b0(x) +

∫ t

0
g(b(s, x;F ), F )ds .

By de�nition of solutions, we have

‖b(t, ·;Fi)− b(t, ·;F )‖ ≤
∫ t

0
‖g(b(s, ·;Fi), Fi)− g(b(s, ·;F ), F )‖ ds .

Based on Condition 5.1, we obtain

‖b(t, ·;Fi)− b(t, ·;F )‖ ≤ C
∫ t

0
‖b(s, ·;Fi)− b(s, ·;F )‖ ds+ T (Fi, F ) ,

where we de�ne T (Fi, F ) =
∫ tf

0 T (Fi, F )ds, independent of t. An application of Gronwall's in-
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equality yields

‖b(t, ·;Fi)− b(t, ·;F )‖ ≤ T (Fi, F ) e
∫ t
0 C ds ≤ T (Fi, F ) eC tf → 0

since we know that T (Fi, F ) → 0 as Fi → F in (F , ρ). Thus the solutions b are point-wise

continuous at F ∈ F .

We use the results of the above two lemmas to establish existence of a solution to our inverse

problem.

Theorem 5.4. There exists a solution to the inverse problem as described in (5.5).

Proof. It is well known that a continuous function on a compact set obtains both a maximum and

a minimum. We have shown (F , ρ) is compact, and from Lemma 5.3, for �xed t ∈ T, we have that

F 7→ b(t, ·;F ) is continuous. Since J is continuous with respect to F ,we can conclude there exist

minimizers for J .

5.1.2.2 Consistency of the estimator.

In previous section we have proven that for a given data there exists minimizers of the least squares

cost functional de�ned in (5.5). In this section we will investigate the behavior of the least squares

estimators as the number of observations increase. In particular, the estimator is said to be consistent

if the estimators for the data nd converge to true probability measure F0 as Nt →∞ and Nx →∞.

Consistency of the estimators of the least squares problems are well-studied in statistics and the

results of this section follow closely the theoretical results of Banks & Thompson (2012) and Banks &

Fitzpatrick (1990). Hence, as in (Banks & Thompson, 2012, Theorem 4.3) and (Banks & Fitzpatrick,

1990, Corallary 3.2), we will make the following two assumptions required for the convergence of

the estimators to the unique true probability measure F0.

(A1) Let us denote the space of positive functions T ×Q 7→ R+, which are bounded and Riemann

integrable by R (T ×Q, R+). Then, the model function b(t, x; ·) : F → R (T ×Q, R+) is

continuous on (F , ρ).
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(A2) The functional

J0(F ) = σ2 +

∫
T

∫
Q

(b(t, x;F )− b(t, x;F0))2 dx dt

is uniquely (up to L1 norm) minimized at F0 ∈ F . Here σ2 is variance of the measurement

noise de�ned in (5.4).

Assumption (A2) is often referred to as identi�ability condition (or output least squares identi-

�ability (Chavent, 1979)) and addresses the question of whether the least squares inverse problem

(5.5) has a unique solution for given data set. Establishing identi�ability conditions is generally

mathematically challenging and depends to a great extent on the model involved. Chavent (1979)

presented general su�cient conditions for identi�ability of parameters when the parameter space

is �nite dimensional, which require additional smoothness on the model function b. In some cases,

non-identi�ability of parameters can be eliminated by reducing the dimensionality of the parameter

space (Carrera & Neuman, 1986) or by adding a regularization term to the cost functional J (Coo-

ley, 1982). For further details about the identi�ability of parameters in inverse problems, we refer

readers to a review articles by Yeh (1986) and Miao et al. (2011).

In this chapter, we will not develop any detailed rules about the identi�ability of the parameters.

However, a few general conclusions can be drawn. For instance, from continuity arguments of

Theorem (5.3) it follows that the function J0 : F → R+, de�ned in assumption (A2), is continuous

with respect to Prohorov metric. Therefore, the function J0 has at least one minimizer on (F , ρ).

Moreover, it is easy to see that the function J0 is minimized at F0. Suppose that there is another

minimizer F1 of J0 such that ρ (F1, F0) 6= 0. Then

∫
T

∫
Q

(b(t, x;F1)− b(t, x;F0))2 dx dt = 0 .

This in turn implies that

b(t, x;F1) = b(t, x;F0)

almost everywhere on (t, x) ∈ T×Q, which is very strict condition to ful�ll for signi�cantly di�erent

F1 and F0. Furthermore, the value of b(t1, x;F ) at time t1 for �xed F ∈ F depends on the pro�le

of b(t, x;F ) for t ∈ [0, t1) and thus by choosing the observation interval T = [0, tf ] su�ciently large

one can ensure uniqueness of the minimizer of the function J0.
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Having the required assumptions in hand, we now present the following theorem about the

consistency of the estimators of the least squares cost functional (5.5).

Theorem 5.5. Under assumptions (A1) and (A2)

dH

(
F ∗(nd), F0

)
→ 0

as Nt →∞ and Nx →∞.

Proof. The speci�c details of this proof are nearly identical to a similar theorem in (Banks &

Thompson, 2012) and so here we simply provide an overview. Brie�y, one �rst shows that J(F ; nd)

converges to J0(F ) for each F ∈ F as Nt → ∞ and Nx → ∞. Then, using the fact that J0(F ) is

uniquely (up to the metric ρ) minimized at F0, one can show that for each sequence
{
F d ∈ F ∗(nd)

}
the distance ρ

(
F d, F0

)
converges to zero as Nt →∞ and Nx →∞, which yields the result.

5.2 Approximate Inverse Problem

Since the original problem involves minimizing over the in�nite dimensional space F , pursuing

this optimization is challenging without some type of �nite dimensional approximation. Thus we

de�ne some approximation spaces over which the optimization problem becomes computationally

tractable. Similar to the partitioning presented in (Banks & Bortz, 2005), let QM = {qMj }Mj=0 be

partitions of Q = [0, x] for M = 1, 2, . . . and

QD =
∞⋃

M=1

QM (5.6)

where the sequences are chosen such that QD is dense in Q.

For positive integers M, L, let the approximation space be de�ned as

FML =

{
F ∈ F | ∀Ω ⊆ Q, F (Ω, y) =

M∑
m=1

p`m∆qMm
(Ω)1(qL`−1, q

L
` ](y),

qMm ∈ QM , qL` ∈ QL, pij ≥ 0,
∑̀
m=1

p`m = 1, ` = 1, 2, . . . , L

}
,
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where ∆q is the Dirac measure with atom x = q de�ned for all Ω ⊆ Q as

∆q(Ω) =

 1 q ∈ Ω

0; q 6∈ Ω
.

The function 1A is the indicator function on the interval A.

Next, de�ne the space FD as

FD =
∞⋃

M,L=1

FML.

Consequently, sinceQ is a complete, separable metric space, and by Theorem 3.1 in (Banks & Bihari,

2001) and properties of the sup norm, FD is dense in F in the ρ metric. Therefore we can directly

conclude that any measure F ∈ F can be approximated by a sequence {FMjLk
}, FMjLk

∈ FMjLk

such that as Mj , Lk →∞, ρ(FMjLk
, F )→ 0.

