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Topological quantum phases of matter are often characterized by the presence of fractionalized

quasiparticles, which exhibit non-trivial braiding statistics or carry fractional quantum numbers,

or of protected gapless surface states. In this thesis, we study topological phases in two and

three spatial dimensions, from the perspective of searching for new exotic quantum phases and of

characterizing their experimental signatures.

We first study topological defects in fermionic paired superfluids and discover that in the

presence of a multiply quantized vortex, such a state hosts unpaired fermions in the BCS regime.

We predict that these unpaired fermions will result in an experimentally measurable deviation of

the system’s angular momentum from its value in the BEC regime. Focusing on two-dimensions,

we then study superconductors coupled to dynamically fluctuating electromagnetism, and establish

a universal framework for studying the low-energy physics of such systems. We derive topological

field theories describing all spin-singlet superconductors which naturally capture the interplay of

symmetry and topology in these gapped states.

The remainder of this thesis is focused on a novel class of long-range entangled states of

matter, known as “fracton” phases, in both two– and three-dimensions. These phases exhibit

an intriguing phenomenology, most surprising of which is the presence of excitations which are

immobile in isolation. Studying the non-equilibrium dynamics of gapped fracton phases, we discover

that they naturally exhibit glassy quantum dynamics in the absence of quenched disorder, and hence

may have potential technological applications as robust quantum memories. Finally, we conclude

with a description of fracton phases as higher-rank tensor gauge theories and discuss the emergent

phases of matter in which a finite density of fractons or their bound states may exist.
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Prologue

know the place for the first time,” as V became fond of saying in her later years. Unbeknownst

to most, concurrent with the events recounted in A. Square’s memoir Flatland [1]—for which he

was imprisoned under the false pretext of heresy—another challenge to the cultural hegemony

was emerging. It began with Vera Ball Stevens (or V), who, keen of mind and intent on escaping

Flatland’s Code, embarked on a voyage. Her reasoning was simple—since Flatland was unbounded,

a realm without end, eventually she would reach the hinterlands, beyond the purview of the Code.

Before starting, she tied one end of a long elastic rope to her house so as to leave behind a trail

in case she ever decided to return. Since this is not an account of her long and arduous journey,

we travel forwards in time to when she found herself back at her house. Convinced she had

followed a straight path throughout, her bewilderment soon gave way to the conviction that she

was living on a closed surface. Armed with this startling revelation, V put together a team, with

whom she devised a series of tests designed to unearth the nature of this surface. They found

that no matter how much they wiggled V’s rope (keeping the two ends fixed to her house), they

could not reel it in, proving they were not living on a 2-sphere. They then connected each (two-

dimensional) tree with rope, with each tree forming the vertex of a triangle, to find that # Trees

+ # Triangles - # Pieces of Rope used = 0, firm evidence that Flatland was a torus. Thus began

an unprecedented age of enlightenment, leading eventually to the formation of the Republic of

Flatland. This is an account of the years following that eventful chapter in Flatland’s history, in

which we follow the attempts of Benny Square to follow in the footsteps of his academic ancestor.

Caveat Lector : This thesis satisfies periodic boundary conditions.



Chapter 1

Introduction: Flatland in the Global Era

In which Benny Square,

having mastered theorems egregious,

discovers his degenerate twins.

Consider the following sentence from Thomas Pynchon’s Gravity’s Rainbow :

“Decisions are never really made—at best they manage to emerge,

from a chaos of peeves, whims, and hallucinations.”

Broken into its most fundamental constituents, this sentence is comprised of 53 consonants, 38

vowels, and 5 punctuations. Taking a reductionist’s point of view, in which the behaviour of all

complex structures can be inferred from their fundamental building blocks, we should then be able

to recreate all aspects of this particular sentence simply by knowing the rules governing letters and

how they combine (interact) to form words. While this is sufficient information for us to understand

how the word “emerge” forms from the letters e, m, e, r, g, and e, in order to reproduce the entire

sentence we require a new set of rules—those governing words. We are thus examining the sentence

at a larger scale now, one at which the rules governing letters cease to be relevant and at which it

is more instructive to think not in terms of the fundamental constituents, but rather a different set

of objects—in this case, words. In this sense, the semantic information contained within a sentence

emerges from the words and sounds contained within it, and on their organisation in relation to

each other. Even though the sentence may be broken into its fundamental parts, taken as a whole
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it contains more information than those parts combined; there is a rhythm to the sentence that

would be lost when described in reductionist terms1 .

If literature isn’t quite your speed, consider as Laughlin does (in A Different Universe [3]) a

painting by your favourite French impressionist. While “daubs of paint” comprising the painting

lack any structure, the painting remains interesting as a whole; like Pynchon’s sentence, its essence

is its organization. Or take for instance the biological complexity of living organisms, once thought

to be encoded entirely in DNA. Instead, as it turns out, DNA does not encode emergent properties,

which instead switch on at the scale of proteins2 .

At first glance, it would appear that physics at the very least would take kindly to a reduc-

tionist point of view, since much of the 20th century played witness to a remarkable number of

developments: in the understanding of elementary particles and their interactions with light, the

structure of atoms and molecules, and most spectacularly, the development of the Standard Model,

which provides a unified framework for all forces excluding gravity. Quantum electrodynamics,

which codifies interactions between light and matter by marrying together quantum mechanics and

special relativity, allows one to calculate to astonishing precision the properties of elementary par-

ticles or small groups thereof, remaining to this day the most quantitatively accurate theory ever

developed.

In our every day lives, however, one simply does not encounter the elementary particles gov-

erned by the principles of quantum mechanics—developed by Heisenberg, Schrödinger, Dirac, Pauli,

amongst others—or of quantum electrodynamics, or the massive astrophysical objects governed by

Einstein’s theory of General Relativity. Instead, we are faced with macroscopic objects comprised of

a truly enormous number of interacting particles3 . Yet, given how well our current understanding

of the laws governing the fundamental particles and their interactions seems to work, deciphering

the behaviour of electrons interacting in a crystal shouldn’t really be that complicated. In fact,

1 In philosophical circles, a great deal has been made about the distinction between weak and strong emergence [2],
with this linguistic example displaying the former. Such distinctions have no place in this thesis.

2 This is a relief for the author, who was dismayed on learning that a tomato possesses more genes than him.
3 For context, the number of electrons in a copper penny ∼ 1024 while the number of stars in the Milky Way

galaxy ∼ 1011.
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taking a reductionist point of view, the study of anything that doesn’t inform the study of the

“fundamental” laws is merely “applied” physics as once the fundamental laws governing the fun-

damental constituents are known, we have established a theory governing all known things. So the

laws governing electrons beget the laws governing many-body physics and thermodynamics beget

the laws of chemistry beget the laws of molecular biology and so proceed ad infinitum. All one has

to do then is to feed the fundamental laws into a computer, wait for the desired computation to

finish running, and call it a night.

Thus Spake Anderson

There is much that is appealing about reductionism; after all, it seems to fit well with our

everyday experiences. Fortunately, common sense does not provide a blueprint for how nature

seems to behave. One obvious problem with a reductionist approach has to do with the limits of

human comprehension and of computational power, and with the inherent complexity of quantum

mechanics. Suppose we wish to simulate a system comprised of n quantum mechanical particles,

each of which can be in one of two states, such as the spin of an electron or the polarization of a

photon. The dimension of the total Hilbert space for such a system is 2n, such that each state of

the system is described by a 2n-dimensional vector. In other words, the number of classical bits

required simply to store a single state is 2n while to implement any unitary operations on this

state would require storing a matrix with 22n elements. With a classical computer made up of

every atom in the universe, we would still not be able to store a single state, let alone operate on

it, when n = 100. There are ∼ 1023 electrons in a macroscopic solid and therein lies the inherent

difficulty of taking a reductionist approach for studying many-particle systems. Even if some higher

dimensional beings could, in principle, compute on these gigantic Hilbert spaces and provide us

with a solution, the limits of human cognition would render any such solution incomprehensible.

Even in the event that we could fathom these large dimensional Hilbert spaces, it is unclear how

much, if any, physical insight could be gleaned from such a perspective. Besides, such an inefficient

description of nature seems unsatisfying, especially when physics at smaller scales tends to admit
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elegant mathematical descriptions.

Where does this leave those of us who are wont to study condensed matter physics, a field

whose primary goal is, broadly, understanding the organizational principles underlying the collective

behaviour of complex assemblies of particles? Thankfully, contrary to what that ancient philosopher

Democritus would have you believe, the truth is emphatically not all atoms and the void. Instead,

the modern point of view, espoused by most physicists today and encapsulated by the title of Phil

Anderson’s beautiful article, is that “More is Different” [4]. The underlying concept behind this

is that of emergence, the idea that the “whole becomes not merely more, but very different from

the sum of its parts [4]”. In other words, in systems with large numbers of degrees of freedom

interacting with each other, complex collective behaviour may arise from the constituent parts,

often leading to qualitatively new phenomena at macroscopic scales.

Scale + Complexity = Emergence.

At these larger scales, new degrees of freedom emerge which obey their own set of rules, which

often look drastically different from those obeyed by the microscopic degrees of freedom. In terms

of these emergent degrees of freedom, the system often admits a simple description, with the macro-

scopic behaviour governed by a simple set of rules. All this despite the seemingly insurmountable

complexity of a many-body system!

The simplest example of a complex system admitting a simple description in terms of emer-

gent quantities is that of liquid water. There is no real sense in which we can associate a notion

of fluidity with single molecule of H2O or of viscosity, and yet, these are terms one regularly uses

when describing the behaviour of a macroscopic number of these molecules, which are violently

colliding with each other. The key insight from emergence here is to coarse-grain away the com-

plicated behaviour of the microscopic molecules and to instead focus on macroscopic quantities,

described by averaging over large numbers of molecules. The appropriate quantity in this context

is the average velocity field, which obeys the Navier-Stokes equation. In this sense, we can describe

the macroscopic behaviour of water through a set of effective hydrodynamic rules governing the



6

continuous fluid into which the molecules have collectively organised. Such an effective description

allows us to capture phenomenon such as viscosity, turbulence, and vorticity, which were invisible

at the scale of individual water molecules.

This coarse-graining procedure is behind one of the most profound ideas of modern physics—

the renormalisation group (RG) approach developed by Wilson [5] and others (see [6] for an excellent

review). RG encodes the notion of coarse-graining in a precise sense, providing insights into why,

at large distance scales, complex microscopic behaviour gives way to relatively simple macroscopic

systems, which can only behave in ways determined by the fixed points of the RG flow. Studying

these RG flows and their fixed points has proven to be one of most powerful methods for investi-

gating phases of matter and the transitions between them. Within this framework, effective field

theoretic descriptions of complex interacting systems emerge from the collective behaviour of large

numbers of degrees of freedom, leading to phenomena which are not manifest in the rules governing

the fundamental constituents of the system. These effective descriptions provide simple models

defined in terms of the relevant degrees of freedom at low energies, allowing us to delineate the key

features governing that system.

Leapfrogging from Landau . . .

While water provided a simple and familiar example for understanding the nature of emer-

gence in many-body systems, there is another familiar phase of matter which, unlike liquid water,

is governed by the principles of quantum mechanics—the metallic state. Electrons, being fermions,

obey the Pauli exclusion principle which prohibits any two electrons from occupying the same quan-

tum mechanical state. In a metal, the microscopic degrees of freedom are the conduction electrons,

which are forced to occupy higher and higher energy levels sequentially, forming a Fermi sea at low

temperatures. When interactions between the electrons are weak, only the states near the Fermi

surface are affected, leaving us with a simple description of the metallic state.

In cases when the interactions between the constituent electrons are strong compared to

their kinetic energy, one would näıvely expect that the emergent macroscopic properties would be
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significantly altered from the non-interacting Fermi sea of electrons. Remarkably, the properties

of such systems are experimentally found to closely resemble those of non-interacting electrons.

This seeming discrepancy is resolved by Landau’s celebrated Fermi liquid theory [7], wherein the

macroscopic properties of such materials are described in terms of weakly interacting quasi-particles,

which behave much in the way that electrons do (albeit with an effective mass which may differ from

an electron’s by several orders of magnitude). A quasi-particle may be thought of as an electron

dressed by the quantum fluctuations of its neighbouring electrons, allowing us to effectively describe

the system of strongly interacting electrons as one of weakly interacting quasi-particles with Fermi

liquid behaviour.

An even more striking example of emergent phenomena is that of spontaneous symmetry

breaking, amongst the most important concepts in the physics of many-body systems. The funda-

mental laws governing elementary particles have a high degree of symmetry, being invariant under

translations, rotations, reflections, and time-reversal amongst others. Yet, many of the macroscopic

structures we encounter every day break these symmetries. Ice, the solid phase of water, breaks

translational and rotational symmetries. Similarly, crystals break the continuous translational sym-

metry of space. As it turns out, most of the well-known phases in condensed matter physics, such

as superconductivity, magnetism, and Bose-Einstein condensation, are explained by the fact that

the thermal or ground state of the system does not obey its full symmetry.

Strictly speaking, spontaneous symmetry breaking (SSB) is only well defined in the ther-

modynamic limit i.e. a system can only break a symmetry spontaneously when the number of

constituent particles becomes infinite. It is in this sense that SSB is an emergent phenomenon,

since it does not occur for any system with finite degrees of freedom but emerges in the macro-

scopic limit. A particle moving in a one-dimensional double-well potential provides a good example

for this—this system admits two degenerate ground states, with tunnelling between the two states

resulting in a unique ground state given by the superposition of the degenerate states. However, the

tunnelling probabilities vanish in the thermodynamic limit, thus partitioning the Hilbert space into

mutually inaccessible sectors and leaving the system stuck in one of the two degenerate minima.



8

More generally, for any finite system size, the free energy for a quantum statistical system is an

analytic function. Since all thermodynamic quantities, such as the entropy or heat capacity, are

given by derivatives of the free energy, they too do not display any non-analyticities. It is only the

thermodynamic limit that these quantities can diverge, signalling a phase transition.

