

 An Implementation of Transmit Power Control in
802.11b Wireless Networks

Anmol Sheth
Richard Han

Department of Computer Science
University of Colorado, Boulder

CU-CS-934-02 August 2002

University of Colorado at Boulder

Technical Report CU-CS-934-02
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, Colorado 80309

1

An Implementation of Transmit Power Control in 802.11b
Wireless Networks

Anmol Sheth, Richard Han

Department of Computer Science
University of Colorado

{sheth, rhan}@cs.colorado.edu

ABSTRACT
One of the main challenges facing mobile communication is reducing the power consumption of the
communication interface. One standard approach for reducing power consumption involves lowering the
transmit power to the minimum level that still achieves correct reception of a packet despite intervening
path loss and fading. Adopting this minimization approach, we describe an implementation of transmit
power control for 802.11b wireless networks. Prior work in this field has largely been confined to
simulations and theory. The introduction of new 802.11b cards, e.g. Cisco Aironet 350’s, with adjustable
transmit power levels enabled us to build and deploy an actual implementation of transmit power control.
We describe many of the practical problems revealed by our work, which necessitated specific design
decisions such as at what layer transmit power control should be implemented, how often the power control
should be updated, and in what way the protocol should adjust its transmit power to account for mobility.
Our approach includes among its advantages that it is power-efficient, data-driven, transparent to the
application, adaptive to mobility, and incrementally deployable.

Keywords
Transmit power control, 802.11b, wireless Ethernet, WiFi, adaptation, power-aware, MAC, mobility,
incremental deployment.

1. INTRODUCTION

The design of mobile communication systems introduces a variety of engineering challenges.
Portable wireless devices, such as cell phones and wireless PDAs, are often resource-constrained
in terms of limited memory, CPU, and battery lifetime. Even relatively well-equipped wireless
laptops face these resource constraints, especially limited battery life. In addition, mobile
communication introduces a variety of other challenges, such as disconnected operation
[24][25][26], location scoping [18], adaptation to mobility and handoff, wireless bandwidth
limitations, and wireless error effects, e.g. fading, shadowing, and path loss. This paper focuses
on the power limitation problem, specifically the practical considerations involved in building an
implementation of transmit power control in a commonplace scenario, namely 802.11 wireless
LANs.

Advances in energy minimization have led to new low-power CPU designs such as the Intel
StrongARM, as well as low-power system designs, as evidenced by the Itsy PDA [23]. One of
the remaining issues in energy minimization relates to the power consumption of the wireless
network interface card [22][28]. In 802.11b systems, the wireless card has been found to
consume power not only while transmitting, but also while idling. Typical solutions to the idling
dilemma follow the approach of powering down the radio when idling [11][20][33]. After the
radio on a mobile device begins transmitting, then the power consumption leaps beyond the
power consumption of wireless idling. These three power consumption modes are pictured in
Figure 1.

2

In this paper, we focus on the issue of reducing power consumption while the radio is actively
transmitting, namely in region C of Figure 1. A standard approach for reducing power
consumption due to radio transmission involves lowering the transmit power to the minimum
level that still achieves correct reception of a packet despite intervening path loss and fading.
Existing research on transmit power control in wireless ad hoc networks [15][16] provides a
sound framework from which to consider implementation issues for practical adaptive transmit
power control. However, prior work is largely confined to simulations and theory. We provide a
more thorough examination of related work on transmit power control in Section 6.

Figure 1: Consumption of a mobile device with and
without a wireless network interface.

The primary objective of our work is therefore to design, implement and test a transmit power
control algorithm that is able to reduce transmit power consumption in 802.11b LANs to as close
to the idle power consumption level as is practical. While power efficiency is our overriding
goal, our solution should also satisfy a variety of other design goals. Our approach should be
bandwidth-efficient, in that the messaging overhead required to inform the endpoints of a
connection as to the optimum transmit power should be minimal. Also, our approach should be
adaptive, in case there is motion of nodes. Ideally, we also desire application transparency so
that existing applications need not be rewritten in order to take advantage of power control.
Another design goal is to allow our solution to be incrementally deployable, so that wireless
802.11 peers can continue to send data to one another if one or the other endpoint has not yet
deployed support for transmit power control. Finally, our goal is to design a general transmit
power algorithm that is compatible not only with 802.11b, but also with other IR and RF-
modulated wireless systems.

In summary, the main design goals of our system are:

• Power-efficiency

• Bandwidth-efficiency

• Adaptation to mobility

• Incremental deployment

• Transparency to application

• Compatibility with 802.11b and other wireless IR/RF standards

3

In the rest of the paper, we first describe the basic algorithm for optimal transmit power control in
Section 2. Section 3 explains one of our major design decisions, namely at what layer in the
protocol stack to implement transmit power control. This decision had implications on our goals
of incremental deployment, transparency to the application, and compatibility across 802.11b and
other standards. Section 4 describes how often and in what manner we adjust the transmit power
control, thereby addressing our goals of bandwidth efficiency and adaptation to mobility. In
Section 5, we describe our experimental setup using the Cisco Aironet 350 wireless PC cards with
adjustable transmit power, and analyze the performance of our adaptive transmit power control
algorithm in the presence of transmitted TCP traffic as well as mobility. Further related work on
transmit power control is discussed in section 6.

2. OPTIMAL TRANSMIT POWER

As discussed in section 1, our basic approach is to modulate the transmit power based on the
proximity of the communicating node, to the minimum level such that the destination node still
achieves correct reception of a packet despite intervening path loss and fading. In this section, we
briefly describe the capabilities of the Cisco Aironet 350 series 802.11b PC cards, and then
describe how we determine the optimal transmit power, and finally describe the distributed
algorithm that calculates the optimal transmit power.