Similar to the discussion concerning Theorem 4.1 in (Banks & Bihari, 2001), we now state the

theorem regarding the continuous dependence of the inverse problem upon the given data, as well

as stability under approximation of the inverse problem solution space F .

Theorem 5.6. Let Q = [0, x], assume that for �xed t ∈ T, x ∈ Q, F 7→ b(t, x, F ) is con-

tinuous on F , and let QD be a countable dense subset of Q as de�ned in (5.6). Suppose that

F ∗ML(nd) is the set of minimizers for J(F ;nd) over F ∈ FML corresponding to the data nd.

Then, dH(F ∗ML(nd), F0)→ 0 as M, L, Nt, Nx →∞.

Proof. Suppose that F ∗(nd) is the set of minimizers for J(F ;nd) over F ∈ F corresponding to the

data nd. Using continuous dependence of solutions on F , compactness of (F , ρ), and the density

of FD in F , the arguments follow precisely those for Theorem 4.1 in (Banks & Bihari, 2001). In

particular, one would argue in the present context that any sequence F ∗ML
d ∈ F ∗ML(nd) has a

subsequence F
∗MjLi

dk
that converges to a F̃ ∈ F ∗(nd). Therefore, we can claim that

dH

(
F ∗ML(nd), F ∗(nd)

)
→ 0 (5.7)

as M, L, Nt, Nx →∞. Conversely, a simple application of the triangle inequality yields that

dH(F ∗ML(nd), F0) ≤ dH
(
F ∗ML(nd), F ∗(nd)

)
+ dH

(
F ∗(nd), F0

)
.
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This is in turn, from (5.7) and Theorem 5.5, implies that dH(F ∗ML(nd), F0) converges to zero as

M, L, Nt, Nx →∞.

Since we do not have direct access to an analytical solution to (5.1), our e�orts are focused on

�nding a minimizer F ∈ F of the approximate least squares cost functional

JN (F,nd) =

Nt∑
i=1

Nx∑
j=1

(∫ xj

xj−1

bN (ti, xj ;F )dx− ndji

)2

. (5.8)

Here, Nt is the number of data observations, Nx is the number of data bins for �oc volume, and bN is

the semi-discrete approximation to b. In Section 5.3, we will de�ne a uniformly (in time) convergent

discretization scheme and its corresponding approximation space HN ⊂ H. The discretized version

of (5.8) is represented by

bNt = gN (bN , F ) (5.9)

bN (0, x) = bN0 (x) (5.10)

where gN : HN ×F → HN denotes the discretized version of g. We will need that gN exhibits a

type of local Lipschitz continuity and accordingly de�ne the following condition.

Condition 5.7. Suppose that the discretization given in (5.9)-(5.10) is a convergent scheme. Let

(bN , F ), (b̃N , F̃ ) ∈ HN ×F . For �xed t, the function gN : HN ×F → HN must satisfy

∥∥∥gN (bN , F )− gN (b̃N , F̃ )
∥∥∥ ≤ CN ∥∥∥bN − b̃N∥∥∥+ T N (F, F̃ ),

where CN > 0, and T N (F, F̃ ) is some function such that |T N (F, F̃ )| <∞ and T N (F, F̃ )→ 0 as

ρ(F, F̃ )→ 0.

General method stability (Banks & Kunisch, 1989) requires bN (t, x;Fi) → b(t, x;F ) as Fi → F

in the ρ metric and as N →∞; we will now prove this.

Lemma 5.8. Let t ∈ T , F ∈ F , and {Fi} ∈ F such that limi→∞ ρ(Fi, F ) = 0. For �xed N , if

bN (t, x;Fi) is the solution to (5.19)-(5.20) and Condition 5.7 holds, then bN is pointwise continuous

at F ∈ F .
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Proof. The proof of this lemma is identical to that for Lemma 5.3. We �rst recast (5.9) as an integral

equation and then apply Condition 5.7 and Gronwall's inequality to obtain the desired result.

Corollary 5.9. Under Condition 5.7 and Lemma 5.8, we can conclude that
∥∥bN (t, ·;FN )− b(t, ·;F )

∥∥→
0 as N →∞ uniformly in t on I.

Proof. A standard application of the triangle inequality yields

∥∥bN (t, ·;FN )− b(t, ·;F )
∥∥ ≤

∥∥bN (t, ·;FN )− bN (t, ·;F )
∥∥

+
∥∥bN (t, ·;F )− b(t, ·;F )

∥∥ .
The �rst term converges by Lemma 5.8, while the second term converges because the proposed

numerical scheme is assumed to converge uniformly.

With this corollary, we now consider the existence of a solution to the approximateleast squares

cost functional in (5.8), as well as the solution's dependence on the given data nd.

Theorem 5.10. Assume that there exists solutions to both the original and the approximate in-

verse problems in (5.5) and (5.8), respectively. For �xed data nd, there exist a subsequence of the

estimators {FN}∞N=1 of (5.8) that converge to a solution of the original inverse problem (5.5).

Proof. As noted above, (F , ρ) is compact. By Lemmas 5.3 and 5.8, we have that both F 7→ b(t, x;F )

and F 7→ bN (t, x;F ), for �xed t ∈ T , are continuous with respect to F . We therefore know there

exist minimizers in F to the original and approximate cost functionals J and JN respectively.

Let {F ∗N} ∈ F be any sequence of solutions to (5.8) and {F ∗Nk
} a convergent (in ρ) subsequence

of minimizers. Recall that minimizers are not necessarily unique, but one can always select a

convergent subsequence of minimizers in F . Denote the limit of this subsequence with F ∗. By the

minimizing properties of F ∗Nk
∈ F , we then know that

JNk(F ∗Nk
,nd) ≤ JNk(F,nd) for all F ∈ F . (5.11)

By Corollary 5.9, we have the convergence of bN (t, x;FN )→ b(t, x;F ) and thus JN (FN )→ J(F )
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as N →∞ when ρ(FN , F )→ 0. Thus in the limit as Nk →∞, the inequality in (5.11) becomes

J(F ∗,nd) ≤ J(F,nd) for all F ∈ F

with F ∗ providing a (not necessarily unique) minimizer of (5.5).

Theorem 5.11. Assume that for �xed t ∈ T , F 7→ b(t, x;F ) is continuous on F in ρ, bN is the

approximate solution to the forward problem given (5.19)-(5.20), JN is the approximation given in

(5.8), and QD a countable dense subset of Q as de�ned in (5.6). Moreover, suppose that F ∗ML
N (nd)

is the set of minimizers for JN (F ;nd) over F ∈ FML corresponding to the data nd. Similarly,

suppose that F ∗(nd) is the set of minimizers for J(F ;nd) over F ∈ F corresponding to the data

nd. Then, dH(F ∗ML
N (nd), F0)→ 0 as N, M, L, Nt, Nx →∞.