The task of classifying various phases of matter is hence aided greatly by the concepts of

emergence and symmetry, since we can now simply categorize quantum phases in terms of the sym-

metries they break. A standard tool in investigations of SSB is that of the order parameter, a local

phenomenological quantity which emerges from the complex collective behaviour of the constituent

degrees of freedom. In the thermodynamic limit, the order parameter vanishes in the symmetric

(disordered) state and acquires a non-vanishing value in the symmetry broken (ordered) phase.

In what has since become a cornerstone of modern condensed matter physics, Landau proposed a

classification scheme for different phases of matter based on the unbroken symmetry of the dynam-

ics governing the system and the residual symmetry of the ground state in the symmetry broken

state. Within this framework, the macroscopic properties of the phase, along with phase transitions

between phases with different patterns of symmetry breaking, are captured by the order parameter

field, which is a simply a mapping from physical space to order parameter space. The rules govern-

ing this behaviour are vastly simpler than those describing the complicated interactions between the

microscopic particles, a simplification which has allowed us to understand a whole zoo of quantum

phases. For instance, a Bose-Einstein condensate spontaneously breaks U(1) particle number con-

servation, with the corresponding order parameter a complex number with unit modulus; a nematic

liquid crystal, on the other hand, spontaneously breaks rotational symmetry and is described by a

rank-2 symmetric tensor order parameter. In this elegant formalism, superconductivity is simply

the result of spontaneous breaking of U(1) charge conservation4 .

4 In the BCS theory of superconductivity, the electron charge is effectively screened such that the response functions
of the charged system are argued to be qualitatively similar to those of a neutral superfluid, such that the fluctuations
of the electromagnetic gauge field are irrelevant at long distances. The novel physics that arises when considering a
system of charged electrons coupled to dynamically fluctuating electromagnetism is the subject of § 3.
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. . . to Laughlin

Symmetry as an organisational principle is a theoretically elegant concept, one which has

been vindicated by several decades of experiments. And yet, despite the remarkable success of this

theory, there remained those brave enough to venture forth into the theoretical hinterlands and

ask, “Who else goes there?” Could there be heretofore undiscovered principles by which nature

assembles, insensitive to the local probes launched so far?

The first hints of physics beyond the symmetry breaking paradigm appeared with the discov-

ery of the Berezinksii-Kosterlitz-Thouless (BKT) transition in two-dimensional superfluids [8, 9]. A

superfluid is a low-temperature state formed by a many-body quantum system comprised of electri-

cally neutral particles, characterised by the absence of dissipation and the presence of irrotational

flow (neglecting quantum vortices). According to the Mermin-Wagner-Hohenberg theorem [10, 11],

which states that continuous global symmetries cannot be spontaneously broken below three di-

mensions at finite temperatures, any breaking of the global U(1) symmetry will be restored by

the gapless Goldstone mode, destroying the spontaneous order. In other words, based on sym-

metry arguments alone, there is no reason to expect a finite temperature phase transition in a

two-dimensional system of neutral particles with a conserved U(1) symmetry. What BKT found

instead was a novel transition separating a high temperature phase from one at low temperatures.

A characteristic feature of superfluids is that they host quantised vortices (point defects in two-

dimensions), around which the phase of the order parameter winds by an integer multiple of 2π,

in response to external rotation. The BKT transition is a result of the proliferation of these topo-

logical defects in the superfluid phase, resulting from a delicate balance between the energy and

entropy of the system. Below a critical temperature, it is too energetically costly to produce iso-

lated vortices, which remain bound in vortex-antivortex pairs; at temperatures above the critical,

the system can lower its free energy by proliferating vortices, and the BKT transition is precisely

the temperature driven transition from bound vortex-antivortex pairs to unbound vortices. We

have just encountered our first example of a phase (albeit classical) distinguished not in terms of
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Figure 1.1: Resistivity measurements for the Integer Quantum Hall state.

its symmetry properties, but rather by the nature of its topologically non-trivial excitations.

Not long after the description of the BKT transition, the fundamental role played by topology

in the physics of interacting quantum many-body systems came to the fore with the dramatic

discovery of new quantum phases of matter, profoundly distinct from anything previously observed

in nature and unforeseen by any theory. The discovery of the Quantum Hall effect (QHE) by

von Klitzing et al [12], followed shortly thereafter by that of the Fractional Quantum Hall effect

(FQHE) by Tsui et al [13], unearthed emergent macroscopic phenomena which evade any classical

descriptions and hence require an intrinsically quantum description.

Prior to the discovery of the QHE, it was well established that in a two-dimensional system

of charged particles, a voltage difference is produced transverse to the current in the conductor

and to the applied magnetic field—this is the classical Hall effect. What von Klitzing found was

that, when cooled to low temperatures, the conductivity of a two dimensional electron gas in a

perpendicular applied magnetic field is quantised to take precisely integer values (in units of e2/h).

Specifically, they found that the Hall resistivity ρxy sits on a plateau for some range of magnetic

fields before suddenly jumping to the next plateau, where the resistivity on each plateau takes the

value

ρxy =
h

e2

1

ν
, ν ∈ Z.
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For the range of magnetic fields for which ρxy sits on a plateau, the longitudinal resistivity ρxx

vanishes, changing only when ρxy moves to the next plateau (see Fig. 1.1).

The surprising feature of this data is not that the Hall resistivity is quantised to take integer

values—indeed, it is easy to show that Hall resistivity for ν filled Landau levels is exactly h/(e2ν).

Instead, the surprise is the existence of the plateaus, over which the quantisation persists for a

range of applied magnetic fields. Typically, experimental systems are dirty and full of impurities,

with large amounts of disorder obscuring the key physics of the system. The underlying physics of

the IQHE however is not only robust to, but relies on, having disorder in the system—for vanishing

disorder, the plateaus are expected to vanish entirely! It is worth pausing to marvel at this result,

as it encodes an emergent macroscopic phenomenon which, in the presence of disorder, is described

by exactly an integer5 .

The quantisation of the Hall conductivity and the robustness against disorder provide strong

clues regarding the novel physics governing the QHE. It turns out that this phenomenon can be

understood without accounting for the interactions between electrons, by considering the single-

particle physics of electrons spatially confined to two-dimensions and moving in an applied magnetic

field. Recall however that due to the Pauli exclusion principle, electrons are not allowed to occupy

the same quantum states and are thus aware of each other’s presence. Despite this simple non-

interacting picture, the physics of the QHE is an emergent macroscopic phenomenon, since it

requires the presence of a macroscopic number of electrons occupying the macroscopic number of

degenerate states in a Landau level. The precise quantisation in the QH regime is a consequence of

gauge invariance, as shown by Laughlin, who related the quantised conductivity to the adiabatic

charge transport in the Thouless pump [14, 15]. In a landmark paper, Thouless and collaborators

then explicitly demonstrated that the quantised conductance of an IQH fluid, which is a gapped

incompressible state of matter, is related to the first Chern number of filled Landau levels [16]. The

Chern number is a topological invariant which only takes integer values and is defined in terms of

5 The value of this integer has been measured to a precision of a part in 109; before comparing this to precision
atomic physics experiments, remember that unlike those, quantum Hall samples are teeming with impurities.
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the global topological properties of the band structure of non-interacting electrons; specifically, the

Chern number of a filled band is given by the integral of its Berry curvature over the entire Brilloun

zone. By relating the quantised Hall conductivity to a topological invariant, the TKNN formula

lays bare the physics governing the macroscopic behaviour of a QH system; unlike quantum phases

of matter with spontaneously broken symmetries, the essential physics of the QHE is captured not

by some local order parameter, but rather by a global (non-local) quantity, sensitive only to the

topology of the band structure. The robustness of the QHE to disorder is a direct consequence of

this; unless the disorder is too strong, it only affects local properties of the system, leaving global

quantities unchanged.

The IQH state is an example of a gapped quantum phase of matter beyond Landau’s sym-

metry breaking paradigm, which evades description as a symmetry broken state and is instead

described in terms of global topology. It is important to note that the topology here refers not to

the topology of any physical sample, but rather to the abstract space of quantum ground states of

the local, gapped Hamiltonian. As such, it is an example of a class of quantum phases of matter

which are distinguished by the quantum mechanical properties of their wave functions—in this

case the Berry curvature—instead of by the breaking of global symmetries. An even more strik-

ing example of such a quantum phase of matter was discovered in the Fractional Quantum Hall

effect, where plateaux in the Hall resistivity were seen to occur at fractional filling fractions [13].

Unlike the IQHE, which can be described in terms of non-interacting electrons, a FQH liquid is a

strongly correlated system, where interactions between electrons are responsible for the emergent

behaviour displayed by this phase. Most striking of these is the phenomenon of fractionalization,

wherein quasi-particle excitations above the ground state carry a fraction of an electron’s charge.

This is rather astonishing—after all, isn’t the charge of an electron a fundamentally indivisible

quantity? And yet experiments provide clear evidence for excitations carrying, for instance, charge

e/3 [17, 18].

There is no paradox here, as fractionalization is (yet another) example of hitherto unexpected

phenomena emerging in systems of interacting quantum many-body systems. In the FQHE, the
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fractional charge and statistics of quasi-particles are a result of a drastic reconfiguration of the

microscopic electrons, reflecting a pattern of long-range entanglement in the quantum ground state.

In other words, the Hilbert space can no longer be described in terms of a direct product of local

Hilbert spaces and instead obeys certain local constraints, forcing the ground state wave function

into a complicated superposition of basis states. Once again, we see that there exist phases which

are not characterised in terms of symmetry breaking or a local order parameter but are instead

described by global, non-local properties of their ground states. Such gapped quantum phases

with a pattern of long-range entanglement in their ground states, examples of which include the

experimentally observed FQH states and the theoretically predicted quantum spin liquids [19–21],

are said to be topologically ordered6 phases.

Various remarks are in order regarding the nature of topological order7 :

� Besides inextricably linking the concepts of emergence, long-range entanglement, and frac-

tionalization, the FQHE also brings to the fore the remarkable concept of universality in

many-body systems. Displaying profound physical insight, in a result whose importance

cannot be overstated even decades later, Laughlin proposed an ansatz for the many-body

ground state of the ν = 1/3 FQH liquid [24]. Despite not being the exact ground state for

a system of interacting electrons in a strong magnetic field, the Laughlin ansatz accurately

captures the universal low energy physics displayed by the FQH state. In other words,

the Hamiltonian for which Laughlin’s wave function is the true ground state and the real,

physical Hamiltonian belong to the same universality class and hence display the same

emergent macroscopic behaviour.

� The universal long-distance physics of topologically ordered states is effectively captured by

a topological quantum field theory. This description encapsulates the intrinsically non-local

character of states with topological order, which endows them with a robustness against

6 In contrast, IQH states possess invertible topological order [22], since they do not host any fractionalized
excitations but still cannot be smoothly connected to a product state on account of the presence of edge states with
non-vanishing chiral central charge.

7 The reader is referred to the excellent set of lecture notes by David Tong [23] for a detailed review of the
Quantum Hall effect.
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arbitrary local perturbations, and correctly predicts the fractionalization patterns of quasi-

particles.

� Unlike symmetry breaking, which can occur in classical statistical systems, the phenomenon

of long-range entanglement (and thus also topological order) is intrinsically quantum. The

presence of long-range entanglement implies that the Hilbert space of the system is lo-

cally constrained, with the fundamental degrees of freedom restructured in a particular

way, giving rise to complex macroscopic behaviour. The appropriate theoretical framework

for describing such locally constrained Hilbert spaces is that of gauge theory, with Weg-

ner’s Ising gauge theory being an early example of a long-range entangled phase with Z2

topological order [25].

Ok, enough commenting on the nature of topological order. Let’s parrot Billy Pilgrim and

come unstuck in time to the early aughts8 .

The New Cartographers

The years ensuing the discoveries of the integer and fractional quantum Hall effects saw many

theoretical developments in the field of gapped topological phases of matter, especially in two-spatial

dimensions. Haldane, for instance, realised that the key ingredient for IQH behaviour in a lattice

model of fermions was not an external magnetic field but rather the breaking of time-reversal

symmetry [26]. In the meantime, Wen, amongst others, realised that the low energy behaviour

of two-dimensional topological order is neatly encapsulated in the Chern-Simons topological field

theories [27–29] studied by Witten [30]. An unanticipated breakthrough was made by Kitaev, who

realised that non-Abelian anyons—excitations with non-Abelian braiding statistics which appear in

certain quantum Hall states, such as the Moore-Read Pfaffian at filling fraction ν = 5/2 [31]—could

provide a viable platform for fault-tolerant quantum computation [32]. Earlier, in a remarkable

result of their own, Moore and Read discovered a profound connection between the bulk wave

8 An unfortunate term referring to the first decade of the 21st century, a perversion of the almost-synonym for
“anything” familiar to that Danish prince who never gave Ophelia aught.
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function of a QH state and the conformal field theory (CFT) living on the boundary of that

state [31]. A comprehensive discussion of these developments and other important advances may

be found in [33].

An open question remained whether explicitly breaking time-reversal and parity symmetry

was required in all topological states of matter. This was answered in the negative by the theoretical

prediction of the quantum Spin Hall effect (QHSE) [34–38]. This novel phenomenon occurs in

time-reversal symmetric phases built out of non-interacting fermions in two- and three-spatial

dimensions, which exhibit a quantised bulk response encapsulated by a topological invariant not

entirely dissimilar to the Chern number in IQH states. A key feature of these states is the presence of

gapless edge excitations which are robust against arbitrary local perturbations, including disorder,

but crucially, this protection lasts only as long as the perturbations are themselves invariant under

time-reversal symmetry.

These predictions were followed by rapid developments in the classification and characterisa-

tion of quantum phases of matter—both in and out of equilibrium, both topological and not—with

large swaths of previously hidden phenomena uncovered by those charting the endlessly fascinating

landscape defined by systems of many interacting particles. Instead of following these developments

gradually, let’s confront this landscape suddenly and all at once9 . A panorama of quantum phases

of matter in equilibrium is depicted in Fig. 1.2, with a (decidedly less scientific) depiction which

includes phases arising in a non-equilibrium setting shown in Fig. 1.5.

The bulk of this thesis is concerned with the study of gapped quantum phases of matter,

mostly in equilibrium, so let us focus first on the right-half of Fig. 1.2. A central notion in the

classification of local gapped Hamiltonians in terms of topology is that of adiabatic continuity.