2.1 Cisco Aironet 350 series

To be able to modulate the transmit power we require discrete power levels which can be set on
the network interface. For better savings we require as many power levels as possible. The Cisco
Aironet 350 series offers 6 discrete power levels. The table below lists the power levels in dBm
and mW. The default transmit power is 20 dBm. In our experiments, we were often able to drive
down the optimal transmit power down to 0 dBm and still achieve correct reception of packets
while saving 20 dBm – 0 dBm = 99 mW of transmit power.

mW dBm
100 20
50 17
30 15
20 13
5 7
1 0

Table 1: Range of transmit
power settings available on
the Cisco Aironet 350 series.

The Cisco Aironet 350 series cards also have the benefit that the Received Signal Strength (RSSI)
can be extracted on a per-packet basis from the wireless card. For the Cisco Aironet 350 series
cards, we used the pcmcia-cs-3.1.31 drivers available for Linux. The drivers have the provision
for recording the received signal strength information (RSSI), which can be extracted by an ioctl
call from the driver.

4

2.2 Power Loss Model

The basic power loss model that we use is a simplification of the one proposed in [28]. The path
loss of a wireless link can be represented by the difference between the transmit power Ptx and
receive power Prx.

Path Loss = Ptx – Prx (1)

In this expression, we are grouping a variety of effects, including multipath fading, shadowing,
and path loss, under the general term “Path Loss”. This term describes the collective effect of
these individual wireless loss mechanisms in reducing the transmitted power down to the received
signal strength.

A typical 802.11b PC card will have a power tolerance limit Pthresh below which correct reception
of a packet cannot be guaranteed, due to inability of the electronics to extract the signal when the
SNR is low. This threshold is the minimum power required to detect a packet off the medium.
Hence reducing the transmit power from equation 1 below this threshold would increase the Bit
Error Rate (BER) and packets would need to be retransmitted. For our implementation, the 350
cards support a threshold power of –80dBm. Due to the attenuation in the signal from path loss
and multipath effects, we calculate the optimal transmit power as:

PTxOpt = Path Loss + Pthresh (2)

In practice, since the lower limit of the transmit power is 0 dBm, PTxOpt is the minimum of 1 mW
and equation 2.

Figure 2: Graphical representation of the basic algorithm for
distributed calculation of TxOpt: Optimal transmit power. Node A
is the source node and node B the destination. RSSI: Received
Signal Strength Information.

2.3 Basic Algorithm: Distributed Calculation of PTxOpt

The basic algorithm that we implemented for distributed calculation of PTxOpt is shown in Figure
2. Since equation 2 requires the calculation of Path Loss, then at least one endpoint must have
access to both the transmitted power as well as the received power. In our approach, the receiver
B assumes the responsibility of calculating the Path Loss, since it is straightforward for node A to
embed the transmitted power into transmitted packets for receiver processing (step 1), and it is
also straightforward at the receiver to query the wireless card of the received signal strength
(RSSI) of a packet (step 2). If the sender A assumed responsibility for calculating Path Loss, then
an additional packet would have to be transmitted back to the sender containing the RSSI, causing
unnecessary power consumption on the receiver B. In our design, the receiver B only sends a
control packet to the sender (step 3) if an event has occurred, e.g. the RSSI has changed

5

“significantly” or there has been a timeout due to lack of data. These event triggers are explained
further in Section 4. The RSSI that is used to calculate the optimal transmit power is averaged
over a sliding window of the N most recent samples (N currently set to 5).

A more detailed explanation of the basic algorithm is included in the following text boxes. Our
algorithm is receiver-driven and asymmetric. The sender embeds the transmit power in the
packets and is told by the receiver when to change the transmit power. If the default transmit
power is known a priori, then it is not even necessary to send any transmit power packets to the
receiver, as detailed in Section 3.3, since the sender and receiver can stay synchronized about the
current transmit power. The receiver’s task is more complex, as it has to calculate the Path Loss
based on the transmit power and RSSI and conditionally inform the sender. Both the sender and
receiver keep a table of the current Txopt for each known endpoint. If the endpoint’s Txopt is not
known or not yet calculated, e.g. for the first packet, then the sender transmits at the default
transmit power (20 dBm for the Cisco 350 cards).

The algorithm is also asymmetric in the unidirectional or simplex sense, i.e. if node B wishes to
send data to node A, then a separate calculation of Txopt(B->A) will have to be performed. This
simplex approach has benefits when the path loss in both directions is not the same. While
theoretically the multipath reflections, shadowing and path loss should be symmetric, in practice
our measurements showed that the path losses between two nodes in opposite directions is not
entirely symmetric, though there is certainly some correlation.

Destination:
Step1: Receive data packets from source
Step2a: Extract the averaged RSSI of the packets from the source
node
Step2b: if (sender is NOT already in the list of nodes for
which the RSSI is known) {
Step2c: add the sender to the list, record RSSI
 }
Step2d: if (sender is on the list of nodes for which the
initial/current transmit power of the sender is known) {
Step 2e: then use initial/current transmit power of

Sender in Step2g (20 dBm)
} else {

Step 2f: still need control packet from sender with
record of the initial transmit power,
Exit.

 }
Step2g: Calculate the new optimal transmit power Txopt
Step2h: Update the lookup table with the newly calculated
transmit power Txopt
Step3: Send the new Txopt to sender if RSSI has changed
significantly or there is a lack-of-data timeout

Source:
Step1: Listen for incoming packets
for optimal transmit power
Step2: Set the transmit power for
this receiver

As a final point, our algorithm establishes Txopt via point-to-point or peer-to-peer communication.
Given N nodes that can all initially hear one another at the default transmit power setting, then
our algorithm would eventually set up N*(N-1) permutations of distinct optimal transmit powers
between two endpoints. This form of communication is supported by the ad hoc mode of
802.11b. As a result, our experiments were confined to the ad hoc mode. However, given the
popularity of 802.11b’s infrastructure mode, we were able to emulate infrastructure mode by

6

placing a Network Address Translation (NAT) gateway on an edge node of the ad hoc network,
and thereby bridge into the Internet and Web from the ad hoc wireless LAN. We expect that our
algorithm is compatible with infrastructure mode and, as part of our future work, do not anticipate
significant difficulties in porting our adaptive transmit power control algorithm to infrastructure
mode.

