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Abstract
Transactional memory (TM) has garnered significant interest as an
alternative to existing concurrency methods due to its simplified
programming model, natural composition characteristics and native
support of optimistic concurrency. Yet, mutual exclusion locks are
ubiquitous in existing parallel software due to their fast execution,
inherent property for irreversible operations and long-standing un-
derlying support in modern instruction set architectures (ISAs). For
transactions to become practical, lock-based and TM-based concur-
rency methods must be unified into a single model.

This work presents the first lock-aware transactional memory
(LATM) solution with a deliberate library-based approach. Our
LATM system supports locks inside of transactions (LiT) and
locks outside of transactions (LoT) while preserving the origi-
nal programmer-intended locking structure. Our solution provides
three policies with varying degrees of performance and required
programming. The most basic LATM policy enables transaction-
lock correctness without any programming overhead, while im-
proved performance can be achieved by programmer-specified con-
flicts between locks and transactions. The differences in LATM
policy performance are presented through a number of experimen-
tal benchmarks.

1. Introduction
Transactional memory (TM), as proposed by Herlihy and Moss [10],
is a concurrency control mechanism aimed at simplifying paral-
lel programming. TM simplifies parallel programming by moving
shared memory complexity out of the programmer’s view and into
the TM system [2, 8]. Yet, transactions have other benefits outside
of reducing parallel programming complexity. Particular synchro-
nization problems, such as deadlocks and starvation, are elimi-
nated by TM [3, 4, 7, 12]. Transactions also support composition,
a characteristic that enables subtransactions to be nested within an
outer parent transaction, forming a singularly visible operation that
behaves correctly (atomically, isolated and consistently) [9, 13].
Furthermore, TM is an optimistic concurrency mechanism that
widens the performance benefits found in highly concurrent algo-
rithms [15, 16].

Yet, for all of the benefits of transactional programming, its
native inoperability with mutual exclusion locks is a major obstacle
to its adoption as a practical solution [1]. Herlihy and Shavit note
that mutual exclusion (implemented through locks) is arguably the
most predominant form of thread synchronization used in parallel
software [11], yet its native incompatibility with transactions places
a considerable restriction on the practical use of TM in real-world
software.

A TM system that is cooperative with locks can extend the life-
time and improve the behavior of previously generated parallel pro-
grams. We extend the DracoSTM C++ STM library [5, 6] to be a
lock-aware transactional memory (LATM) system supporting the
simultaneous execution of transactions and locks. Of critical im-
portance is that the extended DracoSTM LATM system naturally
supports lock-based composition for locks placed inside of trans-
actions (LiT), a characteristic previously unavailable in locks.

The LATM policies presented in this paper are implemented
with software library limitations as a central concern. While novel
operating system (OS)-level and language-based transaction-lock
cooperative models have been previously found [16, 20], these im-
plementations use constructs not available in library-based STM
systems. While useful, the previously identified OS-level and
language-based solutions do not address the critical need for a
transaction-lock unified model expressed entirely within the lim-
itations of a software library. In languages that are unlikely to be
extended, such as C++ [18], and development environments bound

to specific constraints, such as a particular compiler or OS, library-
based solutions are paramount as they present practical solutions
within industry-based constraints. Our approach presents a novel
library-based LATM solution aimed at addressing these concerns.

This paper makes the following contributions:

1. Extension of the DracoSTM library for support of locks outside
of transactions (LoT) and locks inside of transactions (LiT)
[available at http://rogue.colorado.edu/draco/].

2. Proof that an LATM LiT system naturally enables lock compo-
sition. Analytical examples are examined that show LiT com-
posable locks demonstrating atomicity, isolation and consis-
tency as well as deadlock avoidance.

3. Introduction of three novel LATM policies: full lock protection,
TM-lock protection, and TX-lock protection. Each LATM pol-
icy provides different programming / performance trade offs.
Experimental results are provided which highlight the perfor-
mance and programming differences of the three LATM poli-
cies.

2. Background
Transaction-lock interaction does not natively exhibit shared mem-
ory consistency and correctness due to differences in underlying
critical section semantics. Strongly and weakly isolated transac-
tional memory systems are susceptible to incorrect execution when
used with pessimistic critical sections.

Mutual exclusion locks use pessimistic critical section seman-
tics; execution of a lock-controlled critical section is limited to
one thread and guarantees the executing thread has mutually ex-
clusive (isolated) access to the critical section code region [21].
Transactions use optimistic critical section semantics; transaction-
controlled critical sections support unlimited concurrent thread ex-
ecution. Shared memory conflicts arising from simultaneous trans-
action execution are handled by the TM system during the commit
phase of the transaction [6,14]. Optimistic critical sections and pes-
simistic critical sections are natively inoperable due to their contra-
dictive semantics as demonstrated in Figures 1, 2 and 3.

1 native_trans<int> x;
2

3 int lock_dec() {
4 lock(L1);
5 int val = --x;
6 unlock(L1);
7 return val;
8 }
9

10 void tx_inc() {
11 for (transaction t;;t.restart())
12 try {
13 ++t.write(x);
14 t.end(); break;
15 } catch (aborted_tx &) {}
16 }

Figure 1. Lock and transaction violation (code).