Proof. Observe that an application of a simple triangle inequality yields

dH

(
F ∗ML
N (nd), F0

)
≤ dH

(
F ∗ML
N (nd), F ∗ML(nd)

)
+ dH

(
F ∗ML(nd), F0

)
.

Therefore, combining the arguments of Theorem 5.6 and Theorem 5.10, we readily obtain that

dH
(
F ∗ML
N (nd), F0

)
converges to zero as N, M, L, Nt, Nx →∞.

With the results of these two theorems, we can claim that both that there exists a solution to

the approximate inverse problem, de�ned in (5.8), and that it is continuously dependent on the

given data. We have also established method stability under approximation of the state space and

parameter space of our inverse problem. Therefore, we can conclude the existence and consistency

of the estimators of the approximate least squares problem.

5.3 Application to �occulation equations

Modeling �occulation, a process whereby destabilized suspended particles (i.e., �ocs) reversibly

aggregate and fragment, has received considerably attention over the years (Han et al., 2003; Davis

& Hunt, 1986; Adachi, 1995; Thomas et al., 1999). Flocculation is ubiquitous in many diverse areas

such as water treatment, biofuel production, beer fermentation, etc. In modeling the dynamics

of �occulation, four important mechanisms arise in a wide range of applications: aggregation,
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fragmentation, proliferation and sedimentation. Mathematical modeling of �occulation is usually

based on a size-structured population equations that take into account one or more of the above

listed mechanisms.

The particular �occulation model we study here accounts for aggregation, fragmentation and

sedimentation of the �ocs. The equations for the �occulation model track the time-evolution of the

particle size number and is given by the following integro-di�erential equation

bt = A[b] + B[b] +R[b], (5.12)

b(0, x) = b0(x), (5.13)

where b(t, x) dx is the number of aggregates with volumes in [x, x + dx] at time t, and A, B and

R are the aggregation, breakage (fragmentation) and removal operators, respectively. We consider

x ∈ Q = [0, x], where x is the maximum �oc size and t ∈ T = [0, tf ], tf < ∞. As investigated

in our previous work (Bortz et al., 2008; Mirzaev & Bortz, 2015b), the function space for both the

initial condition b0(·) and the solution b(t, x) is H= L1(Q, R+), where Q = [0, x], x ∈ R+ and

g : H ×F → H.

The aggregation, fragmentation and removal operators are de�ned by:

A[p](t, x) :=
1

2

∫ x

0
ka(x− y, y)p(t, x− y)p(t, y) dy

−p(t, x)

∫ x

0
ka(x, y)p(t, y) dy , (5.14)

B[p](t, x) :=

∫ x

x
Γ(x; y)kf (y)p(t, y) dy − 1

2
kf (x)p(t, x) (5.15)

and

R[p](t, x) := −µ(x)p(t, x) . (5.16)

The aggregation kernel, ka(x, y), describes the rate at which �ocs of volume x and y combine to

form a �oc of volume x+ y and is a symmetric function satisfying ka(x, y) = 0 for x+ y > x. The
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fragmentation kernel kf (x) describes the rate at which a �oc of volume x fragments. The function

Γ(x, y) is the post-fragmentation probability density function, for the conditional probability of

producing a daughter �oc of size x from a mother �oc of size y. This probability density function

is used to characterize the stochastic nature of �oc fragmentation (e.g., see the discussions in (Han

et al., 2003; Bortz et al., 2008; Byrne et al., 2011; Bäbler et al., 2008)).

The �occulation equations, presented in (5.12)-(5.20), are a generalization of many mathematical

models appearing in the size-structured population modeling literature. The forward problem of

the �occulation equations has also been the focus of considerable mathematical analysis. There is

a signi�cant literature on the existence and uniqueness of solutions to �occulation equations, see

for example (White, 1980; Dacosta, 1995). Nevertheless, because of the nonlinear term introduced

by the aggregation, derivation of analytical solutions for the �occulation equations has proven

elusive except for some special cases (Aldous, 1999). However, many discretization schemes for

numerical simulations of the PBEs have been proposed: the least squares spectral method (Dorao

& Jakobsen, 2006b), the �nite volume methods (Bourgade & Filbet, 2008) and the �nite element

method Nicmanis & Hounslow (1998). For a review of further mathematical results, we refer readers

to the review article by Wattis (2006).

We now consider the application of our inverse methodology to the evolution equation de�ned

in (5.12)-(5.13). For �xed t ∈ T, b(t, ·) ∈ H, F ∈ F , consider the right side of (5.12), represented

by (5.1),

g(b, F ) = A[b] + B[b; F ] +R[b] , (5.17)

where the conditional probability measure F (·, y) on Ω ⊆ Q and for �xed y ∈ Q is de�ned as

F (Ω, y) =

∫
Ω

Γ(ξ, y) dξ .

Note that 0 ≤ F (Ω, y) ≤ 1 for all Ω ⊆ Q, since Γ(·, y) is a probability density function for each

�xed y.

Setting Ω = [0, x] yields

F ([0, x], y) =

∫ x

0
Γ(ξ, y) dξ ,

which is cumulative probability of getting �ocs smaller than size x when a parent �oc of size y
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(a) (b) (c)

Figure 5.1: Relationship between post-fragmentation density functions Γ(x, y) (top row) and cu-
mulative density function F (x, y) (bottom row) a) Γ(x, y), Beta distribution with α = β = 2. b)
Γ(x, y), Beta distribution with α = 5 and β = 1. c) Γ(x, y), uniform distribution in x for �xed y.

fragments. Hereafter, for convenience and in mild abuse of the notation, we refer to this quantity

as cumulative density function (cdf) and denote it simply by F (x, y). Note that a fragmentation

cannot result in a daughter �oc larger than the original �oc, therefore F (x, y) ≡ 1 for x ≥ y and �xed

y ∈ Q. Furthermore, one can infer the post-fragmentation density function Γ(x, y) by numerical

di�erentiation of the cdf F (x, y). Figure 5.1 depicts the relationship between the cdf F (x, y) and

the post-fragmentation density function Γ(x, y) for several di�erent probability distributions.

Before we proceed to the inverse problem, we need to establish existence and uniqueness, i.e.,

well-posedness, of the solutions of the forward problem. Well-posedness of the forward problem for

x <∞ and tf <∞ was �rst established by Ackleh & Fitzpatrick (1997) in an L2-space setting and

later by Banasiak & Lamb (2009) for x = ∞ and tf = ∞ in an L1-space setting. For the sake of

completeness, in the following lemma, we will summarize assumptions needed for the well-posedness

for x <∞ and tf <∞ in L1-space setting and refer readers to (Bortz et al., 2008, �3) for the proof.

Lemma 5.12. Suppose that kf , µ ∈ L∞(Q), ka ∈ L∞ (Q×Q). Moreover, assume that the post-

fragmentation density function Γ(·, y) ∈ L1 (Q) for all y ∈ (0, x] and

F (x, y) =

∫ x

0
Γ(ξ, y) dξ = 1 for all x ≥ y .

