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Abstract. In [4] it was noawmowc%ma that the equality set of
ON BINARY EQUALITY SETS AND A SOLUTION TO TEE two injective morphisms over a binary alphabet is of *he fornm
{u,v}* for some (possibly empty) words u and v. Here we show

EHRENFEUCHT CONJECTURE IN THE BINARY CASE . . .
that such an equality set is always either of the above form

or of the form (uw*v)* for some words u,w and v. As an
application we give a simple proof for the Ehrenfeucht coriec+
ture in the binary case, of. [8). In fact, we show that a *est

by Set can always be chosen to contain no more than three words.
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1. INTRODUCTION

In recent years a lot of research has been done to study the
precblem of whether two morphisms agree word by word on

at least one or on all words of a given language. Such problems
have -turned out important for many areas of mathematies , for
example for computability thepry, for theory of equations in
free monoids and for formal language theory in general. The
Post Correspondence Problem 1], the Ehrenfeucht Conjecture {10]
and the DOL equivalence obielm (3] ape typical examples.

The notion of an equality language, intréduced in [13] , is
central when dealing with the above problems. Equality languages
has been studied later e.g. in [2), [8] and ™ ]. In the last
mentioned paper equality languages were studied in the case
of the binary alphabet, and there it was conjectured that if
at least one of the morphisms is injective, then the equality
set is a free monoid generated by at most two words. Here we
take a step in the direction to prove this conjecture. Namely,
we show that such an equality set is either of the above form
or generated by a regular language of the form uw®v.

As an application we give a simple proof for the Ehrenfeucht

Conjecture in the binary case. The conjecture is as follows:

EHRENFEUCHT noz&moecwh" For each language L over a mwwwwﬁ
alphabet there exists a finite subset F of L such that if, for
an arbitraryzrpairi- (h,g) of morphisms, h{x) = g{x) holds
true for all x in F, then also h{x) = g{x) holds true for all

x in L.

The algebraic importance of the Ehrenfeucht Conjecture was
emphasized when it was pointed out in [5] that it is equivalent
to the following statement: Each system of equations (with a
finite number of variables) over a finitely generated free mo-
noid has a finite equivalent subsystem.

The above subset F of L was called in [6] a test set for L.
The existence of a test set for context-free languages was proved
in [1] and for arbitrary languages over a binary alphabet in [g].
Here we give a new and shorter proof for this la*ter result.
Moreover, we show that such a test set can always be chosen to
contain no more than three words, thus sharpening the resu

of Culik and Salomaa.



2. PRELIMINARIES

In this paper only very basic notions of free moncids and formal
languages are needed. As a general reference we mention [2]. To
fix our notation we want to specify the following.

Throughout this paper £ denotes a binary alphabet, mww
o= mowgv.A> free monoid generated by I is denoted by I#* and
its identity, so called empty word, by 1 . As usual we set

+ . .
I = 1*¥-{1} . For aword x. in I* and a letter ¢ in I,

- .

Avnﬂxv means the number of ¢”s 1in x, and Ix] the length

1.
1s used *to

of x. For two words x and y the notation wyx
denote the right quotient of ¥y by x, and the notation xprefy
is used to denote that x is a prefix (not neseccarily proper)

of y. The prefix of the length k of a word x 1is denoted by
v%mmwAmv. If ixl < k, then we set vdmmwﬁxv = X. By the relation

x Prefy we mean that either x is a prefix of y or y is a
t

is né+

[N

prefix of x. We call a nonempty word x primitive if

@ proper power of any word, i.e. the relation x = 2" wsvwmmm

-

that x = z and n = 1. The ratio of a word x in {0,1}% is

defined to be mToAxv : &mev and is denoted by r(x). By a ratio-

iti

ve word, or r-primitive word in short, we mean a word such
that none of its proper prefixes has the same ratio as the whole
word.

