A Comparison of Object-Oriented Programming
in Four Modern Languages

Robert Henderson Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

CU-CS-641-93 Revised July 1993

&

University of Colorado at Boulder

Technical Report CU-CS-641-93
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright © 1993 by
Robert Henderson Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

A Comparison of Object-Oriented Programming
in Four Modern Languages*

Robert Henderson Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430
(303) 492-4398

Revised July 1993

Abstract

Object-oriented programming has become a widely-used, important programming paradigm
that is supported in many different languages. The paper evaluates Oberon-2, Modula-3, Sather,
and Self in the context of object-oriented programming. While each of these programming lan-
guages provide support for inheritance, dynamic dispatch, code reuse, and information hiding,
they do so in very different ways and with varying levels of efficiency and simplicity. A single
application was coded in each language and the experience gained forms the foundation on which
the subjective critique is based. By comparing the actual run-times of the language implemen-
tations, we also present an objective analysis of the efficiency of current implementations of the
languages. The application was also coded in C++, thereby providing a well-known baseline
against which the execution times could be compared.

1 Introduction

Object-oriented programming has become a widely-used, important programming paradigm that is
supported in many different languages. In this paper, we evaluate how several modern programming
languages support object-oriented programming and specifically examine features that provide
inheritance, dynamic dispatch, code reuse, and information hiding. We also compare the run-
time efficiency and compilation time of widely-available implementations of the languages. The
programming languages considered are Oberon-2, Modula-3, Sather, and Self. C++ is also included
as it provides a well-known baseline for comparison. To facilitate a fair comparison between the
languages, a single application was selected and coded in each language. The experience gained

coding this application provided the foundation on which the comparison was made. This single

*This material is based upon work supported by the National Science Foundation under Grant No. CDA-8922510.

Personnel Class

Instance Variables:
ssn
firstname
lastname
Methods:
print
update
Student Class Teacher Class
Instance Variables: Instance Variables:
numclasses salar
classes y
Methods: Methods:
print print
addclass updatesalary
unenroll

Figure 1: The Database Application Class Hierarchy

application also made it possible to objectively compare the run-time efficiency of the language
implementations. In the remainder of this section we describe the application that we used to

compare the languages and provide an overview of each of the languages selected.

1.1 The Application

The application selected was a database of university personnel files. The database includes files
for students and teachers, both of which contain a social security number and name. Student files
also contain information about courses in which the student is enrolled while teacher files include
salary information. Classes with inheritance provide the ideal framework for the implementation
of this hierarchy. Personnel files provide the parent class from which student and teacher files can
be subclassed. The database is implemented as a linked-list of personnel files. The classes and the
instance variables and methods they provide are shown in Figure 1.

We selected this application specifically for the purpose of evaluating and comparing the object-

oriented programming features mentioned above. While the application program benefits from

features that support object-oriented programming, it is not overly complex. We intentionally chose
a simple application for two reasons. First, simplicity made it possible to write implementations
in several different languages in a reasonable time. Second, the simplicity enhances the language
comparison because the languages considered all provide support for the set of features needed by
the application. If, for example, the application had required threads, it would have been more
difficult to compare the implementations since support for threads is either vastly different between
languages or non-existent. However, one drawback of using a simple application is that we cannot
use it to compare the suitability of the languages for larger programming projects.

This application benefits from several features supported by the object-oriented paradigm. The
first is simply the need for inheritance since the teacher and student classes both use instance
variables and methods provided by the parent personnel class. The application also benefits from
the ability to override the definition of the print method in the subclasses of the personnel class.
To explore code reuse, we have the print methods for student and teacher classes call the print
method defined in the personnel class (where the social security number is defined). Finally, the
need for dynamic dispatch arises in the print method for the database class. Because the database
is a linked-list of personnel files, when the print message is sent to the personnel file, we want the
proper print method to be called depending on whether the personnel file is actually a student file
or a teacher file.

This application actually resembles many others that are commonly-used when examples of
object-oriented programming are presented. For instance, the structure of the application resem-
bles that of an interactive drawing program where a number of geometric shapes and/or text are
being manipulated. In that case, instead of a linked-list of personnel files, a list of different geo-
metric shapes is manipulated. Likewise, in a text-formating program, such as the Interviews doc
application, a box of text is represented as a sequence of possibly different glyphs. Finally, a simula-
tion system that manipulates many different types of similar objects, such as an airport simulation,
could have a structure very similar to that of our application.

The source code implementing the database application in each language is available on the

Internet via anonymous ftp from ftp.cs.Colorado.EDU as /pub/cs/misc/comparison-code.tar.Z.

1.2 The Languages

This compares four modern languages that support object-oriented programming. In this section,
we explain why we chose these languages and describe each briefly. First, all the languages chosen
were created through an evolution of existing successful languages. Oberon and Modula-3 both
evolved (in very different directions) from Modula-2, Sather evolved from Eiffel, Self evolved from
Smalltalk. Thus, all these languages represent attempts to improve existing languages with new
and very different ideas. Second, implementations of all the languages are publicly available making
these languages easy to obtain and compare. Finally, these languages represent a broad spectrum
of programming language design principles, ranging from emphasis on minimality and simplicity
to emphasis on support for rapid prototyping. Of course, many other languages, such as CLOS
and Objective-C, could also have been included, however we felt that investigating more than four
languages was beyond the scope of a single paper. We include C++ in the descriptions below

because it is used as a baseline for performance comparisons later in the paper.