The evolution equation (5.12)-(5.13) is well-posed on H = L1 (Q, R+) and for any compact set
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T = [0, tf ] and b0 ≥ 0, the classical solution of (5.12)-(5.13) satis�es

C0 = sup
t∈T, x∈Q

|b(t, x)| <∞ . (5.18)

Having the well-posedness of the forward problem, we now show that the solution b(t, x, ·) is

uniformly continuous on compact space F . This in turn, from Theorem 5.4, proves the existence

of minimizers for the least squares problem de�ned in (5.5). Towards this end, we establish the

following lemma, which we will need later to show that g, de�ned in (5.17), satis�es the locally

Lipschitz property of Condition 5.1.

Lemma 5.13. The operator A+R is locally Lipschitz

∥∥∥A[b] +R[b]−A[b̃]−R[b̃]
∥∥∥ ≤ C1

∥∥∥b− b̃∥∥∥
where C1 = 3C0 ‖ka‖∞ + ‖µ‖∞. Furthermore, the fragmentation operator B satis�es the locally

Lipschitz property of Condition 5.1.

Proof. To show that A+R is locally Lipschitz, �rst observe that

∥∥∥A[b]−A[b̃]
∥∥∥ ≤ 1

2

∫
Q

∣∣∣∣∫ x

0
ka(x− y, y)b(x− y)b(y) dy

−
∫ x

0
ka(x− y, y)b̃(x− y)b̃(y) dy

∣∣∣∣ dx
+

∫
Q

∣∣∣∣b(x)

∫
Q
ka(x, y)b(y) dy − b̃(x)

∫
Q
ka(x, y)b̃(y) dy

∣∣∣∣ dx
≤ ‖ka‖∞

[
1

2

∫
Q

∣∣∣∣∫ x

0
b(x− y)

(
b(y)− b̃(y)

)
dy

∣∣∣∣ dx
+

1

2

∫
Q

∣∣∣∣∫ x

0
b̃(y)

(
b(x− y)− b̃(x− y)

)
dy

∣∣∣∣ dx
+

∫
Q

∣∣∣∣b(x)

∫
Q

(
b(y)− b̃(y)

)
dy

∣∣∣∣ dx
+

∫
Q

∣∣∣∣b̃(x)

∫
Q

(
b(y)− b̃(y)

)
dy

∣∣∣∣ dx] .
At this point, applying Young's inequality Adams & Fournier (2003, Theorem 2.24) for the �rst two
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integrals yields the desired result

∥∥∥A[b]−A[b̃]
∥∥∥ ≤ ‖ka‖∞

[
1

2
‖b‖

∥∥∥b− b̃∥∥∥+
1

2

∥∥∥b̃∥∥∥∥∥∥b− b̃∥∥∥
+ ‖b‖

∥∥∥b− b̃∥∥∥+
∥∥∥b̃∥∥∥∥∥∥b− b̃∥∥∥]

≤ 3C0 ‖ka‖∞
∥∥∥b− b̃∥∥∥ .

For the second part of the lemma, examining the fragmentation term, we �nd

∥∥∥B(b, F )− B(b̃, F̃ )
∥∥∥ ≤

∥∥∥∥1

2
kf (x)

(
b̃(t, x)− b(t, x)

)∥∥∥∥
+

∥∥∥∥∫ x

x
kf (y)

(
b(t, y) Γ(x, y)− b̃(t, y) Γ̃(x, y)

)
dy

∥∥∥∥
≤ 1

2
Cfrag

∥∥∥b− b̃∥∥∥+ Cfrag

∥∥∥∥∫
Q
b(t, y)

(
Γ(x, y)− Γ̃(x, y)

)
dy

∥∥∥∥
+Cfrag

∥∥∥∥∫
Q

(
b(t, y)− b̃(t, y)

)
Γ̃(x, y) dy

∥∥∥∥
where Cfrag = ‖kf‖∞. The second term on the right hand side becomes

Cfrag

∥∥∥∥∫
Q
b(t, y)

(
Γ(x, y)− Γ̃(x, y)

)
dy

∥∥∥∥ ≤ Cfrag

∫
Q

∫
Q
|b(t, y)|

∣∣∣Γ(x, y)− Γ̃(x, y)
∣∣∣ dy dx

≤ Cfrag

∫
Q
|b(t, y)|

∫
Q

∣∣∣Γ(x, y)dx− Γ̃(x, y)dx
∣∣∣ dy

≤ Cfrag

∫
Q
|b(t, y)|

(∫
Q

∣∣∣dFy − dF̃y∣∣∣) dy
≤ Cfrag sup

y∈Q

∫
Q

∣∣∣dFy − dF̃y∣∣∣ ∫
Q
|b(t, y)| dy

≤ CfragxC0 sup
y∈Q

∫
Q

∣∣∣dFy − dF̃y∣∣∣ ,
where dFy denotes the Radon�Nikodym derivative of the measure F (·, y) and C0 is the upper bound

of the solutions de�ned in (5.18). Since
∫
Q

∣∣∣dFy − dF̃y∣∣∣→ 0 is equivalent to ρProh(Fy, F̃y)→ 0 , we

know that

sup
y∈Q

∫
Q

∣∣∣dFy − dF̃y∣∣∣→ 0 as ρ(F, F̃ )→ 0.

Therefore,

Cfrag

∥∥∥∥∫
Q
b(y)

(
Γ(x, y)− Γ̃(x, y)

)
dy

∥∥∥∥→ 0 as ρ(F, F̃ )→ 0.
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Similar analysis for the third term leads to the bound

Cfrag

∥∥∥∥∫
Q

(
b(y)− b̃(t, y)

)
Γ̃(x, y) dy

∥∥∥∥ ≤ Cfragx ‖Γ‖∞
∥∥∥b− b̃∥∥∥ .

Combining these results we �nd the overall fragmentation term can be bounded by

∥∥∥B(b, φ)− B(b̃, φ̃)
∥∥∥ ≤ Cfrag

(
1

2
+ x ‖Γ‖∞

)∥∥∥b− b̃∥∥∥+ T (F, F̃ ).

At this point we are ready to make the following claim.

Claim 5.14. The function g satis�es the locally Lipschitz property of Condition 5.1.

Proof. Consider

∥∥∥g(b, F )− g(b̃, F̃ )
∥∥∥ =

∥∥∥A[b]−A[b̃] + B[b;F ]− B[b̃; F̃ ] +R[b]−R[b̃]
∥∥∥

≤
∥∥∥A[b]−A[b̃]

∥∥∥+
∥∥∥B[b;F ]− B[b̃; F̃ ]

∥∥∥+
∥∥∥R[b]−R[b̃]

∥∥∥ .
Using the Lipschitz constants from the fragmentation and aggregation terms,

∥∥∥g(b, φ)− g(b̃, φ̃)
∥∥∥ ≤ C ∥∥∥b− b̃∥∥∥+ T (F, F̃ )

where C = Cfrag

(
1
2 + x ‖Γ‖∞

)
+ C1 and C1 and Cfrag are de�ned in Lemma 5.13.