3. ARCHITECTURE

Given Section 2’s basic distributed algorithm for calculating the optimal transmit power between
two nodes, a clear design issue concerns at what layer in the protocol stack should the sender and
receivers communicate to establish the optimal transmit power? The implications of this design
choice will affect our design goals of application transparency, incremental deployment, and
compatibility. We evaluated 3 different architectures below, and explain our ultimate choice of an
application-layer design.

3.1 Shim Layer Approach

In the Shim Layer approach, a layer of indirection is inserted between the application and the
transport layer protocol. The shim layer would intercept the calls made by the application to the
system socket interface and either append or encapsulate the application data unit (ADU) with the
power aware control information, as shown in figure 3.

 MAC
Header

IP
Header

TCP
Header

Application
Data Unit

Power Control
Information

Figure 3: Shim layer approach would insert power control information into ADU.

This modified ADU would then be sent across the network to the receiving node. On receiving
such a packet, before the ADU is read by the application, the power aware control information is
either deencapsulated or stripped out of the packet and the original ADU is then delivered to the
application. The control information is used to modulate the transmit power. Figure 4 explains
this graphically.

7

Figure 4: Shim Layer Approach would insert and remove power
control information to and from application-layer packets.

The shim layer approach has several drawbacks. First, it is not incrementally deployable. Each
peer entity must speak this protocol in order for data to reach the receiver. If the receiver lacks
the peer entity, called a Power Aware (PA) module in Figure 4, capable of stripping out the
power control information appended to the packet, then the receiving application will be unable
to decode the modified ADU (in general, the power control information could be inserted
anywhere in the ADU, including as encapsulation before the application layer header). Second,
depending upon how the shim layer is implemented, applications may need to be aware of the
shim layer and would have to be re-built with the non-transparent API. Third, this approach fails
to capture lower layer protocol data such as transport layer TCP SYN and ACK packets as well as
MAC layer 802.11b-specific RTS/CTS packets that combat the hidden terminal effect.

3.2 Network Layer Approach

Migrating the shim layer approach down the stack, into the network layer, we can achieve
application transparency and also intercept lower layer protocol traffic. We call this approach a
Network Layer approach, and introduce a power aware protocol layer between the network and
MAC layers as shown in figure 5. This protocol would intercept all packets before they can reach
the MAC layer and would embed the power aware control information at the sender and remove
it at the receiver.

8

Figure 5: Network layer approach would insert and later remove
power-aware information to and from MAC layer packets and
would reside between the IP and MAC layers in the protocol stack.

This network layer approach suffers from the drawback that it is again not incrementally
deployable. If the peer receiver does not understand our transmit power control algorithm, then
the receiver will lack the peer entity to deencapsulate or remove the power-aware information in
the data packet. As a result, higher layers such as IP will be unable to properly process and
forward the data packets to their receiving application. The network layer approach would be
incapable of supporting an environment where both sending and receiving peers can continue to
send data even though one or both endpoints may not yet have deployed the capability for
transmit power control. Another difficulty concerns the depth of the changes in the protocol
stack. Changes to the OS kernel would have to be made in order for the network layer approach
to work. Also, such a low-level interception approach would still miss MAC layer packets, e.g.
RTS/CTS.

3.3 Our Application Layer Implementation

In order to achieve the three design objectives of transparency, incremental deployment, and
compatibility, we selected and implemented an architecture that consists of application layer user-
level processes that observe data traffic rather than modify data traffic, and then communicate
power control updates via UDP/IP packets that implement our own application-layer power-
aware protocol. These power-aware processes operate on a well-known UDP port to send and
receive power control updates.

As shown in Figure 6, our architecture consists of both a user-level process (PA module) and a
callback mechanism at each endpoint. For the callback mechanism, we utilize the Berkeley
Packet Filter packet capture library, which inserts hooks and filters at various levels in the
protocol stack. With the callback mechanism, our user-level process registers interest in certain
data packets sent or received by the operating system via a filter. Depending on the filter that is
set, a callback is generated to the user-level process on transmission or receipt of a filtered packet.
Part of the callback information includes a copy of the transmitted packet.

Leveraging this callback information, our user-level PA module at each endpoint is able to
determine when to send transmit power control packets in either direction. At the data sender, the
PA module uses the callback to detect, for example, that a new TCP connection to an unknown
destination in the wireless LAN has occurred. Upon detecting TCP SYN packets to the same

9

subnet, the PA module transmits a UDP datagram to the unknown destination, containing such
parameters as the default and/or current transmit power level of the sender as well as the discrete
power levels available at the sender. Note that it is not necessary to send such a control packet if
all wireless cards share a priori the same default transmit power level, such as was the case in our
experiments. In this case, the initial transmit power level is already implicitly known at the
receiver. If there are cards from different manufacturers, then transmitting a control packet with
default/current transmit power information to the receiver helps “prime” the receiver so that the
receiver can begin calculating the optimal transmit power.

Figure 6: Our application layer solution consists of a user level
process that observes data traffic using callbacks from a packet
sniffer in the network protocol stack.