C++4 C++ [13] is a widely-used object-oriented programming language and provides a well-known
baseline for comparison. C++ supports object-oriented programming by extending C with
classes that group functions and data, provide information hiding, and support inheritance.
C++ is statically-typed and attempts to significantly reduce the run-time overhead of object-
oriented programming. Programmers who do not use the object-oriented features of C++ get
the same performance they would using C. If programmers need dynamic dispatch in C++,
they explicitly use “virtual functions,” otherwise functions are statically bound.

Oberon Oberon [18] was designed by Niklaus Wirth as a successor to Modula-2 [17]. Oberon is
largely the result of removing features from Modula-2, however a few features were added.
The most important addition is type eztensions [19], which provide basic support for inher-
itance. Oberon has evolved into Oberon-2, the most recent of the Oberon languages, and
is described by Mossenbock and Wirth [9]. Oberon-2 was influenced by Object-Oberon [8]
and incorporates type-bound procedures, which are equivalent to methods. Type-extensions
and type-bound procedures provide the support for object-oriented programming generally
provided by explicit classes in object-oriented programming languages. As with each of the
other languages except C++, garbage collection is provided to free the programmer from the
onerous task of memory management.

Modula-3 While Oberon represents a minimal evolution of Modula-2 to support object-oriented
programming, Modula-3 [2, 4] is a larger language providing support for large, multi-person
programming projects with separate module interface specification and exception handling
as well as concurrency and garbage collection. Modula-3 is a strongly-typed language with
an emphasis on safety. However, the safety features of the language can be explicitly circum-
vented when increased efficiency or functionality are necessary. Modula-3 supports object-

oriented programming by providing object types, which are incorporated into the basic module
structure of the language.

Sather Sather [11, 10] was derived from Eiffel with an emphasis on simplicity and efficiency. While
Oberon-2 and Modula-3 are procedural languages that provide support for both modules and
objects, Sather places a central emphasis on objects and classes. Sather provides only classes
as a way of grouping related data (no modules) and all functions must be methods in some
class. While in many ways the philosophy of Sather is closer to that of Smalltalk and other
purely object-oriented languages, Sather is interesting because it also emphasizes static-typing
and performance.

Self Self [15] is a dynamically typed, object-oriented programming language with message passing
that was designed to support exploratory programming. Self represents a deviation from
organization by classes supported by most object-oriented programming languages. Instead
of classes with instance variables and methods, Self incorporates prototypes with slots. Pro-
totypes provide templates from which objects are cloned and slots combine instance variables
and methods into a single construct. The Self implementation we used is also very interest-
ing because there is a great deal of emphasis on using compiler optimization to reduce the
overhead of the dynamic features. Qur results indicate the success that the Self implementors
have had in achieving this goal.

2 Related Work

A number of papers comparing the features of different object-oriented languages have been pub-
lished recently. Wolf’s comparison of object-oriented programming in C++ and Flavors is based on
building systems for designing electronic hardware [20]. He qualitatively compares the languages’
features, including support of objects, typing, memory management, etc. Because the languages
compared are so different, only a minimal quantitative comparison of performance is included. In
addition to having more quantitative performance comparisons, our paper also considers a greater
number of approaches; we examine a broad spectrum of experimental approaches to object-oriented
programming.

Blaschek et al compare the languages C++, Eiffel, Oberon, and Smalltalk-80 [1]. Their compar-
ison includes a general description of each language and a point-by-point comparison of a number of
specific features including inheritance, efficiency, complexity, and reliability. Schmidt and Omohun-
dro compare the features for object-oriented programming in CLOS, Eiffel and Sather [12]. Their
comparison includes language features, program performance, and available programming environ-

ments. While both of these comparisons are detailed and complete, they are not conducted in the

context of a single specific example. Furthermore, our approach allows us to carefully investigate
the cost of dynamic dispatch in each of the languages implementations evaluated, while theirs does
not.

Other comparisons of object-oriented techniques have also appeared. Wileden, Clark, and Wolf
evaluate object definition techniques in prototyping systems [16]. Their investigation focuses only
on object definition and the utility of these techniques for building large prototype systems.

This paper differs from others like it because it compares a wide variety of experimental ap-
proaches to object-oriented programming in the context of a simple example. The simplicity of
the example serves to highlight some fundamental differences in object-oriented programming sup-
ported by these languages. Furthermore this paper compares not only the language designs but also
extensively compares the relative performance of existing implementations of features that support

object-oriented programming in these languages.

3 Support for Object-Oriented Programming

In this section we discuss how each language supports inheritance, dynamic dispatch, code reuse,
and information hiding. In doing so, we present simplified code examples from each language

illustrating how a simple inheritance relation from our database application is implemented.

3.1 Inheritance

Inheritance is one of the key features of object-oriented programming and all of the languages
studied provide support for it. Recall that Figure 1 illustrates the relation between the Student
and Personnel classes in our database application. In the next four figures, we show how this
inheritance relation is expressed in each of the languages we studied. We will return to these code
examples as we discuss how the languages support different features in turn.

Figure 2 shows the Oberon-2 module declarations for the Personnel and Student modules. In
Oberon-2, names are not exported explicitly in an interface section but instead exported names are
indicated with a asterisk that appears after them. For example, the Print procedure is exported
from the Personnel module. This form of specification allows a module interface to be automatically

constructed.

MODULE Personnel;
IMPORT Out, Texts;
TYPE
File* = POINTER TO FileData;
FileData* = RECORD
ssn: INTEGER;
firstname, lastname: ARRAY 32 OF CHAR;
END;

(* Print method *)
PROCEDURE (pf: File) Print* ();
BEGIN

(* Body of method omitted *)
END Print;

END Personnel.