The above claim proves continuity and the existence of minimizers of the least squares functional

J , de�ned in (5.5), on the space of admissible probability distributions. Furthermore, Lemma 5.12

establishes that the classical solution of (5.12)-(5.13) is bounded on T × Q. Moreover, since the

space of Riemann integrable functions are dense on L1(Q, R+), we can assume that the classical

solution is also Riemann integrable. Therefore, the evolution equation (5.12)-(5.13) satis�es the

consistency conditions of Theorem 5.5, and thus estimators of the least squares problem, de�ned in

(5.5), are consistent for this �occulation model.
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5.3.1 Numerical Implementation

In this section, we outline a discretization scheme for approximating the �occulation equations. We

�rst form an approximation to H. We de�ne basis elements

βNi (x) =

 1; xNi−1 ≤ x ≤ xNi ; i = 1, . . . , N

0; otherwise

for positive integer N and {xNi }Ni=0 a uniform partition of [0, x] = [xN0 , x
N
N ], and ∆x = xNj − xNj−1

for all j. The βN functions form an orthogonal basis for the approximate solution space

HN =

{
h ∈ H | h =

N∑
i=1

αiβ
N
i , αi ∈ R

}
,

and accordingly, we de�ne the orthogonal projections πN : H 7→ HN

πNh =
N∑
j=1

αjβ
N
j , where αj =

1

∆x

∫ xNj

xNj−1

h(x) dx.

Thus our approximating formulations of (5.12), (5.13) becomes the following system of N ODEs for

bN ∈ HN and F ∈ F :

bNt = πN
(
A[bN ] + B[bN ;F ] +R[bN ]

)
, (5.19)

bN (0, x) = πNb0(x) , (5.20)

where

πNA[bN ] =



−α1

∑N−1
j=1 ka(x1, xj)αj∆x

1
2
ka(x1, x1)α1α1∆x− α2

∑N−2
j=1 ka(x2, xj)αj∆x

...

1
2

∑N−2
j=1 ka(xj , xN−1−j)αjαN−1−j∆x− αN−1ka(xN−1, x1)α1∆x

1
2

∑N−1
j=1 ka(xj , xN−j)αjαN−j∆x


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and

πN
(
B[bN ;F ] +R[bN ]

)
=



∑N
j=2 Γ(x1;xj)kf (xj)αj∆x− 1

2
kf (x1)α1 − µ(x1)α1∑N

j=3 Γ(x2;xj)kf (xj)αj∆x− 1
2
kf (x2)α2 − µ(x2)α2

...

Γ(xN−1;xN )kf (xN )αN∆x− 1
2
kf (xN−1)αN−1 − µ(xN−1)αN−1

− 1
2
kf (xN )αN − µ(xN )αN


.

In the following lemma we show that the numerical scheme satis�es Condition 5.7.

Claim 5.15. The function gN : HN ×F → HN as de�ned by

gN (bN , F ) = A[bN ] + B[bN ;F ] +R[bN ] (5.21)

satis�es the Lipschitz-type property in Condition 5.7.

Proof. We consider the integrand

∥∥∥πN (A[bN ] +R[bN ] + B[bN ;F ]−A[b̃N ]−R[b̃N ]− B[b̃N ; F̃ ]
)∥∥∥ ,

and note that

≤
∥∥πN∥∥(∥∥∥A[bN ]−A[b̃N ]

∥∥∥
+
∥∥∥R[bN ]−R[b̃N ]

∥∥∥
+
∥∥∥B[bN ;F ]− B[b̃N ; F̃ ]

∥∥∥) .
The induced L1-norm on the projection operator will not be an issue as

∥∥πN∥∥ = sup
h∈H,‖h‖=1

∥∥πNh∥∥
= sup

h∈H,‖h‖=1

∥∥∥∥∥∥
N∑
j=1

βNj (·)
∆x

∫ xNj

xNj−1

h(x)dx

∥∥∥∥∥∥
= 1 .

As illustrated in the proof of Claim 5.14, the bounding constants for A+R and B are 3C0 ‖ka‖∞+



100

‖µ‖∞ and ‖kf‖∞
(

1
2 + x ‖Γ‖∞

)
, respectively. Combining these results, we have that

∥∥∥b̃N (t, x; F̃ )− bN (t, x;F )
∥∥∥ ≤ CN ∥∥∥b̃N (t, x; F̃ )− bN (t, x;F )

∥∥∥+ T N (F̃ , F )

where T N (F̃ , F ) =
∫ tf

0 πNT (F̃ , F )ds, independent of t, and CN = ‖kf‖∞
(

1
2 + x ‖Γ‖∞

)
+3C0 ‖ka‖∞+

‖µ‖∞ .

Corollary 5.16. The semi-discrete solutions to (5.19) converge uniformly in L1-norm to the unique

solution of (5.12) on a bounded time interval as N →∞.

Proof. From results in (Bortz et al., 2008), we can obtain semi-discrete solutions bN to the forward

problem that converge uniformly in norm to the unique solution of (5.12)-(5.13) on a bounded time

interval as N →∞.

For �xed N , we rewrite (5.19) in integral form and consider

∥∥bN (t, x;F )− πNb(t, x;F )
∥∥ ≤

∫ t

0

∥∥πN (R[bN (s, x;F )]−R[b(s, x;F )]
)∥∥ ds

+

∫ t

0

∥∥πN (A[bN (s, x;F )] + B[b(s, x;F )]

−A[bN (s, x;F )]− B[b(s, x;F ]
)∥∥ ds.

for t ∈ T . The general strategy is to use the fact that the discretized version of g, de�ned in (5.21),

is locally Lipschitz and then apply Gronwall's inequality. We refer readers to (Ackleh, 1997; Bortz

et al., 2008) for the detailed discussion about the convergence of the numerical scheme.

5.3.2 Convergence of the numerical scheme

In this section, we provide numerical evidence for the linear convergence of the approximation

scheme described in Section 5.3.1. Towards this end, we choose the following model rates.

To describe the aggregation within a laminar shear �eld (orthokinetic aggregation (Dobias, 1993))

we used the kernel,

ka(x, y) = 10−6
(
x1/3 + y1/3

)3
. (5.22)
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As in (Bortz et al., 2008; Ackleh & Fitzpatrick, 1997; Mirzaev & Bortz, 2015a,b) we assume that

the breakage and removal rate of a �oc of volume x is proportional to its radius,

kf (x) = 10−1x1/3 µ(x) = 10−3x1/3 . (5.23)

For the post-fragmentation density function we chose a uniform distribution in x for �xed y,

Γ(x, y) = 1[0, y](x)
1

y
, (5.24)

a Beta distribution with α = β = 2.