Data flow

At the data receiver, the callback module helps the user-level process monitor which packets have
been received, from which sender, and at what RSSI received power. When the first data packet
from an unknown source arrives at the receiver, the PA module will be informed, but will not
know how to calculate the optimum transmit power in the most general case. This is because the
receiver’s PA module has not yet received the control packet containing the default transmit
power from the sender, which was triggered only after the first data packet was sent, due to the
passive monitoring. Thus, the first data packet, and perhaps even the first few data packets, will
be sent at a greater power than optimal. However, we felt that this was a small price to pay given
the other benefits of our approach, enumerated below. Moreover, we claim that our approach
rapidly converges to the optimal transmit power after only a few packets. In the special case
when all cards share the same default transmit power, e.g. 20 dBm, then immediately after the
receipt of the first data packet from an unknown source, the receiver’s PA module can calculate
the optimal transmit power and inform the unknown source to reset its transmit power.

The receiver’s reactions are largely data-driven, and remain one step behind the kernel’s arriving
data, due to the passive callback monitoring. As more data packets arrive at the receiver, the
RSSI is continually monitored, and if a sufficiently large change has occurred, the receiver’s PA
module reacts by transmitting an update control packet containing the new optimal transmit
power to the data sender (Step 3 of Figure 2). If the default transmit power is known a priori,
then it is only necessary to send transmit power updates from data receiver to data sender, and not
vice versa. Both endpoints will stay loosely synchronized about the current state of the transmit

10

power level. The worst that can happen is if one or more transmit power updates from the data
receiver (Step 3) are lost, due to unreliable datagram delivery over wireless links. At this point,
both sender and receiver lose synchronization, but the effect is far from catastrophic. Either the
sender transmits at too high a power for a short time until the receiver’s updates reach the sender,
or the sender transmits at too low a power, in which case the data won’t reach the receiver and the
receiver will timeout, prompting a transmit power update (see next section). Eventually, the
receiver will be able to communicate with a sender, and communication will be reestablished.

A key advantage of this user-level approach is that it is incrementally deployable. In case one or
both endpoints do not speak our transmit power control protocol, then the UDP packets simply
are dropped, due to lack of a receiving peer process. Delivery of application data is not affected,
except that data will be transmitted at non-optimal power levels. As a result, in an ad-hoc
network where some nodes support transmit power adaptation while others do not, data will be
exchanged optimally between the nodes with adaptive transmit power capability, while data will
continue to be exchanged non-optimally among nodes with fixed transmit power levels.

Another advantage of this application-level approach is that it is inherently transparent to the
application. The adjustment of the transmit power occurs outside of the flow of application data.
Applications need not be rewritten, and packets need not be modified. Protocol stacks need not
be modified except to compile in the existing patches for the BPF packet capture library.

A third advantage of a user-level approach is that such an architecture is compatible with a wide
variety of wireless standards including 802.11b. All application-level UDP/IP control packets for
updating the transmit power are communicated in-band just like any other datagrams. As a result,
this user-level approach could be overlayed upon any wireless IR/RF system with adjustable
transmit powers, including 802.11b.

A final advantage is that user-level deployment enables easy experimentation with and rapid
upgrade/deployment of new adaptive algorithms.

For completeness, in the event of unreliable delivery of one or more of the datagrams containing
the default transmit power, we propose that the sender have a timeout mechanism to resend its
default transmit power level, since it will not have seen the first update from the receiver advising
the sender to adjust its transmit power. This first update acts as an implicit acknowledgement.
We did not implement this feature, since our experiments assumed a uniform default transmit
power.

4. ALGORITHMS

While our design goals of transparency, incremental deployment and compatibility were
addressed by application-layer design in Section 3.3, this section addresses how we achieve the
remaining design goals of bandwidth efficiency and adaptation to mobility. Our twin objectives
are to answer the following questions: how can the messaging overhead required to inform the
sender to adjust it’s transmit power be minimized?; and how can we detect and react to mobility?
Both of these objectives are incorporated into step 3 of our basic algorithm as diagrammed on p.
5, i.e. a message is sent to the sender to update its transmit power only if an event of sufficient
magnitude has occurred, either a significant change in the RSSI or a timeout due to lack of data
activity.

4.1 Bandwidth Efficiency in Static Ad Hoc Networks

For the moment, let us assume that all nodes are static in an ad hoc 802.11b network, so that we
can separately address the first question concerning how to minimize the messaging overhead of
transmit power updates. One approach is to update the transmit power once per connection, i.e.

11

when a TCP SYN packet is received, this will trigger a per-connection one-time-only
recalculation of the optimal transmit power. Such an approach would be bandwidth-efficient, but
would not react well to changes in RSSI during the course of a TCP connection, as may occur
during mobility.

A second approach would involve adjusting the transmit power on a per-packet basis. For each
packet received from a given source, the receiver would recalculate the transmit power, and send
a control packet to the sender to adjust it’s transmit power. This approach would be bandwidth-
inefficient, perhaps even nullifying the saving achieved by transmit power reduction due to the
excessive update traffic, but would react most quickly to mobility-induced changes to the RSSI.

 Bandwidth

Efficiency
Adaptation
to Mobility

Per-
Connection

(SYN)

YES NO

Per-Packet NO YES
Per-Event YES YES

Figure 7: A summary of three classes of
adaptation algorithms.

The third approach, which we implemented, was to trigger a recalculation of PTxOpt only when the
path loss between the source and destination fall below a predefined trigger level, thus making it
an event driven protocol. As explained in section 2 the optimal transmit power is given by the
following expression:

 PTxOpt = Path Loss + Pthresh

However this optimal transmit power i.e. level A in figure 8, is a tight bound and would keep the
source and destination just barely connected. Setting the optimal transmit power on this tight
bound would result in excessive false triggers, since in a dynamic environment multipath noise
can cause fluctuations in the RSSI and nodes can move around (even shifting a laptop by inches
can cause destructive interference due to multipath). The frequency of false triggers would
overcome the energy savings and also cause interference to the neighboring nodes. As a result,
the optimal transmit power should have a cushion above the tight bound. Hence we modify
equation (2) to incorporate a cushion.