Without an intervening system, thread T1 executing lock_dec()
and thread T2 executing tx_inc() (Figure 1) are not guaranteed
to operate consistently, as they would if each function were run in
a lock-only or transaction-only system, respectively. The following
example demonstrates how the correctness of Figure 1 is violated
from a deferred update and direct update standpoint.
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Deferred Update Lock/Transaction Violation. A deferred update
TM system stores transactional writes off to the side, updating
global memory once the transaction commits. A deferred update
system can exhibit an inconsistency in Figure 1 in the follow-
ing way (as demonstrated by Figure 2’s timing diagram). Given:
x = 0, thread T1 executes lock_dec() and thread T2 executes
tx_inc(). T2 executes line 10 - the first half of line 13 (storing a
transactional value for x = 0, but not performing the increment).
T1 executes lines 3-5 (global x = -1). T2 executes the remainder
of line 13 and line 14 (++x on its stored reference of 0, setting its
local x = 1) and then commits. T1 executes lines 6-7. The resulting
global state of x = 1 is incorrect; x = 0 is correct as one thread
has incremented it and one thread has decremented it.

time

Thread T1

lock L1

start tx

t.write(x), tx’s x = 0

--x, x = -1

++(tx’s x), tx’s x = 1

commit tx, x = 1

unlock L1

Thread using Transactions

Thread using Locks

Thread T2

Deferred Update Lock/Transaction Violation

val = x, val = -1

Figure 2. Deferred Update Lock/Transaction Violation.

Direct Update Lock/Transaction Violation. A direct update TM
system stores transactional writes directly in global memory, stor-
ing an original backup copy off to the side in the event the trans-
action must be unwound. In a direct update system, threads T1 and
T2 can exhibit inconsistencies using the code shown in Figure 1 in
a variety of ways; Figure 3’s timing diagram shows one such case.
T1 executes line 3 - the first half of line 5 (decrementing x, but not
setting val). T2 executes lines 10-13 (incrementing the global x
and creating a restore point of x = -1). T1 executes the remain-
der of line 5 (val = 0). T2 executes line 14, but is required to
abort, restoring x to −1. T1 completes and returns val = 0 which
is incorrect. T2 never committed its x = 0 and has not successfully
committed, therefore, x has never correctly been set to 0.

time

Thread T1

lock L1

start tx

--x, x = -1

++(tx’s x), x = 0 (store x = -1)

abort tx, reset x = -1

unlock L1

Thread using Transactions

Thread using Locks

Thread T2

Direct Update Lock/Transaction Violation

val = x, val = 0

Figure 3. Direct Update Lock/Transaction Violation.

2.1 Overcoming Transaction-Lock Inoperability
In order for transactions and locks to cooperate, transactions must
adhere to a single mutual exclusion rule described in Lemma 1.

Mutual Exclusion Lemma 1. Mutual exclusion semantics require
that instructions within a mutex guarded critical section be limited
to ≤ 1 simultaneous thread of execution.

Proof. (Contradiction) Consider the following order of operations
given a mutual exclusion critical section spanning two functions:
(1) inc() which increments two global integers x and y and (2)
get() which returns the current values of x and y, where x = 0
and y = 0 as shown in Figure 4. T1 executes inc() lines 3-5 and
halts. T2 then executes get() in its entirety (lines 10-15), violating
the Mutual Exclusion Lemma 1. T1 then finishes execution of
inc() (lines 6-8). The resulting state seen by T2 (x = 1, y = 0)
is incorrect. The correct program state is either x = 0, y = 0 or
x = 1, y = 1.

1 int x = 0, y = 0;
2

3 void inc() {
4 lock(L1); // do not limit L1 to 1 thread
5 ++x;
6 ++y;
7 unlock(L1);
8 }
9

10 void get(int &retX, int &retY) {
11 lock(L1); // do not limit L1 to 1 thread
12 retY = y;
13 retX = x;
14 unlock(L1);
15 }

Figure 4. Violating Mutual Exclusion Lemma 1.

Our LATM implementation adheres to Lemma 1 and is discussed
in two high-level views: (1) locks outside of transactions (LoT)
and (2) locks inside of transactions (LiT). We extend DracoSTM
(C++ STM library [5, 6]) to support lock-aware transactions by
supplying a pass-through interface that is used in place of prior
locking calls. We currently only provide C++ pthreads support, as
it is the most common threading library for C++ [11]. An example
of the required interface change in client code is shown below
with commented out pthreads interfaces, followed by their replaced
DracoSTM calls.

1 pthread_mutex_t L1; // pthread lock
2 // pthread_mutex_lock(&L1);
3 transaction::lock(&L1);
4 // pthread_mutex_trylock(&L1);
5 transaction::trylock(&L1);
6 // pthread_mutex_unlock(&L1);
7 transaction::unlock(&L1);

The DracoSTM locking API is used to perform the additional
transaction-lock communication before or after the pthreads inter-
face is called. In all cases, the DracoSTM pass-through interface
results in at least one corresponding call to the appropriate pthreads
interface to lock, try to lock or unlock the mutual exclusion lock.
Further details are provided in later sections.

3. Locks Outside of Transactions (LoT)
Locks outside of transactions (LoT) are scenarios where a pes-
simistic critical section of a lock is executed in a thread T1 while
an optimistic critical section of a transaction is executed in a
thread T2, simultaneously. Thread T1’s lock-based pessimistic crit-
ical section is entirely outside of thread T2’s transaction, thus the
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term locks outside of transactions or LoT. Figure 5 sets up a run-
ning LoT example, used throughout this section, by constructing
six functions which are simultaneously executed by six threads.
Three of the functions in Figure 5, tx1(), tx2() and tx3(),
are transaction-based, while the other three functions, lock1(),
lock2() and lock3(), are lock-based. The functions tx1(),
tx2() and lock3() do not have any memory conflict with any
other transaction-based or lock-based function and should there-
fore be able to run concurrently with any of the other functions.
However, certain LoT policies inhibit the execution of these non-
conflicting functions; details of such inhibited behavior is explained
in the following subsections. Figure 5 is used throughout this sec-
tion to illustrate the differences in the LoT policies.