The main advantage of this semi-discrete scheme, de�ned in (5.12)-(5.13), is that it can be

initialized very fast using Toeplitz matrices Matveev et al. (2015). This in turn proves useful in

the optimization process, where the approximate forward problem is initialized and solved multiple

times for each iteration. For solving the approximate forward problem we used an adaptive step size

integration method implemented in an open-source Python library2. The simulation was run with

initial size-distribution b0(x) = exp(x) on Q = [0, 1] for tf = 1. L1-error between actual solution

u(t, x) and approximate solution uN (t, x) was computed as

‖u− uN‖ =

∫ tf

0

∫ x

0
|u(t, x)− uN (t, x)| dx dt .

Since no analytical solution is available for the nonlinear �occulation equations, de�ned (5.12)-(5.13),

we estimate the error with a �ne grid solution, i.e., u(t, x) ≈ u1000(t, x).

Figure 5.2 depicts loglog plot of the error, which implies that the numerical algorithm has a linear

convergence rate. This is due to the fact that we chose zeroth order functions as basis functions

for approximate subspaces. In general, if one desires a higher order convergence for Galerkin-type

approximations, choosing higher order basis functions gives higher convergence rate (Kappel &

Kunisch, 1981).

5.3.3 Numerical optimization and results

2scipy.integrate.odeint
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Figure 5.2: Loglog plot of the L1-error

As an initial investigation into the utility of this approach, we apply the framework presented in

this chapter to the �occulation equations. Towards this end, we generate two sets of arti�cial data.

In Byrne et al. (2011), we found that the resulting post-fragmentation density for small parent

�ocs resembles a Beta distribution with α = β = 2 (see Figure 5.1a for an illustration). Therefore,

the �rst arti�cial data set was generated from the forward problem by assuming model rates given

in (5.22)-(5.23) and a post-fragmentation density function a Beta distribution with α = β = 2,

Γtrue(x, y) = 1[0, y](x)
6x(y − x)

y3
. (5.25)

As in Section 5.3.1, we chose exponential initial size-distribution b0(x) = 103 exp(x) on Q = [0, 1]

for tf = 10. We also note that constants for the rate functions were chosen to emphasize the

fragmentation as a driving factor. Moreover, Figure 5.3 illustrates the simulation of the forward

problem for di�erent post-fragmentation density functions. When the fragmentation is the driving

mechanism, one can observe in Figures 5.3a-5.3c that model behaves signi�cantly di�erent for

various post-fragmentation density functions.

Recall from Section 5.1.1 that data required for the inverse problem needs to be of the form

nj(ti), representing the number of �ocs with volume between xj and xj+1 at time ti. In general, the

number of bins for �oc volume Nx comes �xed with measurement device (�ow-cytometers, Coulter
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(a) (b) (c)

Figure 5.3: Direct model simulation results. a) Simulation of the forward problem for Beta distri-
bution with α = β = 2. b) Simulation of the forward problem using Beta distribution with α = 5
and β = 1. c) Simulation of the forward problem using a uniform distribution in x for �xed y.

counters, etc). Therefore, for the synthetic data generation we choose �xed volume bins Nx = 10.

Nevertheless, one has control of number of measurements taken in time, Nt.

The simulation results with �ne grid (N = 1000 and ∆t = 0.001) were interpolated onto the

function b(t, x, F0) using linear interpolation3. Consequently, aggregate data of the form (5.3) were

obtained from the integration of the interpolated function b(t, x, F0) on the interval [xj , xj+1] and

at time ti. Furthermore, normal i.i.d noise with zero mean and standard deviation σ = 20 were

added to the aggregate data. For this choice of initial size-distribution and volume bins Nx values

of the data are in the range [100, 300] and thus we note that σ = 20 is a signi�cant noise.

To minimize the approximate cost functional in (5.8) we used nonlinear constrained optimiza-

tion4 employing Powell's iterative direct search algorithm (Powell, 1994, 1998). At each iteration

the algorithm forms linear approximations to nonlinear objective and constraint functions and thus

performs well even when no derivative information is available. For better results we set the maxi-

mum number of iterations to 104. The optimization was seeded with an initial density comprised of

a uniform distribution in x for �xed y, illustrated in Figure 5.1c. Naturally, we constrained Γ(·, y)

to be a probability density for each �xed y, i.e.,

F (x, y) =

∫ x

0
Γ(ξ; y) dξ = 1 for all x ∈ (y, x].

3scipy.interpolate.interp2d
4scipy.optimize.fmin_cobyla
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The optimization procedure is computationally very expensive. That is because at each iteration

the algorithm solves the approximate forward problem with dimension N . Moreover, recall from

Section 5.2 that for each approximate space FML the optimization entails �nding L probability

measures discretized with M Dirac measures. Therefore, time required for minimizing the cost

functional (5.8) increases substantially for larger dimensions of the approximate space FML, de�ned

in Section 5.2. Towards this end, dimension of the approximate space and the approximate forward

solution was set to 30, i.e., N = M = L = 30. For this case note that, since F (x, y) ≡ 1 for x ≥ y

and �xed y ∈ Q,
N(N − 1)

2
= 435

discrete parameters need to be optimized for the simulation of the inverse framework.

For computational convenience, the error plots are in terms of the total variation metric (also

called the statistical distance) de�ned as

ρTV(F, F̃ ) = sup
Ω∈A
|F (Ω)− F̃ (Ω)| ,

where A is the Borel σ-algebra on Q as de�ned in Section 5.1.1. Note that convergence in the total

variation metric implies the convergence of probability measures in the Prohorov metric (Gibbs &

Su, 2002), i.e.,

ρproh(F, F̃ ) ≤ ρTV(F, F̃ ) . (5.26)

The result of the optimization for the density function (5.25) is shown in Figure 5.4. The

optimization was carried out with N = M = L = 30, Nx = 10, Nt = 20. In Figure 5.4d, we have

illustrated error plots for di�erent observation duration tf ∈ {1, 2, · · · , 20}. Observe the general

trend that having larger observation duration improves the error in estimates. Figures 5.4a and

5.4b depict the result of the optimization for tf = 10. One can see that �t between the true F0

and approximate probability measures F30 is satisfactory (though there is room for improvement).
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Moreover, Figure 5.4c also illustrates the satisfactory �t between F0 and F30, for two �xed values

of y.

To investigate the behavior of the estimators for di�erent probability distributions we applied

our inverse methodology for another arti�cial data set. The arti�cial data set was generated with a

post-fragmentation density function equal to a Beta distribution with α = 5 and β = 1 (see Figure

5.1a for an illustration),

Γtrue(x, y) = 1[0, y](x)
5x4

y5
. (5.27)

Other model rates were chosen same as in the �rst arti�cial data set. The application of our

inverse problem framework to this second arti�cial data set is depicted in Figure 5.5. Figure 5.5d

illustrates error plots in total variance norm for di�erent observation duration tf ∈ {1, 2, · · · , 20}.

Once again having larger observation duration is generally improving the error in estimates.

Furthermore, Figures 5.5a-5.5c, depict that the �t between F0 and F30 is satisfactory.