Our basic notion is that of a morphism from a free monoid 1=

into another free monoid 4*, Because of the nature of the prob-

lems we are interested in we may assume that Z = A ., So we shall

deal with morphisms h: {0,1}* » {0,1}%, A morphism h is i-fpree

if h(a) # 2 for all a in L . We call & morphism h periodic

if there exists a werd p such that h(I) ¢ p*. By a marked

h: {0,1}%* ~ {0,1}* we mean a A-~free morphism satisfying

morphism
wdeAAEAOVV # pref, (h{1)).
It is well known that nonperiodic morphisms over a binary

alphabet can be characterized as follows.

LEMMA 1. A morphism h: {0,1}* = {0,1}* is nonperiodic if

and only if it is injective if and only if h{01) # h(10).

)

0]

Following [13] we define the egualitv set (or eguality languag

of the pair (h,g) of morphisms on Z*, in symbols E(h,g), by

Elh,g) = { x € I* | n{x) = g(x)} .
We shall also need a little it generalized notion defined as

follows. For a pair (h,g) of rorphisms on I* and a word a

Fh

in I#*, the a-shifted equaliity set of (h,g), in symbols maﬁmmmV,

is defined by

E (h,g) = { x € £ | ahi{x) = g{x)a }.
Q

<

It is easy to see that for a given egquality set, and hence

3 i 3 % 1 i+ . has 7o
also for a given a-shifrted egquality set, all of its words has

the same ratio. In the case when at least ON€ of the morphisms
is periocdic even more can be said about the structure of an equali-

ty set. Indeed, we have, see [5 ],

THEQORIM 1. If h and g are pericdic, then either
. S
Eth,g) = {3} or E(h,g) = {3} v {x € £ | rix) = k! for some
k>0 or k = If h 1is periodic and g 1is not, then

E(h,g) = u* for some (possibly empty) word u .



We finish this section with the following notions. Let (h,g)
be a pair of morphisms on L*, We say that h and g agree on
a word x from I* if h(x) = g{x) and that they agree on
& language L if they agree on each word of L. Using this termino-
logy the Ehrenfeucht Conjecture, cf. [0}, can be stated as: For
each wwnmcmmm L (over a finite alphabet) there exists m<mwdwwm
subset F of L such that any pair of morphisms agree on L if

nd only if they agree on F. Following [6] we refer Mﬁww a finite /\

subset F of L mo as a test set for L.

3. CHARACTERIZATION

Here we give a partial characterization for equality sets of
injective morphisms in the binary case. Our result can be seen
as a step in the direction to prove the conjecture presented
in [4].
First we need some notions and lemmas. ‘Following [7} we define

a mapping cyc,: {0,1}* + {0,1}* by

owndﬁ»v = 3

nwodnocu = uc for ¢ € {0,1} and u'€ {0,1}*,

@

Let eye, = Aownavx for k > 1. It follows that for any mapping

f: {C,1}* » {0,1}* and for any word x in {0,1}* +the “olicw=
ing holds true

cye, (£(x)) = (pref, (£(x)))"

X, mmxv.Vdmww (£(x}), {(*)

J
where 0 < k, < |f(x)] an Ky =k mod(1£(x)1). We now assume
that h is & nonperiodic morphism, i.e. h(C1) # h(i0). Let

z be the maximal common prefix of h(01) and h(i0). Clearly,

h

fzpl £ 1h(01)1 . We cefine a mapping h”: {0,1}* = {0,1}* by

setting

h” = c¢ye °h .

_Nr,

The following result is not difficult to see.
LEMMA 2. The mapping h” is a morphism and moreover marked.