 PTxOpt = Path Loss + Pthresh + Mthresh (3)

12

The term Mthresh is the transmit power cushion added to the minimum threshold so that the device
can tolerate some mobility without re-triggering transmit power updates too often. Graphically
this is represented in figure 8 as C-A, or 3 dBm. In the figure, Level A denotes the optimal
transmit power as calculated in equation 2. Level C denotes the optimal transmit power as
calculated in equation 3. The difference between C and A is the cushion, set to 3dBm for our
experimental algorithm. Mthresh provides a buffer in which the mobile node can move around
without re-triggering the protocol too often.

While Mthresh provides the cushion to prevent false triggering of transmit power updates, and
thereby uses bandwidth efficiently, we still need a bandwidth-efficient mechanism for
determining valid triggering of transmit power updates. We accomplish valid triggering of
transmit power updates by introducing a second Level B, called the trigger level. If the path loss
increases, such that the RSSI at the receiver falls below the trigger level, then the basic protocol is

re-initiated and the optimal transmit power recalculated and reset at the sender. Actually, the
protocol recalculates optimality for +/- 2 dBm change in the RSSI. Since the RSSI will only
change significantly due to mobility, either towards or away from the sender, then our protocol is
adaptive to mobility, while simultaneously being bandwidth-efficient. In other words, equation
(3) allows our protocol to be event driven, responding only to events that significantly change the
RSSI. For our system the parameter Mthresh is a configurable parameter, which can be set
depending on the mobility in the network.

Figure 8: Adding a cushion over the minimal transmit power to
accommodate mobility in the network.

4.2 Mobile Ad Hoc Networks: Active Pressure Adaptation and Mobility Timeouts

We found that the approach taken in the previous section by equation 3 is not a complete solution
for mobility. This is because equation 3 is dependent on the arrival of data to drive the trigger
check. In the absence of data, such as when gaps appear in a typical Web surfing session as a
user is viewing a page rather than pulling in new data, then the protocol will be unable to respond
if a user moves away from the sender during that gap. When a source node moves considerably
away from the destination during a silent data interval, then when the source tries to reinitiate the
connection, it is not within transmission range of the destination at its old transmit power level.

To solve this problem we borrow concepts from the TCP Keepalive Timer and the congestion
control protocol. TCP has a keepalive timer that is used to prevent long idle connections between
2 TCP peers. To remedy this situation, most implementations equip a server with a keepalive
timer. Each time the server hears from the client the server shall reset the timer. If there is no
response until the timer times out the server sends the client a probe segment [32]. However the
TCP Keepalive Timer timeout which is two hours, is very large, making it impractical to just

13

depend on the TCP keepalive timer. Hence we borrow TCP’s idea of Keepalive time, by having
the timeout as a much smaller time period.

For congestion control TCP has the slow start phase. Initially, TCP sets the congestion window
size to 1 and adds one to the congestion window size for each received ACK, assuming no
timeouts or duplicate ACKs. This effectively doubles or exponentially increases the number of
new packets that can be sent at each roundtrip time. If there is a timeout, the congestion window
collapses to one, half the value of the congestion window prior to collapse is saved in the ssthresh
variable, and exponential increase continues until ssthresh is reached, followed by additive
increase. Thus the acknowledgements that are received for the segments push the window size
higher and the loss of segments due to congestion provide active pressure in the reverse direction
causing the windows size to reduce.

Combining the 2 strategies we implement the following solution for the problem. We create a
timer that times out when the source node has not sent out any data for a pre-defined time period.
Once this timer matures, the transmit power is increased by adding another 3dBm as explained in
section 4.2. If after another timeout there has still been no data received, then active pressure
boosts the transmit power by another 3 dBm. We continue to additively increase the transmit
power with each timeout up to the 20 dBm limit (justified below). Thus, if the sender has moved
away during a period of inactive data, then this algorithm will attempt to keep the mobile user in
contact, by informing the sender to boost its transmit power. When the source node resumes the
connection, if the sender has moved away, then it will still be within transmission range with the
destination. If the sender has not moved during the inactivity, then the first few packets will be
transmitted at an excessive power, whereupon the arriving data will drive the receiver’s PA
module to recalculate the optimal transmit power and drive it down to the value of equation 3
again. We therefore expect oscillatory behavior, where active pressure pushes the transmit power
up during data inactivity, while data activity drives the transmit power back down to the optimal
level. This makes the algorithm data driven.

4.3 Determining Parameter Values

Based on our experimental results, we found that setting Mthresh to a cushion over the minimum
threshold power of 3dBm resulted in few false triggers, yet was still low enough to provide for
significant power savings. Similarly, we found that setting the trigger level to +/- 2 dBm was
sufficient to respond to significant changes in RSSI, while avoiding false positives (there was
significant motion though it was not detected) and false negatives (there was no significant
motion though an event was triggered). We hope to include these supporting statistical graphs in
our next revision.

Using this value of 2 dBm to detect significant mobility, our next objective was to determine the
timeout interval. We envisioned a likely indoor scenario where individuals with wireless laptops
could communicate with each other and move around during collaboration. We assumed that the
average speed of walking for a human being is 1.5m/s. Our question was how far could an
individual walk before 2 dBm of RSSI change was noticed at this speed? Table 2 lists the
average measured distance as a function of the 802.11b transmit power, taken between two
laptops a known measured distance apart. For example, optimal transmit powers of 2-4 dBm
corresponded to an average of 9 meters away from the sender, while optimal transmit powers of
4-6 dBm corresponded to an average distance of 10 m away. Therefore, to jump from the 2-4
dBm range to the 4-6 dBm range, a jump of 2 dBm, would correspond to motion of 1 meter, or
2/3 of a second motion at 1.5 m/s. The average of the differences between the distances covered
in steps of 2dBm is approximately 10m. Thus, the timeout is roughly 10m/1.5 m/s = 6 seconds.

