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The resonant interaction of three wavetrains is the simplest form of nonlinear interaction for

dispersive waves of small amplitude. Such interactions arise frequently in applications ranging from

nonlinear optics to internal waves in the ocean through the study of the weakly nonlinear limit of

a dispersive system. The slowly varying amplitudes of the three waves satisfy a set of integrable

nonlinear partial differential equations known as the three-wave equations. If we consider the special

case of spatially uniform solutions, then we obtain the three-wave ODEs. The ODEs have been

studied extensively, and their general solution is known in terms of elliptic functions. Conversely,

the universally occurring PDEs have been solved in only a limited number of configurations. For

example, Zakharov and Manakov (1973, 1976) and Kaup (1976) used inverse scattering to solve the

three-wave equations in one spatial dimension on the real line. Similarly, solutions in two or three

spatial dimensions on the whole space were worked out by Zakharov (1976), Kaup (1980), and

others. These known methods of analytic solution fail in the case of periodic boundary conditions,

although numerical simulations of the problem typically impose these conditions.

To find the general solution of an nth order system of ordinary differential equations, it

is sufficient to find a function that satisfies the ODEs and has n constants of integration. The

general solution of a PDE, however, is not well defined and is usually difficult, if not impossible,

to attain. In fact, only a small number of PDEs have known general solutions. We seek a general

solution of the three-wave equations, which has the advantage of being compatible with a wide

variety of boundary conditions and any number of spatial dimensions. Our work indicates that the

general solution of the three-wave equations can be constructed using the known general solution

of the three-wave ODEs. In particular, we try to construct the general solution of the three-wave

equations using a Painlevé-type analysis. For now, we consider a convergent Laurent series solution
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(in time), which contains two real free constants and three real-valued functions (in space) that are

arbitrary except for some differentiability constraints. In order to develop a full general solution

of the problem, the two free constants must also be allowed to have spatial dependence, and one

more function must be introduced. That is, a full general solution of the problem would involve six

of these real-valued functions.
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Chapter 1

Introduction

The resonant interaction of three wavetrains is one of the simplest forms of nonlinear interac-

tion for dispersive waves of small amplitude. This behavior arises frequently in applications ranging

from nonlinear optics to internal waves through the study of the weakly nonlinear limit of a disper-

sive system. The slowly varying amplitudes of the three waves satisfy a set of coupled, nonlinear

partial differential equations known as the three-wave equations. We seek a general solution of the

three-wave equations.

The three-wave equations describe the physical phenomenon of three-wave mixing, in which

three wavetrains whose wavenumbers and frequencies satisfy a particular resonance condition inter-

act nonlinearly. These resonant interactions can cause substantial energy transfer amongst wave-

trains, and can have a significant impact on the evolution of the wavefield [20]. Since three-wave

interactions are the simplest form of nonlinear wave interactions, it follows that these interactions

have important consequences in almost all areas of physics where nonlinear wave phenomena can

occur [33]. We restrict our attention to a single resonant triad, which means there are only three

interacting waves. It is also possible to have multiple triads, but this is beyond the scope of this

thesis.

The three-wave equations admit a great deal of special structure. For instance, they constitute

an infinite dimensional Hamiltonian system that is completely integrable. Under certain conditions,

a so-called explosive instability can occur in the model, which causes almost all nonzero solutions

to blow up in finite time. The presence of this instability was originally discovered while modeling a
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problem in plasma physics [11]. The instability has also been found in a variety of other applications,

including density-stratified shear flows [9], vorticity waves [39], and capillary-gravity waves [14].

For much of this thesis, we focus on the three-wave equations in the configuration that admits the

explosive instability, although some attention is given to the case of bounded solutions.

If we consider the special case of spatially uniform solutions, then we obtain the three-wave

ordinary differential equations. The ODEs have been studied extensively, and their general solution

is known in terms of elliptic functions [5,30]. In this case, solutions of the ODEs can exchange energy

periodically [20]. Conversely, the universally occurring PDEs have been solved in only a limited

number of configurations, which are outlined in [14]. In particular, the equations have been solved

for certain types of initial data using the inverse scattering transform. For example, Zakharov and

Manakov (1973, 1976) and Kaup (1976) used inverse scattering to solve the three-wave equations

in time and one spatial dimension on the real line, or in two spatial dimensions alone. Similarly,

solutions in time and two spatial dimensions, or three spatial dimensions alone, on the whole space

were worked out by Zakharov (1976), Kaup (1980), and Cornille (1979). These known methods of

analytic solution fail in the case of periodic boundary conditions, although numerical simulations of

the problem typically impose these conditions. The solution of the three-wave PDEs that we derive

is compatible with any number of spatial dimensions and many types of boundary conditions.

For an nth order system of ordinary differential equations, finding the general solution

amounts to finding a solution that satisfies the ODEs and contains n constants of integration [23].

However, it is significantly more difficult to find the general solution of a PDE, linear or nonlinear.

Indeed, the list of PDEs whose general solutions are known is short. Common examples include

d’Alembert’s solution of the one-dimensional linear wave equation and the general solution of Liou-

ville’s equation,1 which is obtained through Bäcklund transformations [24, §8.3]. Our motivation

for studying the three-wave problem is two-fold. First, these equations are universal in the sense

that they arise in countless physical applications. It is therefore useful if we can solve them in new

1 Liouville’s equation takes the form ∂2u
∂x∂y

= eu, and is solved by transforming it into the wave equation, ∂2φ
∂x∂y

= 0
[24, §8.3].



3

configurations. Second, and perhaps more importantly, the ability to add to the short list of PDEs

with known general solutions could have significant implications.

The structure of this thesis is as follows. In Chapter 2, we provide extensive background on

the structure of the three-wave equations. In particular, we detail the Hamiltonian structure and

the integrability of the equations, both for the PDEs, and for the ODEs in the case of spatially

uniform waves. We also explain what conditions lead to the occurrence of the explosive instability.

In Chapters 3 and 4, we focus on the three-wave ODEs. Specifically, we derive the general

solution of the three-wave ODEs in two separate ways, both of which motivate the solution form

that we pose later for the three-wave PDEs. In Chapter 3, we solve the three-wave ODEs by

transforming the existing Hamiltonian system with three degrees of freedom into an equivalent

system with only one degree of freedom. We then obtain the solution using Weierstrass elliptic

functions. The well known structure of the Weierstrass functions allows us to determine which

initial data lead to the explosive instability, and which lead to bounded solutions. In Chapter 4, we

derive the general solution of the three-wave ODEs again, this time using the same method that we

later extend to the three-wave PDEs. In particular, we use a Painlevé-type analysis, which allows

us to construct the general solution of the ODEs in terms of a convergent Laurent series in time.

We show that the solutions in Chapters 3 and 4 are equivalent. In either case, the solution involves

six free real constants.

The main result of the thesis is in Chapter 5, where we use our knowledge of the three-wave

ODEs in order to construct a “near-general” solution of the three-wave PDEs. Specifically, we use

a Painlevé-type analysis once more in order to build the solution in terms of a convergent Laurent

series in time, with coefficients that have spatial dependence. The solution we construct involves

five free real functions in space and one free real constant. Primarily, however, we consider the

case in which two of the free functions are constants, so that we are left with three free functions

and three free constants. A full general solution of the problem would involve six free real-valued

functions, which is why we refer to our solution as “near-general”. In the latter half of Chapter

5, we derive the radius of convergence of the series solution of the three-wave PDEs in several



4

cases, and show that the radius of convergence of the three-wave PDEs is smaller than that of the

three-wave ODEs by a known factor.

Finally, in Chapter 6, we provide some numerical verification of our solution of the three-wave

equations by comparing our solution to other known cases. In particular, we show that we can

truncate the formal Laurent series solution of the three-wave PDEs after a small number of terms

and still capture the behavior of the exact solution.



Chapter 2

Background for the Three-Wave Equations

This chapter begins with a brief explanation of which types of physical systems can lead

to the three-wave partial differential equations. Following this, we derive the three-wave PDEs

using the particular example of a two-layer water wave model, with the understanding that the

equations can arise in many other contexts. We end the chapter with a discussion of some of the

most significant properties of the three-wave equations, including their Hamiltonian structure and

integrability, as well as the presence of an explosive instability.

2.1 Derivation

In order for the three-wave equations to arise, we must consider the time evolution of a

physical system, the governing equations for which must be nonlinear. In addition, we require the

following:

i. The system must be free of dissipation. That is, either there is no dissipation physically,

or the effects of dissipation are so small that we can assume they are negligible.

ii. The system, linearized about the zero solution, must admit traveling wave solutions of the

form ei(k·x−ω(k)t), where k is the wavenumber vector, ω is the wave frequency, and ω = ω(k)

is the linearized dispersion relation.

iii. The linearized system must be dispersive, so that ω(k) satisfies

det

(
∂2ω

∂km∂kn

)
6= 0,
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where km and kn are elements of the wavenumber vector k. In this case, waves with different

wave numbers k travel at different speeds [43, §11.1].

iv. The dispersion relation ω(k) admits three or more pairs (k, ω(k)) such that

k1 ± k2 ± k3 = 0 and ω(k1)± ω(k2)± ω(k3) = 0. (2.1)

Any solution of (2.1) represents a resonant triad.

Assume i-iv hold. Let the nonlinear governing equations be described by

N (u) = 0, (2.2)

where N can be a system of equations or a single equation, and u can be a scalar or vector quantity.

Additionally, we assume that u = u(x, t) is a function of space x and time t, and that the rest

state of the solution is represented by u = 0. Assuming (2.2) cannot be solved exactly, we begin

by linearizing about u = 0. To that end, we introduce the small parameter ε and assume that u

can be expanded in terms of a formal power series in ε. We substitute the expansion into (2.2) and

collect terms that are linear in ε. If the resulting system has terms that have constant coefficients

in x and τ , then u can be expanded as

u(x, t; ε) = ε
∑
k

U(k)ei(k·x−ω(k)t) +O
(
ε2
)
. (2.3)

At O(ε), we obtain the linearized problem, which admits nontrivial solutions as long as the wave

frequency ω and the wavenumber vector k satisfy the linearized dispersion relation, ω(k). At second

order, if (2.1) is satisfied, then secular terms arise, so that the expansion (2.3) breaks down when

εt = O(1) or εx = O(1). This motivates us to introduce slow time and space scales. Then it can

be shown that (2.3) can be superseded by

u(x, t; ε) = ε
3∑

m=1

Am(εx, εt)ei(km·x−ω(km)t) +O
(
ε2
)
.
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[38]. In this case, secular terms arise at O(ε2) unless the complex amplitudes Am(εx, εt) satisfy

∂A1

∂τ
+ c1 · ∇A1 = iγ1A

∗
2A
∗
3, (2.4a)

∂A2

∂τ
+ c2 · ∇A2 = iγ2A

∗
1A
∗
3, (2.4b)

∂A3

∂τ
+ c3 · ∇A3 = iγ3A

∗
1A
∗
2, (2.4c)

where τ = εt, X = εx, ∇ = (∂/∂X1, . . . , ∂/∂Xn), and for m = 1, 2, 3, A∗m is the complex conjugate

of Am, γm is a real nonzero constant determined by the physical problem, and cm is the group

velocity corresponding to wavenumber km, defined by

cm = ∇ω(k) |k=km ,

Equations (2.4a)-(2.4c) are known as the three-wave equations.

For convenience, we introduce the change of variables

Am = − iam√
|γkγ`|

,

where (k, `,m) = (1, 2, 3) cyclically. In this case, (2.4a)-(2.4c) can be written more succinctly as

∂am
∂τ

+ cm · ∇am = σma
∗
ka
∗
` , (2.5)

where σm = sign (γm).

2.1.1 A two-layer water wave model

We now briefly explain how the three-wave equations in (2.4) can arise for a specific physical

example. In particular, we consider internal waves in a two-layer fluid, where each layer is homoge-

neous. In general, internal waves can occur in a stably stratified fluid under the effects of gravity.

For instance, usually both the atmosphere and the ocean are stably stratified, and can support

many types of internal waves. Indeed, even water waves that occur at the interface between the

ocean and the atmosphere can be considered an extreme case of internal waves, resulting from a

large density gradient between the air and the water [2, §4.1.b].
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A resonant triad involving a combination of surface waves and internal waves is one possible

mechanism through which internal waves are produced [2, §4.2.b]. In our case, we consider the

irrotational motion of two fluid layers, each containing an incompressible, inviscid fluid. We restrict

our attention to the (x, z)-plane, with −∞ < x < ∞. Assume that the free surface is given by

z = ζ(x, t), so that the undisturbed free surface lies at z = 0. Moreover, assume that the lower

layer of fluid lies in a region defined by −H ≤ z ≤ −h1 + η(x, t), where z = −h1 is the location of

the undisturbed interface between the layers, and H is the total depth of the undisturbed layers.

In fact, we define H = h1 + h2, so that h1 is the undisturbed depth of the upper layer, and h2 is

the undisturbed depth of the lower layer. Additionally, ρ1 and ρ2 are the constant densities of the

fluids in the upper and lower layers, respectively, with ρ1 < ρ2. See Figure 2.1 for a diagram of the

two-layer fluid.

Let ϕ1(x, z, t) and ϕ2(x, z, t) be the velocity potentials in the upper and lower layers, respec-

tively. We neglect surface tension at the free surface and at the interface. Additionally, we neglect

the effects of the earth’s rotation. This leads to the following system of equations

In the upper layer: ∆ϕ1 = 0, (2.6a)

In the lower layer: ∆ϕ2 = 0, (2.6b)

On z = ζ(x, t):
∂ζ

∂t
− ∂ϕ1

∂z
= −∂ϕ1

∂x

∂ζ

∂x
, (2.6c)

∂ϕ1

∂t
+ gζ = −1

2
|∇ϕ1|2 , (2.6d)

On z = η(x, t)− h1:
∂η

∂t
− ∂ϕ1

∂z
= −∂ϕ1

∂x

∂η

∂x
, (2.6e)

∂η

∂t
− ∂ϕ2

∂z
= −∂ϕ2

∂x

∂η

∂x
, (2.6f)

ρ1

(
∂ϕ1

∂t
+ gη

)
− ρ2

(
∂ϕ2

∂t
+ gη

)
= −ρ1

2
|∇ϕ1|2 +

ρ2

2
|∇ϕ2|2 , (2.6g)

On z = −H:
∂ϕ2

∂z
= 0, (2.6h)

where ∆ = ∂2/∂x2 + ∂2/∂z2, ∇ = (∂/∂x, ∂/∂z), and g is acceleration due to gravity. The system
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z 0

z -h1

z -H

h1

h2

z η (x, t) -h1

zζ (x, t)

x

z

ρ1

ρ2

Figure 2.1: A depiction of the two-layer fluid model. The free surface is described by z = ζ(x, t),
with the undisturbed free surface at z = 0. The undisturbed depth of the upper layer is h1. The
interface between the layers is described by z = η(x, t) − h1, with the undisturbed interface at
z = −h1. The undisturbed depth of the lower layer is h2, and the undisturbed total depth of both
fluids is H = h1 + h2. The densities of the upper and lower layers are ρ1 and ρ2, respectively, with
ρ1 < ρ2.
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has the form L(u) = v, where L is a linear operator, u(x, t) = (ϕ1, ϕ2, ζ, η)T , x = (x, z), and v

includes all nonlinear terms on the right-hand side. In particular, we have

L =



M

G1|z=ζ

G2|z=η−h1

G3|z=−H1


,

where M is defined by

M =


∆ 0 0 0

0 ∆ 0 0

 , (2.7)

and G1, G2, and G3 are defined via

G1 =


− ∂
∂z 0 ∂

∂t 0

∂
∂t 0 g 0

 , G2 =



− ∂
∂z 0 0 ∂

∂t

0 − ∂
∂z 0 ∂

∂t

ρ1
∂
∂t −ρ2

∂
∂t ρ1g −ρ2g


, G3 =

(
0 ∂

∂z 0 0

)
.

(2.8)

Note that if we rewrite (2.6) by collecting all terms on one side of the equation, in the form

L(u) − v = 0, then the system is of the form (2.2). Lastly, observe that (2.6c) and (2.6e)-(2.6f)

are kinematic boundary conditions on the surface and the interface, respectively, while (2.6d) and

(2.6g) are dynamic boundary conditions on the surface and the interface. Finally, (2.6h) enforces

an impermeable bottom condition.

Next, following (2.3), we pose the following expansions

ϕ1(x, z, t) = εϕ11(x, z, t) + ε2ϕ12(x, z, t) +O(ε3), (2.9)

ϕ2(x, z, t) = εϕ21(x, z, t) + ε2ϕ22(x, z, t) +O(ε3), (2.10)

η(x, t) = εη1(x, t) + ε2η2(x, t) +O(ε3), (2.11)

ζ(x, t) = εζ1(x, t) + ε2ζ2(x, t) +O(ε3), (2.12)
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or, more succinctly,

u(x, z, t) = εu1(x, z, t) + ε2u2(x, z, t) +O(ε3), (2.13)

where ε > 0 is a small parameter. We substitute (2.13) into the system of equations (2.6) and

solve the resulting equations order by order. Notice that we must take into account the boundary

conditions at the free surface z = ζ(x, t) and at the interface z = −h1 + η(x, t). For instance, we

expand ϕ11(x, z, t) at the free surface as

ϕ11 (x, z = ζ(x, t), t) = ϕ11

(
x, εζ1 +O(ε2), t

)
= ϕ11(x, 0, t) + εζ1(x, t)

∂

∂z
ϕ11(x, 0, t) +O(ε2).

We expand ϕ21(x, z, t) similarly at z = ζ(x, t), and we use the same technique to expand both

velocity potentials at the interface z = η(x, t)− h1.

At O(ε), we obtain a linear system of equations of the form L̂(u1) = 0, where

L̂ =



M

G1|z=0

G2|z=−h1

G3|z=−H1


, (2.14)

with M , G1, G2, and G3 defined in (2.7)-(2.8). At O(ε2), we obtain a system of equations of the

form L̂(u2) = F (u1), where L̂ is defined in (2.14) and F is a nonlinear operator.

Return to the first-order problem, L̂(u1) = 0, and assume that u1(x, t) has an expansion of

the form

u1(x, t) =
∑
k

U(k)ei(k·x−ω(k)t),

where k is the wavenumber vector and ω is the wave frequency. Then nontrivial solutions of the

first-order problem exist as long as ω and k satisfy the dispersion relation

ω4 [1 + (1−D)T1T2]− ω2gk [T1 + T2] +D(gk)2T1T2 = 0, (2.15)

where

T1 = tanh kh1, T2 = tanh kh2, and D =
ρ2 − ρ1

ρ2
.
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For a fixed k, there are four possible values of ω(k). In particular, for each k, there are two

frequencies associated with internal waves at the interface, and two frequencies associated with

surface waves. The dispersion relation in (2.15) is depicted by the solid black lines in Figure 2.2.

The branches closest to the k-axis represent internal waves, while the branches further away from

the k-axis represent surface waves.

A graphical technique exists to determine whether (2.15), or any other one-dimensional dis-

persion relation, admits resonant triad solutions that satisfy (2.1) [5]. First, any point A is chosen

on the dispersion curve. The entire dispersion curve is then translated so that its new origin is at

A. From here, we look for any intersection between the original dispersion curve and the translated

curve. Any such intersection point represents a second wave that can form a resonant triad with

A. In our case, let B be one such intersection point. Finally, we draw a vector from B that is equal

to vector ~AO, where O is the origin. This new vector ends at a point C that is, by construction,

on the original dispersion curve. It follows that the waves described by points A, B, and C form

a resonant triad and solve (2.1). The process can be seen in Figure 2.2 for the dispersion relation

in (2.15). Moreover, we can see that the dispersion relation (2.15) admits more than one resonant

triad. For example, we could have two surface waves and one internal wave, or two internal waves

and one surface wave.

Figure 2.3 depicts more clearly the resonant triad of Figure 2.2. In particular, if point A

has coordinates (k1, ω1) and point C has coordinates (k2, ω2), then by construction point B has

coordinates (k1+k2, ω1+ω2). If we define k3 = k1+k2 and ω3 = ω1+ω2, then we have k1+k2−k3 = 0

and ω1 + ω2 − ω3 = 0, both of which are of the form (2.1). Note that in this case, ω1 > 0 and

ω2, ω3 < 0. Additionally, km > 0 for m = 1, 2, 3 in this case, so the three waves do not all travel in

the same direction.

Now that we know (2.1) can be satisfied for our two-layer fluid problem, we restrict our

attention to a single resonant triad. We then seek solutions to the linear problem of the form

u1(x, t) =
3∑

m=1

Am(z)eiθm + c.c., (2.16)
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A

B

C

O-10 -5 5 10
k

-10

-5

5

10

ω(k)

Figure 2.2: Construction of a resonant triad for the dispersion relation (2.15) for the two-layer
fluid model described in (2.6). Figure generated with h1 = h2 = 1 and ∆ = 0.01. The process of
constructing a resonant triad begins by choosing any point on the dispersion curve (the solid black
curve), say point A. The entire dispersion curve is then translated to A (as depicted by the grey
dashed curve). Any point of intersection between the original dispersion curve and the translated
dispersion curve, like point B in the figure, represents a second wave that can form a resonant triad
with A. Finally, we draw a vector parallel and equal to vector ~AO (the black dotted line). By
construction, this vector meeets the dispersion curve at point C. The points A, B, and C represent
solutions of (2.1).
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(k1,ω1)

(k1+k2,ω1+ω2)

(k2,ω2)

2 4 6 8 10 12
k

-10

-5
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ω(k)

Figure 2.3: Resonant triad for the dispersion relation (2.15) for the two-layer fluid model described
in (2.6). Figure generated with h1 = h2 = 1 and ∆ = 0.01.

where c.c denotes the complex conjugate, Am(z) is a 4×1 vector for each m whose last two elements

are independent of z, and

θm = kmx− ωmt. (2.17)

In this case, we defined ωm = ω(km). The solution of the linear problem is straightforward from

here, although we omit the details since it is not the focus of this thesis.

The first nonlinear interactions appear at O(ε2). Recall that at this order, we obtain the sys-

tem L̂u2 = F (u1), where L̂ is defined in (2.14) and F (u1) is comprised of quadratic nonlinearities.

In particular, due to (2.16), terms in F (u1) have the form

ei(θm−θn) + c.c., for m = 1, 2, 3,

where n can vary between −3 and 3, and θm is defined in (2.17). For this notation, we also define

θ−m = −θm and θ0 = 0.

Due to the presence of resonant triads defined in (2.1), it follows that F (u1) produces terms
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that are in resonance with the linear left-hand side. For example, for the triad depicted in Figure

2.2, θ1 + θ2 = θ3. As a result, the system L̂u2 = F (u1) acts like a resonantly forced, linear

oscillator [20]. Consequently, u2 grows linearly in time. When εt = O(1), the second term in the

asymptotic expansion (2.13) has the same order of magnitude as the first term, and the underlying

assumptions for our solution break down.

As an alternative, we introduce a slow time scale, τ = εt, and a slow spatial scale, X = εx.

Then we replace (2.13) with

u(x, z, t,X, τ) = εu1(x, z, t,X, τ) + ε2u2(x, z, t,X, τ) +O(ε3), (2.18)

With τ = εt and X = εx, we make the replacements ∂
∂t →

∂
∂t + ε ∂∂τ and ∂

∂x →
∂
∂x + ε ∂

∂X , and

then we follow the same procedure as before, substituting (2.18) into (2.6) and solving the resulting

equations order by order. At first order, we pose the solution expansions

ϕ11(x, z, t,X, τ) =
3∑

m=1

Am(z,X, τ)eiθm + c.c., ϕ21(x, z, t,X, τ) =
3∑

m=1

Bm(z,X, τ)eiθm + c.c.

η1(x, t,X, τ) =
3∑

m=1

Cm(X, τ)eiθm + c.c., ζ1(x, t,X, τ) =
3∑

m=1

Dm(X, τ)eiθm + c.c.

After a great deal of algebra, we find that in order to avoid secular terms, the following must

hold

∂C1

∂τ
+ c1

∂C1

∂X
= iγ1D

∗
2D
∗
3, (2.19a)

∂D2

∂τ
+ c2

∂D2

∂X
= iγ2C

∗
1D
∗
3, (2.19b)

∂D3

∂τ
+ c3

∂D3

∂X
= iγ3C

∗
1D
∗
2, (2.19c)

where the interaction coefficients γm, m = 1, 2, 3, do not vanish identically and cm is the group

velocity associated with wavenumber km. We do not write down the form of the coefficients here

because they are complicated and lengthy. Instead, we refer the reader to Appendix A in order to

see the form of γ1. The coefficients γ2 and γ3 are similar.

Notice that our resonant triad consists of two surface waves and an internal wave. A compar-

ison of (2.19) with (2.4) shows that for the two-layer model, the slowly varying complex amplitudes
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of two surface waves and an internal wave satisfy the three-wave PDEs. Alternatively, the equations

(2.19) could have been derived with two internal waves and one surface wave.

2.2 Properties

In this section, we investigate some of the properties of the three-wave ODEs and PDEs,

focusing on their Hamiltonian structure, integrability, and the presence of an explosive instability.

If we consider a resonant triad made up of three spatially uniform wavetrains, then (2.5) becomes

dam
dτ

= σma
∗
ka
∗
` , (2.20)

where am = am(τ), (k, `,m) = (1, 2, 3) cyclically, and we recall that σm = ±1. We refer to (2.20)

as the three-wave ODEs.

2.2.1 Hamiltonian structure

A Hamiltonian is defined to be any C1 function H : M → R, where M is a 2n-dimensional

manifold with coordinates denoted by

z = (q, p) = (q1, q2, . . . , qn, p1, p2, . . . , pn). (2.21)

M is known as the phase space, while q and p are typically referred to as position and momentum

variables, respectively. Furthermore, q, and p are each n-dimensional, and for this reason H is said

to have n degrees of freedom. Hamiltonians are special for several reasons. A Hamiltonian defines

motion on a 2n-dimensional manifold. Moreover, Hamiltonians have many important properties,

several of which we outline throughout the rest of this chapter [32, §9.3].

A Hamiltonian is associated with a system of ordinary differential equations defined by

dq

dt
=
∂H

∂p
(q, p), (2.22a)

dp

dt
= −∂H

∂q
(q, p), (2.22b)
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where the differentiation is performed componentwise. More explicitly, we have

dqi
dt

=
∂H

∂pi
(q, p), i = 1, 2, . . . , n,

dpi
dt

= −∂H
∂qi

(q, p), i = 1, 2, . . . , n.

The system (2.22) is a Hamiltonian system of ODEs with n degrees of freedom. Finally, notice that

we can write the system (2.22) more compactly as

dz

dτ
= J∇H, where J =

 0 I

−I 0

 . (2.23)

In this notation, I is the n × n identity matrix, 0 is the n × n zero matrix, z is a point in phase

space defined in (2.21), and ∇ = (∂/∂q1, . . . , ∂/∂qn, ∂/∂p1, . . . , ∂/∂pn)T .

Next, let (q(t), p(t)) be an integral curve of the Hamiltonian system (2.22). We show next

that if H is autonomous, then there is a constant E such that

H(q(t), p(t)) = E. (2.24)

More succinctly, we say that energy is preserved along trajectories [7, 32]. Furthermore, we define

a constant of the motion as a differentiable scalar function F (q, p) with the property that for each

integral curve (q(t), p(t)) in M , there exists a constant K such that

F (q(t), p(t)) = K.

It follows that if (2.24) holds, then the Hamiltonian H is a constant of the motion.

Now define the Poisson bracket of two scalar functions F = F (q, p) and G = G(q, p) as

{F,G} = ∇F TJ∇G =

n∑
j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
. (2.25)

In particular, notice that

{qm, qn} = 0, {pm, pn} = 0, and {qm, pn} = δmn,

where δmn is the usual Kronecker delta.
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Observe the following

d

dt
F (q(t), p(t)) =

n∑
j=1

(
∂F

∂qj

dqj
dt

+
∂F

∂pj

dpj
dt

)

=
n∑
j=1

(
∂F

∂qj

∂H

∂pj
− ∂F

∂pj

∂H

∂qj

)

= {F,H} ,

where we used (2.22) [7, §9.2]. As a result, a differentiable function F (q, p) is a constant of the

motion if

{F,H} = 0.

Indeed, it is straightforward to see from the definition of the Poisson bracket that {H,H} = 0,

which verifies that H is a constant of the motion when H is independent of time.

We can interpret the constants of motion geometrically as follows. Each constant of the

motion constrains the motion of the Hamiltonian system to lie on a level set in phase space. In

particular, if F is a constant of the motion, then the associated level set is defined via

ScF = {(q, p) ∈M : F (q, p) = c},

where c is in the range of F and ScF is a (2n − 1)-dimensional submanifold. It follows that if a

Hamiltonian system has k functionally independent constants of the motion, F1 = H,F2, . . . , Fk,

then each integral curve (q(t), p(t)) must lie on the intersection

Sc1c2···ckF1F2···Fk ≡ S
c1
F1
∩ · · · ∩ SckFk ,

where cj is in the range of Fj for j = 1, 2, . . . , k. Sc1c2···ckF1F2···Fk is a (2n− k)-dimensional submanifold,

where k ≤ n. Note that functions Fj(q, p) are called functionally independent at a point if the k

gradient vectors ∇Fj(q, p), j = 1, 2, . . . , k are linearly independent. [7, §9.2].

We now return to the three-wave ODEs in (2.20). These equations constitute a Hamiltonian

system with three degrees of freedom and with Hamiltonian

H̃ = −iH = a1a2a3 − a∗1a∗2a∗3, (2.26)
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where H is a real constant. Later, we return to the fact that H̃ in (2.26) is imaginary, as well as

the proof that (2.20) is a Hamiltonian system. For now, we begin by deriving the constants of the

motion.

Consider (2.20). Multiply both sides of the equation by a∗m to obtain

a∗m
dam
dτ

= σma
∗
ka
∗
`a
∗
m. (2.27)

Similarly, multiply the conjugate of (2.20) by am to obtain

am
da∗m
dτ

= σmaka`am. (2.28)

Now add (2.27) and (2.28) to find

d

dτ
|am(τ)|2 = σm (aka`am + a∗ka

∗
`a
∗
m) ,

where we used the fact that |am(τ)|2 = ama
∗
m. Dividing both sides of the equation by σm and using

the fact that σm = 1/σm (since σm = ±1), we have

σm
d

dτ
|am(τ)|2 = aka`am + a∗ka

∗
`a
∗
m, (2.29)

where (k, l,m) = (1, 2, 3) cyclically. In particular, subtracting (2.29) with m = 2 and m = 3 from

(2.29) with m = 1 yields

d

dτ

(
σ1 |a1(τ)|2 − σ2 |a2(τ)|2

)
= 0,

d

dτ

(
σ1 |a1(τ)|2 − σ3 |a3(τ)|2

)
= 0.

That is, the quantities in parentheses above must be constant for all time. As a result, we define

the conserved quantities

K2 = σ1 |a1(τ)|2 − σ2 |a2(τ)|2 , (2.30)

K3 = σ1 |a1(τ)|2 − σ3 |a3(τ)|2 , (2.31)

where K2 and K3 are real constants. The expressions (2.30)-(2.31) are referred to as the Manley-

Rowe relations, named after the authors of [28].
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Next, return to (2.20), but this time multiply both sides of the equation by aka`, and multiply

both sides of the conjugate equation by a∗ka
∗
` . Now we have

aka`
dam
dτ

= σm |aka`|2 ,

a∗ka
∗
`

da∗m
dτ

= σm |aka`|2 .

Subtracting the two equations above yields

aka`
dam
dτ
− a∗ka∗`

da∗m
dτ

= 0. (2.32)

Finally, since (2.32) holds for (k, `,m) = (1, 2, 3) cyclically, it follows that (2.32) actually constitutes

three equations. Summing these three equations yields

d

dτ
(a1a2a3 − a∗1a∗2a∗3) = 0.

That is, the quantity in parentheses is constant for all time, which leads us to define a third

conserved quantity,

H̃ = a1a2a3 − a∗1a∗2a∗3, (2.33)

where H̃ is a constant. Furthermore, if we write am(τ) = |am(τ)| eiϕm(τ) for some real function

ϕm(τ) for m = 1, 2, 3, then it is straightforward to see that (2.33) becomes

H̃ = |a1a2a3|
[
ei(ϕ1+ϕ2+ϕ2) − e−i(ϕ1+ϕ2+ϕ2)

]
.

Define Φ(τ) = ϕ1 + ϕ2 + ϕ3. Then we have

H̃ = 2i |a1a2a3| sin Φ, (2.34)

which shows that H̃ = iH for some real constant H.

Now we show that our system (2.20) is, in fact, Hamiltonian. To that end, define p = (p1, p2, p3)

and q = (q1, q2, q3) as follows

pm =

 am, σm = 1

a∗m, σm = −1

and qm =

 a∗m, σm = 1

am, σm = −1.

(2.35)
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Suppose, for instance, that σ1 = σ2 = σ3 = 1. It follows from (2.26) that

H̃ = −iH = p1p2p3 − q1q2q3,

so that

∂H̃

∂pm
= pkp` and

∂H̃

∂qm
= −qkq`, (2.36)

where as usual, (k, `,m) = (1, 2, 3) cyclically. Additionally, in this case, (2.20) becomes

dpm
dτ

= qkq`,

while the conjugate of (2.20) becomes

dqm
dτ

= pkp`.

Comparing the equations for dpm
dτ and dqm

dτ with (2.36) shows that we have

dqm
dτ

=
∂H̃

∂pm
and

dpm
dτ

= − ∂H̃
∂qm

for m = 1, 2, 3. (2.37)

The same procedure can be followed when σ1 = σ2 = σ3 = −1, or when one of the σm’s is different

from the other two. In any case, (2.22) is obtained. As a result, we have a Hamiltonian system with

three degrees of freedom, where the Hamiltonian is given by H̃ in (2.26). Moreover, we determined

that there are three associated constants of the motion, given by the Hamiltonian (2.26), and

(2.30)-(2.31). In the special case where the degree of the Hamiltonian system equals the number

of constants of the motion, the system has the additional property of being integrable, which we

discuss in the next section.

Certain systems of PDEs can be thought of as infinite dimensional Hamiltonian systems. For

instance, consider the one-dimensional nonlinear wave equation with Dirichlet boundary conditions,

∂2u

∂t2
=
∂2u

∂x2
− f(u, x), and u(0, t) = u(L, t) = 0, (2.38)

where x ∈ (0, L), u = u(x, t) is a scalar function, and f(u, x) is a nonlinear term. We define the

associated Hamiltonian as

H(u, p) =

∫ L

0

(
1

2
p2 +

1

2

(
u′
)2

+ F (u, x)

)
dx, (2.39)
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where u′ = ∂u
∂x , ∂F

∂u = f , and p = ∂u
∂t [13, p.67-83]. Then (2.38) can be written as

∂u

∂t
= p = ∇pH

∂p

∂t
=
∂2u

∂x2
− f = −∇uH,

where the gradients are functional derivatives taken with respect to the L2(Ω) inner product. We

omit the details of functional derivatives here. Suffice it to say that for a functional of the form

J [g] =

∫ b

a
L[x, g(x), g′(x)] dx,

it can be shown that the functional derivative is

δJ

δg
=
∂L

∂g
− d

dx

∂L

∂g′
,

where g′ = dg/dx [19]. For instance, with H(u, p) defined in (2.39), we have

δH

δp
=

∂

∂p

(
1

2
p2 +

1

2

(
u′
)2

+ F (u, x)

)
− d

dx

[
∂

∂p′

(
1

2
p2 +

1

2

(
u′
)2

+ F (u, x)

)]
= p.

Similarly, we have

δH

δu
=

∂

∂u

(
1

2
p2 +

1

2

(
u′
)2

+ F (u, x)

)
− d

dx

[
∂

∂u′

(
1

2
p2 +

1

2

(
u′
)2

+ F (u, x)

)]
=
∂F

∂u
− d

dx
u′

= f − u′′,

where f(u, x) = ∂F
∂u and u′′ = ∂2u

∂x2
.

More succinctly, we have

∂v

∂t
= J∇vH,

where v = (u, p)T and J is defined in (2.23).

The three-wave PDEs given in (2.5) constitute a Hamiltonian system with Hamiltonian

−
∫

Ω

[
1

2

3∑
m=1

cm (am∇a∗m − a∗m∇am)− (a1a2a3 − a∗1a∗2a∗3)

]
dx, (2.40)
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for x ∈ Ω ∈ Rd. In particular, suppose that we define pm and qm for m = 1, 2, 3 using (2.35).

Suppose further that we are in one spatial dimension, and that σm = 1 for m = 1, 2, 3. Other

configurations of {σ1, σ2, σ3} can be treated similarly. In this case, we have

pm = am and qm = a∗m, m = 1, 2, 3.

The Hamiltonian is then defined via

H(q, p) = −
∫ [

1

2

3∑
m=1

cm
(
pmq

′
m − qmp′m

)
− (p1p2p3 − q1q2q3)

]
dx,

where p′m = ∂pm
∂x and q′m = ∂qm

∂x .

Observe the following

δH

δpm
=

∂

∂pm

[
−1

2

3∑
m=1

cm
(
pmq

′
m − qmp′m

)
+ (p1p2p3 − q1q2q3)

]

− d

dx

{
∂

∂p′m

[
−1

2

3∑
m=1

cm
(
pmq

′
m − qmp′m

)
+ (p1p2p3 − q1q2q3)

]}

= −cm
2
q′m + pkp` −

d

dx

[cm
2
qm

]
= −cm

2
q′m + pkp` −

cm
2
q′m

= −cmq′m + pkp`

= −cm
∂a∗m
∂x

+ aka`,

=
∂a∗m
∂τ

,

where we used q′m = ∂qm
∂x = ∂a∗m

∂x , and (k, `,m) = (1, 2, 3) cyclically. Consquently, we have

δH

δpm
=
∂am
∂τ

=
∂qm
∂τ

, (2.41)

for m = 1, 2, 3.
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Next, we have

δH

δqm
=

∂

∂qm

[
−1

2

3∑
m=1

cm
(
pmq

′
m − qmp′m

)
+ (p1p2p3 − q1q2q3)

]

− d

dx

{
∂

∂q′m

[
−1

2

3∑
m=1

cm
(
pmq

′
m − qmp′m

)
+ (p1p2p3 − q1q2q3)

]}

=
cm
2
p′m − qkq` −

d

dx

[
−cm

2
pm

]
= cmp

′
m − qkq`

= cm
∂am
∂x
− a∗ka∗` ,

= −∂am
∂τ

,

where we used p′m = ∂pm
∂x = ∂am

∂x , and (k, `,m) = (1, 2, 3) cyclically. Consquently, we have

δH

δqm
= −∂am

∂τ
= −∂pm

∂τ
, (2.42)

for m = 1, 2, 3.

The combination of (2.41) and (2.42) demonstrate that the three-wave PDEs in (2.5) consti-

tute a Hamiltonian system with Hamiltonian given by (2.40).

2.2.2 Integrability

There are many definitions of integrability for a system of ODEs, most of which have to do

with being able to solve the system completely using quadratures. For our purposes, we work in

the context of Liouville integrability.

First, we say that two scalar functions F (q, p) and G(q, p) are in involution if {F,G} = 0,

where {·, ·} denotes the Poisson bracket in (2.25). Then according to Liouville’s Theorem, an n

degree-of-freedom Hamiltonian system of ODEs is completely integrable if there are n constants of

the motion Fj , j = 1, . . . , n, that are functionally independent and in involution, {Fi, Fj} = 0 [32,

§9.12]. It is trivially true that any Hamiltonian system with n = 1 is integrable.

For our system (2.20), it is straightforward to show that for the constants H̃, K2, and K3

defined in (2.26) and (2.30)-(2.31), we have {K2,K3} = {K2, H̃} = {K3, H̃} = 0. For instance,
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suppose σ1 = σ2 = σ3 = 1. Then we can rewrite the conserved quantities (2.26) and (2.30)-(2.31)

in terms of p and q as defined in (2.35),

H̃ = p1p2p3 − q1q2q3

K2 = p1q1 − p2q2

K3 = p1q1 − p3q3.

Using the definition of the Poisson bracket with n = 3, we have

{K2, H̃} =

n∑
j=1

(
∂K2

∂qj

∂H̃

∂pj
− ∂K2

∂pj

∂H̃

∂qj

)

=
∂K2

∂q1

∂H̃

∂p1
− ∂K2

∂p1

∂H̃

∂q1
+
∂K2

∂q2

∂H̃

∂p2
− ∂K2

∂p2

∂H̃

∂q2
+
∂K2

∂q3

∂H̃

∂p3
− ∂K2

∂p3

∂H̃

∂q3

= p1(p2p3)− q1(−q2q3) + (−p2)(p1p3)− (−q2)(−q1q3) + 0− 0

= p1p2p3 + q1q2q3 − p1p2p3 − q1q2q3

= 0.

The process for showing that {K3, H̃} = 0 and {K2,K3} = 0 is similar. The same procedure can

be followed for other configurations of the σm. Moreover, it is straightforward to show that H̃, K2,

and K3 are functionally independent. It follows that (2.20) is completely integrable in the Liouville

sense since it is a Hamiltonian system with three degrees of freedom and three constants of the

motion that are functionally independent and in involution.

Next, recall that z = (p, q) is a point in phase space and observe the following

{z, H̃} =
3∑
j=1

(
∂z

∂qj

∂H̃

∂pj
− ∂z

∂pj

∂H̃

∂qj

)

=
∂z

∂q1

∂H̃

∂p1
− ∂z

∂p1

∂H̃

∂q1
+
∂z

∂q2

∂H̃

∂p2
− ∂z

∂p2

∂H̃

∂q2
+
∂z

∂q3

∂H̃

∂p3
− ∂z

∂p3

∂H̃

∂q3

=
∂z

∂q1

dq1

dτ
+

∂z

∂p1

dp1

dτ
+
∂z

∂q2

dq1

dτ
+

∂z

∂p2

dp2

dτ
+
∂z

∂q3

dq3

dτ
+

∂z

∂p3

dp3

dτ

=
dz

dτ
,

where we used (2.37) to eliminate H̃ from the equation. Consequently, a short-hand way of writing
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(2.20) in Hamiltonian form is

dz

dτ
= {z, H̃}, (2.43)

where H̃ is defined in (2.33), and the p and q components of z are defined in (2.35).

It is possible to transform a Hamiltonian system into another Hamiltonian system using a

canonical transformation, a diffeomorphism that preserves the Hamiltonian structure of the system.

In particular, we can use such a transformation to write (2.43) in terms of a new set of coordinates

Z = (Q,P ), where P = P (q, p) and Q = Q(q, p). In doing so, (2.43) becomes

dZ

dτ
= {Z,H},

where H = H(Q,P ) is the transformed Hamiltonian. In other words, we have

dQm
dτ

=
∂H
∂Pm

and
dPm
dτ

= − ∂H
∂Qm

,

for m = 1, 2, 3. Furthermore, canonical transformations preserve the Poisson bracket so that we

have

{Pm, Pn} = 0, {Qm, Qn} = 0, and {Qm, Pn} = δmn. (2.44)

Conversely, if a transformation Q = Q(q, p) and P = P (q, p) is found such that (2.44) holds, then

the transformation is canonical. We make use of canonical transformations in Section 3.1.

The system is said to be in “action-angle form” if H only depends on P , H = H(P ). In this

case, it follows that

dQm
dτ

=
∂H
∂Pm

and
dPm
dτ

= 0.

As a result, the variables Pm are invariant, and therefore must be functions of the constants of

the motion [32]. The functions Pm for m = 1, 2, 3 are referred to as the action variables, while the

functions Qm are called the angle variables.

Next, we return to the three-wave PDEs given in (2.5). A Hamiltonian set of PDEs is

completely integrable under the same conditions as the ODEs, but in an infinite dimensional phase

space. That is, a Hamiltonian system of PDEs is integrable if there is a canonical transformation
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allowing the PDEs to be written in terms of an infinite set of action-angle variables. This theory

was first developed by Zakharov and Faddeev in 1971 for the Korteweg de Vries equation [45]. In

particular, they showed that solving the PDE using the inverse scattering transform (IST) amounts

to finding a canonical transformation to action-angle variables. Later, it was shown that the three-

wave equations (2.5) form an integrable Hamiltonian system [47].

As we discussed in the introduction, the full three-wave equations have been solved in various

configurations in the past. For instance, Zakharov and Manakov (1973, 1976) and Kaup (1976) used

IST to solve the three-wave equations in one spatial dimension on the real line. Similarly, solutions

in two or three spatial dimensions and time were worked out by Zakharov (1976), Kaup (1980),

and others. So far, little work has been done analytically on the problem with periodic boundary

conditions, although some numerical simulations of the problem make use of such conditions. We

hope to make some headway on this problem by constructing a near general solution of (2.5) that

is consistent with periodic boundary conditions. Indeed, our approach should give solutions that

are consistent with a wide variety of boundary conditions and any number of spatial dimensions

(see Chapter 5).

2.2.3 The explosive instability

Another key property of the three-wave equations is that, under certain conditions, any

nonzero solutions to (2.5) and (2.20) can blow up in finite time. We refer to this phenomenon as

the explosive instability. In general, it signifies that the assumptions underlying our model have

broken down. Moreover, the explosive instability indicates that the physical system has transitioned

from one state (in which the model’s underlying assumptions are valid) to another (in which they

are not) [38].

As usual, we first consider the three-wave ODEs. If σ1, σ2, and σ3 are not all equal, then the

equations for the constants of the motion in (2.30)-(2.31) imply that |am|2 is bounded for all τ for

m = 1, 2, 3. It follows that σ1 = σ2 = σ3 is a necessary condition for solutions to blow up in finite

time. In particular, one can show that if σ1 = σ2 = σ3, then am(τ) blows up in finite time as long
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as at least two of {a1(0), a2(0), a3(0)} are nonzero [11]. The proof that this condition is sufficient

for blow up can be found in detail in [38].

Consider the motivating example in which a1(τ) is approximately constant, and a2(τ) and

a3(τ) are much less than a1(τ). The three-wave ODEs in (2.20) become

da1

dτ
≈ 0,

da2

dτ
= σ2a

∗
1a
∗
3, and

da3

dτ
= σ3a

∗
1a
∗
2.