Observe that, in general, for a morphism h the mappings of

the form owoxow need not be morphisms.
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Now, let (h,g) be a pair of nonperiodic morphisms and 2z

h
and Nm the above defined words associated to h and g, res-
pectively. We assume, because of symmetry, that mmwm > .Nm”.
Then we have

LEMMA 3. If Nm is not a prefix of zy» then either
E(h,g) = {1} or. E(h,g) = a* for some a € {0,1}.
Proof. If |h(a)| = igla)l, for a € {U,1}, then lemma clearly

holds true. Sc let Jh{B)!} #:.1g(0)1 and h(1)} # fgliit.
Assume that x € ECh,g), x # a. Clearly, x contains both 4

and 1. Consequently, by the definitiors of 2, and Nm, zy is

a prefix of hi(x) and Nm is a prefix of g(x). This implies

ﬁwma Nm Mwmvdmwwxom Zy» @ corntradiction., Hence E(h,g) = {1},

Now, we assume that vawmmwy. We define
and derive

LEMMA 4. Let (h,g) be a pair of morphisms such that oy, g

is defined. vanu
E(h,g) = maﬁv\um\v .

Proof. Immediate, by definitions and (*),

Before stating the main result of this section we still need
>ne notion. Let (8,y,&¥ be a triple ofwards such that y is
yrimitive and it is neither a suffix of 8 nor a prefix of 4§ .

~m.nmww such a triple reduced and define the language L{(B,vy,8)

11

by setting
L{B,y,8) = By*s (*%

THZOREM 2. Let (h,g) be a pair of injective morphisms
over a binary alphabet. The equality set E(h,g) is either
of the form
(i) {u,vi* for some (possibly empty) words u and v

or of the form

(ii) (LCu,w,v))* for some reduced triple (u,w,v).

Proof. By Lemma 3, if a 1s not defined we are done.

h,g
Consequently, we assume that a

h,g is defined. Then, by Lemma 5,

t is enough to show that meﬂv\.m\v“ where (h7,g”7) is an

[

arbitrary pair of marked morphisms and e is an arbitrary word,
is of the form (i) or of the form (ii).

We have two cases to be considered.

I &= 2. Since h” and g~ are marked E(h",2”) ma¥y contain
at most two (one starting with 0 and ancther with 1) r-primitive

words. Hence, mamjxwm\v is of the form (i).

e

II o« # X, Let us refe onempty words in mQAWsem\v as seclu-

tions, and let i € {0,1} be such that VWmmAAMwnMVV = pref (a).

Then the first letter of any solution x is i . This is because
g" is marked and this first letter is determined by the condition
nvwmm.mxﬁwﬁmméﬁxvv. Moreover, by the same reasoning, the prefixes
cf x are also uniquely determined up tc the prefix x~ where
ah™(x7) = g”(x"). If such an x° does not exist, then, clearly,
mnﬁyx.mxv contains at most one r-primitive word, i.e. maAn\,m\u
satisfies {i).

®%OW, we assume that all the solutions have a common prefix x”
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12
such that eh”(x”) = g”{x”). We have three subcases. jectured in (4] we believe that there does not exist maov%mmﬁm.
a) E(h7,g”7) = {i}. Now, by the fact that h” and g~ are We also want to emphasize the following interesting vﬁovWWn :
marked, there are at most two words satisfying the conditions Any finitely generated equality set in the binary case is gene-
h™(z) = g7(z)a and x”z is p-primitive. Consequently, E (h7,g7) rated by at most twe words. As shown in [U4], there really are
is of the form (i). equality sets (different from I*) freely generated by two
b)Y E(h7,g") = y* for some nonempty woerd y. If for some non- EO%Mm.

-

empty prefix v” of y we have h”(y”) = g”(y“)a , then again
mQAy\um\w is of the form (i). If, on the other hand, such a
prefix of y does not exist, then E (h7,g7) s cf the form
. a ) -
oy 1ot
(ii} or contains only A depending on whether there exists gv’
not a word z (with pref,(z) # pref,(y)) such that h"(z) = g”(z)a.
¢) E(h7,g") = mwav<m~a for some nonempty words y; and Yo
with @ﬁmmqquv £ vﬁmmqﬁ%mV. Now, if neither y; nor y, has

a prefix 2z such that h”(z) = g7(z)a, then, clearly,

]

mumns.m\w ~{x}. If only one of the words y; and y, has the
above mentioned prefix, then MQAr\um\v is of the form (ii).
Finally, if both y,; and Y, bhas such a prefix, then & th”,g7)

a
is of the form (i).

