ISLET: a Program/Proof Editor
to Support the Vienna Development Method

Robert B. Terwilliger

CU-CS-401-88 June 1988

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309



ISLET: a Program/Proof Editor
to Support the Vienna Development Method

Robert B. Terwilliger

Department of Computer Science
University of Colorado at Boulder
ECOT7-7, Campus Box 430
Boulder, CO 80309-0430
(303) 492-7514

email: terwilli@boulder.colorado.edu

Technical Report CU-CS-401-88 (June 1988)

Preprint June 14, 1988






ANY OPINIONS, FINDINGS, AND- CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE

FOUNDATION.






ISLET: a Program/Proof Editor
to Support the Vienna Development Method

Robert B. Terwilliger

Department of Computer Science
University of Colorado
ECOT7-7, Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-3903
email: terwilli@boulder.coiorado.edu

Abstract

Traditional methods do not ensure the production of correct software. VDM (the Vienna Development
Method) is a technique which has been used in industrial settings to enhance the development process.
ENCOMPASS is an environment to support the incremental construction of Ada® programs using exe-
cutable specifications, testing based verification methods, and formal techniques similar to VDM. One of
the most important tois in ENCOMPASS is ISLET, a program/proof editor which supports the construc-
don of formal specifications and their incremental refinement into verified implementations. As the
specifications are entered and refined the syntax and static semantics are constantly checked. In ISLET,
the refinement process can be viewed as the construction of a proof in the Hoare calculus. Some steps in
the proof generate verification conditions in the underlying first-order logic. These verification conditions
are first subjected to a number of simple (and inexpensive) proof tactics, which in our experience can cer-
tify a large percentage of the verification conditions generated at a very low cost. If a set of verification
conditions can not be proved using these methods alone, then they can be submitted to a peer review pro-
cess, a series of tests, or a more powerful (and expensive) mechanical proof system. The combined use of
these methods supports the rigorous development of programs. Most of the verification conditions will be
certified using simple methods: however, more expensive techniques are available on demand. Parts of a
system may be developed using completely mechanized formal methods, while other, less critical parts
may use less expensive techniques. In this paper, we give an overview of ENCOMPASS and ISLET and
present an example of development using the editor.

1. Introduction

The production of software is both difficult and expensive. The rising cost of software relative to hardware in

complex systems has led some to speak of the "software crisis” (181. One of the largest problems is quality; many
of the systems produced do not satisfy their purchasers in either functionality, performance or reliability. ENCOM-
PASS [61,62,66,67,69] is an environment which addresses the software quality problem using a combination of
execuwmble specifications, peer review, testing, and formal techniques similar to the Vienna Develcpment Method.
One of the most important tools in ENCOMPASS is ISLET, a language-oriented program/proof editor which sup-
ports the construction of formal specifications and their incremental refinement into verified implementations. In
ISLET, the refinement process can be viewed in two ways: as the development of a program, or as the constructon

of a proof of correctness. Form the proof view, some refinements generate verification conditions which must be

~ Ada ® is a trademark of the US Government, Ada Joint Program Office.
This research was supported in part by NASA Grant NAG 1-138 and NSF Grant CCR-3809418.



true for the step to be correct. ISLET encorporates a number of simple methods which can inexpensively certify a
large percentage of the verification conditions generated. In this paper we give an overview of ENCOMPASS and

ISLET and present an example of development using the editor.

Depending on the model of software development used, the software quality problem can be subdivided in a
number of ways. At first, a system exists only as an idea in the minds of its users or purchasers. In many models,
the first step in the development process is the creation of a specification which precisely describe_s the properties
and qualities of the software to be constructed (20]. Unfortunately, with current methods there is no guarantee that
the specification correctly or completely describes the customers desires; a specification is validated when it is
shown to correctly state the customers’ requirements [20]. Creating a valid specification is a difficult task: the users
of the system may not really know what they want, and they may be unable to communicate their desires to the
development team. Formal specifications may be an ineffective medium for communication between customers and
developers, but namural language specificatons are nowriously ambiguous and incomplete. It has been suggested
that prototyping and the use of execwable specification languages can enhance the communicaton between custo-
mers and developers (1, 14,21, 30, 73, 751; providing prototypes for experimentation and evaluation should enhance

the validadon process.

The specification may not be ext;.cuxable, or it may not be acceptably efficient; in general, it must be transiated
into an implementation. Depending on the method used for ranslaton, the exact relationship between the
specification and implemexitam‘on may be unknown. An implementation is verified when it is shown to satisfy its
specification [20]. Many different techniques can be used to determine if an implementation satisfies a specificadon
(74]. For example, testing can be used to check the operation of an impiementation on a representative set of input
data (34,47]; however, in general, a program cannot be tested on all possible inputs. In a peer review process, the
specification and implementation are inspected, discussed and compared by a group of knowledgeable personnel
(19, 72]; unfortunately, there is no guarantee that they will come to the correct conclusions. If the specificaton is in
a suitable nowation, formal methods can be used to verify the correctness of an implementadon [33,42,48]; how-
ever, with the current state of verification technology, many widely used languages are not completely verifiable.
Many feel that no one technique aione can solve the verification problem (16,17, 53]; therefore, methods which

combine a number of techniques have been proposed (51,57, 5 8,76].

9



One solution to the verification problem is VDM (the Vienna Development Method). VDM supports the top-
down development of software specified in a notation suitable for formal verification [6, 8,9, 13,35-37, 54,59]. In
this method, components are first written using a combination of conventional programming languages and predi-
cate logic. These abstract components are then incrementally refined into components in an implementation
language. The refinements are performed one at a time, and each is verified before another is applied; therefore, the
final components produced by the development satisfy the original specifications. Since each refinement step is
small, design and implementation errors can be detected and corrected sooner and at lower cost. VDM is used in
industrial environments to enhance the development process [9, 54, 59]. In this type of environment, the method is
not typically applied in all its formality; formal specifications serve mostly as a tool for precise communication, and
the major impact on methodology is that more time is spent on specification and design. However, the methods do
prove useful in practice. VDM could prove even more useful if it was applied more formally and supported by
automated tools. Many feel the cost of these tools is justified, and environments to support VDM are being con-

structed (7.

ENCOMPASS [61, 62,66, 67,691, is an integrated environment to support incremental software development
in a manner similar to VDM. The general approach in ENCOMPASS is to address the validation problem using
rapid prototyping with executable specifications and to attack the verification problem using a combination of peer
review, testing, and formal techniques similar to VDM, ‘We can view ENCOMPASS as supporting a development
paradigm which extends VDM with the use of executable specifications and testing-based verification. ENCOM-
PASS automates these techniques and integrates them as smoothly as possible into the traditional life-cycle. In
ENCOMPASS, software is specified using a combination of natural language and PLEASE [63-65,68], a wide
spectrum executable specification and design language. PLEASE specifications may be used in proofs of correct-
ness; they aiso may be transformed into prototypes which use logic programming techniques to "execute” pre- and

post-conditions. These prototypes can enhance both the validation and verification processes.