Locality here implies that the Hamiltonian is a sum of terms which act on spatially localized regions

and we assume here that the system has a unique ground state (on an infinite geometry) with a

finite gap to all excitations. Two quantum states of matter are considered to be in the same phase

9 Both so as to mimic the rapid onslaught of new advances which has occurred over the past decade and also to
avoid testing the patience of even the most indulgent of readers.
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Figure 1.2: A broad view of the current landscape of equilibrium quantum phases of matter.

if their Hamiltonians can be continuously deformed into each other without ever closing the gap i.e.

if they are adiabatically connected. This allows for a natural partition of the space of all gapped

Hamiltonians into equivalence classes, with all states within the same class being adiabatically

connected. To avoid accidentally distinguishing systems which differ only by some frozen degrees

of freedom, we allow the addition of a trivial atomic insulator, such that the Hamiltonian acting

on this new part of the Hilbert space is simply a sum of strictly local non-overlapping terms.

Intrinsic Topological Order

In the absence of any global symmetries, and given both the spatial dimensions and the

statistics of the microscopic constituents (bosons or fermions), we can partition the space of all

gapped local Hamiltonians into equivalence classes as shown in Fig. 1.3. This landscape consists of

connected regions throughout which the gap remains open, separated from each other by intervening

gapless states. The simplest of these regions is the trivial topological phase, which is adiabatically
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Figure 1.3: Distinct topologically ordered phases of fermions in two-spatial dimensions. White
circles represent gapped topological phases with the gap closing at the blue borders. Examples
include the trivial phase, which includes the atomic insulator, distinct IQH states labelled by
integer filling fractions, FQH states at distinct filling fractions, and Z2 topological order.

connected to the trivial atomic insulator. All other disconnected regions are said to possess intrinsic

topological order and cannot be smoothly deformed into the trivial phase without closing the gap.

Here, the term intrinsic refers to the fact that the topological nature of these states does not rely

on any global symmetries.

A modern viewpoint for distinguishing states with intrinsic topological order from the topo-

logically trivial phase involves the notion of entanglement. Specifically, all gapped quantum phases

of matter within the trivial phase are short-range entangled (SRE)10 i.e. their ground state wave

function can be smoothly deformed into a direct product state (the ground state for the atomic

insulator) by a series of local unitary operations, without encountering a phase transition. In con-

trast, topologically ordered states show a pattern of long-range entanglement (LRE) in their ground

state wave functions [39–41], with no series of local unitary operations able to smoothly interpolate

between two distinct topologically ordered phases without the gap closing or encountering a phase

transition.

Topologically ordered phases, examples of which include the fractional quantum Hall states

10 There are duelling definitions of what constitutes a SRE gapped phase. One states that a SRE phase is one with
a unique ground state on any closed spatial manifold. The point of view taken in this thesis defines an SRE state as
any state which is smoothly deformable into a direct product state without undergoing a phase transition.
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and Z2 spin liquids, exhibit striking features including excitations with fractionalized statistics and

quantum numbers, and locally indistinguishable degenerate ground states11 on topologically non-

trivial closed spatial manifolds [24, 31, 42–47]. In general, it has now been understood that the

correct mathematical framework for understanding topological order in d = 2 spatial dimensions

is that of tensor category theory, given that the universal long wavelength physics of the phase is

captured by a topological quantum field theory (TQFT). Specifically, quasi-particles—anyons—in

such phases are described by objects in a modular tensor category [48, 49]. This can be seen

explicitly in Kitaev’s quantum double models, wherein anyons are labelled by the irreducible group

representations of the quantum double of a finite gauge group G, Z(G) [50]. In addition, the

universal low-energy physics of a large class of topological states is simply described in terms of the

string-net Hamiltonians introduced by Levin and Wen [51], which are exactly soluble models for

non-chiral topological orders i.e. those with a vanishing thermal Hall conductivity. Compared to

topologically ordered phases in d = 2, the characterization and classification of topological order in

d = 3 is less understood, but has been studied through exactly solvable models such as the Kitaev

model [52], color codes [53], and models which exhibit string-net condensation in d = 3 but are not

exactly solvable [51].

Symmetry Protected Topological Phases

So much for topologically ordered states in the absence of any symmetries. Prior to delving

into the classification of gapped topological phases, we had briefly encountered the quantum Spin

Hall effect. Does this phase fit into the framework developed so far and if so, where? It turns out

that the topological classification of quantum phases becomes more refined when certain symmetries

are imposed on gapped local Hamiltonians, with the QHSE being just one example of what we now

understand as the class of symmetry protected topological (SPT) phases. Most symmetries under

consideration are expected to be generically present in materials, such as time-reversal symmetry

11 States which are LRE but host no fractionalized excitations and have a unique ground state on arbitrary closed
manifolds, such as the IQH states, are said to possess invertible topological order.
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Figure 1.4: In the presence of a symmetry group G, the space of SRE gapped local Hamiltonian
obeying that symmetry (contained within the red ellipse) gets partitioned into distinct SPT
phases which cannot be continuously deformed into each other without closing the gap or
breaking the symmetry G.

or U(1) charge conservation. While the former is broken in the presence of a magnetic field and the

latter in superconductors, these are non-generic examples and it is typically reasonable to study

systems with some unbroken symmetry at low energies (which could, in principle, be the residual

symmetry of some larger symmetry group which gets restored at higher energies).

Suppose we impose a symmetry group G on the class of local gapped Hamiltonians which,

in the absence of that symmetry, belonged to the topologically trivial phase. In other words,

suppose we start from the set of all SRE states, which lack any intrinsic topological order and are

adiabatically connected to the atomic insulator, and restrict ourselves to Hamiltonians respecting

the symmetry G. Let us further demand that these states admit only a unique ground state since

we are not interested in symmetry-broken states here. In the presence of this symmetry G, states

which were continuously deformable into each in the absence of the symmetry may now become

separated, as shown in Fig. 1.4. Thus, distinct SPT phases protected by the same symmetry

cannot be smoothly deformed into each other without undergoing a phase transition as long as

the deformation preserves the symmetry. On the other hand, all such distinct SPT states can be
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adiabatically connected to the same direct product state without encountering a phase transition

when the deformation breaks the symmetry.

Thus, SPT phases are gapped quantum phases of matter which, despite being short-range

entangled, cannot be adiabatically transformed into trivial product states in the presence of an

unbroken global symmetry [54–56]. Unlike states with intrinsic topological order, SPT phases have

non-degenerate ground states and do not possess fractionalized excitations, but are described by

topological invariants which are robust against local, symmetry-preserving perturbations. A dis-

tinctive feature of these topologically non-trivial phases, of which the 1d Haldane phase for spin-1

chains [54, 57–59] and topological insulators [34–38] are paradigmatic examples, is the presence

of non-trivial boundary excitations12 . The mathematical framework for the classification of SPT

phases has been recognised as that of group cohomology theory [56], and while early studies fo-

cused mainly on on-site symmetries such as time-reversal or charge conservation, this has recently

been extended to crystalline symmetries, leading to the prediction and observation of topological

crystalline phases (see e.g. [61] for a review of recent progress in this direction).

Symmetry Enriched Topological Phases

Instead of starting with the class of SRE states (without intrinsic topological order) and

studying the finer classification which appears with the addition of global symmetries, one could

consider starting from any of the classes with topological order and restrict attention to the subclass

of Hamiltonians with global symmetryG. This leads to the concept of symmetry enriched topological

phases: states which in the absence of any symmetry possess the same intrinsic topological order and

are adiabatically connected, but in the presence of a global symmetry display distinct patterns of

symmetry fractionalization and cannot be continuously deformed into each other without breaking

the symmetry or going through a phase transition. SET phases provide a platform on which to

study the interplay between symmetry and topology in quantum phases of matter, and much recent

12 For instance, an interacting d = 3 SPT state can host either a protected gapless surface state, a symmetry
breaking state, or a symmetry preserving but topologically ordered state on its surface [60].
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progress has been made in understanding these phases, at least in two-dimensional systems.

It is worth noting that there also exists a remarkable and intimate relationship between

(LRE) topologically ordered phases and (SRE) SPT phases [62–64]: given an SPT phase protected

by a discrete symmetry G, there exists a duality between that SPT phase with gauged symmetry

G and a topologically ordered phase whose fusion rules are derived from the group multiplication

rule of G. This provides an alternate route for studying SET phases, which occur in complicated

interacting systems and are typically more challenging to study than their SPT counterparts.

All Things Besides

All this to say that gapped quantum phases of matter comprise a substantial chunk of the

condensed matter landscape and much has been understood about the topological nature of these

systems in a fairly short amount of time. There is still the matter of gapless phases of matter

(left-half of Fig. 1.2). Some of these we’ve already encountered in the form of symmetry breaking

states, such as superfluids, which are guaranteed a gapless mode thanks to Goldstone’s theorem.

Novel topological gapless states have also received much theoretical and experimental attention

lately. Most prominent amongst these are Weyl semi-metals, realised in systems of non-interacting

d = 3 fermions, which host topologically protected point-like crossings of two bands and host exotic

Fermi arc surface states [65, 66]. Also of much interest are long-range entangled gapless phases

which, despite the absence of a bulk gap, host excitations with fractionalized quantum numbers

and, in certain exactly solvable models, have been conjectured to exhibit topologically protected

gapless edge modes [67]. Gapless quantum spin liquids are a familiar example of gapless long-range

entangled states which can display a plethora of interesting symmetry fractionalization patterns,

but such states have so far evaded the clean mathematical classification which applies to gapped

topological phases; this is primarily due to the breakdown of notions of “adiabaticity” in the absence

of a well-defined bulk gap. Much more could be said about quantum phases in equilibrium: an

entirely different thesis by an author with entirely different biases and motivations could easily have

devoted the preceding pages to a discussion of phase transitions and critical phenomena, including
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the remarkable concept of deconfined quantum criticality [68]. The reader is left to their own

(electronic) devices to track down the appropriate references for these matters.

Recent advances in the cooling, trapping, and manipulation of atoms in atomic, molecular,

and optical systems, in concurrence with the development of novel methods in condensed matter

systems, have allowed one to study, in a controlled manner, systems of strongly interacting quan-

tum many-body systems. This has led to a resurgence of interest in understanding the dynamical

behaviour of closed quantum systems. Unlike traditional formulations of quantum statistical me-

chanics, which implicitly assume that the system of interest is in contact with an external reservoir,

recent studies have focused on isolated quantum systems not coupled to any such reservoir. The

central question of interest regarding such an interacting, closed many-body quantum system is

whether, after an arbitrary long time, it thermalizes or remains localized. Thermalization in a

closed quantum system occurs when the system is able to act as a reservoir for its subsystems;

in such cases, even though the system undergoes unitary evolution, all information regarding the

initial state of the system is rendered inaccessible since all local quantities appear thermal. Local-

ized states, however, fail to act as reservoirs for themselves and can thus retain a memory of initial

conditions accessible through certain local quantities. In this sense, localized states fail to reach

thermal equilibrium at even infinitely long times and evade descriptions in terms of conventional

statistical mechanics.

The recent discovery of localization in interacting many-body quantum systems in isolation,

dubbed “many-body localization,” has elicited tremendous interest from both theoretical and ex-

perimental communities, challenging and extending our existing notions of quantum statistical

mechanics. An excellent introductory exposition of this endlessly fascinating subject can be found

in [69]. The development of MBL states, which are distinct from thermalized states only in a

dynamical sense, has coincided with a general interest in the discovery and characterisation of

novel phases of matter out of equilibrium with no equilibrium counter-parts. Examples include the

so-called “discrete time-crystals” and other phases of matter which occur in systems driven period-

ically out of equilibrium (“Floquet” phases) (see e.g. [70, 71] and references contained therein). A
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distinct but equally fascinating area of research concerns the spreading of entanglement in chaotic

quantum many-body systems which reach thermal equilibrium but display intriguing behaviour in

their approach to equilibrium [72], inviting connections between black-holes, holography, quantum

information, and condensed matter systems.

Suffice it to say that the landscape of open and interesting problems outside the realm of

gapped quantum phases of matter is decidedly Brobdingnagian and anything beyond the preceding

perfunctory discussion lies outside the scope of this dissertation.

The Jabberwock Cometh

Perhaps you have already noticed a glaring omission from the preceding discussion of topo-

logical states of matter, denoted “fracton order” in the panorama of quantum phases (Fig. 1.2).

This separation of fracton phases is intentional, since the theoretical development of the field is

fairly recent and our understanding of it limited, especially when contrasted with the vast array of

tools for studying conventional topological phases at our disposal13 . Despite the intense ongoing

research in the field, there exist certain well-established notions regarding the nature of topological

quantum phases; for instance, the ground state degeneracy of a topologically ordered phase should

depend only on the global topology of the spatial manifold on which it is defined and not on ge-

ometric properties such as the system size. Thus, the discovery by Haah14 of an exactly soluble

lattice model in three-dimensions [75] which openly flouts some of these notions has generated a

frisson of excitement and added a layer of intrigue to the study of topological order.

Following Haah’s pioneering work, similarly strange phases were discovered in certain exactly

solvable lattice spin models [74, 76]. The unifying feature of these exotic phases is the existence

of point-like excitations with restricted mobility, which are fundamentally immobile or which are

confined to move only along sub-dimensional manifolds. The immobility of certain excitations,

13 “Thus the facts, did we possess them, are too imprecisely few to warrant our certitude.”—James Joyce, Finnegans
Wake, paraphrased.