1 native_trans<int> arr1[99], arr2[99];
2

3 void tx1() { /* no conflict */ }
4 void tx2() { /* no conflict */ }
5 void tx3() {
6 for (transaction t;;t.restart())
7 try {
8 for (int i = 0; i < 99; ++i)
9 {

10 ++t.w(arr1[i]).value();
11 ++t.w(arr2[i]).value();
12 }
13 t.end(); break;
14 } catch (aborted_tx&) {}
15 }
16

17 int lock1() {
18 transaction::lock(L1); int sum = 0;
19 for (int i = 0; i < 99; ++i) sum += arr1[i];
20 transaction::unlock(L1); return sum;
21 }
22 int lock2() {
23 transaction::lock(L2); int sum = 0;
24 for (int i = 0; i < 99; ++i) sum += arr2[i];
25 transaction::unlock(L2); return sum;
26 }
27 int lock3() { /* no conflict */ }

Figure 5. 3 Transaction Threads, 3 Locking Threads.

3.1 LoT Full Lock Protection
The most basic implementation of transaction-lock cooperation,
what we call full lock protection, is to enforce all transactions
to commit or abort before a lock’s critical section is executed.
All locks outside of transactions are protected from transactions
violating their critical section execution by disallowing transactions
to run in conjunction with locks. Transactions are stalled until all
LoT critical sections are complete and their corresponding locks
are released.

An example of full lock protection is shown in Figure 6 using
the previously described six threaded model. Full lock protection
has no programmer requirements; no new code is required, aside
from alteration of existing locking code to use the LATM pass-
through interfaces. Additionally, an understanding of how the locks
behave within the system to enable transaction-lock cooperation
is also not needed. However, full lock protection suffers some
performance penalties. As seen in Figure 6, T1 − T3 are blocked
for the entire duration of the critical sections obtained in T4 − T6,
since full lock protection prevents any transactions from running
while LoTs are obtained. Although T3 does conflict with T4 − T5,

true conflicts
policy-induced conflicts

Transaction Threads

conflicting lock time

Blocked Txs restart txs

time

lock L1
lock L2

lock L3

LATM LoT: Full Lock Protection

tx1
tx2

tx3

Lock Threads

Figure 6. LoT Example of Full Lock Protection.

T6’s critical section does not interfere with any of the transactions
and should therefore not prevent any transactions from running
concurrently; TM-lock protection, the next level of lock protection,
is able to avoid such unnecessary stalling.

3.2 LoT TM-Lock Protection
TM-lock protection is slightly more complex than full lock pro-
tection, yet it can yield better overall system performance. TM-
lock protection works in the following way: locks which can con-
flict with transactions are identified by the programmer at startup.
Once a conflicting LoT is acquired, all in-flight transactions are ei-
ther committed or aborted. Transactions are then blocked until the
conflicting lock-based critical sections are completed and released.
Locks that do not conflict with transactions do not cause any trans-
actions to stall.

true conflicts
policy-induced conflicts

conflicting lock time

Blocked Txs restart txs

time

lock L1
lock L2

lock L3

LATM LoT: TM-Lock Protection
(conflict with L1 & L2)

tx1
tx2

tx3

Lock Threads

Transaction Threads

Figure 7. LoT Example of TM-Lock Protection.

The identification of locks that can conflict with transactions re-
quires the programmer to (1) write new code and (2) have a ba-
sic understanding of the software system. Due to this, the require-
ments of TM-lock protection are greater on the end programmer.
The trade-off for higher programmer requirements is greater over-
all system performance.

TM-lock protection addresses the problem of transactions un-
necessarily stalled when T6 is executing. When using TM-lock pro-
tection, the end programmer must explicitly express which locks
can conflict with the TM system. In this example, locks L1 and L2
from threads T4 and T5 conflict with tx3 in thread T3. The end
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programmer would explicitly label these locks as conflicting in the
following way:

1 transaction::do_tm_conflicting_lock_protection();
2 transaction::add_tm_conflicting_lock(L1);
3 transaction::add_tm_conflicting_lock(L2);

As shown in the six threaded example, TM-lock protection short-
ens the overall TM run-time by allowing T1 − T3 to restart their
transactions as soon as L2’s critical section is completed. Yet, there
still exists unnecessary stalls in threads T1 and T2 as their associ-
ated transactions do not conflict with any of the lock-based critical
sections of T4 − T6. The remaining unnecessary stalls are resolved
by using TX-lock protection, the third lock protection policy.

3.3 LoT TX-Lock Protection
TX-lock protection enables maximum performance throughput by
identifying only true conflicts as they exist per transaction. TX-
lock protection is similar to TM-lock protection except rather than
requiring conflicting locks be identified at a general TM-level,
conflicting locks are identified at a transaction-level. While this
level of protection yields the highest level of performance, it also
requires the greatest level of familiarity of the locks within the
system and the most hand-crafted code.

conflicting lock time

Blocked Tx
restart tx

time

lock L1
lock L2

lock L3

LATM LoT: TX-Lock Protection
(tx3 conflicts with L1 & L2)

completed txstx1
tx2

tx3

no conflict

Lock Threads

Transaction Threads

true conflicts
policy-induced conflicts

Figure 8. LoT Example of TX-Lock Protection.

An example of TX-lock protection is in Figure 8. By using TX-lock
protection and explicitly identifying conflicting locks per transac-
tion, the system only stalls for true conflicts, increasing overall sys-
tem performance. The code required for correct TX-lock protection
in the prior six threaded example is shown below by extending the
original tx3() implementation:

1 void tx3() {
2 for (transaction t;;t.restart())
3 try {
4 // identify conflicting locks
5 t.add_tx_conflicting_lock(L1);
6 t.add_tx_conflicting_lock(L2);
7 for (int i = 0; i < 99; ++i)
8 {
9 ++t.w(arr1[i]).value();

10 ++t.w(arr2[i]).value();
11 }
12 t.end(); break;
13 } catch (aborted_tx&) {}
14 }

Using TX-lock protection, threads T1 and T2 are no longer stalled
when threads T4 and T5 lock their associated locks, L1 and L2.
In fact, only thread T3 (the only true conflict) is stalled while the
critical sections created by L1 and L2 are executing, resulting in
the highest transaction-lock cooperative performance while still
adhering to Lemma 1.