IDEAL is an environment for programming-in-the-small within ENCOMPASS. The central tool in IDEAL is
ISLET, a program/proof editor which supports the creation of PLEASE specifications and their incremental
refinement into Ada implementations. As the specifications are entered and refined the syntax and static semantics
are constantly checked. In ISLET, the refinement process can be viewed as the construction of a proof in the Hoare

calculus [32,42]. Some steps in the proof generate verification conditions in the underlying first-order logic. These



verification conditions are first subjected to a number of simple (and inexpensive) proof tactics. These methods can
handle a large percentage of the verification conditions generated. If a set of verification conditions can not be
proved using these methods alone, then a more powerful (and expensive) system can be invoked. In our experience,
most of the verification conditions will be proven using the inexpensive methods. IDEAL also provides facilities to

verify the correctness of a refinement using peer review or testing techniques.

IDEAL and ISLET support the rigorous {36] development of programs. Although detailed mechanical proofs
are not required at every step, the framework is present so that they can be constructed if necessary. Proof tech-
niques may be used that range from é very detailed, completely formal proof using mechanical theorem proving, to
a development "annotated" with unproven verification conditions. Parts of a project may use detailed mechanical

" verification while other, less critical parts may be handled using less expensive techniques. Development using
PLEASE is not limited to the subset of the implementation language for which formal descriptions have been
created. Systems can be constructed using all the implementation language features; however, only the parts of the
system consisting entirely of formally described constructs can be mathematically verified or prototyped using logic
programming techniques. We are continuely extending the set of constructs formally defined. We feel this is a rea-
sonable approach to introducing formal methods into practical development. We believe that formal understanding

of components will prove useful even if entire systems do not yield to such methods.

In the remainder of this paper we describe ENCOMPASS and ISLET in more detail and give an example of
development using the editor. In section two we give a more thorough overview of ENCOMPASS including the
PLEASE executable specification language, the development paradigm ENCOMPASS is designed to support, and
the architecture of IDEAL. In section three we discuss ISLET in more detail including its major sub-components,
an algebraic simplifier and a set of simple proof methods. In section four we present the development of a small
procedure using the editor; we follow the development from the creation of a formal specification through its
refinement into an implementation. We discuss in detail the commands used by the programmer to control this pro-
cess, the verification conditions generated by the editor, and the ability of the simple proof methods to certify these
VCs. In section five we describe the status of the system and in section six we summarize and draw some conclu-

sions from our experience.



2. ENCOMPASS

ENCOMPASS owes much to the work of previous researchers in programming environments [31,49,77,78]
and systems for the formal verification of programs [25,28, 43, 56]. As far as we know, ENCOMPASS is unique in
its combination of an incremental verification system and executable specifications based on resolution theorem
proving with a test hamness and an environment for programming-in-the-large. The ENCOMPASS development
paradigm draws on many previous methods [26,36,350], including transformational programming [2,55] and
"proofs as programs” [3,46]. In fact, ENCOMPASS can be seen as a transformational approach [4]. ENCOM-
PASS is best viewed as an attempt to integrate executable specifications and incremental verification into the tradi-
tional life-cycle. ENCOMPASS allows some modules of a project to be developed using PLEASE and formal
methods, while other modules are developed using conventional techniques; we know of no other environment

specifically designed to support such a methodology.

The foundation of ENCOMPASS is the PLEASE [63-65, 68] executable specification language. The design
of PLEASE was greatly influenced by previous work on software specification (23, 79], most notably that involving
formal techniques [1,5,24,27,30,52]. One approach to formal specification involves annotating a program with
formulae written in predicate logic. Annotations formally state conditions that must hold at different points in the
program’s execution. For example, annotations can specify properties that must hold for all values of a type, invari-
ants for loops, or the pre- and post-conditions for procedures. At the beginning of our work we decided that
PLEASE would use predicate logic annotations to specify software. We also decided that it must be possible to

automatically construct executable prototypes from these specifications.

Unfortunately, there is a conflict between specification power and prototype efficiency. A fairly powerful
system would use fuil ﬁrst-order, predicate logic for annotations which would be executed using a resolution
theorem prover; however, the performance of these prototypes would be very poor. The emergence of logic pro-
gramming as a technology {12, 15,22, 41, 60], most notably Prolog [11], suggests that these techniques may provide
a good compromise. Although in one sense not as powerful as full first-order logic, Prolog allows much more
efficient implementation techniques to be used. By restricting the annotations to a logic with an efficient, Prolog-

style implementation, reasonable specification power is combined with implementation efficiency.

We have designed and implemented a number of logic-based executable specification languages during the

course of our research, and our approach has undergone significant modification. We developed the initial version



of PLEASE using a Pascal derivative [63]. However, the bulk of our work (including that reported in this paper)
has been performed using Ada [70] as the base language [64,65]. The choice of Ada proved successful for a
number of reasons, the most significant being the existence of a large body of work on the Ada-based specification
language ;\NNA [44,45]. PLEASE/Ada may be considered a subset of ANNA specifically chosen to support
VDM. PLEASE/Ada restricts the logic used in annotations to Hom clauses so that pre- and post-conditions can be

translated into Prolog procedures [64, 67].

The latest member of the PLEASE family is PK/C++ [68] (Please Kernel on C++). Our major goal for the
language is to produce an implementation practical enough that we can develop significant software using the
methods we have described. PK/C++ differs from its predecessor by being based on C++ rather than Ada, having
an operational as well as declarative semantics, and being based on flat (unification but no backtracking) rather than

standard Prolog. We feel these changes will help us make significant progress towards our goal.

We can better understand PLEASE and ENCOMPASS after considering the development paradigm they were

designed to support.

2.1. Incremental Software Development

ENCOMPASS is designed to support a phased or wated’all life-cycle [20], extended to support the use of exe-
cutable specifications and VDM. In ENCOMPASS, we extend the traditional life-cycle to include a separate phase
for user validation; we also combine the design and implementation processes into a single refinement phase. In
ENCOMPASS, a development passes through the phases planning, requirements definition, validation, refinement

and system integration.

Although the requirements specification describes a software system, it’ is not known if any system which
satisfies the specification will satisfy the customers. The validation phase attempts to show that any system which
satisfies the software requirements specification will also satisfy the customers. If not, then the requirements
specification should be corrected before the development proceeds. To aid in the validation process, the PLEASE
components in the specification may be transformed into executable prototypes which can be used in interactions
with the customers. These prototypes may be subjected (o a series of tests, be delivered to the customers for experi-
mentation and evaluation, or be installed for production use on a trial basis. We feel the use of prototypes will

increase customer/developer communication and enhance the validation process.