Differentiating the evolution equation for a2(τ) using the assumption that a1(τ) is constant yields

d2a2

dτ2
= σ2a

∗
1

da∗3
dτ

= σ2σ3 |a1|2 a2,

where we used the conjugate equation
da∗3
dτ = σ3a1a2 in the last equality. Similarly, we obtain

d2a3

dτ2
= σ2σ3 |a1|2 a3.

Now suppose that σ2 = σ3, so that σ2σ3 = 1. It follows that a2(τ) and a3(τ) behave

exponentially, with growth terms e|a1|τ and decay terms e−|a1|τ . Conversely, suppose that σ2 = −σ3,

so that σ2σ3 = −1. In this case, a2(τ) and a3(τ) behave periodically with frequency |a1|.

This behavior is known as the explosive instability. A problem in plasma physics led to the

discovery that the same type of behavior is also observed when spatial dependence is reintroduced

[11], although the conditions required for blow-up are slightly more complicated, and have only

been worked out in certain cases [26].



Chapter 3

The Weierstrass Solution of the Three-Wave ODEs

Solutions of the three-wave ODEs have been well known for many decades in terms of elliptic

functions [5, 8]. In this chapter, we derive the general solution of the three-wave ODEs in terms

of Weierstrass elliptic functions. We then analyze the behavior of solutions, and describe how the

explosive and nonexplosive cases can be contained within the same Weierstrass function.

3.1 The Hamiltonian system

In order to construct the general solution of the three wave ODEs in (2.20) using elliptic

functions, we first convert our existing Hamiltonian system into an equivalent Hamiltonian system

that has only one degree of freedom.

3.1.1 Change of variables

Recall that the three-wave ODEs in (2.20) constitute a Hamiltonian system with three degrees

of freedom, as detailed in Section 2.2.1. In particular, we have

dq

dt
=
∂H̃

∂p
(q, p), (3.1a)

dp

dt
= −∂H̃

∂q
(q, p), (3.1b)

where H̃ is given in (2.26), and p = (p1, p2, p3) and q = (q1, q2, q3) are defined via

pm =

 am, σm = 1

a∗m, σm = −1

and qm =

 a∗m, σm = 1

am, σm = −1.

(3.2)
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To transform our Hamiltonian system into an equivalent system with one degree of freedom,

we begin by breaking am(τ) into its magnitude and phase components as follows

am(τ) = |am(τ)| eiϕm(τ), for m = 1, 2, 3,

where ϕm(τ) is a real function of τ for m = 1, 2, 3. Next, we define new variables P = (P1, P2, P3)

and Q = (Q1, Q2, Q3) via

Pm = σm |am|2 , (3.3a)

Qm = iϕm. (3.3b)

We use (3.2) to write P and Q in terms of p and q as follows

Pm = σmpmqm, (3.4a)

Qm =
σm
2

log

(
pm
qm

)
. (3.4b)

Then it is straightforward to see that

{Pm(q, p), Pn(q, p)} = {Qm(q, p), Qn(q, p)} = 0,

for all m,n = 1, 2, 3, where the Poisson bracket is defined in (2.25). Furthermore, if m 6= n, then

{Pm(q, p), Qn(q, p)} = 0.

Finally, observe that

{Pm(q, p), Qm(q, p)} =

3∑
j=1

(
∂Pm
∂qj

∂Qn
∂pj

− ∂Pm
∂pj

∂Qn
∂qj

)

=
∂Pm
∂qm

∂Qn
∂pm

− ∂Pm
∂pm

∂Qn
∂qm

= (σmpm)

(
σm
2
· 1/qm
pm/qm

)
− (σmqm)

(
σm
2
· −pm/q

2
m

pm/qm

)
=

1

2
+

1

2

= 1.
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To summarize, we have

{Pm, Pn} = 0, {Qm, Qn} = 0, and {Qm, Pn} = δmn,

which we recall from (2.44) means that our transformation P = P (q, p) andQ = Q(q, p) is canonical.

As a result, we know that the three-wave ODEs under this transformation retain their Hamiltonian

structure.

3.1.2 Transformed Hamiltonian system

Recall from (2.26) and (2.34) that the Hamiltonian for the three-wave ODEs is given by

H̃ = −iH = a1a2a3 − a∗1a∗2a∗3

= 2i |a1a2a3| sin Φ, (3.5)

where H is real and Φ(τ) = ϕ1(τ) + ϕ2(τ) + ϕ3(τ). Next, from the definition of Pm and Qm in

(3.3), we have that

|am| =
√
σmPm and ϕm = −iQm,

where we note that sign(Pm) = σm, so the quantity under the square root is real and positive. It

follows from (3.5) that

H̃ = −iH = 2i
√
σP1P2P3 sin

(
−iQ̃

)
= 2
√
σP1P2P3 sinh Q̃, (3.6)

where σ = σ1σ2σ3, Q̃ = Q1 +Q2 +Q3, and we used the fact that sin ix = i sinhx.

Next, we differentiate the equation for H̃ above with respect to Pm and Qm to find

∂H̃

∂Qm
= 2
√
σP1P2P3 cosh Q̃, (3.7)

and

∂H̃

∂Pm
=

σPkP`√
σP1P2P3

sinh Q̃

= σm

√
σPkP`
Pm

sinh Q̃, (3.8)
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where (k, `,m) = (1, 2, 3) are defined cyclically as usual.

Finally, we can differentiate (3.3), using the definitions of p and q in (3.2) and the three-wave

ODEs in (2.20), to find

dPm
dτ

=
d

dτ
(σmpmqm)

= σm
dpm
dτ

qm + σmqm
dpm
dτ

= a1a2a3 + a∗1a
∗
2a
∗
3

= 2 |a1a2a3| cosh Q̃

= 2
√
σP1P2P3 cosh Q̃. (3.9)

Additionally, we have

dQm
dτ

=
d

dτ

[
σm
2

log

(
pm
qm

)]
=

d

dτ

[σm
2

(log pm − log qm)
]

=
σm
2

[
1

pm

dpm
dτ
− 1

qm

dqm
dτ

]
= −σm

∣∣∣∣aka`am

∣∣∣∣ sinh Q̃

= −σm
√
σPkP`
Pm

sinh Q̃. (3.10)

From (3.7)-(3.10), we can see that ∂H
∂Q = dP

dτ and ∂H
∂P = −dQ

dτ . If we define H = −H̃, then we

obtain a Hamiltonian system of the form (3.1),

dQ

dτ
=
∂H
∂P

and
dP

dτ
= −∂H

∂Q
, (3.11)

where

H = iH = −2
√
σP1P2P3 sinh Q̃. (3.12)

3.1.3 Reduction to a second-order system

Next, we want to solve the system defined in (3.9)-(3.12). To do so, we convert our sixth-

order system of ODEs to a second-order system of ODEs. That is, we convert the Hamiltonian
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system with three degrees of freedom in (3.9)-(3.12) to a Hamiltonian system with only one degree

of freedom. In order to do this, we define new variables in terms of P and Q as follows

ρ(τ) = P1 = σ1 |a1(τ)|2 and Φ(τ) = ϕ1(τ) + ϕ2(τ) + ϕ3(τ) = −iQ̃(τ), (3.13)

where Q̃ = Q1 +Q2 +Q3 as before, and the definition of Φ(τ) was previously used in (3.5).

Recall from (3.3a) that Pm = σm|am|2. It follows that the conservation equations in (2.30)-

(2.31) become

ρ− P2 = K2 and ρ− P3 = K3,

where we used ρ = P1. Finally, solving for P2 and P3 in terms of ρ and using the definition of Φ in

(3.13) allows us to transform (3.12) into

H = iH = −2
√
σρ(ρ−K2)(ρ−K3) sinh iΦ

= −2i
√
σρ(ρ−K2)(ρ−K3) sin Φ.

Dropping the i, we have the following definition of H,

H = −2
√
σρ(ρ−K2)(ρ−K3) sin Φ. (3.14)

Note that H only depends on ρ and Φ.

Our Hamiltonian system with one degree of freedom is found by differentiating (3.14) with

respect to ρ and Φ. First, we have

∂H

∂Φ
= −2

√
σρ(ρ−K2)(ρ−K3) cos Φ. (3.15)

Differentiation of (3.14) with respect to ρ is slightly more complicated because we must keep track

of signs when we differentiate the square root. Recall once more that due to (3.3a), we have

sign (Pm) = σm, assuming Pm is nonzero. It follows that sign (ρ) = σ1, sign (ρ − K2) = σ2, and

sign (ρ−K3) = σ3; alternatively, σ1ρ ≥ 0, σ2(ρ−K2) ≥ 0, and σ3(ρ−K3) ≥ 0. With this in mind,
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we have

∂H

∂ρ
= − 1√

σρ(ρ−K2)(ρ−K3)

[
σ(ρ−K2)(ρ−K3) + σρ(ρ−K3) + σρ(ρ−K2)

]
sin Φ

= −

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)
sin Φ. (3.16)

Finally, to ensure that we have a Hamiltonian system, we must compute dρ/dτ and dΦ/dτ .

First of all, from the equation for dP1/dτ in (3.9), we have

dρ

dτ
= 2
√
σρ(ρ−K2)(ρ−K3) cos Φ, (3.17)

where we used the fact that cosh Q̃ = cosh iΦ = cos Φ. Summing the equations for dQm/dτ in

(3.10) yields

dQ̃

dτ
= i

dΦ

dτ
= −

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)
sinh Q̃.

It follows that

dΦ

dτ
= −

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)
sin Φ, (3.18)

where we used sinh Q̃ = sinh iΦ = i sin Φ.

Equations (3.15)-(3.18) show that we have a Hamiltonian system with one degree of freedom,

where the Hamiltonian H is defined in (3.14). To summarize, we must solve the system

H = −2
√
σρ(ρ−K2)(ρ−K3) sin Φ, (3.19a)

dρ

dτ
= −∂H

∂Φ
= 2
√
σρ(ρ−K2)(ρ−K3) cos Φ, (3.19b)

dΦ

dτ
=
∂H

∂ρ
= −

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)
sin Φ. (3.19c)

Note that the unknowns are ρ(τ) and Φ(τ), while K2, K3, and H are assumed to be known;

for instance, these constants can be determined using initial data for am(τ), m = 1, 2, 3, through

equations (2.30)-(2.31) and (3.5).)
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3.2 Phase plane analysis

Before we solve (3.19), we first investigate the behavior of the system using a phase plane

analysis. First of all, consider the explosive regime, in which σ1 = σ2 = σ3. Without loss of

generality, assume that σm = 1 for m = 1, 2, 3. If instead σm = −1, then we can replace K2 → −K2

and K3 → −K3 in what follows.

With σm = 1, m = 1, 2, 3, the conservation laws (2.30)-(2.31) can be rearranged slightly to

give

|a2|2 = ρ−K2, (3.20)

|a3|2 = ρ−K3, (3.21)

where we used the fact that ρ = σ1|a1|2. When σ1 = 1, by definition ρ is nonnegative. Additionally,

it follows from (3.20)-(3.21) that ρ ≥ K2 and ρ ≥ K3, respectively. As a result, we know that ρ lies

in the unbounded domain,

ρ > max {K2,K3, 0}, (3.22)

where we use strict inequality since (3.19c) prohibits ρ = 0, ρ = K2, and ρ = K3. Note that the

restriction ρ 6= {0,K2,K3} is a result of the change of variables (3.4b), which forces |am(τ)| to be

nonzero for m = 1, 2, 3. This is not true of the original three-wave ODEs in (2.20). That is, while

ρ cannot take on the values {0,K2,K3} in the system (3.19), the original system (2.20) does allow

|am(τ)| to take on these values, as long as (2.30)-(2.31) still hold. There are no restrictions on the

values of Φ in (3.19).

Figure 3.1 depicts the phase plane for (3.19) with σ1 = σ2 = σ3. First of all, the figure

is created using K2 = 2 and K3 = 3, so our domain is restricted to ρ > 3 in accordance with

(3.22). It is evident that when Φ = nπ, dΦ/dτ = 0, which is consistent with (3.19c). Moreover,

when Φ = (2n + 1)π/2, we see that dρ/dτ = 0, which is consistent with (3.19b). For large values

of ρ (and if Φ 6= (2n + 1)π/2), the magnitude of dρ/dτ grows, which is indicative of unbounded

solutions. This is confirmed in Section 3.6.
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Next, we investigate the behavior of the system (3.19) in the nonexplosive regime, when

σ1, σ2, and σ3 are not all equal. Without loss of generality, assume that σ1 = −σ2 = −σ3 = 1.

Other configurations of σ1, σ2, and σ3 can be dealt with by changing the signs of K2 and K3 in

what follows, or by a renumbering of the modes.

With σ1 = −σ2 = −σ3 = 1, the conservation laws (2.30)-(2.31) become, after rearranging,

|a2|2 = K2 − ρ, (3.23)

|a3|2 = K3 − ρ. (3.24)

It follows that ρ ≤ K2 and ρ ≤ K3. Moreover, we know that ρ is nonnegative since σ1 = 1. As a

result, we have that ρ is bounded by

0 < ρ < min {K2,K3}, (3.25)

where again, we use strict inequality due to (3.19c). Note that (3.25) implies that K2 ≥ 0 and

K3 ≥ 0 for this configuration of σ1, σ2, and σ3. If we consider another configuration of the σm’s,

say, σ1 = −σ2 = σ3 = 1, then we find that our domain is restricted to max {0,K3} ≤ ρ ≤ K2,

where K2 is necessarily nonnegative and K3 ≤ K2. In fact, for any configuration of σ1, σ2, and σ3

such that the three numbers are not equal, we find that ρ is bounded.

Figure 3.2 depicts the phase plane for (3.19) with σ1 = −σ2 = −σ3 = 1. As with Figure

3.1, the phase plot in Figure 3.2 is created with K2 = 2 and K3 = 3, so in this case we restrict

our domain to 0 < ρ < 2, to be consistent with (3.25). As in the explosive case, we still have that

dΦ/dτ = 0 when Φ = nπ, and dρ/dτ = 0 when Φ = (2n + 1)π/2. It is also clear from Figure 3.2

that the system (3.19) admits bounded, periodic solutions.

An alternative way of viewing the problem is to consider a plot of (dρ/dτ)2 vs. ρ for a fixed

Φ. In particular, let Φ = 2nπ. Then (3.19b) gives(
dρ

dτ

)2

= 4σρ(ρ−K2)(ρ−K3), (3.26)

where we recall that σ = σ1σ2σ3. In both the explosive case with σ1 = σ2 = σ3 = 1, and the

nonexplosive case with σ1 = −σ2 = −σ3 = 1, we have that σ = 1. Figure 3.3 shows a plot of (3.26)
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with σ = 1, K2 = 2, and K3 = 3. From the plot, we see that the ODE admits both bounded and

unbounded solutions. The unbounded solutions are represented on the plot by the thick black line,

where ρ > max {0,K2,K3}. The bounded solutions are represented by the dashed red line, where

ρ is restricted to 0 < ρ < min {K2,K3}.

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0

1

2

3

4

5

6

ρ

Φ

(ρ′)� + (Φ′)�

0

10

20

30

40

50

Figure 3.1: The phase plane of the system (3.19a)-(3.19c) with σ1 = σ2 = σ3 = 1. This is the explo-
sive regime, withK2 = 2 andK3 = 3. In this case, the domain is restricted to ρ > max {K2,K3, 0}.

3.3 Solution in terms of elliptic functions (I)

In order to solve (3.19), and thus obtain a solution of the three-wave ODEs, we first convert

(3.19b)-(3.19c) into a single second-order ODE. First of all, notice that we can rewrite (3.19b) using

the definition of H in (3.19a) as

dρ

dτ
= −H cot Φ. (3.27)
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Figure 3.2: The phase plane of the system (3.19a)-(3.19c) with σ1 = −σ2 = −σ3 = 1. This is
the nonexplosive regime, with K2 = 2 and K3 = 3. In this case, the domain is restricted to
0 < ρ < min {K2,K3}. Bounded periodic solutions are seen.

Next, differentiate the equation above to obtain

d2ρ

dτ2
= −∂H

∂τ
cot Φ−H ∂

∂τ
(cot Φ)

= −
(
∂H

∂ρ

dρ

dτ
+
∂H

∂Φ

dΦ

dτ

)
cot Φ +H csc2 Φ

dΦ

dτ

= H csc2 Φ
dΦ

dτ
,

where we used the fact that ∂H/∂ρ = dΦ/dτ and ∂H/∂Φ = −dρ/dτ to eliminate the first term.

Now we substitute H and dΦ/dτ from (3.19a) and (3.19c) to find

d2ρ

dτ2
= 2
√
σρ(ρ−K2)(ρ−K3)

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)

= 2σ
[
(ρ−K2)(ρ−K3) + ρ(ρ−K3) + ρ(ρ−K2)

]
. (3.28)



39

�� ��
ρ0

10

20


� ρ
� τ


�

Figure 3.3: A plot of (dρ/dτ)2 vs. ρ as given in (3.26) with σ = 1, K2 = 2 and K3 = 3. In
particular, notice that the explosive regime with σ1 = σ2 = σ3 = 1 is represented by the domain
ρ > max {0,K2,K3}, where (dρ/dτ)2 grows without bound (the thick black curve). Conversely,
the nonexplosive regime with σ1 = −σ2 = −σ3 = 1 is represented by the bounded domain 0 < ρ <
min {K2,K3}, where (dρ/dτ)2 is bounded (the dashed red curve).

Notice that (3.28) allows ρ = 0, ρ = K2, and ρ = K3, even though the system (3.19) does not. This

is desirable since the original three-wave ODEs (2.20) allow |am(τ)| to take on values including

{0,K2,K3}, as long as (2.30)-(2.31) still hold.

We solve (3.28) in the complex plane by transforming it into a differential equation whose

solutions are known. To that end, we make the change of variables suggested by [23, Ch. 14],

ρ(τ) = σW (τ) +
1

3
(K2 +K3). (3.29)

Under this transformation, (3.28) becomes

d2W

dτ2
= 6W 2 − q, (3.30)

where q is the constant defined by

q =
2

3

(
K2

2 +K2
3 −K2K3

)
, (3.31)

which we note is nonnegative.
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The general solution of (3.30) is known in terms of Weierstrass elliptic ℘-functions. In par-

ticular, we find that

W (τ) = ℘(τ − τ0; g2 = 2q, g3), (3.32)

where ℘ is known as the Weierstrass elliptic p-function, with parameter values g2 and g3 [17, 23.3],

and τ0 is a complex valued constant. Using (3.29) to transform back to the ρ, we have

ρ(τ) = σ℘(τ − τ0; g2 = 2q, g3) +
K2 +K3

3
, (3.33)

where q is given in (3.31), g3 is to be determined, and τ0 is a complex-valued constant with some

restrictions, namely that the imaginary part of τ0 must be chosen so that ρ(τ) is real for real τ

(a more in depth discussion of Im (τ0) is found in Section 3.6). We would like to verify (3.33) by

substituting directly into (3.28). First, however, we require some background on Weierstrass elliptic

functions.

3.4 Weierstrass elliptic functions

An elliptic function is a single-valued doubly periodic function of a single complex variable

which is analytic except at poles [3, p. 629]. We first introduce the concept of a lattice. In

particular, if λ1 and λ2 are two nonzero real or complex numbers such that Im (λ2/λ1) > 0, then

the set of points 2mλ1 +2nλ2 with m,n ∈ Z constitutes a lattice Λ. We call 2λ1 and 2λ2 the lattice

generators.

The Weierstrass ℘-function is defined by

℘(z) = ℘(z;λ1, λ2) =
1

z2
+

∑
λ∈Λ\{0}

[
1

(z − λ)2 −
1

λ2

]
, (3.34)

where

Λ = {λ : λ = 2mλ1 + 2nλ2 with m,n ∈ Z} . (3.35)

The function ℘(z) is doubly periodic with periods 2λ1 and 2λ2 (that is, λ1 and λ2 are the half-

periods of the function). It is an even function with double poles at the lattice points, all of which
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have residue zero. In particular, ℘(z) has a double pole at z = 0. Note further that ℘(z) − 1
z2

is

analytic in a neighborhood of the origin and vanishes at the origin.

The elliptic invariants of a Weierstrass ℘-function are defined by

g2(Λ) = g2(λ1, λ2) = 60
∑

λ∈Λ\{0}

1

λ4
, (3.36)

g3(Λ) = g3(λ1, λ2) = 140
∑

λ∈Λ\{0}

1

λ6
. (3.37)

The function ℘(z) is often written ℘(z) = ℘(z; g2, g3), so that the elliptic invariants are specified

instead of the half-periods. In fact, for our purposes it is typically more useful to specify the

invariants, rather than the half-periods.

The numbers g2(Λ) and g3(Λ) are invariants of the lattice Λ in the sense that if gj(Λ) = gj(Λ
′)

for j = 2, 3, then Λ = Λ′. Additionally, given any g2 and g3 such that g3
2 − 27g2

3 6= 0, there exists a

lattice Λ with g2 = g2(Λ) and g3 = g3(Λ) as its invariants.

We define the discriminant of ℘(z; g2, g3) as

∆ = g3
2 − 27g2

3.

If g2 and g3 are real, then ℘(z; g2, g3) is real along the real axis. Moreover, if ∆ < 0, then the

lattice of poles Λ has a rhombic structure. In this case, the half-period λ1 is real and positive,

while the half-period λ2 satisfies Im (λ2) > 0 and Re (λ2) = λ1/2 [17, §23.5]. On the other hand, if

∆ > 0, then the lattice of poles Λ has a rectangular structure. In this case, λ1 and λ2/i are both

real and positive. Note that a square is considered a special case of the rectangular lattice in which

λ1 = λ2/i. Finally, note that the special case ∆ = 0 is a degenerate case for which the Weierstrass

function is not defined. This case is discussed in more detail in Section 5.4.

The Weierstrass ℘-function is related to its derivative via

[
℘′(z)

]2
= 4℘3(z)− g2℘(z)− g3. (3.38)

Moreover, ℘(z) is related to its second derivative ℘′′(z) through [17, 23.3.12],

℘′′(z) = 6℘2(z)− g2

2
. (3.39)
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Notice that (3.39) is equivalent to (3.30) with q = g2/2, which is how we obtained (3.32).

3.5 Solution in terms of elliptic functions (II)

Now return to the three-wave ODEs in (2.20), where am(τ) = |am(τ)|eiϕm(τ) for m = 1, 2, 3.

Recall that we defined ρ(τ) = σ1 |a1(τ)|2 and Φ(τ) = ϕ1(τ) +ϕ2(τ) +ϕ3(τ), and in Section 3.3, we

found that

ρ(τ) = σ℘(τ − τ0; g2, g3) +
K2 +K3

3
, (3.40)

where

g2 =
4

3

(
K2

2 +K2
3 −K2K3

)
. (3.41)

We now know that ℘(τ − τ0; g2, g3) is a Weierstrass elliptic function, with elliptic invariants g2

and g3. Indeed, substituting ρ(τ) from (3.40) into (3.28) and using (3.41) yields the differential

equation satisfied by ℘(z), (3.39). As a result, we know that (3.40)-(3.41) satisfy (3.28). It remains

to determine g3, as well as Φ(τ). Once we do this, we can then recover a1(τ), a2(τ), and a3(τ).

In order to find g3, we use the differential equation (3.38). First, rearrange (3.40) to give

℘(τ − τ0; g2, g3) = σ

[
ρ(τ)− K2 +K3

3

]
.

Additionally, differentiating yields

℘′(τ − τ0; g2, g3) = σρ′(τ),

where the primes denote derivatives with respect to τ . Next, substitute ℘ and ℘′ into (3.38) to

obtain [
ρ′(τ)

]2
= 4σ

[
ρ(τ)− K2 +K3

3

]3

− g2σ

[
ρ(τ)− K2 +K3

3

]
− g3,

where we used the fact that σ2 = 1. Expanding terms, substituting g2 from (3.41), and simplifying

yields

[
ρ′(τ)

]2
= 4σ

[
ρ3 − (K2 +K3) ρ2 +K2K3ρ

]
+

4σ

27
(K2 − 2K3) (2K2 −K3) (K2 +K3)− g3. (3.42)
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Next, recall from (3.19b) that(
dρ

dτ

)2

= 4σρ(ρ−K2)(ρ−K3) cos2 Φ

= 4σ
[
ρ3 − (K2 +K3) ρ2 +K2K3ρ

]
cos2 Φ.

Substituting into (3.42) and rearranging gives

4σ
(
cos2 Φ− 1

) [
ρ3 − (K2 +K3) ρ2 +K2K3ρ

]
=

4σ

27
(K2 − 2K3) (2K2 −K3) (K2 +K3)− g3.

(3.43)

Finally, observe from (3.19a) that

H2 = 4σ
[
ρ3 − (K2 +K3) ρ2 +K2K3ρ

]
sin2 Φ.

Since sin2 Φ = 1− cos2 Φ, (3.43) becomes

−H2 =
4σ

27
(K2 − 2K3) (2K2 −K3) (K2 +K3)− g3.

It follows that

g3 =
4σ

27
(K2 − 2K3) (2K2 −K3) (K2 +K3) +H2.

To summarize, so far we have fully determined ρ(τ), half of the solution of (3.19), as

ρ(τ) = σ℘(τ − τ0; g2, g3) +
K2 +K3

3
, (3.44)

where

g2 =
4

3

(
K2

2 +K2
3 −K2K3

)
, (3.45)

g3 =
4σ

27
(K2 − 2K3) (2K2 −K3) (K2 +K3) +H2. (3.46)

It is important to notice that g2 and g3 are both real. As a result, we know from Section 3.4 that the

Weierstrass function ℘(τ ; g2, g3) is real-valued along the real-axis. It follows that ℘(τ − τ0; g2, g3) is

also real along the real axis, as long as τ0 is real. Indeed, we need ℘(τ − τ0; g2, g3) to be real along the

real axis because ρ(τ) must, by definition, be real-valued for real τ (recall that ρ(τ) = σ1|a1(τ)|2

when τ is real). For certain values of g2 and g3, it is possible for τ0 to be complex, yet for
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℘(τ − τ0; g2, g3) to remain real along the real axis. However, the choice of the imaginary part of τ0

is not arbitrary, and we discuss this matter further in Section 3.6.

Our next step is to use (3.19c) in order to recover Φ(τ), given that we now know ρ(τ) is

described by (3.44)-(3.46). The ODE (3.19c) can be separated as follows,

dΦ

sin Φ
= −

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)
dτ.

Integrating both sides we obtain

log

(
tan

Φ

2

)
+ C = −

∫ τ

τi

(
σ1

√
σ(ρ−K2)(ρ−K3)

ρ
+ σ2

√
σρ(ρ−K3)

ρ−K2
+ σ3

√
σρ(ρ−K2)

ρ−K3

)
dτ,

(3.47)

where τi is a constant.

In general, to satisfy the initial condition, we require

C = − log

(
tan

Φi

2

)
, (3.48)

where Φi = Φ(τ = τi). Then the general solution for Φ is given by

Φ(τ) = 2 arctan

{
tan

(
Φi

2

)
exp

[∫ τ

τi

f(ρ(t)) dt

]}
, (3.49)

where

f(ρ) = −σ1

√
σ(ρ−K2)(ρ−K3)

ρ
− σ2

√
σρ(ρ−K3)

ρ−K2
− σ3

√
σρ(ρ−K2)

ρ−K3
(3.50)

with ρ(τ) given in (3.40).

Finally, we want to recover the original functions am(τ) for m = 1, 2, 3 and for real τ . It

is straightforward to recover the magnitude of each mode. First of all, since ρ(τ) = σ1|a1(τ)|2, it

follows that

|a1(τ)| =
√
σ1ρ(τ).

Note that sign (ρ) = σ1 (unless ρ = 0), so the term under the square root is necessarily nonnegative.

Next, consider (2.30)-(2.31). Rearranging slightly yields

|am(τ)|2 = σm (ρ−Km) , m = 2, 3.
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It follows that

|a2(τ)| =
√
σ2 (ρ−K2) and |a3(τ)| =

√
σ3 (ρ−K3).

Again, notice that sign (ρ −Km) = σm for m = 2, 3, so the quantities under the square roots are

nonnegative. Since ρ(τ) is known, we can determine |am(τ)| for m = 1, 2, 3. In particular, using

the definition of ρ(τ) in (3.44), we have

|a1(τ)|2 = σ1

[
σ℘(τ − τ0; g2, g3) +

K2 +K3

3

]
, (3.51)

|a2(τ)|2 = σ2

[
σ℘(τ − τ0; g2, g3) +

K3 − 2K2

3

]
, (3.52)

|a3(τ)|2 = σ3

[
σ℘(τ − τ0; g2, g3) +

K2 − 2K3

3

]
. (3.53)

More succinctly, we have

|am(τ)|2 = σm [σ℘(τ − τ0; g2, g3) + Cm] , (3.54)

where Cm is a constant defined by

C1 =
K2 +K3

3
, (3.55)

C2 =
K3 − 2K2

3
, (3.56)

C3 =
K2 − 2K3

3
. (3.57)

We can take a square root of each side of (3.54) to obtain |am(τ)| for m = 1, 2, 3.

It remains to find the phases ϕm(τ) for m = 1, 2, 3. Recall from (3.3b) that iϕm = Qm, and

Qm(τ) satisfies the ODE in (3.10),

dQm
dτ

= −σm
√
σPkP`
Pm

sinh Q̃, (3.58)

where (k, `,m) = (1, 2, 3) cyclically, Q̃ = Q1 +Q2 +Q3, and Pm is defined in (3.3a) for m = 1, 2, 3.

In particular, we have that Pm = σm|am|2, or |am|2 = σmPm. Consequently, the square root term

in (3.58) can be written √
|ak(τ)|2 |a`(τ)|2

|am(τ)|2
=
|ak(τ)| |a`(τ)|
|am(τ)|

.
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Lastly, we can rewrite (3.58) in terms of ϕm as follows

dϕm
dτ

= −σm
|ak(τ)| |a`(τ)|
|am(τ)|

sin Φ,

where we used sinh Q̃ = i sin Φ. Integration yields

ϕm(τ) = −σm
∫ τ

τi

|ak(t)| |a`(t)|
|am(t)|

sin [Φ(t)] dt+ ϕm(τi), (3.59)

where τi is a constant, |am(τ)| is given via (3.54) for m = 1, 2, 3, and Φ(τ) is defined in (3.49).

Finally, recall the definition of H in (3.5)

H = −2 |a1(τ)a2(τ)a3(τ)| sin [Φ(t)].

As a result, we can rewrite (3.59) as

ϕm(τ) = −σm
∫ τ

τi

|ak(t)| |a`(t)|
|am(t)|

· H

−2 |a1(t)a2(t)a3(t)|
dt+ ϕm(τi)

=
σmH

2

∫ τ

τi

1

|am(t)|2
dt+ ϕm(τi). (3.60)

Consequently, (3.54) and (3.60) define the general solution of the three-wave ODEs in (2.20)

with am(τ) = |am(τ)| eiϕm(τ) for m = 1, 2, 3. We refer to this solution as the “Weierstrass solu-

tion.” Note that while we derived the solution of the three-wave ODEs in terms of Weierstrass

elliptic functions, we could have equivalently derived the general solution in terms of Jacobi elliptic

functions. Some discussion of Jacobi elliptic functions is found in Section 4.4.

3.6 Analysis of solutions

In sections 3.3-3.5, we found the solution of the three-wave ODEs in terms of Weierstrass

elliptic functions. We now investigate the behavior of these solutions.

An important aspect of our solution is that there are six free constants, since the three-wave

ODEs constitute six real-valued equations. There are several ways in which to choose these six

constants. One possibility is to prescribe initial data for am(τ) at some value τ = τi. In other

words, we choose |am(τi)| and ϕm(τi) for m = 1, 2, 3 (or equivalently, we prescribe Pm(τ = τi) and

Qm(τ = τi), with Pm and Qm defined in (3.3)). This amounts to six real constants.
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Consider a specific example in which we prescribe initial data along τ = 0. Let

a1(0) = 3ei
π
3 , a2(0) = 2ei

π
4 , and a3(0) = e−i

π
3 . (3.61)

We know from (3.5) that H = −6
√

2. Now we consider an explosive case and a nonexplosive case

for the initial data in (3.61). In particular, we analyze the behavior of the magnitudes of am(τ),

and then we analyze the behavior of the phases.

3.6.1 The explosive case

Suppose σ1 = σ2 = σ3 = 1. In this case, (2.30)-(2.31) and (3.61) tell us that K2 = 5 and

K3 = 8. Now that we have K2,K3, and H, we can determine the elliptic invariants, g2 and g3, of

the Weierstrass function in (3.44) using (3.45)-(3.46). This determines how the poles of ρ(τ) are

arranged in the complex τ -plane. In particular, we find that

∆ = g3
2 − 27g2

3 > 0,

so we know that in the complex τ -plane, poles occur on a rectangular lattice (this structure is

described in Section 3.4). Using Mathematica’s built-in functionality,1 we find that the half-

periods of ρ(τ) for the known values of g2 and g3 are given by

λ1 ≈ 0.630 and λ2 ≈ 0.682i. (3.62)

It remains to determine the value of τ0 in (3.44). Since ρ(0) is known (in fact, from (3.61), we have

ρ(0) = 9), we can find τ0 by inverting the following

ρ(0) = σ℘(−τ0; g2, g3) +
K2 +K3

3
.

In our example, we find that

τ0 ≈ 0.528. (3.63)

1 WeierstrassHalfPeriods[{g2, g3}] Support Article, Wolfram Research, Inc.,
http://functions.wolfram.com/EllipticFunctions/WeierstrassHalfPeriods/introductions/

WeierstrassUtilities/05/, 1998-2015.
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It follows that the poles of ρ(τ) occur at τ0 ± 2nλ1 ± 2pλ2, n, p ∈ Z. Most significantly, we observe

that τ0 is real, which means that poles necessarily occur along the real axis, and hence ρ(τ) blows

up in finite time for real τ . Note that since ρ(τ) is doubly periodic, we could replace τ0 with

τ0 ± 2pλ2, p ∈ Z, and obtain the same solution. In this case, τ0 has nonzero imaginary part, but

the imaginary part is equal to a multiple of the function’s period in the imaginary direction. As a

result, ρ(τ) still has poles along the real axis.

Figure 3.4 shows a contour plot of |ρ(τ)| for complex τ , in which we see the periodic lattice

of the Weierstrass elliptic function. The shading on the plot is darker at low values and lighter at

high values, meaning the poles are at the center of the white spots in the plot. Notice that the poles

are separated by 2λ1 ≈ 1.261 in the real direction and 2λ2 ≈ 1.364i in the imaginary direction, and

that poles lie along the real axis. In particular, there is a pole at τ = τ0, with τ0 given in (3.63).

Figure 3.4: Contour plot of |ρ(τ)| in the explosive regime, where ρ(τ) is given in (3.44). We use
σ1 = σ2 = σ3 = 1 and the initial data in (3.61). This yields K2 = 5,K3 = 8, H = −6

√
2, and

τ0 ≈ 0.528. Notice that the poles occur along the real axis, which means solutions of the three-wave
ODEs exhibit the explosive instability for real τ .
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Figure 3.5: Plot of ρ(τ) = σ1|a1(τ)|2, as well as |a2(τ)|2 and |a3(τ)|2 for real τ in the in the explosive
regime, where ρ(τ) is given in (3.44). We use σ1 = σ2 = σ3 = 1 and the initial data in (3.61). This
yields K2 = 5,K3 = 8, H = −6

√
2, and τ0 ≈ 0.528. Notice that solutions blow up in finite time,

and that the half-period in the real direction is λ1 ≈ 0.571.

Figure 3.5 shows the unbounded behavior of |am(τ)|2 for m = 1, 2, 3 and for τ real. Since

ρ(τ) = σ1 |a1(τ)|2 when τ is real, the curve for |a1(τ)|2 in Figure 3.5 can be compared to the

behavior of |ρ(τ)| along the real axis in Figure 3.4. The poles along the real axis in Figure 3.4

correspond to the locations of the blow-ups seen in Figure 3.5.

Next, we consider the behavior of Φ(τ) in the explosive case, and subsequently the behavior

of the phases ϕm(τ) for m = 1, 2, 3. First of all, when considering the behavior of Φ(τ), we restrict

our attention to real values of τ that lie between two adjacent poles. Specifically, we restrict our

attention to values of τ such that τ0 − 2λ1 < τ < τ0, where λ1 and τ0 are given in (3.62)-(3.63). In

other words, we consider values of τ between the adjacent poles that occur on either side of τ = 0.

Now we can consider the limiting behavior of Φ(τ) as τ → τ−0 or τ → (τ0 − 2λ1)+.

Consider the solution for Φ(τ) in (3.49). In order to determine how Φ(τ) behaves as τ → τ−0

or τ → (τ0 − 2λ1)+, we must first investigate the behavior of

lim
τ→τ̂

exp

[∫ τ

0
f(ρ(t)) dt

]
,

where τ̂ = τ−0 or τ̂ = (τ0 − 2λ1)+, and f(ρ(τ)) is defined in (3.50). As τ → τ−0 or τ → (τ0 − 2λ1)+,
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Figure 3.6: Plot of f(ρ(τ)) in the explosive regime, where ρ(τ) is given in (3.44) and f(ρ) is given
in (3.50). We use σ1 = σ2 = σ3 = 1 and the initial data in (3.61). This yields K2 = 5,K3 = 8,
H = −6

√
2, and τ0 ≈ 0.528. We plot f(ρ(τ)) for τ0 − 2λ1 < τ < τ0, with the upper and lower

bounds being the closest poles to τ = 0 in ρ(τ).

we know that ρ(τ)→ +∞ (for σ1 = σ2 = σ3 = 1). Then it is straightforward from the definition of

f(ρ) to see that f(ρ)→ −∞ as τ → τ−0 or τ → (τ0− 2λ1)+. In fact, f(ρ) is depicted in Figure 3.6,

and it is clear that f(ρ) → −∞ when τ → τ0 or τ → (τ0 − 2λ1)+, with λ1 and τ0 given in (3.62)

and (3.63), respectively.

It follows that

lim
τ→τ−0

∫ τ

0
f(ρ(t)) dt = −∞,

and thus

lim
τ→τ−0

exp

[∫ τ

0
f(ρ(t)) dt

]
= 0.

As a result, we know from (3.49) that

lim
τ→τ−0

Φ(τ) = 2 arctan 0 = 0.

On the other hand, we have that

lim
τ→(τ0−2λ1)+

∫ τ

0
f(ρ(t)) dt = − lim

τ→(τ0−2λ1)+

∫ 0

τ
f(ρ(t)) dt = +∞.

Consequently, we have that

lim
τ→(τ0−2λ1)+

exp

[∫ τ

0
f(ρ(t)) dt

]
= +∞.
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As a result, we know from (3.49) that

lim
τ→(τ0−2λ1)+

Φ(τ) = lim
u→+∞

2 arctanu = 2 · π
2

= π.

Figure 3.7 depicts the behavior of Φ(τ) when σ1 = σ2 = σ3 = 1 for the initial condition in

(3.61). It is clear from the figure that Φ(τ) → 0 as τ → τ−0 , and Φ(τ) → π as τ → (τ0 − 2λ1)+

where λ1 and τ0 are given in (3.62) and (3.63), respectively.
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Figure 3.7: Plot of Φ(τ) in the explosive regime, where Φ(τ) is given in (3.49). We use σ1 = σ2 =
σ3 = 1 and the initial data in (3.61). This yields K2 = 5,K3 = 8, H = −6

√
2, and τ0 ≈ 0.528. We

plot Φ(τ) for τ0 − 2λ1 < τ < τ0, with the upper and lower bounds being the closest poles to τ = 0
in ρ(τ). Notice that Φ→ 0 as τ → τ−0 , while τ → π as τ → (τ0 − 2λ1)+.

Finally, we investigate the behavior of ϕm(τ), m = 1, 2, 3, where ϕm(τ) is given in (3.60).

The behavior of ϕm(τ) is best understood by looking at its leading order behavior. We show in the

next section that

ϕm(τ) =
H

2

∫ τ

0

[
(t− τ0)2 − Cm(t− τ0)4 +O

(
(t− τ0)6

)]
dt+ ϕm(0), (3.64)

where we set τi = 0 in (3.60), and Cm is defined in (3.55)-(3.57). Integrating, we find that

ϕm(τ) = ϕm(0) +
H

6

[
(τ − τ0)3 + τ3

0

]
− HCm

10

[
(τ − τ0)5 + τ5

0

]
+O

(
(τ − τ0)7

)
+D,

where D is a constant that incorporates all the remaining terms that come from evaluating the

integral’s antiderivative at τ = 0. As τ → τ−0 , every (τ − τ0) term approaches zero, and we are left
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with

lim
τ→τ−0

ϕm(τ) = ϕm(0) +
H

6
τ3

0 −
HCm

10
τ5

0 +D.

Substituting ϕm(0) and τ0 from (3.61) and (3.63), respectively, we obtain

lim
τ→τ−0

ϕ1(τ) ≈ 0.99 +D, lim
τ→τ−0

ϕ2(τ) ≈ 0.55 +D, and lim
τ→τ−0

ϕ3(τ) ≈ −1.38 +D. (3.65)

Figure 3.8 depicts the behavior of ϕm(τ) for m = 1, 2, 3 on τ0−2λ1 < τ < τ0. We can see that

while (3.65) is not exact (since D is unknown), it does give a good approximation of the behavior

of the phases as τ approaches τ0, as long as D is small.

In order to determine the behavior of ϕm(τ) when τ approaches τ0− 2λ1, we follow the same

procedure, but we expand about τ0 − 2λ1 instead of τ0 in (3.64). In this case, we find that ϕm(τ)

increases away from ϕm(0) as τ → (τ0 − 2λ1)+, and again approaches a constant. We omit the

details, but the behavior is seen in Figure 3.8.
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Figure 3.8: Plot of ϕm(τ) for m = 1, 2, 3 in the nonexplosive regime, where ϕm(τ) is given in (3.60).
We use σ1 = σ2 = σ3 = 1 and the initial data in (3.61). This yields K2 = 5,K3 = 8, H = −6

√
2,

and τ0 ≈ 0.528.

3.6.2 The nonexplosive case

Suppose σ1 = −σ2 = −σ3 = 1. This time (2.30)-(2.31) and (3.61) tell us that K2 = 13 and

K3 = 10. Then we determine the elliptic invariants, g2 and g3, of the Weierstrass function in (3.44)
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using (3.45)-(3.46). In this case, we find that

∆ = g3
2 − 27g2

3 > 0,

so we know that in the complex τ -plane, poles occur on a rectangular lattice. We find that the

half-periods of ρ(τ) are given by

λ1 ≈ 0.571 and λ2 ≈ 0.470i. (3.66)

As in the explosive case, it remains to determine the value of τ0 in (3.44), which we determine by

applying the initial condition. In our example, we find that

τ0 ≈ −0.460 + 0.470i. (3.67)

Again, the poles of ρ(τ) occur at τ0 ± 2nλ1 ± 2pλ2, n, p ∈ Z. Most significantly, we observe

that τ0 has a nonzero imaginary part. If the nonzero imaginary part is equal to a whole period in

the imaginary direction (that is, if Im (τ0) = 2nλ2, n ∈ Z), then the poles of ρ(τ) lie along the real

axis, since the Weierstrass elliptic function naturally has poles along the real axis. This was the

true of the explosive case we considered previously. In this nonexplosive case, however, we have

that Im (τ0) = λ2. As a result, the poles of the Weierstrass function are shifted away from the

real axis by one half period in the imaginary direction. Consequently, ρ(τ) has no poles along the

real axis. More importantly, since ρ(τ) is doubly periodic with a rectangular lattice, the poles are

aligned in such a way that for a given pole above the real axis, there is another pole below and

equidistant from the real axis. Because the poles above the real axis align with the poles below the

real axis in this way, ρ(τ) remains real-valued and bounded along the real axis.

Figure 3.9 shows a contour plot of |ρ(τ)| for complex τ , in which we see the rectangular

periodic lattice of the Weierstrass elliptic function. As with Figure 3.4, the shading on the plot is

darker at low values and lighter at high values, meaning the poles are at the center of the white

spots in the plot. Notice that the poles are separated by 2λ1 ≈ 1.142 in the real direction and

2λ2 ≈ −0.941i in the imaginary direction, and that poles do not lie along the real axis. Instead, the
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Figure 3.9: Contour plot of |ρ(τ)| in the nonexplosive regime, where ρ(τ) is given in (3.44). We
use σ1 = −σ2 = −σ3 = 1 and the initial data in (3.61). This yields K2 = 13,K3 = 10, H = −6

√
2,

and τ0 ≈ −0.460 + 0.470i. Notice that the poles occur off the real axis, which means solutions of
the three-wave ODES are bounded for real τ .

poles above the real axis are reflected across the real axis. In particular, there is a pole at τ = τ0,

with τ0 given in (3.67).

Figure 3.10 shows the bounded periodic behavior of |am(τ)|2 for m = 1, 2, 3 and for τ real.

Since ρ(τ) = σ1 |a1(τ)|2 when τ is real, the curve for |a1(τ)|2 in Figure 3.10 can be compared to

the behavior of |ρ(τ)| along the real axis in Figure 3.9.

Next we consider the behavior of Φ(τ) for real τ in the nonexplosive case. There is no need

to restrict our attention to a specific domain of τ , since there are no poles along the real axis. First,

consider the behavior of f(ρ(τ)) as defined in (3.50). f(ρ(τ)) is bounded and periodic with period

2λ1, and minimum values at τ = Re (τ0)± 2nλ1, n ∈ Z. Additionally, f(ρ(τ)) has zero mean over

a period. As a result, it follows from the definition of Φ(τ) in (3.49) that Φ(τ) is bounded and

periodic as well.
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Figure 3.10: Plot of ρ(τ) = σ1|a1(τ)|2, as well as |a2(τ)|2 and |a3(τ)|2 for real τ in the nonexplosive
regime, where ρ(τ) is given in (3.44). We use σ1 = −σ2 = −σ3 = 1 and the initial data in (3.61).
This yields K2 = 13,K3 = 10, H = −6

√
2, and τ0 ≈ −0.460 + 0.470i. Notice that solutions are

bounded and periodic along the real τ -axis.

Figure 3.11 depicts f(ρ(τ)) when σ1 = −σ2 = −σ3 = 1 for the initial condition in (3.61).

Figure 3.12 depicts the behavior of Φ(τ) under the same conditions. It is clear from the figures

that both f(ρ(τ)) and Φ(τ) are bounded and periodic.
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Figure 3.11: Plot of f(ρ(τ)) in the nonexplosive regime, where ρ(τ) is given in (3.44) and f(ρ)
is given in (3.50). We use σ1 = −σ2 = −σ3 = 1 and the initial data in (3.61). This yields
K2 = 13,K3 = 10, H = −6

√
2, and τ0 ≈ −0.460 + 0.470i.