3.4 LoT Policy Performance
Figures 9, 10 and 11 display the execution time (lower is faster)
of the various LoT policies based on the original six threaded
example.

Three benchmarks were run, which aimed to demonstrate how
the policies behaved, under the following varying workload con-
ditions: balanced, transaction-intensive and lock-intensive. Re-
sults shown in Figure 9 represent balanced conditions; the locks
and transactions ran at roughly equal times. Figure 10 shows
transaction-intensive workloads, the transaction workload was
magnified from the balanced conditions. Figure 11 shows lock-
intensive workloads which magnified the locking workload from
the balanced workload baseline.

Figure 9. LoT Balanced Workload.

The performance metrics were gathered on a 1.0 GHz Sun Fire
T2000, 32 hardware threads and 32 GB RAM. The x-axis shows the
number of execution iterations, the y-axis shows the total execution
time of each iteration in seconds. Each data point per iteration is the
execution time of the LoT policy averaged over three runs.

Figure 10. LoT Transaction-Intensive Workload.

From Figure 9, full-lock protection performs at an average of
15 seconds per iteration. TM-lock protection executes each itera-
tion ≈ 12.5 seconds, a 20% performance improvement over full
lock protection. TX-lock protection executes under 12 seconds, a
performance improvement over full lock protection of > 25% and
≈ 4% faster than TM-lock protection. Figure 10 shows full-lock
protection performing at an average of 35 seconds, while TM-lock
protection executes at an average of 30.5 seconds, ≈ 15% per-
formance improvement over full lock protection. TX-lock protec-
tion performs each iteration at roughly 28.15 seconds resulting in a

5



≈ 24% performance improvement over full lock protection and a
≈ 8% improvement in performance over TM-lock protection.

Figure 11. LoT Lock-Intensive Workload.

Figure 11 reveals interesting results for the LoT policies when
the workload becomes lock-intensive. To begin, TM-lock protec-
tion performs worse than full lock protection. We believe this is due
to the overhead in the TM-lock protection algorithm. Usually this
benefit is invisible due to the benefit gained by false conflicts. How-
ever, in this particular case, the multiple executed locks were almost
always conflicting, yielding no improved performance from the
optimized TM-lock protection algorithm. Secondly, TX-lock pro-
tection performed astoundingly better than the other two policies.
We believe this is due to TX-lock protection being able to iden-
tify transactional conflicts with only one of the three TX-lock pro-
tected, transaction-executing threads, whereas both full lock pro-
tection and TM-lock protection could not. This results in two of
the three TX-lock protected, transaction threads executing without
conflicting with the increased locking, allowing the TM system’s
invalidation to optimize its consistency checking for single in-flight
transaction to 0 operations [6]. This yields TX-lock performance of
86% beyond TM-lock protection and 75% beyond full lock protec-
tion.

4. Locks Inside of Transactions (LiT)
Locks inside of transactions (LiT) are scenarios where a lock-based
pessimistic critical section is executed partially or completely in-
side a transaction. Only two of the three possible LiT scenarios
are supported by our work: (1) pessimistic critical sections are en-
capsulated entirely within a transaction or (2) pessimistic critical
sections start inside a transaction but end after the transaction has
terminated. We do not support LiT scenarios where pessimistic crit-
ical sections start before a transaction begins, having the front-end
of the transaction encapsulated by the pessimistic critical section.
The reason to disallow such behavior is to avoid deadlocks.

Consider the following scenario. Thread T1 has an in-flight
irrevocable transaction Tx1 and thread T2, after obtaining lock
L2, starts a transaction Tx2. Tx2 is not allowed to make forward
progress until it is made irrevocable (details to follow). Tx1 is al-
ready in-flight and irrevocable. Since two irrevocable transactions
cannot run simultaneously as they are not guaranteed to be devoid
of conflicts with one another, Tx2 must stall until Tx1 completes.
If irrevocable transaction Tx1 requires lock L2 to complete its
work the system will deadlock. Tx1 cannot make forward progress
due to its dependency upon L2 (currently held by Tx2) and Tx2

cannot make forward progress as it requires Tx1 to complete be-
fore it can run. As such, LiT scenarios where locks encapsulate the
front-end of a transaction are disallowed; our implementation im-
mediately throws an exception when this behavior is detected.

4.1 Irrevocable and Isolated Transactions
The LiT algorithms use the same policies as the LoT algorithms:
full lock protection, TM-lock protection and TX-lock protection.
Locks inside of transactions have the same characteristics as nor-
mal mutual exclusion locks, and Lemma 1 must be followed in or-
der to ensure correctness. Since the LiT algorithms use locks ac-
quired inside of transactions and these locks are not guaranteed to
have failure atomicity as transactions do, the containing transac-
tions must become irrevocable (see Lemma 2). Irrevocable transac-
tions, characterized by T(irrevocable) = true, are transactions that
cannot be aborted. The concept of irrevocable (or inevitable) trans-
actions is not new; Welc et al. and Spear et al. have shown these
types of transactions to be of significant importance as well as hav-
ing a variety of practical uses [17, 19]. We extend the prior work
of Welc et al. and Spear et al. by using irrevocable transactions to
enable pessimistic critical sections within transactions, as well as
to create composable locks within transactions.

In addition to irrevocable transactions, the LiT full lock protec-
tion and TM-lock protection require a new type of transaction, one
that we term as an isolated transaction. Isolated transactions, char-
acterized by T(isolated) = true, are transactions that cannot be
aborted and require that no other type of transaction run along side
it simultaneously. Isolated transactions can be viewed as a superset
of irrevocable transactions; isolated transactions have the properties
of irrevocable transactions and must be run in isolation.