We also note that our simulations gave better convergence results for larger values of tf ≥ 5

as depicted in Figures 5.4d and 5.5d. For the last few values of tf , the error does appear to

exhibit an increasing trend, possibly due a lack of su�cient resolution in time. This result is

consistent with the literature (Banks et al., 2007b; Keck & Bortz, pear; Thomaseth & Cobelli,

1999) in that the size and resolution of the observation interval can have a substantial e�ect on

identi�ability of parameters. For instance, Thomaseth & Cobelli (1999) developed generalized

sensitivity functions that can be used for the qualitative analysis of the impact of the observation

intervals on identi�ability of parameters in dynamical systems. These sensitivity functions help to

identify the most relevant data and time subdomains for identi�cation of certain parameters. Later,

Banks et al. (Banks et al., 2010a, 2007b) o�ered a quantitative means to choose the duration tf

required for an optimal experiment design. Moreover, Keck & Bortz (pear), provided an extension

of this sensitivity functions to the size-structured population models. Hence, as a future research

direction, we plan to incorporate these sensitivity functions for choosing the optimum observation

duration tf .

Figure 5.6 depicts the e�ect of increasing noise on the reconstruction of the conditional probabil-

ity measures. In particular, in Figure 5.6a (and Figure 5.6b) we plotted the error between true cdf

F0 and approximate cdf F30 for increasing standard deviation σ of arti�cial noise added to the �rst
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data set (and the second data set). The optimization was carried with tf = 10, N = M = L = 30

and Nt = Nx = 10. One can observe that for both data sets the optimization performs well for the

standard deviations in the range [0, 25].

5.4 Concluding Remarks

Our e�orts here are motivated by a class of mathematical models which characterize a random

process, such as fragmentation, by a probability distribution. We are concerned with the inverse

problem for inferring the conditional probability distribution in measure-dependent evolution equa-

tions, and present the speci�c problem for the �occulation dynamics of aggregates in suspension

which motivated this study. We then developed the mathematical framework in which we formulate

the inverse problem as a least squares problem for inferring the conditional probability distribu-

tions. We prove existence and consistency of the least squares estimates using the Prohorov metric

framework. We also include results for overall method stability for numerical approximation, con-

�rming a computationally feasible methodology. Finally, we verify that our motivating example in

�occulation dynamics conforms to the developed framework, and illustrate its utility by identifying

sample distributions.

To conclude, this work is one piece of a larger e�ort aimed at advancing our abilities for iden-

tifying microscale phenomena from size-structured population measurements. In particular, we are

interested in the propensity of suspended bacterial aggregates to fragment in a �owing system. The

model proposed in (Byrne et al., 2011) uses knowledge of the hydrodynamics to predict a breakage

event and thus the post fragmentation density Γ. With this work, we now have a tool to bridge the

gap between the experimental and microscale modeling e�orts for fragmentation. Our future e�ort

will focus on using experimental evidence to validate (or refute) our proposed fragmentation model.
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(a) (b)

(c) (d)

Figure 5.4: Simulation results for the arti�cial data generated using Beta distribution with α =
β = 2, and normal i.i.d error with mean zero and standard deviation σ = 20. (a) True cdf F0(x, y)
(b) Approximate cdf F30(x, y) for N = M = L = 30, Nx = 10, Nt = 20 and tf = 10. (c)
Comparison of F0(x, y) and F30(x, y) for y = 0.5 and y = 1.0 (d) Error plots in total variance norm
for tf ∈ {1, 2, · · · , 20} and Nt = 20.
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(a) (b)

(c) (d)

Figure 5.5: Simulation results for the arti�cial data generated using Beta distribution with α = 5
and β = 1 and normal i.i.d error with mean zero and standard deviation σ = 20. (a) True cdf
F0(x, y). (b) Approximate cdf F30(x, y) for N = M = L = 30, Nx = 10, Nt = 20 and tf = 10. (c)
Comparison of F0(x, y) and F30(x, y) for y = 0.5 and y = 1.0 (d) Error plots in total variance norm
for tf ∈ {1, 2, · · · , 20} and Nt = 20.
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(a) (b)

Figure 5.6: E�ect of noise on reconstruction of the conditional probability measure with N = M =
L = 30 and Nt = Nx = 10. a) Arti�cial data set generated using Beta distribution with α = β = 2
and increasing normal i.i.d error with mean zero and standard deviation σ ∈ [0, 50]. b) Arti�cial
data set generated using Beta distribution with α = 5 and β = 1 and increasing normal i.i.d error
with mean zero and standard deviation σ ∈ [0, 50].



Chapter 6

Conclusions

6.1 Industrial applications of �occulation

Flocculation of suspended particles is ubiquitous in many di�erent �elds such as meteorology, ma-

rine science, astronomy, polymer science, and biotechnology. Flocculation is an e�cient liquid-solid

separation technique and has a broad range of industrial applications including fermentation, biofuel

production, mineral processing, wastewater treatment, just to name a few. Particularly, almost all

of the modern wastewater treatment plants have bioreactors where microbial metabolism and �oc-

culation are exploited in the removal of hazardous material from the surface waters, often referred

to as activated sludge process. The activated sludge process is the most commonly used pollutant

removal method for municipal and industrial wastewater treatment. The sewage water in an aera-

tion tank is seeded with bacteria, which use soluble and insoluble contaminants as a substrate for

metabolism. Floc formation of newly formed cells is controlled in a settling tank. Consequently,

the �occulated biomass is removed from the clari�ed e�uent before its discharge by gravitational

solid-liquid separation technique. Flocculation of microorganisms is crucial for the proper operation

and e�ciency of the gravitational separation technique. The failure of �occulation process may

result in an excess discharge of solids to the rivers, which in turn results in the spreading of disease

and destruction of aquatic life.

The �nal clari�cation step is often modeled using simple ordinary di�erential equations which

describe time-evolution of an averaged variable for the biomass concentration in the tank. Recent

technological advance in online monitoring of activated sludge �occulation has enabled development

110
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of so-called segregated models. In segregated models, mostly referred to as population balance

models, the individual interactions of �ocs are accurately described and transient time evolution of

�oc size distribution in the tank is tracked. The mathematical model for the microbial �occulation

is a 1D nonlinear partial integro-di�erential equation, which has been successful in matching many

�occulation experiments (Li et al., 2004; Ducoste, 2002; Spicer & Pratsinis, 1996; Nopens et al.,

2005). The microbial �occulation equations (1.1) accounts for a broad range of biological phenomena

(necessary for the survival of a community of microorganism in a suspension) including growth,

aggregation, fragmentation, removal due to predation and gravitational sedimentation. Moreover,

the number of cells that erode from a �oc and enter the single cell population is modeled with

McKendrick-von Foerster-type renewal boundary equation.

The microbial �occulation equations have been a focus of an extensive mathematical analysis

over the past several decades. Well-posedness of the microbial �occulation equations has been

established in many di�erent space settings. Analytical solutions were found for a few special

cases and thus many di�erent numerical schemes have been proposed for the approximation of the

solutions. Nevertheless, the nonlinear terms introduced by aggregation have made investigating the

long-term behavior of the microbial �occulation equation a very challenging task. Towards this

end, in this dissertation report, we rigorously investigated the long-term behavior of the microbial

�occulation equations described in (1.1).