MODULE Student;
IMPORT OQOut, Personnel;
TYPE
File* = POINTER TO FileData;
FileData = RECORD (Personnel.FileData)
nclasses: INTEGER;
class: ARRAY 10 OF INTEGER;
END;

(* Override the parent Print method *)
PROCEDURE (sf: File) Print*;
BEGIN
sf.Print~(); (* Invoke overridden print method *)
sf.PrintStudentInfo(); (* Print student specific information *)
END Print;

END Student.

Figure 2: Personnel and Student Modules in Oberon-2.

Figure 2 also illustrates the use of type-extension in Oberon-2. Inheritance is supported by
type-extensions that allow record data types to declared as extensions of previously declared types.
Objects of the extended type include fields from both the base and extended types. In the example,
the type Student.FileData extends the imported type Personnel.Filedata. Oberon-2’s type-bound
procedures make it possible to bind procedures to types, providing the mechanism for linking a
type with its behavior. Since a type can be the extension of only a single other type, multiple
inheritance is not possible.

Figure 3 shows the Modula-3 module implementation and interface declarations for the Person-
nel and Student modules. Unlike Oberon-2, module interfaces and interfaces are specified separately
in Modula-3. As is immediately clear from the example, even relatively simple inheritance relation-
ships are quite complex to express in Modula-3. Reasons for this complexity include the separation
between module interfaces and implementations, mechanisms for information hiding, and the inter-
action between Modula-3 modules and objects. While describing this example entirely is beyond
the scope of this paper, we will mention the object-oriented Modula-3 features used in this example
both here and later in the paper.

Modula-3 provides Object types, which embody both a data record and a method suite. When
an object type is declared (for example, in the interface of the Student module), another object
type can be specified as the supertype, thus providing inheritance. An object type declaration can
include only a single supertype so multiple inheritance is not possible.

Figure 4 shows the class declarations for the Personnel and Student classes in Sather. This
example illustrates how the complexity of specifying an inheritance relationship is reduced if only
classes and not modules with objects (or type-extensions) are supported in a language. In Sather,
all code is organized into classes and a class definition must be contained within a single file. A class
definition includes attribute specifications (instance variables) and routine specifications (methods).
Inheritance is achieved by a conceptually simple model of textual inclusion. For example, notice
that in the definition of the student class, the personnel class is named. This reference to PER-
SONNEL has the same semantics as if the text defining the personnel class were textually included
in the definition of the student class. Since multiple classes can be named in a class definition,

multiple inheritance is possible. By using the textual inclusion model, name conflicts between mul-

INTERFACE Personnel;
TYPE
File <: Public_File;
Public_File = OBJECT
METHODS
Print();

END;

END Personnel.

MODULE Personnel;

IMPORT Stdio, Text, Wr;

FROM Stdio IMPORT stdout;

REVEAL File = Public_File BRANDED OBJECT
ssn: INTEGER;
firstname,lastname: Text.T;
OVERRIDES

Print := PrintFile;

END;

(* Print method *)
PROCEDURE PrintFile(pf: File) =
BEGIN
(* Body of print method omitted *)
END PrintFile;

BEGIN
END Personnel.

INTERFACE Student;
IMPORT Text, Personnel;
TYPE
File <: Public_File;
Public_File = Personnel.File OBJECT
END;
END Student.

MODULE Student;

IMPORT Stdio, Text, Wr, Personnel;

FROM Stdio IMPORT stdout;

REVEAL File = Public_File BRANDED OBJECT
nclasses: INTEGER;
class: ARRAY [1..10] OF INTEGER;
OVERRIDES

Print := PrintFile;

END;

(* Print method *)
PROCEDURE PrintFile(sf: File) =

BEGIN
Personnel.File.Print(sf); (% Invoke overridden print method *)
sf.PrintStudentInfo(); (* Print student specific information *)

END PrintFile;

BEGIN
END Student.

Figure 3: Personnel and Student Module Interfaces and Implementations in Modula-3.

class PERSONNEL is
private ssn:INT;
private firstname, lastname: STR;

—— Print method

print is
—— body of print method omitted
end; —— print
end; -— class PERSONNEL

class STUDENT is

PERSONNEL; -- Inherit from PERSONNEL
private nclasses:INT; -— Add number of classes
private classes:ARRAY{INT}; -- and the array of classes

alias personnel_print print;

—— Print method

print is
self.personnel_print; -- Invoke overridden print method
self.print_student_info; -- Print student specific information
end; —— print

end; —-— class STUDENT

Figure 4: Personnel and Student Classes in Sather.

10

traits dbbench personnelTraits _Define: (|
_ parent* = traits clonable.
~ print = ("body of print method omitted").

1)

prototypes dbbench personnelProto _Define: (|
traitsparent* = traits dbbench personnelTraits.
~ ssn.
~ firstname.
~ lastname.

traits dbbench studentTraits _Define: (|
_ traitsparent* = traits dbbench personnelTraits.
~ clone = (_Clone dataParent: personnelProto clone).
~ print = (resend.print. "Invoke overridden print method"
printStudentInfo. "Print student specific information").

1)

prototypes dbbench studentProto _Define: (|
_ traitsparent* = traits dbbench studentTraits.
_ dataparent*x*.
“ nclasses.
~ classes.

Figure 5: Personnel and Student Traits and Prototypes in Self.

tiple parents are resolved in a last-defined fashion; the redefinition of a name hides the previous
declaration.