14

Depending on the mobility involved in the network, we can change the timeout period and hence
make the optimal transmit power more resilient to mobility.

Transmit power in
intervals of 2dBm

Distance
(m)

Difference
(m)

0-2 7
2-4 9 2
4-6 10 1
6-8 21 11

8-10 26 5
10-12 36 10
12-14 46 10
14-16 70 24
16-18 90 20

Table 2: Calculation of the timeout period to re-trigger the
protocol for the optimal transmit power

As part of the justification for additive increase at 3 dBm per timeout, rather than immediately
increasing the transmit power to the maximum of 20dBm, we again considered the scenario of
human walking mobility. A conservative jump from say 14dBm to 20dBm would require the
human to walk about 45 meters (last two rows of Table 2) in 6 seconds. We did not think this
likely, and therefore only increase the transmit power additively to correspond with linear human
mobility to/from a node.

5. EXPERIMENTAL ANALYSIS

This section explains the measurements we took to calculate the power consumption and optimal
transmit power. Section 5.1 discusses optimal transmit power as a function of distance. Section
5.2 explains the setup and the measured energy consumption at various transmit powers. We
analyze the adaptability of our protocol for mobile ad hoc networks in section 5.3. Measurements
for the transmit power are taken for the event-driven approach as well for the per-packet
approach.

5.1 Optimal Transmit Power

To calculate the optimal transmit power, we measured received signal strength as a function of
distance. From the received signal strength, we calculate the path loss. The graphs below show
our measurement setup as well as a plot of optimal transmit power as a function distance. The
measurements were taken using 2 laptops each having a Cisco Aironet 350 series wireless
PCMCIA network interface configured in ad hoc mode. One laptop was stationary and was
communicating with the other laptop. The threshold was fixed at -80dBm. We calculated the
received signal strength at varying distances and using equation 3 we calculated the optimal
transmit power. The received signal strength is averaged over a set of 10 readings to reduce the
effects of multipath. The dark line in figure 9 shows the fixed transmit power of 20dBm
(100mW) that the node would transmit at irrespective of the proximity of the destination node. It
was observed that for small distances (within range of 5 m.) the optimal transmit power is 0dBm,

15

which is equivalent to 1mW, and therefore a savings of over 99 mW from the default transmit
power of 100 mW/20 dBm.

Figure 9: Optimal transmit power as a function of distance.
(X-axis scale is not linear)

5.2 Power Consumption

To analyze the various algorithms for the static and mobile networks, we calculated the power
consumption of the cards for different algorithms. Figure 10 shows the basic setup that was used
to measure the power consumption of the Cisco 350 wireless PCMCIA cards. The equivalent
schematic diagram is also shown in figure 11. The setup is the same as that mentioned in [28].

As shown in the schematic, a small resistor (100mΩ) is connected in series with the card. By
measuring the voltage samples across the resistor R we can calculate the voltage drop across the
card, which is (Vsrc – R). The power consumed by the card can then be obtained by multiplying
the voltage drop across the card by the constant series current flowing through the circuit.
Netperf, which is a common benchmarking tool, was used as the packet generator. A DAQ was
used to take the voltage samples across the resistor R.

16

The plot of the energy consumed at various transmit powers is shown in figure 12. The
measurements are for the nodes transmitting continuously for 10 seconds. From the measurement
results we observe that at a fixed transmit power of 20dBm, the power consumed is 17mJ.
However when the nodes are close to each other, the nodes can even communicate at 0dBm
giving a maximum energy savings of approximately 25%. The above readings include the idle
energy consumption.

5.3 Adaptation to mobility

Section 4 explained the algorithm that was used for a mobile ad hoc network. To modulate the

transmit power in such a dynamic environment requires monitoring the transmit power
continuously and sending the optimal transmit power to the source when the path loss between

Figure 11: Schematic diagram
Vsrc: 5V constant voltage source
of laptop. Rcard: Unknown
resistance of wireless card. R:
Small series resistor of 100 mΩ.

Figure 10: Picture of the setup to measure power
consumption.

Figure 12: Energy consumed at various transmit power levels.

0

5

10

15

20

20 18 16 14 12 10 8 5 0
Transmit Power(dBm)

En
er

gy
 C

on
su

m
ed

(m
J)

Energy
Consumed
Fixed
Energy

17

the source and destination varies significantly. We illustrate two of the options for resetting the
transmit power

• Reset the transmit power for every packet that the destination receives from the source

• Reset the transmit power only when required, as discussed in section 4.2

To observe how our protocol adapts to mobility and the interference due to multipath and fading,
we ran a web trace between 2 mobile nodes with their relative distances varying randomly. Both
figure 13 and figure 14 are annotated with 2 regions (A and B) in the plot.

• At position A the source was not transmitting any data to the destination and hence the
transmit power increases, but then immediately drops down to the optimal value when
packets flow on the TCP connection. This was a sign that our active pressure algorithm
with mobility timeouts was properly pushing up the transmit power during inactivity.

• At position B in the graph, we increased the relative distance increases between the
source and destination while the connection was simultaneously sending data. Thus we
observe that as the relative distance increases, the transmit power is also increasing and
fluctuates slightly at its optimal value. The fluctuations of transmit power in the graph are
due to the varying received signal strength observed due to varying multipath effects and

fading.

Figure 14: Optimal transmit power set on a per
event basis.