To demonstrate how the LiT algorithms work, consider the six
threaded example shown in Figure 12.

1 native_trans<int> g1, g2, g3, g4;
2

3 void tx1() { /* no conflict */ }
4 void tx2() {
5 transaction::add_tm_conflicting_lock(L2);
6 for (transaction t;;t.restart())
7 try {
8 t.add_tx_conflicting_lock(L2);
9 inc2();

10 t.end(); break;
11 } catch (aborted_tx&) {}
12 }
13 void tx3() {
14 transaction::add_tm_conflicting_lock(L3);
15 for (transaction t;;t.restart())
16 try {
17 t.add_tx_conflicting_lock(L3);
18 inc3();
19 t.end(); break;
20 } catch (aborted_tx&) {}
21 }
22

23 void inc2() {
24 lock(L2); ++g2.value(); unlock(L2);
25 }
26 void inc3() {
27 lock(L3); ++g3.value(); unlock(L3);
28 }
29 void inc4() { /* no conflict */ }

Figure 12. 3 LiT Transaction Threads, 3 Locking Threads.

In Figure 12 thread T1 executes tx1(), T2 executes tx2(), T3

executes tx3(), T4 executes inc2(), T5 executes inc3() and T6

executes inc4(). Threads T1 (tx1()) and T6 (inc4()) do not
conflict with any other thread, yet their execution can be inhibited
by other threads based on the LiT policy employed. Thread T2 has
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a true conflict with thread T4 (both threads call inc2()) and thread
T3 has a true conflict with thread T5 (both threads call inc3()).
A staggered start time is used in the coming diagrams: T1 starts,
followed by T2, T3, T4, T5 and finally T6. We label the LiT threads
based on the locks they acquire: tx1 acquires lock L1, thread
tx2 acquires lock L2 and thread tx3 acquires lock L3. The same
taxonomy is used for locking threads: thread lockL2 acquires lock
L2, thread lockL3 acquires lock L3 and thread lockL4 acquires
lock L4.

In Figure 12, both add_tm_conflicting_lock() and
add_tx_conflicting_lock() are present. If the system is using
TM-lock protection only the add_tm_conflicting_lock() is
necessary, whereas if the system is using TX-lock protection only
the add_tx_conflicting_lock() is necessary. If neither TM-
lock or TX-lock protection is in use, neither call is needed. These
interfaces are supplied for the completeness of the example.

4.2 LiT Full-Lock Protection

true conflicts
policy-induced conflicts

conflicting lock time

Isolated Tx restart tx

time

lock L2
lock L3

lock L4

LATM LiT: Full Lock Protection

tx1
tx2

tx3
unstall locksstarted LiT

stalled LiT

Figure 13. LiT Example of Full Lock Protection.

Figure 13 demonstrates how the six threads interact using the
full lock protection policy, as well as showing policy conflicts in
comparison to true conflicts. The LiT full lock protection algorithm
requires that any transaction that has a lock inside of it be run as
an isolated transaction. Prior to a lock inside the transaction being
obtained, all other in-flight transactions are aborted or committed
and all currently held locks must execute through release. Future
attempts to obtain locks outside of the isolated transaction are
prevented until the transaction commits. This behavior is required
as the system must assume (1) all external locks can conflict with
the isolated transaction, so no external locks can be obtained; and
(2) all external transactions can conflict with the LiT transaction,
and therefore no external transactions can execute.

For Figure 13, once tx2 begins, tx1 is stalled as tx2 must
run as an isolated transaction. Due to tx2’s isolation, tx3 is also
stalled. Both lockL2 and lockL3 are also stalled because full lock
protection disallows transactions from running while LoT locks are
obtained; as tx2 is an isolated transaction, the threads attempting
to lock L2 and L3 are stalled until tx2 completes. When tx2
completes, tx3 is started as it has stalled for the longest amount of
time. The thread executing lockL4 is stalled until tx3 completes.
When tx3 completes, tx1, lockL2, lockL3 and lockL4 are all
allowed to resume.

4.3 LiT TM-Lock Protection
Like full lock protection, LiT TM-lock protection runs transactions
encapsulating locks in isolation. However, LiT TM-lock protection
also requires the end programmer to identify locks obtained within
any transaction prior to transaction execution (just as LoT TM-lock

protection). Unlike LiT full lock protection, TM-lock protection
allows non-conflicting LoT locks to execute along side LiT locks,
increasing overall system throughput.

conflicting lock time

Isolated Tx restart tx

time

lock L2
lock L3

lock L4

LATM LiT: TM-Lock Protection
(conflict with L2 & L3)

tx1
tx2

tx3started LiT

stalled LiT

no conflict
true conflicts
policy-induced conflicts

unstall locks

Figure 14. LiT Example of TM-Lock Protection.

As shown in Figure 14 TM-lock protection reduces the overall
policy-induced conflicting time to a range closer to the true con-
flicting time. Since tx2 and tx3 are true conflicts with lockL2 and
lockL3, lockL2 and lockL3 must stall while tx2 and tx3 are ex-
ecuting. However, lockL4 does not conflict with either tx2 or tx3
and as such, should not be stalled while the LiT transactions are in-
flight. TM-lock protection correctly identifies this conflict as false,
allowing lockL4’s execution to be unimpeded by tx2 and tx3’s
execution.

Three problems still exist in the LiT example: (1) tx1 is stalled
by tx2 and tx3, (2) lockL2 is stalled by tx3 and (3) lockL3 is
stalled by tx2. Ideally, none of these stalls should occur as none
represent true conflicts. All three false conflicts are avoided by
using the following LiT protection policy, LiT TX-lock protection.