Finally, Figure 5 shows the Personnel and Student traits and prototypes objects definitions in
Self. Self makes use of prototypes with cloning rather than classes with instantiation. However,
the behavior of classes with inheritance can be achieved in Self as described by Ungar et al [14].
To explain how this is done, we will use our database application as an example. Consider the
relationship between student and personnel files. Student files inherit data fields and behavior (or

traits) from personnel files.

11

The data and traits are divided into separate objects as illustrated in Figure 6. When a student
file is created, the prototypical student object is cloned, thereby creating local copies of the student
data fields, or slots. In addition, the prototypical personnel object is also cloned, thus creating local
copies of the slots inherited from personnel files, as seen in the clone method for StudentTraits in
Figure 5. These objects share behavior through the parent pointers to the traits objects. However,
the creation of a new student file does not require that the traits objects be cloned since all student
files can share a single copy of the methods.

Since multiple parent pointers can be specified, multiple inheritance is possible. In fact, in this
simple example, multiple inheritance is necessary in studentProto even though there is no multiple
inheritance inherent in the problem being solved. Furthermore, a precedence for the inheritance
must be specified since two distinct print methods are reachable via the two parent pointers. In this
example, dataparent has lower precedence, as indicated by the two asterisks following the name,
so that the print method from studentTraits is used for student files.

An alternate approach eliminates data parents from the model [5]. Using this approach, the
student prototype is created by cloning the personnel prototype and adding additional slots, thereby
eliminating the dynamic indirection associated with accessing data slots of the parent. The parent
pointer is also updated to point to the student traits object, eliminating the problem of multiple

inheritance.

3.2 Dynamic Dispatch

Each of the languages provide a mechanism for the specification of dynamic dispatch. With the
exception of Self, each also provides a way to specify static binding so the overhead associated
with dynamic dispatch can be avoided. With Oberon-2, all type-bound procedures are dispatched
dynamically and standard procedures can be used to achieve static binding.

In Modula-3, methods may be declared using one of two mechanisms: METHODS and OVER-
RIDES. If a method is declared in a parent class, then subclasses can either define a new method
with the same name (METHODS) or override the previous definition (OVERRIDES). Both forms
of declaration result in dynamically dispatched functions. The difference between the two forms of
declaration is subtle and related to name scopes. In the case of the OVERRIDES definition, the

new method definition completely replaces the definition it overrides; the overridden definition is

12

PersonnelTraits

PersonnelPrototype

traitsparent™®

ssS1

firstname

lastname
A

StudentPrototype

dataparent**

StudentTraits

traitsparent™®

addclass

unenroll

print

A

traitsparent™®

nclasses

classes

Figure 6: Personnel/Student Object Hierarchy Using Self Prototypes

13

not accessible even if the object’s type is narrowed! to the type of the parent. In the case of the
METHODS definition, both the old and the new definition remain available, although normally
the new definition shadows the original definition. In this case, narrowing an object to its parent
type will cause the original definition to be used.

Sather is similar to C++ in that methods are statically bound unless explicitly declared other-
wise. However, the mechanism for the specification of dynamic binding in Sather is quite different
than it is in C++4. With C++, a method can be declared a virtual function and calls to that
method will be dynamically dispatched. In Sather, the declared type of a variable determines
whether method calls will be dispatched dynamically. This is done by declaring a variable to be
of a dispatched type by simply preceding the type specification with a dollar sign. So, if file is
declared of type $PERSONNEL, then the dotted access file.print will result in the desired dy-
namic dispatch. However, this approach can result in unnecessary overhead if the programmer is
not cautious. Consider the two Sather code fragments in Figure 7. In the print method, we step
through the database printing each personnel file. Since we want the appropriate print routine to
be called for student and teacher files, we want the call to the print method, tmp.file.print, to be
dynamically dispatched. We can achieve this by declaring the file field of the database class to be
a dispatched type, namely $PEFRSONNEL. However, consider the locate method that scans the
database looking for a file with the given social security number. Since the file field of the database
class was declared as a dispatched type, the access of the social security number, tmp.file.ssn, is
also incurring the overhead of dynamic dispatch even though it may be an instance variable access

instead of a method invocation.

3.3 Code Reuse

One of the advantages of object-oriented programming is the ability to reuse code. If a function
is implemented by a class, it can be made available to all subclasses. In addition, a method can
be reimplemented in the subclass and the new method has the option of calling the method in the
parent class that it is overriding. This is useful if the subclass wants to extend the behavior of a

function, while still reusing the code defined in the parent class. Each of the languages provide

!The NARROW operation in Modula-3 makes it possible to view an object as being of the parent type and
vice-versa.

14

—— Print the database

print is
tmp: DATABASE;
tmp := self;

until tmp.next=void loop
tmp.file.print;
tmp := tmp.next;
end;
end; -- print

-- Locate a file in the database
locate(ssn:STR): PERSONNEL is
tmp: DATABASE;
tmp := self;
until tmp.next=void loop
if tmp.file.ssn = ssn then
res := tmp.file;
return;
end;

tmp := tmp.next;
end;
res:=void;
end; —- locate

Figure 7: Sather Code Fragments from the Database Application

support for explicit calling of the parent method from within the overriding method, however there
are some interesting differences.

In Oberon-2, the mechanism is quite straightforward; you simply append the method name with
a caret("). For example, in the Print procedure for student files, you can call the print procedure
for personnel files by calling Print~ (Figure 2).

In Modula-3, to invoke the overridden method it is necessary to name the parent type and
method to be called and explicitly pass the receiver of the message as an argument. For example,
to call the print method in the personnel class, you call Personnel. File. Print(file) where file is the
receiver of the message (Figure 3). As mentioned in the previous section, the NARROW mechanism
does not give access to the overridden method.