14 Historically, the first model displaying fracton order was introduced by Chamon circa 2005 [73]; however,
the interpretation of Chamon’s model as one with fracton order did not appear until later work by Vijay and
collaborators [74].
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dubbed “fractons,” stems from the lack of any one-dimensional string-like operator at the ends of

which they may be created. Instead, depending on the specific model, fractons are created either

at the corners of two-dimensional membrane [73, 74, 76] or fractal [75, 77] operators, with the cor-

responding models referred to as “type-I” or “type-II” fracton models respectively in the taxonomy

of Vijay, Haah, and Fu [76]. While type-I models host additional topologically charged excitations

which can move only along c < d sub-manifolds and are hence termed “dim-c” excitations, type-II

models, such as Haah’s code, have no mobile excitations which carry topological charge. Despite

the striking appearance of these exotic quasiparticles, these fracton models display many features

familiar from topological order: they have a gap to all excitations, display long-range entanglement

in their ground state, and support topologically charged excitations which cannot be created lo-

cally. In stark contrast with topologically ordered phases however, which have a finite ground state

degeneracy on non-trivial manifolds, fracton phases instead have a sub-extensive number of locally

indistinguishable ground states on the 3-torus. Since their ground state degeneracy explicitly de-

pends on the geometry of the manifold, fracton order is, strictly speaking, incompatible with our

usual understanding of topological order.

Much recent progress has been made regarding the nature of type-I fracton order, specifically

in the context of the paradigmatic X-Cube model [74]. For instance, it has been understood

that this model can be constructed by appropriately coupling together inter-penetrating layers

of d = 2 Z2 topological orders, providing a route for approaching fracton order via the more

established framework of topological order [78, 79]. Concurrently, a series of stimulating works

by Pretko [80, 81] has established the existence of gapless U(1) fracton models in the context of

symmetric higher-rank tensor gauge theories. The key idea here is that symmetric tensor gauge

theories allow for a wider variety of constraints on the low-energy Hilbert space than their vectorial

counterparts, with an immediate consequence being the emergence of stricter conservation laws on

the charges of the theory. In the “scalar charge theory,” for example, the dipole moment of charges

is conserved in addition to their charge, naturally enforcing the creation of charges at the corners of

a membrane operator. These tensor gauge theories thus provide an alternate platform for realising
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fracton phenomenology, while also harbouring intimate connections with gravity, elasticity, and

generalised Chern-Simons theories [82–85].

Although the discovery of Haah’s code pre-dates that of type-I models such as the X-Cube,

it has proved much harder to gain physical insight into the nature of a model which possesses no

mobile topological excitations and where the elementary geometric object at the ends of which

excitations appear is a Sierpinski tetrahedron. It remains an open question whether Haah’s code

admits a description in terms of coupled d = 2 or d = 3 topological orders or if there exists any

analogue of a tensor gauge theoretic description for type-II fracton order. Given the truly puzzling

and seemingly indecipherable nature of Haah’s code15 , it is only natural to equate it to that

mythical creature from Wonderland, the Jabberwock, with the simpler fracton phases being mere

bandersnatches. We will encounter all manners of gapped and gapless fracton phases in more detail

in §§ 4 and 5; nonetheless, the reader is referred to [86] for an excellent overview of the current

consensus regarding fracton phases of matter.

Outline of Dissertation

The landscape of interacting many-body quantum phases of matter is vast and varied, with

many strange and exotic phenomena lurking in the shadows, waiting to be discovered. In this

dissertation, we will predominantly concern ourselves with the study of gapped topological phases

and their characterisations. Broadly, this thesis can be divided into two parts: the first part studies

familiar topological phases, specifically superfluids and superconductors, while the second tackles

novel phenomena arising in systems with finite densities of fractons and their bound states, with

a brief foray into the physics of gapless U(1) fractons in § 5. The unifying theme through all of

these studies is the identification of striking behaviour which arises in quantum many-body systems

governed primarily by their underlying topology.

This thesis comprises four previously published papers [47, 85, 87, 88].

15 It is often colloquially remarked within fracton circles that the only person who truly understand Haah’s code
is Haah himself.
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� § 1 contains introductory material, of which you are approaching the end.

� § 2 is based on [87], in which we compute the orbital angular momentum Lz of an s-

wave paired superfluid in the presence of an axisymmetric multiply quantized vortex. For

vortices with winding number |k| > 1, we find that in the weak-pairing BCS regime Lz

is significantly reduced from its value ~Nk/2 in the Bose-Einstein condensation (BEC)

regime, where N is the total number of fermions. This deviation results from the presence

of unpaired fermions in the BCS ground state, which arise as a consequence of spectral flow

along the vortex sub-gap states. We support our results analytically and numerically by

solving the Bogoliubov-de-Gennes equations within the weak-pairing BCS regime.

� § 3 is based on [47], where we develop a unified low-energy description for spin-singlet

paired states by deriving topological Chern-Simons field theories for s-wave, d + id, and

chiral higher even-wave superconductors. These theories capture the quantum statistics

and fusion rules of Bogoliubov quasiparticles and vortices and incorporate global continuous

symmetries - specifically, spin rotation and conservation of magnetic flux - present in all

singlet superconductors. For all such systems, we compute the Hall response for these

symmetries and investigate the physics at the edge. In particular, the weakly-coupled

phase of a chiral d+ id chiral state has a spin Hall coefficient νs = 2 and a vanishing Hall

response for the magnetic flux symmetry. We argue that the latter is a generic result for

two-dimensional superconductors with gapped photons, thereby demonstrating the absence

of a spontaneous magnetic field in the ground state of chiral superconductors. We also show

that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into

Kitaev’s 16-fold classification of topological superconductors.

� § 4 is based on [88], where we investigate relaxation in fracton models and discover that

these models naturally host glassy quantum dynamics in the absence of quenched disorder.

We begin with a discussion of “type I” fracton models, in the taxonomy of Vijay, Haah, and

Fu, and demonstrate that in these systems, the mobility of charges is suppressed exponen-
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tially in the inverse temperature. We further demonstrate that when a zero temperature

type I fracton model is placed in contact with a finite temperature heat bath, the ap-

proach to equilibrium is a logarithmic function of time over an exponentially wide window

of time scales. Generalizing to the more complex “type II” fracton models, we find that the

charges exhibit subdiffusion upto a relaxation time that diverges at low temperatures as a

super-exponential function of inverse temperature. This behaviour is reminiscent of “nearly

localized” disordered systems, but occurs with a translation invariant three-dimensional

Hamiltonian. We also conjecture that fracton models with conserved charge may support

a phase which is a thermal metal but a charge insulator.

� § 5 is based on [85], in which we consider systems with a finite density of either fractons

or their dipolar bound states, with a focus on the U(1) fracton models. We study some of

the phases in which emergent fractonic matter can exist, thereby initiating the study of the

“condensed matter” of fractons. We begin by considering a system with a finite density of

fractons, which we show can exhibit microemulsion physics, in which fractons form small-

scale clusters emulsed in a phase dominated by long-range repulsion. We then move on

to study systems with a finite density of mobile dipoles, which have phases analogous to

many conventional condensed matter phases. We focus on two major examples: Fermi

liquids and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi

surface and enter a Fermi liquid phase. Interestingly, this dipolar Fermi liquid exhibits a

finite-temperature phase transition, corresponding to an unbinding transition of fractons.

Finally, we study chiral two-dimensional phases corresponding to dipoles in “quantum Hall”

states of their emergent magnetic field and establish numerous aspects of these generalized

quantum Hall systems.

� § 6 closes this thesis with a discussion of open questions and future directions.

Various appendices include the details of various technical calculations.
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Chapter 2

Vortices in Fermionic Superfluids: Stay in Bed, Float Upstream

In which Benny,

turning and turning in the widening gyre,

despairs.

For several decades, the orbital angular momentum (OAM) of the A-phase of liquid 3He

remained a topic of intense theoretical debate in the condensed matter community. 3He-A represents

an example of a fermionic chiral superfluid (SF), which breaks parity and time-reversal symmetry

in addition to charge conservation. Specifically, it is a px + ipy paired state of spin-polarized

fermions, a state with invertible topological order which hosts a gapless chiral Majorana mode on

its boundary [89]. More generally, one can consider a system of fermions with pairing symmetry

(px + ipy)
ν , which for odd ν corresponds to a spin-triplet paired state with ν Majorana modes

on the boundary and for even ν corresponds to spin-singlet paired state with 2ν Majorana modes

on the boundary (the factor of two arises due to spin). Each Cooper pair in such a state carries

angular momentum ν and the broken chiral symmetry in these systems is directly manifested in

the OAM.

The debate surrounded the precise value of the OAM in various chiral SFs, with warring

points of view leading to substantially different predictions. One simple argument is as follows: in

a system comprised of N fermions, each of the N/2 Cooper pairs possesses an OAM ν, with the total

OAM Lz = νN/2. On the other hand, if we consider starting from a non-superconducting state,

with Lz = 0, then the formation of Cooper pairs would lead to a non-trivial OAM. However, since
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only fermions in the vicinity of the original Fermi surface should contribute to physical quantities

at low energies, we expect that the OAM would be suppressed by some positive power of ∼ ∆0/EF ,

where EF is the Fermi energy and ∆0 the pairing amplitude.

This apparent paradox was recently resolved by Tada et al [90] who considered the OAM

of a fermionic chiral SF in both the strongly paired Bose-Einstein condensation (BEC) regime,

where pairs of fermions are tightly bound into bosonic molecules which undergo Bose-Einstein

condensation, and the weakly paired Bardeen-Cooper-Schrieffer (BCS) regime, where weakly bound

Cooper pairs condense. In the non-topological BEC regime, the SF is found to have an OAM

Lz = νN/2 consistent with näıve expectations. The BCS regime however, in which the SF is a

topological superfluid with gapless chiral edge states, shows strikingly different behaviour for ν = 1

and ν ≥ 2. In particular, when ν = 1, the chiral Majorana edge mode carries no OAM and so the

bulk OAM Lz = N/2 agrees with the OAM in the BEC regime. On the other hand, when ν ≥ 2,

the gapless boundary modes carry OAM counter to that carried by the Cooper pairs due to the

presence of unpaired fermions localized around the boundary, leading to a significant reduction of

the OAM, Lz ≈ 0. Thus, the presence of the topological edge modes significantly influences the

behaviour of physical observables such as the OAM.

The initial impetus of our work was to study analogous behaviour in a non-chiral s-wave

superfluid, but in the presence of non-trivial topological defects—vortices. Given the current ex-

perimental challenges in realising chiral SFs even in ultra-cold atomic experiments, a key motivation

was to find an experimentally feasible model which exhibits much of the same physics expected

in chiral SFs. In this chapter, this is accomplished by studying multiply quantized vortices i.e.

vortices with a winding number ≥ 1, in the BCS regime of an s-wave paired SF, which are found

to host unpaired fermions localized around the vortex core, thereby reducing the OAM of the SF

significantly. While much of the physics is found to resemble that of chiral SFs, an advantage of

the system in consideration here is the insensitivity of the OAM to the microscopic details of the

boundary, leading to a more robust signature than that expected in chiral SFs.

A version of this chapter was first presented as [87] under the title “Multiply Quantized Vor-
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tices in Fermionic Superfluids: Angular Momentum, Unpaired Fermions, and Spectral Asymmetry,”

and is a collaboration with Sergej Moroz, Victor Gurarie, and Leo Radzihovsky,

Phys. Rev. Lett. 119, 067003 (2017)1

2.1 Introduction

Quantized vortices are a hallmark of superfluids (SFs) and superconductors. These topolog-

ical defects form in response to external rotation or magnetic field and play a key role in under-

standing a broad spectrum of phenomena, such as the Berezinskii-Kosterlitz-Thouless transition in

two-dimensional (2D) SFs [8, 9], superconductor/insulator transitions [91–93], turbulence [94], and

dissipation [95, 96]. In fermionic s-wave paired states, the structure of the ground state and low

lying excitations of an axisymmetric singly quantized vortex has been established through analyti-

cal and numerical studies in both the strong-pairing regime (where the SF phase is understood as

a Bose-Einstein condensate (BEC) of bosonic molecules) and in the weak-pairing Bardeen Cooper

Schrieffer (BCS) regime. In the BEC regime, the microscopic Gross-Pitaevskii equation provides

a reliable framework [97, 98], while in the BCS regime the (self-consistent) Bogoliubov-deGennes

(BdG) theory is key in identifying the structure of the ground state [99, 100] and the spectrum of

sub-gap fermionic excitations [101].

Multiply quantized vortices (MQVs) have however not received much attention. Generically

in a homogeneous bulk system, the logarithmic repulsion between vortices, which scales as the

square of the vortex winding number k, energetically favors an instability of a multiply quan-

tized vortex into separated elementary unit vortices [102]. However, MQVs are of interest since

1 Copyright 2017 American Physical Society, reproduced here in accord with the copyright policies of the American
Physical Society.
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Figure 2.1: Summary of main result: a) For an elementary vortex (k = 1), the fermionic spectrum
has a vanishing spectral asymmetry and thus all fermions are paired in the ground state, resulting
in Lz = ~N/2 in the BCS regime. b) In stark contrast, for an MQV (k = 2 pictured here as an
example) mid-gap states confined to the vortex core induce a non-trivial spectral asymmetry,
which leads to unpaired fermions in the ground state. These reduce Lz from its näıve value ~N
by an amount that scales quadratically with the splitting between the red branches.

under certain circumstances, the interaction between vortices is not purely repulsive and can sup-

port multi-vortex bound states, at least as metastable defects. This can happen, for instance, in

type-II mesoscopic superconductors, where MQVs have been predicted [103] and experimentally

observed [104–107]. In addition, it has been argued that MQVs are expected to be energetically sta-

ble in multicomponent superconductors [108, 109] and in chiral p-wave superconductors [110, 111].

In fermionic SFs, a doubly quantized vortex was predicted [112] and observed in 3He-A [113]. It

has further been argued that fast rotating Fermi gases trapped in an anharmonic potential will

support an MQV state [114–116]. Similar vortex states have been created in rotating BEC experi-

ments [117–120].

Surprisingly, as we demonstrate in this chapter, there is a fundamental difference between

a singly quantized vortex (|k| = 1) and an MQV (|k| > 1) in a weakly-paired fermionic s-wave

SF. This difference is manifested most clearly in the orbital angular momentum (OAM) Lz, as

illustrated in Fig. 2.1. At zero temperature in the BEC regime, a microscopic Gross-Pitaevskii

calculation predicts Lz = ~Nk/2, where N is the total number of fermions. Intuitively, this

corresponds to a simple picture where an MQV induces a quantized OAM k per molecule. For an
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elementary vortex, this result also holds in the BCS regime, as confirmed within the self-consistent

BdG framework [99, 100]. As we show in this chapter, for vortices with |k| > 1 however, the BCS

ground state contains unpaired fermions which carry OAM opposite to that carried by the Cooper

pairs, thereby significantly reducing the total Lz from its BEC value by an amount ∼ (kF ξ)
2,

where kF is the Fermi momentum and ξ the coherence length. While the proportionality constant

is non-universal and depends on the vortex core structure, the scaling with kF and ξ is robust,

being independent of any boundary effects.