6.2 Summary of the mathematical results

We �rst showed that, under relatively simple restrictions on the model rates, the microbial �oc-

culation equations possess a unique, non-trivial, positive stationary solution. Consequently, we

employed the principle of linearized stability to provide su�cient conditions for the local stabil-

ity and instability of the non-trivial stationary solutions. Microbial �occulation equations can be

classi�ed as evolution equations. There are many analytical techniques for establishing existence

and stability of stationary solutions of evolution equations. However, �nding closed form stationary

solutions of evolution equations is rather challenging and thus making linearized stability analysis

very di�cult. To this end, we developed a numerical framework for computing approximations to

stationary solutions of general evolution equations, which can also be used to produce approximate
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existence and stability regions for steady states.

Moreover, to approximate stationary solutions of the microbial �occulation equations, we pro-

posed several di�erent numerical techniques based on Finite Di�erence and Spectral Collocation

methods. In particular, our numerical scheme with spectral collocation method yielded very pre-

cise approximations with at high rate of convergence. We exploited this increased precision in the

approximation scheme for the numerical spectral analysis of Freched derivative of the operator F

(1.1) evaluated at a computed stationary solution, which allowed us to numerically evaluate the

local stability of computed stationary solutions. Furthermore, we explored the stationary solutions

of the model for various biologically relevant parameters and gave valuable insights for the e�cient

removal of suspended particles. For instance, our results indicate that for a given growth rate of a

microbial �oc one can adjust the shear rate within a stirring tank to yield an optimal average �oc

size.

We also presented and investigated an inverse problem for estimating the conditional probability

measures in size-structured population models from size-distribution measurements. We illustrated

that a particular form of the microbial �occulation equations (without the growth of the �ocs, i.e.,

g(x) ≡ 0) is one realization of a system satisfying the hypotheses of our framework. In particular, we

showed that our inverse methodology can be utilized to infer the post-fragmentation density function

Γ(x, y) from size-distribution measurements. Furthermore, we presented numerical examples to

demonstrate the feasibility of our methodology for arti�cial data sets.

6.3 Discussion

We found that the growth and renewal rates, accounted in the boundary conditions, are crucial

for the existence and the stability of the non-trivial steady states. As stated in Theorem 2.1,

for the existence of the stationary solutions the growth rate needs to be su�ciently large. In

Figure 4.10, we numerically validated that the stationary solutions fail to exist for the small growth

rates. Moreover, for the large growth rates the growth dominates and thus stationary solution

of the nonlinear microbial �occulation equation approaches the stationary solutions of the linear

Sinko-Streifer equations. Furthermore, for the existence of a positive stationary solution half of

the fragmentation rate should be larger than the removal rate. This in turn can be interpreted as
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fragmentation rate needs to be fast enough such that not all of the large �ocs are removed by the

gravitational sedimentation. Conversely, when the removal rate is su�ciently large, as illustrated

in Figure 1.3a, the solutions converge to a zero stationary solution.

As illustrated in Figure 1.3, the magnitude of the renewal rate can cause the solutions to diverge

or converge to trivial or non-trivial stationary solutions. In fact, one of the main assumptions of

the steady state existence theorem (Theorem 2.1) is to adjust the renewal rate to satisfy

g(0)p(0) =

∫ x

0
q(y)u∗(y) dy = 1 . (6.1)

The numerical spectral analysis of Section (4.4) suggest that the stationary solutions satisfying the

condition (6.1) are all locally stable. However, note that the numerical results of the Chapters 3 and

4 indicate existence of stationary solutions even when the condition (6.1) is not satis�ed. Hence, as

a future research, we plan to further investigate stability of non-trivial steady states of the microbial

�occulation equations.



Appendix A

Model Rates used in Chapter 4

Having the approximation scheme in hand, we now present our preliminary numerical results. For

the purpose of illustration, the aggregation kernel was chosen to describe �ow within laminar shear

�ow (Sa�man & Turner, 1956) (i.e., orthokinetic aggregation)

ka(x, y) = 1.3
( ε
ν

)1/2 (
x1/3 + y1/3

)3
,

where ε represents the homogeneous turbulent energy dissipation rate of the stirred tank and ν is

the kinematic viscosity of the suspending �uid. The quantity

γ̇ :=
( ε
ν

)1/2

is often referred to as a �volume average shear rate� (hereby, referred to as the �shear rate�) of the

stirring tank.

We employ the fragmentation rate given by Spicer (1995)

kf (x) = Cfx
1/3 ,

where Cf is the breakage rate coe�cient for shear-induced fragmentation. Pandya & Spielman

(1983); Spicer & Pratsinis (1996) have experimentally shown that there is a power law relation

between the shear rate γ̇ and the breakage rate Cf ,

Cf = aγ̇b
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Parameter Symbol Value Source

Kinematic viscosity of water at 20◦C ν 10−6m2/s Jewett & Serway (2008)
Shear rate γ̇ 1 s−1 Piani et al. (2014)

Fitting parameter a 7× 10−4 (Flesch et al., 1999)
Fitting parameter b 1.6 (Flesch et al., 1999)
Removal rate Cµ 1/γ̇ Assumed
Growth rate Cg 1 Assumed

Renewal rate (surface erosion) Cq

(∫ 1
0 (y + 1)p∗(y) dy

)−1
This chapter (6.2)

Table 6.1: Model parameters and their values used in simulations

where a and b �tting parameters speci�c to a �ow type. For our purposes we use the parameters

for laminar shear �ow found by Flesch et al. (1999),

a = 7× 10−4, b = 1.6 .

For a post-fragmentation density function we chose the well-known Beta distribution1 with

α = β = 2,

Γ(x, y) = 1[0, y](x)
6x(y − x)

y3
,

where 1I is the indicator function on the interval I = [0, 1]. Removal rate is assumed to be linearly

proportional to the volume of the �oc,

µ(x) = Cµx .

Since �ocs sediment slower under large shear rates, the removal rate should be inversely proportional

to the shear rate of the stirring tank. Therefore, for the remaining of the chapter we set the removal

rate to

Cµ = exp (−γ̇) .

Renewal (or surface erosion rate) is assumed to be proportional to the surface area of a �oc, i.e.,

q(x) = Cqx
2/3 .

1 Although normal and log-normal distributions are mostly used in the literature, Byrne et al. (Byrne et al., 2011)
have provided evidence that the Beta density function describes the fragmentation of small bacterial �ocs.
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where Cq some positive real number. Finally, we chose growth rate arbitrarily to ful�ll positivity

condition (A1),

g(x) = Cg(x+ 1) .

Note that, once a stationary solution is found, the constant Cq needs to be set to

Cq :=

(∫ 1

0
(y + 1)p∗(y) dy

)−1

. (6.2)

The remaining parameters Cg and γ̇ can be set to an arbitrary positive real number. Unless otherwise

stated, all the parameters used for the simulations are given in Table 6.1.
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