
Sparse Encoding of Observations from a Smooth Manifold

via Locally Linear Approximations

by

Nicholas Bertrand

B.S., University of Colorado at Boulder, 2012

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Applied Mathematics

2012



This thesis entitled:
Sparse Encoding of Observations from a Smooth Manifold via Locally Linear

Approximations
written by Nicholas Bertrand

has been approved for the Department of Applied Mathematics

Dr. François Meyer

Dr. James Curry

Dr. Shannon Hughes

Date

The final copy of this thesis has been examined by the signatories, and we find that both
the content and the form meet acceptable presentation standards of scholarly work in the

above mentioned discipline.



iii

Bertrand, Nicholas (M.S., Applied Mathematics)

Sparse Encoding of Observations from a Smooth Manifold via Locally Linear Approximations

Thesis directed by Professor François Meyer

We investigate the problem of finding a parameterization of a smooth, low-dimensional

manifold based on noisy observations from a high-dimensional ambient space. The formula-

tion of such parameterizations sees applications in a variety of areas such as data denoising

and image segmentation.

We introduce algorithms inspired by the existing k-svd algorithm for training dictio-

naries for sparse data representation, and the local best-fit flat algorithm for hybrid linear

modeling. The output of our algorithm is an assignment of input data points to locally

linear models. To demonstrate the applicability of our algorithm, we discuss experiments

performed on synthetic datasets.
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Chapter 1

Introduction

1.1 Motivation

In many application areas, scientists collect data from a high-dimensional ambient

space. In general such data is extremely difficult to analyze and process. However, in many

cases, there is an underlying low-dimensional structure which may be exploited to gain unique

insight from the data. Consider the simple example of taking observations from a d dimen-

sional shell centered at the origin in RD with d < D. Although each measurement consists

of D values, each of them can be expressed as a function of only d values, f(x1, . . . , xd).

However, when considering real data, the definition of such a parametrization f is not

so obvious. For example, consider a set of greyscale images of human faces. Suppose there

are m × n pixels in each image, each holding a value in the range 0-255. Each image may

be thought of as a point in Rm×n. However, since each image contains a human face, there

are certain combinations of pixels that could never be observed. One may further argue

that there are in fact a set of d� nm degrees of freedom that can describe each image, for

example the size and position of facial features.

In this thesis, we model data as coming from a smooth manifold. This model has

been used in a variety of areas such as object tracking [11] and image segmentation [20].

Our goal is to construct a parameterization of the manifold using a set of locally linear

approximations. As an example, we now refer back to the shell. Consider a circle in R2.

Given a set of samples, our goal is to approximate the origin object with a set of lines.
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Figure 1.1 provides an overview of this process.

Figure 1.1: Illustration of goal. The original manifold, a circle in this case, is approximated
using 9 line segments.

Naturally, we would like our approach to generalize to higher dimensions. In such cases

we approximate d-dimensional manifolds embedded in RD using a union of affine subspaces.

1.2 Formal Problem Statement

Consider the matrix X ∈ RD×N whose columns are observations from a manifold of

known dimension d embedded in RD. The goal of this thesis is to develop an algorithm

that produces a parameterization of input manifold observations using locally linear approx-

imations. The output should consist of an assignment of the input data to a corresponding

linear model. In other words, we wish to compute the matrix A ∈ RD×kd, X ∈ Rkd×N , and

B ∈ RD×N such that

Y ≈ AX + B (1.1)

where k is the number of linear models used to approximate data in Y. Each column

of X represents an approximation of a corresponding point in Y using the d basis vectors

of the linear model to which it has been assigned. Hence, columns of X are d-sparse, and

the locations of non-zero entries are common among points being represented by the same
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linear model. Each column bi in B corresponds to the center of mass of the model to which

point xi belongs.

We would like to choose our flats such that global approximation error is minimized.

In other words, we would like to solve the following optimization problem:

min
A,B
‖Y − (AX + B)‖ (1.2)

with the geometric constraints discussed above.