Finally, Figure 3.13 depicts the behavior of ϕm(τ) for m = 1, 2, 3. Recall the solution for
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Figure 3.12: Plot of Φ(τ) in the nonexplosive regime, where Φ(τ) is given in (3.49). We use
σ1 = −σ2 = −σ3 = 1 and the initial data in (3.61). This yields K2 = 13,K3 = 10, H = −6

√
2, and

τ0 ≈ −0.460 + 0.470i. Notice the bounded periodic behavior of Φ(τ).

ϕm(τ) in (3.60). We see in Figure 3.10 that |am(τ)| is bounded, periodic, and positive form = 1, 2, 3.

As a result, the integrand in (3.60) is also bounded, periodic, and positive. The integral in (3.60)

amounts to adding up the area under the curve of 1/|am(τ)|2. Consequently, for each m, ϕm(τ)

has a mean value that is either monotonically increasing or decreasing with τ , depending on σm,

and ϕm(τ) oscillates periodically about this uniformly changing mean.
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Figure 3.13: Plot of ϕm(τ) for m = 1, 2, 3 in the nonexplosive regime, where ϕm(τ) is given in
(3.60). We use σ1 = −σ2 = −σ3 = 1 and the initial data in (3.61). This yields K2 = 13,K3 = 10,
H = −6

√
2, and τ0 ≈ −0.460 + 0.470i.
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We just investigated a particular explosive and nonexplosive case of the three-wave ODEs,

given the initial conditions in (3.61). At the beginning of this section, we explained that the

Weierstrass general solution of the three-wave ODEs outlined in (3.54) and (3.60) has six free

constants, since the three-wave ODEs constitute six real-valued equations. In our examples, we

assumed that the six free constants were specified using the initial data |am(τ)| and ϕm(τ) for

m = 1, 2, 3. This is just one possibility of how to choose the six constants.

An alternative choice is to pick the six constants to beK2,K3, H, two of {ϕ1(τi), ϕ2(τi), ϕ3(τi)},

and the real part of τ0. First of all, the choice of K2,K3, and H determines how the poles of ρ(τ)

are arranged in the complex plane. From (3.44), we know that the locations of the poles of ρ(τ)

are determined by

℘(τ − τ0; g2, g3),

where g2 and g3 are given in (3.45)-(3.46). In particular, g2 = g2(K2,K3) and g3 = g3(K2,K3, H).

Recall from Section 3.4 that if g2 and g3 are real (which is always true for us since K2, K3, and H

are real), then ℘(τ ; g2, g3) is real for real τ . As a result, we know if τ0 is real and arbitrary, then

℘(τ − τ0; g2, g3) (and thus ρ(τ)) is still real along the real axis. It remains to determine the allowed

values for the imaginary part of τ0.

When g2 and g3 are real, we know that the poles of ℘(τ ; g2, g3) occur in either a rhombic

periodic lattice or a rectangular periodic lattice. We define the discriminant of ℘(τ − τ0; g2, g3) as

∆ = g3
2 − 27g2

3. (3.68)

Then the poles occur in a rhombic lattice if ∆ < 0, and in a rectangular lattice if ∆ > 0. In

both of the examples we considered above, we found that ∆ > 0. As a result, the poles of ρ(τ)

occurred in a rectangular lattice, as seen in Figures 3.4 and 3.9. The key feature that distinguished

the explosive case from the nonexplosive case was the choice of the imaginary part of τ0. Indeed,

Im (τ0) was responsible for determining whether the poles of ρ(τ) occurred along the real axis (the

explosive case) or off the real axis (the nonexplosive case).

Recall that for a rectangular lattice, the half-periods λ1 and λ2 of the Weierstrass function
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are such that both λ1 and λ2/i are real and positive. When ∆ > 0 there are two possibilities for

choosing the imaginary part of τ0:

(1) The explosive case, σ1 = σ2 = σ3: Im (τ0) = 2n|λ2|, n ∈ Z (the simplest example of which

is Im (τ0) = 0).

(2) The nonexplosive case, σ1 = −σ2 = −σ3: Im (τ0) = (2n+ 1)|λ2|, n ∈ Z.

These are the only possible choices of Im (τ0) that keep ℘(τ − τ0; g2, g3), and ρ(τ), real along the

real axis. In the first case, the poles necessarily occur along the real axis. In the second case, the

poles are shifted off the real axis by exactly one half period in the imaginary direction. Since the

lattice is rectangular, the poles above the real axis are then reflected below the real axis, which

forces ℘(τ − τ0; g2, g3) to be real along the real axis.

If the lattice associated with ℘(τ − τ0; g2, g3) is rhombic (i.e. ∆ < 0), then the half-period λ1

is real and positive, while the half-period λ2 satisfies Im (λ2) > 0 and Re (λ2) = λ1/2. In this case,

we are restricted to the explosive regime only. If τ0 is real or τ0 = 2nλ2, then the poles occur along

the real axis, and ρ(τ) is real along the real axis. However, if Im (τ0) 6= 2nλ2, then ρ(τ) is not real

along the real axis, which violates the definition ρ(τ) = σ1 |a1(τ)|2. Thus we cannot move the poles

away from the real axis in such a way that ℘(τ − τ0; g2, g3) is both bounded and real for real τ .

In summary, we have the following breakdown:

(1) The explosive case, σ1 = σ2 = σ3:

(a) Rectangular lattice, ∆ > 0: Im (τ0) = 2n|λ2|

(b) Rhombic lattice, ∆ < 0: Im (τ0) = 2n|λ2|

(2) The nonexplosive case, σ1 = −σ2 = −σ3:

(a) Rectangular lattice, ∆ > 0: Im (τ0) = (2n+ 1)|λ2|

(b) No possibility of a rhombic lattice.
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Once K2, K3, H, and τ0 have been chosen, we see from (3.54) that |am(τ)| is determined

for m = 1, 2, 3. Moreover, from (3.19a), sin Φ is determined. In particular, Φ(τi) is determined

(to within a multiple of 2nπ). Since Φ(τi) = ϕ1(τi) + ϕ2(τi) + ϕ3(τi), it follows that we can only

choose two of {ϕ1(τi), ϕ2(τi), ϕ3(τi)} independently. Then the solution of the three-wave ODEs is

fully determined.

There are other ways to choose the six free constants in the general Weierstrass solution, but

from now on, we work in the context of the six free real-valued constants

{K2,K3, H,Re (τ0), ϕ1(τi), ϕ2(τi)} . (3.69)



Chapter 4

The Laurent Series Solution of the Three-Wave ODEs

In Chapter 3, we determined the general solution of the three-wave ODEs (2.20) in terms

of Weierstrass elliptic functions. This solution is useful to us for many reasons throughout this

thesis, as we see in the next two chapters. In this chapter, we derive the general solution of the

three-wave ODEs in the explosive regime using an alternative method in order to motivate the

method of solution for the three-wave PDEs in Chapter 5. In particular, we build a convergent

Laurent series solution of the three-wave ODEs. We show that the Laurent series solution derived

in this chapter is equivalent to the Weierstrass solution of the previous chapter, and discuss where

the two solutions are known to converge. Finally, we end the chapter with a discussion of how our

Laurent series solution can be extended to the nonexplosive regime.

4.1 The Painlevé conjecture

In this section we give some motivation for our construction of the general solution of the

three-wave ODEs in terms of a Laurent series. We begin with some definitions and some history.

First, a critical point is understood to be any singularity of a solution of an ODE that is not a

pole of any order (thus critical points include branch points and essential singularities). A movable

critical point is a critical point whose location depends on the constants of integration. At the

beginning of the twentieth century, Painlevé and others investigated second-order nonlinear ODEs

of the form

w′′ = F (w′, w, z), (4.1)
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where F is rational in w′ and w, and locally analytic in z [23, Ch.14]. They determined that there

are fifty canonical equations with the property of having no movable critical points. This property

is now known as the Painlevé property. More specifically, a system of ODEs of any order is said to

possess the Painlevé property if for every solution, every movable singularity is a pole [2, §3.7].

According to the Painlevé conjecture, proposed in 1978, a system of nonlinear PDEs is

solvable by an inverse scattering transform (i.e., is integrable) only if every nonlinear ODE obtained

from the PDE by an exact reduction has the Painlevé property, perhaps after a transformation of

variables [2, §3.7.b]. There is no systematic way to find all reductions of a PDE, so the test is not

definitive in determining which equations can be solved by IST. However, it is an effective tool for

finding PDEs that cannot be solved by IST.

The Painlevé conjecture suggests a connection between the integrability of a nonlinear PDE

and the Painlevé property. We propose to use a Painlevé-type singularity analysis in order to

construct the general solution of a particular system of integrable nonlinear PDEs, namely the

three-wave equations in (2.5). Indeed, the structure of the full three-wave equations (2.5) turns out

to be so strongly linked to the structure of the three-wave ODEs, it is not surprising to discover

that the Painlevé property, a property of ODEs, is useful in motivating the general solution of this

set of PDEs.

The strategy is as follows. We start by constructing the general solution of the three-wave

ODEs in (2.20) using a series solution. Since (2.20) is a six-dimensional system of equations, the

general solution is one which satisfies the ODEs and has six constants of integration. Once we

have the general solution of the ODEs, we use its structure in order to guess a solution form of the

three-wave PDEs in (2.5).

To be precise, in order to find the general solution of the three-wave ODEs in (2.20), we use

the following procedure:

(1) Find the dominant behavior of am(τ) in (2.20). Since (2.5) is completely integrable, the

Painlevé conjecture dictates that the only allowable movable singularities are poles.
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(2) Carry on the expansion to higher order until all six of the constants of integration appear.

This is the beginning of the Laurent series of the general solution of (2.20).

(3) Finally, find all remaining coefficients in the expansion in terms of the free constants, and

show that the series has a nonzero radius of convergence.

Subsequently, we use the same basic approach to construct the general solution of the three-

wave PDEs in (2.5). This is outlined more thoroughly in Chapter 5.

4.2 Construction of the Laurent series solution

Recall that the three-wave PDEs are known to be integrable [47]. It follows from the Painlevé

conjecture in the previous section that every set of ODEs obtained from the three-wave PDEs by

an exact reduction has the Painlevé property. Since the three-wave ODEs can be obtained from

the PDEs in a number of ways (see Chapter 6), it follows that the three-wave ODEs must possess

the Painlevé property. That is, for every solution of the ODEs, every movable singularity is a pole.

Indeed, the only singularities of the Weierstrass general solution in the previous section are movable

poles.

Recall that the three-wave ODEs are given by

dam
dτ

= σma
∗
ka
∗
` , (4.2)

where (k, `,m) = (1, 2, 3) are defined cyclically. To derive our alternative general solution of the

three-wave ODEs, we first want to find the dominant behavior of am(τ) near a movable singularity.

We assume that there is a movable singularity at τ = τ0, and that as τ → τ0,

am(τ) ∼ αm
(τ − τ0)p

, (4.3)

where αm is a complex constant for m = 1, 2, 3, and p is the same positive number for m = 1, 2, 3.

Additionally, assume that τ and τ0 are real, so that (τ −τ0)∗ = τ −τ0. Substituting (4.3) into (4.2),

we obtain

− pαm
(τ − τ0)p+1

∼ σm
α∗kα

∗
`

(τ − τ0)2p
. (4.4)
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It follows that the only choice is p = 1. As a result, we know that am(τ) behaves like a simple pole

at leading order near τ = τ0.

Next, we continue the expansion beyond leading order. If the singularity is a pole, then the

expansion has the form

am(τ) =
1

τ − τ0

[
αm + βm(τ − τ0) + γm(τ − τ0)2 + δm(τ − τ0)3 + · · ·

]
, (4.5)

where αm, βm, γm, and δm are complex constants for m = 1, 2, 3. Substituting (4.5) into (4.2) yields

1

(τ − τ0)2

{
−αm + γm (τ − τ0)2 + 2δm (τ − τ0)3 + · · ·

}
=

σm
(τ − τ0)2

{
α∗kα

∗
` + (α∗kβ

∗
` + α∗`β

∗
k) (τ − τ0) + (β∗kβ

∗
` + α∗kγ

∗
` + α∗`γ

∗
k) (τ − τ0)2

+ (α∗kδ
∗
` + α∗`δ

∗
k + β∗kγ

∗
` + β∗` γ

∗
k) (τ − τ0)3 + · · ·

}
.

At lowest order, we find that

−α1 = σ1α
∗
2α
∗
3, −α2 = σ2α

∗
1α
∗
3 and − α3 = σ3α

∗
1α
∗
2. (4.6)

Assuming αm 6= 0 for m = 1, 2, 3, this implies that

|αm|2 = σkσ`,

where (k, `,m) = (1, 2, 3) are defined cyclically as usual. This is only possible if σ1 = σ2 = σ3,

which means we are restricted to the explosive domain. This is consistent with our assumption

that τ0 is real, meaning that a pole lies along the real axis, and solutions blow up in finite time. For

the remainder of this chapter, assume that we are in the explosive regime unless otherwise stated.

In this case, we have

|α1| = |α2| = |α3| = 1.

Consequently, we write

αm = eiψm , m = 1, 2, 3,

where ψm is real for m = 1, 2, 3. If we define the sum of the phases to be Ψ = ψ1 + ψ2 + ψ3, then

each equation in (4.6) reduces to

eiΨ = −σ,
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σ = σm = σ1σ2σ3 for m = 1, 2, 3. Consequently, (4.6) is satisfied as long as

Ψ ≡ ψ1 + ψ2 + ψ3 =

 2nπ, σ = −1

(2n+ 1)π, σ = 1.

(4.7)

For simplicity, we now rewrite (4.5) as

am(τ) =
eiψm

τ − τ0

[
1 + βm(τ − τ0) + γm(τ − τ0)2 + δm(τ − τ0)3 + · · ·

]
, (4.8)

where the constants βm, γm, and δm differ from those in (4.5) by a factor of eiψm .

We know by now that the three-wave ODEs constitute a sixth-order system, and its general

solution has six real constants of integration. In the Laurent series solution posed in (4.8), the

first of these constants is τ0. Furthermore, two of {ψ1, ψ2, ψ3} are free constants, while the third is

determined by (4.7). Thus, we have determined three real free constants so far (τ0, ψ1, and ψ2).

We must carry out our expansion (4.8) until we obtain the remaining three constants of integration.

To that end, substituting (4.8) into (4.2) yields

eiψm

(τ − τ0)2

{
−1 + γm (τ − τ0)2 + 2δm (τ − τ0)3 + · · ·

}
=
σe−i(ψk+ψ`)

(τ − τ0)2

{
1 + (β∗` + β∗k) (τ − τ0) + (β∗kβ

∗
` + γ∗` + γ∗k) (τ − τ0)2

+ (δ∗` + δ∗k + β∗kγ
∗
` + β∗` γ

∗
k) (τ − τ0)3 + · · ·

}
,

where we used σm = σ, which holds if σ1 = σ2 = σ3. Next, we multiply both sides by (τ − τ0)2ei(ψk+ψ`)

and use eiΨ = −σ to find that

− γm (τ − τ0)2 − 2δm (τ − τ0)3 + · · ·

= (β∗` + β∗k) (τ − τ0) + (β∗kβ
∗
` + γ∗` + γ∗k) (τ − τ0)2 + (δ∗` + δ∗k + β∗kγ

∗
` + β∗` γ

∗
k) (τ − τ0)3 + · · · .

At order (τ − τ0), we must solve

0 = β∗k + β∗` , (4.9)

and the conjugate equations. The solution is given by

β1 = β2 = β3 = 0. (4.10)
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At order (τ − τ0)2 with βm = 0 for m = 1, 2, 3, we have

−γm = γ∗k + γ∗` . (4.11)

If we write γm = um + ivm, where um and vm are real constants for m = 1, 2, 3, then we obtain

u1 + u2 + u3 = 0 and v1 = v2 = v3 = 0.

We conclude that

γ1 + γ2 + γ3 = 0 and Im (γm) = 0. (4.12)

Finally, at order (τ − τ0)3 with βm = 0 for m = 1, 2, 3, we have

−2δm = δ∗k + δ∗` , (4.13)

We write δm = sm + itm, where sm and tm are real constants for m = 1, 2, 3, and we obtain

s1 = s2 = s3 = 0 and t1 = t2 = t3.

We conclude that

δ1 = δ2 = δ3 ≡ δ and Re (δm) = 0. (4.14)

At this point, we rewrite (4.8) as

am(τ) =
eiψm

τ − τ0

[
1 + γm(τ − τ0)2 + iδ(τ − τ0)3 + · · ·

]
, (4.15)

where γm and δ are both real real.

Next, recall that the three-wave ODEs admit the conserved quantities in (2.26) and (2.30)-

(2.31), restated below

H̃ = −iH = a1a2a3 − a∗1a∗2a∗3, (4.16)

K2 = σ1 |a1(τ)|2 − σ2 |a2(τ)|2 , (4.17)

K3 = σ1 |a1(τ)|2 − σ3 |a3(τ)|2 , (4.18)
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where K2, K3, and H are real. Substituting (4.15) into (4.16) yields

−iH =
eiΨ

(τ − τ0)3

{
1 + (γ1 + γ2 + γ3) (τ − τ0)2 + 3iδ (τ − τ0)3 + · · ·

}
− e−iΨ

(τ − τ0)3

{
1 + (γ1 + γ2 + γ3) (τ − τ0)2 − 3iδ (τ − τ0)3 + · · ·

}
. (4.19)

Since eiΨ = e−iΨ = −σ, the equation reduces to

−iH = −3iσδ − 3iσδ +O(τ − τ0),

which implies that

δ =
σH

6
.

This holds exactly; we discuss in the following two sections that the Laurent series of am(τ) con-

verges in some deleted neighborhood of the pole at τ0, and that the series for am(τ) must equal

am(τ) inside this region. Since am(τ) satisfies (4.16), it follows that the Laurent series of am(τ)

must also satisfy (4.16) exactly wherever the series converges. As a result, all nonconstant terms

on the right-hand side of (4.19) are zero.

Lastly, substituting (4.15) into (4.17) and (4.18) gives

K2 =
σ1

(τ − τ0)2

{
1 + 2γ1(τ − τ0)2 + · · ·

}
− σ2

(τ − τ0)2

{
1 + 2γ2(τ − τ0)2 + · · ·

}
K3 =

σ1

(τ − τ0)2

{
1 + 2γ1(τ − τ0)2 + · · ·

}
− σ3

(τ − τ0)2

{
1 + 2γ3(τ − τ0)2 + · · ·

}
.

In the explosive case, where σ1 = σ2 = σ3, we obtain

K2 = 2σ(γ1 − γ2) +O(τ − τ0), and K3 = 2σ(γ1 − γ3) +O(τ − τ0),

where σ = σm = σ1σ2σ3. Using the fact that γ1 + γ2 + γ3 = 0 from (4.12), we determine that

γ1 =
σ

6
(K2 +K3), (4.20)

γ2 =
σ

6
(K3 − 2K2), (4.21)

γ3 =
σ

6
(K2 − 2K3). (4.22)
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In summary, the first terms of the Laurent series solution of (4.2) for the explosive case are

given by

am(τ) =
eiψm

τ − τ0

[
1 + γm(τ − τ0)2 +

iσH

6
(τ − τ0)3 + · · ·

]
, (4.23)

where the real constants γm are given in (4.20)-(4.22).

At this point, we have found all six of the free constants in the series, namely K2, K3, H, τ0,

ψ1, and ψ2. Each of these constants is real, although later we discuss the possibility of allowing τ0 to

have a nonzero imaginary part, and thus extending our Laurent series solution to the nonexplosive

case. These constants are equivalent to the constants (3.69) that arise in the Weierstrass solution.

The series solution (4.23) is complete once we determine all remaining terms in the series.

We write the full series solution am(τ) more succinctly as

am(τ) =
eiψm

ξ

∞∑
n=0

Amn ξ
n, (4.24)

where ξ = τ − τ0, and we observe that d/dτ = d/dξ. Moreover, a comparison with (4.23) tells us

that

Am0 = 1, Am1 = 0, Am2 = γm, and Am3 =
iσH

6
, (4.25)

for m = 1, 2, 3, and with γm defined in (4.20)-(4.22).

In order to determine Amn for n ≥ 4, we start as usual by substituting (4.24) into (4.2). The

left-hand side becomes

dam
dτ

=
eiψm

ξ2

[
−Am0 +Am2 ξ

2 + 2Am3 ξ
3 + 3Am4 ξ

4 + 4Am5 ξ
5 + · · ·

]
=
eiψm

ξ2

∞∑
n=0

(n− 1)Amn ξ
n.

Likewise, the product a∗ka
∗
` on the right-hand side is given by

a∗ka
∗
` =

e−i(ψk+ψ`)

ξ2

[
Ak∗0 A

`∗
0 +

(
Ak∗0 A

`∗
1 +Ak∗1 A

`∗
0

)
ξ +

(
Ak∗0 A

`∗
2 +Ak∗1 A

`∗
1 +Ak∗2 A

`∗
0

)
ξ2 + · · ·

]
=
e−i(ψk+ψ`)

ξ2

∞∑
n=0

n∑
p=0

Ak∗p A
`∗
n−p ξ

n.
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We substitute the expansions of the right and left-hand sides into (4.2), multiply both sides

by ξ2, and use the fact that eiΨ = −σ (where in the explosive case, σ = σm for m = 1, 2, 3). It

follows that at O(ξn), we obtain

(n− 1)Amn = −
n∑
p=0

Ak∗p A
`∗
n−p.

Note that if n = 0, 1, 2 or 3, then we obtain equations (4.6), (4.9), (4.11), and (4.13), respectively.

Now if we also use the fact that Am0 = 1 for m = 1, 2, 3, then we are left with

(n− 1)Amn +Ak∗n +A`∗n = −
n−1∑
p=1

Ak∗p A
`∗
n−p. (4.26)

We can use (4.26) to determine all remaining terms in the series (4.23). In particular, we can

write (4.26) as the following linear system

n− 1 0 0 0 1 1

0 n− 1 0 1 0 1

0 0 n− 1 1 1 0

0 1 1 n− 1 0 0

1 0 1 0 n− 1 0

1 1 0 0 0 n− 1





A1
n

A2
n

A3
n

A1∗
n

A2∗
n

A3∗
n


=



b1n

b2n

b3n

b1∗n

b2∗n

b3∗n


, (4.27)

where

bmn = −
n−1∑
p=1

Ak∗p A
`∗
n−p. (4.28)

The determinant of the matrix in (4.27) is given by

D = n2(n+ 1)(n− 2)2(n− 3).

Thus, the system has a unique solution if n 6= −1, 0, 2, 3, which explains why we obtained free

constants for n = 0, 2, 3. We already know Amn for n = 0, 1, 2, 3 from (4.25), so we use (4.27) to

determine Amn for n ≥ 4 and for m = 1, 2, 3.

To summarize, we have determined that the general solution of the three-wave ODEs in the

explosive regime is given by

am(τ) =
eiψm

ξ

∞∑
n=0

Amn ξ
n, (4.29)
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where ξ = τ − τ0 and the series coefficients are given by

Am0 = 1, Am1 = 0, Am2 = γm, Am3 =
iσH

6
, (4.30)

where γm is defined in (4.20)-(4.22), and

(n− 1)Amn +Ak∗n +A`∗n = −
n−1∑
p=1

Ak∗p A
`∗
n−p, n ≥ 4. (4.31)

We refer to (4.29)-(4.31) as the formal Laurent series solution of the three-wave ODEs, where the

modifier “formal” is removed once convergence of the series is proven in Chapter 5. Note that the

solution contains six real free constants,

{K2,K3, H, ψ1, ψ2, τ0} . (4.32)

These constants are equivalent to those in (3.69).

4.2.1 Equivalence of solutions

Since both the Laurent series solution in (4.29)-(4.31) and the Weierstrass solution in (3.54)

and (3.60) satisfy the three-wave ODEs (4.2), and each contains six free constants, it follows that

they both describe the general solution of the ODEs. A standard result in complex variables states

that a meromorphic function has a Laurent series in a deleted neighborhood of each of its poles. The

radius of convergence of the series is the distance between the pole at the center of the expansion,

and the nearest singularity. Moreover, within the radius of convergence of the series, the function

is defined by its Laurent series [1]. As a result, if we can show that the Laurent series solution in

(4.29)-(4.31) has a nonzero radius of convergence, then it follows that the Laurent series solution

equals the Weierstrass solution inside that region. We show that the Laurent series has a nonzero

radius of convergence in Section 4.3. For now, however, we give some motivation for why the two

general solutions are equivalent. To that end, we expand the Weierstrass solution about τ = τ0

and show that we obtain the first few terms of the Laurent series solution.

We require the Laurent series expansion of ℘(ξ; g2, g3), where ξ = τ − τ0. From [17, §23.9],
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we have

℘(ξ; g2, g3) =
1

ξ2
+

∞∑
n=2

cnξ
2n−2, (4.33)

where c2 = g2/20, c3 = g3/28, and cn is determined by

cn =
3

(2n+ 1)(n− 3)

n−2∑
j=2

cjcn−j , n ≥ 4.

We restrict our attention to the explosive case, so that σ1 = σ2 = σ3 = σ and τ0 ∈ R. It

follows from (3.54) that |am(τ)|2 can be expanded as

|am(τ)|2 = ℘(ξ; g2, g3) + σCm

=
1

ξ2
+
∞∑
n=2

cnξ
2n−2 + σCm

=
1

ξ2

[
1 + σCmξ

2 + c2ξ
4 + c3ξ

6 + c4ξ
8 + · · ·

]
, (4.34)

where Cm is defined in (3.55)-(3.57).

In order to determine |am(τ)|, we take a square root of the series above using the binomial

expansion, (1 + z)1/2 = 1 + z
2 −

z2

8 + · · · . This yields

|am(τ)| = 1

|ξ|

[
1 +

Cm
2
ξ2 +

(
−C

2
m

8
+
c2

8

)
ξ4 +

(
C3
m

16
− Cmc2

4
+
c3

2

)
ξ6 + · · ·

]
. (4.35)

Next, we consider ϕm(τ) in (3.60). First, we need to expand 1/|am(τ)|2. From (4.34), we

obtain

1

|am(τ)|2
= ξ2

[
1− Cmz2 + (C2

m − c2)ξ4 + (2Cmc2 − c3 − c3
1)z6 + · · ·

]
,

where we used (1 + z)−1 = 1− z + z2 − z3 + · · · . Then from (3.60), we have

ϕm(τ) =
σH

2

∫ τ

τi

1

|am(τ)|2
dt+ ϕm(τi)

=
σH

2

∫ τ

τi

(t− τ0)2
[
1− Cm(t− τ0)2 + (C2

m − c2)(t− τ0)4 + · · ·
]
dt+ ϕm(τi)

=
σH

2

[
1

3
ξ3 − Cm

5
ξ5 +

C2
m − c2

7
ξ7 + · · ·

]
+ Fm,

where Fm incorporates all the constant terms, namely

Fm = ϕm(τi)−
σH

2

[
1

3
(τi − τ0)3 − Cm

5
(τi − τ0)5 +

C2
m − c2

7
(τi − τ0)7 + · · ·

]
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for m = 1, 2, 3. Note that since Fm involves the free constants ϕ1(τi) and ϕ2(τi) for m = 1 and 2,

respectively, we can assume that F1 and F2 are free constants, and F3 is determined.

Since am(τ) = |am(τ)|eiϕm(τ), we also need the expansion of eiϕm(τ). To that end, we write

eiϕm(τ) = exp (iFm) exp

(
iσH

2

[
1

3
ξ3 − Cm

5
ξ5 +

C2
m − c2

7
ξ7 + · · ·

])
.

Then since eiz = 1 + iz − z2

2 −
iz3

6 + · · · , we have

eiϕm(τ) = eiFm
[
1 +

iσH

6
ξ3 − iσHCm

10
ξ5 − H2

72
ξ6 + · · ·

]
. (4.36)

Finally, we put (4.35) and (4.36) together to obtain

am(τ) = |am(τ)| eiϕm(τ)

=
1

|ξ|

[
1 +

Cm
2
ξ2 +

iσH

6
ξ3 +

(
−C

2
m

8
+
c2

2

)
ξ4 + · · ·

]
.

Substituting from the definition of Cm in (3.55)-(3.57) and the definition of g2 in (3.45), we find

that

am(τ) =
eiFm

|ξ|

[
1 + γmξ

2 +
iσH

6
ξ3 +

(
−γ

2
m

2
+
g2

40

)
ξ4 + · · ·

]
. (4.37)

A quick comparison of (4.37) with (4.23) shows that the first three terms of the series agree if

we let Fm = ψm (this is allowed since both are free constants). Indeed, if we compute further terms

in (4.23) using (4.29)-(4.30), we find that the ξ4 term also agrees. This is a convincing argument,

though not a proof, that the Laurent series solution and the Weierstrass solution are equivalent.

Next, we show that the Laurent series converges, and therefore it must equal the Weierstrass

solution within its radius of convergence.

4.3 Convergence of solutions

In this section, we briefly discuss where the general solution of the three-wave ODEs con-

verges. The computation is trivial for the ODEs, but we discuss it here since it becomes important

when determining where the general solution of the three-wave PDEs converges.

First, consider the Weierstrass solution described in (3.54) and (3.60). We know where the

Weierstrass solution converges because its behavior is well understood. In particular, we know that
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the radius of convergence of the Weierstrass solution is the smallest distance between any two poles.

Let λ1 and λ2 be the half-periods of ℘(τ − τ0; g2, g3), where g2 and g3 are defined in (3.45)-(3.46).

Then from (3.54), the radius of convergence of |am(τ)|2 for m = 1, 2, 3 is given by

RODE = min {2|λ1|, 2|λ2|}. (4.38)

We showed in Section 4.2.1 that eiϕm(τ) does not have any poles, thus am(τ) converges whenever

|am(τ)| converges. As a result, (4.38) defines the radius of convergence of the general solution of

the three-wave ODEs.

An alternative approach is to compute the radius of convergence using the Laurent series

solution. In this case, we simply apply the ratio test to determine where the solution converges.

That is, we can see from (4.29) that the series for am(τ) converges when

lim
n→∞

∣∣∣∣Amn+1 ξ
n+1

Amn ξ
n

∣∣∣∣ < 1,

where ξ = τ − τ0. It follows that the radius of convergence of the Laurent series solution is given

by

RODE =

(
lim
n→∞

∣∣∣∣Amn+1

Amn

∣∣∣∣)−1

, (4.39)

as long as the limit exists. In this case, (4.38) and (4.39) produce the same number. Moreover,

we know a priori that the radius of convergence of the Laurent series is the distance between the

pole at the center of the expansion and the nearest singularity, so the radius must be equal to the

radius in (4.38), which is the smallest distance between any two poles. Since the Laurent series has

a nonzero radius of convergence, it equals the Weierstrass solution in the region where the series

converges. This is interesting because the Weierstrass solution incorporates both the explosive and

the nonexplosive cases, while the Laurent series solution was derived for solutions in the explosive

regime. This suggests that we can extend the Laurent series solution in (4.29)-(4.31) to allow for

bounded, periodic solutions. In particular, we can choose the imaginary part of τ0 to be nonzero in

order to force the Laurent series solutions along the real axis to be bounded. The choice of Im (τ0),

however, must be chosen by looking at the discriminant of the corresponding Weierstrass solution,
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as outlined in Section 3.6. We discuss the restrictions of the nonexplosive case in more detail in

Section 4.4.

4.4 The nonexplosive case

Constructing the Laurent series general solution of the three-wave ODEs in the nonexplosive

regime poses some difficulties, which we touched upon in Section 4.2. Here, we go into more

detail. In particular, we construct some solutions of the three-wave ODEs in the nonexplosive case,

although our analysis is not rigorous.

Typically, we pose a series solution of the three-wave ODEs of the form (4.5),

am(τ) =
1

τ − τ0

[
αm + βm(τ − τ0) + γm(τ − τ0)2 + δm(τ − τ0)3 + · · ·

]
, (4.40)

where αm, βm, γm, and δm are complex constants for m = 1, 2, 3, and τ is real. In the nonexplosive

regime, it is assumed that the imaginary part of τ0 is nonzero, so that the pole lies off the real axis.

As a result, substituting (4.40) into the three-wave ODEs (4.2) yields

1

(τ − τ0)2

{
−αm + γm (τ − τ0)2 + 2δm (τ − τ0)3 + · · ·

}
=

σm
(τ − τ∗0 )2

{
α∗kα

∗
` + (α∗kβ

∗
` + α∗`β

∗
k) (τ − τ∗0 ) + (β∗kβ

∗
` + α∗kγ

∗
` + α∗`γ

∗
k) (τ − τ∗0 )2

+ (α∗kδ
∗
` + α∗`δ

∗
k + β∗kγ

∗
` + β∗` γ

∗
k) (τ − τ∗0 )3 + · · ·

}
.

It is not possible to solve the equation order by order for the unknown coefficients because the

(τ − τ0) terms on the left-hand side do not match the (τ − τ∗0 ) terms on the right-hand side. Note

that this problem does not exist in the explosive case, in which τ0 is real and τ∗0 = τ0.

In order to motivate a series solution in the nonexplosive case, we consider the Jacobian elliptic

functions. Elliptic functions in general are described at the start of Section 3.4. In particular, Jacobi

elliptic functions have simple poles at lattice points, while Weierstrass elliptic functions have double

poles at lattice points. Jacobi elliptic functions are defined as inverses of the elliptic integral of the

first kind,

u = F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

. (4.41)
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There are twelve Jacobi elliptic functions, but we deal primarily with the three defined via

sn (u; k) = sinφ, cn (u; k) = cosφ, and dn (u; k) =

√
1− k2 sin2 φ. (4.42)

[16, Ch. 6]. The parameter k is known as the elliptic modulus.

The functions in (4.42) satisfy the identities

sn 2(u; k) + cn 2(u; k) = 1 and k2sn 2(u; k) + dn 2(u; k) = 1. (4.43)

The functions also satisfy the following coupled nonlinear ODEs,

d

du
snu = cnu dnu, (4.44)

d

du
cnu = −snudnu, (4.45)

d

du
dnu = −k2snu cnu. (4.46)

These ODEs look somewhat similar to the three-wave ODEs due to the nonlinear products on the

right-hand side. Indeed, define

S(u; k) = k sn (u; k), C(u; k) = k cn (u; k), and D(u; k) = dn (u; k). (4.47)

Then (4.44)-(4.46) become

d

du
S(u) = C(u)D(u), (4.48)

d

du
C(u) = −S(u)D(u), (4.49)

d

du
D(u) = −S(u)C(u). (4.50)

At this point, (4.48)-(4.50) look like the three-wave ODEs when σ1 = −σ2 = −σ3 = 1, but with

no conjugates on the right-hand side. However, if k ∈ [0, 1], then the Jacobi elliptic functions are

real-valued along the real u-axis [17, §22.2]. That is, if k ∈ [0, 1], then S(u) = S∗(u), C(u) = C∗(u),

and D(u) = D∗(u) for real u. As a result, along the real u-axis, we have

d

du
S(u) = C∗(u)D∗(u), (4.51)

d

du
C(u) = −S∗(u)D∗(u), (4.52)

d

du
D(u) = −S∗(u)C∗(u). (4.53)
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A comparison with the three-wave ODEs in (4.2) shows that that S(u), C(u), and D(u) satisfy

the three-wave equations for real u in the nonexplosive regime, where {σ1, σ2, σ3} are not all equal.

Moreover, the identities (4.43) in terms of S(u), C(u), and D(u) become

S2(u) + C2(u) = k2 and S2(u) +D2(u) = 1. (4.54)

Let τ = u and define

a1(τ) = S(τ), a2(τ) = C(τ), and a3(τ) = D(τ).

Then (4.51)-(4.53) constitute the three-wave ODEs for real τ with σ1 = −σ2 = −σ3 = 1. Fur-

thermore, with these values, the identities in (4.54) are equivalent to the Manley-Rowe relations in

(2.30)-(2.31) with K2 = k2 and K3 = 1.

We have now found a family of solutions of the three-wave ODEs in the nonexplosive regime.

Next, we want to use the Laurent series expansions of S(u), C(u), and D(u) in order to predict

the form we should pick for am(τ), m = 1, 2, 3, in the nonexplosive case. It is known that sn (u; k),

cn (u; k), and dn (u; k) have poles at u = ±iK ′ and u = 2K ± iK ′, where K is the complete elliptic

integral of the first kind, defined using (4.41) as

K = K(k) = F (π/2, k)

[17, §22.4]. Furthermore, K ′ is defined by

K ′ = K ′(k) = K(k′), where k′ =
√

1− k2.

Note that K ′(k) 6= dK/dk. Additionally, notice that other poles occur on a rectangular periodic

lattice outside of ±iK ′ and 2K ± iK ′. This is consistent with our findings in Section 3.6; in par-

ticular, we determined in Section 3.6 that the Weierstrass general solution of the three-wave ODEs

must possess a rectangular lattice of poles in order for the solution to apply to the nonexplosive

regime.

Suppose u0 is one of the poles of sn (u; k), cn (u; k), and dn (u; k). For example, suppose that

u0 = iK ′. It is straightforward to determine the first few terms of the Laurent series of sn (u; k),



76

cn (u; k), and dn (u; k) about u = u0 by subsituting an expression of the form (4.5) into (4.44)-

(4.46) and solving the resulting equations order by order. Following this procedure, we find that

the beginning of the Laurent series of sn (u; k), cn (u; k), and dn (u; k) about u = u0 are given by

sn (u; k) =
1

ζ

[
1

k
+

1 + k2

6k
ζ2 +

1

360k

(
7− 22k2 + 7k4

)
ζ4 +O(ζ6)

]
, (4.55)

cn (u; k) =
1

ζ

[
− i
k

+
i(2k2 − 1)

6k
ζ2 +

i

360k

(
−7− 8k2 + 8k4

)
ζ4 +O(ζ6)

]
, (4.56)

dn (u; k) =
1

ζ

[
−i− i(k2 − 2)

6
ζ2 − i

360

(
−8 + 8k2 + 7k4

)
ζ4 +O(ζ6)

]
, (4.57)

where ζ = u−u0. It follows from (4.47) that the series expansions for S(u; k), C(u; k), and D(u; k)

are given by

S(u; k) =
1

ζ

[
1 +

1 + k2

6
ζ2 +

1

360

(
7− 22k2 + 7k4

)
ζ4 +O(ζ6)

]
, (4.58)

C(u; k) =
1

ζ

[
−i+

i(2k2 − 1)

6
ζ2 +

i

360

(
−7− 8k2 + 8k4

)
ζ4 +O(ζ6)

]
, (4.59)

D(u; k) =
1

ζ

[
−i− i(k2 − 2)

6
ζ2 − i

360

(
−8 + 8k2 + 7k4

)
ζ4 +O(ζ6)

]
. (4.60)

We know that S(u), C(u), and D(u) satisfy (4.51)-(4.53) along the real axis by construction.

Consider, for example, the evolution equation for S(u) in (4.51). If we substitute (4.58)-(4.60) into

(4.51) and simplify, we obtain

1

ζ2

[
−1 +

1 + k2

6
ζ2 +

1

120

(
7− 22k2 + 7k4

)
ζ4 +O(ζ6)

]
=

1

(ζ∗)2

[
−1 +

1 + k2

6
(ζ∗)2 +

1

120

(
7− 22k2 + 7k4

)
(ζ∗)4 +O((ζ∗)6)

]
, (4.61)

where ζ∗ = u−u∗0. Observe that the right and left-hand sides are only equal term by term if ζ = ζ∗.

This is impossible, however, since Im (u0) 6= 0. Similarly, we know that S(u), C(u), and D(u) are

real along the real axis by construction, yet (4.58)-(4.60) show that the Laurent series expansions

of these functions are clearly not real along the real axis on a term by term basis. We need to

resolve this issue before we can proceed.

Recall that a function f(z) equals its Laurent series within the radius of convergence of the

series, except at the singularity itself. In the case of S(u), C(u), and D(u), it can be shown that the
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region of convergence of their Laurent series intersects the real axis for many k-values, although

this is beyond the scope of the thesis. Consequently, for at least some k and some portion of

the real axis, the infinite series represented by (4.58)-(4.60) must be real-valued. Although the

series are not real term-by-term, it turns out that as the number of terms in the series approaches

infinity, the imaginary part of the series goes to zero. In particular, numerical evidence suggests

that the number of zeros of the imaginary part of the series increases approximately linearly with

the number of terms in the series, although we have not proved this result.

This motivates us to look for solutions of the three-wave ODEs in the nonexplosive regime

of the form

am(τ) = eiψmTm(τ), (4.62)

where

Tm(τ) =
1

τ − τ0

[
αm + βm(τ − τ0) + γm(τ − τ0)2 + δm(τ − τ0)3 + · · ·

]
.

In particular, we assume that τ0 is complex, and that Tm(τ) is a real-valued function for real τ .

First, suppose that Im (τ0) = K ′± 2nK ′, n ∈ Z, so that τ0 is a pole of sn (τ ; k), cn (τ ; k), and

dn (τ ; k), and that T1(τ) = S(τ), T2(τ) = C(τ), and T3(τ) = D(τ). In this case, substituting into

the three-wave ODEs and using the fact that Tm(τ) = T ∗m(τ) for m = 1, 2, 3 yields

eiψm
dTm
dτ

= σme
−i(ψj+ψ`)TjT`,

where (j, `,m) = (1, 2, 3) cyclically. If σ1 = −σ2 = −σ3 = 1, then the three-wave ODEs are satisfied

by am(τ) in (4.62) as long as

ψ1 + ψ2 + ψ3 = 2nπ, (4.63)

where n is an integer. Recall that the Manley-Rowe constants are K2 = k2 and K3 = 1 in this case,

where k is the elliptic modulus. Notice that with am(τ) defined in (4.62), we are allowing am(τ),

m = 1, 2, 3, to be complex-valued along the real axis due to the phase eiψm . However, the series

portion of am(τ) is still assumed to be real. Finally, note that we can add any real number to τ0,

and am(τ) will still satisfy the three-wave ODEs for m = 1, 2, 3.



78

To summarize, we have

am(τ) = eiψmTm(τ), (4.64)

where

Tm(τ) =
1

ξ

∞∑
n=0

Am2nξ
2n, (4.65)

ξ = τ − τ0, and Tm(τ) is real (though any truncated version of Tm(τ) is not real). The first two

coefficients for each m are given by

A1
0 = −1 A1

2 =
1 + k2

6
,

A2
0 = −i A2

2 =
i(2k2 − 1)

6
,

A3
0 = −i A3

2 = − i(k
2 − 2)

6
,

and the remaining coefficients are determined by

(2n− 1)Am2n +A`0A
k
2n +Ak0A

`
2n = σm

n−1∑
p=1

Ak2pA
`
2(n−p), n ≥ 3, (4.66)

where σ1 = −σ2 = −σ3 = 1. Note that the definition of H in (3.5) implies that H = 0 in this case.

Additionally, note that although the imaginary part of τ0 is fixed at Im (τ0) = K ′ ± 2nK ′, n ∈ Z,

we are still free to choose Re (τ0). This leaves us with four free real constants,

{k, ψ1, ψ2,Re (τ0)} ,

with ψ3 determined via (4.63). Equations (4.64)-(4.66) constitute a four parameter family of

solutions of the three-wave ODEs in the nonexplosive regime. It is not a fully general solution,

which would require six free constants, but it is close.

So far in this section, we have used the Jacobi elliptic functions to derive a family of solutions

of the three-wave ODEs in the nonexplosive regime. Alternatively, suppose we formally pose the

expansion in (4.62) with the assumption that τ0 is complex-valued (but so far unknown). Again,

we assume that Tm(τ) is real-valued for real τ . Finally, without loss of generality, assume that we

are in the nonexplosive regime with σ1 = −σ2 = −σ3 = 1. Substituting (4.62) into the three-wave
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ODEs and the Manley-Rowe relations yields the following,

am(τ) = eiψmTm(τ), where Tm(τ) =
αm
ξ

∞∑
n=0

Am2nξ
2n. (4.67)

In (4.67), we have that ψ1 + ψ2 + ψ3 = 2nπ, α1 = 1, α2 = α3 = −i, Am0 = 1 for m = 1, 2, 3, and

A1
2 =

K2 +K3

6
, A2

2 =
K3 − 2K2

6
, and A2

3 =
K2 − 2K3

6
. (4.68)

The remaining coefficients in (4.67) are determined by the recursion

(2n− 1)Am2n +Ak2n +A`2n = −
n−1∑
p=1

Ak2pA
`
2(n−p), (4.69)

for n ≥ 3. Again, note that the definition of H in (3.5) implies that H = 0 in this case.

The coefficients Am2 are the same as (4.20)-(4.22). Additionally, the coefficients Am2n in (4.67)

are the same as those in (5.24) in the case where H = 0 (see, for example, equations (5.146)-(5.147),

page 131). Furthermore, if we write αm in exponential form for m = 1, 2, 3, then we can rewrite

(4.67) as

a1(τ) =
eiψ1

ξ

∞∑
n=0

A1
2nξ

2n, aj(τ) =
ei(ψj−π/2)

ξ

∞∑
n=0

Aj2nξ
2n,

where j = 2, 3. Then the sum of the phases becomes ψ1 + ψ2 + ψ3 − π = (2n− 1)π, using the fact

that ψ1 + ψ2 + ψ3 = 2nπ. This recovers (4.7), since σ = 1 when σ1 = −σ2 = −σ3 = 1. It follows

that (4.67)-(4.69) are equivalent to the Laurent series expansion we derived in (4.29)-(4.31) when

H = 0. Moreover, if we set K2 = k2 and K3 = 1, it is straightforward to show that we recover

T1(τ) = S(τ), T2(τ) = C(τ), and T3(τ) = D(τ), where the expansions for S(τ), C(τ), and D(τ) are

given in (4.58)-(4.60), respectively.

Next, notice that when H = 0, the discriminant in (3.68) becomes

∆ = K2
2K

2
3 (K2 −K3)2. (4.70)

Recall from Section 3.6 that when ∆ < 0, we are restricted to the nonexplosive regime, while when

∆ > 0, we can obtain both the explosive and the nonexplosive cases. When H = 0, it is clear from

(4.70) that the discriminant is nonnegative. As a result, as long as K2,K3 6= 0 and K2 6= K3, we
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can always obtain a nonexplosive solution of the three-wave ODEs when H = 0. Note that it is

possible to have ∆ > 0 when H 6= 0, but this case is not covered by (4.67)-(4.69).