4.4 LiT TX-Lock Protection
Like LoT TX-lock protection, the Lit TX-lock protection algorithm
allows for the highest throughput of both transactions and locks
while requiring the highest level of programmer involvement and
system understanding. Unlike both prior LiT algorithms, TX-lock
protection allows LiT transactions to run as irrevocable transac-
tions, rather than isolated transactions. This optimization can in-
crease overall system throughput substantially if other revocable
transactions can be run along side the LiT transaction.

With LiT TX-lock protection, the programmer specifies locking
conflicts for each transaction. In Figure 12’s case, the programmer
would specify that tx2 conflicts with L2 and tx3 conflicts with L3.
By specifying true transactional conflicts with locks, the TM sys-
tem can relax the requirement of running LiT transactions in isola-
tion and instead run them as irrevocable. While no two irrevocable
transactions can be run simultaneously, as they may conflict with
each other (resulting in a violation of their irrevocable characteris-
tic), other non-irrevocable transactions can be run along side them,
improving overall system throughput.

The run-time result of using LiT TX-lock protection is shown
in Figure 15. Transaction tx1 is able to run without being stalled
as it has no conflicts with other transactions or locks. Transaction
tx2 is run as an irrevocable transaction, rather than as an isolated
transaction, allowing tx1 to run along side it. Irrevocable transac-
tion tx3 is prevented from starting as irrevocable transaction tx2
is already in-flight. Likewise, lockL2 cannot lock L2 since tx2
conflicts with L2 and allowing lockL2 to proceed would require
tx2 to abort. Since tx2 is irrevocable (e.g. unabortable), lockL2 is

7



conflicting lock time

time

lock L2
lock L3

lock L4

LATM LiT: TX-Lock Protection
(tx2/tx3 conflicts with L2/L3)

tx1

tx2
tx3started LiT

stalled LiT
unstall lock

restart tx

no conflict

no conflict

true conflicts
policy-induced conflicts

Figure 15. LiT Example of TX-Lock Protection.

stalled. However, lockL3 and lockL4 start immediately, since nei-
ther conflict with any in-flight transaction. When tx2 completes,
both tx3 and lockL2 can try to proceed. Transaction tx3 is stalled
by lockL3, but lockL2 executes immediately as its conflict with
tx2 has passed. When lockL3 completes tx3 begins and runs
through to completion.

4.5 LiT Policy Performance
The three LiT policy performances are shown in Figures 16, 17 and
18 (lower is faster) demonstrating their execution on the original
six threaded example. The tests were run under balanced conditions
(Figure 16), transaction-intensive conditions (Figure 17) and lock-
intensive conditions (Figure 18).

Figure 16. LiT Balanced Workload.

For the balanced workload shown in Figure 16, TM-lock protec-
tion outperformed full lock protection by ≈ 25%, while TX-lock
protection outperformed full lock protection by≈ 41%−43% and
TM-lock protection by ≈ 12%− 15%.

The transaction-intensive workloads shown in Figure 17 demon-
strate the most even performance distribution between the three
policies of the three LiT benchmarks. Full lock protection is outper-
formed by TM-lock protection by ≈ 12% while TM-lock protec-
tion is outperformed by TX-lock protection by ≈ 19%. Figure 17
illustrates the gradual performance improvements of the LATM
policies from full lock protection (slowest) to TM-lock protection
(mid-ranged) to TX-lock protection (fastest).

The LiT lock-intensive workloads shown in Figure 18 report a
wide variation of TM-lock protection performance as the number
of iterations increase. In addition, not shown by Figure 18, the TM-
lock protection policy had a wide variation in performance through-
out the iterations. For example, in iteration 3 the TM-lock protec-

Figure 17. LiT Transaction-Intensive Workload.

Figure 18. LiT Lock-Intensive Workload.

tion policy completed execution in 200 seconds, 199 seconds and
236 seconds: a wide margin of performance difference. An impor-
tant open question, not addressed in this work, is whether the cur-
rent contention manager policy negatively affects the TM-lock pro-
tection algorithm under certain non-deterministic situations. Con-
versely, it is possible that the non-deterministic execution causes
more variability in the TM-lock protection policy than the other
policies, due to the policy’s random thread locking conflicts. Re-
gardless of the answer, as shown in Figure 18, TM-lock protection
outperformed full lock protection by ≈ 1% − 13%. TX-lock pro-
teciton outperformed TM-lock protection by ≈ 4% − 16%, while
it consistently outperformed full lock protection by ≈ 16%.

5. Lock Composition
Any TM system that supports locks inside of transactions must en-
sure the pessimistic critical sections of the locks inside of transac-
tions are not violated. This is achieved by making the containing
transactions either isolated or irrevocable once the lock inside the
transaction is obtained. Lemma 2 proves the necessity of the irre-
vocability characteristic for LiT transactions.

Locks Inside of Transactions Lemma 2. Any lock L obtained
during an in-flight transaction Tif requires Tif be immediately and
permanently promoted to an irrevocable transaction, characterized
by Tif (irrevocable) = true, which cannot be aborted.

Proof. (Contradiction) Given: threads T1 and T2 execute inc()
and get() from Figure 19, respectively and variables x = 0,
y = 0. ++x and ++y operations within inc() are unguarded
direct access variable operations that perform no transactional undo
or redo logging operation; these operations are irreversible (e.g.
normal pessimistic critical section operations). The atomic property
of any transaction T requires all memory operations of T are
committed or none are committed.

8



Execution: T1 starts transaction Tx1 (Tx1(irrevocable) = false)
and completely executes lines 3-7, setting x = 1. T2 executes 13-
14, obtains lock L1, released by Tx1 and flags Tx1 to abort due to
its identified lock conflict. T2 reads x = 1 and y = 0, unlocks L1
and returns. Tx1 tries to lock L1, but instead is required to abort,
causing the atomic transactional property of Tx1 to be violated
since ++x has been performed and will not be undone when Tx1 is
aborted.