The textual inclusion model of inheritance supported by Sather introduces a small problem
since the redefinition of the print method hides the original definition. Sather includes an aliasing
mechanism that addresses this problem. For example, after the inclusion of the personnel class in
the definition of the student class, we can alias print to another name, for example personnel_print
(Figure 4). We can then call this method using the aliased name. With multiple inheritance, it
is up to the programmer to include the proper alias statements so that the correct methods are
visible.

Self includes the concept of message resends, whereby a message can be resent to the parent
class from within the overriding method definition. There is no restriction that the resent message

must be the same as the current method. For example, from within the print method for student

15

files, we can invoke the print method for personnel files with resend.print (Figure 5) or we can
invoke some other method, foo, with resend.foo. It is also possible to perform a directed resend
where the resend is sent to a specified parent. This makes it possible to override the specified

multiple inheritance precedence.

3.4 Information Hiding

Oberon-2 provides a familiar import/export mechanism for information hiding like that found in
the earlier Modula languages. Names are private to the module in which they are declared unless
explicitly exported. Similarly, names exported by a module can only be used by a module that
explicitly imports that module. Since modules are the grouping mechanism used by the language,
extended types appearing in a module other than that in which the parent type is declared have
no special access privileges to the fields of the type being extended. This is in contrast to many
object-oriented programming languages where subclasses have unrestricted access to the fields of
the parent class.

Modula-3 is also built around modules, however the incorporation of object types complicates
the information hiding mechanism. In order to expose certain features of the class (ie., access
methods) while hiding others (ie., the actual data fields) it becomes necessary to declare two actual
classes for each conceptual class. A public class is declared in the interface that contains the features
of the class that are to be exported. Then, the actual class is defined as a subclass of this public
class. For example, in Figure 3 Public_File exports the method Print, while File, a subclass of
Public_File, defines the hidden instance variables of the class and provides an implementation of
the Print method. As with Oberon-2, subclasses have no special access privileges to their parent
classes.

Sather takes a more direct approach to information hiding. Names within a class can be
declared private, thus prohibiting direct access by instantiations of the class. However, subtypes
have unrestricted access to the fields of the parent class. This is not surprising considering the
textual inclusion model of inheritance supported by Sather.

In Self, slots can be declared public, private, read-only, or write-only. A method defined for
an object has access to its private slots as well as the private slots of its ancestors. However,

the dynamic nature of Self adds additional flexibility, and with it complexity, to the information

16

Internet Location

Language Implementation Machine Directory
C++ GNU 2.2.2 gatekeeper.dec.com pub/GNU
Modula-3 SRC 2.07 gatekeeper.dec.com pub/DEC/Modula-3
Sather Rel0.2i icsi.berkeley.edu pub/sather
Oberon-2 SPARC-2.5 neptune.ethz.ch Oberon/SPARC

Self 2.0.1 self.stanford.edu pub/Self-2.0.1

Table 1: Publicly available implementations of the five languages that we measured.

hiding mechanism. Dynamic name binding only requires that the receiver of a message has access
to slots referenced in the corresponding method. There is no requirement that slots referenced in
a method be defined by that object. For example, a method defined in the personnel class could
access instance variables defined only in the student class. As long as the receiver of this message is
actually a student file, it can use the method safely. Self performs run-time checking to assure that
the receiver of a message provides the appropriate method and has access to any slots referenced

within that method.

4 Performance Evaluation

In this section we evaluate the performance of publicly available implementations of the languages
considered. Table 1 describes the implementations we measured as well as how they can be obtained
on the Internet via anonymous FTP. It is important to note that the results in this section reflect
the performance of a particular implementation of these languages and do not necessarily reflect
performance limitations that exist in the languages independent of these implementations. In
particular, the maturity of an implementation can have a profound effect on its performance. For
example, the GNU C++ compiler, g++, is much more mature than the Sather compiler that we
measured.

In order to evaluate the performance of each implementation, a test program was written to
exercise the database code. This test program first adds a large number of records to the database
and then a series of file locates are performed. Next, the database is traversed a number of

times with a set of operations performed on each record. Finally, all records are deleted from the

17

database. This add/locate/traverse/delete process is repeated a small number of times, resulting
in a reasonable amount of dynamic memory allocation and deallocation.

The run-time numbers presented were obtained using various techniques, depending upon the
environment provided by the particular language implementation. The C++, Modula-3, and Sather
compilers generate standalone a.out format binaries and the run-times were measured using the
total elapsed time reported by the C-shell built-in time command. Since the Oberon-2 and Self
systems do not generate standalone executables, other mechanisms were used. For Oberon-2, a call
to Oberon.Time()is made immediatedly upon entering and prior to exiting the test program and
the difference of the two reported times is taken. In Self, the built-in ##me mechanism is used. In all
cases, a set of five runs were performed and the average of these runs is reported. The variance in
execution time between runs in all cases was small. All measurements were made on an otherwise

idle Sun SPARCstation-2 with 32 megabytes of memory.

4.1 Execution Time

The run-time results are shown in Table 2. Where the compiler provided optional optimization, run-
time numbers are shown for both the optimized and non-optimized cases. As we have mentioned,
the run-time numbers presented are as much, if not more, a measure of the ability of the particular
compiler to generate efficient code as they are a reflection on the language itself. As can be seen by
the large differences between the optimized and nonoptimized cases, the quality of the generated
code has a large effect on run-time performance. However, some interesting observations can still
be made related to the languages themselves.