Finally, we need to know whether Im (τ0) can be chosen arbitrarily. Unsurprisingly, it turns

out that Im (τ0) must be chosen carefully. In particular, given K2 and K3, the elliptic invariants g2

and g3 must be computed using (3.45)-(3.46). Then the half-periods λ1 and λ2 of the associated

Weierstrass function can be calculated. For the rectangular lattice generated by K2 and K3, we

know that λ1 is real, while λ2 is pure imaginary. Consequently, we must choose

Im (τ0) = |λ2| ± 2n|λ2|, n ∈ Z.

We are then able to choose Re (τ0) freely.

To summarize again, we hypothesize that the Laurent series solution of the three-wave ODEs

defined in (4.29)-(4.31) applies to the nonexplosive case at least under the following conditions

(1) H = 0

(2) Im (τ0) = |λ2| ± 2n|λ2|, n ∈ Z, where λ2 is the imaginary half period of the Weierstrass

function associated with a given choice of K2 and K3.

We also assume that σ1 = −σ2 = −σ3 = 1, although this restriction can be relaxed to allow for

any nonexplosive configuration of {σ1, σ2, σ3}. Note that this nonexplosive solution constitutes a

five parameter family of solutions, with free constants

{K2,K3, ψ1, ψ2,Re (τ0)}.

There are some small additional restrictions on Im (τ0) that have to do with the radius of conver-

gence of the series solution. Specifically, if K2 and K3 (and the value of Im (τ0) that they generate)

are such that the radius of convergence of the solution does not include any part of the real axis,

then we are not guaranteed that the solution is real anywhere along the real axis.



Chapter 5

The Three-Wave PDEs

In the previous chapter, we showed how to construct the general solution of the three-wave

ODEs in terms of a Laurent series using Painlevé analysis. In this chapter, we extend the solution

techniques of the previous chapter in order to construct a near-general solution of the three-wave

PDEs. In particular, we construct the solution of the PDEs using a formal Laurent series in time.

We then make the solution rigorous under certain conditions by showing that the series is convergent

in some region of the complex τ -plane.

5.1 A near-general solution

Recall the three-wave PDEs in (2.5). For simplicity, we restrict our attention in what follows

to a single spatial dimension, although this restriction can be easily lifted. Our method of solution

does not change if we increase the number of spatial dimensions.

The three-wave PDEs in one spatial dimension are given below,

∂am
∂τ

+ cm
∂am
∂x

= σma
∗
ka
∗
` , (5.1)

where (k, `,m) = (1, 2, 3) cyclically, am = am(x, τ), cm is the group velocity corresponding to mode

am, and σm = ±1 for m = 1, 2, 3. In order to construct the general solution of the three-wave

PDEs in (5.1), we take advantage of the structure of the general solution of the three-wave ODEs.

In particular, we attempt to construct a solution of the PDEs that is similar to (4.29)-(4.31), the

Laurent series general solution of the ODEs. To do so, we follow a procedure similar to that outlined

in Section 4.2.
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Recall that for the series solution of the ODEs, we looked for six real, free constants since

the ODEs constitute six real-valued equations. For the series solution of the PDEs, however, we

look for free functions of x, rather than constants. A fully general solution of the PDEs would

contain six such functions, but we find five free functions of x and one free constant. For this

reason, we refer to our solution of the three-wave PDEs as a “near-general” solution. In particular,

currently we do not allow the center of our expansion, the pole τ = τ0, to depend on x. Whether

this constraint can be eliminated is an open question.

First of all, we assume that there is a simple pole at τ = τ0, with τ0 ∈ R, and that as τ → τ0,

am(x, τ) ∼ αm(x)

τ − τ0
, (5.2)

where αm(x) is to be determined. The postulation above is analagous to (4.3). Substituting into

(5.1) yields, for real τ ,

− αm(x)

(τ − τ0)2
+ cm

α′m(x)

τ − τ0
= σm

α∗k(x)α∗` (x)

(τ − τ0)2
, (5.3)

where the prime denotes a derivative with respect to x. Notice that the spatial derivative term is

less singular than the other terms in (5.3). As a result, the leading order behavior of the three-wave

PDEs is the same as the leading order behavior of the three-wave ODEs; this motivates us to use

the structure of the ODEs to build a solution of the PDEs. At leading order we have

− αm(x)

(τ − τ0)2
= σm

α∗k(x)α∗` (x)

(τ − τ0)2
,

which is equivalent to (4.4) with p = 1.

On the other hand, suppose we try to introduce spatial dependence into τ0 by posing a

solution of the form

am(x, τ) ∼ αm(x)

τ − τ0(x)

for τ near τ0(x). Then substituting into (5.1) yields

− αm(x)

(τ − τ0(x))2 + cm

(
α′m(x)

τ − τ0(x)
+
αm(x)τ ′0(x)

(τ − τ0(x))2

)
= σm

α∗k(x)α∗` (x)

(τ − τ0(x))2 .

We can see that part of the spatial derivative term is as singular as the temporal derivative term and

the nonlinear product on the right-hand side. In this case, the dominant behavior of the three-wave
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PDEs does not match the dominant behavior of the three-wave ODEs. This means it no longer

makes sense to use the structure of the three-wave ODEs in order to predict the solution of the

PDEs. For this reason, we assume the dominant behavior of solutions of the three-wave PDEs is

given by (5.2). In particular, we assume that τ0 is independent of x, and accept the restriction that

the solution we derive is not fully general.

We now pose the following series solution of the three-wave PDEs, comparable to (4.5),

am(x, τ) =
1

τ − τ0

[
αm(x) + βm(x)(τ − τ0) + γm(x)(τ − τ0)2 + δm(x)(τ − τ0)3 + · · ·

]
, (5.4)

where αm(x), βm(x), γm(x), and δm(x) are complex-valued functions for m = 1, 2, 3, and τ0 is real.

Substituting (5.4) into (5.1) yields

1

(τ − τ0)2

{
− αm(x) + γm(x) (τ − τ0)2 + 2δm(x) (τ − τ0)3 + · · ·

}
+

cm
(τ − τ0)2

{
α′m(x)(τ − τ0) + β′m(x)(τ − τ0)2 + γ′m(x)(τ − τ0)3 + · · ·

}
=

σm
(τ − τ0)2

{
α∗k(x)α∗` (x) + [α∗k(x)β∗` (x) + α∗` (x)β∗k(x)] (τ − τ0)

+ [β∗k(x)β∗` (x) + α∗k(x)γ∗` (x) + α∗` (x)γ∗k(x)] (τ − τ0)2

+ [α∗kδ
∗
` (x) + α∗` (x)δ∗k(x) + β∗k(x)γ∗` (x) + β∗` (x)γ∗k(x)] (τ − τ0)3 + · · ·

}
,

where we assume that τ ∈ R.

At lowest order, we find that

−αm(x) = σmα
∗
k(x)α∗` (x), (5.5)

which is the same as (4.6) since the three-wave ODEs and PDEs have the same dominant behavior

at leading order. As a result, we know that (5.5) has a solution when σ1 = σ2 = σ3, the explosive

regime. This is consistent with our assumption that τ0 ∈ R. In fact, for the remainder of this

chapter, assume that we are restricted to the explosive regime unless otherwise stated.

The solution to (5.5) is given by

αm(x) = eiψm(x),
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where ψm(x) is a real function of x for m = 1, 2, 3, satisfying

Ψ(x) ≡ ψ1(x) + ψ2(x) + ψ3(x) =

 2nπ, σ = −1

(2n+ 1)π, σ = 1.

(5.6)

In particular, we observe that two of {ψ1(x), ψ2(x), ψ3(x)} are real, free functions of x, while the

third is determined by (5.6). It remains to find the last three free functions.

Next, for simplicity, we rewrite (5.4) as follows

am(x, τ) =
eiψm(x)

τ − τ0

[
1 + βm(x)(τ − τ0) + γm(x)(τ − τ0)2 + δm(x)(τ − τ0)3 + · · ·

]
, (5.7)

where βm(x), γm(x), and δm(x) are complex-valued functions of x that differ from those in (5.4)

by a factor of eiψm(x). When we substitute (5.7) into (5.1), we obtain

eiψm(x)

(τ − τ0)2

{
− 1 + γm(x) (τ − τ0)2 + 2δm(x) (τ − τ0)3 + · · ·

}
+
cm e

iψm(x)

(τ − τ0)2

{
iψ′m(τ − τ0) + (iψ′m βm + β′m)(τ − τ0)2 + (iψ′m γm + γ′m)(τ − τ0)3 + · · ·

}
=
σ e−i(ψk(x)+ψ`(x))

(τ − τ0)2

{
1 + [β∗` (x) + β∗k(x)] (τ − τ0) + [β∗k(x)β∗` (x) + γ∗` (x) + γ∗k(x)] (τ − τ0)2

+ [δ∗` (x) + δ∗k(x) + β∗k(x)γ∗` (x) + β∗` (x)γ∗k(x)] (τ − τ0)3 + · · ·
}
,

where the primes denote derivatives with respect to x, and we used the fact that we are now

in the explosive regime, so that σm can be replaced with σ. Finally, we multiply both sides by

(τ − τ0)2ei(ψk(x)+ψ`(x)) and use eiΨ(x) = −σ to find that

− γm(x) (τ − τ0)2 − 2δm(x) (τ − τ0)3 + · · ·

− cm
{
iψ′m(τ − τ0) + (iψ′m βm + β′m)(τ − τ0)2 + (iψ′m γm + γ′m)(τ − τ0)3 + · · ·

}
= [β∗` (x) + β∗k(x)] (τ − τ0) + [β∗k(x)β∗` (x) + γ∗` (x) + γ∗k(x)] (τ − τ0)2

+ [δ∗` (x) + δ∗k(x) + β∗k(x)γ∗` (x) + β∗` (x)γ∗k(x)] (τ − τ0)3 + · · · .

At order (τ − τ0), we must solve

−icmψ′m(x) = β∗k(x) + β∗` (x), (5.8)
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The solution for βm(x) is unique, and is given by

βm(x) =
i

2

[
ckψ

′
k(x) + c`ψ

′
`(x)− cmψ′m(x)

]
, (5.9)

where (k, `,m) = (1, 2, 3) are defined cyclically. Note that βm(x) is pure imaginary for m = 1, 2, 3.

Additionally, notice that if the phases ψm(x) are independent of x, then βm(x) = 0. This is

comparable to what we found at first order for the series solution of the three-wave ODEs in (4.10).

At order (τ − τ0)2, we have

−γm(x)− cm
[
iψ′m(x)βm(x) + β′m(x)

]
= β∗k(x)β∗` (x) + γ∗` (x) + γ∗k(x). (5.10)

The solution of (5.10) for γm(x) is not unique, so free constants arise at this order. In order to

solve (5.10), we break the equation into its real and imaginary parts. We find that the imaginary

part of γm(x) is uniquely determined to be

Im (γm(x)) =
1

4

[
cm(ck + c`)ψ

′′
m(x)− (ck − c`)

(
ck ψ

′′
k(x)− c` ψ′′` (x)

) ]
, (5.11)

where we substituted βm(x) from (5.9).

Conversely, the real part of γm(x) is not uniquely determined. However, we find that the

sum of the real parts of γm(x) for m = 1, 2, 3 satisfy

Re (γ1(x)) + Re (γ2(x)) + Re (γ3(x))

= −1

4

[
c2

1(ψ′1)2 + c2
2(ψ′2)2 + c2

3(ψ′3)2 − 2c1c2ψ
′
1ψ
′
2 − 2c1c3ψ

′
1ψ
′
3 − 2c2c3ψ

′
2ψ
′
3

]
. (5.12)

As a result, we can choose two of {Re (γ1(x)),Re (γ2(x)),Re (γ3(x))} independently, and the third

is determined by (5.12). Additionally, notice that if ψm(x) is independent of x for m = 1, 2, 3, then

(5.11)-(5.12) reduce to (4.12). In particular, if the phases have no x dependence, then Im (γm(x)) =

0 for m = 1, 2, 3, and (5.12) becomes

Re (γ1(x)) + Re (γ2(x)) + Re (γ3(x)) = 0.

Finally, at order (τ − τ0)3, we have

−2δm(x)− cm
[
iψ′m(x) γm(x) + γ′m(x)

]
= δ∗` (x) + δ∗k(x) + β∗k(x)γ∗` (x) + β∗` (x)γ∗k(x). (5.13)
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Again, (5.13) does not admit unique solutions. We split δm(x) into its real and imaginary parts

and discover that the real part of δm(x) is uniquely determined for m = 1, 2, 3. In particular, we

have

Re (δm(x))(x) =
1

8

{
2
[
ckRe (γ′k(x)) + c`Re (γ′`(x))

]
− 6cmRe (γ′m(x))

+ cmψ
′′
m

[
2cm(−cm + ck + c`)ψ

′
m + (cm − ck)ckψ′k + (cm − c`)c`ψ′`

]
+ ckψ

′′
k

[
2cm(cm − ck + c`)ψ

′
m + ck(ck − cm)ψ′k − c`(cm + c`)ψ

′
`

]
+ c`ψ

′′
`

[
2cm(cm + ck − c`)ψ′m − ck(cm + ck)ψ

′
k + c`(c` − cm)ψ′`

]}
, (5.14)

for (k, `,m) = (1, 2, 3) cyclically, where we reiterate that only two of {Re (γ1(x)),Re (γ2(x)),Re (γ3(x))}

are free functions, and the third is determined by (5.12).

The imaginary part of δk(x) for k = 1, 2 is given by

Im (δk(x))(x) = Im (δ3(x)) +
1

12

{
Re (γk(x))

[
−6ckψ

′
1(x) + 2c`ψ

′
2(x)− 2c3ψ

′
3(x)

]
+ Re (γ`(x))

[
4ckψ

′
1(x)− 4c3ψ

′
3(x)

]
+ Re (γ3(x))

[
2ckψ

′
1(x)− 2c`ψ

′
2(x) + 6c3ψ

′
3(x)

]
− c1ψ

(3)
1 [c`c3 + ck(c` + 2c3)] + c2ψ

(3)
2 [ckc` − c3(2ck + c`)]

+ c3ψ
(3)
3 [c3(2ck + c`)− 3ckc`]

}
, (5.15)

where (k, `) = (1, 2) cyclically, and Im (δ3(x)) is a real, free function of x. Notice that if the phases

are independent of x, and if Re (γ2(x)) and Re (γ3(x)) are chosen to be constant, then (5.14)-(5.15)

reduce to (4.14).

At this point, we have found five free real functions in the formal Laurent series solution (5.7)

of the three-wave PDEs, as well as one free real constant. The free functions and constant are

{ψ1(x), ψ2(x),Re (γ1(x)),Re (γ2(x)), Im (δ3(x))} and Re (τ0). (5.16)

The series (5.7) is fully determined once we find all remaining terms in the series. To that

end, we write the series solution am(x, τ) more succinctly as

am(x, τ) =
eiψm(x)

ξ

∞∑
n=0

Amn (x)ξn, (5.17)



87

where ξ = τ − τ0, and we observe that ∂/∂τ = ∂/∂ξ. Moreover, a comparison with (4.23) tells us

that

Am0 (x) = 1, Am1 (x) = βm(x), Am2 (x) = γm(x), and Am3 (x) = δm(x), (5.18)

for m = 1, 2, 3, where βm(x) is given in (5.9), the imaginary and real parts of γm(x) are given in

(5.11) and (5.12), respectively, and the real and imaginary parts of δm(x) are given in (5.14) and

(5.15), respectively.

In order to determine Amn (x) for n ≥ 4, we start as usual by substituting (5.17) into (5.1).

The left-hand side becomes

∂am
∂τ

+ cm
∂am
∂x

=
eiψm

ξ2

[
−Am0 +Am2 ξ2 + 2Am3 ξ3 + 3Am4 ξ4 + 4Am5 ξ5 + · · ·

]
+ cm

eiψm

ξ2

[
(Am′0 + iψ′mAm0 )ξ + (Am′1 + iψ′mAm1 )ξ2 + (Am′2 + iψ′mAm2 )ξ3 + · · ·

]
=
eiψm

ξ2

[ ∞∑
n=0

(n− 1)Amn ξn + cm

∞∑
n=1

(
Am′n−1 + iψ′mAmn−1

)]
, (5.19)

while the product a∗ka
∗
` on the right-hand side is given by

a∗ka
∗
` =

e−i(ψk+ψ`)

ξ2

[
Ak∗0 A`∗0 +

(
Ak∗0 A`∗1 +Ak∗1 A`∗0

)
ξ +

(
Ak∗0 A`∗2 +Ak∗1 A`∗1 +Ak∗2 A`∗0

)
ξ2 + · · ·

]
=
e−i(ψk+ψ`)

ξ2

∞∑
n=0

n∑
p=0

Ak∗p A`∗n−p ξn. (5.20)

Note that we dropped the explicit x dependence of ψm(x) and Amn (x) for notational simplicity.

We substitute (5.19)-(5.20) into the three-wave PDEs in (5.1), multiply by ξ2ei(ψk+ψ`), and

use the fact that eiΨ = −σ. Then at order ξn, we obtain

(n− 1)Amn + cm

(
Am′n−1 + iψ′mAmn−1

)
= −

n∑
p=0

Ak∗p A`∗n−p, n ≥ 1.

Finally, we use the fact that Am0 (x) = 1 for m = 1, 2, 3 in order to rewrite the above equation as

(n−1)Amn (x)+Ak∗n (x)+A`∗n (x) = −cm
[
Am′n−1(x) + iψ′m(x)Amn−1(x)

]
−
n−1∑
p=1

Ak∗p (x)A`∗n−p(x). (5.21)

Notice that for n = 1, 2, 3, we obtain equations of the form (5.8), (5.10), and (5.13), respec-

tively. Additionally, equation (5.21) is analogous to the recursion relation (4.26) that defines the
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coefficients in the ODE series solution. In particular, (5.21) has an extra term on the right-hand

side of the recursion due to the spatial derivative term in the three-wave PDEs.

Finally, we can write (5.21) as a matrix equation of the form (4.27). We have

n− 1 0 0 0 1 1

0 n− 1 0 1 0 1

0 0 n− 1 1 1 0

0 1 1 n− 1 0 0

1 0 1 0 n− 1 0

1 1 0 0 0 n− 1





A1
n(x)

A2
n(x)

A3
n(x)

A1∗
n (x)

A2∗
n (x)

A3∗
n (x)


=



b1n(x)

b2n(x)

b3n(x)

b1∗n (x)

b2∗n (x)

b3∗n (x)


, (5.22)

where

bmn (x) = −cm
[
Am′n−1(x) + iψ′m(x)Amn−1(x)

]
−
n−1∑
p=1

Ak∗p (x)A`∗n−p(x). (5.23)

Recall from Section 4.2 that the determinant of the matrix above is

D = n2(n+ 1)(n− 2)2(n− 3),

which indicates that (5.22) does not admit unique solutions when n = 0, 2, 3. This is consistent

with the five free constants we found in (5.16) that arose at orders n = 0, 2, and 3.

In summary, we have determined that the near-general solution of the three-wave PDEs in

the explosive regime is given by the formal Laurent series

am(x, τ) =
eiψm

ξ

∞∑
n=0

Amn (x)ξn, (5.24)

where ξ = τ − τ0, and the series coefficients are given by

Am0 (x) = 1, Am1 (x) = βm(x), Am2 (x) = γm(x), Am3 (x) = δm(x), (5.25)

and for n ≥ 4,

(n−1)Amn (x)+Ak∗n (x)+A`∗n (x) = −cm
[
Am′n−1(x) + iψ′m(x)Amn−1(x)

]
−
n−1∑
p=1

Ak∗p (x)A`∗n−p(x). (5.26)

The functions ψm(x), βm(x), γm(x), and δm(x) are defined via (5.6), (5.9), (5.11)-(5.12), and

(5.14)-(5.15), respectively.
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Again, note that the solution contains five real, free functions of x, and one real constant,

{ψ1(x), ψ2(x),Re (γ1(x)),Re (γ2(x)), Im (δ3(x))} and Re (τ0). (5.27)

It is useful later to be able to relate the functions in (5.27) to the free constants in (4.32). To that

end, we define the following

K2(x) = Re (γ1(x)), K3(x) = Re (γ2(x)), and H(x) = 6 Im (δ3(x)),

where the factor of 6 in H(x) is introduced for convenience. With these definitions, (5.27) becomes

{ψ1(x), ψ2(x),K2(x),K3(x),H(x)} and Re (τ0), (5.28)

which looks similar to (4.32).

We reiterate that the solution of the three-wave PDEs formed by (5.24)-(5.26) with the free

functions and constants in (5.27) is not fully general. In order for the solution to be general, we

must introduce x dependence into τ0, which is difficult for the reasons outlined at the start of

this section. Nonetheless, our formal solution is more general than existing solutions for several

reasons. First of all, our derivation could be easily repeated in more than one spatial dimension

with no change. Indeed, our method of solution holds for an arbitrary number of spatial dimensions.

Additionally, we have imposed no boundary data in constructing our solution, which means the

solution should be compatible with any type of boundary conditions.

5.2 Convergence of solutions

In the previous section, we used Painlevé analysis to construct a formal Laurent series solution

of the three-wave PDEs with five free functions of x, and one free constant. In this section, we

want to make our solution rigorous by determining under what conditions the series in (5.24)-(5.26)

converges, so that we can determine where our solution is valid.

In this section, we show where the series solution of the three-wave PDEs converges for

several special cases. In particular, we consider the case where the phases, ψm(x), are constant
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for m = 1, 2, 3. We then consider several subcases. First of all, we consider what happens when

K2(x) = K3(x) = 0 and H(x) 6= 0. This appears to be the simplest case. Next, we consider what

happens when H(x) = 0, and at least one of {K2(x),K3(x)} is nonzero. Within this case, we

consider three situations: (i) K2(x) = K3(x), (ii) one of {K2(x),K3(x)} is zero, and (iii) K2(x) and

K3(x) are nonzero and unrelated. The results of our analysis are summarized in the last column of

Table 5.1. The rest of the contents of Table 5.1 are explained as we progress through the chapter.

In order to gain some traction with our convergence proofs, we enforce certain smoothness

restrictions on the functions {K2(x),K3(x),H(x)}. These restrictions are detailed later.

Before we outline the form of the convergence proofs, we first examine the relation between

the free constants (4.32) that appear in the series solution of the three-wave ODEs, and the free

functions (5.28) that appear in the series solution of the three-wave PDEs. In particular, suppose

that the functions in (5.28) are independent of x. Then the series solution of the ODEs in (4.29)-

(4.31) is equivalent to the series solution of the PDEs in (5.24)-(5.26) under the following conditions

K2(x) =
σ

6
(K2 +K3) , K3(x) =

σ

6
(K3 − 2K2), and H(x) = σH. (5.29)

Indeed, under these conditions, we have that Amn = Amn (x) for n ≥ 0, and for m = 1, 2, 3, where Amn

are the constants that appear in the ODE series solution in (4.29), and Amn (x) are the functions that

appear in the PDE series solution in (5.24). Moreover, if the functions in (5.28) are independent

of x, then ψm(x) = ψm, for m = 1, 2, 3, where ψm is the phase that appears in (4.29). Then the

series solutions of the three-wave PDEs and ODEs are equivalent.

5.2.1 Outline of Proof

The structure of the convergence proofs for each of the cases in Table 5.1 is similar, although

Case 2(iii) deviates slightly from the usual procedure. In all cases, the goal is to find the radius

of convergence of the series solution of the three-wave PDEs by writing the series in a way that

admits the use of the ratio test. We outline the structure of the proofs below.
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ODE Vals PDE Vals ODE Radius PDE Radius
{K2,K3, H} {K2,K3,H}

Case 1 {0, 0, H}
{

0, 0, H(x)
6

}
|ξ| < 3.06

|H|1/3 |ξ|e
1
3
ck|ξ| < 3.06

‖H‖1/3

Case 2(i) {0,K, 0}
{
K(x)

6 , K(x)
6 , 0

}
|ξ| < π

|K|1/2 |ξ|e
3
2
ck|ξ| < π

‖K‖1/2

Case 2(ii) {K, 2K, 0}
{
K(x)

2 , 0, 0
}

|ξ| < 2.62
|K|1/2 |ξ|e

3
2
ck|ξ| < 2.62

‖K‖1/2

|ξ|e
3
2
ck|ξ| <

Case 2(iii)∗ {K2,K3, 0} {K2(x),K3(x), 0} |ξ| < min
{

2.57
|K2|1/2

, π
|K3|1/2

}
1.28

[max {‖K2‖,‖K3‖}]1/2

Table 5.1: The radius of convergence of the Laurent series solution of the three-wave ODEs and
PDEs for some configurations of {K2,K3, H} (in the ODEs) and {K2(x),K3(x),H(x)} (in the
PDEs). In the table, ‖ · ‖ = ‖ · ‖∞.
∗The proof of Case 2(iii) involves a numerical observation that is not needed in the other cases.

5.2.1.1 The convergence proof

To begin, choose one of the following cases from Table 5.1. In each case, assume the phases

ψm(x) are constant for the PDE series solution.

Case 1: K2(x) = K3(x) = 0, which corresponds to the ODE case in which K2 = K3 = 0.

Case 2: H(x) = 0, which corresponds to the ODE case in which H = 0. Within this case, we

consider three possible subcases.

(i) K2(x) = K3(x) ≡ K(x)/6, where K(x) is a real function of x and the factor of 1/6

is introduced for convenience. From (5.29), we see that this case corresponds to the

assumption in the ODEs that K2 = 0 and K3 = K, where K is some real constant.

(ii) K2(x) ≡ K(x)/2 and K3(x) = 0, where K(x) is a real function of x and the factor of

1/2 is introduced for convenience. From (5.29), we see that this corresponds to the
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ODE case where K2 = K and K3 = 2K for some real constant K.

(iii) K2(x) and K3(x) are nonzero and unrelated. Similarly, in the ODEs, this corresponds

to the case where K2 and K3 are real constants without any special relation between

them.

Next, follow Steps 1-6 below in order to find the radius of convergence of the formal series

solution of the three-wave PDEs.

Step 1: For the chosen case, find the series solution of the three-wave ODEs, am(τ), for the given

values of {K2,K3, H} using (4.29)-(4.31). In particular, for our special cases, we show that

am(τ) =
eiψm

ξ

∞∑
n=0

Amµnξ
µn, (5.30)

where ξ = τ − τ0, and where µ = 3 for Case 1 and µ = 2 for Case 2. We then find the

radius of convergence of the series using one of the methods outline in Section 4.3. Denote

the radius of convergence by RODE. (Note: There is a slight caveat involved with finding

the radius of convergence for Case 2(i) which we explain in detail in Section 5.4.)

Step 2: Next, find the series solution of the three-wave PDEs, am(x, τ), for the chosen values of

{K2(x),K3(x),H(x)} using (5.24)-(5.26).

Step 3: Define

c = max {|c1|, |c2|, |c3|}. (5.31)

Furthermore, assume there is a finite positive k such that one of the following is true

Case 1:

∥∥∥∥ dndxnH(x)

∥∥∥∥
∞
≤ kn‖H‖∞ (5.32)

Case 2(i), 2(ii):

∥∥∥∥ dndxnK(x)

∥∥∥∥
∞
≤ kn‖K‖∞, (5.33)

Case 2(iii):

∥∥∥∥ dndxnKj(x)

∥∥∥∥
∞
≤ knj ‖Kj‖∞, j = 2, 3. (5.34)

Step 4: Bound the series for am(x, τ) from Step 3 using (5.31) and one of (5.32)-(5.34). This

amounts to repeated application of the triangle inequality. The bound on am(x, τ) should
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be of the form

|am(x, τ)| ≤ 1

|ξ|

∞∑
p=0

∞∑
n=µp

qmn,p(ck)n−µp |ξ|n , (5.35)

where ξ = τ − τ0 as usual, qmn,p are real nonnegative constants, and µ = 3 or µ = 2 for Case

1 or 2, respectively.

Step 5: The goal in this step is to reduce the double sum in (5.35) to a single sum, so that we can

then easily apply the ratio test and find the radius of convergence of the series for am(x, τ).

Case 1 and 2 must be treated slightly differently here. Note that the procedure for Case 1

turns out to be easier than the procedure for Case 2, although the principle for each case

is the same. Additionally, note that the procedure for Case 2(iii) is slightly different from

that used for Case 2(i)-(ii). This is explained further in Section 5.6.

Case 1: It is possible to find an exact formula for the constants qmn,p in (5.35). In particular,

it can be shown that

q1
n,p = q2

n,p = q3
n,p =

pn−µp

(n− µp)!
qµp,p, n ≥ µp, (5.36)

where µ = 3 (See Appendix B). Furthermore, it turns out that qµp,p = |Aµp|, where

Aµp is the coefficient from the ODE series in (5.30) when H = 0. We omit the

dependence of Aµp on m since for Case 1, A1
µp = A2

µp = A3
µp (see Section 5.3).

We substitute (5.36) into (5.35). After some simplification, we obtain a single infinite

sum of the form

|am(x, τ)| ≤ 1

|ξ|

∞∑
p=0

qµp,p|ξ|µpeckp|ξ|. (5.37)

Case 2: Here we define

A(x, τ) =
3∑

m=1

|am(x, τ)| .

We can show that A(x, τ) is bounded as follows

A(x, τ) ≤ 1

|ξ|

∞∑
p=0

∞∑
n=µp

rn,p(ck)n−µp |ξ|n , (5.38)
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where µ = 2 and rn,p are real constants defined via

rn,p =
n+ 4

(n+ 1)(n− 2)

[
prn−1,p +

1

2

p−1∑
`=1

n−µ(p−`)∑
j=µ`

rj,` rn−j,p−`

]
, n > µp. (5.39)

It can then be shown that

rn,p ≤
(γ p)n−µp

(n− µp)!
(αp+ β) rµp,p, n > µp, (5.40)

where α, β, and γ are real constants to be determined, with α and γ positive, and

rµp,p = q1
µp,p + q2

µp,p + q3
µp,p = |A1

µp|+ |A2
µp|+ |A3

µp|.

Then substitute the bound on rn,p in (5.40) into (5.38). Simplify to obtain a single

infinite sum of the form

A(x, τ) ≤ 1

|ξ|

∞∑
p=0

rµp,p|ξ|µp(αp+ β)eγckp|ξ|. (5.41)

Note that the proof of (5.40) has two main parts:

(1) Prove that

rn,p ≤
(γ p)n−µp

(n− µp)!

p−1∑
`=1

rµ`,` rµ(p−`),p−`. (5.42)

(See Appendix C.)

(2) Prove that
p−1∑
`=1

rµ`,` rµ(p−`),p−` ≤ (αp+ β) rµp,p. (5.43)

Step 6: Find the radius of convergence for am(x, τ) using the ratio test.

Case 1: Apply the ratio test to the bounded series in (5.37). Then the series converges if

|ξ|µeck|ξ| lim
p→∞

∣∣∣∣qµ(p+1),p+1

qµp,p

∣∣∣∣ < 1,

where µ = 3. Rearranging and using the fact that qµp,p = |Aµp| yields

e
ck|ξ|
µ |ξ| < RODE or e

ck|τ−τ0|
µ |τ − τ0| < RODE,

where RODE is the radius of convergence from Step 2, with |H| replaced by ‖H‖∞.
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Case 2: Apply the ratio test to the bounded series in (5.41). Then the series converges if

|ξ|µeγck|ξ| lim
p→∞

∣∣∣∣rµ(p+1),p+1

rµp,p

∣∣∣∣ < 1,

where µ = 2. Rearranging and using the fact that rµp,p = |A1
µp|+ |A2

µp|+ |A3
µp| yields

e
γck|ξ|
µ |ξ| < R̃ or e

γck|τ−τ0|
µ |τ − τ0| < R̃,

where

R̃ =

(
lim
p→∞

∣∣∣∣∣ |A
1
µ(p+1)|+ |A

2
µ(p+1)|+ |A

3
µ(p+1)|

|A1
µp|+ |A2

µp|+ |A3
µp|

∣∣∣∣∣
)−1/µ

.

Notice that R̃ can be determined from the ODE series solution in Step 2.

Steps 1-6 give a general outline for how to go about finding the radius of convergence of the

formal Laurent series solution of the three-wave PDEs for all of the cases in Table 5.1, although

the details vary with each case. In the following sections, we give more details for each of the cases.

The bulk of the work for all cases is in Step 5, namely in proving equations like (5.36), and in

establishing bounds like (5.42)-(5.43). The proofs of these results in some cases are lengthy and

extremely technical. At times, the specifics of theses proofs are placed in the appendices for the

sake of readability.

5.3 Radius of convergence: Case 1

Consider Case 1, in which K2(x) = K3(x) = 0 in the solution of the three-wave PDEs, and

K2 = K3 = 0 in the solution of the three-wave ODEs. In order to find the radius of convergence of

the Laurent series solution of the three-wave PDEs in this case, we follow the steps outlined in the

previous section. Recall that the phases ψm(x) in the PDE solution are assumed to be constant.

Step 1: First, we want to find the series solution of the three-wave ODEs when K2 = K3 = 0

using (4.29)-(4.31). The first few terms of the series are given by

am(τ) =
eiψm

τ − τ0

[
1+

iσH

6
(τ−τ0)3 +

H2

252
(τ−τ0)6 +

iσH3

4536
(τ−τ0)9 +

11H4

2476656
(τ−τ0)12 + · · ·

]
. (5.44)
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It is straightforward to show by induction that when K2 = K3 = 0, then (4.29) reduces to

am(τ) =
eiψm

ξ

∞∑
n=0

A3n ξ
3n, (5.45)

where ξ = τ − τ0, A0 = 1, A3 = iσH/6, and (4.31) becomes

(3n− 1)A3n + 2A∗3n = −
n−1∑
p=1

A∗3pA
∗
3(n−p), for n ≥ 2.

Notice that the dependence on the mode m in (5.44) and (5.45) only appears in the phase, so

Am3n ≡ A3n for m = 1, 2, 3.

To determine the radius of convergence of (5.45), recall Section 4.3. The radius of convergence

of the solution of the three-wave ODEs can be determined in one of two ways: using the Weierstrass

solution in (3.54) and (3.60), or using the Laurent series solution in (4.29)-(4.31).

First, consider the Weierstrass solution. When K2 = K3 = 0, the elliptic invariants in (3.45)-

(3.46) are given by g2 = 0 and g3 = H2. Further, if g2 = 0 and g3 is real, then the half-periods λ1

and λ2 are explicitly defined as follows [17, §23.5]

λ1 = e−iπ/3λ2 =

[
Γ
(

1
3

)]3
4πg

1/6
3

, (5.46)

and the lattice generated by λ1 and λ2 is rhombic. As a result, we know from (4.38) that the

general solution of the three-wave ODEs converges when

|τ − τ0| <
2
[
Γ
(

1
3

)]3
4π |H|1/3

≈ 3.06

|H|1/3
, (5.47)

where we substituted g3 = H2 into (5.46). Note that since λ1 = eiπ/3λ2, the lattice of poles is

rhombic, and thus we are restricted to the explosive regime only.

Alternatively, we can apply the ratio test to (5.45) to determine the radius of convergence.

In this case, the ratio test indicates that the series (5.45) converges if

lim
n→∞

∣∣∣∣∣A3(n+1)ξ
3(n+1)

A3nξ3n

∣∣∣∣∣ < 1.

However, in practice, it turns out that this limit does not exist; for each increase in n, the value

of |A3(n+1)/A3n| oscillates between two numbers. In order to deal with this, we split the series in
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(5.45) into its even and odd parts. To that end, we define

Seven =
eiψm

ξ

∞∑
n=0

A6n ξ
6n and Sodd =

eiψm

ξ

∞∑
n=0

A3(2n+1) ξ
3(2n+1), (5.48)

so that am(τ) = Seven + Sodd. The even and odd sums converge, respectively, under the conditions

lim
n→∞

∣∣∣∣∣A6(n+1)ξ
6(n+1)

A6nξ6n

∣∣∣∣∣ < 1 and lim
n→∞

∣∣∣∣∣A3(2(n+1)+1)ξ
3(2(n+1)+1)

A3(2n+1)ξ3(2n+1)

∣∣∣∣∣ < 1.

Rearranging, and using ξ = τ − τ0 yields the following convergence criteria for the even and odd

series in (5.48)

|τ − τ0| <
(

lim
n→∞

∣∣∣∣A6(n+1)

A6n

∣∣∣∣)−1/6

and |τ − τ0| <
(

lim
n→∞

∣∣∣∣A3(2(n+1)+1)

A3(2n+1)

∣∣∣∣)−1/6

. (5.49)

Each of the limits in 5.49 yields the same value. In particular, we find that both the even and odd

series in (5.48) converge under the condition

|τ − τ0| <
3.05991

|H|1/3
.

It follows that the full series (5.45) converges with radius of convergence

RODE ≈
3.06

|H|1/3
,

which is equivalent to (5.47). That is, we find the same radius of convergence using both the

Weierstrass solution and the Laurent series solution of the three-wave ODEs. This is reassuring,

as the two solutions should be interchangeable.

Note that (5.47) and (5.49) combined imply that(
lim
n→∞

∣∣∣∣A6(n+1)

A6n

∣∣∣∣)−1/6

=

(
lim
n→∞

∣∣∣∣A3(2(n+1)+1)

A3(2n+1)

∣∣∣∣)−1/6

=
2
[
Γ
(

1
3

)]3
4π |H|1/3

, (5.50)

which becomes useful later.

Step 2: Next, we find the series solution of the three-wave PDEs when K2(x) = K3(x) = 0 using
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(5.24)-(5.26). The first few terms of (5.24) are given by

am(x, τ) =
eiψm

ξ

{
1 +

i

6
Hξ3 − i

24
(2cm + ck + c`)H′ ξ4

+
i

120

(
3c2
m + c2

k + ckc` + c2
` + 2cm (ck + c`)

)
H′′ ξ5

+
1

5040

[
20H2 − 7i

(
4c3
m + c3

k + c2
kc` + ckc

2
` + c3

` + 3c2
m (ck + c`)

+ 2cm
(
c2
k + ckc` + c2

`

) )
H(3)

]
ξ6

+
[(
· · ·
)
HH′ +

(
· · ·
)
H(4)

]
ξ7 + · · ·

}
, (5.51)

where (k, `,m) = (1, 2, 3) cyclically, and where H(3) and H(4) denote the third and fourth derivative

of H with respect to x, respectively. Notice that increasingly higher derivatives of H(x) appear as

the number of terms in the series increases, as well as more nonlinear terms in H and its derivatives.

Also, notice that the dependence on the mode m in (5.51) only appears through the group velocities

and the phase.

From (5.51), we can see that the series solution of the three-wave PDEs quickly becomes

complicated as the number of terms increases, even in this simple case. In order to determine

under what conditions (5.51) converges, we restrict our attention to a particular family of functions

H(x) in the next step.

Step 3: In accordance with (5.32), we assume that∥∥∥∥ dndxnH(x)

∥∥∥∥
∞
≤ kn‖H‖∞, (5.52)

where k is a real positive constant. This is relatively general since it allows H(x) to be, for example,

any trigonometric polynomial.

Step 4: Using (5.52) and the definition of c in (5.31), we bound (5.51) using the triangle inequality.
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This first few terms in the bounded series are given by

|am(x, τ)| ≤ 1

|ξ|

{
1 +
‖H‖

6
|ξ|3 +

‖H‖
6
ck|ξ|4 +

‖H‖
12

(ck)2|ξ|5 +

[
‖H‖2

252
+
‖H‖
36

(ck)3

]
|ξ|6

+

[
‖H‖2

126
ck +

‖H‖
144

(ck)4

]
|ξ|7 +

[
‖H‖2

126
(ck)2 +

‖H‖
720

(ck)5

]
|ξ|8

+

[
‖H‖3

4536
+
‖H‖2

189
(ck)3 +

‖H‖
4320

(ck)6

]
|ξ|9

+

[
‖H‖3

1512
ck +

‖H‖2

378
(ck)4 +

‖H‖
30240

(ck)7

]
|ξ|10

+

[
‖H‖3

1008
(ck)2 +

‖H‖2

945
(ck)5 +

‖H‖
241920

(ck)8

]
|ξ|11

+

[
11‖H‖4

2476656
+
‖H‖3

1008
(ck)3 +

4‖H‖2

2835
(ck)6 +

‖H‖
2177280

(ck)9

]
|ξ|12 + · · ·

}
, (5.53)

where ‖H‖ = ‖H‖∞ and m = 1, 2, 3.

First, notice that the coefficients of terms of the form ‖H‖n|ξ|3n can be identified with the

coefficients |A3n| that appear in the ODE series in (5.44) and (5.45). Next, notice that for every

n ≥ 3, the term multiplying |ξ|n in (5.53) is a polynomial in (ck) of degree n− 3, where every third

term is nonzero. More precisely, we can rewrite (5.53) as

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
n=3

bn/3c∑
p=1

qn,p(ck)n−3p|ξ|n
 , (5.54)

where qn,p are nonnegative constants, independent of the mode m. Alternatively, we can change

the order of summation and write

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

∞∑
n=3p

qn,p(ck)n−3p|ξ|n
 . (5.55)

The first few constants qn,p are listed in Table 5.2. The index n corresponds to the nth row

of the table, while the index p indicates the pth nonzero diagonal of the table. The columns of the

table represent powers of (ck).

Step 5: In this step, we reduce (5.55) to a single infinite sum. Let Sp be the inner sum in (5.55),

namely

Sp =
∞∑

n=3p

qn,p(ck)n−3p|ξ|n. (5.56)
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n (ck)0 (ck)1 (ck)2 (ck)3 (ck)4 (ck)5 (ck)6 (ck)7 (ck)8

3 ‖H‖
6 0 0 0 0 0 0 0 0

4 0 ‖H‖
6 0 0 0 0 0 0 0

5 0 0 ‖H‖
12 0 0 0 0 0 0

6 ‖H‖2
252 0 0 ‖H‖

36 0 0 0 0 0

7 0 ‖H‖2
126 0 0 ‖H‖

144 0 0 0 0

8 0 0 ‖H‖2
126 0 0 ‖H‖

720 0 0 0

9 ‖H‖3
4536 0 0 ‖H‖2

189 0 0 ‖H‖
4320 0 0

10 0 ‖H‖3
1512 0 0 ‖H‖2

378 0 0 ‖H‖
30240 0

11 0 0 ‖H‖3
1008 0 0 ‖H‖2

945 0 0 ‖H‖
241920

12 11‖H‖4
2476656 0 0 ‖H‖3

1008 0 0 ‖H‖2
2835 0 0

Table 5.2: The coefficients qn,p from (5.55). Note that n indicates the nth row of the table, while
p indicates the pth nonzero diagonal (that is, the diagonal that begins in the row corresponding to

n = 3p). For instance, q9,2 = ‖H‖2
189 .

Then (5.55) becomes

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

Sp

 . (5.57)

We show in Appendix B that

qn,p =
pn−3p

(n− 3p)!
q3p,p, n ≥ 3p, (5.58)

where q3p,p/‖H‖p∞ = |A3p|/|H|p, and A3p is the coefficient that appears in the Laurent series

solution of the three-wave ODEs in (5.45).

Substituting (5.58) into (5.56) yields

Sp =

∞∑
n=3p

pn−3p

(n− 3p)!
q3p,p (ck)n−3p|ξ|n

=
q3p,p

(ckp)3p

∞∑
n=3p

(ckp |ξ|)n

(n− 3p)!

=
q3p,p

(ckp)3p

∞∑
n=0

(ckp |ξ|)n+3p

n!

= q3p,p |ξ|3p
∞∑
n=0

(ckp |ξ|)n

n!

= q3p,p |ξ|3p eckp|ξ|.
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Now (5.57) gives

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

Sp


=

1

|ξ|

1 +

∞∑
p=1

q3p,p |ξ|3p eckp|ξ|


=
1

|ξ|

∞∑
p=0

q3p,p |ξ|3p eckp|ξ|, (5.59)

where we defined q0,0 = 1.

Step 6: We now want to use (5.59) in order to determine the radius of convergence of (5.51). From

(5.59), we know that the Laurent series for am(x, τ) converges absolutely when

lim
p→∞

∣∣∣∣∣q3(p+1),p+1 |ξ|3(p+1) eck(p+1)|ξ|

q3p,p |ξ|3p eckp|ξ|

∣∣∣∣∣ < 1.

Simplifying, we have that (5.51) converges if

eck|ξ||ξ|3 lim
p→∞

∣∣∣∣q3(p+1),p+1

q3p,p

∣∣∣∣ |H|→‖H‖∞︷︸︸︷
= eck|ξ||ξ|3 lim

p→∞

∣∣∣∣A3(p+1)

A3p

∣∣∣∣ < 1,

where we used the fact that q3p,p = |A3p| if we replace |H| in A3p with ‖H‖∞. However, recall from

Step 1 of this section that

lim
p→∞

∣∣∣∣A3(p+1)

A3p

∣∣∣∣
does not exist. As with the series solution of the three-wave ODEs, we must split (5.59) into its

even and odd parts.

Define the following

Seven =
1

|ξ|

∞∑
p=0

q6p,2p |ξ|6p e2ckp|ξ| and Sodd =
1

|ξ|

∞∑
p=0

q3(2p+1),2p+1 |ξ|3(2p+1) eck(2p+1)|ξ|.

Then we know from (5.59) that |am(x, τ)| ≤ Seven + Sodd. Additionally, the ratio test tells us that

Seven converges when

lim
p→∞

∣∣∣∣∣q6(p+1),2(p+1) |ξ|6(p+1) e2ck(p+1)|ξ|

q6p,2p |ξ|6p e2ckp|ξ|

∣∣∣∣∣ < 1.
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Simplifying, we have that Seven converges under the condition

e2ck|ξ||ξ|6 lim
p→∞

∣∣∣∣q6(p+1),2(p+1)

q6p,2p

∣∣∣∣ |H|→‖H‖∞︷︸︸︷
= e2ck|ξ||ξ|6 lim

p→∞

∣∣∣∣A6(p+1)

A6p

∣∣∣∣ < 1.