In the refinement phase, the PLEASE specifications are incrementally transformed into Ada implementations.
The refinement phase can be decomposed into a number of steps, each of which consists of a design transformation
and its associated verification phase. Each design transformation creates a new specification, whose relationship to
the original is unknown. Before further refinements are performed, a verification phase must show that any imple-
mentation which satisfies the lower level specification will also satisfy the upper level one. In our model, this is
accomplished using a combination of testing, peer review, and formal verification. The design transformation may
produce components in the base language as well as an updated requirements specification. Components which
have been implemented need not be refined further, but components which are only specified will undergo further

refinements until a complete implementation is produced.

We have developed a number of tools to support this development paradigm.

2.2. The IDEAL Environment

The tools in ENCOMPASS can be divided into two main groups: support for programming-in-the- large,
including the configuration and project management systems [10,38]; and IDEAL (Incremental Development
Environment for Annotated Languages), an environment for programming-in-the-small using PLEASE. IDEAL is
concerned with the development of single modules. It provides facilities to create PLEASE specifications, construct
prototypes from these specifications, validate the specifications using the prototypes produced, refine the validated

specifications into implementations, and verify the correctness of the refinement process.

Figure 1 shows the top-level architecture of IDEAL, which contains four tools: TED [29], a proof manage-
ment system that is interfaced to a number of theorem provers; ISLET (Incredibly Simple Language-oriented Edit-
ing Tool), a prototype program/proof editor; a tool to support the construction of executable prototypes from
PLEASE specifications; and a test harness. The user interacts with these tools through a common interface. The
tools in IDEAL operate on components that are stored in a module data base. The module data base contains five

types of components: symbol tables, proofs, source code, load modules and test cases.

A set of symbol tables represent the PLEASE specifications and Ada implementations being developed.
These symbol tables are displayed and manipuiated by ISLET, which can be used to create PLEASE specifications
and incrementally refine them into Ada implementations. Some refinments may generate verification conditions;

these can be reformated as proofs which serve as input for TED. Using TED, the user can structure the proof into a



User

e P A -
' 1
! IDEAL !
f y I
l Screen !
: Interface X
: / ;
] i
1 i
1 i
lj i
1 !
1 LET Prototyping Test 1
; TED Is Tool Harmness :
| I
1 i
{ |
| 1

Figure 1. Architecture of IDEAL

number of lemmas and bring in pre-existing theories. The symbol tables also serve as input for the prototyping tool,
which uses them to produce executable prototypes from PLEASE specifications. The source code for the prototypes
is written in a combination of Prolog and Ada and utilizes a number of run-time support routines in both languages.
The load modules produced from both prototypes and final implementations are used by the test hamness. From the
test harness, the user can invoke commands to manipulate test cases. Commands are available to; edit or browse the
input for a test case; generate output for a test case; or run a program and compare the results with output that has

been previously checked for correctness.



The central tool in IDEAL is ISLET. It not only manipulates the symbol tables representing specifications

and implementations, but provides a user interface and, in a sense, controls the entire development process.

3. ISLET

ISLET supports both the creation of PLEASE specifications and their incremental refinement into annotated
Ada implementations. This process can be viewed in two ways: as the development of a program, or as the con-
struction of a proof in the Hoare calculus [32,42]. The refinement process is a sequence of atomic transformations,
which can be grouped into design transformations. A design transformation implements a choice of data structure
or algorithm; for example, whether to use a hash table or B-tree to implement a data base. Atomic transformations
are the smallest distinguishable changes to the system; in ISLET, editor commands are atomic transformations.
From the program view, an atomic transformation changes an unknown statement into a particular language con-
struct; from the proof view, an atomic transformation adds more steps to an incomplete proof. From the program
view, defining a predicate adds a new construct to the program; from the proof view, defining a predicate adds new

axioms to the first-order theory on which the proof is based.

Figure 2 shows the architecture of ISLET. The user interacts with ISLET through a simple language-oriented
editor similar to [56]. The editor provides commands to add, delete, and refine constructs; as the program/proof is
incrementally constructed, the syntax and semantics are constantly checked. The editor also controls the other com-
ponents: an algebraic simplifier, a number of simple proof procedures, and an interface to TED. Many steps in the
refinement process generate verification conditions in the underlying first-order logic. These verification conditions
are first simplified algebraically and then subjected to a number of simple proof tactics. These methods can handle a
large percentage of the verification conditions generated. If a set of verification conditions can not be proved using

these methods alone, the TED interface is invoked to create a proof in the proper format.

TED can then be invoked in an attempt to prove the verification conditions. Using TED is VETY expensive,
both in system resources and user time; however, many complex theorems can be proved with its aid. The algebraic
simplification and simple proof tactics used in ISLET are very inexpensive; however, they are not very powerful.
The combined use of these two methods supports the rigorous [36] development of programs. Most of the
verification conditions will be proven using inexpensive methods; those that are expensive to formally verify may be

proven immediately, deferred until a later time, or certified using peer review or testing techniques. Parts of a Sys-



ISLET
e e
! Knowledge-based ' Editing
: Assistant : Tool
. [P |

Simple Proof
Procedures

TED
Interface

- n . . . . . - n . e wm . e e s wm wm wn an e e \ae = o . - - - e - -

Module Data Base

T T T S e e e e e e e e e e e e e e vt n v = = — - - - - > - -

Figure 2. Architecture of ISLET

tem may be developed using completely mechanized formal methods, while other, less critical parts may use less

expensive techniques.

The algebraic simplifier is impiemented as a term rewriting system (40, 52]; it contains a knowledge-base of
rules which are assumed to be convergent. The simple proof procedures rely on a knowledge base containing infor-
maton such as: if the formulae F, and F, are equivalent under renaming of vaﬁables, then the formula F; o F, is
always true. Other rules implement simple knowledge of equality; for example, if F(X) and X=c are both true then
so is F(c). At present, it is difficult to examine, analyze or change the contents of these knowledge bases; for exam-

ple, algorithms exist to determine if a set of rewrite rules are convergent, but they are not implemented in ISLET.

10



We are developing tools to correct these deficiencies.

The user can also interact with ISLET through a knowledge-based assistant [66] (currently under develop-
ment) based on deductive synthesis techniques. During the refinement process, the user can ask the assistant for
advice on how to implement an undefined construct. The assistant attempts to solve this problem by first searching
for values that satisfy the pre- and post-conditions for the construct and then synthesizing Ada code to set these
values. The assistant can access the information stored in the symbol table and invoke the algebraic simplifier and
simple proof procedures. The assistant also contains a library of program schemas which can be instantiated to pro-
duce code fragments. The user can browse this library and instantiate schemas with the aid of the assistant; he can

then use the instantiated schema in a refinement.

To further clarify both the principles behind ISLET and the limitations of the current implementation, we will
consider an example of software development. We will follow the development of a procedure through the

specification, refinement and verification processes.