1.3 Organization of this Thesis

In Chapter 2, we briefly discuss related works, and provide an overview of two relevant

algorithms: K-SVD [1] and Local Best-fit Flats (LBF) [22]. As the algorithms proposed

in this thesis are inspired by K-SVD and LBF, a review of these algorithms is beneficial.

In Chapter 3, we describe the algorithms introduced in this thesis. Chapter 4 goes over

several experiments using the new algorithms. A discussion of algorithm performance and

limitations is given in Chapter 5. Concluding remarks and future research directions are

discussed in Chapter 6.



Chapter 2

Background

In recent years, much work has been done in attempt to solve problems that are

closely related to the one considered in this thesis. Related works include Local Best-fit

Flats (LBF), K-SVD, Spectral Curvature Clustering [4], k-planes clustering [16] [17] [21],

and General Principle Component Analysis [18]. The first two algorithms, LBF and K-SVD

were of particular influence in the development of the algorithms introduced in this thesis.

For this reason, we provide a brief introduction to each of these algorithms so the reader will

have some intuition as we introduce two new algorithms.

2.1 Local Best-fit Flats

2.1.1 Review of Algorithm

Local Best-fit Flats (LBF) was designed to solve a similar problem to our own. Consider

a set of data sampled from a union of affine subspaces (flats). The goal of LBF is to recover

a parameterization of the underlying structure. The algorithm is based on geometry, and

works by generating a set of c candidate flats, L. From the set L, a subset of “active” flats,

L̂ is formed. Points are assigned by choosing the nearest flat in L̂. In each iteration, a

randomly chosen element of L̂ is updated by replacing it with an element of L such that the

global approximation error is reduced. The An overview of LBF is as follows:
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Algorithm 1: Local Best-fit Flats (LBF)

Input : Data points Y ∈ RD×N , d: dimension of subspaces, c: number of candidate
flats, k: number of output flats, p: number of update passes

Output: Assignment of points in X to d-dimensional flats

Choose c points from X (call this set C) and use an appropriately sized neighborhood
around each point to construct a flat. Call this set of flats L.

Choose k flats from L and call this subset L̂.

for i = 1 to p do

Choose a random flat in L̂ and replace it with a flat from L such that maximum
improvement of the current approximation is achieved.

Assign points in X to their nearest flat in L̂.

An important step in the LBF algorithm is the computation of the “optimal” neigh-

borhood size from which we compute a flat. In order to compute the size of the optimal

neighborhood, we consider the following value:

β(N) =
mind-flats L

√∑
y∈N ‖y − PLy‖2/|N|

maxx∈N ‖x− x0‖
(2.1)

Suppose we wish to construct a flat around the point x0. We begin by taking a

neighborhood consisting of x0 and its S nearest neighbors. We then use (2.1) to compute the

neighborhood’s corresponding beta number. The size of the neighborhood is then increased

incrementally by T until a local minimum of (2.1) is found.

Theoretical justification for this method is provided in [22], and is not repeated here.

However, we offer the following to assist the reader’s intuition. In the presence of noise,

using more points to recover a flat typically results in a more accurate representation. This

result is considered in more detail in most texts in numerical analysis, for example [2].

Keeping this in mind, suppose we compute β(N) for the smallest possible neighborhood and

incrementally increase the size of the neighborhood as described above. The numerator,

which is normalized approximation error, will experience little growth at first, while the

denominator, which is the radius of the neighborhood continues to grow. This causes the

net effect of β(N) decreasing. However, when points from an adjacent flat begin to enter the

neighborhood, the approximation error becomes worse and β(N) begins to grow. Thus, the
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local minimum corresponds to the largest neighborhood containing only points on the same

flat on which x0 resides.

2.1.2 Discussion

In a sense, we wish to generalize LBF by developing a similar algorithm which allows for

the underlying structure from which we sample to have curvature. For the moment, suppose

we obtain samples from a union of affine subspaces. As long as the initial set of c points used

in LBF contains one point in each of the flats, we obtain perfect recovery in most cases1 .

Thus, there is little sensitivity to the location of these points on their corresponding flats.

However, should a similar approach be applied to an object with curvature, the location of

the c flats is critical. Although this problem could be solved by choosing a very high value

for c, we would like to try a different approach. The relationship of LBF to the algorithms

proposed in this thesis is discussed further in Chapter 3.