Rearranging, we find that the radius of convergence of Seven is given by

e
1
3
ck|ξ||ξ| <

(
lim
p→∞

∣∣∣∣A6(p+1)

A6p

∣∣∣∣)−1/6

, (5.60)

where |H| is replaced by ‖H‖∞ in A6p. In this case, we know the value of the right-hand side of

(5.60) from (5.50). That is, (5.60) becomes

e
1
3
ck|ξ||ξ| <

2
[
Γ
(

1
3

)]3
4π ‖H‖1/3∞

≈ 3.05991

‖H‖1/3∞
. (5.61)

Similarly, we find that the radius of convergence of Sodd is also given by (5.61). Then since

|am(x, τ)| ≤ Seven + Sodd, it follows that am(x, τ) converges absolutely under the condition (5.61).

In other words, the radius of convergence of the formal Laurent series near-general solution of the

three-wave PDEs with constant phases when K2(x) = K3(x) = 0 is given implicitly by

|τ − τ0|e
1
3
ck|τ−τ0| <

2
[
Γ
(

1
3

)]3
4π ‖H‖1/3∞

≈ 3.05991

‖H‖1/3∞
. (5.62)

To summarize, we found that the radius of convergence for the general solution of the three-

wave ODEs with K2 = K3 = 0 is given by

|τ0 − τ | < RODE, (5.63)

where

RODE =
2
[
Γ
(

1
3

)]3
4π |H|1/3

≈ 3.05991

|H|1/3
.

Meanwhile, we determined that the radius of convergence for the near-general solution of the three-

wave PDEs with constant phases and the analogous condition K2(x) = K3(x) = 0 is given by

|τ0 − τ | e
1
3
ck|τ−τ0| < RODE, (5.64)

where we replaced |H| with ‖H‖∞ in RODE.



103

Compare (5.63) to (5.64). The two convergence conditions differ only by the factor of

e
1
3
ck|τ−τ0| in (5.64). This is a known, dimensionless factor that causes the radius of convergence of

the PDE solution to be smaller than that of the ODE solution. However, the factor depends only

on k, which tells us how quickly the derivatives of H(x) are growing, and c, which is the largest

group velocity (in magnitude) of the three wavetrains. This indicates that for this special case, we

are losing very little information in moving from the ODEs to the PDEs. The inclusion of spatial

dependence in the three-wave PDEs affects where our near-general solution is valid, but it does not

affect the overall structure of the solutions.

5.4 Radius of convergence: Case 2(i)

Consider Case 2(i), in which H(x) = 0 and K2(x) = K3(x) ≡ K(x)/6 in the solution of the

three-wave PDEs, while H = K2 = 0 and K3 ≡ K in the solution of the three-wave ODEs. In

order to find the radius of convergence of the Laurent series solution of the three-wave PDEs in

this case, we follow the steps outlined in Section 5.2. Recall that the phases ψm(x) in the PDE

solution are assumed to be constant.

Step 1: We begin by finding the series solution of the three-wave ODEs when H = K2 = 0 and

K3 = K using (4.29)-(4.31). The first few terms of the series for am(τ), m = 1, 2, 3 are given by

aj(τ) =
eiψj

τ − τ0

[
1 +

σK

6
(τ − τ0)2 +

7K2

360
(τ − τ0)4 +

31σK3

15120
(τ − τ0)6 + · · ·

]
, (5.65a)

a3(τ) =
eiψ3

τ − τ0

[
1− σK

3
(τ − τ0)2 − K2

45
(τ − τ0)4 − 2σK3

945
(τ − τ0)6 − · · ·

]
, (5.65b)

where j = 1, 2 in the first line.

It is straightforward to show by induction that when H = 0, then (4.29) reduces to

am(τ) =
eiψm

ξ

∞∑
n=0

Am2n ξ
2n, (5.66)

where ξ = τ − τ0, A0 = 1, A1
2 = A2

2 = σK/6, A3
2 = −σK/3, and (4.31) becomes

(2n− 1)Am2n +Ak∗2n +A`∗2n = −
n−1∑
p=1

Ak∗2pA
`∗
2(n−p), for n ≥ 2.
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In fact, it is simple to show that when H = 0, Am2n is real for m = 1, 2, 3 and for n ≥ 0. As a result,

the recursion relation becomes

(2n− 1)Am2n +Ak2n +A`2n = −
n−1∑
p=1

Ak2pA
`
2(n−p), for n ≥ 2. (5.67)

Next, we want to determine the radius of convergence of (5.66). There are two options here.

First of all, we can apply the ratio test. Then we find that (5.66) converges when

lim
n→∞

∣∣∣∣∣A
m
2(n+1)ξ

2(n+1)

Am2nξ
2n

∣∣∣∣∣ < 1

for m = 1, 2, 3. Rearranging, we have that the series converges if

|ξ| <

(
lim
n→∞

∣∣∣∣∣A
m
2(n+1)

Am2n

∣∣∣∣∣
)−1/2

. (5.68)

The limit on the right-hand side exists, and is numerically found to equal π/|K|1/2 . That is, we

find that (5.66) converges under the condition

|τ − τ0| <
π

|K|1/2
. (5.69)

In most cases, we can alternatively determine the radius of convergence of the general solution

of the three-wave ODEs using the Weierstrass solution in (3.54) and (3.60). However, recall the

definition of the discriminant associated with the Weierstrass function in (3.68). That is, we have

∆ = g3
2 − 27g2

3,

where g2 = g2(K2,K3) and g3 = g3(K2,K3, H) are defined in (3.45)-(3.46). In our case, with

H = K2 = 0 and K3 = K, we find that

∆ = 0.

This is a special degenerate case in which the Weierstrass function is not defined. Instead, the

general solution of the three-wave ODEs in this case can be found in terms of sec τ .

Return to the Hamiltonian system in (3.19). In Chapter 3, we solved the system in order

to find the Weierstrass general solution of the three-wave ODEs. However, with H = K2 = 0 and

K3 = K, (3.19b) becomes

dρ

dτ
= 2
√
σρ2 (ρ−K). (5.70)
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The equation is separable, so the solution is found by integrating,∫
dρ

2
√
σρ2 (ρ−K)

=

∫
dτ.

Without loss of generality, assume σ = 1 and K > 0 (the cases for the other signs are analogous). In

particular, assume that σ1 = 1, which means ρ(τ) ≥ 0. Using the change of variables ρ = K sec2 θ,

where 0 ≤ θ < π/2, we obtain ∫
dθ√
K

= τ + C,

where C is a constant of integration. As a result, we find that θ =
√
K (τ + C), so that

ρ(τ) = K sec2
[√

K (τ + C)
]
. (5.71)

It remains to determine the integration constant C. First, suppose that we are in the explosive

regime, and that ρ → +∞ as τ → τ0, where τ0 is a real constant. This allows us to determine C,

so that our expression for ρ(τ) becomes

ρ(τ) = K sec2
[√

K (τ − τ0) +
π

2

]
. (5.72)

In this case, we observe that ρ(τ) has a double pole at τ = τ0, which is also true in the Weierstrass

defininition of ρ(τ) in (3.44).

In the case of the Weierstrass solution, ρ(τ) is defined in terms of ℘(τ − τ0). Moreover, real

values of τ0 correspond to the explosive regime, while certain complex values of τ0 correspond to

the nonexplosive regime. This suggests that we might be able to let τ0 be complex in (5.72) in order

to find the solution of (5.70) in the nonexplosive case. However, this actually turns out not to be

true. The functions sec z and sec2 z for z ∈ C are real-valued only along the real axis. There is no

complex shift z0 that can make sec2 (z − z0) real along the real axis. Since ρ(τ) must, by definition,

be real along the real axis, it follows that (5.72) with τ0 ∈ R is the only possible solution when

H = K2 = 0. That is, when H = K2 = 0, we are necessarily restricted to the explosive regime.

An alternative way to see this is the following. Return to (5.71). We try to determine the

integration constant C without assuming that our solutions lie in the explosive regime. Instead,
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suppose we know that ρ(τi) = ρi for some real τi. Then we have

K sec2
[√

K(τi + C)
]

= ρi.

This implies that

sec
[√

K(τi + C)
]

=

√
ρi
K
,

where we took the positive square root since we assumed 0 ≤ θ < π/2. Then we have

C =
1√
K

arcsec

√
ρi
K
− τi. (5.73)

Recall that arcsecant only takes arguments that are greater than 1, which means we require

that ρi ≥ K. By assumption, σ = σ1 = 1. As a result, the possible regimes are (1) the explosive

regime with σ1 = σ2 = σ3 = 1, and (2) the nonexplosive regime with σ1 = −σ2 = −σ3 = 1. Recall

from Section 3.2 that if σ1 = σ2 = σ3 = 1, then ρ > max {K2,K3, 0}. In our case, with K2 = 0

and K3 = K > 0, we have that ρ > K. In particular, we have that ρi ≥ K, so that the definition

of C above makes sense. On the other hand, if σ1 = −σ2 = −σ3 = 1, then ρ(τ) lies in the domain

0 < ρ < min {K2,K3}, where K2,K3 ≥ 0. In our case, with K2 = 0 and K3 = K > 0, it follows

that 0 < ρ < 0, which is impossible. (Recall that ρ(τ) = 0 is not allowed in (3.19), although |am(τ)|

is allowed to be zero valued.) As a result, we are restricted to the explosive case.

Using (5.73), we have

ρ(τ) = K sec2

[√
K(τ − τi) + arcsec

√
ρi
K

]
. (5.74)

Here we find that a singularity occurs when

τ − τi =
1√
K

[
π

2
− arcsec

√
ρi
K

]
.

Regardless of whether we formulate the solution to (5.70) as (5.72) or (5.74), the maximum

possible distance between two singularities is π/
√
K since sec2 z has singularities at z = π/2± nπ

for n ∈ Z. In other words, the radius of convergence of ρ(τ), and thus am(τ), when H = K2 = 0 is

RODE =
π

|K|1/2
.
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This agrees with our findings in (5.69). Again, this is reassuring since the general solution of the

three-wave ODEs in terms of sec2 τ in (5.72) and (5.74) should be equivalent to the general Laurent

series solution.

Step 2: Next, we find the series solution of the three-wave PDEs, am(x, τ), when the phases are

constant, H(x) = 0, and K2(x) = K3(x). For convenience, let

K2(x) = K3(x) ≡ 1

6
K(x),

where K(x) is a real function of x, and the factor of 1/6 is introduced for convenience. Using

(5.24)-(5.26), the first few terms of the series for am(x, τ) are

aj(x, τ) =
eiψj

ξ

{
1 +
K
6
ξ2 − 1

24
(3cj − c` + 2c3)K′ ξ3

+
[7K2

360
− 1

240

(
−12c2

j + 3c2
` + 3cj(c` − 3c3) + c`c3 − 6c2

3

)
K′′
]
ξ4

+
1

720

[
− (5cj + 9c` + 14c3) KK′ +

(
−10c3

j + 2c3
` + 2c2

j (c` − 4c3)

+cj
(
2c2
` + c`c3 − 6c2

3

)
+ c2

`c3 − 4c3
3

)
K(3)

]
ξ5

+
[ 31K3

15120
+ (· · · ) (K′)2 + (· · · )KK′′ + (· · · )K(4)

]
ξ6 + · · ·

}
, (5.75)

a3(x, τ) =
eiψ3

ξ

{
1− K

3
ξ2 +

1

24
(c1 + c2 + 6c3)K′ ξ3

+
[
− K

2

45
− 1

240

(
3c2

1 − 2c1c2 + 3c2
2 + 6c1c3 + 6c2c3 + 24c2

3

)
K′′
]
ξ4

+
1

720

[
(2(3c1 + 3c2 + 10c3)) KK′ +

(
2c3

1 − c2
1 (c2 − 4c3)

−c1

(
c2

2 + 2c2c3 − 6c2
3

)
+ 2

(
c3

2 + 2c2
2c3 + 3c2c

2
3 + 10c3

3

))
K(3)

]
ξ5

+
[
− 2K3

945
+ (· · · ) (K′)2 + (· · · )KK′′ + (· · · )K(4)

]
ξ6 + · · ·

}
, (5.76)

where (j, `) = (1, 2) cyclically. Observe that increasingly higher derivatives of K(x) appear as the

number of terms increases, as well as more nonlinear terms in K and its derivatives.

As with Case 1, we can see that the series solution of the three-wave PDEs quickly becomes

complicated as the number of terms in the series increases. As a result, we restrict our attention

to a particular family of functions for K(x).
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Step 3: Following (5.33), we assume that∥∥∥∥ dndxnK(x)

∥∥∥∥
∞
≤ kn‖K‖∞, (5.77)

where k is a real positive constant.

Step 4: Using (5.77) and the definition of c in (5.31), we bound (5.75)-(5.76) using the triangle

inequality. This first few terms in the bounded series of am(x, τ) for m = 1, 2, 3 are given by

|aj(x, τ)| ≤ 1

|ξ|

{
1 +
‖K‖

6
|ξ|2 +

‖K‖
4
ck|ξ|3 +

[
7‖K‖2

360
+

17‖K‖
120

(ck)2

]
|ξ|4

+

[
149‖K‖2

3240
(ck) +

‖K‖
20

(ck)3

]
|ξ|5

+

[
31‖K‖3

15120
+

509‖K‖2

11340
(ck)2 +

11‖K‖
840

(ck)4

]
|ξ|6 + · · ·

}
, (5.78)

|a3(x, τ)| ≤ 1

|ξ|

{
1 +
‖K‖

3
|ξ|2 +

‖K‖
3
ck|ξ|3 +

[
‖K‖2

45
+

11‖K‖
60

(ck)2

]
|ξ|4

+

[
‖K‖2

90
(ck) +

‖K‖
15

(ck)3

]
|ξ|5

+

[
2‖K‖3

945
+

331‖K‖2

15120
(ck)2 +

‖K‖
56

(ck)4

]
|ξ|6 + · · ·

}
, (5.79)

where j = 1, 2, and ‖K‖ = ‖K‖∞.

Notice that coefficients of the form ‖K‖n|ξ|2n can be identified with the coefficients |Am2n|

that appear in the ODE series in (5.65) and (5.66). Next, notice that for every n ≥ 2, the terms

multiplying |ξ|n in (5.78)-(5.79) are polynomials in (ck) of degree n− 2, where every second term

is nonzero. More precisely, we can rewrite (5.78)-(5.79) as

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
n=2

bn/2c∑
p=1

qmn,p(ck)n−2p|ξ|n
 ,

where qmn,p are nonnegative constants. Alternatively, we can change the order of summation and

write

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

∞∑
n=2p

qmn,p(ck)n−2p|ξ|n
 , (5.80)
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which is analagous to (5.55) in Case 1.

The first few coefficients qmn,p for m = 1, 2 are listed in Table 5.3, while the constants q3
n,p are

listed in Table 5.4. In both tables, the index n corresponds to the nth row of the table, while the

index p indicates the pth nonzero diagonal of the table. The columns of the table represent powers

of (ck).

n (ck)0 (ck)1 (ck)2 (ck)3 (ck)4 (ck)5 (ck)6

2 ‖K‖
6 0 0 0 0 0 0

3 0 ‖K‖
4 0 0 0 0 0

4 7‖K‖2
360 0 17‖K‖

120 0 0 0 0

5 0 7‖K‖2
180 0 ‖K‖

20 0 0 0

6 31‖K‖3
15120 0 7‖K‖2

180 0 11‖K‖
840 0 0

7 0 31‖K‖3
5040 0 397‖K‖2

15120 0 3‖K‖
1120 0

8 127‖K‖4
604800 0 31‖K‖3

3360 0 12293‖K‖2
907200 0 83‖K‖

181440

Table 5.3: The first few coefficients qmn,p from (5.80) for m = 1, 2. Note that n indicates the nth
row of the table, while p indicates the pth nonzero diagonal (that is, the diagonal that begins in

the row corresponding to n = 2p). For instance, qm7,2 = 397‖K‖2
15120 for m = 1, 2.

n (ck)0 (ck)1 (ck)2 (ck)3 (ck)4 (ck)5 (ck)6

2 ‖K‖
3 0 0 0 0 0 0

3 0 ‖K‖
3 0 0 0 0 0

4 ‖K‖2
45 0 11‖K‖

60 0 0 0 0

5 0 2‖K‖2
45 0 ‖K‖

15 0 0 0

6 2‖K‖3
945 0 27‖K‖2

560 0 ‖K‖
56 0 0

7 0 2‖K‖3
315 0 9‖K‖2

280 0 19‖K‖
5040 0

8 ‖K‖4
4725 0 ‖K‖3

105 0 3347‖K‖2
201600 0 17‖K‖

25920

Table 5.4: The first few coefficients q3
n,p from (5.80). Note that n indicates the nth row of the

table, while p indicates the pth nonzero diagonal (that is, the diagonal that begins in the row

corresponding to n = 2p). For instance, q3
6,2 = 331‖K‖2

15120 .

Step 5: We now want to reduce (5.80) to a single sum so that we can find where the series converges

using the ratio test. However, unlike Case 1 of the previous section, we are unable to find a closed
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form for the coefficients qmn,p when H(x) = K2(x) = 0. Moreover, recall that the coefficients in

(5.55) are independent of the mode m, which is not the case in (5.80). To simplify matters, we

proceed to find the radius of convergence of

A(x, τ) =
3∑

m=1

|am(x, τ)| (5.81)

when H(x) = K(x) = 0, and conclude that am(x, τ) must converge absolutely with an equal or

larger radius of convergence for m = 1, 2, 3.

From (5.80), we know that

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

∞∑
n=2p

(
q1
n,p + q2

n,p + q3
n,p

)
(ck)n−2p|ξ|n

 .
However, since we do not have a nice formula for qmn,p, this is not necessarily useful in helping us

determine the radius of convergence of A(x, τ). Instead, we return to the series solution of am(x, τ)

once more, and try to write A(x, τ) in a form that is easy to handle.

We know from (5.24)-(5.26) and (5.75)-(5.76) that am(x, τ) is given by

am(x, τ) =
eiψm

ξ

∞∑
n=0

Amn (x)ξn

for m = 1, 2, 3, where ξ = τ − τ0 and ψm is a real constant. It follows that

|am(x, τ)| ≤ 1

|ξ|

∞∑
n=0

‖Amn (x)‖ |ξ|n,

where ‖ · ‖ = ‖ · ‖∞. Substituting into (5.81) yields

A(x, τ) ≤ 1

|ξ|

∞∑
n=0

[ ∥∥A1
n(x)

∥∥+
∥∥A2

n(x)
∥∥+

∥∥A3
n(x)

∥∥ ]|ξ|n.
We now seek a bound on

∥∥A1
n(x)

∥∥+
∥∥A2

n(x)
∥∥+

∥∥A3
n(x)

∥∥.

Recall the recursion relation in (5.26) for n ≥ 4,

(n−1)Amn (x)+Ak∗n (x)+A`∗n (x) = −cm
[
Am′n−1(x) + iψ′m(x)Amn−1(x)

]
−
n−1∑
p=1

Ak∗p (x)A`∗n−p(x). (5.82)

When H(x) = 0, it follows that all coefficients Amn (x) in the series for n ≥ 0 are purely real.

Consequently, (5.82) becomes

(n− 1)Amn (x) +Akn(x) +A`n(x) = −cm
[
Am′n−1(x) + iψ′m(x)Amn−1(x)

]
−
n−1∑
p=1

Akp(x)A`n−p(x). (5.83)
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Inverting the linear system formed by (5.83), it is straightforward to determine that

Amn =
1

(n+ 1)(n− 2)

[
nbmn − bkn − b`n

]
, n ≥ 3, (5.84)

where

bmn (x) = cmAm
′

n−1 −
n−2∑
p=2

AkpA`n−p. (5.85)

Note that the sum in (5.85) goes from p = 2 to p = n− 2 because Am1 (x) = 0 for m = 1, 2, 3 when

the phases ψm are constant.

Substituting (5.85) into (5.84), collecting terms, and rearranging yields

Amn =
1

(n+ 1)(n− 2)

[
− (n+ 1)cmAm

′
n−1 − (n+ 1)

n−2∑
p=2

AkpA`n−p

+
3∑
j=1

cjAj
′

n−1 +
n−2∑
p=2

(
A1
pA2

n−p +A1
pA3

n−p +A2
pA3

n−p
) ]
.

Notice that the second line is independent of m.

Observe the following

‖Amn ‖ ≤
1

(n+ 1)(n− 2)

[
(n+ 1)c

∥∥∥Am′n−1

∥∥∥+ (n+ 1)
n−2∑
p=2

∥∥∥Akp∥∥∥ ∥∥∥A`n−p∥∥∥
+ c

3∑
j=1

∥∥∥Aj′n−1

∥∥∥+
n−2∑
p=2

(∥∥A1
p

∥∥ ∥∥A2
n−p
∥∥+

∥∥A1
p

∥∥ ∥∥A3
n−p
∥∥+

∥∥A2
p

∥∥ ∥∥A3
n−p
∥∥) ],

where c = max {|c1|, |c2|, |c3|}, as usual. Lastly, we sum over m to obtain

3∑
m=1

‖Amn ‖ ≤
1

(n+ 1)(n− 2)

[
(n+ 1)c

3∑
m=1

∥∥∥Am′n−1

∥∥∥
+ (n+ 1)

n−2∑
p=2

(∥∥A1
p

∥∥ ∥∥A2
n−p
∥∥+

∥∥A1
p

∥∥ ∥∥A3
n−p
∥∥+

∥∥A2
p

∥∥ ∥∥A3
n−p
∥∥)

+ 3c

3∑
j=1

∥∥∥Aj′n−1

∥∥∥+ 3
n−2∑
p=2

(∥∥A1
p

∥∥ ∥∥A2
n−p
∥∥+

∥∥A1
p

∥∥ ∥∥A3
n−p
∥∥+

∥∥A2
p

∥∥ ∥∥A3
n−p
∥∥) ].

Simplifying, we have

3∑
m=1

‖Am
n ‖ ≤

n+ 4

(n+ 1)(n− 2)

[
c

3∑
m=1

∥∥∥Am′

n−1

∥∥∥+

n−2∑
p=2

(∥∥A1
p

∥∥ ∥∥A2
n−p

∥∥+
∥∥A1

p

∥∥ ∥∥A3
n−p

∥∥+
∥∥A2

p

∥∥ ∥∥A3
n−p

∥∥)] .
(5.86)
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Finally, observe that

n−2∑
p=2

(∥∥A1
p

∥∥ ∥∥A2
n−p
∥∥+

∥∥A1
p

∥∥ ∥∥A3
n−p
∥∥+

∥∥A2
p

∥∥ ∥∥A3
n−p
∥∥)

≤ 1

2

n−2∑
p=2

(∥∥A1
p

∥∥+
∥∥A2

p

∥∥+
∥∥A3

p

∥∥) (
∥∥A1

n−p
∥∥+

∥∥A2
n−p
∥∥+

∥∥A3
n−p
∥∥).

As a result, (5.86) becomes

3∑
m=1

‖Amn ‖ ≤
n+ 4

(n+ 1)(n− 2)

[
c

3∑
m=1

∥∥∥Am′n−1

∥∥∥
+

1

2

n−2∑
p=2

(∥∥A1
p

∥∥+
∥∥A2

p

∥∥+
∥∥A3

p

∥∥) (
∥∥A1

n−p
∥∥+

∥∥A2
n−p
∥∥+

∥∥A3
n−p
∥∥)

 . (5.87)

Now recall from our work in Step 4 of this section that under the assumption (5.77), we have

‖Amn ‖ ≤ qmn,1(ck)n−2 + qmn,2(ck)n−4 + qmn,3(ck)n−6 + · · ·+ qmn,p(ck)n−2p,∥∥∥Am′n ∥∥∥ ≤ k [qmn,1(ck)n−2 + 2qmn,2(ck)n−4 + 3qmn,3(ck)n−6 + · · ·+ pqmn,p(ck)n−2p
]
,

where p = bn/2c and qmn,p are the constants that appear in (5.80). This motivates us to write∥∥A1
n

∥∥+
∥∥A2

n

∥∥+
∥∥A3

n

∥∥ ≤ rn,1(ck)n−2 + rn,2(ck)n−4 + rn,3(ck)n−6 + · · ·+ rn,p(ck)n−2p, (5.88)∥∥∥A1′

n

∥∥∥+
∥∥∥A2′

n

∥∥∥+
∥∥∥A3′

n

∥∥∥ ≤ k [rn,1(ck)n−2 + 2rn,2(ck)n−4 + 3rn,3(ck)n−6 + · · ·+ prn,p(ck)n−2p
]
, (5.89)

where rn,p are constants defined for n ≥ 2p, independent of m. We seek a closed form for rn,p. As

a result, we do not define rn,p = q1
n,p + q2

n,p + q3
n,p since a formula for qmn,p is not known. Rather, we

find an expression for rn,p that turns out to satisfy

rn,p ≥ q1
n,p + q2

n,p + q3
n,p.

Substituting (5.88)-(5.89) into (5.87) yields

3∑
m=1

‖Amn ‖ ≤
n+ 4

(n+ 1)(n− 2)

{
ck
[
rn−1,1(ck)n−3 + 2rn−1,2(ck)n−5 + · · ·+ prn−1,p(ck)n−1−2p

]
+

1

2

n−2∑
p=2

(
rp,1(ck)p−2 + rp,2(ck)p−4 + · · ·

) (
rn−p,1(ck)n−p−2 + rn−p,2(ck)n−p−4 + · · ·

)}

=
n+ 4

(n+ 1)(n− 2)

{
rn−1,1(ck)n−2 + 2rn−1,2(ck)n−4 + · · ·+ prn−1,p(ck)n−2p

+
1

2

n−2∑
p=2

(
rp,1(ck)p−2 + rp,2(ck)p−4 + · · ·

) (
rn−p,1(ck)n−p−2 + rn−p,2(ck)n−p−4 + · · ·

)}
.
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Finally, assuming n is sufficiently large, collecting powers of (ck) gives

3∑
m=1

‖Amn ‖ =
n+ 4

(n+ 1)(n− 2)

{
rn−1,1(ck)n−2 +

(
2rn−1,2 +

1

2

n−2∑
p=2

rp,1rn−p,1

)
(ck)n−4

+

(
3rn−1,3 +

1

2

n−4∑
p=2

rp,1rn−p,2 +
1

2

n−2∑
p=4

rp,2rn−p,1

)
(ck)n−6

+

(
4rn−1,4 +

1

2

n−6∑
p=2

rp,1rn−p,3 +
1

2

n−2∑
p=6

rp,3rn−p,1 +
1

2

n−4∑
p=4

rp,2rn−p,2

)
(ck)n−8

+ · · ·

}
.

Simplifying again, we obtain

3∑
m=1

‖Amn ‖ ≤
n+ 4

(n+ 1)(n− 2)

{
rn−1,1(ck)n−2 +

(
2rn−1,2 +

1

2

n−2∑
j=2

rj,1rn−j,1

)
(ck)n−4

+

(
3rn−1,3 +

1

2

2∑
`=1

n−2(3−`)∑
j=2`

rj,`rn−j,3−`

)
(ck)n−6

+

(
4rn−1,4 +

1

2

3∑
`=1

n−2(4−`)∑
j=2`

rj,`rn−j,4−`

)
(ck)n−8

+ · · ·

}
.

As a result, we have

3∑
m=1

‖Amn ‖ ≤
n+ 4

(n+ 1)(n− 2)

∞∑
p=1

p rn−1,p +
1

2

p−1∑
`=1

n−2(p−`)∑
j=2`

rj,` rn−j,p−`

 (ck)n−2p. (5.90)

It follows that we can bound A(x, τ) by

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

∞∑
n=2p

rn,p‖K‖p(ck)n−2p|ξ|n
 , (5.91)

where ‖K‖ = ‖K‖∞ and we are motivated by (5.90) to define

rn,p =
n+ 4

(n+ 1)(n− 2)

p rn−1,p +
1

2

p−1∑
`=1

n−2(p−`)∑
j=2`

rj,` rn−j,p−`

 , for n > 2p. (5.92a)

r2p,p =
1

|K|p
(∣∣A1

2p

∣∣+
∣∣A2

2p

∣∣+
∣∣A3

2p

∣∣) , (5.92b)
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n (ck)0 (ck) (ck)2 (ck)3 (ck)4 (ck)5 (ck)6

2 2
3 0 0 0 0 0 0

3 0 7
6 0 0 0 0 0

4 11
180 0 14

15 0 0 0 0
5 0 9

20 0 7
15 0 0 0

6 47
7560 0 793

1008 0 1
6 0 0

7 0 8107
75600 0 82423

100800 0 11
240 0

8 191
302400 0 1333

4200 0 9161
15120 0 11

1080

Table 5.5: The first few coefficients rn,p in (5.91), defined by (5.92). Note that n indicates the nth
row of the table, while p indicates the pth nonzero diagonal (that is, the diagonal that begins in the
row corresponding to n = 2p). For instance, r6,2 = 793

1008 . Also, note that the first column contains
the entries r2p,p, which are defined in terms of the ODE series coefficients in (5.92b).

where (5.92a) is defined for p ≥ 2 and (5.92b) is defined for p ≥ 1. Note that in (5.92b), Am2p are

the coefficients from the ODE series solution in (5.66) with H = K2 = 0 and K3 = K.

Finally, note that when p = 1, (5.92a) reduces to

rn,1 =
n+ 4

(n+ 1)(n− 2)
rn−1,1.

It is straightforward to show that this is equivalent to

rn,1 =
(n+ 4)(n+ 3)(n+ 2)

120(n− 2)!
r2,1. (5.93)

The first few constants rn,p can be found in Table 5.5.

It still remains to reduce the double sum in (5.91) to a single sum so that we can apply the

ratio test. In order to do this, we must use the definition of rn,p in (5.92) and (5.93) to find a nice

bound on rn,p. To simplify our notation in what follows, we let r2p,p ≡ r2p.

It is shown by induction in Appendix C that

rn,p ≤
(3p)n−2p

(n− 2p)!

p−1∑
`=1

r2` r2(p−`) (5.94)

for n ≥ 2p and for p ≥ 2. When p = 1, (5.93) easily gives

rn,1 ≤
3n−2

(n− 2)!
r2, (5.95)

which can be thought of as (5.94) for p = 1 without the sum.
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Next, we show that
p−1∑
`=1

r2` r2(p−`) ≤ (δp+ γ) r2p, p ≥ 2, (5.96)

where δ and γ are real nonnegative constants.

Let the coefficients in the ODE series solution in (5.66) be decomposed as follows

Am2n = αm2nK
n, (5.97)

where αm2n is real for n ≥ 0. The proof of (5.96) requires the following information about the

constants αm2n. Note that these facts are specific to the ODE series solution with H = K2 = 0 and

K3 = K. Without loss of generality, assume that σ = 1.

i. α1
2n > 0, α2

2n > 0, and α3
2n < 0 for all n ≥ 0.

ii. α1
2n = α2

2n for all n ≥ 0.

iii.
∣∣α1

2n

∣∣ ≤ 2
∣∣α3

2n

∣∣ for all n ≥ 0.

iv.
∣∣α3

2n

∣∣ ≤ 2
∣∣α1

2n

∣∣ for all n ≥ 0.

Properties (i) and (ii) follow from the ODE series solution in (5.66), with A1
2 = A2

2 = K/6 and

A1
3 = −K/3. Properties (iii)-(iv) require slightly more work to show. We use induction to prove

that the results in (iii)-(iv) hold.

We prove (iii)-(iv) together. In particular, we have αm0 = 1 for m = 1, 2, 3, as well as α1
2 = 1/6

and α3
2 = −1/3. It follows that (iii)-(iv) hold when n = 0, 1. Next, suppose that (iii)-(iv) hold for

all n such that 2 ≤ n < N . That is, assume that

∣∣α1
2n

∣∣ ≤ 2
∣∣α3

2n

∣∣ , 2 ≤ n < N, (5.98)∣∣α3
2n

∣∣ ≤ 2
∣∣α1

2n

∣∣ , 2 ≤ n < N. (5.99)

We show that (iii)-(iv) hold for n = N .

First, observe that solving the linear system defined by the recursion relation in (5.67) and

canceling a factor of 1/Kn gives

αm2n =
1

2(2n+ 1)(n− 1)

[
2nbm2n − bk2n − b`2n

]
, n ≥ 2, (5.100)
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where

bm2n = −
n−1∑
j=1

αk2jα
`
2(n−j)

and (k, `,m) = (1, 2, 3) cyclically. Note that b12n = b22n due to (ii). Furthermore, we can use (i)-(ii)

to write

b12n = b22n =
n−1∑
j=1

∣∣∣α1
2jα

3
2(n−j)

∣∣∣ and b32n = −
n−1∑
j=1

∣∣∣α1
2jα

1
2(n−j)

∣∣∣ , (5.101)

since |α3
2n| = −α3

2n for n ≥ 0.

Now we show that (5.98) holds when n = N , or that 2
∣∣α3

2N

∣∣ − ∣∣α1
2N

∣∣ ≥ 0. Observe the

following, which makes use of (i), (ii), and (5.100)-(5.101)

2
∣∣α3

2N

∣∣− ∣∣α1
2N

∣∣ = −2α3
2N − α1

2N

=
1

2(2N + 1)(N − 1)

[
−2
(
2Nb32N − 2b12N

)
−
(
2Nb12N − b12N − b32N

)]
=

1

2(2N + 1)(N − 1)

[
(−4N + 1)b32N + (5− 2N)b12N

]
=

1

2(2N + 1)(N − 1)

(4N − 1)
N−1∑
j=1

∣∣∣α1
2jα

1
2(N−j)

∣∣∣− (2N − 5)
N−1∑
j=1

∣∣∣α1
2jα

3
2(N−j)

∣∣∣


=
1

2(2N + 1)(N − 1)

N−1∑
j=1

∣∣α1
2j

∣∣ [(4N − 1)
∣∣∣α1

2(N−j)

∣∣∣− (2N − 5)
∣∣∣α3

2(N−j)

∣∣∣] .
Since N > 2, the terms (4N − 1)|α1

2(N−j)| and (2N − 5)|α3
2(N−j)| are positive. Moreover, we know

from (5.99) that |α3
2(N−j)| ≤ 2|α1

2(N−j)| since N − j is at most N − 1. Thus we have the following

2
∣∣α3

2N

∣∣− ∣∣α1
2N

∣∣ ≥ 1

2(2N + 1)(N − 1)

N−1∑
j=1

∣∣α1
2j

∣∣ [(4N − 1)
∣∣∣α1

2(N−j)

∣∣∣− 2(2N − 5)
∣∣∣α1

2(N−j)

∣∣∣]

=
1

2(2N + 1)(N − 1)

N−1∑
j=1

(4N − 1− 2(2N − 5))
∣∣∣α1

2jα
1
2(N−j)

∣∣∣
=

1

2(2N + 1)(N − 1)

N−1∑
j=1

9
∣∣∣α1

2jα
1
2(N−j)

∣∣∣
≥ 0.

To summarize, we showed that

2
∣∣α3

2N

∣∣− ∣∣α1
2N

∣∣ ≥ 0 (5.102)
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as long as both of the inductive hypotheses in (5.98)-(5.99) hold.

It remains to show that (5.99) holds when n = N , or that 2
∣∣α1

2N

∣∣− ∣∣α3
2N

∣∣ ≥ 0. Observe the

following

2
∣∣α1

2N

∣∣− ∣∣α3
2N

∣∣ = 2α1
2N + α3

2N

=
1

2(2N + 1)(N − 1)

[
2
(
2Nb12N − b12N − b32N

)
+
(
2Nb32N − 2b12N

)]
=

1

2(2N + 1)(N − 1)

[
(4N − 4)b12N + (2N − 2)b32N

]
=

1

2(2N + 1)(N − 1)

(4N − 4)
N−1∑
j=1

∣∣∣α1
2jα

3
2(N−j)

∣∣∣− (2N − 2)
N−1∑
j=1

∣∣∣α1
2jα

1
2(N−j)

∣∣∣


=
1

2(2N + 1)(N − 1)

N−1∑
j=1

∣∣α1
2j

∣∣ [(4N − 4)
∣∣∣α3

2(N−j)

∣∣∣− (2N − 2)
∣∣∣α1

2(N−j)

∣∣∣]
We know that the terms (4N − 4)|α3

2(N−j)| and (2N − 2)|α1
2(N−j)| are positive since N > 2, and we

know from (5.98) that |α1
2(N−j)| ≤ 2|α3

2(N−j)|. As a result, we have

2
∣∣α1

2N

∣∣− ∣∣α3
2N

∣∣ ≥ 1

2(2N + 1)(N − 1)

N−1∑
j=1

∣∣α1
2j

∣∣ [(4N − 4)
∣∣∣α3

2(N−j)

∣∣∣− 2(2N − 2)
∣∣∣α3

2(N−j)

∣∣∣]

=
1

2(2N + 1)(N − 1)

N−1∑
j=1

(4N − 4− 2(2N − 2))
∣∣∣α1

2jα
3
2(N−j)

∣∣∣
= 0.

That is, we showed that

2
∣∣α1

2N

∣∣− ∣∣α3
2N

∣∣ ≥ 0 (5.103)

as long as both of the inductive hypotheses in (5.98)-(5.99) hold. The combination of (5.102)-(5.103)

with the base cases for n = 0, 1 prove by induction that (iii)-(iv) hold for n ≥ 0.

We are now able to use (i)-(iv) to show that (5.96) holds. That is, we want to prove that

n−1∑
`=1

r2` r2(n−`) ≤ (δn+ γ) r2n, n ≥ 2, (5.104)

where δ and γ are real nonnegative constants. We proceed inductively, and determine what values

δ and γ can take on in the process. First, from (5.92b), we have that

r2n =
∣∣α1

2n

∣∣+
∣∣α2

2n

∣∣+
∣∣α3

2n

∣∣ ,
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where we used Am2n = αm2nK
n. It follows that

r2 =
1

6
+

1

6
+

1

3
=

2

3
.

Moreover, for n = 2, we have

r4 =
7

360
+

7

360
+

1

45
=

11

180
.

Since r2
2 = 4/9, it follows that (5.104) holds for n = 2 as long as

4

9
≤ (2δ + γ)

11

180
.

In other words, for the base case, n = 2, of (5.104) to be satisfied, δ and γ must be chosen such

that

2δ + γ ≥ 80

11
. (5.105)

Henceforth, assume that δ and γ satisfy this condition.

Before we tackle the inductive step of the proof, we first manipulate each side of the inequality

in (5.104) into a more useful form. To that end, using (5.100) and (5.101), we have, for n ≥ 1,

r2n =
∣∣α1

2n

∣∣+
∣∣α2

2n

∣∣+
∣∣α3

2n

∣∣
= 2α1

2n − α3
2n

=
1

2(2n+ 1)(n− 1)

[
2(2nb12n − b12n − b32n)− (2nb32n − 2b12n)

]
=

1

2(2n+ 1)(n− 1)

[
4nb12n − (2n+ 2)b32n

]
=

1

2(2n+ 1)(n− 1)

4n
n−1∑
j=1

∣∣∣α1
2jα

3
2(n−j)

∣∣∣+ (2n+ 2)

n−1∑
j=1

∣∣∣α1
2jα

1
2(n−j)

∣∣∣
 . (5.106)

We also have

n−1∑
j=1

r2jr2(n−j) =
n−1∑
j=1

(
2α1

2j − α3
2j

) (
2α1

2(n−j) − α
3
2(n−j)

)

=

n−1∑
j=1

(
4α1

2jα
1
2(n−j) − 2α1

2jα
3
2(n−j) − 2α3

2jα
1
2(n−j) + α3

2jα
3
2(n−j)

)

=

n−1∑
j=1

(
4
∣∣∣α1

2jα
1
2(n−j)

∣∣∣+ 2
∣∣∣α1

2jα
3
2(n−j)

∣∣∣+ 2
∣∣∣α3

2jα
1
2(n−j)

∣∣∣+
∣∣∣α3

2jα
3
2(n−j)

∣∣∣) . (5.107)
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Now we return to the proof of (5.104). Consider the quantity

(δn+ γ)r2n −
n−1∑
j=1

r2jr2(n−j). (5.108)

We know that (5.108) is nonnegative when n = 2 as long as γ and δ satisfy (5.105). Furthermore,

assume that (5.108) is nonnegative for n ≤ 3 < N . Then we show that (5.108) is also nonnegative

when n = N . This is sufficient to prove (5.104).

Define

κ(n) =
δn+ γ

2(2n+ 1)(n− 1)
, n ≥ 2. (5.109)

Then using (5.106)-(5.107) with n = N , we have

(δN + γ)r2N −
N−1∑
j=1

r2jr2(N−j)

= κ(N)

4N
N−1∑
j=1

∣∣∣α1
2jα

3
2(N−j)

∣∣∣+ (2N + 2)
N−1∑
j=1

∣∣∣α1
2jα

1
2(N−j)

∣∣∣


−
N−1∑
j=1

(
4
∣∣∣α1

2jα
1
2(N−j)

∣∣∣+ 2
∣∣∣α1

2jα
3
2(N−j)

∣∣∣+ 2
∣∣∣α3

2jα
1
2(N−j)

∣∣∣+
∣∣∣α3

2jα
3
2(N−j)

∣∣∣)

=

N−1∑
j=1

{
[4Nκ(N)− 2]

∣∣∣α1
2jα

3
2(N−j)

∣∣∣+ [(2N + 2)κ(N)− 4]
∣∣∣α1

2jα
1
2(N−j)

∣∣∣
− 2

∣∣∣α3
2jα

1
2(N−j)

∣∣∣− ∣∣∣α3
2jα

3
2(N−j)

∣∣∣ }.
We know from (iv) that |α3

2N | ≤ 2|α1
2N |. It follows that∣∣∣α3

2jα
1
2(N−j)

∣∣∣ ≤ 2
∣∣∣α1

2jα
1
2(N−j)

∣∣∣ and
∣∣∣α3

2jα
3
2(N−j)

∣∣∣ ≤ 2
∣∣∣α1

2jα
3
2(N−j)

∣∣∣
for j = 1, 2, . . . , N − 1. As a result, we have

(δN + γ)r2N −
N−1∑
j=1

r2jr2(N−j)

≥
N−1∑
j=1

{
[4Nκ(N)− 2]

∣∣∣α1
2jα

3
2(N−j)

∣∣∣+ [(2N + 2)κ(N)− 4]
∣∣∣α1

2jα
1
2(N−j)

∣∣∣
− 4

∣∣∣α1
2jα

1
2(N−j)

∣∣∣− 2
∣∣∣α1

2jα
3
2(N−j)

∣∣∣ }
=

N−1∑
j=1

{
[4Nκ(N)− 4]

∣∣∣α1
2jα

3
2(N−j)

∣∣∣+ [(2N + 2)κ(N)− 8]
∣∣∣α1

2jα
1
2(N−j)

∣∣∣ .
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The quantity above is nonnegative if κ(n) satisifies

4nκ(n)− 4 ≥ 0 and (2n+ 2)κ(n)− 8 ≥ 0.

Consequently, we can satisfy both inequalities by choosing κ(n) to satisfy

(n+ 1)κ(n) ≥ 4,

where we note that κ(n) is only defined for n ≥ 2. Using the definiton of κ(n) in (5.109), we must

pick the real constants δ and γ such that

(n+ 1)κ(n) =
(n+ 1)(δn+ γ)

2(2n+ 1)(n− 1)
≥ 4.

A simple choice is δ = 16 and γ = 0. Importantly, notice that this choice of δ and γ satisfies

(5.105). As a result, with these values, we have shown by induction that (5.104) holds for all n ≥ 2.

That is, we proved
n−1∑
j=1

r2jr2(n−j) ≤ 16n r2n. (5.110)

Combining (5.94) and (5.110), we have

rn,p ≤
(3p)n−2p

(n− 2p)!
16n r2p, n > 2p, p ≥ 1. (5.111)

Note that the result for p = 1 is a consequence of (5.95).

Finally, we reduce (5.91) to a single sum. To that end, let Sp be the inner sum in (5.91),

namely

Sp =

∞∑
n=2p

rn,p‖K‖p(ck)n−2p|ξ|n. (5.112)

Then (5.91) becomes

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

Sp

 . (5.113)
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Using (5.111) in the definition of Sp gives

Sp =

∞∑
n=2p

rn,p‖K‖p(ck)n−2p|ξ|n

≤
∞∑

n=2p

(3p)n−2p

(n− 2p)!
16p r2p ‖K‖p(ck)n−2p|ξ|n

= 16p
‖K‖p r2p

(3ckp)2p

∞∑
n=2p

(3ckp|ξ|)n

(n− 2p)!

= 16p
‖K‖p r2p

(3ckp)2p

∞∑
n=0

(3ckp|ξ|)n+2p

n!

= 16p ‖K‖p r2p |ξ|2p
∞∑
n=0

(3ckp|ξ|)n

n!

= 16p ‖K‖p r2p |ξ|2p e3ckp|ξ|.

Now substituting into (5.113) gives

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

Sp


≤ 1

|ξ|

3 + 16

∞∑
p=1

p ‖K‖p r2p |ξ|2p e3ckp|ξ|

 . (5.114)

Step 6: Finally, we determine the radius of convergence of A(x, τ) in (5.81) using (5.114). In

particular, we find that the series A(x, τ) converges when

lim
p→∞

∣∣∣∣∣(p+ 1) ‖K‖p+1 r2(p+1) |ξ|2(p+1) e3ck(p+1)|ξ|

p ‖K‖p r2p |ξ|2p e3ckp|ξ|

∣∣∣∣∣ < 1.

That is, A(x, τ) converges under the condition

‖K‖ |ξ|2 e3ck|ξ| lim
p→∞

∣∣∣∣r2(p+1)

r2p

∣∣∣∣ < 1,

where we used the fact that limp→∞(p+1)/p = 1. Finally, rearranging gives that A(x, τ) converges

when

e
3
2
ck|ξ||ξ| <

(
‖K‖ lim

p→∞

∣∣∣∣r2(p+1)

r2p

∣∣∣∣)−1/2

. (5.115)
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Recall from (5.68)-(5.69) that

lim
p→∞

∣∣∣∣∣A
m
2(p+1)

Am2p

∣∣∣∣∣ =
|K|
π2

for m = 1, 2, 3. Then using Am2n = αm2nK
n, we have

lim
p→∞

∣∣∣∣∣α
m
2(p+1)

αm2p

∣∣∣∣∣ =
1

π2

for m = 1, 2, 3. Moreover, recall that

r2p =
∣∣α1

2p

∣∣+
∣∣α2

2p

∣∣+
∣∣α3

2p

∣∣ .
Then it is straightforward to find that

lim
p→∞

∣∣∣∣r2(p+1)

r2p

∣∣∣∣ = lim
p→∞

∣∣∣α1
2(p+1)

∣∣∣+
∣∣∣α2

2(p+1)

∣∣∣+
∣∣∣α3

2(p+1)

∣∣∣∣∣∣α1
2p

∣∣∣+
∣∣∣α2

2p

∣∣∣+
∣∣∣α3

2p

∣∣∣ =
1

π2
.