1 int x = 0, y = 0;
2

3 void inc() {
4 for (transaction t;;t.restart())
5 try {
6 t.add_conflicting_lock(L1);
7 lock(L1); ++x; unlock(L1);
8 lock(L1); ++y; unlock(L1);
9 t.end(); break;

10 } catch (aborted_tx&) {}
11 }
12

13 void get(int &retX, int &retY) {
14 lock(L1);
15 retX = x; retY = y;
16 unlock(L1);
17 }

Figure 19. Violating LiT Lemma 2.

Referring again to Figure 19, now consider the correct execution
(following Lemma 2) of threads T1 and T2 of inc() and get(),
respectively, with variables x = 0, y = 0. T1 starts transaction Tx1

and executes lines 3-7, setting x = 1 and Tx1(irrevocable) = true.
T2 executes 13-14, but fails to obtain lock L1 even though it
is released by Tx1. T2 fails to obtain lock L1 because in order
to do so would require Tx1 be aborted as it has flagged itself
as conflicting with lock L1 via t.add_conflicting_lock(L1).
Yet, Tx1 cannot be aborted since Tx1(irrevocable) = true. T2

stalls until Tx1 completes, setting x = 1, y = 1. T2 then executes,
obtaining the necessary locks and returning x = 1 and y = 1
the atomically correct values for x and y (equivalent values) given
transaction Tx1.

By incorporating both Lemma 1 and 2, locks inside of trans-
actions naturally compose and emit database ACI characteristics;
atomic, consistent and isolated. They are atomic (all operations
commit): once a lock is obtained inside a transaction, the trans-
action becomes irrevocable. This ensures that all operations will
commit, irrespective of how many locks are obtained within the
LiT transaction. They are consistent: no conflicting locks or trans-
actions can run along side the irrevocable LiT transaction, ensuring
memory correctness. They are isolated: conflicting locks or trans-
actions are disallowed from running in conjunction with an LiT
transaction, preventing its state from being visible before it com-
mits. Even when a lock is released inside an LiT transaction, other
threads remain unable to obtain the lock until the transaction com-
mits.

5.1 Criticality of LiT Lock Composition
The composable nature of LiT locks is critical to the incremental
adoption of transactions into pre-existing, lock-based parallel soft-
ware. To understand this, consider a multi-threaded linked list im-
plemented using mutual exclusion locks. The linked list software
is mature, thoroughly tested and contains lookup(), insert()

and remove() methods. A software designer wishes to extend the
linked list’s behavior to include a move() operation. The move()
operation behaves in the following way: if element A exists in
the list and element B does not exist in the list, element A is re-
moved from the list and element B is inserted into the list. With LiT
lock composition, the move() operation could be implemented en-
tirely from the previously built locking implementation. Figure 20
demonstrates how this is achieved within the DracoSTM LATM
extension.

1 bool move(node const &A, node const &B) {
2 // compose locking operations: lookup(), remove()
3 // & insert() in an irrevocable & indivisible tx
4 // to make a new transaction-based move() method
5 for (transaction t;;t.restart())
6 try {
7 t.add_tx_conflicting_lock(list_lock_);
8 // lookup() uses lock list_lock_
9 if (lookup(A) && !lookup(B)) {

10 remove(A); // uses lock list_lock_
11 insert(B); // uses lock list_lock_
12 }
13 else return false;
14

15 t.end(); return true;
16 } catch (aborted_tx&) {}
17 }

Figure 20. Move Implemented with LiT Lock Composition.

The move() method in Figure 20 is viewed by other threads as
an indivisible operation whose intermediate state is isolated from
other threads, even though it contains four disjoint pessimistic crit-
ical section invocations (e.g. two lookups, a remove and an in-
sert). Even when list_lock_ is released intermittently during the
transaction execution, other threads are prevented from obtaining
it until the transaction commits. This behavior ensures each pes-
simistic critical section within the transaction is prevented from
being viewed independently. Once the transaction commits other
threads can obtain list_lock_ and view the cumulative affects of
the move() operation.

5.2 Understanding LiT Lock Composition
Figure 21 shows a transfer function implemented using LiT lock
composition. This example was chosen because the code sample
is small enough to be presented in full (not possible with the
prior linked list move() example). Figure 21 uses LiT TX-lock
protection and contains two locks inside of the same transaction
that are subsumed by the transaction. The transaction composes the
two separate lock-based critical sections into an atomically viewed
and isolated operation.

Consider threads T1 executing lit_transfer(1), T2 execut-
ing get1() and T3 executing get2() with x1 = 0 and x2 = 0
in the time line shown in Figure 22. The dotted vertical lines in the
conflicting lock time in Figure 22 demonstrate when T1’s transac-
tion tx1 obtains and releases locks L1 and L2 with regard to T2 and
T3. Thread T1 starts transaction tx1 and adds L1 and L2 to tx1’s
conflicting lock list. Next, tx1 locks L2 and becomes irrevocable
(Lemma 2). Thread T2 then attempts to lock L1, however, since L1
conflicts with tx1 and tx1 is irrevocable, thread T2 is disallowed
from aborting tx1 and is therefore prevented from obtaining L1,
stalling instead. After tx1 sets x2 = −1 and unlocks L2, thread
T3 tries to lock L1, however, it is disallowed because L1 is on
tx1’s conflicting lock list and tx1 is irrevocable. Thus, thread T3

is stalled. Transaction tx1 then locks L1, sets x1 = 1 and unlocks
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1 int x1 = 0, x2 = 0;
2

3 void lit_transfer(int transfer) {
4 for (transaction t;;t.restart())
5 try {
6 t.add_tx_conflicting_lock(L1);
7 t.add_tx_conflicting_lock(L2);
8

9 lock(L2); x2 -= transfer; unlock(L2);
10 lock(L1); x1 += transfer; unlock(L1);
11

12 t.end(); break;
13 } catch (aborted_tx&) {}
14 }
15

16 void get1and2(int& val1, int& val2) {
17 lock(L1); lock(L2);
18 val1 = x1; val2 = x2;
19 unlock(L2); unlock(L1);
20 }
21 void get1(int& val) {
22 lock(L1); val = x1; unlock(L1);
23 }
24 void get2(int& val) {
25 lock(L2); val = x2; unlock(L2);
26 }

Figure 21. LiT Transaction and Two Locking Getters.