2.2 BdG Hamiltonian and Generalized Angular Momentum

To derive our main result, we consider a 2D2 s-wave paired SF in the weak-pairing BCS

regime at zero temperature within the BdG framework. The mean-field Hamiltonian describing a

spin-singlet two-dimensional superfluid (SF) with pairing symmetry (px+ ipy)
ν and in the presence

of an axisymmetric MQV with winding number k is

Ĥν =

∫
d2r

∑
σ=↑,↓

ψ†σ

(
−∇

2

2
+ V (r)− µ

)
ψσ +

[∫
d2r ψ†↑∆(r)eikϕ/2(px + ipy)

νeikϕ/2ψ†↓ + h.c.

]
.

(2.1)

The case ν = 0 corresponds to the s-wave spin-singlet paring, which will be the focus of this chapter,

while spin-singlet chiral SFs are obtained by taking non-zero even values of ν.

The fermionic operators satisfy canonical anti-commutation relations,

{ψσ(r), ψ†σ′(r
′)} = δσσ′δ(r− r′). (2.2)

In terms of the Nambu spinors

Ψ =

 ψ↑

ψ†↓

 , Ψ† =
(
ψ†↑ , ψ↓

)
, (2.3)

which satisfy

{Ψi(r),Ψ†j(r
′)} = δijδ(r− r′), (2.4)

2 Due to the axial symmetry of the vortex line, it is sufficient to consider a two-dimensional BdG problem with a
point vortex.
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the Hamiltonian becomes

Ĥν =

∫
d2rΨ†

(
−∇

2

2
+ V (r)− µ

)
τ3Ψ

+

∫
d2rΨ†∆(r)

(
eikϕ/2(px + ipy)

νeikϕ/2τ+ + e−ikϕ/2(px − ipy)νe−ikϕ/2τ−
)

Ψ.

(2.5)

For the remainder of this chapter, we will focus on non-chiral s-wave superfluids with an MQV, in

which case the Hamiltonian (2.5) simplifies to

Ĥ ≡ Ĥν=0 =

∫
d2rΨ†

(
−∇2/2 + V (r)− µ

)
τ3Ψ +

∫
d2rΨ†∆(r)

(
eikϕτ+ + e−ikϕτ−

)
Ψ, (2.6)

where τi are Pauli matrices, τ± = (τ1± iτ2)/2, ~ and the elementary fermion mass are set to unity,

and µ is the chemical potential. In principle, ∆(r) should be determined self-consistently but since

our results depend only weakly on its form, we use a fixed pairing term that for our numerical

analysis is taken to be ∆(r) = ∆0 tanh (r/ξ), where ξ = kF /∆0 and ∆0 is the BCS gap.

Due to the pairing term, neither the total particle number

N̂ =

∫
d2rΨ†τ3Ψ (2.7)

nor the OAM

L̂z =

∫
d2rΨ†

(
−i ∂
∂ϕ

)
Ψ (2.8)

commutes with Ĥ, and so neither are separately conserved. Instead, as pointed out in [121, 122], the

generalized OAM operator L̂ = L̂z−kN̂/2 generates a symmetry and thus, the BdG ground state

and all quasi-particle excitations carry a sharp L̂ quantum number. More generally, in a chiral SF

with pairing symmetry ∼ (px+ ipy)
ν and with an MQV, the conserved operator is L̂z− (k+ν)N̂/2.

In order to see this, it is convenient to work in polar coordinates, where

(px ± ipy) = −ie±iϕ
(
∂

∂r
± i

r

∂

∂ϕ

)
. (2.9)

In addition, the anti-commutation relations Eq. (2.4) lead to the following identity

[Ψ†ÂΨ,Ψ†B̂Ψ] = Ψ†[Â, B̂]Ψ. (2.10)
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Putting everything together, it is now straightforward to show that

[L̂z, Ĥν ] = ∆(r)
[
eikϕ/2(px + ipy)

νeikϕ/2τ+ − e−ikϕ/2(px − ipy)νe−ikϕ/2τ−
]
× (k + ν) ,

[N̂ , Ĥν ] = ∆(r)
[
eikϕ/2(px + ipy)

νeikϕ/2τ+ − e−ikϕ/2(px − ipy)νe−ikϕ/2τ−
]
× 2. (2.11)

From this it follows that

L̂ = L̂z −
k + ν

2
N̂ (2.12)

commutes with Ĥν . The above calculation easily generalizes to the case of spin-triplet chiral SFs

(where ν is odd) with MQVs, where the same operator Eq. (2.12) is conserved. While the OAM of

vortex-free chiral paired SFs (k = 0) was analysed in [90, 123, 124], here we focus on s-wave SFs

(ν = 0) with MQVs, noting that our results readily generalize to chiral states with MQVs.

Physically, L̂ measures the deviation of OAM in the BCS ground state from its expectation

value

LBEC
z = kN/2 (2.13)

in the BEC regime (with N = 〈N̂〉). The suppression of Lz in the BCS regime will hence be

reflected in the eigenvalue L of L̂ , evaluated in the ground state of the BdG Hamiltonian. We

consider a disc geometry with Dirichlet boundary conditions, i.e.

V (r) =


0, r ≤ R

∞, r > R

(2.14)

Expanding the fermionic operators in a single particle basis as

ψσ(r) =
∑
n,l

anlσΦnl(r) (2.15)

where Φnl satisfies [
−∇2/2 + V (r)− µ

]
Φnl(r) = εnlΦnl(r), (2.16)

the Hamiltonian becomes

Ĥ =
∑
l

∑
n,n′

 a†n,l+k↑

an,−l↓


T  εn,l+kδn,n′ ∆

(l)
n,n′

∆
(l)∗
n,n′ −εn,−lδn,n′


 an′,l+k↑

a†n′,−l↓

 (2.17)
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with

∆
(l)
n,n′ =

∫
d2rΦ∗n,l+k∆(r)eikϕΦ∗n′,−l (2.18)

and where n, l are the radial and angular momentum quantum numbers respectively. Denoting

the single-particle Hamiltonian matrix as H(l), particle-hole (PH) symmetry connects the different

l-sectors through

H(l)∗ = −CH(−l−k)C−1 (2.19)

such that the spectrum is PH symmetric about l = −k/2.

2.3 The BCS Ground State

In the absence of a vortex (k = 0), the ground state wave function in the weakly paired

BCS regime can be straightforwardly found through the conventional Bogoliubov transformation.

However, in the presence of an MQV, the ground state of the BdG Hamiltonian is constructed

using a generalized Bogoliubov transformation [125, 126]. In this section, we explicitly construct

the ground state wave function and derive the eigenvalue L of the generalized OAM operator L̂ ,

evaluated in the BCS ground state. Before delving into the details of this calculation, it is useful

to first sketch the key steps involved in order to understand the unusual ground state structure in

the presence of an MQV.

2.3.1 Construction of the Ground State I: the simple version

In order to proceed with the derivation of the BCS ground state wave function, we must first

regularize the BdG Hamiltonian H(l) by introducing a cutoff M � 1 on n, n′. Generically, H(l)

will have a different number of positive and negative eigenvalues, M
(l)
+ and M

(l)
− respectively. The

(unitary) Bogoliubov transformation is then written as b
(l)
m

d
(l)†
m̄

 =
M∑
n=1

 S
(l)
1,mn S

(l)
2,mn

S
(l)
3,m̄n S

(l)
4,m̄n


 an,l+k↑

a†n,−l↓

 , (2.20)
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where m = 1, . . .M
(l)
+ , m̄ = 1, . . .M

(l)
− , and M

(l)
+ + M

(l)
− = 2M . The Bogoliubov operator b

(l)
m

annihilates a quasi-particle with positive energy E
(l)
m , L -charge3 l+k/2, and spin ↑. Alternatively,

by PH symmetry we can interpret it as the creation operator for a spin ↓ state with negative energy

−E(l)
m and L -charge −l − k/2. In addition, we introduce the operator d

(l)
m̄ that creates a spin ↑

state with negative energy E
(l)

M
(l)
+ +m̄

and L -charge l + k/2.

In terms of these operators, the ground state |BCS〉 ∼ ⊗l |BCS〉l is defined as the vacuum

for all positive energy quasi-particles and thus satisfies b
(l)
m |BCS〉 = 0 and d

(l)
m̄ |BCS〉 = 0. For

systems with M
(l)
+ = M

(l)
− , the ground state |BCS〉 closely resembles a Fermi sea with all negative

energy states occupied

|BCS〉 ∼ ⊗l
M∏
m=1

b(l)m

M∏
m̄=1

d
(l)
m̄ |0〉 , (2.21)

where |0〉 is the Fock vacuum for an,lσ. This ground state can be understood in terms of Cooper

pairs, where spin ↑ quasi-particles with L -charge v = l+k/2 (created by d(l)) are paired with quasi-

particles of the opposite spin ↓ and with the opposite L -charge −v (created by b(l)). Re-expressing

the quasi-particle operators in terms of elementary fermions, we find a familiar exponential form,

|BCS〉l = exp
(
a†n,l+k↑K

(l)
n,n′a

†
n′,−l↓

)
|0〉 , (2.22)

where K(l) is an M ×M matrix (derived in Sec. 2.3.2), and the sum over n, n′ is implicit. Since

b(l) and d(l) carry opposite L -charge, the ground state Eq. (2.21) has a vanishing L eigenvalue.

When M
(l)
+ 6= M

(l)
− however, the ground state is no longer given by Eq. (2.21) since there will

exist an imbalance between the number of quasi-particles with L -charge l+k/2 and with L -charge

−l − k/2. This mismatch is quantified by the spectral asymmetry of the energy spectrum

ηl =
∑
m

sgn(E(l)
m ) = M

(l)
+ −M

(l)
− , (2.23)

where {E(l)
m }m∈N are the eigenvalues of H(l). In order to demonstrate that the presence of a non-

trivial ηl leads to unpaired fermions in the ground state, we perform a judiciously chosen unitary

rotation on an,lσ to a new basis of fermions ãj,lσ via a conventional (non-Bogoliubov) rotation

3 The quasi-particle operators carry a sharp L -charge l − k/2, rather than an l quantum number. Nevertheless,
since the former differs from l by a constant shift, it is convenient to continue labelling the states by l.
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which does not mix creation and annihilation operators (see Sec 2.3.2). Through a separate unitary

rotation, we simultaneously transform the Bogoliubov operators b(l), d(l) into a new basis b̃(l), d̃(l).

The new fermions ã and Bogoliubov quasi-particles b̃, d̃ are related through a Bogoliubov

transformation which, as always, takes the schematic form b̃ = Uã+ V ã†, where the matrix-valued

coefficients U, V satisfy |U |2 + |V |2 = 1. Following [126], we find that the preceding transformations

naturally distinguish between operators for which either U vanishes exactly: U = 0, V = 1 (occupied

levels), or V vanishes exactly: V = 0, U 6= 0 (empty levels), with the remaining operators, for which

both U, V 6= 0, describing paired levels. In the new basis, the ground state is superficially similar

to Eq. (2.21) since it can be expressed as

|BCS〉 ∼ ⊗l
∏′

m

b̃(l)m
∏′

m̄

d̃
(l)
m̄ |0〉 . (2.24)

Importantly however, the restricted products here run only over paired and occupied levels. Bo-

goliubov operators b̃, d̃ for empty states, which are linear super-positions of ã’s, annihilate the

bare vacuum |0〉 and are thus disallowed in Eq. (2.24). Conversely, occupied states contribute to

Eq. (2.24) but since these states create unitarily rotated fermions with certainty, b̃, d̃ ∼ ã†, they do

not participate in pairing.

The eigenvalue of L̂ can now be obtained directly from Eq. (2.24) by summing the individual

contributions of the filled quasi-particle states and noting that b̃(l), d̃(l) carry the same L -charges

as b(l), d(l). While contributions from the paired levels cancel out, the occupied levels lead to

L = −1

2

∑
l

(
l +

k

2

)
ηl, (2.25)

since the number of occupied (and also empty) b̃
(l)
m and d̃

(l)
m̄ levels are M

(l)
↓ and M

(l)
↑ respectively,

with M
(l)
↑,↓ = max(0,M−M (l)

+,−) such that the spectral asymmetry is given by ηl = 2(M
(l)
↓ −M

(l)
↑ ). In

order to establish these relations between the number of unpaired levels and the spectral asymmetry,

we have borrowed our results from the detailed calculation of the ground state wave function, which

we now proceed to discuss.
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2.3.2 Construction of the Ground State II: the detailed version

While the preceding qualitative discussion allowed us to understand the presence of both

paired and unpaired levels in the BCS ground state with an MQV, in order to quantify the number

of unpaired levels and their relation to the spectral asymmetry, it is necessary to explicitly construct

the ground state. A generalized framework for deriving the ground state of a paired Hamiltonian

through a Bogoliubov transformation was constructed in [125]. Here, we present a self-contained

discussion and obtain the ground state wave functions for SFs with MQVs. While we focus on

s-wave SFs here, this construction can be readily generalized to chiral SFs with vortices as well.