Lastly, substituting into (5.115) tells us that the series A(x, τ) converges when

e
3
2
ck|τ−τ0||τ − τ0| <

π

‖K‖1/2∞
. (5.116)

Since A(x, τ) = |a1(x, τ)| + |a2(x, τ)| + |a3(x, τ)| converges under the condition (5.116), it

follows that am(x, τ) for m = 1, 2, 3 must converge absolutely at least under the same condition,

or possibly under a less restrictive condition.

To summarize, we found that the general solution of the three-wave ODEs when H = K2 = 0

and K3 = K converges when

|τ − τ0| < RODE, (5.117)

where

RODE =
π

|K|1/2
.

Meanwhile, we determined that the analagous near-general solution of the three-wave PDEs with

constant phases, H(x) = 0, and K2(x) = K3(x) = K(x)/6 converges when

e
3
2
ck|τ−τ0||τ − τ0| < RODE, (5.118)
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where we replace |K| with ‖K‖∞ in RODE.

Compare (5.117) with (5.118). As with the convergence criteria (5.63) and (5.64) in Case 1,

the two convergence conditions (5.117) and (5.118) differ only by an exponential factor. Indeed,

the convergence conditions for the solutions of the ODEs and PDEs differ by the factor of e
3
2
ck|τ−τ0|

in (5.118). This is a known, dimensionless factor that causes the radius of convergence of the PDE

solution to be smaller than that of the ODE solution. However, the factor depends only on k, which

tells us how quickly the derivatives of K(x) are growing, and c, which is the largest group velocity

(in magnitude) of the three wavetrains. This indicates that we are losing very little information in

moving from the ODEs to the PDEs. The inclusion of spatial dependence in the three-wave PDEs

affects where our near-general solution is valid, but it does not affect the overall structure of the

solutions, at least in the two special cases considered so far.

5.5 Radius of convergence: Case 2(ii)

In this section, we consider Case 2(ii), in which K2(x) = K(x)/2 and H(x) = K3(x) = 0 in

the solution of the three-wave PDEs, while H = 0, K2 = K and K3 = 2K in the solution of the

three-wave ODEs. Additionally, recall that the phases ψm(x) in the PDE solution are assumed

to be constant. In order to find the radius of convergence of the Laurent series solution of the

three-wave PDEs in this case, we follow the steps outlined in Section 5.2. Moreover, the proof of

this section follows closely from that in the previous section for Case 2(i).

Step 1: We begin by finding the series solution of the three-wave ODEs when H = 0, K2 = K,

and K3 = 2K using (4.29)-(4.31). The first few terms of the series for am(τ), m = 1, 2, 3, are

a1(τ) =
eiψ1

ξ

[
1 +

K

2
ξ2 − K2

40
ξ4 +

K3

80
ξ6 +

K4

9600
ξ8 +

K5

3840
ξ10 − K6

1664000
ξ12 + · · ·

]
, (5.119a)

a2(τ) =
eiψ2

ξ

[
1 + 0 ξ2 +

K2

10
ξ4 + 0 ξ6 +

K4

600
ξ8 + 0 ξ10 +

K6

26000
ξ12 + · · ·

]
, (5.119b)

a3(τ) =
eiψ3

ξ

[
1− K

2
ξ2 − K2

40
ξ4 − K3

80
ξ6 +

K4

9600
ξ8 − K5

3840
ξ10 − K6

1664000
ξ12 + · · ·

]
. (5.119c)
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Note that since H = 0 in this case, am(τ) has the form (5.66),

am(τ) =
eiψm

ξ

∞∑
n=0

Am2n ξ
2n, (5.120)

for m = 1, 2, 3, where Am2n is real and defined in (5.67) for n ≥ 2.

It is straightforward to find the radius of convergence of the series for am(τ) using the

Weierstrass general solution of the three-wave ODEs in (3.54). In particular, the elliptic invariants

g2 and g3 in (3.45)-(3.46) with K2 = K, K3 = 2K, and H = 0, are

g2 = 4K2 and g3 = 0.

In this case, we know that the lattice associated with the Weierstrass elliptic function in (3.54)

is rectangular since the discriminant is ∆ = g3
2 − 27g2

3 > 0. Moreover, in the special case where

g3 = 0, the lattice is lemniscatic, meaning the poles occur on a square lattice [17, §23.5(iii)]. In

particular, we have that λ2 = iλ1, where λ1 and λ2 are the half-periods of the Weierstrass function.

In this special case, the relationship between the half-periods and the invariants of ℘(z; g2, g3) is

known explicitly. In particular, we have

g2 =

[
Γ
(

1
4

)]8
256π2λ4

1

[17, §23.5.4]. Solving for λ1 yields

λ1 =

[
Γ
(

1
4

)]2
4 · π1/2g

1/4
2

=

[
Γ
(

1
4

)]2
4 · π1/241/4|K|1/2

,

where we used the fact that g2 = 4K2. Since the radius of convergence of the Weierstrass general

solution of the three-wave ODEs is given by R = max {2|λ1|, 2|λ2|}, it follows that the radius of

convergence of am(τ) is

RODE =
2
[
Γ
(

1
4

)]2
4
√

2π1/2 · |K|1/2
≈ 2.62206

|K|1/2
. (5.121)

Alternatively, we can find the radius of convergence of (5.119a)-(5.119c) by applying the

ratio test to (5.120) for m = 1, 2, 3. Then we find that the Laurent series for am(τ) converges for

m = 1, 2, 3 when

lim
n→∞

∣∣∣∣∣A
m
2(n+1)ξ

2(n+1)

Am2nξ
2n

∣∣∣∣∣ < 1,



125

or

|ξ| <

(
lim
n→∞

∣∣∣∣∣A
m
2(n+1)

Am2n

∣∣∣∣∣
)−1/2

.

Unfortunately, the limit on the right-hand side does not exist. As n increases, the value of

|Am2(n+1)/A
m
2n| alternates between two numbers. As a result, we follow the procedure outlined

for Case 1 in Section 5.3. That is, we split the series (5.120) into its even and odd parts and find

the radius of convergence of each.

Define the following

Smeven =
eiψm

ξ

∞∑
n=0

Am4n ξ
4n and Smodd =

eiψm

ξ

∞∑
n=0

Am2(2n+1) ξ
2(2n+1), (5.122)

so that am(τ) = Smeven + Smodd. First, we find that S2
odd converges with an infinite radius of conver-

gence because A2
2(2n+1) = 0 for all n ≥ 0. Furthermore, the ratio test tells us that the even sums

for m = 1, 2, 3 and the odd sums for m = 1, 3 converge, respectively, under the conditions

lim
n→∞

∣∣∣∣∣A
m
4(n+1)ξ

4(n+1)

Am4nξ
4n

∣∣∣∣∣ < 1 and lim
n→∞

∣∣∣∣∣A
m
2(2(n+1)+1)ξ

2(2(n+1)+1)

Am2(2n+1)ξ
2(2n+1)

∣∣∣∣∣ < 1.

Rearranging, and using ξ = τ − τ0 yields the following convergence criteria for the even and odd

series in (5.122)

Smeven : |τ − τ0| <

(
lim
n→∞

∣∣∣∣∣A
m
4(n+1)

Am4n

∣∣∣∣∣
)−1/4

, m = 1, 2, 3 (5.123)

Smodd : |τ − τ0| <

(
lim
n→∞

∣∣∣∣∣A
m
2(2(n+1)+1)

Am2(2n+1)

∣∣∣∣∣
)−1/4

, m = 1, 3. (5.124)

We find numerically that the limits in (5.123) for m = 1, 3 yield the same value. In particular, we

find (
lim
n→∞

∣∣∣∣∣A
m
4(n+1)

Am4n

∣∣∣∣∣
)−1/4

≈ 3.70815

|K|1/2
, m = 1, 3. (5.125)

Furthermore, we find that the limit in (5.123) for m = 2 and the limits in (5.124) yield the same

value. Specifically, we have(
lim
n→∞

∣∣∣∣∣A
2
4(n+1)

A2
4n

∣∣∣∣∣
)−1/4

=

(
lim
n→∞

∣∣∣∣∣A
m
2(2(n+1)+1)

Am2(2n+1)

∣∣∣∣∣
)−1/4

≈ 2.62206

|K|1/2
, m = 1, 3. (5.126)
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Since the radius of convergence defined in (5.126) is smaller than the radius in (5.125), it

follows that am(τ) = Smeven + Smodd converges for m = 1, 2, 3 with a radius of at least 2.62/|K|1/2.

That is, we find that the full series am(τ) in (5.120) converges for m = 1, 2, 3 with radius of

convergence

RODE =
2.62

|K|1/2
,

which is equivalent to (5.121). In other words, we find the same radius of convergence using both

the Weierstrass solution and the Laurent series general solution of the three-wave ODEs.

Step 2: Now we find the series solution of the three-wave PDEs when H(x) = K3(x) = 0 and

K2(x) = K(x)/2. The first few terms of the series are given by

a1(x, τ) =
eiψ1

ξ

{
1 +
K
2
ξ2 −

(
3

8
c1 +

1

8
c3

)
K′ξ3

+

[
− 1

40
K2 +

(
3

20
c2

1 +
1

80
c1c2 +

1

16
c1c3 −

1

80
c2c3 +

3

80
c2

3

)
K′′
]
ξ4

+
[
(· · · )KK′ + (· · · )K(3)+

]
ξ5

+
[
(· · · )K3 + (· · · ) (K′)2 + (· · · )KK′′ + (· · · )K(4)

]
ξ6 + · · ·

}
, (5.127a)

a2(x, τ) =
eiψ2

ξ

{
1 + 0ξ2 +

(
1

8
c1 −

1

8
c3

)
K′ξ3

+

[
1

10
K2 +

(
− 3

80
c2

1 −
1

20
c1c2 +

1

20
c2c3 +

3

80
c2

3

)
K′′
]
ξ4

+
[
(· · · )KK′ + (· · · )K(3)+

]
ξ5

+
[
(· · · )K3 + (· · · ) (K′)2 + (· · · )KK′′ + (· · · )K(4)

]
ξ6 + · · ·

}
, (5.127b)

a3(x, τ) =
eiψ3

ξ

{
1− K

2
ξ2 +

(
1

8
c1 +

3

8
c3

)
K′ξ3

+

[
− 1

40
K2 −

(
3

80
c2

1 −
1

80
c1c2 +

1

16
c1c3 +

1

80
c2c3 +

3

20
c2

3

)
K′′
]
ξ4

+
[
(· · · )KK′ + (· · · )K(3)+

]
ξ5

+
[
(· · · )K3 + (· · · ) (K′)2 + (· · · )KK′′ + (· · · )K(4)

]
ξ6 + · · ·

}
. (5.127c)
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As with Case 2(i) in the previous section, notice that increasingly higher derivatives of K(x)

appear as the number of terms in the series increases, as well as more nonlinear terms in K and

its derivatives. The series solution becomes complicated quickly, and thus we consider a particular

family of functions for K(x).

Step 3: Following (5.33), we assume that∥∥∥∥ dndxnK(x)

∥∥∥∥
∞
≤ kn‖K‖∞, (5.128)

where k is a real positive constant.

Step 4: Using (5.128) and the definition of c in (5.31), we bound the series for am(x, τ) in (5.127)

using the triangle inequality. Similar to Case 2(i), we find that am(x, τ) is bounded by a series of

the form

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

∞∑
n=2p

qmn,p(ck)n−2p|ξ|n
 , (5.129)

where qmn,p are nonnegative constants for m = 1, 2, 3.

We have been unable to find an exact formula for the coefficients qmn,p, so instead we bound

the sum

A(x, τ) =
3∑

m=1

|am(x, τ)| . (5.130)

We then find the radius of convergence of A(x, τ), and infer that am(x, τ) must converge absolutely

within at least that radius of convergence for m = 1, 2, 3. To that end, we follow the procedure

outlined in Step 4 of the previous section to find that

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

∞∑
n=2p

rn,p‖K‖p(ck)n−2p|ξ|n
 , (5.131)

where ‖K‖ = ‖K‖∞ and rn,p is defined in (5.92) and (5.93).

It is shown in Appendix C that if H(x) = 0, then rn,p satisifies

rn,p ≤
(3p)n−2p

(n− 2p)!

p−1∑
`=1

r2`r2(p−`), n > 2p, p ≥ 2. (5.132)
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Moreover, when p = 1, (5.93) gives

rn,1 ≤
3n−2

(n− 2)!
r2. (5.133)

Note that we defined r2p = r2p,p for p ≥ 1. We can also show that when K2(x) = K(x)/2 and

H(x) = K3(x) = 0, we have
p−1∑
`=1

r2`r2(p−`) ≤ 36(2p+ 1) r2p. (5.134)

The proof of (5.134) is lengthy and involves a great deal of algebra. As a result, the details of this

proof are omitted from the body of this thesis, and instead can be found in Appendix D.

Combining (5.132)-(5.134), we have

rn,p ≤
(3p)n−2p

(n− 2p)!
36(2p+ 1) r2p, n > 2p, p ≥ 1. (5.135)

Note that the result for p = 1 is a simple consequence of (5.133).

Finally, we reduce (5.131) to a single sum. To that end, let Sp be the inner sum in (5.131),

namely

Sp =
∞∑

n=2p

rn,p‖K‖p(ck)n−2p|ξ|n. (5.136)

Then (5.131) becomes

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

Sp

 . (5.137)

Again, following the procedure of the previous section, we find that

Sp ≤ 36(2p+ 1) ‖K‖p r2p |ξ|2p e3ckp|ξ|,

where we used (5.135) in (5.136). Then substituting into (5.137) gives

A(x, τ) ≤ 1

|ξ|

3 +
∞∑
p=1

Sp


≤ 1

|ξ|

3 +
∞∑
p=1

36(2p+ 1) ‖K‖p r2p |ξ|2p e3ckp|ξ|


=

36

|ξ|

∞∑
p=0

(2p+ 1) ‖K‖p r2p |ξ|2p e3ckp|ξ|, (5.138)

where we defined r0 = 1/12.
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Step 6: Finally, we determine the radius of convergence of A(x, τ) in (5.130) using (5.138). In

particular, we find that the series A(x, τ) converges by the ratio test when

lim
p→∞

∣∣∣∣∣(2(p+ 1) + 1) ‖K‖p+1 r2(p+1) |ξ|2(p+1) e3ck(p+1)|ξ|

(2p+ 1) ‖K‖p r2p |ξ|2p e3ckp|ξ|

∣∣∣∣∣ < 1.

That is, A(x, τ) converges under the condition

‖K‖ |ξ|2 e3ck|ξ| lim
p→∞

∣∣∣∣r2(p+1)

r2p

∣∣∣∣ < 1,

where we used the fact that limp→∞(2p + 3)/(2p + 1) = 1. Finally, rearranging gives that A(x, τ)

converges when

e
3
2
ck|ξ||ξ| <

(
‖K‖ lim

p→∞

∣∣∣∣r2(p+1)

r2p

∣∣∣∣)−1/2

, (5.139)

which is equivalent to (5.115).

It remains to determine limp→∞ r2(p+1)/r2p, where we dropped the absolute values since

r2p ≥ 0 by definition for all p. Recall that we can write

Am2n = αm2nK
n, (5.140)

for n ≥ 0 and for m = 1, 2, 3, where Am2n are the series coefficients in the ODE solution in (5.120).

Then by (5.92b), we have that

r2p =
∣∣α1

2p

∣∣+
∣∣α2

2p

∣∣+
∣∣α3

2p

∣∣ .
As a result, we want to determine

lim
p→∞

∣∣∣α1
2(p+1)

∣∣∣+
∣∣∣α2

2(p+1)

∣∣∣+
∣∣∣α3

2(p+1)

∣∣∣∣∣∣α1
2p

∣∣∣+
∣∣∣α2

2p

∣∣∣+
∣∣∣α3

2p

∣∣∣ .

It turns out that this limit does not exist, which is not surprising since limp→∞ |αm2(p+1)/α
m
2p|

does not exist for m = 1, 2, 3. As a result, we are forced to split (5.138) into its even and odd parts,

and investigate the convergence of each separately. To that end, define

Seven =

∞∑
p=0

(4p+ 1) ‖K‖2p r4p |ξ|4p e6ckp|ξ|, (5.141)

Sodd =

∞∑
p=0

(2(2p+ 1) + 1) ‖K‖2p+1 r2(2p+1) |ξ|2(2p+1) e3ck(2p+1)|ξ|. (5.142)
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Then we have that

A(x, τ) ≤ 36

|ξ|
(Seven + Sodd) .

Using the ratio test and simplifying, we have that Seven and Sodd converge when

Seven : |ξ|e
3
2
ck|ξ| <

(
‖K‖2 lim

p→∞

∣∣∣∣r4(p+1)

r4p

∣∣∣∣)−1/4

≈ 2.62206

‖K‖1/2
,

Sodd : |ξ|e
3
2
ck|ξ| <

(
‖K‖2 lim

p→∞

∣∣∣∣r2(2(p+1)+1)

r2(2p+1)

∣∣∣∣)−1/4

≈ 2.62206

‖K‖1/2
,

where we used what we know of the ODE series coefficients to determine the limit on the right-hand

side. It follows that since Seven and Sodd both converge with the same radius of convergence, A(x, τ)

must also converge with this radius. Moreover, since A(x, τ) = |a1(x, τ)| + |a2(x, τ)| + |a3(x, τ)|,

we know that am(x, τ) for m = 1, 2, 3 must converge absolutely at least under the same condition,

or possibly under a less restrictive condition.

To summarize, we found that the general solution of the three-wave ODEs when H = 0,

K2 = K and K3 = 2K converges when

|τ − τ0| < RODE, (5.143)

where

RODE =
2
[
Γ
(

1
4

)]2
4
√

2π1/2 · |K|1/2
≈ 2.62206

|K|1/2
. (5.144)

Meanwhile, we determined that the analagous near-general solution of the three-wave PDEs with

constant phases, K2(x) = K(x)/2, and K3(x) = H(x) = 0, converges when

e
3
2
ck|τ−τ0||τ − τ0| < RODE, (5.145)

where we replace |K| with ‖K‖∞ in RODE.

As usual, we compare (5.143) with (5.145). Similar to Case 1 and Case 2(i), the two con-

vergence conditions (5.143) and (5.145) for the ODE series solution and the PDE series solution,

respectively, differ only by an exponential factor, e
3
2
ck|τ−τ0|. This is a known, dimensionless factor

that causes the radius of convergence of the PDE solution to be smaller than that of the ODE

solution. It indicates that we are losing very little information in moving from the ODEs to the
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PDEs. Moreover, the loss of information can be attributed to the growth rate, k, of the derivatives

of K(x), and the largest group velocity (in magnitude), c, of the three waves.

5.6 Radius of convergence: Case 2(iii)

In this section, we consider Case 2(iii), in which the phases are constant and H(x) = 0, while

K2(x) and K3(x) are nonzero in the solution of the three-wave PDEs. Similarly, in the solution of

the three-wave ODEs, we assume that H = 0, and K2 and K3 are nonzero. In order to find the

radius of convergence of the Laurent series solution of the three-wave PDEs in this case, we must

deviate slightly from the set of steps outlined in Section 5.2. The idea of the proof is the same, in

that we use the radius of convergence of the ODE series solution in order to determine the radius of

convergence of the PDE series solution. However, this case is more complicated than the previous

cases, which forces us to take a slightly different approach.

Step 1: We begin as usual by finding the series solution of the three-wave ODEs when H = 0 and

K2,K3 6= 0 using (4.29)-(4.31). The first few terms of the series for am(τ), m = 1, 2, 3 are given by

a1(τ) =
eiψ1

ξ

[
1 +

σ

6
(K2 +K3)ξ2 +

1

360
(7K2

2 − 22K2K3 + 7K2
3 )ξ4

+
σ

15120
(31K3

2 − 15K2
2K3 − 15K2K

2
3 + 31K3

3 )ξ6 + · · ·
]
, (5.146a)

a2(τ) =
eiψ2

ξ

[
1 +

σ

6
(K3 − 2K2)ξ2 +

1

360
(−8K2

2 + 8K2K3 + 7K2
3 )ξ4

+
σ

15120
(−32K3

2 + 48K2
2K3 − 78K2K

2
3 + 31K3

3 )ξ6 + · · ·
]
, (5.146b)

a3(τ) =
eiψ3

ξ

[
1 +

σ

6
(K2 − 2K3)ξ2 +

1

360
(7K2

2 + 8K2K3 − 8K2
3 )ξ4

+
σ

15120
(31K3

2 − 78K2
2K3 + 48K2K

2
3 − 32K3

3 )ξ6 + · · ·
]
, (5.146c)

Note that since H = 0 in this case, am(τ) has the form (5.66),

am(τ) =
eiψm

ξ

∞∑
n=0

Am2n ξ
2n, (5.147)

for m = 1, 2, 3, where Am2n is real and defined in (5.67) for n ≥ 2.
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We can immediately see from (5.146) that this case is more difficult than the previous cases

due to the presence of two free constants, K2 and K3, in the series coefficients of am(τ). In

Case 1, we only had to deal with H in the series coefficients (see (5.44)), and in Case 2(i)-2(ii), a

particular relationship existed between K2 and K3, which allowed us to reduce the series coefficients

to functions of a single variable (see (5.65) and (5.119)). It was then straightforward to find the

radius of convergence of the series using a simple application of the ratio test. This is no longer

possible in (5.146) since each term in the series is a polynomial in K2 and K3. Consequently, we

introduce a change of variables in an attempt to simplify our calculations.

We introduce the change of variables

K2 = 2σK(1− α), and K3 = 2σK(2 + α), (5.148)

where K and α are real constants with α ∈ [−1, 1] and K 6= 0. The restriction on α amounts to a

scaling of the series solution. Note that we still have two free constants to choose from, α and K.

Moreover, notice that when α = 0, we recover Case 2(ii) in which K3 = 2K2. Additionally, when

α = 1, we recover Case 2(i) in which K2 = 0 and K3 6= 0. Finally, observe that under the change

of variables (5.148), we have that A1
2 = K, A2

2 = αK, and A3
2 = −(1 + α)K.

Using (5.148), the first few terms of (5.147) become

a1(τ) =
eiψ1

ξ

[
1 +Kξ2 +

K2

10
(−1 + 4α+ 4α2) ξ4 +

K3

70
(7 + 12α+ 12α2) ξ6 + · · ·

]
, (5.149a)

a2(τ) =
eiψ2

ξ

[
1 + αKξ2 +

K2

10
(4 + 4α− α2) ξ4 +

K3

70
(12α+ 12α2 + 7α3) ξ6 + · · ·

]
, (5.149b)

a3(τ) =
eiψ3

ξ

[
1−K(1 + α) ξ2 − K2

10
(1 + 6α+ α2) ξ4 − K3

70
(7 + 9α+ 9α2 + 7α3) ξ6 + · · ·

]
.

(5.149c)

Observe that am(τ) can be written

am(τ) =
eiψm

ξ

∞∑
n=0

n∑
p=0

dm2n,pα
pKnξ2n, (5.150)

where dmn,p are real constants that could be zero. If we try to apply the ratio test to one of the



133

series in (5.149), we find that the series converges when

lim
n→∞

∣∣∣∣∣
∑n+1

p=0 d
m
2(n+1),pα

pKn+1ξ2(n+1)∑n
p=0 d

m
2n,pα

pKnξ2n

∣∣∣∣∣ < 1.

Rearranging, the condition for convergence becomes

|ξ| < 1

|K|1/2

(
lim
n→∞

∣∣∣∣∣
∑n+1

p=0 d
m
2(n+1),pα

p∑n
p=0 d

m
2n,pα

p

∣∣∣∣∣
)−1/2

.

Assuming the limit on the right-hand side exists, we see that the radius of convergence should go

like 1/|K|1/2. This is the same form as the radius of convergence of the ODE series solution in

Case 2(i) and 2(ii), given in (5.69) and (5.144), respectively. However, computing the limit is less

straightforward since it involves a ratio of polynomials. Moreover, if we try to use the Weierstrass

general solution of the three-wave ODEs in order to determine the radius of convergence of (5.146)

or (5.149), we find that there is not a nice analytic formula for the half-periods, λ1 and λ2, of the

Weierstrass function when K2 and K3 are arbitrary. Case 1 and Case 2(i) were special in that one

of the elliptic invariants, g2 and g3, was zero in each case, which makes the relationship between the

invariants and the half-periods simple. When g2 and g3 are both nonzero, there is not an explicit

formula for λj = λj(g2, g3), j = 1, 2.

The best we can do for now is to bound (5.149) using the triangle inequality as follows,

|a1(τ)| = 1

|ξ|

[
1 + |K||ξ|2 +

9

10
|K|2|ξ|4 +

31

70
|K|3|ξ|6 + · · ·

]
, (5.151a)

|a2(τ)| = 1

|ξ|

[
1 + |K||ξ|2 +

9

10
|K|2|ξ|4 +

31

70
|K|3|ξ|6 + · · ·

]
, (5.151b)

|a3(τ)| = 1

|ξ|

[
1 + 2|K||ξ|2 +

4

5
|K|2|ξ|4 +

16

35
|K|3|ξ|6 + · · ·

]
. (5.151c)

A straightforward numerical application of the ratio test tells us that each of the functions converges

absolutely approximately when

|ξ| < 1.2826

|K|1/2
. (5.152)

Next, observe the following. Rearranging the relations in (5.148), we have that

1

|K|
=

2|1− α|
|K2|

≤ 4

|K2|
, and

1

|K|
=

2|2 + α|
|K3|

≤ 6

|K3|
.
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This implies that

1

|K|
≤ min

{
4

|K2|
,

6

|K3|

}
.

Consequently, the convergence condition in (5.152) becomes

|ξ| < 1.2826 min

{√
4

|K2|
,

√
6

|K3|

}

≈ min

{
2.57

|K2|1/2
,

π

|K3|1/2

}
. (5.153)

Consider the results of Table 5.1. For instance, consider Case 2(ii), in which K3 = 2K2. It

follows that 4/|K2| > 6/|K3|. As a result, the convergence criteria in (5.153) becomes

|ξ| < 1.2826

√
6

|K3|
≈ π√

2|K2|
≈ 2.22

|K2|1/2
.

This is a slightly smaller radius (by about 15%) than the one we found in Section 5.5, which was

RODE ≈ 2.62/|K2|1/2. It is not surprising, however, that we lose some information by computing

the radius of convergence of the ODE solution using (5.151). The bound in (5.151) is not tight due

to our use of the triangle inequality. Nevertheless, we have still managed to find a good estimate

for where the general solution of the three-wave ODEs converges in the case where H = 0 and K2

and K3 are nonzero.

Finally, notice that as K2 → 0, we have that 4/|K2| > 6/|K3|. Thus for small values of K2,

we have

|ξ| < π

|K3|1/2
,

which is the same as the radius of convergence found in Table 5.1 for Case 2(i), in which K2 = 0.

Later, it turns out to be useful to formulate (5.146) and (5.149) in yet another way, which

uses the known Laurent series expansion of the Weierstrass function. We return to this in Step 5.

Step 2: Following the usual procedure, now we construct the formal series solution of the three-

wave PDEs when H(x) = 0 and K2(x),K3(x) 6= 0 using (5.24)-(5.26). Moreover, recall that when
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H(x) = 0, the recursion relation in (5.26) reduces to (5.83). The first few terms of the series are

a1(x, τ) =
eiψ1

ξ

{
1 +K2ξ

2 +
1

4

[
− (3c1 + c3)K′2 + (c2 − c3)K′3

]
ξ3

+
1

40

[ (
12c2

1 + c1c2 + 5c1c3 − c2c3 + 3c2
3

)
K′′2 (5.154a)

+ (c3 − c2)(4c1 + 3(c2 + c3))K′′3 + 16K2K3 − 4K2
2 + 16K2

3

]
ξ4 + · · ·

}
,

a2(x, τ) =
eiψ2

ξ

{
1 +K3ξ

2 +
1

4

[
(c1 − c3)K′2 − (3c2 + c3)K′3

]
ξ3

+
1

40

[
(c3 − c1)(3c1 + 4c2 + 3c3)K′′2 (5.154b)

+
(
c1c2 − c1c3 + 12c2

2 + 5c2c3 + 3c2
3

)
K′′3(x) + 16K2K3 + 16K2

2 − 4K2
3

]
ξ4 + · · ·

}
,

a3(x, τ) =
eiψ3

ξ

{
1− (K2 +K3)ξ2 +

1

4

[
(c1 + 3c3)K′2 + (c2 + 3c3)K′3

]
ξ3

+
1

40

[
−
(
3c2

1 − c1(c2 − 5c3) + c3(c2 + 12c3)
)
K′′2 (5.154c)

−
(
c1(c3 − c2) + 3c2

2 + 5c2c3 + 12c2
3

)
K′′3 − 4

(
6K2K3 +K2

2 +K2
3

) ]
ξ4 + · · ·

}
.

Note that even low order terms are complicated due to the presence of two free functions. As more

terms are computed, higher derivatives of K2(x) and K3(x) appear, as well as nonlinear terms in

K2(x), K3(x), and their derivatives. In order to gain traction in our convergence proof, we restrict

our attention to certain families of functions for K2(x) and K3(x).

Step 3: Following (5.34), we assume that∥∥∥∥ dndxnKj(x)

∥∥∥∥
∞
≤ knj ‖Kj‖∞, j = 2, 3. (5.155)

where kj is a real positive constant for j = 2, 3. Moreover, define

kM = max {k2, k3} and KM = max {‖K2‖∞, ‖K3‖∞}.

It follows that ∥∥∥∥ dndxnKj(x)

∥∥∥∥
∞
≤ knMKM , j = 2, 3. (5.156)
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Step 4: Next, we use (5.156) and the definition of c in (5.31) in order to bound the series in

(5.154). We obtain, as usual, a series of the form

|am(x, τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

∞∑
n=2p

qmn,p(ckM )n−2p|ξ|n
 , (5.157)

where qmn,p are nonnegative constants for m = 1, 2, 3.

As with Case 2(i) and 2(ii), it is difficult to find an exact formula for the coefficients qmn,p.

Instead we bound the sum

A(x, τ) =

3∑
m=1

|am(x, τ)| . (5.158)

We then find the radius of convergence of A(x, τ), and infer that am(x, τ) must converge absolutely

within at least that radius of convergence for m = 1, 2, 3.

Step 5: We follow the procedure outlined in Step 4 of Section 5.4 to find that

A(x, τ) ≤ 1

|ξ|

3 +
∞∑
p=1

∞∑
n=2p

rn,pKpM (ckM )n−2p|ξ|n
 , (5.159)

where rn,p is defined in (5.92a) for p > 1 and for n > 2p. In the previous cases, rn,p for n = 2p is

defined in (5.92b) as

r2p,p =
1

|K|p
(∣∣A1

2p

∣∣+
∣∣A2

2p

∣∣+
∣∣A3

2p

∣∣) .
However, in our case, Am2p is a polynomial in α. Indeed, we know from (5.150) that

Am2p =

p∑
s=0

dm2p,sα
s.

It follows that ∣∣Am2p∣∣ ≤ p∑
s=0

∣∣dm2p,s∣∣ ,
since α ∈ [−1, 1]. As a result, in the case where H(x) = 0, and K2(x) and K3(x) are arbitrary

(except for (5.156)), we define

r2p,p = r2p =

3∑
m=1

p∑
s=0

∣∣dm2p,s∣∣ . (5.160)
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It is shown in Appendix C that if H(x) = 0, then rn,p satisifies

rn,p ≤
(3p)n−2p

(n− 2p)!

p−1∑
`=1

r2`r2(p−`), n > 2p, p ≥ 2. (5.161)

Moreover, when p = 1, (5.93) gives

rn,1 ≤
3n−2

(n− 2)!
r2. (5.162)

In Case 2(i) and 2(ii), we also have the bound

p−1∑
`=1

r2`r2(p−`) ≤ (δp+ γ) r2p, p ≥ 2, (5.163)

where δ and γ are nonnegative constants. The combination of (5.161) and (5.163) allowed us to

reduce the double sums in (5.80) and (5.129) to a single sum. We then applied the ratio test to

the single sum in order to determine where A(x, τ) converges in those cases. In the present case,

however, it is difficult to prove (5.163). In fact, proving the bound is prohibitively complicated.

Instead, we seek an alternative bound on

p−1∑
`=1

r2`r2(p−`), p ≥ 2. (5.164)

To be precise, we seek to bound (5.164), not in terms of r2p, which involves the coefficients of the

series for am(τ), but rather in terms of the coefficients of the series for |am(τ)|2.

To that end, recall the Weierstrass general solution of the three-wave ODEs in Chapter 3.

In particular, recall (3.54), which gives |am(τ)| in terms of the Weierstrass elliptic function for

m = 1, 2, 3 as

|am(τ)|2 = σm [σ℘(τ − τ0; g2, g3) + Cm] , (5.165)

where Cm = 2Am2 . That is, we have

C1 =
K2 +K3

3
, (5.166)

C2 =
K3 − 2K2

3
, (5.167)

C3 =
K2 − 2K3

3
. (5.168)
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Moreover, recall the Laurent series expansion of ℘(ξ; g2, g3) in (4.33),

℘(ξ; g2, g3) =
1

ξ2
+

∞∑
n=2

c2nξ
2n−2, (5.169)

where ξ = τ − τ0, c4 = g2/20, c6 = g3/28, and c2n is determined by

c2n =
3

(2n+ 1)(n− 3)

n−2∑
j=2

c2jc2(n−j), n ≥ 4. (5.170)

Without loss of generality, assume we are in the explosive regime with σ1 = σ2 = σ3 = σ. It

follows from (5.165) and (5.169) that |am(τ)|2 can be expanded as

|am(τ)|2 =
1

ξ2

[
1 +

∞∑
n=1

cm2nξ
2n

]
, (5.171)

where cm2 = Cm and c1
2n = c2

2n = c3
2n ≡ c2n for n ≥ 2, with c2n defined in (5.170). We want to

bound r2n in (5.164) using the coefficients c2n in (5.171).

Recall that in Step 1 of this section, we made the change of variables (5.148). Under this

change of variables, A1
2 = K, A2

2 = αK, and A3
2 = −(1 +α)K. As a result, using cm2 = Cm = 2Am2 ,

we have

c1
2 = 2K, c2

2 = 2αK, and c3
2 = −2(1 + α)K. (5.172)

Furthermore, under the same change of variables, we have that the elliptic invariants g2 and g3

become

g2 = 16K2(1 + α+ α2) and g3 = 32σK3(α+ α2).

Consequently, we have

c4 =
g2

20
=

4

5
K2(1 + α+ α2) and c6 =

g3

28
=

8

7
K3(α+ α2), (5.173)

where we set σ = 1 in the formula for g3. In particular, we notice from (5.170) and (5.172)-(5.173)

that cm2n is always an nth degree (or less) polynomial in α, and we write cm2n = cm2n(α).

We introduce the notation

cm2n(α) = Kn
[
hm2n,0 + hm2n,1α+ hm2n,2α

2 + · · ·+ hm2n,nα
n
]

=

n∑
s=0

Knhm2n,sα
s. (5.174)
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Then define

fm2n(α) =

n∑
s=0

hm2n,sα
s, n ≥ 1, (5.175)

so that

cm2n(α) = Knfm2n(α).

As with cm2n, when n ≥ 2, we have that f1
2n = f2

2n = f3
2n ≡ f2n. It follows from (5.170) that f2n(α)

can be computed via

f2n(α) =
3

(2n+ 1)(n− 3)

n−2∑
j=2

f2j(α)f2(n−j)(α), n ≥ 4, (5.176)

using f4 = g2/20 and f6 = g3/28.

When n = 1, (5.172) and (5.174) imply that

h1
2,0 = h2

2,1 = −h3
2,0 = −h3

2,1 = 2, and h1
2,1 = h2

2,0 = 0. (5.177)

Additionally, for n ≥ 2, it is clear from (5.170) and (5.173) that h1
2n,s = h2

2n,s = h3
2n,s ≡ h2n,s ≥ 0.

Furthermore, observe that since h2n,s ≥ 0 for n ≥ 2, we have

|f2n(α)| ≤ f2n(1) =

n∑
s=0

h2n,s, n ≥ 2.

Later, we need the notation

t2n =
3∑

m=1

n∑
s=0

∣∣hm2n,s∣∣ , n ≥ 1. (5.178)

It follows from (5.177) that t2 = 8. Moreover, since h2n,s ≥ 0 for n ≥ 2, (5.175) gives

t2n = 3f2n(1). (5.179)

We now want to bound (5.164) in terms of t2p. To begin, we can see from Figure 5.1 that

r2n ≤ t2n, (5.180)

for n ≥ 1, where r2n is defined in (5.160). In fact, it is clear from Figure 5.2 that both r2n and

t2n behave like Ce−n/2 for sufficiently large n, where C is a real positive constant. As a result, as

n→∞, we conjecture that r2n and t2n approach zero exponentially fast, with r2n ≤ t2n.
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Figure 5.1: A log plot of r2n and t2n up to n = 1000, with r2n defined in (5.160) and t2n defined in
(5.178). Note that r2n ≤ t2n for n ≥ 1.
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Figure 5.2: A log plot of r2n, t2n, and 100e−n/2 up to n = 100, with r2n defined in (5.160) and t2n
defined in (5.178). Note that for sufficiently large n, r2n ≤ 100e−n/2 ≤ t2n.
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Assume that n ≥ 4. Observe the following, making use of (5.180),

n−1∑
j=1

r2jr2(n−j) ≤
n−1∑
j=1

t2jt2(n−j)

= 2t2t2(n−1) +
n−2∑
j=2

t2jt2(n−j)

= 16t2(n−1) + 9
n−2∑
j=2

f2j(1)f2(n−j)(1)

= 48f2(n−1)(1) + 9
n−2∑
j=2

f2j(1)f2(n−j)(1)

= 48f2(n−1)(1) + 3(2n+ 1)(n− 3)f2n(1)

≤
[
48 + 3(2n+ 1)(n− 3)

]
f2(n−1)(1)

=
[
6n2 − 15n+ 39

]
f2(n−1)(1), (5.181)

where we used the definitions of f2n and t2n in (5.176) and (5.179), respectively, and the last

inequality used the fact that

f2n(1) ≤ f2(n−1)(1), n ≥ 2. (5.182)

Note that this fact can be easily proved using the technique of Section 5.4, Step 5 (in particular,

see the proofs of (iii)-(iv) on page 115).

Next, consider the quantity

(
βn2 + γn+ δ

)
t2(n−1) −

[
6n2 − 15n+ 39

]
f2(n−1)(1), n ≥ 4,

for some real constants β, γ, and δ. Observe the following

(
βn2 + γn+ δ

)
t2(n−1) −

[
6n2 − 15n+ 39

]
f2(n−1)(1)

=
[
3
(
βn2 + γn+ δ

)
− 6n2 + 15n− 39

]
f2(n−1)(1)

=
[
(3β − 6)n2 + (3γ + 15)n+ (3δ − 39)

]
f2(n−1)(1),

where we used the fact that t2n = 3f2n(1) for n ≥ 2. This quantity is clearly nonnegative if we

choose β = 2, γ = 0, and δ = 13. As a result, we know that

(2n2 + 13)t2(n−1) ≥ (6n2 − 15n+ 39)f2(n−1)(1), (5.183)
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for n ≥ 4. Consequently, combining (5.183) with (5.181), we find that

n−1∑
j=1

r2jr2(n−j) ≤ (2n2 + 13)t2(n−1), n ≥ 4.

The inequality (5.6) can also be verified for n = 2 and n = 3 directly.

We now have a bound for the sum in (5.164). Combined with (5.161), we find that

rn,p ≤
(3p)n−2p

(n− 2p)!
(2p2 + 13)t2(p−1), n ≥ 2p, p ≥ 1. (5.184)

Note that the result for p = 1 follows from (5.162) if we define t0 = r2.

Returning to the original problem, we were investigating the convergence of the series solution

of the three-wave PDEs. In particular, we seek the radius of convergence of A(x, τ) in (5.159).

Applying (5.184) to (5.159) and following the procedure of the previous sections yields

A(x, τ) ≤ 1

|ξ|

3 +

∞∑
p=1

∞∑
n=2p

rn,pKpM (ckM )n−2p|ξ|n


≤ 1

|ξ|

3 +

∞∑
p=1

∞∑
n=2p

(3p)n−2p

(n− 2p)!
(2p2 + 13) t2(p−1)K

p
M (ckM )n−2p |ξ|n


≤ 1

|ξ|

3 +

∞∑
p=1

(2p2 + 13) t2(p−1)K
p
M |ξ|

2pe3ckMp|ξ|

 .

Step 6: The series for A(x, τ) converges by the ratio test if

lim
p→∞

∣∣∣∣∣(2(p+ 1)2 + 13) t2pKp+1
M |ξ|2(p+1)e3ckM (p+1)|ξ|

(2p2 + 13) t2(p−1)K
p
M |ξ|2pe3ckMp|ξ|

∣∣∣∣∣ < 1.

Simplifying, the convergence condition becomes

KM |ξ|2e3ckM |ξ| lim
p→∞

∣∣∣∣ t2p
t2(p−1)

∣∣∣∣ < 1,

where we used the fact that limp→∞(2(p+ 1)2 + 13)/(2p2 + 13) = 1. Simplifying further, we obtain

the condition

|ξ|e
3
2
ckM |ξ| <

(
KM lim

p→∞

∣∣∣∣ t2p
t2(p−1)

∣∣∣∣)−1/2

.
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Numerically, we can see that

lim
p→∞

∣∣∣∣ t2p
t2(p−1)

∣∣∣∣ ≈ 0.608,

which gives (
lim
p→∞

∣∣∣∣ t2p
t2(p−1)

∣∣∣∣)−1/2

≈ 1.2826.

As a result, we know that the series (5.159) converges approximately when

|τ0 − τ | e
3
2
ckM |τ0−τ | <

1.28

K1/2
M

=
1.28

[max {‖K2‖, ‖K3‖}]1/2
. (5.185)

Consider the results summarized in Table 5.1. For instance, consider Case 2(i), in which

K2(x) = K3(x) = K(x)/6. Substituting into (5.185), we find that the convergence condition for the

PDE series solution becomes

|τ0 − τ | e
3
2
ck|τ0−τ | <

1.28
√

6

‖K‖1/2
≈ π

‖K‖1/2
.

This is exactly the condition we determined in Case 2(i). Next, consider Case 2(ii), in which

K2(x) = K(x)/2 and K3(x) = 0. In this case, (5.185) becomes

|τ0 − τ | e
3
2
ck|τ0−τ | <

1.28
√

2

‖K‖1/2
≈ 1.81

‖K‖1/2
.

The radius of convergence we determined in Section 5.5 for this case was approximately 2.62/‖K‖1/2.

As a result, we did lose some information by using (5.185) here, but this is not surprising. We had

to make several bounds on the series for am(x, τ) in order to derive (5.185), and most of those

bounds were not tight due to our use of the triangle inequality. As a result, we can expect some

loss of information in the more general convergence criteria, (5.185), which applies to any case in

which H(x) = 0, and K2(x) and K3(x) are arbitrary (as long as (5.156) is satisfied).

To summarize, we found that the general solution of the three-wave ODEs when H = 0 and

K2,K3 6= 0 converges when

|τ − τ0| < RODE, (5.186)
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where, following (5.153),

RODE =
1.283

|K|1/2

= min

{
2.565

|K2|1/2
,

π

|K3|1/2

}
, (5.187)

with K defined in (5.148). Meanwhile, we determined that the analagous near-general solution of

the three-wave PDEs with constant phases, H(x) = 0, and K2(x),K3(x) 6= 0, converges when

e
3
2
ckM |τ−τ0||τ − τ0| < RPDE, (5.188)

where

RPDE =
1.283

max
{
‖K2‖1/2, ‖K3‖1/2

} , (5.189)

and ‖ · ‖ = ‖ · ‖∞.

The two convergence conditions (5.143) and (5.145) for the ODE series solution and the

PDE series solution, respectively, differ only by an exponential factor, e
3
2
ckM |τ−τ0|. This is a known,

dimensionless factor that causes the radius of convergence of the PDE solution to be smaller than

that of the ODE solution. It indicates that we are losing very little information in moving from the

ODEs to the PDEs. Moreover, the loss of information can be attributed to the maximum growth

rate, kM , of the derivatives of K2(x) and K3(x), and the largest group velocity (in magnitude),

c, of the three waves. Finally, if we try to apply the convergence criteria in (5.186)-(5.189) to

previously studied cases like Case 2(ii), we find another small loss of information. Again, this is

not surprising since we had to make several bounds on the series for am(τ) and am(x, τ) in order

to derive (5.186)-(5.189), and most of these bounds were not tight.

5.7 The nonexplosive case

Our work in this chapter has focused so far on the explosive regime in which σ1 = σ2 = σ3.

In this section, we discuss the nonexplosive case of the three-wave PDEs. This work of this section

is less rigorous than the rest of the chapter, but it gives some insight into the bounded solutions
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of the three-wave PDEs. This section follows closely from the end of Section 4.4, which gives a

possible solution of the three-wave ODEs in the nonexplosive regime.

Motivated by (4.67), we seek a solution of the three-wave PDEs in the nonexplosive regime

of the form

am(x, τ) = eiψmTm(x, τ), where Tm(x, τ) =
αm
ξ

∞∑
n=0

Amn (x)ξn, (5.190)

for m = 1, 2, 3, and ξ = τ − τ0. We assume that Tm(x, τ) is real-valued for real x and τ , and that

Im (τ0) 6= 0. Additionally, αm ∈ C is a constant for m = 1, 2, 3. Note that we could generalize and

assume that ψm = ψm(x), but for convenience, we assume that ψm is constant for m = 1, 2, 3.

Suppose that σ1 = −σ2 = −σ3 = 1. Then under the assumption that Tm(x, τ) is real for real

x and τ , if we substitute (5.190) into the three-wave PDEs, we find that for m = 1, 2, 3, Am0 (x) = 1

and Am1 (x) = 0. Moreover, we have

α1 = 1, and α2 = α3 = −i,

as well as ψ1 + ψ2 + ψ3 = 2nπ, n ∈ Z. Finally, we have that

A1
2(x) ≡ K2(x), A2

2(x) ≡ K3(x), and A3
2(x) = − (K2(x) +K3(x)) ,

where K2(x) and K3(x) are free functions of x. The remaining coefficients in the series are deter-

mined by (5.83).