4. An Example of Software Development

Assume that a programmer must implement a procedure that takes a natural number as input and produces its
factorial as output. The programmer first creates an empty module data base and then invokes IDEAL, which pro-
duces a display showing the empty module. The programmer then invokes ISLET to specify the procedure. Figure
3 shows the completed specification, which includes both the pre- and post-conditions for the procedure and the
definition of the is_fact predicate. This figure, and the others in this section, show the actual output from the current

implementation; therefore, they do not always exactly follow Ada syntax.

The specification defines a package factorial, which provides a procedure by the same name. In PLEASE,
procedures are defined using pre- and post-conditions which are designated by in(...) and out(...) respectively. The
pre-condition for a procedure specifies the conditions the input data must satisfy before procedure execution begins.
The pre-condition for factorial is true; the type declarations for the parameters give all the requirements for the
input. The post-condition for a procedure states the relationship the input and output data must satisfy after pro-
cedure execution has completed. The post-condition for factorial is is _fact(x)y); the predicate is fact must be true
of the parameters 0 factorial after execution is complete. The predicate is_fact is not pre-defined; it was developed

as part of the factorial specification. The definition of is _fact states that x factorial is equal to y if x equals zero and

11



..—-._...o.--..——__-——_——-.-——_.——————-—-—-—-—-‘_..—--—-———————..-—-———---_——-—--—_—-—-——-——

MENU: Clos, DEcl, DIsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe
package factorial is

-—: predicate is_fact( x : inout natural ; y : inout natural ) is true if

- tl : natural ;

--: begin

- x=0and yv =1

— or

- is_fact(x - 1, tl) and y = tl * x ;

-=-: end is_fact ;

~-| where in( true ) and
-] out ( is_fact(x, vy) )

end factorial ;

!
|
l
I
!
|
|
|
I
!
l
|
procedure factorial( x : in natural ; y : out natural ) {
!
I
I
l
!
|
|
|
!
!
I
|
I

..-.——--—_-—-_..-__.—.—...——.-..-._..-._._—-.-—...__..-...._--__..._—__.—..-...._......_—_._-.__—_——.....__—-_—-————._

Figure 3. ISLET display showing factorial specification

y equals one, or if x minus one factorial is equal to ¢/ and y equals +/ times x (in other words, is_fact(x,y) is true if (x
=0A Yy =1V ((x-D! =tIA y=tl*x)).

The top line of the display gives a menu of ISLET commands. ISLET has a focus of attention which is
always on a particular symbol table scope; for example, in Figure 3 ISLET’s focus of attention is on the factorial
package. The visible objects are the factorial procedure and the is _fact predicate. The open command changes the
focus of attention to an inner scope; for example, the command "open! procedure factorial.” would shift the focus of
attention to the body of the factorial procedure!. The clos command shifts the focus to the containing scope, while

the display command presents the focus of attention on the screen. The decl command allows declarations, and the

'The "!" after the command name is an artifact of ISLET"s Prolog-based implementation.

12



put and get commands support the saving and restoring of the editor’s state. The help command provides on-line
assistance, while the quit command exits ISLET. The refine command allows more design or implementation detail
to be added to a specification, while the undo command reverses the last refinement step. The use command allows
separately developed modules to be used in a specification or implementation, and the /ist command displays all the

verification conditions which have not been certified.

As the programmer enters the specification, the syntax and static semantics are checked for correctness;
- unfortunately, at present the granularity is somewhat coarse. For example, the programmer must enter the definition
of is_fact as a unit; if a mistake is made the entire definition must be re-entered. Also, the definition of is _fact must
be entered before the pre- and post-conditions for facrorial. This is because is _fact is referenced in the post-
condition; an undeclared identifier error would result if the order of enay were reversed. The utility of ISLET
would be dramatically increased by a finer grained implementation; for example, one based on an editor, such as
Epos [39], that allows an arbitrary number of text-oriented commands to be performed before the syntax and seman-

tics are checked.

Figure 4 shows the ISLET display as the programmer opens the factorial procedure to begin the refinement
process. At this point, the procedure consists of an unknown statement sequence, denoted by unknown_0, sur-
rounded by assertions true and is_fact(x,y). In PLEASE, assertions are described by lines beginning with the sym-
bol "--I". Assertions are formulae which must be true whenever execution reaches that point in the program. For
example, frue must hold whenever execution reaches the point immediately preceding unknown_0 (which will later
be refined into a program construct) and is _fact(x,y) must be true whenever execution reaches the point immediately
following unknown_0. This is equivalent to sayihg that unknown_0 has a pre-condition of true and a post-condition
of is_fact(x,y). The goal of the refinement process is to produce an implementation of unknown_0 which is correct
with respect to these pre- and post-conditions. This problem is simplified by the fact that the factorial calculation

can be divided into two cases: if the input is 0 then the result is 1, otherwise more computation is needed.

With this in mind, the programmer refines the unknown statement sequence into an if-then-else; he types the
command "refine! 0 if x=0.", which can be read as: refine unknown zero into an if-then-else on condition x equal to
zero. In ISLET, each refinement step corresponds to at most two proof steps in the Hoare calculus: a step using the
rule for the appropriate language construct, and possibly a step using the consequence rule. For example, the

current refinement uses the rule for the if-then-else construct, but does not make use of the consequence rule;

13



—._—-.....-——_-————-_..—..-.-—.._——..-.———--—-._—---._-———--—-.—-———---—-.-——..—-_..——__-—...-_

| MENU: Clos, DEcl, DIsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe
procedure factorial( x : in natural ; y : out natural ) is
begin
--| true ;
<unknown_0> ;

--| is_fact(x, y) ;
end factorial ;

!
I
l
!
!
I
!
!
l
l
I
!
|
!
I
!
!
[
!
|
!
I
|
|
l

—-——--.-—...._.._—._-——-—._-—....——_——__—__——_..-._———___.—-...—-....—-..-._-.——_____._...--._..__—-..._—..

Figure 4. ISLET display at beginning of refinement process

therefore, no verification conditions are generated.

Figure S shows the ISLET display after the refinement is compete; unknown_( has been transformed into an
if-then-else with an unknown at each branch. ILSET generates all the new assertions necessary to annotate the
refinement. The refinement process now has two sub-goals. An implementation of unknown_I1 must be found
which is correct with respect to pre-condition true and x = 0 and post-condition is_fact(x,y). Similarly, unknown_2
must be refined inw a statement sequence which is correct with TeSpect to true and not x = 0 and is_fact(x.y).
These goals can be pursued in any order: the programmer can perform a number of refinements on unknown_I,
switch his attention to unknown_2, and then return to finish unknown_I. Fortunately, this is not necessary: unk-

nown_l has a simple implementation.