Not surprisingly, Self is the slowest of the five languages, due largely to the dynamic nature
of the language that requires a large amount of run-time checking not required by the other lan-
guages. However, the Self system does perform extensive innovative optimizations to reduce this
run-time overhead [3, 6]. The Self database implementation used the optimization described in the
Inheritance Section to avoid the dynamic indirection associated with data parents. Using the data
parent model shown in Figure 6 the execution time was 29.2 seconds, so by avoiding this dynamic
indirection the execution time was reduced by 40%.

In order to achieve the performance numbers shown in Table 2, the Oberon-2 and Modula-3

database implementations did not make exclusive use of methods. Exclusive use of type-bound

18

Language Compiler Optimization Run-Time (s)

C++ GNU 2.2.2 No 8.4
C++ GNU 2.2.2 -0 3.7
C++ AT&T 2.1 No 9.3
C++ AT&T 2.1 -0 3.5
Modula-3 SRC 2.07 No 13.7
Modula-3 SRC 2.07 -0 6.0
Sather Rel0.2i No 13.3
Sather Rel0.2i -0 7.2
Oberon-2 SPARC-2.5 Default 4.8
Self 2.0.1 Default 17.4

Table 2: Execution Time on a Sun SparcStation-2 with 32 Mbytes of Memory

procedures in Oberon-2 and METHODS in Modula-3 results in all calls incurring the overhead of
dynamic dispatch. In order to avoid this unnecessary overhead, standard procedure calls were used
for those calls that were not dispatched dynamically. The application did require that 45% of all
calls be dispatched so the associated cost is quite significant. The higher run-time of Oberon-2 as
compared to C++ can be attributed largely to the compilers. The Oberon-2 compiler does not
perform the level of optimization being performed by the C++4 compilers. Another difference is
that Oberon-2, as well as each of the other languages, provides garbage collection that is typically
more expensive, although far less error-prone, than the explicit deallocation of memory provided
by C++.

One reason for the higher run-time of Modula-3 as compared to C++ is that the instance variable
and method offsets for subtypes of opaque types are not known at compile time and require an
additional run-time indirection. This is a limitation of the current compiler implementation and not
a penalty inherent in the language. By reorganizing the code, it is possible to make the offsets known
to the compiler, at a loss of information hiding, and by doing so the run-time drops to 4.9 seconds.
Furthermore, in Modula-3, it is possible to explicitly avoid the overhead of garbage collection by
using untraced references. By doing so, the run-time is further reduced to 4.5 seconds. Clearly,
as more mature Modula-3 compilers and run-time systems become available, the performance will

surely improve.

19

Sather is similar to C++ in that method binding is static unless explicitly specified otherwise.
However, Sather has a more general dispatch mechanism than C++ and, in the Rel0.2i implemen-
tation, there is a higher associated overhead. The Sather compiler uses a single word dispatch cache
to minimize the cost of dispatch [7]. As a result, the cost of dispatch is highly dependent on the
miss-rate of this cache. The effect of dispatch cache miss rate on run-time is discussed later in the
paper.

Our initial version of the database application implemented social security numbers as strings.
Because the test program searches the database using social security numbers, a large number
of string comparisons were performed in this version. Therefore, the run-time numbers were sig-
nificantly influenced by the efficiency of string comparisons. Even though the efficiency of string
comparisons may be important in certain applications, the goal of this study was not to measure
this effect. For this reason, the application was recoded in each language and social security num-
bers were implemented as integers. It is interesting to note that this conversion required no changes
to the database implementation in Self. The test code that inserted records into the database was
simply changed to use integers instead of strings and the rest of the code was unchanged. This is cer-
tainly a testament to the suitability of Self for exploratory programming. Even though the changes
to the code for the other languages were not drastic, there was still a non-trivial coding/debugging

process involved.

4.1.1 Static Method Binding Vs. Dynamic Dispatch

In each of the languages, with the exception of Self, it is possible to explicitly specify that a method
invocation is bound statically. In Self, all method invocations are dispatched dynamically, however
the compiler does perform optimizations to use static binding when possible. In Oberon-2 and
Modula-3, standard procedures can be used to achieve static binding while type-bound procedures
and methods are dispatched dynamically. In Sather and C++, methods are statically bound unless
explicitly specified otherwise using dispatched types and virtual functions. Table 3 shows the results
of varying the relative percentage of dispatched and static calls while keeping the total number of
calls constant. With no dispatched calls, we see that the execution time for Sather actually drops
below that of C++. However, as the percent dispatch increases we see the effect of the Sather

implementation’s increased dispatch cost. The irregularity in the Sather run-times as the percent

20

Percent Dynamic Dispatch Avg. Cost/Dispatch
Language Compiler 0% 23% 45% 68% 90% 100% (microseconds)

C++ GNU 2.2.2 3.3 35 3.7 4.0 43 44 0.20
CH++ AT&T 2.1 3.0 32 35 38 41 4.3 0.24
Modula-3 SRC 2.07 44 51 6.0 6.7 75 7.6 0.58
Sather Rel0.2i 2.8 6.8 7.2 75 7.9 95 1.22
Oberon-2 SPARC-2.5 4.1 4.6 48 52 54 55 0.25
Self 2.0.1 - - - — — 174 N/A

Table 3: Execution Time, In Seconds, For Various Dynamic Dispatch Percentages

dynamic dispatch increases is due to variability in the dispatch cache miss rate. For example, with
23% and 45% dynamic dispatch, the dispatch cache miss rate is 50% and 25%, respectively. The
effect of the cache miss rate is discussed in more detail in the next section.