The eigenstates (u, v)T of the BdG Hamiltonian satisfy

M∑
n′=1

H
(l)
n,n′

 u
(l)
n′m

v
(l)
n′m

 = E(l)
m

 u
(l)
nm

v
(l)
nm

 , (2.26)

where we have introduced a cut-off M � 1 on the radial quantum numbers n, n′. As before,

suppose the number of positive and negative eigenvalues of H(l) are M
(l)
+ and M

(l)
− respectively,

with M
(l)
+ + M

(l)
− = 2M . In the absence of spectral asymmetry, M

(l)
+ = M

(l)
− , but in general,

M
(l)
+ 6= M

(l)
− . Let us now order the energies such that E

(l)
1 ≥ · · · ≥ E

(l)
2M , with

E(l)
m > 0, m = 1, . . . ,M

(l)
+ , E

(l)

m+M
(l)
+

< 0, m = 1, . . . ,M
(l)
− . (2.27)

Next, we introduce the (inverse) Bogoliubov transformation

an,l+k↑ =

M
(l)
+∑

m=1

u(l)
nm b

(l)
m +

M
(l)
−∑
m̄

u
(l)

n,m̄+M
(l)
+

d
(l)†
m̄ ,

a†n,−l↓ =

M
(l)
+∑

m=1

v(l)
nm b

(l)
m +

M
(l)
−∑
m̄

v
(l)

n,m̄+M
(l)
+

d
(l)†
m̄ . (2.28)

Here, b
(l)
m are Bogoliubov operators that annihilate a spin ↑ state with energy E

(l)
m and L -charge

l + k/2. We can exploit the PH symmetry of the system to alternatively interpret b
(l)
m as the

creation operator for a spin ↓ state with energy −E(l)
m and L -charge −l − k/2. In addition, we

have introduced another set of Bogoliubov operators

d
(l)
m̄ ≡ b(l)†

m̄+M
(l)
+

, m̄ = 1, . . . ,M
(l)
− , (2.29)
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such that the operator d
(l)
m̄ creates a spin ↑ state with energy E

(l)

m̄+M
(l)
+

< 0 and L -charge l + k/2.

As a matter of principle, we note that since the pairing Hamiltonian does not commute with the

angular momentum operator L̂z, the Bogoliubov quasi-particles b and d carry L -charge rather

than an l quantum number and thus the energy eigenvalues E
(l)
k should be labelled instead by their

L quantum number, v = l − k/2. However, since v is simply l shifted by a constant, it is more

convenient to continue labelling the eigenvalues and quasi-particles by l.

The BCS ground state is defined as the vacuum with respect to all positive energy quasi-

particles, |BCS〉 ∼ ⊗l |BCS〉l, and must thus satisfy

b(l)m |BCS〉 = 0 (m = 1, . . . ,M
(l)
+ ),

d
(l)
m̄ |BCS〉 = 0 (m̄ = 1, . . . ,M

(l)
− ). (2.30)

When M
(l)
+ = M

(l)
− , the ground state may be expressed as the state with all negative energy

excitations occupied, with

|BCS〉l =
M∏
m=1

b(l)m

M∏
m̄=1

d
(l)
m̄ |0〉 , (2.31)

where |0〉 is the Fock vacuum with respect to elementary fermions an,lσ. The paired nature of this

state is evident in the wave function Eq. (2.31) as expressed in terms of the Bogoliubov operators,

since a spin ↓ quasi-particle with L -charge −l − k/2 (created by b
(l)
m ) is paired with a spin ↑

quasi-particle with L -charge l + k/2 (created by d
(l)
m̄ ).

However, when M
(l)
+ 6= M

(l)
− , there will be some states left unpaired as a consequence of the

asymmetry in the spectrum. In order to elucidate the nature of the ground state in the presence

of unpaired fermions, it is instructive to transform to a particular bases of elementary fermions

and of Bogoliubov quasi-particles in which the structure of the ground state becomes especially

transparent. Before presenting technical details of this procedure, we briefly describe the steps

involved.

Fig. 2.2 illustrates the series of transformations that we perform in order to express |BCS〉

in a transparent form. First, we unitarily rotate the elementary fermions operators an,lσ into a

new basis of fermionic operators ãn,lσ (where the ã’s are linear combinations of only a’s but not
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Figure 2.2: Relations between different fermionic operators used in this section.

a†’s). While the states destroyed by operators ãn,lσ carry well defined spin and angular momentum

quantum numbers, σ and l respectively, they are not energy eigenstates of the non-interacting

Hamiltonian. In a similar spirit, we will unitarily rotate the quasi-particle operators b, d into a new

basis of quasi-particle operators b̃, d̃. Importantly, since this operation does not mix quasi-particle

creation and annihilation operators, the ground state is still defined as the vacuum with respect to

positive energy excitations and hence satisfies
˜
b
(l)
m |BCS〉 = 0 and d̃

(l)
m̄ |BCS〉 = 0.

Having established these new bases, we will then relate the rotated fermions ã to the rotated

quasi-particles b̃, d̃ through a Bogoliubov transformation akin to Eq. (2.28). This relation then

allows us to express |BCS〉 in terms of the rotated fermions ã in a manner that makes explicit the

nature of pairing in the ground state since it naturally distinguishes between paired and unpaired

states. We note that the purpose of these transformations is not to diagonalize the BdG Hamiltonian

H(l) (which is diagonalized by the original Bogoliubov transformation Eq. (2.28)) but rather to

explicitly construct the ground state wave function for an s-wave SF with an MQV.

We now discuss the above procedure in detail. To begin, we first invert Eq. (2.28) and write

the unitary Bogoliubov transformation as b
(l)
m

d
(l)†
m̄

 =

M∑
n=1

 S
(l)
1,mn S

(l)
2,mn

S
(l)
3,m̄n S

(l)
4,m̄n


 an,l+k↑

a†n,−l↓

 , (2.32)
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where S
(l)
1 , S

(l)
2 are M

(l)
+ ×M and S

(l)
3 , S

(l)
4 are M

(l)
− ×M dimensional matrices, respectively. Next,

we perform a singular value decomposition on the matrices S2 and S3, S
(l)
i = U

(l)
i Σ

(l)
i V

(l)†
i where

U
(l)
i , V

(l)
i are unitary matrices and Σ

(l)
i is a rectangular diagonal matrix with non-negative real

entries. We then perform unitary rotations on the elementary fermions a and the Bogoliubov

quasi-particles, b and d,

ãj,l+k↑ =
M∑
n=1

V
(l)†

3,jn an,l+k↑ j = 1, . . . ,M ,

ã†j,−l↓ =
M∑
n=1

V
(l)†

2,jn a
†
n,−l↓ j = 1, . . . ,M ,

b̃
(l)
j =

M
(l)
+∑

n=1

U
(l)†
2,jn b

(l)
n j = 1, . . . ,M

(l)
+ ,

d̃
(l)†
j =

M
(l)
−∑

n=1

U
(l)†
3,jn d

(l)†
n j = 1, . . . ,M

(l)
− . (2.33)

It is straightforward to check that these transformed operators satisfy the canonical anti-commutation

relations. In this new basis, the Bogoliubov transformation is expressed as b̃
(l)
m

d̃
(l)†
m̄

 =

M∑
m=1

 Λ
(l)
1,mn Σ

(l)
2,mn

Σ
(l)
3,m̄n Λ

(l)
4,m̄n


 ãn,l+k↑

ã†n,−l↓

 , (2.34)

where Λ
(l)
1 = U

(l)†
2 S

(l)
1 V

(l)
3 and Λ

(l)
4 = U

(l)†
3 S

(l)
4 V

(l)
2 . Before proceeding with the construction of the

ground state, it is necessary to establish some properties of Σ
(l)
2 and Σ

(l)
3 . In particular, we will

show now that in the presence of a non-trivial spectral asymmetry ηl = M
(l)
+ −M

(l)
− , either one of

Σ
(l)
2 or Σ

(l)
3 have |ηl|/2 entries on the diagonal which are equal to one. To prove this, let us assume

without loss of generality that M
(l)
+ < M < M

(l)
− . Since the Bogoliubov transformation is unitary,

the transformation matrix

S(l) ≡

 S
(l)
1 S

(l)
2

S
(l)
3 S

(l)
4

 (2.35)

satisfies S(l)†S(l) = S(l)S(l)† = I2M×2M . This leads to the conditions

S
(l)
1 S

(l)†
1 + S

(l)
2 S

(l)†
2 = I

M
(l)
+ ×M

(l)
+

,

S
(l)†
1 S

(l)
1 + S

(l)†
3 S

(l)
3 = IM×M . (2.36)
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Since S
(l)†
3 S

(l)
3 and S

(l)
2 S

(l)†
2 are Hermitian matrices, they have real eigenvalues and eigenvectors,

(
S

(l)
2 S

(l)†
2

)
y

(l)
2j = λ

(l)
2j y

(l)
2j j = 1, . . . ,M

(l)
+ ,(

S
(l)†
3 S

(l)
3

)
y

(l)
3j = λ

(l)
3j y

(l)
3j j = 1, . . . ,M. (2.37)

Eq. (2.36) then implies

(
S

(l)
1 S

(l)†
1

)
y

(l)
2j =

(
1− λ(l)

2j

)
y

(l)
2j j = 1, . . . ,M

(l)
+ ,(

S
(l)†
1 S

(l)
1

)
y

(l)
3j =

(
1− λ(l)

3j

)
y

(l)
3j j = 1, . . . ,M. (2.38)

The singular values of S
(l)
1 , however, are the square roots of the non-zero eigenvalues of both

S
(l)†
1 S

(l)
1 and S

(l)
1 S

(l)†
1 . Since S

(l)†
1 S

(l)
1 has exactly M −M (l)

+ more eigenvalues than S
(l)
1 S

(l)†
1 , those

extra eigenvalues must necessarily be zero. This in turn implies that S
(l)†
3 S

(l)
3 has M

(l)
↑ = M −M (l)

+

unity eigenvalues, or equivalently, that Σ
(l)
3 has precisely M

(l)
↑ unity entries on the diagonal. In

addition, since Σ
(l)
3 is a rectangular diagonal M

(l)
− ×M matrix, its last M

(l)
− −M = M−M (l)

+ = M
(l)
↑

rows contain only zeros.

Following this discussion, in general for any M
(l)
+ and M

(l)
− we can define the quantities

M
(l)
↑ = max

(
M −M (l)

+ , 0
)

and M
(l)
↓ = max

(
M −M (l)

− , 0
)

. Using the fact that M
(l)
+ +M

(l)
− = 2M ,

we can also show that M
(l)
+ = M +M

(l)
↓ −M

(l)
↑ and M

(l)
− = M −M (l)

↓ +M
(l)
↑ . From this, it follows

that

ηl = M
(l)
+ −M

(l)
− = 2(M

(l)
↓ −M

(l)
↑ ) =



2(M −M (l)
− ) > 0, M

(l)
+ > M > M

(l)
−

0, M
(l)
− = M = M

(l)
+

2(M
(l)
+ −M) < 0, M

(l)
+ < M < M

(l)
−

. (2.39)

Combining the above results with the unitarity of the Bogoliubov transformation Eq. (2.34),

we conclude that in the presence of spectral asymmetry we will have cases where b̃(l) = ã†−l↓ or

d̃(l) = ã†l+k↑, which will give rise to unpaired fermions in the ground state.
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Specifically, we find that the Bogoliubov transformation Eq. (2.34) splits into three classes

b̃m = ã†m,−l↓ m = 1, . . . ,M↓ ,

d̃†m̄ = ãm̄,l+k↑ m̄ = 1, . . . ,M↑ , (2.40)

b̃M↓+m =

M−M↑∑
n=1

(Λ1)M↓+m,M↑+n ãM↑+n,l+k↑ +

M−M↓∑
n=1

(Σ2)M↓+m,M↓+n ã
†
M↓+n,−l↓, (2.41)

m = 1, . . . ,M −M↓ −M↑ ,

d̃†M↑+m =

M−M↑∑
n=1

(Σ3)M↑+m,M↑+n ãM↑+n,l+k↑ +

M−M↓∑
n=1

(Λ4)M↑+m,M↓+n ã
†
M↓+n,−l↓, (2.42)

m = 1, . . . ,M −M↓ −M↑ , (2.43)

and

b̃M−M↑+m =

M−M↑∑
n=1

(Λ1)M−M↑+m,M↑+n ãM↑+n,l+k↑, m = 1, . . . ,M↓ ,

d̃†M−M↓+m =

M−M↓∑
n=1

(Λ4)M−M↓+m,M↓+n ã
†
M↓+n,−l↓, m = 1, . . . ,M↑ , (2.44)

where we have omitted the (l) superscript to simplify notation. Physically, these three classes

correspond to three different kinds of quasi-particle operators [126]:

� Occupied levels Eq. (2.40) are those where b̃ = ã†↓ or d̃ = ã†↑. These operators create a

unitarily rotated fermion with unit probability.

� Paired levels Eq. (2.41) are those for which b̃ and d̃ are non-trivial superpositions of ã↑ and

ã†↓.

� Empty levels Eq. (2.44) b̃ and d̃ are linear superpositions of ã↑’s and ã↓’s, respectively.

These operators annihilate the Fock vacuum |0〉.

The ground state is still the vacuum with respect to all positive energy quasi-particles and,

in terms of the unitarily rotated Bogoliubov quasi-particles, it is given by |BCS〉 ∼ ⊗l |BCS〉l with
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|BCS〉l =
∏′

m

b̃(l)m
∏′

m̄

d̃
(l)
m̄ |0〉 (2.45)

where the restricted product runs over all paired and occupied levels. Since empty levels annihilate

the Fock vacuum, they are not included in Eq. (2.45). By construction this state satisfies

b̃(l)m |BCS〉l = 0, d̃
(l)
m̄ |BCS〉l = 0, (2.46)

for all m = 1, . . . ,M
(l)
+ and m̄ = 1, . . . ,M

(l)
− . We can further simplify the ground state since it

factorizes into unpaired and paired terms,

|BCS〉l =

M
(l)
↓∏

j=1

ã†j,−l↓


M

(l)
↑∏

j=1

ã†j,l+k↑


︸ ︷︷ ︸

unpaired

 M∏′

m>M
(l)
↑

M∏′

m̄>M
(l)
↓

b̃(l)m d̃
(l)
m̄


︸ ︷︷ ︸

paired

|0〉 . (2.47)

The first two terms in the product clearly indicate that for M
(l)
σ 6= 0, there are unpaired fermions

in the ground state. Following [125], we can now write the paired part of the ground state in terms

of creation operators ã† of elementary (unitarily rotated) fermions

|BCS〉l =

M
(l)
↓∏

j=1

ã†j,−l↓


M

(l)
↑∏

j=1

ã†j,l+k↑

 exp

 M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓

 |0〉 , (2.48)

where the kernel K satisfies
M∑

j′>M
(l)
↑

Λ
(l)
1,jj′K

(l)
j′,j′′ = −Σ

(l)
2,jj′′ , (2.49)

with j, j′′ > M
(l)
↓ .