14



procedure factorial( x : in natural ; y : out natural ) is

-=| true ;
if x = 0 then
--| true and x = 0 ;
<unknown_1> ;
== is_£fact(x, y) ;

else
-=| is_fact(x, y) :
end if ;

-=-| is_fact(x, y) :

|
|
!
[
|
|
|
I
I
|
|
| -=-! true and not x = 0 ;
]
|
J
|
| end factorial ;
I
I
|
|
!
!
|
I
I

l
|
|
!
I
|
l
l
|
l
|
l
<unknown_2> ;
|
!
!
|
l
|
l
|
I
1
|
!
I

—.-—...__.-._...—..._._.__-_--—-_.-.-—.——-——_————-——--—.——_—._.——__——_-....——-——-____-.-.._-..._-.-._——_-_

Figure 5. ISLET display after initial refinement of factorial

Knowing that the factorial of zero is one, the programmer refines unknown_J into a statement assigning one to
; Figure 6 is produced by ISLET after the command "refine! 1 y := 1.". The proof of this refinement step makes
use of both the Hoare axiom for assignment statements and the consequence rule; therefore, verification conditions
are generated. The algebraic simplifier is able to reduce the verification conditions by realizing that for any formula.
F, true and F is equivalent to F Although the verification conditions are true, the simple proof procedures are not
able to certify this. The problem is that the current implementation does not add user definitions to the rule base; the

proof methods have no knowledge of is _fact. We plan to correct this problem in the future.

At this point the programmer examines the verification conditions: ISLET has created input for TED, which

can be invoked if the programmer desires. In this case the programmer is convinced that the verification conditions

15



---——-.--———..-_—-—--——————--——————o--_———.—_---____.a.._—.---———————-.—---—-—-._——_—_..

Verification conditions are:

true and x = 0 =>
is_fact(x, 1)

Simplified verification conditions are:

X = O =>
is_fact(x, 1)

Trying simple proof procedure

Simple proof procedure failed - generating ted file

Should I invoke TED (y/n) ? n

Type ".<cr>" to continue

—.——.-._-...__......-._..._—_.._....__-......—.-—..-..-—.=,g<==.=-.—_—-==.‘......._..___-..-...—.-_——————.-——_—.__--.....

Figure 6. ISLET display showing verification conditions for first assignment

are correct; he decides to wait until after the refinement process is complete to formally certify them. ISLET
displays the completed refinement and the development process continues. The programmer decides to implement
the else branch using a sequence consisting of a while loop and its initialization. He realizes he needs a loop counter

and declares a variable i.

In ISLET, a loop has both an invariant, which is maintained by the body, and a condition, which controls ter-
mination. If the invariant is true before the loop begins execution, then both the invariant and the negation of the
condition will be true when the loop terminates. The programmer’s strategy involves the invariant is_fac(i,y) and
loop condition i /= x. The program will first initalize the invariant for an low value of i/ and then mainmin the

invariant as  is counted up to x. On loop termination i will be equal 1o x and is_fact(x,y) will be true.

First, the programmer enters the code to initialize the invariant. Initialization consists of two statements: one

assigning 1 to i and one assigning 1 to y. The verification conditions for the first assignment can be certified using

16



simple methods; the second assignment generates verification conditions:
i =1 => is_fact(4i,1)
These conditions can not be certified using the simple methods in ISLET alone; TED must be invoked. As with the

previous conditions, this is due to lack of knowledge of the is_fact predicate.

The programmer must now refine an unknown with pre-condition is _faci(i,y) and post-condition is_fact(x,y)
into the while loop. He types the command "refine! 4 while i /= x.", to refine unknown_4 into a while loop with con-
dition i not equal to x; Figure 7 shows the ISLET display. ISLET generates verification conditions for this
refinement based on both the rule for while loops and the consequence rule; the current ISLET implementation only
verifies partial correctness. The verification conditions can be algebraically simplified, and the result can be proved
using basic knowledge of equality: if two terms are equal, then we can substitute one for the other in any formula

without changing its meaning.

The programmer realizes that the body of the loop must both increment the loop counter and update the calcu-

lated quandty. Figure 8 shows the ISLET display after he refines the body into a statement sequence. The

..—_....._......-___—.__—.—_—.......—-...-...........———.———.—....-.___—__-._..—..._-..—...—.....-.._._—_._---.-.___-._..-.__

MENU: Clos, DEcl, DIsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe
Verification conditions are:

is_fact(i, y) and not i /= x =>
is_fact(x, y)

is_fact(i, y) and i = x =>
is_fact(x, y)

Trying simple proof procedure

!
!
|
I
|
!
|
| Simplified verification conditions are:
!
I
I
|
l
!
| Simple proof procedure successful

|

-—_——_...._...——_._—._—..-_......_..-.-.-.....-...—-__—_..-.._...._-.__.._..__—-..--_-—--.—_.-_..—_—....__-_—_

Figure 7. ISLET display showing verification conditions for loop creation

17



- ———— 1 o o o - " - — s oo - oo - 1  — ———— —— . o}~ T " — =28

procedure factorial( x : in natural ; y : out natural ) is

--| true ;

if x = 0 then
--] true and x = 0 ;
y = 1 ;
==l is_fact(x, y) :

else
~-| true and not x = 0 ;
--| 1i=1;
y =1 ;
--| is_fact(i, y) ;
while 1 /= x loop
-=| is_fact(i, y) and i /= x ;
<unknown_8> ;
-~} is_fact(i - 1, y) :
<unknown_9> ;
--| is_fact (i, y) ;
end loop ;
--] is_fact(x, y)
end 1f ;

-=| is_fact(x, y) ;

|
|
!
|
|
|
|
|
|
|
!
|
|
|
| i =1 ;
I
|
|
|
|
|
!
|
|
I
|
|
|
| end factorial ;
|
|

——..—_-...—..._——._....—_—-....-—.—-..—__—___..-...-......_—___—__—-_—-._——-_-._..—_.._-_...._......_.__..——....._

Figure 8. ISLET display showing decomposition of loop body

programmer then refines unknown_8 into an assignment which increments ; and produces verification conditions:

is_fact(i, y) and i /= x =>
is_fact(i + 1 -1, y)

These can be solved using the simple proof methods. Unknown_9 is more difficult. The programmer refines it into

a statment assigning y the value of y * i; this refinement produces the verification conditions:

18



is_fact(i - 1, y) =>
is_fact(i, y * 1)

These verification conditions can not be solved by the simple methods alone; their proof requires a reasonably deep

knowledge of both the is_fact predicate and the natural numbers.

The implementation of factorial is now complete; Figure 9 shows the completed procedure. The body of fac-

torial is completely annotated; in other words, there is an assertion both before and after each executable statement.