2.2 K-SVD

2.2.1 Review of the Algorithm

K-SVD is an algorithm for generating training over-complete dictionaries. In an over-

complete dictionary, the number of elements exceeds the dimensionality of the data which

they are intended to represent and are hence not orthogonal. The problem is then to represent

a given point using as few elements from the dictionary as possible.

The name comes from the mixture of the k-means clustering algorithm and the singular

value decomposition (SVD) of a matrix. K-SVD can be thought of as a generalization of

k-means clustering in which points in a cluster are represented by a single point to a version

in which points are represented as a linear combination of dictionary atoms.

The basic idea behind K-SVD is to first form an initial dictionary using elements

1 Note: An additional condition for this to hold it that the neighborhood constructed around each of
these points is contained in a single flat.
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directly from the dataset. Dictionary atoms are then updated iteratively by using the first

singular vector of a matrix related to the residual of the current approximation. An overview

of the algorithm is as follows:

Algorithm 2: K-SVD (Details Omitted)

Input : Dataset Y ∈ Rn×N

Output: A dictionary D ∈ Rn×m, and a sparse encoding X such that DX ≈ Y

Initialize: Fill D by selecting random points from Y.
repeat

Sparse Encoding: Use any sparse encoding scheme such as orthogonal matching
pursuit (OMP) to obtain X for the current dictionary.

Update Dictionary:
foreach dk ∈ D do

Form the set ω which contains the indices of the data points which are used by
atom dk.

Compute an error quantity associated with atom dk: Ek = Y −
∑

i 6=k dix
(i)
T .

Restrict Ek by removing columns that are not in ω, call it ER
k .

Compute the SVD ER
k = UΣVT.

Set dk equal to the first column of U, and set x
(i)
T equal to Σ1,1V1.

until stopping criterion

2.2.2 Discussion

The adaptation of KSVD to address our problem is significantly different than the

original KSVD algorithm. For this reason we do not provide an in-depth analysis here. We

refer interested readers to [3] and [1] for more details. Readers who need a review on SVD

itself may find an elementary introduction in [14]. In Chapter 3, we discuss how K-SVD

provided us with a starting point to develop an algorithm for our problem.



8

2.3 Other Related Work

2.4 Contributions

To our knowledge, no one has proposed an algorithm which utilizes locally linear models

to approximate a manifold. In this work, we propose two algorithms to solve the optimization

problem described in (1.2). In order to demonstrate the effectiveness of each algorithm, we

experiment with synthetic datasets. We also discuss issues of sampling, scale, and noise.

The primary contribution of this thesis is an algorithm inspired by local best-fit flats which

is tailored to work on general smooth manifolds rather than unions of affine subspaces.

We effectively eliminate the need to provide the number of “guess clusters” as an input by

dynamically exploring the landscape of the input manifold observations.



Chapter 3

Overview of Algorithms

In this chapter, we introduce two new algorithms. Details of the algorithms as well as

their connection to the ones discussed in Chapter 2 are discussed.

3.1 Manifold Best-fit Flats

3.1.1 Overview of Algorithm

The first algorithm we introduce is based on LBF. The intention of the algorithm was

to dynamically explore the terrain of the input manifold by constructing new candidate flats

iteratively after the initial set L is formed. To do so, we attempt to identify regions of

the manifold which are poorly represented by the approximation at a given iteration and

construct additional flats to correct the model. When choosing where to construct new flats,

we rank order error in neighborhoods rather than error in individual points to avoid wasting

resources by constructing flats around outliers. Also note that the neighborhood sizes are

not necessarily the optimal ones, since it would be extremely computationally expensive to

compute the optimal neighborhood around every point in the dataset. The procedure is

described below.
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Algorithm 3: Manifold Local Best-fit Flats (MLBF)

Input : Data points Y ∈ RD×N , d: dimension of subspaces, c: number of candidate
flats, k: number of output flats, p: number of update passes

Output: Assignment of points in X to d-dimensional flats

Choose c points from X (call this set C) and use an appropriately sized neighborhood
around each point to construct a flat. Call this set of flats L.