Since the total number of dispatched calls for the 100% dispatch case is known, it is possible
to determine the average cost of dispatch. From Table 3, we see the higher cost of dispatch for the
Sather implementation while the cost for SPARC Oberon-2 and GNU and AT&T C++ is relatively
low. The run-time numbers for Self, listed in the 100% dispatch column, are slightly misleading.
In addition to having all calls dispatched, in Self all slot accesses (or instance variable accesses) are
also dispatched dynamically, which is not the case with the other languages. In order to have a
completely fair comparison with C++, all instance variable accesses would have to be implemented

using virtual functions in C++, which would certainly decrease the run-time gap between the

languages.

4.1.2 Sather’s Dispatch Cache

The SatherRel0.2i dispatch cache is a one-word cache that incurs a miss each time the type of
a dispatched object changes, resulting in an 80-90 instruction penalty (on a Sun SparcStation)
for general dispatch plus the cost of updating the cache. In the current application, it is possible
to control the dispatch cache miss rate by varying the order in which records are added to the
database. For example, consider the case where the database is a list alternating between teacher
and student files. If the list is traversed and a single dispatched operation is performed on each
object, then the object type changes with each call and each call incurs a cache miss. Similarly,

if the list is a sequence of two teacher files followed by two student files, then every other call

21

Dispatch Cache Percent Dynamic Dispatch
Miss Rate 0% 23% 45% 68% 90%

0% 28 3.1 3.5 39 43
5% 28 35 43 5.0 5.7
10% 28 38 49 6.3 7.1
25% 2.8 4.9 7.2 8.7 11.5
50% 2.8 6.8 10.8 — —
100% 2.8 10.4 — — —

Table 4: Sather Execution Time Vs. Dispatch Cache Miss Rate For Various Dispatch Percentages

would result in a miss. The run-time of the application for several combinations of cache miss
rate and dispatch percentage is shown in Table 4. Even though the application does not permit
measurement for each combination, the trends are quite apparent. With no cache misses and 90%
dispatched calls, the average cost per dispatch drops to 0.30 microseconds, in contrast to the 1.22
microseconds shown in Table 3 when the cache miss rate was approximately 15%.

A detailed discussion of the Sather dispatch cache design and an evaluation of the dispatch
efficiency was written by Lim and Stolcke [7]. They measure the dispatch cache miss rate of the
Sather compiler (written in Sather) and find the average miss rate to be approximately 20%. From
Table 4, we see that a miss rate on the order of 20% does not have too great an effect with
relatively low dispatch percentages. However, high dispatch rates coupled with high miss rates are

quite detrimental, although such an operating range is unlikely in a real application.

4.2 Code Size and Compile Time

Table 5 shows the compilation times, not including the link phase, and resulting code size for
each of the language implementations. The compile times for the C++, Modula-3, and Sather
implementations are all comparable at 19-30 seconds, with optimization adding a few additional
seconds, while those for Self and Oberon-2 are significantly lower. It is important to realize that
the AT&T C++4, Sather, and Modula-3 compilers all generate intermediate C code that is then
compiled using cc.

It is obvious from the compile time for Oberon-2 that Wirth has succeeded in designing a
simple language for which an efficient compiler can be written. The SPARC Oberon 2.5 compiler

is extremely efficient and generates object code directly rather than generating intermediate C

22

Compile Object Binary Stripped
Language Compiler Optimized Time(sec) Size(bytes) Size(bytes) Binary(bytes)

C++ GNU 2.2.2 No 28 7004 311296 147456
C++ GNU 2.2.2 Yes 30 5748 311296 147456
C++ AT&T 2.1 No 30 12128 65536 49152
C++ AT&T 2.1 Yes 35 10464 65536 49152
Modula-3 SRC 2.07 No 24 24560 1015808 352256
Modula-3 SRC 2.07 Yes 30 21716 1015808 352256
Sather Rel0.2i No 19 5880 139264 122880
Sather Rel0.2i Yes 23 4660 139264 122880
Oberon-2 SPARC-2.5 Default 2 5587 — —

Self 2.0.1 Default 9 — 426908 198364

Table 5: Program Code Size And Compile Time. A stripped binary has had the symbol table and
relocation bits that are normally attached to a binary removed. The code size numbers for Self are only
approximations based on code information provided by the _PrintMemory method. A standalone a.out

format binary is not generated.

code. On the other hand, the Oberon-2 compiler performs far less optimization than is performed
when optimization is specified with the C++ compilers. However, by comparing Oberon-2 with the
unoptimized C++ implementations, we see that the compile times for Oberon-2 are much lower
while the run-times, from Table 2, are also considerably lower.

The compilation in the Self system is not a user-requested operation, but rather is performed
as needed during program execution, a behavior that is particularly convenient during code devel-
opment. The compile times listed represent the difference in run-time between the first run, when
compilation is performed, and subsequent runs.

The code sizes also vary significantly between the language implementations. With the C++,
Sather, and Modula-3 compilers, linking was performed using 1d to generate a statically linked
a.out format binary. While the GNU compiler generates more compact code than the AT&T
compiler, the larger run-time library results in a larger executable. Modula-3’s larger run-time
system is also evident in the size of the binary. With the exception of C++, all languages provide

garbage collection so the code for this task must be included in the binary.

23

5 Conclusions

In this paper we have evaluated the object-oriented programming features supported by Oberon-2,
Modula-3, Sather, and Self. Specifically, we investigated features that support inheritance, dynamic
dispatch, code reuse, and information hiding. We compared the languages by programming a small
database application in each of them and in C++. The structure of the test application resembles
that of a number of commonly-used examples of object-oriented applications. We evaluated both
the usability of the object-oriented features we considered and also measured the performance of
publicly-available implementations of the languages.