L1. When tx1 commits, threads T2 and T3 are unstalled and read
x1 = 1 and x2 = −1, respectively, the correct atomic values for
the lit_transfer(1) operation with lock composition.

conflicting lock time
time

get1() (uses lock L1)

Composed LiT: TX-Lock Protection
(tx1 conflicts with L1 & L2)

lock(L2)

[Thread T1] start tx1, lit_transfer(1), conflicts: L1/L2

unlock(L2)

lock(L1)

lock(L1)

t.end()

get2() (uses lock L2)

stall 
locks

[Thread T2]

[Thread T3]

unstall
locks

Figure 22. Composed LiT Example using TX-Lock Protection.

In the above scenario, both T2 and T3 tried to acquire the
unlocked locks L1 and L2 but failed due to tx1’s irrevocability
even though the locks themselves were available. The characteristic
of disallowing lock acquisition even when locks are available is
a primary attribute of LiT transactions. This characteristic is not
present in systems which use locks alone, and is a key attribute
to enabling lock composition. As demonstrated earlier with LoT
transactions, a lock and a transaction conflicting with the same
lock cannot both execute simultaneously. LiT transactions use this
same behavior and extend it to favor transactions over locks once
a lock is obtained inside of a transaction, making it irrevocable.
By restricting access of locks to in-flight LiT transactions which
have acquired (and then released) them, the system ensures any
remaining behavior not yet performed by the transaction will occur
prior to other threads obtaining such released locks. This ensures

all the pessimistic critical sections within an LiT transaction are
executed in isolation and consistently without memory interference
from outside locking threads. Note that this was the case when T3

tried to acquire lock L2 even after transaction tx1 had completed
its operations on its shared memory x2.

5.2.1 LiT Lock Identification
LiT TX-lock protection requires that all transaction conflicting
locks, those locks used directly inside of transactions, be identi-
fied prior to any lock being obtained within the transaction; fail-
ure to do so can lead to deadlocks. A simple example of how
adding conflicting locks as they are obtained inside of transac-
tions can lead to deadlocks can be derived from Figure 21. If
lit_transfer() is executed without adding conflicting locks
(e.g. no calls to add_conflicting_lock()), the following dead-
lock is possible. Thread T1 executes lines 3-5, skips lines 6-7 (the
conflict calls) and executes line 9 locking L2 and adding it to its
conflicting lock list. Thread T2 then executes lines 16 and part of
line 17 of get1and2(), locking L1. Without the transactional code
identifying L1 as a conflict, the TM system would not disallow T2

from locking L1. The system is now deadlocked. T2 cannot pro-
ceed with locking L2 as L2 has been added to T1 conflicting lock
list, yet T1 cannot proceed as lock L1 is held by T2.

These deadlocks scenarios are overcome by requiring the LiT
TM-lock or TX-lock protection to list all conflicting locks prior to
obtaining any locks within transactions. Attempting to use locks
inside of transactions without first identifying them as conflicts
causes DracoSTM to throw an exception informing the program-
mer of the missed conflicting lock and how to correct the error. Re-
cycling the same scenario as above with conflicting locks identified
at the start of the transaction avoids deadlocks. For example, thread
T1 adds locks L1 and L2 to its conflicting lock list. It then exe-
cutes lines 3-8 and part of line 9, locking L2 (but not unlocking it).
Thread T2 executes lines 16 and part of 17, trying to lock L1, and
sees T1’s transaction as conflicting. Thread T2 tries to abort T1’s
transaction, but is disallowed as the transaction is irrevocable (see
Lemma 2). T2 is therefore stalled prior to obtaining lock L1. T1

continues and executes the remainder of line 9-12, obtaining and
releasing lock L1 and finally committing. Once T1’s transaction
has committed, T2 is allowed to resume and runs to completion.

6. Conclusion
We presented a library-based lock-aware transactional memory
(LATM) system using three different policies for handling transaction-
lock interaction. The three policies were found to be useful for dif-
ferent development environments. Full lock protection guarantees
correctness at the price of performance, is beneficial when system
knowledge is minimal, and requires no code changes. TM-lock
protection is useful when locks that conflict with transactions are
known, but not to the granularity of the transaction, and benefits the
system by improving performance while requiring some additional
code. TX-lock protection offers the best performance, but requires
the most additional code, and a complete understanding of the sys-
tem’s underlying locking structure to identify locking conflicts on
a per transaction basis. We presented experimental results for both
LoT and LiT scenarios for the three types of LATM policies.

We showed lock composition is a natural side-effect of an
LATM system that implements LiT using irrevocable (inevitable)
or isolated transactions. Two LiT examples were given: a high-level
example to demonstrate the critical need for LiT composable locks
and a more simplified example with complete code for a deeper
exploration of LiT transactions. Finally, we discussed how lock ac-
quisition outside of an LiT transaction behaves once a lock within
the transaction is released and why conflicting locks must be iden-
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tified prior to transactional operations. Both aspects were shown to
be critical to the correctness of LiT lock composition.
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