Choose k flats from L and call this subset L̂.

for i = 1 to p do

Choose a random flat in L̂ and replace it with a flat from L such that maximum
improvement of the current approximation is achieved.

For each point in yi ∈ Y, compute the error in a neighborhood of yi, choosing the
neighborhood size to be equal to the neighborhood size associated with the flat
representing yi.

Rank order the approximation error and generate flat centered around the point
corresponding to the highest approximation error.

Attempt to replace a flat in L̂ with the new flat. If there is a replacement such
that the global error is reduced, make the optimal replacement and add the new
flat to L.

Assign points in X to their nearest flat in L̂.

3.1.2 Scale: Choosing an Optimal Neighborhood

The method for choosing an optimal neighborhood size remains unchanged from the

original LBF algorithm. Again, we do not provide theoretical justification for this choice,

although theoretical results in [10] suggest that an optimal neighborhood indeed exists. How-

ever, the same intuition from LBF applies. In this case, the numerator of (2.1) experiences

little growth at the scale where curvature is low. By incrementally increasing the neigh-

borhood size, curvature in the underlying manifold cause the linear approximation to fail,

causing an eventual increase in β(N). This method is verified experimentally in Section 4.1.5.

3.2 Manifold K-SVD

In this section, we propose Manifold K-SVD (MKSVD), an algorithm inspired by K-

SVD. We begin by obtaining an initial clustering of our data, using an algorithm such as

k-means. Flats, whose basis vectors are analogous to dictionary atoms in standard K-SVD,
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are then computed using all of the points in each cluster. Updates are made by reassigning

points at the boundary between clusters in a way such that global approximation error is

decreased. In this method, updated flats are the result of reassigning points. This contrasts

MLBF where the assignment of points is the result of updating flats. A description of

MKSVD is shown below.

Algorithm 4: Manifold K-SVD (MKSVD)

Input : Data points Y, k: number of clusters
Output: Assignment of points in X to d-dimensional flats

Initialization: Cluster the input data (for example using k-means)
repeat

Compute the best fit flat for the points in each cluster Ci

Reassign points:
Check if the distance to the nearest in-cluster neighbor of yi is similar to that
of the nearest out-of-cluster neighbor of yi.

if yi is indeed at the boundary then
Try moving yi to each neighboring cluster, and recompute the best-fit flat
and the associated approximation error of the cluster from which yi has
been removed and the one to which it has been added.

Move yi to the cluster such that this approximation error is minimized.

until stopping criterion

The next chapter explores experiments performed using MLBF and MKSVD.



Chapter 4

Experiments

4.1 Experiments with MLBF

In this section, we analyze the performance of MLBF through a series of experiments.

Although MLBF may be used on datasets of arbitrary dimension, the experiments here are

performed on curves in R2 and surfaces in R3 for simplicity. The experiments were intended

to highlight particular aspects of MLBF’s performance. In each of the following sections,

we describe an experiment including the motivation for the dataset used and the sampling

method. For each experiment, we compute the following values to analyze the approximation

error in the output of MLBF

Eµ =

∑
i ‖yi −Piyi‖2

N
(4.1)

E∞ = max
i
‖yi −Piyi‖2 (4.2)

where N is the number of points in dataset D, yi is the i-th point in dataset D, and

Piyi is the projection of point i onto its corresponding flat.

We visualize the output of MLBF by assigning a color to points belonging to the same

flat. Additionally, a grey line indicating the flat used to approximate a given set of points is

drawn.

Since MLBF is initialized randomly, we repeat each experiment one hundred times and

report the mean and standard deviation for Eµ and E∞. In this manner, the typical behavior
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of the algorithm may be observed.

The number of flats, k, varies among the experiments. The number of initial guess

flats is set to c = k, and the maximum number of iterations is p = 5k.

4.1.1 Curvature

In the first experiment, our goal was to observe the distribution of flats produced by

MLBF. We expected that more flats would cluster in regions of higher curvature where the

fidelity of the locally linear approximation is lowest. In order to test this hypothesis, we

performed an experiment on the dataset described in Table 4.1.1.