-—..-_......——-_——_——-_.——.----.-—-.--—.._..__-..___-—-——_-......———-.-..-_——.---;_——————_-—_—--—-.—

procedure factorial( x : in natural ; y : out natural ) is
i : natural ;

begin
-=| true ;
if x = 0 then
-=-| true and x = 0 ;
y =1 ;
-=| is_fact(x, y) ;

else
--}! true and not x = ¢ ;
i =1 ;
y :=1;

== is_fact (i, y)
while 1 /= x loop
-=| is_fact(i, y) and 1 /= x ;

i =4 + 1 ;
-=| is_fact(i - 1, y) ;
y =y * i ;
~-=| is_fact(i, y) :
end loop ;
-~-| is_fact(x, y) ;
end if ;

-~| is_fact(x, y) ;
end factorial ;

..-_——-_._._..__...._._._..__—-._..._.—__.....-...._.._.-__._..——-—.—.—-——_——_—._——_——..—.._....._._.—_..__.__-.———

Figure 9. ISLET display showing completed implementation of factorial

19



The assertions plus the executable statements form a proof in the Hoare calculus. Before the proof is really com-
plete, the programmer must certify the verification conditions which did not yield to the simple methods imple-

mented in ISLET; these are:

X = 0 =>
is_fact(x, 1)

is_fact(i, 1)
is_fact(i - 1, y) =>
is_fact(i, y * 1)
The first two conditions could be proved in a more advanced implementation of ISLET: one which added user

defined predicates to the appropriate knowledge bases. The third condition may always require a general purpose

theorem prover.

In IDEAL, the programmer can verify these conditions using any combination of peer review, testing, or for-
mal techniques. The formal techniques used can range from a "proof sketch” done with pencil and paper to a com-
plete, mechanized proof performed with the aid of TED. In this case, the programmer correctly assumes that TED
can certify the verification conditions and invokes the tool on the appropriate files. TED certifies the verification

conditions and the development is complete.

5. System Status

The ENCOMPASS environment has been under development since 1984; a prototype implementation has
been running under Berkeley UNTX® on Sun workstations since 1986. The prototype is written in a combination of
C, Csh, Prolog and Ada and supports the construction of software using the Verdix Ada Development System [71].
This prototype includes all the tools necessary to support software development using PLEASE: an initial version of
ISLET; software which automatically translates PLEASE specifications into Prolog procedures and generates the
support code necessary to call these procedures from Ada: the run-time support routines and axiom sets for a
number of pre-defined types; and interfaces to the ENCOMPASS test harness and TED. PLEASE and ENCOM-
PASS have been used to develop a number of small programs, including specification, prototyping, and mechanical
verification. The prototype implementation of ISLET is written in Prolog and performs exactly as described in sec-
tion four of this paper. An experimental implementation of the knowledge-based assistant has been written in Pro-

log. It is not a completely general tool, but does perform the deductions described in [66]. Work is now underway

UNIX® is a trademark of AT&T Bell Laboratories.

20



to integrate the assistant into the full ISLET implementation.

The combination of algebraic simplification and simple proof tactics implemented in ISLET seems to work
very well; in our experience, it can eliminate between fifty and ninety percent of the verification conditions gen-
erated during refinement. For example, [64] presents a design transformation consisting of twenty-six steps, only
two of which generated verification conditions which could not be certified by the simple methods. The example
presented in [62] also consists of twenty six steps, only four of which generated verification conditions which did
not yield to the simple approach. The simple methods run very quickly: less than one second response time in all
the cases examines so far. The use of TED is very expensive; for example, the first complex verification condition
in [64] can be certfied in about five CPU seconds simply by invoking the theorem prover on the file produced by
ISLET. The second verification condition can not be proved in this manner; it requires a considerable investment of

user time to decompose it into a number of lemmas.

-

6. Summary and Conclusions

Traditional methods do not ensure the production of correct software. VDM [8,36, 54] is a method which has
been used in industrial settings to enhance software development. In VDM, software is first specified using a com-
bination of programming languages and predicate logic. These abstract components are then refined into com-
ponents in an implementation language. The refinement process consists of a number of steps. Each step is small
and is verified before another is applied; therefore, errors can be detected early and corrected at low cost. ENCOM-
PASS [61, 62] is an integrated environment which supports software development using executable specifications
and formal techniques similar to VDM. ENCOMPASS enhances VDM by reducing both the effort involved and the

chance of errors.

In ENCOMPASS, software is first sbeciﬁed using a combination of natural language and PLEASE, [63-
65, 68] an Ada-based, wide spectrum, executable specification and design language. PLEASE specifications can be
used in proofs of correctness; they can also be transformed into prototypes which use Prolog to "execute" pre and
post-conditions. We feel the early production of prototypes will increase customer/developer communication and
enhance the software development process. As PLEASE specifications are both executable and formally based, the

equivalence between specification and implementation can be determined using either testing or proof techniques.

21



In ENCOMPASS, components specified in PLEASE are incrementally refined into Ada components using
IDEAL, an environment for programming in the small which supports verification using any combination of testing,
peer review, or formal methods. The most important tool in IDEAL is ISLET, a language-oriented program/proof
editor which views the refinement process as the construction of a proof in the Hoare calculus [32,42]. Many steps
in the refinement process generate verification conditions in the underlying first-order logic. In ISLET, these
verification conditions are first simplified algebraicaily and then subjected to a number of simple (and inexpensive)
proof tacﬁcs. These methods can handle a large percentage of the verification conditions generated. If a set of
verification conditions can not be proved using these methods alone, then a more powerful (and expensive) system
can be invoked. In our experience, most of the verification conditions will be proven using the inexpensive

methods.

ISLET supports the rigorous [36] development of programs. Although detailed mechanical proofs are not
required at every step, the framework is present so that they can be constructed if necessary. Proof techniques may
be used that range from a very detailed, completely formal proof using mechanical theorem proving, to a develop-
ment "annotated” with unproven verification conditions. Parts of a project may use detailed mechanical verification
while other, less critical parts may be handled using less expensive techniques. Our experience so far leads us to
believe that the complete, mechanical verification of large programs will be prohibitively expensive; however, inex-
pensive methods can eliminate a iarge percentage of the verification conditions generated during a development. By
eliminating these "trivial" verification conditions, the total number is reduced so that the verification conditions

remaining can be more carefully considered by the development personnel.

The work described in this paper has just completed the "proof of concept” stage. A prototype implementa-
tion has been constructed and demonstrated on a number of smail examples. Although the current implementation
of ISLET is quite limited, it demonstrates much of the potential of such tools. We believe a large class of tools can
be constructed which provide fifty to ninety percent solutions to the generally unsolvable problems involved. We
feel that the use of future tools similar to ISLET will greatly enhance the specification, design and development of

software.



7. References

L

2

10.

11.
12.
13.

14.

15.

17.

18.
19.

20.

21.

29.

30.

31

32.

Auembheimer, B. and R. A. Kemmerer, “RT-ASLAN: A Specification Language for Real-Time Systems’*, JEEE Transactions on Software
Engineering SE-12, 9 (September 1986), 879-889.

Balzer, R., T. E. Cheatham and C. Green, *‘Software Technology in the 1990°s: Using a New Paradigm’®, [EEE Computer 16, 11
(November 1983), 39-45. .

Bates, J. L. and R. L. Constable, ‘*Proofs as Programs’*, ACM Transactions on Programming Languages and Systems 7, | (January 1985),
113-136.