Since h” and g” are marked the classification a) - c)
in the case II is exhaustive, and so our proof for Theorem 2

1s complete.

By careful analysis of the above proof we can say even more
about the languages of the form {(ii) _ in Theorem 2. Indeed,

words u,w, and v satisfy: nﬁmmdatv £ mdmmdm<vu W contains

both 0 and 1, and each of the words w, vu and uw’v mow»WQ

is ratio-primitive,
We conclude this section by noting that we do not know whether

there exists any equality set of the form (ii). As already con-
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4. APPLICATIUON TO THE EHRENFEUCHT CONJECTURE

As was already mentioned the Ehrenfeucht conjecture was proved
to hold in the case of the binary alphabet in Mmuw~>m an appli-
cation of Theorem 2 we give here a simple proof WWWmem‘dmwuwa.
Ye also give a very small upper bound for the cardinality of
such a test set: we show that it can always be chosen to contain
no more than three words.

Recalling the definition of the languages of the form
L(g,v,8)

given in Section 3 we first prove

LEMMA 5, end L, = 8

2

are reduced, if

For two languages L, = m@«guag

<

nWMu&MamMu Lor = quw

[

where the triples

L, = L

contains at least two words, then 4 e

h@@wrm

Procf. Assume that ran rw contains two words, say

t - r q - s .3
m4<¢ md = mm«m mm and w4<M m@ = mw«m ow with t> q.

s . .
Let Mm“<4nm < ~mw«w | {the other case is symmetric). Then

there exists a word u such that

8,v,%u = B,v,° and 8§, = us, 1)

and hence also
t~q - r-s Tt r

Y4 8y = uy, aw and Byvq u = 8,7, - (2)

Consequently,
t+(t-q) - t r-s N r+(r-s)

Byvq 81 % Byvq uvy T8, = s,y &2

which implies that wd<umwcﬂmq € 8,v,%3,, and so we conclude

inductively that rga rn is infinite. From thisand from the

primitiveness of Y4 ard Y, it fellows that Y, and vy, are

conjugates, i.e. there exist words ¢ and p such that
Yq T op and Yy ¥ pa. (3)
Now, we show that
u = o and Bqu = B, - (4
Since PANJFM is infinite we may assume in (2) that t and

are arbitrarily large. So, by the form of Yy anéd y., the

<

equality mdxgﬁc = mm«wd implies that u € (cp)*o. Moreover,
ag = cmm and mw dces not contain the word

as a prefix, we conclude that

since ap = .«‘M

u = ¢. Now, the equality B8.u

follows from the first equality of (1) since the triples (8.,v.

are reduced,
This completes the proof of Lemma 5. Indeed, the equaliity

md<qnaa 3 BoY »mm is a trivial consequence of the second equa

)

tion of {1}, (3) and {(u).

Now, we are ready for

THEOREM 3. Fach language L over a binary alphabet has a

test set of the cardinality at most three.

Proof. Let L < &0,1}*. If L contains twe words with different

ratios, ther these two words constitute a tes<* set, since no

equality set different from I%
Aaie
ent ratios. So we assume that all the words of L h

ratio.

By the definition of r-primitiveness, it is clear that each

word x in

1

i

s ]

can contain *wo words of differ-

+ - L. .
{0,1} possesses a unique amoQEmOWwﬁwou in the form

)
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Xu xJ...xa EWmﬁmmmnd Xy is reprimitive and r{x) = wnxwv
for 1 = 15...59. We define L, to be the language which contains
exactly these r-primitive words which occur in the above mentioned

decompositions when x ranges over L . Clearly, any pair of

Ji

phisms agreescn L if and only if it agrees on L

any test set for r# is a test set for L and vice versa. There-

fore it is enough to show that rﬁ has a test set containing no
more than three words.,