Table 4.1: Description of dataset D1.

Dataset Name: D1

Manifold Description: Parabola in R2

Sampling Method: x equispaced on [−3, 3], spacing h = 0.05; y = x2

Sample Count: N = 121

MLBF was executed on D1 with k = 2, 4, 6, 8. The results are shown in Figure 4.1.
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Figure 4.1: Demonstration of convergence rates for MLBF on dataset D1. Colors represent
the assignment of points to different flats. A grey line is drawn to indicate the orientation
of each flat.
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Note that flats tend to cluster more densely around the origin where curvature is

greatest, as expected. A summary of approximation error is found in Table 4.2.

Table 4.2: Error analysis for MLBF on dataset D1.

k µ(Eµ) σ(Eµ) µ(E∞) σ(E∞)

2 0.358 0.0632 1.2131 0.1917
4 0.0888 0.0092 0.3945 0.0695
6 0.0365 0.0027 0.1702 0.0273
8 0.0193 0.001 0.0907 0.0149

Naturally, as we add more flats into our model, the approximation error decreases.

4.1.2 Sampling

One issue we hoped to address in the design of MLBF was sensitivity of the algorithm to

non-uniform sampling. To test this aspect of the algorithm’s performance, we experimented

with dataset D2 as described in Table 4.1.2.

Table 4.3: Description of dataset D2.

Dataset Name: D2

Manifold Description: Curve in R2

Sampling Method: x equispaced on [−2, 2], spacing h = 0.03; y = 1
1+16x2

Sample Count: N = 134

The key property of this dataset is that the sampling rate at the spike in the center is

much lower than the rest of the curve. The output of MLBF on D2 with k = 7 is depicted

in Figure 4.2.
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Figure 4.2: Output of MLBF on D2 with k = 7.
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Indeed, MLBF was able to construct appropriate flats even in regions with fewer sam-

ples. However, an unexpected result presented itself. The intention of MLBF was to ap-

proximate a given point with an affine subspace that is similar to the tangent space around

that point. However, this notion of locality is not enforced in the current version of the

algorithm. This may be seen by observing that several points on the left side of the curve

are being represented by a flat computed on the right side. Although the tangent space for

the light green points on the left is more similar to that of the the adjacent flats, the points

happen to lie closer to the flat formed using a cluster of points from the right side.

4.1.3 Noise

Next, we sought to test the performance of MLBF in the presence of noise. To do so,

we modified dataset D1 by adding noise from a normal distribution with mean µ = 0 and

standard deviation σ = 0.1 to the y component. We refer to this dataset as D3. The output

of MLBF with k = 7 is shown in Figure 4.3.

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

Figure 4.3: Output of MLBF on dataset D3.
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The resulting error computations are shown in Table 4.4.

Table 4.4: Error analysis for MLBF on dataset D3.

k µ(Eµ) σ(Eµ) µ(E∞) σ(E∞)

7 0.0339 0.0027 0.1691 0.0427

In the presence of noise, the approximation error on D3 with k = 7 is similar to that

of D1 with k = 6. However, the locality issue again presents itself. The green cluster on the

left has points that extend into the adjacent blue clusters. Similar behavior appears on the

right side between the green and pink clusters. The issue of locality is discussed further in

Chapter 5.

4.1.4 MLBF in Higher Dimension

Next, we demonstrate the application of MLBF on datasets in R3. The first dataset

used is described in Table 4.5.

Table 4.5: Description of dataset D4.

Dataset Name: D4

Manifold Description: Surface in R3, two parallel plates connected by a curved sheet
Sampling Method: Plates - x, y equispaced on [0,5]; z constant

Sheet - t equispaced; x uniform on [0,5]; y = cosπt, x = sinπt
Sample Count: N = 1200

Flat Count: k = 2, 4, 6, 8

We expect that two large flats will be used to approximate the top and bottom plates,

and that the remaining flats will cluster along the curved sheet. This behavior is confirmed

in Figure 4.4 which displays the output of MLBF on dataset D4. An error analysis is shown

in Table 4.6.
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Figure 4.4: Demonstration of MLBF applied to dataset D4.
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Table 4.6: Error analysis for MLBF on dataset D4.

k µ(Eµ) σ(Eµ) µ(E∞) σ(E∞)

5 0.0091 0.0010 0.1203 0.0215

Next, we applied MLBF to the 2-dimensional analog of dataset D1, described in Ta-

ble 4.7.