Benzinger, L. A., “*A Model and a Method for the Stepwise Development of Verified Programs’’, Report No. UTUCDCS-R-87-1339, Dept.
of Computer Science, University of Illinois at Urbana-Champaign, May 1987.

Berry, D. M., **Towards a Formal Basis for the Formal Development Method and the Ina Jo Specification Language’’, JEEE Transactions
on Software Engineering SE-13, 2 (February 1987), 184-201.

Bjomer, D. and C. B. Jones, Formal Specification and Software Development, Prentice-Hall, Englewood Cliffs, N.J., 1982,

Bjomer, D., T. Denvir, E. Meiling and J. S. Pedersen, ‘“The RAISE Project - Fundamental Issues and Requirements’*, RAISE/DDC/EM/1,
Dansk Datamatik Center, 1985.

Bjomer, D., “‘On The Use of Formal Methods in Software Development’®, Proceedings of the 9th International Conference on Software
Engineering, 1987, 17-29,

Bloomfield, R. E. and P. K. D. Froome, *“The Application of Formal Methods to the Assessment of High Integrity Software’*, [EEE
Transactions on Software Engineering SE-12, 9 (September 1986), 988-993.

Campbell, R. H. and R. B. Terwilliger, ‘“The SAGA Approach to Automated Project Management’’, in International Workshop on
Advanced Programming Environmenis, Carter, L. R. (editor), Springer-Verlag Lecture Notes in Computer Science, New York, 1986, 145-
159.

Clocksin, W. F. and C. S. Mellish, Programming in Prolog, Springer-Verlag, New York, 1981.
Cohen, ., **A View of the Origins and Development of Prolog’*, Communications of the ACM 31, 1 (January 1988), 26-36.

Cottam, L. D., “The Rigorous Development of a System Version Control Program’’, IEEE Transactions on Software Engineering SE-10, 3
(March 1984), 143-154.

Davis, R. E., ““Runnable Specification as a Design Tool”’, in Logic Programming, Clark, K. L. and S. A. Tamlund (editor), Academic
Press, London, 1982, 141-149.

Davis, R. E., **Logic Programming and Prolog: A Tutorial’’, JEEE Software 2, 5 (September 1985), 53-62.

DeMillo, R. A., R. J. Lipton and A. J. Perlis, ““‘Social Processes and Proofs of Theorems’”, Communications of the ACM 22, 5 May 1979),
271-280.

Dijkstra, E. W., “‘Structured Programming'*, in Software Engineering Principles, Buxton, J. N. and B. Randall (editor), NATO Science
Committee, Brussels, Belgium, 1970.

Dijkstra, E. W., ‘“The Humble Programmer (Turing Award Lecture)’’, Communications of the ACM 15, 10 (October 1972), 859-866.
Fagan, M. E., ‘“Advances in Software Inspections”’, JEEE Transactions on Software Engineering SE-12, 7 (July 1986), 744-751.
Fairley, R., Software Engineering Concepts, McGraw-Hill, New York, 1985.

Futatsugi, K., J. Goguen, J. Meseguer and K. Okada, *‘Parameterized Programming in OBJ2", Proceedings of the Sth Internationai
Conference on Software Engineering, 1987, 51-60.

Gallaire, H., J. Minker and J. Nicolas, *‘Logic and Databases: A Deductive Approach’, ACM Computing Surveys 16, 2 (June 1984), 153-
185.

Gehani, N. and A. D. McGenrrick, eds., Software Specification Techniques, Addison Wesley, Reading, Massachusetts, 1986.

Goguen, ., I. Thatcher and E. Wagner, ‘*An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract
Data Types.”, in Current Trends in Programming Methodoiogy, IV, Yeh, R. (editor), Prentice-Hall, London, 1978, $0-149.

Goguen, J. and M. Moriconi, **Formalization in Programming Environments”’, JEEE Computer 20, 11 (November 1987), 55-64.
Gries, D., The Science of Programming, Springer-Verlag, New York, 1981.
Guuag, J. V., I. J. Horning and J. M. Wing, *‘The Larch Family of Specification Languages’’, IEEE Sofiware 2, § (September 1985), 24-36.

Halpem, J. D., S. Owre, N. Proctor and W. F. Wilson, “‘Muse - A Computer Assisted Verification System’’, /EEE Transactions on
Software Engineering SE-13, 2 (February 1987), 151-156.

Hammerslag, D. H., S. N. Kamin and R. H. Campbell, ‘‘Tree-Oriented Interactive Processing with an Application to Theorem-Proving’*,
Proceedings of the Second ACMIIEEE Conference on Software Development Toois, Techniques, and Alternatives, December 1985.

Henderson, P., ““Functional Programming, Formal Specification, and Rapid Prototyping’*, JEEE Transactions on Software Engineering
SE-12, 2 (February 1986), 241-250.

Henderson, P. B., ed., Proceedings of the SIGSOFTISIGPLAN Software Enginecering Symposium on Practical Software Development
Environments, ACM, December 1986.

Hoare, C. A.R., ““An Axiomatic Basis for Computer Programming*, Communications of the ACM 12, 10 (October 1969), 576-580.



33.
34.
35.

36.
37.
38.

39.

41.

42,
43.

45.

47.
48.

49.
50.

S1.
52.

33.
34.
55.
36.

57.

8.

59.

61.

62.

63.

Hoare, C. A.R., “*An Overview of Some Formal Methods for Program Design'*, IEEE Computer 20, 9 (September 1987), 85-91.
Howden, W. E., *'The Theory and Practice of Functional Testing"*, [EEE Sofiware 2, 5 (September 1985), 6-17.

Jackson, M. L, “‘Developing Ada Programs Using the Vienna Development Method (VDM)"*, Software - Practice and Experience 15, 3
(March 1985), 305-318.

Jones, C. B., Software Development: A Rigorous Approach, Prentice-Hall Intemational, Engelwood Cliffs, N.J., 1980.
Jones, C. B., Systematic Software Developmens Using VDM, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

Kirslis, P. A., R. B. Terwilliger and R. H. Campbell, ““The SAGA Approach to Large Program Development in an Integrated Modular
Environment'’, Proceedings of the GTE Workshop on Software Engineering Environments for Programming-in-the-Large, June 1985, 44-
S3.

Kirslis, P. A., ““The SAGA Editor: A Language-Oriented Editor Based on an Incremental LR(1) Parser’’, Report No. UITUCDCS-R-85-
1236 (Ph.D. Dissertation), Dept. of Computer Science, University of llinois at Urbana-Champaign, December 1985,

Knuth, D. E. and P. E. Bendix, **Simple Word Problems in Universal Algebra’’, in Compwtational Problems in Abstract Algebra, Leech, J.
(editor), Pergamon, New York, 1970, 263-297.

Krall, A., “Implementation of a High-Speed Prolog Interpreter’’, Proceedings of the SIGPLAN '87 Symposium on Interpreters and
Interpretive Techniques, June 1987, 125-131.