With the BCS ground state wave function in hand, we can now reproduce Eq. (2.25), which

encodes the relationship between the spectral asymmetry and the expectation value L of the

generalized OAM operator in the ground state. Note that we can express the conserved operator

L̂ = L̂− kN̂/2 in terms of the elementary fermions as

L̂ =
∑
nlσ

(
l − k

2

)
a†n,lσan,lσ =

∑
nlσ

(
l − k

2

)
ã†n,lσãn,lσ, (2.50)
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where the last equality follows since the ã’s are unitarily related to the a’s. Since the set of operators

that appear in the exponential part of |BCS〉l anti-commute with those that appear in the products

(unpaired fermions), we can consider the action of L̂ on these separately. First, we evaluate the

commutator L̂ ,

M
(l)
↓∏

j=1

ã†j,−l↓

 = −M (l)
↓

(
l +

k

2

)M
(l)
↓∏

j=1

ã†j,−l↓

 , (2.51)

and similarly, L̂ ,

M
(l)
↑∏

j=1

ã†j,l+k↑

 = M
(l)
↑

(
l +

k

2

)M
(l)
↑∏

j=1

ã†j,l+k↑

 , (2.52)

which follows from the usual anti-commutation relations satisfied by the rotated fermions ã. Next,

we consider the action of L̂ on the exponential (paired) sector of the wave function. This is done

by first calculating the contribution from the spin ↑ sector,∑
nl′

(
l′ − k

2

)
ã†n,l′↑ãn,l′↑ ,

 M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓




=

(
l +

k

2

) M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓, (2.53)

and then observing that the contribution from the spin ↓ sector∑
nl′

(
l′ − k

2

)
ã†n,l′↓ãn,l′↓,

 M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓




= −
(
l +

k

2

) M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓, (2.54)

exactly compensates for that coming from the spin ↑ sector. Hence, we see that L̂ commutes with

the exponential part of the wave function and so the paired levels do not contribute to L ,L̂ , exp

 M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓


 = 0. (2.55)

Since the ã’s are unitarily related to the a’s, |0〉 is also the Fock vacuum with respect to ãj,lσ.
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Putting the above together, we hence find that the eigenvalue L of the operator L̂ when

evaluated in the ground state |BCS〉 ∼ ⊗l |BCS〉l, with |BCS〉l given by Eq. (2.48), is

L =
∑
l

(
l +

k

2

)(
M

(l)
↑ −M

(l)
↓

)
= −1

2

∑
l

(
l +

k

2

)
ηl,

where ηl = 2(M
(l)
↓ −M

(l)
↑ ). The above relation between the spectral asymettry and L Eq. (2.25)

has previously appeared in the literature in the context of chiral SFs [90, 123], where k is replaced

by the chirality ν. Physically, Eq. (2.25) quantifies the contribution of unpaired fermions to the

OAM.

2.4 Vortex Core States

The physics originating from unpaired fermions in the ground state of a paired state was

previously identified and studied in nuclear physics [126], FFLO superfluids [127], and chiral su-

perfluids paired in higher partial waves [90, 123, 124, 128, 129]. We now demonstrate that for a

weakly-paired s-wave SF with an MQV, a nontrivial ηl and the associated unpaired fermions arise

as a consequence of vortex core states.

2.4.1 Analytic Solution for Vortex Core States

In the BCS regime, the spectrum of the vortex core (vc) states for a singly quantized vortex

|k| = 1 was calculated analytically by Caroli-deGennes-Matricon (CdGM) [101] who found a single

branch E
(l)
vc (per spin projection) that crosses the Fermi level. This branch is PH symmetric

with respect to itself, E
(l)
vc = −E(−l−1)

vc and at low energies (Evc � ∆0) behaves linearly E
(l)
vc =

−ω0(l+ 1/2), where the mini-gap ω0 ∼ ∆0/(kF ξ). By numerically diagonalizing H(l) for k = 1, we

find that ηl = 0 for all l and hence there are no unpaired fermions in the BCS ground state of an

s-wave paired SF with an elementary vortex. Eq. (2.25) then predicts L = 0 and thus the ground

state expectation value Lz = N/2, which agrees with self-consistent BdG calculations [99]. The

physics here is analogous to that of weakly paired p+ ip SFs, where there is a single PH symmetric

edge mode that carries no OAM [90, 130, 131].
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For an MQV with winding number k, the CdGM method can be generalized and the vortex

core spectrum analytically calculated within the BdG framework. For a step-like pair-potential, an

explicit solution was obtained previously in [132, 133]. The procedure presented here applies more

generally to any pairing term ∆(r) and agrees with that calculation where the regimes of validity

overlap.

We start with an s-wave state with a vortex of vorticity k. The (symmetric) gap function is

thus ∆(r)eikϕ where limr→0 ∆(r) = 0 and limr→∞∆(r) = ∆0. The BdG equations are hence −1
2∇2 − µ ∆(r)eikϕ

∆(r)e−ikϕ 1
2∇2 + µ


 u

v

 = E

 u

v

 . (2.56)

Separating the angular and radial dependence of the BdG solutions, we let

u = u(r)ei(l+
k
2 )ϕ,

v = v(r)ei(l−
k
2 )ϕ, (2.57)

where l ∈ Z
(
Z + 1

2

)
if k ∈ Even(Odd), such that Eq. (2.56) becomes

−1

2

(
∂2

∂r2
+

1

r

∂

∂r
−
(
l + k

2

)2
r2

+ 2µ

)
u(r) + ∆(r)v(r) = Eu(r) ,

1

2

(
∂2

∂r2
+

1

r

∂

∂r
−
(
l − k

2

)2
r2

+ 2µ

)
v(r) + ∆(r)u(r) = Ev(r) . (2.58)

We now rewrite these equations in the form

−1

2

(
∂2

∂r2
+

1

r

∂

∂r
− α2

r2
+ 2µ

)
u(r) + ∆(r)v(r) =

(
E − β

2r2

)
u(r) ,

1

2

(
∂2

∂r2
+

1

r

∂

∂r
− α2

r2
+ 2µ

)
v(r) + ∆(r)u(r) =

(
E − β

2r2

)
v(r) , (2.59)

where we have defined α =
√
l2 + k2

4 and β = lk.

In order to derive an analytic solution for these coupled equations, we introduce a radius

r = r∗ such that 1
kF
� r∗ � ξ, where kF =

√
2µ is the Fermi momentum and ξ = kF /∆0 is the

coherence length. We then consider the BdG equations (2.56) separately in the limits where r � r∗

and where r � r∗. Demanding that the wave function be continuous, we then match the solutions

from these two regimes at r = r∗ to arrive at a solution that holds over the entire range.
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We first consider the limit where r � r∗. For physically relevant pairing terms, ∆(r)→ 0 in

this limit and we are hence justified in ignoring the pairing term. The BdG equations (2.56) thus

decouple in this limit, (
∂2

∂r2
+

1

r

∂

∂r
−
(
l + k

2

)2
r2

+ 2(µ+ E)

)
u = 0 ,(

∂2

∂r2
+

1

r

∂

∂r
−
(
l − k

2

)2
r2

+ 2(µ− E)

)
v = 0 . (2.60)

The solutions to these equations are Bessel functions parametrized by
√

2(µ± E). Since we are

interested in understanding the nature of the vortex core states close to zero energy, we make an

additional approximation and consider energies such that E � µ. Reinstating all the proper units,

this corresponds to

(µ± E)1/2 =

√
~2

2me

(
k2
F ±

2meE

~2

) 1
2

≈
√

~2

2me
(kF ± p) , (2.61)

where we have defined p = Eme
~2kF

. Thus, the solutions for r � r∗ are

u(r) = C1Jl+ k
2

((kF + p)r) ,

v(r) = C2Jl− k
2

((kF − p)r) , (2.62)

where C1 and C2 are arbitrary constants and where the Bessel functions of the second kind Y are

chosen to have vanishing amplitudes since we require a well behaved solution in the limit r → 0.

Next, we consider the case where r � r∗. In this limit, we expect that the pairing term

is approximately constant ∆(r) → ∆0. Hence, we write the BdG solutions as rapidly oscillating

Hankel functions enveloped by functions that vary slowly i.e., u(r)

v(r)

 =

 f(r)H
(1)
α (kF r)

g(r)H
(1)
α (kF r)

+

 f̃(r)H
(2)
α (kF r)

g̃(r)H
(2)
α (kF r)

 , (2.63)

where H(1,2)(r) are Hankel functions of the first and second kind. Substituting this ansatz into

the BdG equations (2.56) and considering only the H(1) component of the solution (since the other
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follows from this immediately), we find

−1

2

(
f ′′Hα + 2f ′H ′α +

1

r
Hαf

′
)

+ ∆Hαg =

(
E − β

2r2

)
fHα ,

1

2

(
g′′Hα + 2g′H ′α +

1

r
Hαg

′
)

+ ∆Hαf =

(
E − β

2r2

)
gHα . (2.64)

Here, Hα ≡ H
(1)
α . Since we are in the regime kF r � 1, we use the asymptotic expansion for the

Hankel functions

∂

∂r
H(1)
α (kF r) ≈ ikFH(1)

α (kF r) , (2.65)

and drop the terms f ′′, g′′, f
′

r ,
g′

r , which is justified since we are considering the limit r � 1
kF

. With

these further approximations, we find that the slowly varying envelope functions f, g satisfy

−ikF f ′ + ∆g =

(
E − β

2r2

)
f ,

ikF g
′ + ∆f =

(
E − β

2r2

)
g . (2.66)

To solve these coupled equations, we treat the right hand side as a perturbation. To zeroth order,

−ikF f ′ + ∆g = 0 ,

ikF g
′ + ∆f = 0 . (2.67)

Imposing the condition that the solutions remain well behaved as r →∞, we find that the solutions

are  f

g

 = B exp

(
− 1

kF

∫ r

0
dr′∆(r′)

) 1

−i

 . (2.68)

In order to find the solution to first order in E, we make the ansatz f

g

 = B exp

(
− 1

kF

∫ r

0
dr′∆(r′)

) eiψ(r)

−ie−iψ(r)

 , (2.69)

which when substituted into Eq. (2.66) leads to

kFψ
′ − 2∆ sin(ψ) =

(
E − β

2r2

)
. (2.70)
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Approximating sin(ψ) ≈ ψ, this is equivalent to

kFψ
′ − 2∆ψ =

(
E − β

2r2

)
, (2.71)

the solution to which is

ψ(r) = −e
2
kF

∫ r
0 dr

′∆(r′)

kF

∫ ∞
r

dr′
(
E − β

2r′2

)
e
− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.72)

With this, we find that the leading order solution of Eq. (2.56) in the limit r � r∗ is u(r)

v(r)

 =

 B1e
iψ(r)H

(1)
α (kF r) +B2e

−iψ(r)H
(2)
α (kF r)

−iB1e
−iψ(r)H

(1)
α (kF r) + iB2e

iψ(r)H
(2)
α (kF r)

× exp

(
− 1

kF

∫ r

0
dr′∆(r′)

)
,

(2.73)

with ψ(r) given by Eq. (2.72).

We have thus constructed the general solution of the BdG equations (2.56), with the solution

in the limits r � r∗ and r � r∗ given by Eq. (2.62) and Eq. (2.73) respectively. In order to

completely fix the undetermined coefficients and to get the quantization condition on the energy,

we demand that the solution be continuous and match the solution in the regime r < r∗ with that

in the regime r > r∗.

Since we wish to extend the solution for r � r∗ Eq. (2.62) to the vicinity of r∗, we use the

asymptotic expansion

Jν(kF r) ≈
√

2

πkF r
cos

(
kF r +

ν2 − 1
4

2kF r
− 2ν + 1

4
π

)
, (2.74)

such that Eq. (2.62) becomes

u(r) ≈ C1

√
2

πkF r
cos

(
(kF + p)r +

(
l + k

2

)2 − 1
4

2kF r
− 2

(
l + k

2

)
+ 1

4
π

)
,

v(r) ≈ C2

√
2

πkF r
cos

(
(kF − p)r +

(
l − k

2

)2 − 1
4

2kF r
− 2

(
l − k

2

)
+ 1

4
π

)
. (2.75)

Similarly, we want to extend the solution from the opposite regime (r � r∗) towards the

vicinity of r∗ and we use the asymptotic expansion

H(1),(2)
ν (kF r) ≈

√
2

πkF r
exp

[
i

(
kF r ±

ν2 − 1
4

2kF r
∓ 2ν + 1

4
π

)]
, (2.76)
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such that Eq. (2.73) becomes u(r)

v(r)

 ≈√ 2

πkF r
e
− 1
kF

∫ r
0 dr

′∆(r′)

 B1e
iψ(r)+iγ(r) +B2e

−iψ(r)−iγ(r)

−iB1e
−iψ(r)+iγ(r) + iB2e

iψ(r)−iγ(r)

 , (2.77)

where γ(r) = kF r +
α2− 1

4
2kF r

− 2α+1
4 π. We must now match the solutions from Eqs. (2.75) and (2.77)

at r ∼ r∗ in order to find a continuous solution.

We first match u(r). Making the ansatz B1 = C1
2 e

iκ and B2 = C1
2 e
−iκ and matching the

solutions at r ∼ r∗ leads to a condition on ψ(r)

ψ(r∗) + κ− Er∗

kF
+

(
l − α+

k

2

)
π

2
− β

2kF r∗
= 0 . (2.78)

Next, we match v(r), which leads to

ψ(r∗)− κ− Er∗

kF
−
(
l − α− k

2

)
π

2
− β

2kF r∗
+

(
n+

1

2

)
π = 0 . (2.79)

Here, n ∈ Z. Comparing Eqs. (2.78) and (2.79), we find that the parameter κ is

κ = (α− l)π
2

+

(
n+

1

2

)
π

2
. (2.80)

Thus, we find that at r ∼ r∗ the function ψ(r) is approximately

ψ(r∗) ∼ Er∗

kF
+

β

2kF r∗
− k + 1

4
π − n

2
π. (2.81)

However, recall that we earlier found that ψ(r) is given by Eq. (2.72) while constructing the BdG

solution in the regime r � r∗. Hence, in order to have a consistent solution, we must compare the

approximate solution Eq. (2.81) with Eq. (2.72). Since we want to understand the behavior of ψ(r)

in the regime where r ∼ r∗ � 1
kF

, as a first approximation we can drop the term e
2
kF

∫ r
0 dr

′∆(r′)
.