Each of the languages considered support object-oriented programming, however they do so in
different ways. Oberon-2 provides the minimal extensions to a module-based language necessary to
support classes with inheritance. Modules form the basic building blocks of the language and type
extensions and type-bound procedures fit cleanly into this model. Oberon, due to its simplicity
and clean design, appears to be a relatively easy language to implement efficiently. The SPARC-
2.5 Oberon compiler that we measured is very fast and generates relatively efficient code without
performing extensive optimizations.

Modula-3 also adds object types a module-based language; however Modula-3 is a larger and
more complex language than Oberon-2. Modula-3 provides a number of features not found in
Oberon-2, including threads for concurrency, exceptions, and separate module interface specifica-
tions. All of these features support the use of Modula-3 in programming large systems that may
require many programmers. With both the Modula-3 and Oberon-2 implementations we mea-
sured, exclusive use of the object-oriented features in the language, namely methods in Modula-3
and type-bound procedures in Oberon-2, results in slight run-time penalties. While the SRC 2.07
Modula-3 that we measured was not as fast as the C++ implementations, the performance is due
to a limitation in the compiler and not inherent in the language itself. As Modula-3 compilers
mature, we would expect run-time performance similar to C++.

Sather abandons modules in favor of a more object-oriented approach with all code organized
into classes. This approach has yielded a simple, easy-to-use object-oriented programming language.
Instead of providing virtual functions as in C++4, Sather includes dispatched types that provide
a more general dispatch mechanism. Even though this dispatch mechanism is more expensive, a

dispatch cache can be employed to reduce the associated overhead. One goal of Sather was to avoid

24

features that mainly support programming-in-the-large and make programming-in-the-small more
difficult. Based on programming our database application, we conclude that the Sather design is
successful in achieving this goal.

Self’s prototypes with cloning give the power needed to support object-oriented programming.
In fact, the language provides flexibility in how classes are actually modeled. The dynamic nature of
the language and short compile times support rapid prototyping at some cost in run-time efficiency.

Aggressive, innovative optimization techniques have significantly reduced the run-time overhead of

Self.

6 Acknowledgements

We would like to thank Urs Hélzle, Josef Templ, Eliot Moss, Dirk Grunwald, David Ungar, Stephen
Omohundro, Dain Samples, Martin Trapp, and Ralph Johnson for their valuable help, comments,
and criticisms. We would also like to thank all those involved with the implementation of the
Oberon-2, Modula-3, Sather, Self, and GNU C++ compilers for making these tools available,

without cost, to the programming community.

References

[1] Gunther Blashek, Gustav Pomberger, and Alois Stritzinger. A comparison of object-oriented program-
ming languages. Structured Programming, 10(4):187-197, 1989.

[2] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson. Modula-3
language definition. SIGPLAN Notices, 27(8):15-43, August 1992.

[3] Craig Chambers and David Ungar. Custimization: Optimizing compiler technology for Self, a
dynamically-typed object-oriented programming language. In Proceedings of the SIGPLAN’89 Con-
ference on Programming Language Design and Implementation, pages 146-160, Portland, OR, June
1989.

[4] Sam Harbison. Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1992.

)

Urs Holzle. Personal communications. January 1993.

S,

Urs Holzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-oriented lan-
guages with polymorphic inline caches. In Proceedings of the European Conference on Object-Oriented
Programming, July 1991.

[7] Chu-Cheow Lim and Andreas Stolcke. Sather language design and performance evaluation. Technical
Report TR-91-034, International Computer Science Institute, Berkeley, CA, May 1991.

[8] Hanspeter Mossenbock and Josef Templ. Object Oberon — a modest object-oriented language. Struc-
tured Programming, 10(4):199-207, 1989.

25

Hanspeter Mossenbock and Niklaus Wirth. The programming language Oberon-2. Structured Program-
ming, 12:179-195, 1991.

Stephen Omohundro and Chu-Cheow Lim. The Sather language and libraries. Technical Report TR-
92-017, International Computer Science Institute, Berkeley, CA, February 1992.

Stephen M. Omohundro. The Sather Language. International Computer Science Institute, Berkeley,
CA, June 1991.

Heinz W. Schmidt and Stephen Omohundro. CLOS, Eiffel, and Sather: a comparison. Technical Report
TR-91-047, International Computer Science Institute, Berkeley, CA, September 1991.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1986.

David Ungar, Craig Chambers, Bar-Wei Chang, and Urs Holzle. Organizing programs without classes.
LISP and Symbolic Computation: An International Journal, 4(3):37-56, 1991.

David Ungar and Randall B. Smith. Self: the power of simplicity. LISP and Symbolic Computation:
An International Journal, 4(3):1-20, 1991.

Jack C. Wileden, Lori A. Clarke, and Alexander L. Wolf. A comparative evaluation of object definition
techniques for large prototyping systems. ACM Transactions on Programming Languages and Systems,
12(4):670-699, December 1990.

Niklaus Wirth. Programming in Modula-2. Springer-Verlag, New York, NY, 1982.
Niklaus Wirth. From Modula to Oberon. Software—Practice and Ezperience, 18(7):661-670, July 1988.

Niklaus Wirth. Type extensions. ACM Transactions on Programming Languages and Systems,
10(2):204-214, April 1988.

Wayne Wolf. A practical comparison of two object-oriented languages. IEEE Software, 6(5):61-68,
September 1989.

26