Loeckx, J. and K. Sieber, The Foundations of Program Verification, John Wiley & Sons, New York, 1984.

Luckham, D. C., S. M. German, F. W. Henke, R. A. Karp, P. W. Milne, D. C. Oppen, W. Polak and W. L. Sherlis, “‘Stanford Pascal
Verifier User Manual'’, Report No. STAN-CS-79-731, Computer Science Department, Stanford University, Stanford, CA, March 1979.

Luckham, D. C. and F. W. Henke, **An Overview of Anna, a Specification Language for Ada’", JEEE Software 2, 2 (March 1985), 9-22.

Luckham, D. C., D. P. Helmbold, S. Meldal, D. L. Bryan and M. A. Haberler, **Task Sequencing Language for Specifying Distributed Ada
Systems, TSL-1"", Report No. CSL-TR-87-334, Computer Systems Laboratory, Stanford University, July 1987.

Martin-Lof, P., *‘Constructive Mathematics and Computer Programming’’, Proceedings of the 6th International Congress for Logic,
Method, and Philosophy of Science, 1982, 153-175.

Meyers, G. 1., The Art of Software Testing, John Wiley & Sons, New York, 1979.

Mili, A., J. Desharnais and J. R. Gagne, “‘Formal Models of Stepwise Refinement of Programs’’, ACM Computing Surveys 18, 3
(September 1986 ), 231-276.

Miller, E., ed., Tworial: Automated Tools for Software Engineering, IEEE Computer Society, New York, 1979.

Mills, H. D. and R. C. Linger, “*Data Structured Programming: Program Design without Arrays and Pointers’’, JEEE Transactions on
Software Engineering SE-12, 2 (February 1986), 192-197.

Mills, H. D., M. Dyer and R. Linger, *‘Cleanroom Software Engineering”’, JEEE Software 4, 5 (September 1987), 19-25.

Musser, D. R., ‘*Abstract Data Type Specification in the AFFIRM System’’, I[EEE Transactions on Software Engineering SE-6, 1 (January
1980), 24-32.

‘‘Peer Review of a Formal Verification / Design Proof Methodology’’, Conference Publication 2377, NASA, 1985.
Oest, O. N., **VDM From Research to Practice’", Information Processing, 1986, 527-533.
Partsch, H. and R. Steinbruggen, *‘Program Transformation Systems’*, Computing Surveys 15, 3 (September 1983), 199-236.

Reps, T. and B. Alpem, “‘Interactive Proof Checking’’, Proceedings of the 11th ACM Symposium on the Principies of Programming
Languages, January 1984, 36-45,

Richardson, D. J. and L. A. Clarke, **Partition Analysis: A Method Combining Testing and Verification’*, JEEE Transactions on Software
Engineering SE-11, 12 (December 1985), 1477-1450,

Selby, R. W., V. R. Basili and F. T. Baker, ‘*Cleanroom Software Development: An Empirical Evaluation’’, JEEE Transactions on
Software Engineering SE-13, 9 (September 1987), 1027-1037.

Shaw, R. C., P. N. Hudson and N. W. Davis, ““Introduction of A Formal Technique into a Software Development Environment (Early
Observations)'’, Software Engineering Notes 9, 2 (Apnl 1984), 54-79.

Stickel, M. E., *‘A Prolog Technology Theorem Prover’’, Proceedings of the International Symposiwn on Logic Programming, February
1984,211-217.

Terwilliger, R. B. and R. H. Campbell, “ENCOMPASS: a SAGA Based Environment for the Composition of Programs and
Specifications’’, Proceedings of the 19th Hawaii International Conference on System Sciences, January 1986, 436-447.

Terwilliger, R. B. and R. H. Campbell, ““ENCOMPASS: an Environment for the Incremental Development of Software”, Report No.
UTUCDCS-R-86-1296, Dept. of Computer Science, University of Minois at Urbana-Champaign (also to appear in the Journal of Systems
and Software), September 1986.

Terwilliger, R. B. and R. H. Campbell, ““PLEASE: Predicate Logic based ExecutAble SpEcifications'”, Proceedings of the 1986 ACM
Computer Science Conference, February 1986, 349-358.

Terwilliger, R. B. and R. H. Campbeil, **PLEASE: Executable Specifications for Incremental Software Development’”, Report No.
UIUCDCS-R-86-1295, Dept. of Computer Science, University of Illinois at Urbana-Champaign (also to appear in the Journal of Systems
and Software), September 1986,



70.

1.
72.

73.

74.
75.

76.

78.
79.

Terwilliger, R. B. and R. H. Campbell, “PLEASE: a Language for Incremental Software Development'’, Proceedings of the 4th
International Workshop on Software Specification and Design, April 1987, 249-256.

Terwilliger, R. B., ‘*“An Example of Knowledge-Based Development in ENCOMPASS™, Proceedings of the Third Annual Conference on
Artificial Inteiligence & Ada, George Mason University, October 1987, 40-55.

Terwilliger, R. B., “ENCOMPASS: an Environment for Incremental Software Development using Executable, Logic-Based
Specifications’*, Report No. UTUCDCS-R-87-1356 (Ph.D. Dissertation), Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1987.

Terwilliger, R. B. and P. A. Kirslis, “‘PK/C++: an Object-Oriented, Logic-Based, Executable Specification Language”, Technical Report
CU-CS-400-88, Department of Computer Science, University of Colorado at Boulder, June 1988.

Terwilliger, R. B. and R. H. Campbell, ‘*An Early Report on ENCOMPASS", Proceedings of the 10th International Conference on
Software Engineering, April 1988, 344-354,

**Reference Manual for the ADA Programming Language’’, American National Standards Institute/MIL-STD-1815A-1983, U.S. Dept.
Defense, 1983.

VADS Reference Manual, Verdix Corporation, Chantilly, Virginia, 1986.

Weinberg, G. M. and D. P. Freedman, ‘‘Reviews, Walkthroughs, and Inspections’®, JEEE Transactions on Software Engineering SE-10, 1
(January 1984), 68-72.

Zave, P., *“The Operational Versus the Conventional Approach to Software Development’*, Communications of the ACM 27, 2 (February
1984), 104-118.

*“Theme Issue: Software Quality Assurance'’, IEEE Sofiware 4, 5 (September 1987).

*“Special Issue on Rapid Prototyping: Working Papers from the ACM SIGSOFT Rapid Prototyping Workshop'’, Software Engineering
Notes 7, 5 (December 1982).

““Proceedings of the NRL Invitationali Workshop on Testing and Proving: Two' Approaches to Assurance”, ACM Software Engineering
Notes 11, 5 (October 1986), 63-85.

*‘Special Issue on Integrated Environments®’, JEEE Software 4, 6 (November 1987).
**Special Issue on Integrated Environments’*, JEEE Computer 20, 11 (November 1987).
Proceedings of the 4th Internationai Workshop on Software Specification and Design, April 1987,

25