As shown in Figure 13, the transmit power is set at the source on every packet that the destination
receives from the source. As a result, Figure 13 shows that there is a lot of overhead due to
control messages that are sent across to reset the transmit power to the same value. Faced with a
similar data trace and mobility environment, Figure 14 shows adaptation without excessive
overhead to update transmit powers. In Figure 13, each of these control packets that are sent
across cause collision and interference to the neighboring nodes. Hence though per-packet
adaptation responds well to mobility in the network, it is not bandwidth efficient. Also the
collisions that occur may cause packets to be re-transmitted and hence nullify any savings in
power that are achieved by modulating the transmit power.

Figure 13: Optimal transmit power set on a per
packet basis.

18

Figure 14 shows the graph when the optimal transmit power was set on a per event basis. In this
approach, the optimal transmit power is sent only when the transmit power approaches the trigger
level as shown in figure 8. Hence this approach is much more bandwidth-efficient than the
previous approach as there is no redundancy in the optimal transmit power that is sent to the
source node. By this approach we observe that the protocol adapts to mobility in the network and
at the same time is bandwidth efficient.

6. RELATED WORK

In this section we review some of the related work carried out in transmit power control. First,
considerable research has been devoted to reducing power consumption on mobile devices.
System-level power optimization [17], as well as communication-based minimization of power at
the MAC, network and transport layers have been proposed [12][30][31]. In terms of transmit
power control, one approach proposes a. Multimodal Dynamic Multiple Access algorithm
(MDMA) to be used to dynamically vary the transmit power in order to match the state of the
channel and thereby deliver packets to the destination more reliably [14].

As described in section 1, we focus on reducing power consumption of the network interface
when it is actively transmitting. Since multi hop routing is the basic method for reducing power
consumption in an actively transmitting ad hoc network, then each node plays a critical role in
transmitting and routing messages from one node to another. Unlike the infrastructure mode
where the base station controls the routing of packets to the mobile nodes, in an ad hoc network
each node forwards packets to the neighboring node. A logical reasoning would be to turn the
radio off when the node is not the source or destination of an ongoing data transmission
[11][20][23]. However, even if a node is not a destination or the source it may be the forwarding
node in the route, making it is very difficult to predict the duration of time that an interface
should remain in sleep mode. Keeping all nodes alive consumes constant power in idle mode. A
workaround to this would be to elect a pseudo base station (PBS) among the mobile stations,
based on the residual power. This PBS will allocate CDMA codes to the stations and synchronize
among the stations by allocating the TDMA codes as discussed in [9]. However this algorithm is
beneficial primarily in static networks since the algorithm to elect the PBS would prove too
expensive in highly dynamic environment.

Borrowing concepts from microeconomics and game theory, there are two other approaches
towards minimizing the power consumption in ad hoc routing: an N-person cooperative or non-
cooperative game [10]. In the first approach, local optimization (non-cooperative) is achieved by
reducing the power consumption of the local node while always forwarding packets on the least
expensive route. Designing routing protocols based on this principle may lead to a system with
some nodes having a high residual power and the network being partitioned [21]. A better
solution consists of a global approach (cooperative) [1], [4], [5] which considers global metrics
like mean time for network partition even though the route selected is not the optimal route.
Similar work [2], [8] has been done in reducing power consumption while routing broadcast
messages.

Basic frameworks for implementing transmit power control in 802.11b wireless networks have
been proposed [15][16], and essentially duplicate our basic algorithm of Section 2 . However, this
work was confined to simulations and theory, due to the lack of hardware support. In addition,
some assumptions were made, including the need for two separate channels (data and control),
which makes the solution infeasible to implement in the current 802.11b ad hoc networks.

Transmit power control also has interesting applications in sensor networks. Related work in this
area and routing protocols for sensor networks are discussed in [5][6][7][19]. We envision that

19

our algorithm can achieve higher savings in IR based sensor networks than 802.11b networks due
to the absence of idling power consumption.

7. CONCLUSION
This paper presents an implementation of adaptive transmit power control for ad hoc 802.11b
wireless networks. Our design goals included power efficiency, bandwidth efficiency, adaptation
to mobility, application transparency, incremental deployment, and compatibility with many
wireless standards. The basic algorithm consisted of setting the transmit power to the minimum
optimal level that still permitted the packets to be received correctly without causing packet loss
and retransmissions. One key design choice that achieved transparency, incremental deployment
and compatibility was to implement transmit power control as user-level application layer
processes. Adaptation to mobility was achieved both by adding a cushion to the optimal transmit
power to accommodate minor mobility, as well as adding an adaptive pressure algorithm that
boosted the transmit power after a timeout in the absence of data. Bandwidth efficiency was
achieved by triggering transmit power updates only after significant change in RSSI. We tested
our algorithms for mobility as well as power consumption. Our design decision to re-set the
optimal transmit power on a per event basis proved to be more bandwidth-efficient than the naïve
approach of resetting the transmit power for every packet, while accomplishing adaptation to
mobility. The maximum savings in power that we achieved was 25%, including idling power.