Table 4.7: Description of dataset D5.

Dataset Name: D5

Manifold Description: Paraboloid in in R3

Sampling Method: Plates - x, y equispaced on [-1,1] with h = 0.1; z = x2 + y2

Sample Count: N = 442
Flat Count: k = 3, 5, 7, 9

The output of MLBF on dataset D5 is shown for the k = 5 case in Figure 4.5. An

error analysis may be found in Table 4.8.
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Figure 4.5: Demonstration of MLBF applied to dataset D5 with k = 5.
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Table 4.8: Error analysis for MLBF on dataset D5.

k µ(Eµ) σ(Eµ) µ(E∞) σ(E∞)

3 0.2095 0.0189 0.9256 0.2163
5 0.1059 0.0078 0.3918 0.0643
7 0.0697 0.0037 0.2841 0.0516
9 0.0505 0.0022 0.1998 0.0265

The decrease in error is significant as k ranges from 3 to 7, however we notice dimin-

ishing returns after k = 7.

4.1.5 Scale

Next, we experimentally verify that the method proposed for choosing the optimal

neighborhood size in MLBF works as expected. We expect that in regions of low (high) cur-

vature, a larger (smaller) neighborhood may be used to compute the tangent plane around

a given point. To show that the proposed method indeed does this, we performed an exper-

iment on dataset D4 where the neighborhood size is computed for every point1 . The result

is shown in Figure 4.6.

1 In the actual execution of the MLBF algorithm, we do not in fact compute the optimal neighborhood
size around each point. The computation is done for every point in this experiment to test the viability of
the method
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Figure 4.6: Number of points in the optimal neighborhood centered at each point.
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First, notice that the region with curvature will utilize far fewer points than the flat

region. Furthermore, it is interesting to note that the middle of the flat region uses more

points than the edges. This is because neighborhoods centered around interior points with

a given radius contain more points than ones centered around points along the boundary.

At the edges, fewer points may be included before points from the opposing plate enter

the neighborhood. This experimentally verifies that the method of determining the optimal

neighborhood works as expected.

4.2 Experiments with MKSVD

In this section, we apply MKSVD to dataset D4. We will examine two sets of initial

conditions. The first set of initial conditions is produced using k-means clustering. The

initial clustering and output of MKSVD is shown in Figure 4.7.
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Figure 4.7: Initial clustering (top) and output (bottom) for MKSVD applied to dataset D4.
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This experiment demonstrates extreme sensitivity to initial conditions. Since k-means

did not yield anything close to the desired result, the output turned out to be a scattering of

the input data. To observe the performance of MKSVD with a more ideal initial clustering

of the input data, we performed the experiment depicted in Figure 4.8.
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Figure 4.8: Initial clustering (top) and output (bottom) for MKSVD applied to dataset D4.

The output in this case is much closer to the desired output. However, the boundary

between clusters is unnatural. For example, notice that the green cluster on the right hand

side of Figure 4.8 extends into the red cluster. Because of these two limitations of MKSVD,

we do not perform further experiments. Ideas for future directions for MKSVD are discussed

in Section 5.



Chapter 5

Discussion

In this chapter we discuss several aspects of the two algorithms proposed. MKSVD is

discussed briefly in Section 5.1, and the remainder of the chapter covers MLBF.

5.1 MKSVD

As we saw in the experiments from Section 4.2, two limitations of MKSVD prevented

it from being a viable solution to our problem. In this section, we briefly discuss the reasons

for these limitations and propose potential workarounds.