As with the ODE series solution in the nonexplosive case, if we write αm in complex expo-

nential form for m = 1, 2, 3, then we obtain

a1(x, τ) =
eiψ1

ξ

∞∑
n=0

A1
n(x)ξn, and aj(x, τ) =

ei(ψj−π/2)

ξ

∞∑
n=0

Ajn(x)ξn, (5.191)

for j = 2, 3. It follows that the sum of the phases becomes ψ1 + ψ2 + ψ3 − π = (2n − 1)π,

which recovers (5.6) since σ = 1 when σ1 = −σ2 = −σ3 = 1. As a result, the solution (5.191) is

equivalent to the formal Laurent series solution of the three-wave PDEs described in (5.24)-(5.26)

when H(x) = 0 and the phases are constant. The first few terms of the series are given in (5.154).

The only difference is that τ0 is now assumed to be complex.
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The investigation of the radius of convergence for the nonexplosive series solution is identical

to that of Sections 5.4-5.6. Note, however, that our derivation of the PDE series solution in the

nonexplosive regime is not rigorous, since we have not proven that the solution is indeed real along

the real τ -axis. Moreover, in the PDE solution (5.191), it is not clear what values Im (τ0) is allowed

to take on. In the ODE series solution in the nonexplosive regime, we were able to determine

Im (τ0) using the Weierstrass general solution. For the PDEs, we do not have this advantage.



Chapter 6

Numerical Verification

The purpose of this chapter is to provide some numerical insight into the Laurent series

solution of the three-wave PDEs. We present our PDE series solution in a variety of cases in the

explosive regime. In particular, we turn our focus to the numerical verification of the Laurent series,

showing that it does indeed converge to the exact PDE solution. We begin by demonstrating that

using a relatively small number of terms in the partial sum approximation of the Laurent series is

sufficient in practice. Next, we analyze the simplest case of equal group velocities, in which the

three-wave PDEs can be transformed back into the three-wave ODEs, whose solutions are exact.

Finally, we turn to more complicated regimes, where known solutions do not exist. In order to

verify the PDE solution in this case, we consider a numerical solution of the equations using a

simple finite difference approach, and verify that known convergence results hold. It should be

noted that we are not comparing our solution technique to the performance of other numerical

methods. Rather, we are using numerical methods to verify the partial sum approximations of our

solution.

6.1 Convergence of partial sums

In Section 5.1, we derived a Laurent series solution of the three-wave PDEs in the explosive

regime. The solution involves five free functions of x and one free constant, and is given by (5.24)-

(5.26). Although the solution is defined in terms of an infinite sum, here we show that only a small

number of terms is required in order to achieve machine precision. This is beneficial, because from
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Sections 5.3-5.5, we know that even for the simple cases in which the phases are constant and one

or more of the remaining free functions is set to zero, the coefficients in the series still become

prohibitively complicated as more terms are computed (see equations (5.44), (5.65), (5.119), and

(5.146)).

Consider the PDEs series solution of Section 5.3, in which the phases are constant and

K2(x) = K3(x) = 0. We know from Table 5.1 on page 91, or from equation (5.63), that the radius

of convergence of the solution in this case is given by

|τ − τ0| e
1
3
ck|τ−τ0| <

2
[
Γ
(

1
3

)]3
4π ‖H‖1/3

≈ 3.06

‖H‖1/3
, (6.1)

where ‖ · ‖ = ‖ · ‖∞.

Suppose that H(x) is given by

H(x) = 2 + sinx, (6.2)

and that c1 = c2 = c3 = 1. Then (6.1) implies that the radius of convergence of the series solution

under these conditions is defined by

|τ − τ0| e
1
3
ck|τ−τ0| <

2
[
Γ
(

1
3

)]3
4π 31/3

≈ 2.12, (6.3)

since ‖H‖∞ = 3. Next, we solve the inequality in (6.3) for |τ − τ0|. This yields the condition,

|τ − τ0| . 1.35, (6.4)

where . is used to denote the fact that the right-hand side of the inequality is an approximation.

Next, let SmN (x, τ) denote the Nth partial sum of the series solution for am(x, τ) in (5.24)-

(5.26). That is,

SmN (x, τ) =
eiψm

ξ

N∑
n=0

Amn (x)ξn, m = 1, 2, 3,

where ξ = τ − τ0 and N ≥ 1. With H(x) defined in (6.2), and c1 = c2 = c3 = 1, Figure 6.1

depicts a contour plot of |S1
100(x, τ)| when ψ1 = 0 and τ0 = 1. We used the domain x ∈ [0, 4π] and

τ ∈ [−0.35, 2.35], so that τ lies within the radius of convergence defined in (6.4). The figure shows



149

the fixed pole at τ0 = 1, and the small variations in x away from τ = τ0. Note that plots of the

partial sums of |a2(x, τ)| and |a3(x, τ)| would appear the same since the coefficients in the PDE

series when K2(x) = K3(x) = 0 and c1 = c2 = c3 are equal (see (5.51)).

Figure 6.1: Contour plot of |S1
100(x, τ)| in the explosive regime with τ0 = 1, c1 = c2 = c3 = 1. The

phases, ψm are constant for m = 1, 2, 3, and K2(x) = K3(x) = 0. H(x) is defined in (6.2).

IfN is sufficiently large, then am(x, τ) ≈ SmN (x, τ). This motivates us to consider the following

error term

Emj (x, τ) =

∣∣∣∣SmN (x, τ)− Smj (x, τ)

SmN (x, τ)

∣∣∣∣ , j = 0, 1, 2, . . . , N − 1, (6.5)

for m = 1, 2, 3. For large N , Emj (x, τ) is a good estimate of the relative error between the exact

PDE series solution, am(x, τ) in (5.24), and its partial sum approximation, Smj (x, τ), for m = 1, 2, 3,

j = 0, 1, . . . , N − 1, and for all x and τ in the domain.

Computationally, we do the following. We discretize the (x, τ) domain, so that

x = (x1, x2, . . . , xh), and τ = (τ1, τ2, . . . , τk), (6.6)

where xp+1 = x1 + p∆x, p = 1, 2, . . . , h − 1, with ∆x = (xh − x1)/(h − 1). Similarly, we have

τq+1 = τ1 + q∆τ , q = 1, 2, . . . , k − 1, with ∆τ = (τk − τ1)/(k − 1). We compute the approximate
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Figure 6.2: ‖Sm100 − Smj ‖L2
R

. The figure is generated using x ∈ [0, 4π] and τ ∈ [−0.35, 2.35], so that
τ extends all the way out to the edge of the solution’s region of convergence.

L2-norm of the relative error (henceforth referred to as the “L2-relative error” for convenience),

which we denote, ∥∥SmN − Smj ∥∥L2
R

=

√√√√ h∑
p=1

k∑
q=1

[
Emj (xp, τq)

]2
∆x∆t. (6.7)

Suppose that N = 100. With x ∈ [0, 4π], τ ∈ [−0.35, 2.35], ∆x = 0.1 and ∆τ = 0.051, we

compute ‖SmN −Smj ‖L2
R

for j = 1, 2, . . . , 99. The results are depicted in Figure 6.2 on a log scale for

m = 1 (the results for m = 2 and m = 3 are the same). The L2-relative error between S1
j and S1

100

is monotonically decreasing. Indeed, on the log scale in Figure 6.2, the error decreases linearly with

j, meaning it decreases exponentially fast as j → N . In fact, we can make the same type of plot

for the error between Smj and SmN for N > 100 and j = 1, 2, . . . , N − 1. The qualitative results are

unchanged. As a result, if we let Ŝm denote the exact solution of the three-wave PDEs (meaning

Ŝm = am(x, τ) with infinite terms in the series (5.24)), then

∥∥Ŝm − Smj ∥∥L2
R

= lim
N→∞

∥∥SmN − Smj ∥∥L2
R
∼ O

(
DC−j

)
, (6.8)

where C and D are real positive constants, and ‖ · ‖L2 is used to denote the L2-relative error. In

Figure 6.2, C ≈ 1.435 and D ≈ 0.592.

For many purposes, we should not need to go far beyond the partial sum with a few dozen
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Figure 6.3: ‖Sm100 − Smj ‖L2
R

. The figure is generated using x ∈ [0, 4π] and τ ∈ [0, 2], so that τ
remains well within the solution’s region of convergence.

terms, since beyond this, the difference between the true solution and the partial sum approxima-

tion is small. This is especially true when we restrict our attention to the interior of the region

of convergence, away from the boundaries. To see this, suppose we set N = 100 and compute

‖SmN − Smj ‖L2
R

once more for j = 1, 2, . . . , 99; this time, however, we restrict the τ -domain to

τ ∈ [0, 2], while keeping the x-domain the same as before, with x ∈ [0, 4π]. The important point

is that we have now restricted τ to lie well within its radius of convergence, which extends below

τ0 = 1 to approximately τ = −0.35, and above τ0 = 1 to approximately τ = 2.35. Figure 6.3

depicts the results in this case for m = 1. We see that ‖Sm100 − Smj ‖L2
R

approaches a constant after

j ≈ 60; the constant is O(10−15), which is close to machine epsilon. That is, after 60 terms, there

appears to be no advantage to increasing the number of terms in the sum. In combination with

the results of Figure 6.2, this implies that fewer terms are needed to capture the behavior of the

solution accurately near the pole at τ0 = 1, while more terms are needed in order to describe the

behavior of the solution near the boundary of its region of convergence. This is further seen in

Figure 6.4, which depicts Em25(x, τ) when N = 100 and m = 1, where Emj (x, τ) is given in (6.5). It

is evident from the plot that ‖Sm100 − Sm25‖L2
R

increases as τ approaches the edge of the region of

convergence. In the interior of the domain, the error remains low.
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Figure 6.4: Contour plot of the relative error, E1
25(x, τ), between the 100th partial sum approxima-

tion of a1(x, τ) and the 25th partial sum when τ0 = 1, c1 = c2 = c3 = 1, K2(x) = K3(x) = 0, and
H(x) is defined in (6.2). Note that Emj (x, τ) is defined in (6.5), and we set N = 100.

6.2 The special case of equal group velocity

The three-wave PDEs when c1 = c2 = c3 is a special case, because under a change of variables,

the PDEs can be reduced to the three-wave ODEs. Since the solution of the three-wave ODEs is

known analytically in the entire complex τ -plane in terms of Weierstrass elliptic functions, we can

use the ODE solution to verify the accuracy of our PDE series solution in this case.

Let c1 = c2 = c3 ≡ c and define the following change of variables

ζ = x− cτ, and η = τ. (6.9)

Under this change of variables, the three-wave equations (5.1) become

∂am
∂η

= σma
∗
ka
∗
` , (6.10)

where (k, `,m) = (1, 2, 3) cyclically, am = am(ζ, η), and (6.10) holds along lines of constant ζ.

Equation (2.20) is equivalent to the three-wave ODEs for constant ζ, and its general solution in

terms of elliptic functions is given by (3.54) and (3.60).
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In order to compare the PDE series solution with the exact analytic solution of the ODEs,

we restrict our attention to |am(x, τ)|2. Moreover, we assume that the phases are constant and

K2(x) = K2(x) = 0. This choice is for simplicity, and the computation can be repeated for other

cases with similar results.

First, we construct the partial sum approximation of the solution, |am(x, τ)|2 ≈ |SmN (x, τ)|2,

where N ≥ 1 and we restrict τ to be within the radius of convergence of the solution. To compute

the corresponding ODE solution using (3.54), we need the values of the constants H, K2, and K3

along each line ζ = x− ct (since H,K2, and K3 determine the elliptic invariants, g2 and g3). Since

K2(x) = K3(x) = 0 in the PDE case, it follows that K2 = K3 = 0 in the corresponding ODEs.

One can easily verify this using the Manley-Rowe relations in (2.30)-(2.31), since |a1(x, τ)|2 =

|a2(x, τ)|2 = |a3(x, τ)|2 for all x, τ when K2(x) = K3(x) = 0 and c1 = c2 = c3. Next, H is

determined from our choice of H(x) in the PDE series solution. In particular, consider the line

τ = τ0. Suppose we fix a particular value of x along the line τ = τ0 and call it x̃. Then x̃ has a

corresponding line of constant ζ defined by ζ = x̃ − cτ0. Along each of these constant ζ lines, we

set H = H(x̃).

Now that K2,K3, and H are known for each ζ line, we simply evaluate the Weierstrass

solution in (3.54) along this line, using the fact that τ = η. This provides an exact solution of the

three-wave PDEs when c1 = c2 = c3 in the entire (x, τ)-plane. We denote the exact solution of the

three-wave PDEs by Ŝm(x, τ) for m = 1, 2, 3.

Consider the case of the PDE series solution outlined in the previous section, in which the

phases are constant, K2(x) = K3(x) = 0, c = 1, τ0 = 1, and H(x) is given by

H(x) = 2 + sinx. (6.11)

We know from (6.4) that the radius of convergence in this case is

|τ − τ0| . 1.35,

where . is used to denote the fact that the right-hand side of the inequality is an approximation.
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Figure 6.5a depicts |S1
25(x, τ)|2 within the radius of convergence of the solution. Figure 6.5b,

on the other hand, depicts the exact solution of the three-wave PDEs in the same domain, where

the three-wave ODEs in (6.10) were used to compute the solution. Finally, Figure 6.5c shows the

pointwise relative error between Figures 6.5a and 6.5b, which is larger for values of τ that are near

the radius of convergence.

(a) |S125|2 (b) |Ŝ1|2 (c) (|Ŝ1|2 − |S125|2)/|Ŝ1|2

Figure 6.5: A comparison of the formal Laurent series solution of the three-wave PDEs with 25
terms when τ0 = c1 = c2 = c3 = 1, and the corresponding solution of the three-wave ODEs along
lines of constant ζ under the change of variables in (6.9). We use K2(x) = K3(x) = 0, with H(x)
defined in (6.11), and we consider τ within its region of convergence, τ ∈ [−0.35, 2.35]. Note that
Sm25(x, τ) denotes the 25th partial sum approximation of am(x, τ) and Ŝm(x, τ) denotes the true
solution, am(x, τ).

Following the notation of Section 6.1, define the approximate L2-norm of the relative error

between Ŝm(x, τ) and SmN (x, τ) as

∥∥Ŝm − SmN ∥∥L2
R

=

√√√√ h∑
p=1

k∑
q=1

[
EmN (xp, τq)

]2
∆x∆t, (6.12)

where in this case EmN (x, τ) is defined to be

EmN (x, τ) =

∣∣∣∣∣ Ŝm(x, τ)− SmN (x, τ)

Ŝm(x, τ)

∣∣∣∣∣ . (6.13)

In Figure 6.6, we depict the L2-relative error between the the exact solution and the series solution

with N terms up to N = 100. We see that increasing the number of terms in the series solution
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Figure 6.6: ‖Ŝ1 − S1
N‖L2 , the relative L2-error between the partial sum approximation SmN of

am(x, τ) for m = 1 and the exact solution Ŝ of the three-wave PDEs, generated using the ODEs
in (6.10). The figure is generated using x ∈ [0, 4π] and τ ∈ [−0.35, 2.35], so that τ extends all the
way out to its radius of convergence.

exponentially increases the accuracy of the solution. Indeed, we find that

∥∥Ŝm − SmN ∥∥L2
R
∼ O(DC−N ), (6.14)

where C and D are positive constants. In the case of Figure 6.6, we have C ≈ 1.379 and D ≈ 0.827.

Note that (6.14) is consistent with (6.8).

Figure 6.6 gives us confidence that the PDE series solution we generated in Chapter 5 accu-

rately describes the behavior of solutions of the three-wave equations, even when we truncate the

series after a relatively small number of terms. Moreover, it is clear from Figure 6.5c that the loss

of information in truncating the series solution is primarily restricted to the edges of the region of

convergence.

Since the PDE series solution when c1 = c2 = c3 can be computed exactly using the three-

wave ODEs, it is useful to observe the behavior of the solution outside of the radius of convergence

of the typical series solution. This allows us to see what information we are missing by restricting

ourselves to τ values that lie within the radius of convergence. To that end, in Figure 6.7, we depict
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the exact solution of the three-wave PDEs when c1 = c2 = c3 = 1, K2(x) = K3(x) = 0, and H(x)

is given in (6.11). In this case, we allow τ to go far outside the radius of convergence of the series

solution, so that τ ∈ [−2.75, 4.75].

It is clear from Figure 6.7 that there are other poles away from the pole we put in at τ0 = 1.

Moreover, the locations of the other poles depend on x. The exact solution in the figure is found

by using the Weierstrass solution along lines of constant ζ. Since each line has a different value

of H, it follows that the Weiertrass function along each line has its own arrangement of poles. In

particular, recall from Section 5.3, equation (5.47), that the radius of convergence of the three-wave

ODEs when K2 = K3 = 0 is given by

RODE =
2
[
Γ
(

1
3

)]3
4π |H|1/3

≈ 3.06

|H|1/3
.

As a result, along constant ζ lines where H is small, the distance between poles will be large;

conversely, along ζ lines where H is large, the distance between poles will be small. This accounts

for the fact that the location of the pole away from τ0 = 1 is not constant in x.

We would like to know how much of the behavior of the poles away from τ0 = 1 can be

captured by our PDE series solution, without the use of the exact Weierstrass solution. To that

end, Figure 6.8a depicts |S1
25(x, τ)| for τ ∈ [−0.95, 2.95]. This allows τ to extend beyond the region

of convergence of the solution, outside of where we know the solution is valid. Figure 6.8b depicts

the exact solution for the same range of τ for comparison purposes. It is clear from the figures

that the PDE series solution does begin to capture the behavior of the poles away from τ = τ0.

However, the series solution also introduces spurious artifacts near the poles that do not exist in

the exact solution. We continue to work on the problem of accurately extending our PDE series

solution outside of its radius of convergence.

6.3 Finite difference validation

In this section, we provide an alternative check on the Laurent series solution of the three-

wave PDEs, given in (5.24)-(5.26). In particular, we use a finite difference scheme in order to solve
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Figure 6.7: Contour plot of the exact solution of the three-wave PDEs, |a1(x, τ)|2, when τ0 =
c1 = c2 = c3 = 1, the phases are constant, K2(x) = K3(x) = 0, and H(x) is defined in (6.11).
The domain is τ ∈ [−2.75, 4.75], which is far beyond the radius of convergence of the PDE series
solution. Note that there is a fixed pole at τ0 = 1, and poles with spatial dependence away from
there. The dashed black line represents a line of constant ζ, where ζ = x− t.

the three-wave PDEs, which we compare to the partial sum approximation SmN (x, τ) of our series

solution. The finite difference comparison is advantageous because it allows us to consider the case

where the group velocities, cm, m = 1, 2, 3, are not all equal. This was not possible in the previous

section.

We choose one of the simplest possible finite difference methods in order to solve the three-

wave PDEs in (5.1). This allows us to validate the solution via standard convergence analysis.

Specifically, we use a first-order upwind method. That is, we use a forward Euler scheme in τ , and

a backward difference scheme in x. To that end, we discretize the (x, τ)-domain using (6.6), and

define the following

[am]qp = am(xp, τq).
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Then the explicit finite difference method for solving the three-wave PDEs becomes

1

∆t

(
[am]q+1

p − [am]qp
)

+
cm
∆x

(
[am]qp − [am]1p−1

)
= σm [a∗k]

q
p [a∗` ]

q
p, (6.15)

where (k, `,m) = (1, 2, 3) cyclically. Given an initial condition and a boundary condition on the

left of the domain, (6.15) allows us to step forward in time and space in order to find the solution

of the three-wave PDEs in a given (x, τ)-domain. Note that specifying a boundary condition on

the left means we specify [am]q1 for q = 1, 2, . . . , k, and specifying an in initial condition means

specifying [am]1p for p = 1, 2, . . . , h.

It is well known that the accuracy of the first-order upwind scheme is O(∆τ) + O(∆x). In

(a) |S125|2 (b) |Ŝ1|2

Figure 6.8: A comparison of the formal Laurent series solution of the three-wave PDEs with 25
terms when c1 = c2 = c3 = 1, and the corresponding solution of the three-wave ODEs along lines
of constant ζ under the change of variables in (6.9). We use K2(x) = K3(x) = 0, with H(x) defined
in (6.11), and we consider τ outside its region of convergence, τ ∈ [−0.95, 2.95]. Note that S1

25(x, τ)
denotes the 25th partial sum approximation of am(x, τ) and Ŝm(x, τ) denotes the true solution,
am(x, τ).
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order to see this, we first use Taylor expansions to find

am(x, τ + ∆τ) = am(x, τ) + ∆τ
∂

∂τ
am(x, τ) +

(∆t)2

2

∂2

∂τ2
am(x, τ) +O(∆τ3),

am(x−∆x, τ) = am(x, τ)−∆x
∂

∂x
am(x, τ) +

(∆x)2

2

∂2

∂x2
am(x, τ) +O(∆τ3).

Rearranging, we obtain

am(x, τ + ∆τ)− am(x, τ)

∆t
=

∂

∂τ
am(x, τ) +O(∆t),

am(x, τ)− am(x−∆x, τ)

∆x
=

∂

∂x
am(x, τ) +O(∆x).

If we set x = xp and τ = τq, then x+ ∆x = xp+1 and τ + ∆τ = τq+1. Thus, we have

1

∆t

(
[am]q+1

p − [am]qp
)

=
∂

∂τ
am(xp, τq) +O(∆t),

1

∆x

(
[am]qp − [am]1p−1

)
=

∂

∂x
am(xp, τq) +O(∆x).

This is sufficient to show that the error term for the first-order upwind method is O(∆τ) +O(∆x).

The first-order upwind scheme is stable as long as the Courant-Friedrichs-Lewy (CFL) con-

dition is satisfied. In particular, ∆τ and ∆x must be chosen such that

c∆τ ≤ ∆x, (6.16)

where c = max {|c1|, |c2|, |c3|}.

In practice, in order to ensure that (6.16) is satisfied, we fix ∆x and set ∆τ = ∆x/c. Consider

the usual example of the PDE series solution in which the phases are constant, K2(x) = K3(x) = 0,

H(x) is given in (6.11), and τ0 = 1. This time, however, we assume that the group velocities are not

equal, and that in particular c1 = 1, c2 = 0.5, and c3 = 0.75. In order to compare the partial sum

approximation of the solution with the finite difference approximation, we restrict our attention to

a small domain in x and τ . Since the finite difference solution will not do well near the pole, we

restrict τ to lie in the domain [−0.35, 0.75]. This means τ extends to the lower bound of its region

of convergence, but it does not get too close to the pole at τ0 = 1. For simplicity, we consider a

square domain, so that x ∈ [−0.35, 0.75].
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Since c = 1, (6.16) is satisfied as long as we pick ∆τ = ∆x. The finite difference solution is

computed by using a boundary condition on the left and an initial condition taken from the partial

sum approximation of am(x, τ). That is, we set

[am]qp = SmN (xp, τ1) = SmN (xp,−0.35), and [am]q1 = SmN (x1, τq) = SmN (−0.35, τq).

Figure 6.9a depicts the partial sum approximation of |a1(x, τ)| with 25 terms for the conditions

described above. Similarly, Figure 6.9b depicts the finite difference approximation of |a1(x, τ)| on a

256×256 grid. This corresponds to a value of ∆x = ∆t ≈ 0.0043. Figure 6.9c shows the magnitude

of the relative pointwise error between the two approximations,

EN (x, τ) =

∣∣∣∣SmN (x, τ)− SmFD(x, τ)

SmN (x, τ)

∣∣∣∣ ,
where SmFD denotes the finite difference approximation of Ŝm. Note that the error increases towards

the top, right corner of the plot. This is due to the fact that numerical dispersion is introduced into

the finite difference approximation as the solution propagates away from the initial and boundary

data.

(a) |S125| (b) |S1FD| (c) E25(x, τ)

Figure 6.9: A comparison of the partial sum approximation of the solution of the three-wave PDEs
with 25 terms when τ0 = 1, c1 = 1, c2 = 0.5, and c3 = 0.75, and the corresponding finite difference
approximation with ∆t = ∆x ≈ 0.0043. The domain is [−0.35, 0.75] × [−0.35, 0.75]. Note that
Sm25(x, τ) denotes the 25th partial sum approximation of am(x, τ), SmFD(x, τ) denotes the finite
difference approximation of am(x, τ), and E25(x, τ) denotes the relative error between them.

Returning to the problem at hand, recall that we want to use the finite difference scheme
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in (6.15) in order to validate our PDE series solution in (5.24)-(5.26). The difficulty is that com-

putationally, we can only compute the partial sum approximation of our PDE series solution.

Consequently, we are using one approximation (the finite difference approximation) in order to

validate another approximation (the partial sum approximation).

In order to verify our results, we need to know a priori how the error between the finite

difference and partial sum approximations of the exact solution should behave. To that end, let

Ŝm denote the exact solution of the three-wave PDEs as usual. Observe the following

∥∥SmN − SmFD

∥∥
L2
R

=
∥∥Ŝm + (SmN − Ŝm)− SmFD

∥∥
L2
R

≤
∥∥Ŝm − SmFD

∥∥
L2
R

+
∥∥SmN − Ŝm∥∥L2

R

∼ O(∆τ) +O(∆x) +O(DC−N ), (6.17)

where as usual, ‖ · ‖L2
R

denotes the approximate L2-norm of the relative error. The last line used

the fact that we know the error of our finite difference scheme is
∥∥Ŝm−SmFD

∥∥
L2
R
∼ O(∆τ)+O(∆x),

and we know from (6.8) and (6.14) that ‖SmN −Ŝm‖L2
R
∼ O(DC−N ). If N is sufficiently large, then

DC−N is small, and the dominant behavior of the error between the two approximations becomes

O(∆τ) + O(∆x). Since we fixed ∆τ = ∆x/c, it follows that the error in this case behaves like

O(∆x).

We compute the error on the left-hand side of (6.17) for increasingly small values of ∆x in the

finite difference approximation, while holding N constant in the partial sum approximation. Figure

6.10 depicts the results of this computation on a log-log scale for N = 8, 14, 20, 32, and 50. Notice

that for small values of N , the curves do not linearly decrease as O(∆x), but instead approach a

constant, as predicted by (6.17). On the other hand, the curves for larger N are linear, with slopes

of approximately one. This means the error is O(∆x) as predicted, which indicates that when N

is large, the partial sum is a good approximation of the exact solution. For the larger values of

N , we hypothesize that if ∆x was taken small enough, the curves would still approach a constant

predicted by (6.17). Due to computational limitations this hypothesis could not be tested.



162

●

●

●

●

●
●●●

■

■

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆

◆

▲

▲

▲

▲

▲

▲

▲

▲

▼

▼

▼

▼

▼

▼

▼

▼

��×��-� ��×��-� ��×��-� ���� ����
Δ �

��×��-�

��×��-�

��-�

�����

● � �

■ � ��

◆ � ��

▲ � ��

▼ � ��

Figure 6.10: ‖S1
N − S1

FD‖L2
R

when c1 = 1, c2 = 0.5, c3 = 0.75, and τ0 = 1. We assumed x, τ ∈
[−0.35, 0.75], so that τ reaches the lower boundary of the region of convergence, but does not get
close to the pole. We assumed constant phases and that K2(x) = K3(x) = 0, with H(x) given in
(6.11).



Chapter 7

Discussion

We derived a solution of the three-wave PDEs in terms of a formal Laurent series in time, the

coefficients of which have spatial dependence. The series solution involves five real free functions of

x and one real free constant, namely the position of the pole at τ = τ0. A fully general solution of

the three-wave PDEs would involve six free functions, so our work stops short of a general solution.

In spite of this, we are only one function short of having a general solution of the three-wave PDEs,

a set of completely integrable coupled nonlinear complex-valued PDEs.

We focused our attention on the case in which the phase functions are constant. This allowed

us to derive the radius of convergence of the PDE series solution in several cases, specifically when

one or more of the remaining functions is set to zero. We determined that if the nonzero free

functions satisfy some differentiability constraints, then the radius of convergence of the solution

of the three-wave PDEs is related to the radius of convergence of a corresponding solution of the

three-wave ODEs. In particular, the radius of convergence of the PDE series solution is smaller

than the radius of convergence of the corresponding three-wave ODE solution, but it is smaller by

a known dimensionless factor. That factor depends on the maximum group velocity of the three

interacting waves, and how quickly the derivatives of the free functions are growing.

After making the formal Laurent series solution of the three-wave PDEs more rigorous by

determining where the solution converges, we used numerical methods in order to verify our solution

within its region of convergence. More specifically, we demonstrated that in practice, we can

truncate the formal Laurent series solution of the three-wave PDEs after a few dozen terms without
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much loss of accuracy. More terms are required for τ -values that are near the radius of convergence,

whereas fewer terms are needed to obtain the same level of accuracy for τ -values in the interior of

the τ -domain.

Our series solution provides an alternative to using inverse scattering when finding a solution

of the three-wave PDEs. Moreover, our method imposes no boundary conditions in x, meaning

our solution should be consistent with a wide variety of boundary conditions, including periodic

boundary conditions. This is useful since, to our knowledge, the three-wave PDEs have never been

solved with periodic boundary conditions. Our solution also makes no restriction on the number

of spatial dimensions allowed.

There is more work to be done in the nonexplosive regime of the three-wave PDEs, particularly

in determining what values τ0 is allowed to take on in the complex plane. Additionally, we have

not rigorously considered what happens when all three of the functions K2(x), K3(x), and H(x)

are nonzero, although we expect this to be a natural extension of the cases outlined in Sections

5.3-5.6. Furthermore, we have not addressed the question of what happens when we allow the phase

functions to be nonconstant. This problem is more difficult because the phases do not appear in

the coefficients of the series solution of the three-wave ODEs; they appear only in the exponential

term in front of the series. As a result, it is not clear whether we can find the radius of convergence

of the PDE series solution in terms of the radius of convergence of a corresponding ODE solution.

In spite of this, if we impose some differentiability conditions on ψm(x), then we expect the general

process of bounding the PDE solution in terms of polynomials in (ck) to be the same, although we

do not know whether or not the resulting series converges.

Finally, in order to develop a fully general solution of the three-wave PDEs, spatial depen-

dence must be incorporated into τ0. Acquiring a general solution of a PDE is a rare occurrence,

so it will be significant if this is accomplished. The question of how to specify initial data in the

general (or near-general) solution of the three-wave PDEs must also be addressed, since this would

make the PDE series solution more physically applicable.
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Appendix A

Coefficient γ1

γ1 ={
1

2

(
gk1 + ω2

1

)
(ρ1 cosh (h1k3) + ρ2 sinh (h1k3) coth (h2k3))

− ik1ω1

(
iω1

2k1
− ig

2ω1

)
(ρ1 cosh (h1k3) + ρ2 sinh (h1k3) coth (h2k3))

+ 2k1k2ρ1e
h1k1+h1k2

(
iω1

2k1
− ig

2ω1

)(
ig

2ω2
− iω2

2k2

)
− 2k1k2

(
iω1

2k1
− ig

2ω1

)(
ig

2ω2
− iω2

2k2

)
(ρ1 cosh (h1k3)

+ρ2 sinh (h1k3) coth (h2k3))

+ ik2ω2

(
ig

2ω2
− iω2

2k2

)
(ρ1 cosh (h1k3) + ρ2 sinh (h1k3) coth (h2k3))

+
1

2

(
gk2 + ω2

2

)
(ρ1 cosh (h1k3) + ρ2 sinh (h1k3) coth (h2k3))

−
ik2ρ1ω2e

h1k2−h1k1
(
ig
2ω2
− iω2

2k2

) (
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
2ω2

1

+
ρ1e
−h1k1−h1k2

(
gk2 + ω2

2

) (
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4ω2

1

+
ρ1e
−h1k1−h1k2

(
gk1 + ω2

1

) (
gk2 + ω2

2

)
2ω1ω2

−
(
gk1 + ω2

1

) (
gk2 + ω2

2

)
(ρ1 cosh (h1k3) + ρ2 sinh (h1k3) coth (h2k3))

2ω1ω2

−
ρ2e
−h1k1−h1k2

(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4ω2

1 (e
2h1k2+2(−h1−h2)k2 − 1)

+
ρ2 exp (−h1k1 + h1k2 + 2 (−h1 − h2) k2)

(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4ω2

1 (e
2h1k2+2(−h1−h2)k2 − 1)

·
(
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4ω2

1 (e
2h1k2+2(−h1−h2)k2 − 1)

+
ik1ρ1ω1e

h1k1−h1k2
(
iω1
2k1
− ig

2ω1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
2ω2

2
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−
eh1k1+2(−h1−h2)k1+h1k2+2(−h1−h2)k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
2 (−1 + e2h1k1+2(−h1−h2)k1) (−1 + e2h1k2+2(−h1−h2)k2)ω1ω2

−
e−h1k1−h1k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
2 (−1 + e2h1k1+2(−h1−h2)k1) (−1 + e2h1k2+2(−h1−h2)k2)ω1ω2

−
e−h1k1−h1k2ρ1

(
ω2
1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
4ω2

2

−
e−h1k1−h1k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
4 (−1 + e2h1k1+2(−h1−h2)k1)ω2

2

+
eh1k1+2(−h1−h2)k1−h1k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
4 (−1 + e2h1k1+2(−h1−h2)k1)ω2

2

+
igk1k3 (ρ2 − ρ1)ω1

(
iω1
2k1
− ig

2ω1

)
sinh (h1k3)

ω2
3

−
gk3 (ρ2 − ρ1)

(
gk1 + ω2

1

)
sinh (h1k3)

2ω2
3

+
2gk1k2k3 (ρ2 − ρ1)

(
iω1
2k1
− ig

2ω1

)(
ig
2ω2
− iω2

2k2

)
sinh (h1k3)

ω2
3

−
igk2k3 (ρ2 − ρ1)ω2

(
ig
2ω2
− iω2

2k2

)
sinh (h1k3)

ω2
3

−
gk3 (ρ2 − ρ1)

(
gk2 + ω2

2

)
sinh (h1k3)

2ω2
3

+
gk3 (ρ2 − ρ1)

(
gk1 + ω2

1

) (
gk2 + ω2

2

)
sinh (h1k3)

2ω1ω2ω2
3

+
igk21 (ρ1 − ρ2)

(
iω1
2k1
− ig

2ω1

)
cosh (h1k3)

ω3
−
igk1k2 (ρ1 − ρ2)

(
iω1
2k1
− ig

2ω1

)
cosh (h1k3)

ω3

+
igk22 (ρ1 − ρ2)

(
ig
2ω2
− iω2

2k2

)
cosh (h1k3)

ω3
−
igk1k2 (ρ1 − ρ2)

(
ig
2ω2
− iω2

2k2

)
cosh (h1k3)

ω3

−
gk2 (ρ1 − ρ2)

(
gk1 + ω2

1

)
cosh (h1k3)

2ω1ω3
+
gk1 (ρ1 − ρ2)

(
gk1 + ω2

1

)
cosh (h1k3)

2ω1ω3

+
igk1k2 (ρ1 − ρ2) eh1k2−h1k1

(
ig
2ω2
− iω2

2k2

) (
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
2ω2

1ω3

−
igk22 (ρ1 − ρ2) eh1k2−h1k1

(
ig
2ω2
− iω2

2k2

) (
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
2ω2

1ω3

−
gk1 (ρ1 − ρ2) e−h1k1−h1k2

(
gk2 + ω2

2

) (
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4ω2

1ω2ω3

+
gk2 (ρ1 − ρ2) e−h1k1−h1k2

(
gk2 + ω2

2

) (
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4ω2

1ω2ω3

+
gk1 (ρ1 − ρ2)

(
gk2 + ω2

2

)
cosh (h1k3)

2ω2ω3
−
gk2 (ρ1 − ρ2)

(
gk2 + ω2

2

)
cosh (h1k3)

2ω2ω3

+
igk1k2 (ρ1 − ρ2) eh1k1−h1k2

(
iω1
2k1
− ig

2ω1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
2ω2

2ω3

−
igk21 (ρ1 − ρ2) eh1k1−h1k2

(
iω1
2k1
− ig

2ω1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
2ω2

2ω3

+
gk2 (ρ1 − ρ2) e−h1k1−h1k2

(
gk1 + ω2

1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4ω1ω2

2ω3

−
gk1 (ρ1 − ρ2) e−h1k1−h1k2

(
gk1 + ω2

1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4ω1ω2

2ω3
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−
ik2k1ρ1ω3

(
iω1
2k1
− ig

2ω1

)
sinh (h1k3)

k3
+
ik21ρ1ω3

(
iω1
2k1
− ig

2ω1

)
sinh (h1k3)

k3

+
ik21ρ2ω3

(
iω1
2k1
− ig

2ω1

)
cosh (h1k3) coth (h2k3)

k3
−
ik2k1ρ2ω3

(
iω1
2k1
− ig

2ω1

)
cosh (h1k3) coth (h2k3)

k3

+
k1ρ1ω3

(
gk1 + ω2

1

)
sinh (h1k3)

2k3ω1
−
k2ρ1ω3

(
gk1 + ω2

1

)
sinh (h1k3)

2k3ω1

+
k1ρ2ω3

(
gk1 + ω2

1

)
cosh (h1k3) coth (h2k3)

2k3ω1
−
k2ρ2ω3

(
gk1 + ω2

1

)
cosh (h1k3) coth (h2k3)

2k3ω1

+
ik22ρ1ω3

(
ig
2ω2
− iω2

2k2

)
sinh (h1k3)

k3
−
ik1k2ρ1ω3

(
ig
2ω2
− iω2

2k2

)
sinh (h1k3)

k3

+
ik22ρ2ω3

(
ig
2ω2
− iω2

2k2

)
cosh (h1k3) coth (h2k3)

k3
−
ik1k2ρ2ω3

(
ig
2ω2
− iω2

2k2

)
cosh (h1k3) coth (h2k3)

k3

+
ik1k2ρ2ω3e

h1k2−h1k1
(
ig
2ω2
− iω2

2k2

)
coth (h2k3)

(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
2k3ω2

1

−
ik22ρ2ω3e

h1k2−h1k1
(
ig
2ω2
− iω2

2k2

)
coth (h2k3)

(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
2k3ω2

1

+
k1ρ1ω3

(
gk2 + ω2

2

)
sinh (h1k3)

2k3ω2
−
k2ρ1ω3

(
gk2 + ω2

2

)
sinh (h1k3)

2k3ω2

+
k2ρ2ω3e

−h1k1−h1k2
(
gk2 + ω2

2

)
coth (h2k3)

(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4k3ω2

1ω2

−
k1ρ2ω3e

−h1k1−h1k2
(
gk2 + ω2

2

)
coth (h2k3)

(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4k3ω2

1ω2

+
k1ρ2ω3

(
gk2 + ω2

2

)
cosh (h1k3) coth (h2k3)

2k3ω2
−
k2ρ2ω3

(
gk2 + ω2

2

)
cosh (h1k3) coth (h2k3)

2k3ω2

−
ik21ρ2ω3e

h1k1−h1k2
(
iω1
2k1
− ig

2ω1

)
coth (h2k3)

(
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
2k3ω2

2

+
ik2k1ρ2ω3e

h1k1−h1k2
(
iω1
2k1
− ig

2ω1

)
coth (h2k3)

(
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
2k3ω2

2

−
k1ρ2ω3e

−h1k1−h1k2
(
gk1 + ω2

1

)
coth (h2k3)

(
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4k3ω1ω2

2

+
k2ρ2ω3e

−h1k1−h1k2
(
gk1 + ω2

1

)
coth (h2k3)

(
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4k3ω1ω2

2

−
k1ρ2ω3e

−h1k1−h1k2 coth (h2k3)
(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

) (
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4k3ω1ω2

2 (e
2h1k1+2(−h1−h2)k1 − 1)

−
k1ρ2ω3e

h1k1+2(−h1−h2)k1−h1k2 coth (h2k3)
(
−gk1e2h1k1 + gk1 + ω2

1e
2h1k1 + ω2

1

)
4k3ω1ω2

2 (e
2h1k1+2(−h1−h2)k1 − 1)

·
(
−gk2e2h1k2 + gk2 + ω2

2e
2h1k2 + ω2

2

)
4k3ω1ω2

2 (e
2h1k1+2(−h1−h2)k1 − 1)

+
e−h1k1−h1k2 coth (h2k3) k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
ω3

4 (−1 + e2h1k1+2(−h1−h2)k1) k3ω1ω2
2

+
e−h1k1+h1k2+2(−h1−h2)k2 coth (h2k3) k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

)
4 (−1 + e2h1k2+2(−h1−h2)k2) k3ω2

1ω2

·
(
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
ω3

4 (−1 + e2h1k2+2(−h1−h2)k2) k3ω2
1ω2
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+
e−h1k1−h1k2 coth (h2k3) k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
ω3

4 (−1 + e2h1k2+2(−h1−h2)k2) k3ω2
1ω2

+
eh1k1+2(−h1−h2)k1−h1k2 coth (h2k3) k2ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

)
4 (−1 + e2h1k1+2(−h1−h2)k1) k3ω1ω2

2

·
(
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
ω3

4 (−1 + e2h1k1+2(−h1−h2)k1) k3ω1ω2
2

−
e−h1k1+h1k2+2(−h1−h2)k2 coth (h2k3) k1ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

)
4 (−1 + e2h1k2+2(−h1−h2)k2) k3ω2

1ω2

·
(
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
ω3

4 (−1 + e2h1k2+2(−h1−h2)k2) k3ω2
1ω2

−
e−h1k1−h1k2 coth (h2k3) k1ρ2

(
e2h1k1ω2

1 + ω2
1 − e2h1k1gk1 + gk1

) (
e2h1k2ω2

2 + ω2
2 − e2h1k2gk2 + gk2

)
ω3

4 (−1 + e2h1k2+2(−h1−h2)k2) k3ω2
1ω2

}
/{

− ie2h1k3ρ1ω
3
3

k3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)
+

2eh1k3 i sinh (h1k3) ρ1ω
3
3

k3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)

+
2eh1k3 i cosh (h1k3) coth (h2k3) ρ2ω

3
3

k3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)
+
eh1k3 i (cosh (h1k3) ρ1 + coth (h2k3) sinh (h1k3) ρ2)ω

3
3

k3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)

+
e2h1k3+2(−h1−h2)k3 iρ2ω3

(−1 + e2h1k3+2(−h1−h2)k3) k3
+

iρ2ω3

(−1 + e2h1k3+2(−h1−h2)k3) k3
+

e2h1k3giρ1ω3

e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3

+
2eh1k3gi cosh (h1k3) (ρ1 − ρ2)ω3

e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3
− ieh1k3g sinh (h1k3) (ρ2 − ρ1)ω3

e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3

− ieh1k3g (cosh (h1k3) ρ1 + coth (h2k3) sinh (h1k3) ρ2)ω3

e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3
+

iρ1
(
ω2
3 + gk3

)
ω3

k3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)

−
ieh1k3 (cosh (h1k3) ρ1 + coth (h2k3) sinh (h1k3) ρ2)

(
ω2
3 + gk3

)
ω3

k3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)

+
eh1k3g2i sinh (h1k3) k3 (ρ2 − ρ1)

ω3 (e2h1k3ω2
3 + ω2

3 − e2h1k3gk3 + gk3)
+
eh1k3gi sinh (h1k3) (ρ2 − ρ1)

(
ω2
3 + gk3

)
ω3 (e2h1k3ω2

3 + ω2
3 − e2h1k3gk3 + gk3)

− ig (ρ1 − ρ2)
ω3

}



Appendix B

Proof of (5.58)

In this section, we outline how to prove the result (5.58). That is, we want to show that

qn,p =
pn−3p

(n− 3p)!
q3p,p, n ≥ 3p. (B.1)

Note that the equation can be verified by direct computation for n = 3p, 3p+ 1, 3p+ 2, p = 1, 2, 3.

However, we want to show that (B.1) is true in general.

First, recall that the solutions of the three-wave ODEs when K2 = K3 = 0 are described by

(5.45),

am(τ) =
eiψm

ξ

∞∑
n=0

A3n ξ
3n,

where the coefficients Am3n are determined via

(3n− 1)Am3n +Ak
∗

3n +A`
∗

3n = −
3n−3∑
p=3

Ak
∗
p A

`∗
3n−p, n ≥ 2.

When K2 = K3 = 0, we have that A1
n = A2

n = A3
n, so we can drop the superscripts and simplify to

obtain

(3n− 1)A3n + 2A∗3n = −
n−1∑
p=1

A∗3pA
∗
3(n−p), n ≥ 2 (B.2)

By induction, we can show that since A0 = 1, A3 = iσH/6, then (B.2) gives that A3n is real when

n is even and pure imaginary when n is odd.

(1) Suppose n is odd. It follows that A3n is pure imaginary, so that A∗3n = −A3n. Then (B.2)

yields

3(n− 1)A3n = −
n−1∑
p=1

A∗3pA
∗
3(n−p). (B.3)
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Notice that when p is odd, 3p is also odd, so that A3p must be pure imaginary. Since n is

odd, the quantity n − p is even when p is odd, so that A3(n−p) is real. That is, when p is

odd, we have that

A∗3pA
∗
3(n−p) = (−A3p)A3(n−p) = −A3pA3(n−p).

If we write A3n = iα3n for n odd and A3n = α3n for n even, then we have

A∗3pA
∗
3(n−p) = −iα3p α3(n−p).

If p is even, then A3p is real. Since n is odd, the quantity n− p is odd when p is even, so

it follows that A3(n−p) is pure imaginary. Thus, when p is even, we have

A∗3pA
∗
3(n−p) = A3p

(
−A3(n−p)

)
= −iα3p α3(n−p).

In summary, if n is odd, we have that

3(n− 1)α3n =

n−1∑
p=1

α3p α3(n−p),

or alternatively,

3(n− 1)α3n = 2

n−1
2∑

p=1

α3p α3(n−p), (B.4)

where the two negative signs on the right hand side cancelled.

(2) Suppose n is even. It follows that A3n is real, so that A∗3n = A3n. Then (B.2) yields

(3n+ 1)A3n = −
n−1∑
p=1

A∗3pA
∗
3(n−p). (B.5)

Notice that when p is odd, A3p must be pure imaginary. Since n is even, the quantity n−p

is odd when p is odd, so that A3(n−p) is also pure imaginary. That is, when p is odd, we

have that

A∗3pA
∗
3(n−p) = (−A3p)

(
−A3(n−p)

)
= A3pA3(n−p).