8. REFERENCES

[1] Q. Li, J. A. Aslam, D. Rus "Online power-aware routing in wireless Ad-hoc networks" MobiCOm 2001
pp: 97-107.
[2] P. Wan, G. Calinescu, X. Li, O. Frieder "Minimum-Energy Broadcast Routing in Static Ad Hoc
Wireless Networks" INFOCOM 2001, pp: 1162-1171.
[3] R. Ramanathan and R. Rosales-Hain "Topology Control of Multihop Wireless Networks using Transmit
Power Adjustment" In Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, March 2000, pp: 404-413.
[4] J.-H. Chang and L. Tassiulas, "Energy Conserving Routing in Wireless Ad-hoc Networks," Proc. IEEE
INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, pp: 22-31.
[5] S. Singh, M. Woo, C.S. Raghavendra "Power-Aware Routing in Mobile Ad Hoc Networks",
ACM/IEEE MOBICOM 1998, pp: 181-190.
[6] R. C. Shah, J. M. Rabaey "Energy Aware Routing for Low Energy Ad Hoc Sensor Networks", Berkeley
Wireless Research Center, University of California, Berkeley
[8] F. Li, I. Nikolaidis, "On Minimum-Energy Broadcasting in All-Wireless Networks", In the proceeding
of the 26th Annual IEEE Conference on Local Computer Networks (LCN '2001), Nov. 2001, Tampa,
Florida, USA
[9] Kyu-Tae, Dong-Ho Cho "A MAC Algorithm for Energy-limited Ad-Hoc Networks" Vehicular
Technology Conference, 2000. IEEE VTS Fall VTC 2000. 52nd , Volume: 1 , 2000
Page(s): 219 -222 vol.1
[10] M. Xiao, N. B. Shroff, Edwin K. P. Chong "Utility-Based Power Control (UBPC) in Cellular Wireless
Systems", INFOCOM 2001: 412-421
[11] M. Papadopouli and H. Schulzrinne. "Effects of power conservation, wireless coverage and
cooperation on data dissemination among mobile devices", ACM SIGMOBILE Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc) 2001, October 4-5, 2001, Long Beach, California.
[12] G. Girling, J.Li Kam Wa, P. Osborn, R. Stefanova, "The PEN Low Power Protocol Stack" Presented at
the 9th IEEE International Conference on Computer Communications and Networks, October 2000, Las
Vegas
[13] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, "Dynamic Power Management for Portable
Systems", MobiCom 2000, pp: 11-19.
[14] S. Kandukuri, N. Bambos “Multimodal Dynamic Multiple Access (MDMA) in Power Controlled
Wireless Packet Networks.” INFOCOM 2001: 199-208

20

21

[15] J. P. Monks, V. Bharghavan, and Wen-mei Hwu, "A Power Controlled Multiple Access Protocol for
Wireless Packet Networks," IEEE INFOCOM 2001, Alaska, April, 2001 pp 219-228
[16] J. P. Monks, V. Bharghavan, and Wen-mei Hwu, "Transmission Power Controlled for Multiple Access
Wireless Packet Networks," Proceedings of The 25th Annual IEEE Conference on Local Computer
Networks (LCN 2000), Tampa, FL, Nov., 2000 pp 12-21
[17] R. Kravets, K. Schwan, and K. Calvert, "Power Aware Communication for Mobile Computers", Sixth
International Workshop on Mobile Multimedia Communication (MoMuC-7), Nov. 1999, vol. 6, pp: 1-10.
[18] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. Srivastava, “Coverage Problems in Wireless Add-
Hoc Sensor Networks.” Proceedings of IEEE Infocom, vol. 3, pp. 1380-1387, April 2001.
[19] C. Chevallay, R. E. Van Dyck, and T. A. Hall, "Self-organization protocols for wireless sensor
networks," Proc. 36th Conf. on Information Sciences and Systems (CISS 2002), Princeton, March 2002.
[20] S. Singh and C.S. Raghavendra, “PAMAS: Power aware multi-access protocol with signalling for ad
hoc networks,” ACM Computer Communication Review, vol. 28, no. 3, pp. 5–26, July 1998.
[21] J. Gomez, A. T. Campbell, M. Naghshineh and C. Bisdikian, "Conserving Transmission Power in
Wireless ad hoc Networks", IEEE 9th International Conference on Network Protocols (ICNP'01),
Riverside, California. November 11-14 2001.
[22] M. Stemm, P. Gauthier, D. Harada, R. H. Katz "Reducing Power Consumption of Network Interfaces
in Hand-Held Devices (Extended Abstract)" Proc. 3rd International Workshop on Mobile Multimedia
Communications (MoMuc-3), Princeton, NJ, USA, Sept. 1996 vol. 2, pp: 103—112.
[23] W. Hamburgen, D. Wallach, M. Viredaz, L.Brakmo, C.Waldspurger,J Barlett, T. Mann, K.Frankas,
"Itsy:Stretching the Bounds of Mobile Computing", IEEE Computer, vol 34, no., April 2001,pp. 28-36
 [24] J. Kistler, M. Satyanarayanan, "Disconnected Operation in the Coda File System," ACM
Transactions on Computer Systems, vol. 10, no. 1, February 1992, pp: 3-25.
[25] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, C. Hauser,"Managing Update Conflicts
in Bayou, a Weakly Connected Replicated Storage System," Proceedings of the Fifteenth Symposium on
Operating Systems Principles," December 1995, pp. 172-182
[26] G. Kueening, G. Popek, "Automated Hoarding for Mobile Computers," ACM SOSP, 1997, pp: 264-
275.
[27] M. Weiser, B. Welch, A. Demers, S. Shenker, “Scheduling for Reduced CPU Energy", Processdings
of the First USENIX Symposium on Operating Systems Design and Implementation, Nov. 1994, pp: 13-23.
[28] L. M. Feeney, M. Nilsson "Investigating the energy Consumption of a Wireless Network Interface in
an Ad Hoc Networking Environment" IEEE INFOCOM 2001
[29] P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Transactions on Information
Theory, vol. IT-46, no. 2, pp. 388-404, March 2000.
[30] H. Balakrishnan, S. Seshan, E. Amir, R. H. Katz.“Improving TCP/IP Performance over Wireless
Networks”, Proc. 1st ACM Conf. on Mobile Computing and Networking, Berkeley, CA, November 1995.
[31] V. Bharghavan, A. Demers, S. Shenker, L. Zhang “MACAW: A media Access Protocol for Wireless
LANs” Processing’s of ACM SIGCOMM, 1994 pp. 212-225
[32] B. A. Forouzan “TCP/IP Protocol Suite” McGraw-Hill Publications
[33] A. Sinha and A. Chandrakasan, “Dynamic Power Management in Wireless Sensor Networks”, IEEE
Design and Test of Computers, March-April 2001, pp. 62-75