The first limitation of MKSVD is its sensitivity to initial conditions. As we saw in

the experiments performed, there are cases where the subspaces constructed using the initial

clustering of points are extremely far from the ideal ones. For example, we would expect

that the parallel plates from dataset D4 would each constitute a cluster. However, the initial

conditions produced using k-means clustering groups points from the top and bottom plates

into the same cluster. The resulting subspace was thus a poor approximation for points

from either side of the object. Subsequent reassignment of points results in a scattering of

the data, and eventually a local minimum of global approximation error is reached. As we

saw, the issue subsides when a more reasonable initial clustering of the data is given. If

one wished to pursue MKSVD further, we propose using the output of MLBF as an initial

condition for MKSVD.

Next is the issue of unnatural boundaries between clusters. To remedy this, we propose
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applying a penalty during the reassignment of points which discourages reassignments which

will increase the length of the boundary. Obviously this requires a method for computing

the length of the boundary between clusters. We do not investigate this problem here.

This concludes our discussion of MKSVD. The remaining part of this chapter focus on

MLBF.

5.2 MLBF

5.2.1 Parameters

In this section, we discuss the various input parameters of MLBF. The number of

samples, N , is a function of the dimensionality and curvature of the underlying manifold,

as well as noise. A classical result from numerical analysis tells us that using more samples

to solve an over-determined system results in less error due to noise. However, in many

applications, data acquisition may be very expensive, so it is desirable to use as few samples

as possible. In other applications, there may be an overabundance of data, in which case one

must use only a subset of the available data. The problem of choosing the optimal number

of samples, as well as methodology to ensure that samples are taken in such a way that the

structure of the underlying manifold is captured is very complex, and is not studied in detail

here. Additional information in this area may be found in [15].

The number of flats, k, used to approximate a dataset is a function of curvature, scale,

and the desired fidelity of the resulting approximation. We saw in our experiments that using

more flats resulted in better approximation error. However, we also observed that at some

point, increasing the number of flats offers diminishing returns in terms of the quality of

approximation. Furthermore, using more flats than necessary results in an over-complicated

model which lacks the benefits of a more simple one. This suggests that there exists a loose

notion of the “optimal” number of flats to approximate a given manifold. In the version

of the algorithm proposed here, k is an input parameter that must be chosen manually. A
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method to automate this process is proposed in Section 5.2.4.

The parameters S and T are used when we determine the optimal neighborhood size

for the construction of a flat. As described in Chapter 3, the algorithm begins by trying a

neighborhood of size S, and increases the number of points in the neighborhood by T each

iteration until the optimal neighborhood is found. The dimensionality and curvature of the

underlying manifold, as well as scale are important factors in the choice of these parameters.

In our experiments, we use S = d + 1, because this is the minimum number of points

required to recover a subspace of dimension d in the absence of noise. The choice of T is

highly dependent on scale. If a manifold is sampled very densely, it may be computationally

efficient to choose a larger value of T .

5.2.2 Unions of Manifolds

In many applications, it makes sense to model data as coming from a union of manifolds,

each of different dimensionality. For example, suppose we wish to model the sound produced

by musical instruments in a controlled setting. The work described in [7] and [8] suggests

that a manifold model might be appropriate. The region of the manifold representing a brass

instrument, whose sound may be changed in many ways, such as pressing keys or modifying

the length of tuning slides, would likely have many more degrees of freedom than that of a

tuning fork, whose sound would depend primarily on the force with which the object was

struck.

If we had a map available which would indicate the dimensionality of the manifold in

different regions, we could partition the dataset according to dimension, run MLBF on the

individually on subsets of equal dimension, and combine the resulting model. Techniques for

obtaining such a map were not investigated in this work. We refer interest readers to [13],

[6], [19] as a starting point.
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5.2.3 Applications

In this section, we discuss various applications for the algorithms presented in this

thesis. One straightforward application is data denoising. This is easily done by projecting

a measured point on to its corresponding flat. Similarly, the model produced by MLBF may

be used for interpolation. In this way, we can recover the value of pieces of the manifold for

which we do not have samples.

The model produced by MLBF also allows for data compression. The immediate

benefit is that each raw measurement which consists of D values may be represented as a

linear combination of basis vectors, requiring only d coefficients. Moreover, since each flat

represents a region of the manifold, we have the benefit of encoding entire regions using only

d basis vectors and one additional vector for the affine offset.