As before, if we write A3p = iα3p for p odd, then we have

A∗3pA
∗
3(n−p) = −α3pα3(n−p),
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where the minus sign is due to the i2 term.

If p is even, then A3p is real. Since n is even, the quantity n− p is even when p is even, so

it follows that A3(n−p) is also real. Thus, when p is even, we have

A∗3pA
∗
3(n−p) = A3pA3(n−p) = α3p α3(n−p).

In summary, if n is even, we have that

(3n+ 1)α3n = −
n−1∑
p=1

(−1)pα3p α3(n−p)

=
n−1∑
p=1

(−1)p+1α3p α3(n−p),

or alternatively,

(3n+ 1)α3n = (−1)
n
2

+1α2
3n/2 + 2

n
2
−1∑

p=1

(−1)p+1α3p α3(n−p). (B.6)

We use the relations (B.4) and (B.6) later in the proof.

Next, consider the formal Laurent series solution of the three-wave PDEs. For the series

(5.24), the series coefficients can be found by solving the linear system in (5.22). This yields

Amn (x) =
1

f(n)

[ (
n3 − 3n2 + 2

)
bmn + (n− 1) bkn + (n− 1) b`n

− 2bm∗n +
(
−n2 + 2n+ 1

)
bk∗n +

(
−n2 + 2n+ 1

)
b`∗n

]
, (B.7)

where

bmn (x) = −
n−1∑
p=1

Ak∗p A`∗n−p (B.8)

and

f(n) = n(n+ 1)(n− 2)(n− 3).

We split bmn into its real and imaginary parts by writing bmn = bmnRe
+ ibmnIm

. Then (B.7) becomes

Amn =
1

f(n)

[ (
n3 − 3n2 + 2

) (
bmnRe

+ ibmnIm

)
+ (n− 1)

(
bknRe

+ ibknIm

)
+ (n− 1)

(
b`nRe

+ ib`nIm

)
− 2

(
bmnRe
− ibmnIm

)
+
(
−n2 + 2n+ 1

) (
bknRe
− ibknIm

)
+
(
−n2 + 2n+ 1

) (
b`nRe

+ ib`nIm

) ]
.



175

Let cm = max {|c1|, |c2|, |c3|} ≡ c for m = 1, 2, 3, and note that the more general case is

analagous. Then A1
n(x) = A2

n(x) = A3
n(x), so that b1n = b2n = b3n. Thus, we have

Amn =
1

f(n)

{ [
n3 − 3n2 + 2 + 2(n− 1)− 2 + 2(−n2 + 2n+ 1)

]
bnRe

+
[
n3 − 3n2 + 2 + 2(n− 1) + 2− 2(−n2 + 2n+ 1)

]
ibnIm

}
=

1

f(n)

{(
n3 − 5n2 + 6n

)
bnRe +

(
n3 − n2 − 2n

)
ibnIm

}
=

1

n(n+ 1)(n− 2)(n− 3)

{
n(n− 2)(n− 3)bnRe + n(n− 2)(n+ 1)ibnIm

}
=

bnRe

n+ 1
+
ibnIm

n− 3
. (B.9)

When c1 = c2 = c3 = c and H(x) satisfies (5.32), we have from (5.54)

|An(x)| ≤
bn/3c∑
p=1

qn,p(ck)n−3p,

where qn,p comes from the imaginary part of An(x) if p is odd, and qn,p comes from the real part

of An(x) if p is even. Then from (B.8) and (B.9), we know that if p is odd,

qn,p =
1

n− 3

p qn−1,p + 2

p−1
2∑
`=1

n−3(p−`)∑
j=3`

qj,`qn−j,p−`

 , (B.10)

and if p is even,

qn,p =
1

n+ 1

p qn−1,p + (−1)
p
2

+1

n− 3p
2∑

j= p
2

qj, p
2
qn−j, p

2
+ 2

p
2
−1∑
`=1

n−3(p−`)∑
j=3`

(−1)`+1qj,`qn−j,p−`

 . (B.11)

We now use induction to prove that (B.10)-(B.11) are equivalent to (B.1). To start, it is

trivial to show that qn,1 = 1/(n− 3)!, which gives us a base case. Now suppose that (B.1) holds for

p = 1, 2, 3, . . . , P − 1 (for some P > 2), and for all n > 3p.

First, suppose that P is odd. Then from (B.10) we have

qn,P =
1

n− 3

Pqn−1,P + 2

P−1
2∑
`=1

n−3(P−`)∑
j=3`

`j−3`

(j − 3`)!

(P − `)n−j−3(P−`)

(n− j − 3(P − `))!
q3`,`q3(p−`)p−`

 , (B.12)

where we applied (B.1) for p < P . Let R` be the inner sum above, defined by

R` =

n−3(P−`)∑
j=3`

`j−3`

(j − 3`)!

(P − `)n−j−3(P−`)

(n− j − 3(P − `))!
. (B.13)
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Observe the following

R` =

n−3P∑
k=0

`k

k!

(P − `)n−k−3P

(n− k − 3P )!

=

m∑
k=0

`k

k!

(P − `)m−k

(m− k)!
,

where we defined m = n− 3P . It follows that

m!R` =
m∑
k=0

m!
`k

k!

(P − `)m−k

(m− k)!

=

m∑
k=0

(
m

k

)
`k(P − `)m−k

= (P − `)m
m∑
k=0

(
m

k

)(
`

P − `

)k
= (P − `)m

(
1 +

`

P − `

)m
= (P − `)m

(
P

P − `

)m
= Pm,

where the fourth equality above is due to [17, §26.3.4]. Finally, using m = n− 3P , we have

R` =
Pn−3P

(n− 3P )!
. (B.14)

Consequently, (B.12) becomes

qn,P =
1

n− 3

Pqn−1,P + 2
Pn−3P

(n− 3P )!

P−1
2∑
`=1

q3`,`q3(p−`)p−`

 .
Now, substitute (B.1) for p = P into the equation above. We obtain

Pn−3P

(n− 3P )!
q3P,P =

1

n− 3

P Pn−1−3P

(n− 1− 3P )!
q3P,P + 2

Pn−3P

(n− 3P )!

P−1
2∑
`=1

q3`,`q3(p−`)p−`


=

1

n− 3

(n− 3P )Pn−3P

(n− 3P )!
q3P,P + 2

Pn−3P

(n− 3P )!

P−1
2∑
`=1

q3`,`q3(p−`)p−`

 .
Simplifying, we have

[
(n− 3)− (n− 3P )

]
q3P,P = 2

P−1
2∑
`=1

q3`,`q3(p−`)p−`.
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That is,

3(P − 1)q3P,P = 2

P−1
2∑
`=1

q3`,`q3(p−`)p−`.

However, this is equivalent to (B.4) with q3P,P = α3P . As a result, we know that (B.1) satisfies

(B.10) exactly. This is now true for any n > 3p and for p ≥ 1. Equation (B.10) gives a unique

sequence because the sequence is defined explicitly starting at the known value of q3p,p. Conse-

quently, if the sequence defined by (B.1) (again, starting at q3p,p) also satisfies (B.10), then it must

be the unique sequence produced by (B.10).

Next, suppose that P is even. Then from (B.11) we have

qn,P =
1

n+ 1

[
Pqn−1,P + (−1)

P
2

+1

n− 3P
2∑

j= 3P
2

(
P
2

)j− 3P
2

(j − 3P
2 )!

(P2 )n−j−
3P
2

(n− j − 3P
2 )!

q2
3P
2
,P
2

+2

P
2
−1∑

`=1

n−3(P−`)∑
j=3`

(−1)`+1 `j−3`

(j − 3`)!

(P − `)n−j−3(P−`)

(n− j − 3(P − `))!
q3`,`q3(p−`)p−`

]
, (B.15)

where we applied (B.1) for p < P .

Using (B.13)-(B.14), we obtain

qn,P =
1

n+ 1

[
Pqn−1,P + (−1)

P
2

+1 Pn−3P

(n− 3P )!
q2

3P
2
,P
2

+ 2
Pn−3P

(n− 3P )!

P
2
−1∑

`=1

(−1)`+1q3`,`q3(p−`)p−`

]
,

=
1

n+ 1

Pqn−1,P +
Pn−3P

(n− 3P )!

(−1)
P
2

+1q2
3P
2
,P
2

+ 2

P
2
−1∑

`=1

(−1)`+1q3`,`q3(p−`)p−`

 .

Now, substitute (B.1) for p = P into the equation above. We obtain

Pn−3P

(n− 3P )!
q3P,P =

1

n+ 1

{
P

Pn−1−3P

(n− 1− 3P )!
q3P,P

+
Pn−3P

(n− 3P )!

(−1)
P
2

+1q2
3P
2
,P
2

+ 2

P
2
−1∑

`=1

(−1)`+1q3`,`q3(p−`)p−`

}

=
1

n+ 1

{
(n− 3P )Pn−3P

(n− 3P )!
q3P,P

+
Pn−3P

(n− 3P )!

(−1)
P
2

+1q2
3P
2
,P
2

+ 2

P
2
−1∑

`=1

(−1)`+1q3`,`q3(p−`)p−`

}.
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Simplifying, we have

[
(n+ 1)− (n− 3P )

]
q3P,P = (−1)

P
2

+1q2
3P
2
,P
2

+ 2

P
2
−1∑

`=1

(−1)`+1q3`,`q3(p−`)p−`.

That is,

(3P + 1)q3P,P = (−1)
P
2

+1q2
3P
2
,P
2

+ 2

P
2
−1∑

`=1

(−1)`+1q3`,`q3(p−`)p−`.

However, this is equivalent to (B.6) with q3P,P = α3P . As a result, we know that (B.1) satisfies

(B.11) exactly. This is now true for any n > 3p and for p ≥ 1. Equation (B.11) gives a unique

sequence because the sequence is defined explicitly starting at the known value of q3p,p. Conse-

quently, if the sequence defined by (B.1) (again, starting at q3p,p) also satisfies (B.11), then it must

be the unique sequence produced by (B.11).
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Proof of (5.94)

In this section, we outline how to prove the result (5.94). That is, we want to show that

rn,p ≤
(γ p)n−2p

(n− 2p)!

p−1∑
`=1

r2`,` r2(p−`),p−`, (C.1)

for n ≥ 2p and for p ≥ 2, where rn,p is defined in (5.92) and γ is a real, nonnegative constant. In

order to prove (C.1), we follow the procedure below.

Step 1: It is straightforward to show from the recursion relation for Amn (x) in (5.26) with constant

phases that

3∑
m=1

|Am
n | ≤

n+ 4

(n+ 1)(n− 2)

[
c

3∑
m=1

∣∣∣Am′

n−1

∣∣∣+

n−2∑
p=2

(∣∣A1
p

∣∣ ∣∣A2
n−p

∣∣+
∣∣A1

p

∣∣ ∣∣A3
n−p

∣∣+
∣∣A2

p

∣∣ ∣∣A3
n−p

∣∣)] . (C.2)

Moreover, we know that

∣∣A1
n

∣∣+
∣∣A2

n

∣∣+
∣∣A3

n

∣∣ ≤ rn,1(ck)n−2 + rn,2(ck)n−4 + rn,3(ck)n−6 + · · ·+ rn,p(ck)n−2p,∣∣∣A1′
n

∣∣∣+
∣∣∣A2′

n

∣∣∣+
∣∣∣A3′

n

∣∣∣ ≤ k [rn,1(ck)n−2 + 2rn,2(ck)n−4 + 3rn,3(ck)n−6 + · · ·+ prn,p(ck)n−2p
]
.

Step 2: Recall the definition of rn,p in (C.3),

rn,p =
n+ 4

(n+ 1)(n− 2)

p rn−1,p +
1

2

p−1∑
`=1

n−2(p−`)∑
j=2`

rj,` rn−j,p−`

 for n > 2p, (C.3)

for p ≥ 2. Assume that

rn,p ≤
(γ p)n−2p

(n− 2p)!

p−1∑
`=1

r2`,` r2(p−`),p−`
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holds for p < P . Substitute into (C.3) to obtain

rn,P ≤
n+ 4

(n+ 1)(n− 2)

[
P rn−1,P

+
1

2

P−1∑
`=1

n−2(P−`)∑
j=2`

(γ`)j−2`

(j − 2`)!

(γ(P − `))n−j−2(P−`)

(n− j − 2(P − `))!
r2`,` r2(P−`),P−`

]
.

Rearrange the inner sum to find that

rn,P ≤
n+ 4

(n+ 1)(n− 2)

[
Prn−1,P +

(γP )n−2P

2(n− 2P )!

P−1∑
`=1

r2`,` r2(P−`),P−`

]
. (C.4)

Define

Xn−1,P =
(γP )n−2P

2(n− 2P )!

P−1∑
`=1

r2`,` r2(P−`),P−`, (C.5)

so that (C.4) becomes

rn,P ≤
n+ 4

(n+ 1)(n− 2)

[
Prn−1,P +Xn−1,P

]
. (C.6)

Step 4: Substitute (C.6) into itself recursively, to obtain

rn,P ≤
Pn−2P (n+ 4)(n+ 3)(n+ 2) · · · (6 + 2P )(5 + 2P )

(n+ 1)n(n− 1)(n− 2)2(n− 3)2(n− 4)2 · · · (2 + 2P )2(1 + 2P )(2P )(2P − 1)
r2P,P +

n−2P∑
k=1

Sk,

(C.7)

where

S1 =
n+ 4

(n+ 1)(n− 2)
Xn−1,P and Sk =

(n+ 5− k)(n+ 2− k − 2p)

3(n+ 2− k)(n− 1− k)
Sk−1,

for k = 2, 3, 4, . . . , n− 2P . Observe that

Sk ≤
n+ 5− k

3(n− 1− k)
Sk−1. (C.8)

Notice that n+5−k ≤ 3(n−1−k) whenever k ≤ n−4. Moreover, notice that n−2P ≤ n−4

when P ≥ 2. Since Sk is only defined when k ≤ n− 2P , it follows that k ≤ n− 2P ≤ n− 4,

so that n+ 5− k ≤ 3(n− 1− k) for all allowed values of k. As a result, (C.8) tells us that

Sk ≤ Sk−1 for k = 2, 3, 4, . . . , n− 2P.
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Finally, substituting the bound on Sk into (C.7) yields

rn,P ≤
Pn−2P (n+ 4)(n+ 3)(n+ 2) · · · (6 + 2P )(5 + 2P )

(n+ 1)n(n− 1)(n− 2)2(n− 3)2(n− 4)2 · · · (2 + 2P )2(1 + 2P )(2P )(2P − 1)
r2P,P

+
(n− 2P )(n+ 4)

(n+ 1)(n− 2)

(γP )n−2P

2(n− 2P )!

P−1∑
`=1

r2`,` r2(P−`),P−`. (C.9)

Step 5: It is straightforward to show from the three-wave ODE problem that

r2n,n ≤
n+ 2

2(2n+ 1)(n− 1)

n−1∑
p=1

r2p,pr2(n−p),n−p.

Substituting into (C.9) and simplifying yields

rn,P ≤

[
Pn−2P (n+ 4)!(2P − 2)!(1 + 2P )!

(4 + 2P )!(n+ 1)!(n− 2)!

P + 2

(2P + 1)(P − 1)

+
(n− 2P )(n+ 4)

(n+ 1)(n− 2)

(γP )n−2P

(n− 2P )!

]
1

2

P−1∑
`=1

r2`,` r2(P−`),P−`

=
(4 + n)Pn−2P

4

[
2 γn−2P

(n+ 1)(n− 2) Γ(n− 2P )

+
(n+ 3)(n+ 2) Γ(2P − 2)

(2P + 3)(2P + 1)(P + 1) Γ(n− 1)

]
P−1∑
`=1

r2`,` r2(P−`),P−`.

It can be shown that

(4 + n)Pn−2P

4

[
2 γn−2P

(n+ 1)(n− 2) Γ(n− 2P )
+

(n+ 3)(n+ 2) Γ(2P − 2)

(2P + 3)(2P + 1)(P + 1) Γ(n− 1)

]
≤ γn−2P

(n− 2P )!

whenever n ≥ 2p. Thus, we have

rn,P ≤
γn−2P

(n− 2P )!

P−1∑
`=1

r2`,` r2(P−`),P−`.

A base case analysis tells us that γ = 3 is sufficient.
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Proof of (5.134)

In this section, we outline how to prove the result (5.134). That is, we want to show that

n−1∑
j=1

r2j · r2(n−j) ≤ κ(n) r2n (D.1)

for some function κ(n) to be determined.

Recall from (5.66) that the Laurent series solution of the three-wave ODEs with H = 0 has

the expansion

am(τ) =
eiψm

ξ

∞∑
n=0

Am2nξ
2n,

where

Am2n =
1

2(2n+ 1)(n− 1)

[
2n bm2n − bk2n − b`2n

]
, (D.2)

and

bm2n = −
n−1∑
j=1

Ak2jA
`
2(n−j), (D.3)

for n ≥ 2. Additionally, recall from (5.140) that Am2n = αm2nK
n. Canceling a common factor of Kn,

we find that (D.2)-(D.3) become

αm2n =
1

2(2n+ 1)(n− 1)

[
2n bm2n − bk2n − b`2n

]
, (D.4)

where now

bm2n = −
n−1∑
j=1

αk2jα
`
2(n−j). (D.5)

Finally, recall that

r2n =
∣∣α1

2n

∣∣+
∣∣α2

2n

∣∣+
∣∣α3

2n

∣∣ . (D.6)
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In the special case where K3 = 2K2, we have that

α1
2 =

1

2
, α2

2 = 0, and α3
2 = −1

2
.

Additionally, from (D.4)-(D.5), we find the coefficients αm2n for n = 2, 3, 4 are given by

α1
4 = − 1

40
, α2

4 =
1

10
, and α3

4 = − 1

40
,

α1
6 =

1

80
, α2

6 = 0, and α3
6 = − 1

80
,

α1
8 =

1

9600
, α2

8 =
1

600
and α3

8 =
1

9600
.

The values of αm2n for n = 2, 3, 4 indicate that there are three distinct cases to consider. In particular,

we consider the following cases

Case A: n is odd, n = 2µ+ 1 (µ = 0, 1, 2, 3, . . .),

α1
2n > 0, α2

2n = 0, and α3
2n = −α1

2n,

b12n > 0, b22n = 0, and b32n = −b12n. (D.7)

Case B: n is even and not a multiple of four, n = 4µ+ 2 (µ = 0, 1, 2, 3, . . .),

α1
2n < 0, α2

2n > 0, and α3
2n = α1

2n.

b12n > 0, b22n > 0, and b32n = b12n. (D.8)

Case C: n is even and a multiple of four, n = 4µ (µ = 1, 2, 3, . . .),

α1
2n > 0, α2

2n > 0, and α3
2n = α1

2n.

b12n > 0, b22n > 0, and b32n = b12n. (D.9)

Note that (D.7)-(D.9) can be proven inductively using the definitions in (D.4)-(D.5).

First, consider Case A, where n is odd. Using (D.7) in the definition of r2n in (D.6), we have

that for n odd,

r2n =
∣∣α1

2n

∣∣+
∣∣α2

2n

∣∣+
∣∣α3

2n

∣∣ = 2α1
2n. (D.10)
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Then from (D.4) and (D.7), it follows that

r2n = 2α1
2n

=
1

(2n+ 1)(n− 1)

[
2n b12n − b22n − b32n

]
=

1

(2n+ 1)(n− 1)
· (2n+ 1)b12n

=
1

n− 1
· b12n

= − 1

n− 1

n−1∑
j=1

α2
2j α

3
2(n−j)

= − 1

n− 1

[
α2

2α
3
2(n−1) + α2

4α
3
2(n−2) + α2

6α
3
2(n−3) + · · ·+ α2

2(n−3)α
3
6 + α2

2(n−2)α
3
4 + α2

2(n−1)α
3
2

]
= − 1

n− 1

[
α2

4α
3
2(n−2) + α2

8α
3
2(n−4) + α2

12α
3
2(n−6) + · · ·+ α2

2(n−5)α
3
10 + α2

2(n−3)α
3
6 + α2

2(n−1)α
3
2

]
=

1

n− 1

[
α2

4α
1
2(n−2) + α2

8α
1
2(n−4) + α2

12α
1
2(n−6) + · · ·+ α2

2(n−5)α
1
10 + α2

2(n−3)α
1
6 + α2

2(n−1)α
1
2

]
,

(D.11)

where we used the fact that when j is odd, then α2
2n = 0. Additionally, when j is even, then n− j

is odd, so that α3
2(n−j) = −α1

2(n−j).

Next, consider
n−1∑
j=1

r2j r2(n−j)

We know from (D.10) that when j is odd, then r2j = 2α1
2j . From (D.8)-(D.9), we can see that

when j is even,

r2j =
∣∣α1

2j

∣∣+
∣∣α2

2j

∣∣+
∣∣α3

2j

∣∣ = 2
∣∣α1

2j

∣∣+
∣∣α2

2j

∣∣ .
It follows that

n−1∑
j=1

r2j r2(n−j)

= r2r2(n−1) + r4r2(n−2) + r6r2(n−3) + · · ·+ r2(n−3)r6 + r2(n−2)r4 + r2(n−1)r2

= 2α1
2 ·
(

2
∣∣∣α1

2(n−1)

∣∣∣+
∣∣∣α2

2(n−1)

∣∣∣)+
(
2
∣∣α1

4

∣∣+
∣∣α2

4

∣∣) · 2α1
2(n−2) + 2α1

6 ·
(

2
∣∣∣α1

2(n−3)

∣∣∣+
∣∣∣α2

2(n−3)

∣∣∣)
+ · · ·+

(
2
∣∣∣α1

2(n−1)

∣∣∣+
∣∣∣α2

2(n−1)

∣∣∣) · 2α1
2
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= 4

[
α1

2

∣∣∣α1
2(n−1)

∣∣∣+
∣∣α1

4

∣∣α1
2(n−2) + α1

6

∣∣∣α1
2(n−3)

∣∣∣+ · · ·+ α1
2(n−2)

∣∣α1
4

∣∣+
∣∣∣α1

2(n−1)

∣∣∣α1
2

]
+ 2

[
α1

2

∣∣∣α2
2(n−1)

∣∣∣+
∣∣α2

4

∣∣α1
2(n−2) + α1

6

∣∣∣α2
2(n−3)

∣∣∣+ · · ·+ α1
2(n−2)

∣∣α2
4

∣∣+
∣∣∣α2

2(n−1)

∣∣∣α1
2

]
.

Since α1
2n is always positive when n is odd, we can rewrite the above as

n−1∑
j=1

r2j r2(n−j) = 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]

+ 2

[ ∣∣∣α1
2α

2
2(n−1)

∣∣∣+
∣∣∣α2

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
2
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−2)α
2
4

∣∣∣+
∣∣∣α2

2(n−1)α
1
2

∣∣∣ ]
= 8

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−1
2 )α

1
2(n+1

2 )

∣∣∣ ]
+ 4

[ ∣∣∣α1
2α

2
2(n−1)

∣∣∣+
∣∣∣α2

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
2
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n±1
2 )α

2
2(n∓1

2 )

∣∣∣ ], (D.12)

where the choice of ± in the last line will depend on whether n+1
2 is even or odd. Furthermore,

since α2
2n is always positive when n is even, we can write (D.11) as

r2n =
1

n− 1

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣+
∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−3)α
1
6

∣∣∣+
∣∣∣α2

2(n−1)α
1
2

∣∣∣ ] (D.13)

Observe the following

κ(n)r2n −
n−1∑
j=1

r2jr2(n−j)

=
κ(n)

n− 1

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣+
∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−3)α
1
6

∣∣∣+
∣∣∣α2

2(n−1)α
1
2

∣∣∣ ] ← (n−1)
2 terms

− 8

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−1
2 )α

1
2(n+1

2 )

∣∣∣ ] ← (n−1)
2 terms

− 4

[ ∣∣∣α1
2α

2
2(n−1)

∣∣∣+
∣∣∣α2

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
2
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n±1
2 )α

2
2(n∓1

2 )

∣∣∣ ] ← (n−1)
2 terms

=
κ(n)− 4(n− 1)

n− 1

[ ∣∣∣α1
2α

2
2(n−1)

∣∣∣+
∣∣∣α2

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
2
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n±1
2 )α

2
2(n∓1

2 )

∣∣∣ ]
− 8

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−1
2 )α

1
2(n+1

2 )

∣∣∣ ].
Define

β(n) =
κ(n)− 4(n− 1)

n− 1
.
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Now we have

κ(n)r2n −
n−1∑
j=1

r2jr2(n−j)

=
∣∣α1

2

∣∣ [β(n)
∣∣∣α2

2(n−1)

∣∣∣− 8
∣∣∣α1

2(n−1)

∣∣∣ ]+
∣∣α1

6

∣∣ [β(n)
∣∣∣α2

2(n−3)

∣∣∣− 8
∣∣∣α1

2(n−3)

∣∣∣ ]
+
∣∣α1

10

∣∣ [β(n)
∣∣∣α2

2(n−5)

∣∣∣− 8
∣∣∣α1

2(n−5)

∣∣∣ ]+ · · ·+
∣∣∣α1

2(n±1
2 )

∣∣∣ [β(n)
∣∣∣α2

2(n∓1
2 )

∣∣∣− 8
∣∣∣α1

2(n∓1
2 )

∣∣∣ ].
Using induction, we can show that when n is even

∣∣α1
2n

∣∣ ≤ ∣∣α2
2n

∣∣ . (D.14)

As a result, we can see that κ(n)r2n −
∑n−1

j=1 r2jr2(n−j) is certainly positive if β(n) ≥ 8. That is, if

β(n) =
κ(n)− 4(n− 1)

n− 1
≥ 8.

It is sufficient to choose

κ(n) = 12(n− 1).

Thus, using (D.7)-(D.9) and (D.14), we have shown that for n odd

12(n− 1)r2n −
n−1∑
j=1

r2jr2(n−j) ≥ 0,

or
n−1∑
j=1

r2jr2(n−j) ≤ 12(n− 1) r2n.

In other words, we have proven (D.1) when n is odd with κ(n) = 12(n− 1) for Case A.
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Next, consider Case B, in which n is even, but not a multiple of four (n = 4µ + 2 for

µ = 0, 1, 2, . . .). This time, we have

r2n =
∣∣α1

2n

∣∣+
∣∣α2

2n

∣∣+
∣∣α3

2n

∣∣
= 2

∣∣α1
2n

∣∣+
∣∣α2

2n

∣∣
= −2α1

2n + α2
2n

= − 2

2(2n+ 1)(n− 1)

[
2n b12n − b22n − b32n

]
+

1

2(2n+ 1)(n− 1)

[
2n b22n − b12n − b32n

]
=

1

2(2n+ 1)(n− 1)

[
− (4n+ 1) b12n + (2 + 2n) b22n + b32n

]
=

1

2(2n+ 1)(n− 1)

[
−4n b12n + 2(n+ 1)b22n

]
=

1

(2n+ 1)(n− 1)

[
−2n b12n + (n+ 1)b22n

]
,

=
1

(2n+ 1)(n− 1)

[
−2n b32n + (n+ 1)b22n

]
,

where we used the fact that b32n = b12n from (D.8). Substituting from (D.5) yields

r2n =
1

(2n+ 1)(n− 1)

2n
n−1∑
j=1

α2
2jα

3
2(n−j) − (n+ 1)

n−1∑
j=1

α1
2jα

3
2(n−j)


=

1

(2n+ 1)(n− 1)

{
2n

[
α2

2α
3
2(n−1) + α2

4α
3
2(n−2) + α2

6α
3
2(n−3) + · · ·+ α2

2(n−2)α
3
4 + α2

2(n−1)α
3
2

]

− (n+ 1)

[
α1

2α
3
2(n−1) + α1

4α
3
2(n−2) + α1

6α
3
2(n−3) + · · ·+ α1

2(n−2)α
3
4 + α1

2(n−1)α
3
2

]}

=
1

(2n+ 1)(n− 1)

{
2n

[
α2

4α
1
2(n−2) + α2

8α
1
2(n−4) + α2

12α
1
2(n−6) + · · ·+ α2

2(n−4)α
1
8 + α2

2(n−2)α
1
4

]

− (n+ 1)

[
− α1

2α
1
2(n−1) + α1

4α
1
2(n−2) − α

1
6α

1
2(n−3) + · · ·+ α1

2(n−2)α
1
4 − α1

2(n−1)α
1
2

]}
,

(D.15)

where we used the fact when n is even, then j and n− j are either both even or both odd. We also

used properties from (D.8).
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Next, observe the following, noting that if n = 4m+ 2, then n/2 is odd.

n−1∑
j=1

r2j r2(n−j) = r2r2(n−1) + r4r2(n−2) + r6r2(n−3) + · · ·+ r2
2(n2 ) + · · ·+ r2(n−3)r6 + r2(n−2)r4 + r2(n−1)r2

= 2α1
2 · 2α1

2(n−1) +
(
2
∣∣α1

4

∣∣+
∣∣α2

4

∣∣) (2
∣∣∣α1

2(n−2)

∣∣∣+
∣∣∣α2

2(n−2)

∣∣∣)+ 2α1
6 · 2α1

2(n−3)

+ · · ·+
(

2α1
2(n2 )

)2
+ · · ·+

(
2
∣∣∣α1

2(n−2)

∣∣∣+
∣∣∣α2

2(n−2)

∣∣∣) (2 ∣∣α1
4

∣∣+
∣∣α2

4

∣∣)+ 2α1
2 · 2α1

2(n−1)

= 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
+ 2

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
+ 2

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣+
∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
1
8

∣∣∣+
∣∣∣α2

2(n−2)α
1
4

∣∣∣ ]
+

[ ∣∣∣α2
4α

2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ]
= 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
+ 4

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
+

[ ∣∣∣α2
4α

2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ].
Finally, consider κ̃(n)r2n −

∑n−1
j=1 r2j r2(n−j), where κ̃(n) is a function to be determined.

κ̃(n)r2n −
n−1∑
j=1

r2j r2(n−j)

=
κ̃(n)

(2n+ 1)(n− 1)

{
2n

[
α2

4α
1
2(n−2) + α2

8α
1
2(n−4) + α2

12α
1
2(n−6) + · · ·+ α2

2(n−4)α
1
8 + α2

2(n−2)α
1
4

]

− (n+ 1)

[
− α1

2α
1
2(n−1) + α1

4α
1
2(n−2) − α

1
6α

1
2(n−3) + · · ·+ α1

2(n−2)α
1
4 − α1

2(n−1)α
1
2

]}

− 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
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− 4

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
−
[ ∣∣∣α2

4α
2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ]
=

κ̃(n)

(2n+ 1)(n− 1)

{
2n

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣− ∣∣∣α2
8α

1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣− · · ·
+
∣∣∣α2

2(n−4)α
1
8

∣∣∣− ∣∣∣α2
2(n−2)α

1
4

∣∣∣ ]
+ (n+ 1)

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]}

− 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
− 4

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
−
[ ∣∣∣α2

4α
2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ].
For Case B, define

β̃(n) =
κ̃(n)

(2n+ 1)(n− 1)
. (D.16)

Now we have

κ̃(n)r2n −
n−1∑
j=1

r2j r2(n−j)

=
(

2nβ̃(n)− 4
)[ ∣∣∣α2

4α
1
2(n−2)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+
∣∣∣α2

20α
1
2(n−10)

∣∣∣+ · · ·+
∣∣∣α2

2(n−8)α
1
16

∣∣∣+
∣∣∣α2

2(n−4)α
1
8

∣∣∣ ]
−
(

2nβ̃(n) + 4
)[ ∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

16α
1
2(n−8)

∣∣∣+
∣∣∣α2

24α
1
2(n−12)

∣∣∣+ · · ·+
∣∣∣α2

2(n−6)α
1
12

∣∣∣+
∣∣∣α2

2(n−2)α
1
4

∣∣∣ ]
+
(

(n+ 1)β̃(n)− 4
)[ ∣∣∣α1

2α
1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
−
[ ∣∣∣α2

4α
2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ]. (D.17)

We can prove the following facts using induction. We omit the proofs here for brevity, but

they follow exactly the procedure of the proofs of (5.98)-(5.99) in Section 5.4.



190

∣∣α1
2j

∣∣ ≤ 1

2

∣∣∣α1
2(j+1)

∣∣∣ , j = 4, 6, 8, . . . , (D.18)∣∣α1
2j

∣∣ ≤ 1

2

∣∣α2
2j

∣∣ , j = 2, 4, 6, . . . , (D.19)∣∣α2
2j

∣∣ ≤ 1

2

∣∣∣α1
2(j−1)

∣∣∣ , j = 2, 4, 6, . . . , (D.20)∣∣α2
2j

∣∣ ≤ 16
∣∣∣α1

2(j+1)

∣∣∣ , j = 2, 4, 6, . . . , (D.21)∣∣α2
2j

∣∣ ≥ 1

10

∣∣∣α1
2(j−1)

∣∣∣ , j = 2, 4, 6, . . . , (D.22)∣∣α2
2j

∣∣ ≥ 3
∣∣∣α1

2(j+1)

∣∣∣ , j = 2, 4, 6, . . . . (D.23)

Note that (D.19)-(D.20) imply that
∣∣∣α1

2j

∣∣∣ ≤ 1
4

∣∣∣α1
2(j−1)

∣∣∣ for j = 2, 4, 6, . . ..

For j = 4, 8, 12, . . . , n− 6, we have the following bound

(
2nβ̃(n) + 4

) ∣∣∣α2
2jα

1
2(n−j)

∣∣∣+ 2
∣∣∣α2

2jα
2
2(n−j)

∣∣∣ ≤ (2nβ̃(n) + 4
)
· 1

2

∣∣∣α1
2(j−1)

∣∣∣ · 1

2

∣∣∣α1
2(n−j+1)

∣∣∣
+ 2 · 1

2

∣∣∣α1
2(j−1)

∣∣∣ · 16
∣∣∣α1

2(n−j+1)

∣∣∣
=

(
nβ̃(n)

2
+ 17

)∣∣∣α1
2(j−1)α

1
2(n−j+1)

∣∣∣ . (D.24)

In order to keep the quantity in (D.17) nonnegative, we compare the quantity on the right-hand

side of (D.24) with (
(n+ 1)β̃(n)− 4

) ∣∣∣α1
2(j−1)α

1
2(n−j+1)

∣∣∣
for j = 4, 8, 12, . . .. In particular, for (D.17) to be nonnegative, we require

(n+ 1)β̃(n)− 4 ≥ nβ̃(n)

2
+ 17.

Rearranging, we have (n
2

+ 1
)
β̃(n) ≥ 21.

Substituting the definition of β̃(n) from (D.16) yields(
n
2 + 1

)
κ̃(n)

(2n+ 1)(n− 1)
≥ 21.
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A simple choice for κ̃(n) that satisfies the inequality above is

κ̃(n) = 21 (4n− 1) . (D.25)

Finally, consider the remaining negative terms in the quantity in (D.17). We are left with∣∣∣α2
2jα

2
2(n−j)

∣∣∣ , for j = 2, 6, 10, . . ..

Again, we can use (D.20)-(D.21) to show that∣∣∣α2
2jα

2
2(n−j)

∣∣∣ ≤ 5
∣∣∣α1

2(j−1)α
1
2(n−j+1)

∣∣∣ .
With the choice of κ̃(n) in (D.25), it is straightforward to show that(

(n+ 1)β̃(n)− 4
) ∣∣∣α1

2(j−1)α
1
2(n−j+1)

∣∣∣ ≥ 5
∣∣∣α1

2(j−1)α
1
2(n−j+1)

∣∣∣
for j = 2, 6, 10, . . .. As a result, we have that (D.17) is nonnegative at least when κ̃(n) is given in

(D.25).

This completes the proof for Case B; we showed that when n = 4µ+ 2, µ = 0, 1, 2, . . .,

21 (4n− 1) r2n −
n−1∑
j=1

r2jr2(n−j) ≥ 0,

or
n−1∑
j=1

r2jr2(n−j) ≤ 21 (4n− 1) r2n.

Finally, consider Case C, in which n is even and a multiple of four (n = 4µ for µ = 1, 2, . . .).

We have

r2n =
∣∣α1

2n

∣∣+
∣∣α2

2n

∣∣+
∣∣α3

2n

∣∣
= 2

∣∣α1
2n

∣∣+
∣∣α2

2n

∣∣
= 2α1

2n + α2
2n

=
2

2(2n+ 1)(n− 1)

[
2n b12n − b22n − b32n

]
+

1

2(2n+ 1)(n− 1)

[
2n b22n − b12n − b32n

]
=

1

2(2n+ 1)(n− 1)

[
(4n− 1) b12n + (−2 + 2n) b22n − 3b32n

]
=

1

2(2n+ 1)(n− 1)

[
4(n− 1) b12n + 2(n− 1)b22n

]
=

1

(2n+ 1)

[
2 b12n + b22n

]
,
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where we used the fact that b32n = b12n from (D.9). Substituting from (D.5) yields

r2n =
1

2n+ 1

−2
n−1∑
j=1

α2
2jα

3
2(n−j) −

n−1∑
j=1

α1
2jα

3
2(n−j)


=

1

2n+ 1

{
− 2

[
α2

2α
3
2(n−1) + α2

4α
3
2(n−2) + α2

6α
3
2(n−3) + · · ·+ α2

2(n−2)α
3
4 + α2

2(n−1)α
3
2

]

−
[
α1

2α
3
2(n−1) + α1

4α
3
2(n−2) + α1

6α
3
2(n−3) + · · ·+ α1

2(n−2)α
3
4 + α1

2(n−1)α
3
2

]}

=
1

2n+ 1

{
− 2

[
α2

4α
1
2(n−2) + α2

8α
1
2(n−4) + α2

12α
1
2(n−6) + · · ·+ α2

2(n−4)α
1
8 + α2

2(n−2)α
1
4

]

−
[
− α1

2α
1
2(n−1) + α1

4α
1
2(n−2) − α

1
6α

1
2(n−3) + · · ·+ α1

2(n−2)α
1
4 − α1

2(n−1)α
1
2

]}
,

(D.26)

where we used the fact when n is even, then j and n− j are either both even or both odd. We also

used properties from (D.9).

Next, observe the following, noting that if n = 4µ, then n/2 is even.

n−1∑
j=1

r2j r2(n−j) = r2r2(n−1) + r4r2(n−2) + r6r2(n−3) + · · ·+ r2
2(n2 ) + · · ·

+ r2(n−3)r6 + r2(n−2)r4 + r2(n−1)r2

= 2α1
2 · 2α1

2(n−1) +
(
2
∣∣α1

4

∣∣+
∣∣α2

4

∣∣) (2
∣∣∣α1

2(n−2)

∣∣∣+
∣∣∣α2

2(n−2)

∣∣∣)+ 2α1
6 · 2α1

2(n−3)

+ · · ·+
(

2
∣∣∣α1

2(n2 )

∣∣∣+
∣∣∣α2

2(n2 )

∣∣∣)2
+ · · ·+

(
2
∣∣∣α1

2(n−2)

∣∣∣+
∣∣∣α2

2(n−2)

∣∣∣) (2 ∣∣α1
4

∣∣+
∣∣α2

4

∣∣)
+ 2α1

2 · 2α1
2(n−1)

= 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
+ 2

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
+ 2

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣+
∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
1
8

∣∣∣+
∣∣∣α2

2(n−2)α
1
4

∣∣∣ ]
+

[ ∣∣∣α2
4α

2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ].
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Finally, consider κ̂(n)r2n −
∑n−1

j=1 r2j r2(n−j), where κ̂(n) is a function to be determined.

κ̂(n)r2n −
n−1∑
j=1

r2j r2(n−j)

=
κ̂(n)

2n+ 1

{
− 2

[
α2

4α
1
2(n−2) + α2

8α
1
2(n−4) + α2

12α
1
2(n−6) + · · ·+ α2

2(n−4)α
1
8 + α2

2(n−2)α
1
4

]

−
[
− α1

2α
1
2(n−1) + α1

4α
1
2(n−2) − α

1
6α

1
2(n−3) + · · ·+ α1

2(n−2)α
1
4 − α1

2(n−1)α
1
2

]}

− 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
− 2

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
− 2

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣+
∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
1
8

∣∣∣+
∣∣∣α2

2(n−2)α
1
4

∣∣∣ ]
−
[ ∣∣∣α2

4α
2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ]
=

κ̂(n)

2n+ 1

{
2

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣− ∣∣∣α2
8α

1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣− · · · − ∣∣∣α2
2(n−4)α

1
8

∣∣∣+
∣∣∣α2

2(n−2)α
1
4

∣∣∣ ]

+

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣− ∣∣∣α1
4α

1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · · −
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]}

− 4

[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

4α
1
2(n−2)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+ · · ·+
∣∣∣α1

2(n2 )α
1
2(n2 )

∣∣∣+ · · ·

+
∣∣∣α1

2(n−2)α
1
4

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
− 2

[ ∣∣∣α1
4α

2
2(n−2)

∣∣∣+
∣∣∣α1

8α
2
2(n−4)

∣∣∣+
∣∣∣α1

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
2
8

∣∣∣+
∣∣∣α1

2(n−2)α
2
4

∣∣∣ ]
− 2

[ ∣∣∣α2
4α

1
2(n−2)

∣∣∣+
∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
1
8

∣∣∣+
∣∣∣α2

2(n−2)α
1
4

∣∣∣ ]
−
[ ∣∣∣α2

4α
2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ]

For Case C, define

β̂(n) =
κ̂(n)

2n+ 1
.
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Now we have

κ̂(n)r2n −
n−1∑
j=1

r2j r2(n−j)

=
(

2β̂(n)− 4
)[ ∣∣∣α2

4α
1
2(n−2)

∣∣∣+
∣∣∣α2

12α
1
2(n−6)

∣∣∣+
∣∣∣α2

20α
1
2(n−10)

∣∣∣+ · · ·+
∣∣∣α2

2(n−8)α
1
16

∣∣∣+
∣∣∣α2

2(n−4)α
1
8

∣∣∣ ]
+
(
β̂(n)− 4

)[ ∣∣∣α1
2α

1
2(n−1)

∣∣∣+
∣∣∣α1

6α
1
2(n−3)

∣∣∣+
∣∣∣α1

10α
1
2(n−5)

∣∣∣+ · · ·+
∣∣∣α1

2(n−3)α
1
6

∣∣∣+
∣∣∣α1

2(n−1)α
1
2

∣∣∣ ]
−
(

2β̂(n) + 4
)[ ∣∣∣α2

8α
1
2(n−4)

∣∣∣+
∣∣∣α2

16α
1
2(n−8)

∣∣∣+
∣∣∣α2

24α
1
2(n−12)

∣∣∣+ · · ·+
∣∣∣α2

2(n−8)α
1
16

∣∣∣+
∣∣∣α2

2(n−4)α
1
8

∣∣∣ ]
−
(
β̂(n) + 4

)[ ∣∣∣α1
4α

1
2(n−2)

∣∣∣+
∣∣∣α1

8α
1
2(n−4)

∣∣∣+
∣∣∣α1

12α
1
2(n−6)

∣∣∣+ · · ·+
∣∣∣α1

2(n−4)α
1
8

∣∣∣+
∣∣∣α1

2(n−2)α
1
4

∣∣∣ ]
−
[ ∣∣∣α2

4α
2
2(n−2)

∣∣∣+
∣∣∣α2

8α
2
2(n−4)

∣∣∣+
∣∣∣α2

12α
2
2(n−6)

∣∣∣+ · · ·+
∣∣∣α2

2(n−4)α
2
8

∣∣∣+
∣∣∣α2

2(n−2)α
2
4

∣∣∣ ]. (D.27)

Observe that when j = 2, 6, 10, . . ., we have(
β̂(n) + 4

) ∣∣∣α1
2jα

1
2(n−j)

∣∣∣ ≤ 1

2

(
β̂(n) + 4

) ∣∣∣α2
2jα

1
2(n−j)

∣∣∣ ,
where we used (D.19). The first condition for the nonnegativity of the quantity in (D.27) is

1

2

(
β̂(n) + 4

)
≤ 2β̂(n)− 4,

or equivalently

β̂(n) ≥ 4. (D.28)

If j = 4, 8, 12, . . ., then we have(
2β̂(n) + 4

) ∣∣∣α2
2jα

1
2(n−j)

∣∣∣+
(
β̂(n) + 4

) ∣∣∣α1
2jα

1
2(n−j)

∣∣∣
≤
[

1

2
· 1

2

(
2β̂(n) + 4

)
+

1

4
· 1

2

(
β̂(n) + 4

)] ∣∣∣α1
2(j−1)α

1
2(n−j+1)

∣∣∣
=

(
5

8
β̂(n) +

3

2

) ∣∣∣α1
2(j−1)α

1
2(n−j+1)

∣∣∣ . (D.29)

Additionally, notice that for j even,∣∣∣α2
2jα

2
2(n−j)

∣∣∣ ≤ 1

2
· 16

∣∣∣α1
2(j−1)α

1
2(n−j+1)

∣∣∣ = 8
∣∣∣α1

2(j−1)α
1
2(n−j+1)

∣∣∣ . (D.30)

The negative terms in (D.27) of the form (D.29) and (D.30) must be balanced by the positive term

in the second line of (D.27) in order for (D.27) to be nonnegative. Thus we require(
5

8
β̂(n) +

3

2

)
≤ (1− s)

(
β̂(n)− 4

)
and 8 ≤ s

(
β̂(n)− 4

)
,
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for 0 ≤ s ≤ 1. Equivalently, this yields the conditions

β̂(n) ≥ 44− 32s

3− 8s
and β̂(n) ≥ 8 + 4s

s
.

For instance, we can pick s = 1
4 . This yields the condition

β̂(n) ≥ 36.

That is, we must pick κ̂(n) so that

κ̂(n)

2n+ 1
≥ 36.

For simplicity, we choose

κ̂(n) = 36(2n+ 1).

In summary, we have now shown that when n = 4µ for µ = 1, 2, 3, . . ., then

36 (2n+ 1) r2n −
n−1∑
j=1

r2jr2(n−j) ≥ 0,

or
n−1∑
j=1

r2jr2(n−j) ≤ 36 (2n+ 1) r2n.

This completes the proof of (D.1) for Case C.

Comparing Cases A-C, we see that for any n,

n−1∑
j=1

r2j,jr2(n−j),n−j ≤ 36 (2n+ 1) r2n,n.