Irst we observe that if ,rd contains less than three words

we are trivially done. So assume that the cardinality of rﬁ is

27 least three. We choose a three-element subset of L as fol-

bl

2ws. Let z, and zZ, be arbitrary two words from vﬁ. If they
VPN y o2
1 L 'y

3
¢
S

belong to a language of the form (#%}\ irf Section wgiwwmsg by

Lemma 5, they determine this language uniquely. Let L

2,52
1
2
e this language (assuming that it exists). Now if L ¢ AWN 2 =
- b J £ M
then we chose z3 such that z3 € L - (L 3* . Orherwise

7 2452,

is an arbitrary word of L, different from z, and =2

2+
we claim that mNA,quNww is a test set for hd.

de consider different kinds of pairs of morphisms separately.

I Both of the morphisms are periodic. Now, by Thecrem 1,

1

Ly one-element set, and hence also ANM.quwwww tests whether
such morphisms agree on hd (remember that all word of rd have
the same ratio).

II One of the morphisms is periodic and the other is not.

n this case Theorem 1 guarantees that any two-element subset

of Hﬂ tests whether such morphisms agree on L .

IIT Both of the morphisms are injective. We have two sub-

cases.

17

(i) The equality set of the morphisms is generated by at
most two words. Now, the conclusion of case II is valid when
instead of two-element sets three-element sets are considered.

(i) The equality set of the morphisms is of the form

(uw*v)* for some reduced triple (u,w,v). If uw*v = rNJva
then, by the choice of Zg5 the set ﬁmguwmwuww tests whether two

morphisms of the considered kind agree on L_. If, on the other

.
hand, uw*v ¥ rwquwm then, by Lemma 5, z, and z, bot
can not be in uw®*v, and so also in this case mnduwmuwww tests

whether the morphisms considered now agree on L.

Since the classification I-III is exhaustive, mNvaNuwwm

is a test set for L_, and therefore our proof for Thecrem 3 it

b
I

complete.

We want to finish this section with the following remarks.
0f course, a test set for an arbitrary language can not
exist effectively, in general. However, our proof for Theorem 3 show
4fat if a family Lw of languages satisfies <he follewing three
s s 5 Loin 4 be effectivelv
conditions, then a test set for each L in 4 can be m.mnrwmaw

found. Moreover, the cardinality of a test set is always at most

three. The conditions are:

) Fach L in £ is recursively enumerable.

[

(

4o

(ii) Given L in L and s regular language of the form

¥

{uw*v)* for some words u, w and v. , it 1is decidable whether
(uwsvi* & wuou.ﬁ%% L.

(iii) Given L in aﬁu it is decidable whether all words of 1
has the same ratio.

We give two examples of the families satisfying the above

conditicns.
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As shown in [1] each context free language, cf. {21, has
effectively a test set. However, according to that proof a test
set is quite large. In the case of binary context free languages,

i.e. when languages are over a binary-aiphabet, we have a sharper

result.

CORGLLARY 1. Each binary context free language has effectively

a test set of the cardinality at most three.

Proof. Clearly, conditions (i) - (iii) are satisfied for

binary context free languages, (iii) being based on the fact that
the Parikh image of a context free language is effectively semi-

linear, cf. [9].

As another example we consider so-called HDTCL languages,
cf. 2], which are defined as follows. Let wdw...mvw and h
be morphisms of a finitely generated free monoid £# and X

an element of I'. The languages of the form ’

Ny

thih; ...hy ) | s >0, i;€{1,...,k}} are called HDTOL
S

languages. Such a language is called binary if h is into a

binary alphabet. We have the pesult.

CCROLLARY 2. Each binary HDTOL language has effectively a

test set of the cardinality at most three.

Proof. Now, condition (i) is trivial, condition (ii) is a

known fact, cf. 2}, and condition (iii) is a simple exercise

e

on rational formal power series, om'.w*w

°
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