5.2.4 Limitations and Future Work

We have seen several limitations in our discussion of MLBF. In this section, we sum-

marize these limitations, and suggest avenues for future research.

The first issue we will address is the lack of locality in the approximation produced by

MLBF1 . The problem arises from the fact that no boundaries are constructed for each flat.

Points are assigned by minimizing their distance to a flat of infinite extent. To correct this,

one might consider the following approach: first assign points as we did before. Then, in a

second pass, compute distance of each point to the nearest several flats. Rather than simply

choosing the nearest flat, a penalty may be introduced which discourages the assignment of

a point to a flat in which the majority of points are far away from the point being assigned.

Next, the current version of the algorithm requires manual input of the parameter k.

In order to automate the selection of k, one may consider running multiple iterations of

MLBF, each time increasing k. Information such as an upper bound on approximation error

1 See Section 4.1.2 for an example of this.
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given by the user and relative increase in approximation quality between iterations might be

used to find a suitable balance between approximation quality and model simplicity.

MLBF is also prone to becoming stuck in local minima. Consider the case where

there are no points around which to construct new flats. One could construct an example

in which a gain in global approximation error is possible only by exchanging two or more

flats from L̂ simultaneously. Since MLBF only allows one flat in L̂ to be exchanged at a

time, the algorithm will get stuck, even though a more optimal configuration of flats exists.

A straightforward approach to address this problem is to run MLBF several times and use

the best solution. Alternatively, one could investigate methods for combining the results

of separate executions of MLBF to construct a solution that is superior to any individual

solution.

Another limitation of MLBF is the lack of any theoretical proof or guarantee on con-

vergence rates. It is easy to see that the global approximation error between iterations

decreases2 . However, it does not do so strictly. Furthermore, MLBF has no guarantee on

the proximity of the resulting output to the optimal arrangement of flats.

Lastly, we have not offered any methods for optimizing MLBF for large datasets. An

obvious technique for dealing with large datasets is to use only a subset of the data available

for the execution of MLBF. One could then reincorporate the remaining data into the model

at the end to evaluate the quality of approximation. More sophisticated techniques might be

able to intelligently choose the subset of the data which MLBF uses. Furthermore, one could

investigate randomizing portions of the algorithm. For example, rather than computing the

distance of every single point to the nearest flat to determine the approximation error for

a given iteration, we could perform the computation for only a randomly chosen subset of

points.

2 This is proved easily by noting that an exchange of flats occurs only if global approximation error
results.



Chapter 6

Conclusion and Future Directions

Locally linear approximations provide an effective method to produce parameteriza-

tions of manifold-valued data. To our knowledge, no one has proposed an algorithm that

attempts to solve this problem. We have developed two algorithms which seek to gener-

ate such parameterizations. In particular, Manifold Local Best-fit Flats (MLBF) is a good

first step towards a complete solution. Through a series of experiments, we have shown the

strengths of MLBF and discovered several avenues for future work.

There is an essential trade-off between approximation quality and model complexity.

While using more affine subspaces to approximate a curved manifold improves the approx-

imation quality, experiments show that beyond a certain point, this improvement becomes

insignificant.

There are a variety of applications in which MLBF may be utilized. For example,

we demonstrated experimentally that MLBF may be used to cluster datasets for which

traditional algorithms such as k-means fail. Other applications include data denosing, inter-

polation, and compression.

Several limitations of the current state of our work suggest several directions for future

work. The current implementation of MLBF does not enforce locality in the representation

of data. In other words, the flat used to represent a given point may not be similar to the

tangent space around that point. If this constraint is desired, modifications must be made to

the algorithm. Furthermore, no theoretical proofs or guarantees are provided in this work.



33

Although MKSVD did not prove successful with its current implementation, it may

be worthwhile to pursue this method further. We suspect that in some cases, a better

approximation may be obtained by using a best-fit subspace using all points in a cluster,

rather than using an approximation of the tangent space around a single point. One may

consider a combination of MKSVD and MLBF to develop this idea.
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