This is justified since the pairing term ∆(r) approaches 0 at least linearly and, as we are working

in the regime where r � ξ, we can approximate this term as e
∆0r
kF = e

r
ξ ∼ 1. Thus, in order to

understand the behavior of ψ(r) in the vicinity of r∗ we need only consider the integral

I =

∫ ∞
r

dr′ e
− 2
kF

∫ r′
0 dr′′∆(r′′)

(
E − β

2r′2

)
. (2.82)
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We write I = I1 + I2 where

I1 = E

∫ ∞
r

dr′ e
− 2
kF

∫ r′
0 dr′′∆(r′′)

,

I2 = −β
2

∫ ∞
r

dr′

r′2
e
− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.83)

We can now approximate I1 as

I1 ∼ −Er + E

∫ ∞
0

dr′ e
− 2
kF

∫ r′
0 dr′′∆(r′′)

, (2.84)

and can further write

I2 =
β

2

∫ ∞
r

dr′
∂

∂r′

(
1

r′

)
e
− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.85)

Integrating I2 by parts, we find

I2 =
β

2

e− 2
kF

∫ r′
0 dr′′∆(r′′)

r′

∞
r

+
β

kF

∫ ∞
r

dr′

r′
∆(r′)e

− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.86)

We can then approximate I2 as

I2 = − β

2r
+

β

kF

∫ ∞
0

dr′

r′
∆(r′) e

− 2
kF

∫ r′
0 dr′′∆(r′′)

, (2.87)

since we only make an exponentially small error in extending the integral (which is further sup-

pressed by a factor of kF ) over the entire range. Thus, we approximate Eq. (2.82) as

I = −Er − β

2r
+

∫ ∞
0

dr′
(
E +

β

kF

∆(r′)

r′

)
e
− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.88)

In the vicinity of r∗, we hence find that the function ψ(r) (Eq. (2.72)) is approximately

ψ(r∗) ∼ Er∗

kF
+

β

2kF r∗
− 1

kF

∫ ∞
0

dr′
(
E +

β

kF

∆(r′)

r′

)
e
− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.89)

Comparing this asymptotic behavior with Eq. (2.81), we find the vortex core energies

E = −ω0 k l +

(
n+

k − 1

2

)
ω̃ , (2.90)

where

ω0 =
1

kF

∫∞
0 dr′ ∆(r′)

r′ e
− 2
kF

∫ r′
0 dr′′∆(r′′)∫∞

0 dr′ e
− 2
kF

∫ r′
0 dr′′∆(r′′)

and ω̃ =
π

2

kF∫∞
0 dr′ e

− 2
kF

∫ r′
0 dr′′∆(r′′)

. (2.91)
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For an elementary vortex k = 1, l is a half integer, and thus with n = 0, we reproduce the

CdGM solution [101]. For an MQV with k = 2, we see that we cannot get a zero-energy solution

since n ∈ Z. Moreover, for any k, we find |k| branches of vortex core states (per spin projection)

by taking the appropriate values of n such that E � ∆0 since our calculation is only valid in this

regime. This result is in agreement with an argument relating the number of vortex core branches

to a topological invariant [134]. While our method does not reproduce the detailed structure of the

sub-gap states away from zero energy, it allows us to analytically estimate the spectral asymmetry,

since we can extract the separation between the branches from the spectrum found above.

In order to better understand the nature of the vortex core states, we now consider the

specific pairing profile used in our numerical analysis,

∆(r) = ∆0 tanh

(
r

ξ

)
. (2.92)

Since the coherence length ξ = kF
∆0

, we find that

E = −
(
a

∆0

kF ξ

)
k l +

(
n+

k − 1

2

)
b kF
ξ

, (2.93)

where a = 7ζ(3)/π2 and b = π/2. From this, we then see that the mini-gap ω0 ∼ ∆0
kF ξ

and

furthermore, we find (pseudo) zero-energy states when

ln =
kF ξ

k

(
n+

k − 1

2

)
γ , (2.94)

where γ = b/a ≈ 1.8. Imposing the condition |l| . kF ξ, we see that we should restrict to n =

0,−1,−2, . . . , 1 − k which gives us exactly k branches of vortex core states. Our calculation thus

demonstrates that the angular momenta where the branches cross zero energy, called crossing

points, are separated by an amount ∼ kF ξ, in agreement with our numerical results. Furthermore,

we observe that taking a different form of the pair profile simply changes the constant γ (e.g., for

∆(r) = ∆0θ(r − ξ), we find γ = 4.5) but does not affect the scaling of the crossing points ln with

kF and ξ.

Thus, we have analytically shown that, at low energies, vortex core states disperse linearly,

Ej(l) = −ω0(l− lj), where j = 1, . . . , k indexes the branches and the lj ’s are the angular momenta



55

at which the branches cross the Fermi level. This is consistent with results obtained by numerically

diagonalizing the BdG Hamiltonian H(l) (for k = 2, see Fig. 2.3i) and with previous results on

MQVs in superconductors, obtained through quasi-classical approximations [134–136] and numeri-

cal simulations [137–140]. We note that while the spectrum for chiral states with singly quantized

vortices has previously been calculated [141], the method presented here easily generalizes to chiral

states with MQVs.

2.5 Non-trivial ηl and Suppression of OAM in the BCS Ground State

Since in the BEC regime the spectrum is completely gapped for any k, we find ηl = 0 for all

l and thus the ground state OAM is exactly Lz = kN/2. On the other hand, in the weakly-paired

regime the energy spectrum of an MQV exhibits a nontrivial spectral asymmetry. We consider the

case k = 2 first (Fig. 2.3i), where there exist two vortex core branches with linear dispersions at low

energies, E
(l)
vc,± ∼ −ω0(l − l±) with l+ > l−. Under PH symmetry, these branches are exchanged

as E
(l)
vc,+ = −E(−l−2)

vc,− which fixes l− = −(l+ + 2). As shown in Fig. 2.3ii, we find that at these

crossing points ηl acquires a non-zero value: ηl = −2 for l− < l < −1 and η = +2 for −1 < l < l+,

with ηl = 0 at l = −1. Intuitively, this can be understood as follows—at large negative l, the

branches are merged into the bulk and since there are no sub-gap states, ηl = 0. On increasing l,

the branches begin separating from the bulk but since both have positive energy, ηl still vanishes.

At l− however, one of the branches crosses the Fermi energy, creating a difference of precisely two

between the number of negative and positive energy eigenvalues of H(l). At l = −1, ηl necessarily

vanishes due to PH symmetry, which also fixes ηl for l > −1. In contrast with |k| = 1, the branches

are not PH symmetric with respect to themselves, allowing the spectral asymmetry to acquire a

non-zero value in the BCS regime. The fact that ηl changes from the BEC to the BCS regime can

also be understood as a consequence of spectral flow along the vortex core states, since ηl (and

hence L ) cannot change its value in any other way.

A non-zero spectral asymmetry ηl appears generally for any |k| ≥ 2 within the BCS regime:

for even k (see Fig. 2.3iv), there are |k|/2 pairs of branches such that the branches within each pair
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Figure 2.3: BdG solution for MQVs with ∆0 = 0.15EF , µ = EF , and kFR = 80: (a) Comparison
of energy spectrum for k = 2 with analytic approximation (in red); (b) spectral asymmetry for
k = 2; (c) energy spectrum for k = 3 and (d) for k = 4.

are PH symmetric with each other. ηl then changes by ±2 whenever one of these branches crosses

the Fermi level; for odd k (see Fig. 2.3iii) there are (|k|− 1)/2 pairs that contribute to a non-trivial

ηl, since the branches within each pair go into each other under a PH transformation, while the

remaining branch is PH symmetric with respect to itself and therefore does not contribute to ηl.

Having established the existence of a non-vanishing ηl, we see that there must exist unpaired

fermions in the BCS ground state for |k| ≥ 2, and as a consequence of Eq. (2.25), L acquires a

non-trivial ground state eigenvalue. For k = 2, this is L = −l2+− l+, where we used PH symmetry

to relate l− to l+. Importantly, the analytic calculation of the vortex core states (see Sec. 2.4.1)

demonstrates that the positions of the crossing points are located at l± ∼ kF ξ with the pre-factor

fixed by the form of ∆(r). This scaling persists in self-consistent numerical calculations [138–140].

Eq. (2.25) along with this scaling thus establishes the reduction of the OAM of the k = 2 MQV in
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Figure 2.4: The analytic prediction Lz/N = 1− α(ξ/R)2 (red line) fits the numerical data (blue
dots) well over a wide window within the BCS regime, 0.05 . ∆0/EF . 0.25, for an MQV with
k = 2. The slope of the fit equals two as shown on a log-log plot.

the weakly paired regime. To leading order in kF ξ,

L = Lz −N ∼ − (kF ξ)
2 . (2.95)

As a result, the OAM is significantly suppressed from LBECz = N since kF ξ � 1 in the BCS regime

(∆0 � EF ). This analysis confirms that the unpaired fermions carry angular momentum opposite

to that carried by the Cooper pairs. On a disc, N ≈ (kFR)2/2, leading to Lz/N ≈ 1 − α (ξ/R)2,

where α is an O(1) constant fixed by ∆(r). As an independent check, we have verified this behavior

by numerically calculating Lz/N using the full BdG solution (see Appendix A for details). In

Fig. 2.4, the quadratic scaling is shown to be in good agreement with the numerical data. We

thus expect a substantial reduction of the OAM in the BCS regime, where ξ can be comparable to

R [104]. We also expect that when two elementary vortices merge into a k = 2 MQV [135, 136],

the ground state OAM decreases from Lz = N by an amount ∼ (kF ξ)
2.

2.6 Conclusions

In this chapter, we have shown that the presence of a topological defect in a BCS superfluid

can significantly alter the nature of pairing in the ground state. Specifically, we have established

that an MQV in the weak-pairing regime of a fermionic superfluid hosts unpaired fermions localized
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around the vortex core, which lead to a significant suppression of the OAM in the BCS ground

state.

A central feature of our result is that the suppression of Lz for |k| ≥ 2 is independent of

any boundary effects and is solely determined by the splitting between the vortex core branches.

Given this insensitivity to boundary details, we expect our results to hold for more general sample

geometries, which may lack axial symmetry. Unlike the ground state energy, which might depend

strongly on the gap profile, the OAM thus exhibits universal scaling behavior in the weak pairing

BCS regime. The lack of dependence of the OAM on the system boundary is in stark contrast with

weakly-paired chiral (e.g., d+id) SFs, where it was shown [90, 124] that the OAM is suppressed due

to the topological edge modes, but that this effect is strongly dependent on the edge details [123,

128, 129, 142]. Our analysis hence suggests that s-wave SFs with MQVs may prove to be a more

robust platform for investigating the intriguing suppression of the OAM in paired SFs. While the

OAM has been measured in SFs [143–145], we also expect signatures of unpaired fermions—which

create a current localized around the vortex core that flows counter to the superflow—in local

supercurrent density measurements in MQV states [105].



Chapter 3

Interplay of Symmetry and Topology in Superconductors: Here, There, and

Everywhere

In which Benny superbly orchestrates

an escape from quotidian order,

only to run into himself.

Last chapter, we encountered fermionic superfluids: systems of electrically neutral fermions

which, for chiral states paired in higher angular momentum channels, possess chiral gapless edge

excitations and are topologically non-trivial. In contrast, a superconductor is a system of inter-

acting electrically charged particles which couple to the physical U(1) electromagnetic gauge field.

Unlike superfluids, which spontaneously break U(1) charge conservation, the appropriate theoret-

ical framework for understanding the physics of superconductors is that of the Higgs mechanism,

which leads to the characteristic signature of superconducting states—the Meissner effect. The

conventional textbook explanation of superconductivity as a broken symmetry state is strictly true

only for a neutral system and relies on qualitative arguments relating the response functions of

the neutral system to the screened response of the charged system. Crucially, a charged system

coupled to dynamical electromagnetism is a U(1) gauge theory and, as a consequence of Elitzur’s

theorem, does not admit a non-trivial local order parameter since the expectation values of all

gauge non-invariant quantities, such as the pairing amplitude, are strictly vanishing [146]. Such a

system, which is fully gapped at zero temperature due to the Higgs mechanism, is instead described

by a non-local order parameter, a clear indication of intrinsic topological order.
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The idea that superconductors coupled to dynamically fluctuating electromagnetism are cor-

rectly thought of as topologically ordered states was expounded upon in a beautiful paper by

Hansson et al [46]. Of particular interest is their development of a low-energy topological quan-

tum field theory description for s-wave superconductors in d = 2 spatial dimensions, which turns

out to be the Chern-Simons theory for Z2 topological order. The restriction to 2 + 1D requires

that the electrodynamics is that of the 2 + 1D Maxwell term, which no longer describes physical

electromagnetism even if the electrons are spatially confined to 2d (such situations arise in thin

film superconductors, where the electrons live in d = 2 but the electromagnetic field remains three-

dimensional). Nevertheless, such a simplification is justified from a theoretical standpoint as it

provides an analytically tractable framework for studying of topological order, complementary to

studies of the FQHE and quantum spin liquids.

The presence of topological order in d = 2 s-wave superconductors was firmly established

in [46] by demonstrating the presence of fractionalized quasi-particles (vortices and Bogoliubov

fermions) and the existence of a finite ground state degeneracy on a torus, hallmarks of gapped

LRE states with topological order. However, that work left open various important questions,

the resolutions of which form the basis of this chapter. First, can this analysis be extended to

superconductors paired in higher partial waves, such as the chiral d+ id state which hosts gapless

edge excitations and excitations with semionic mutual statistics [89]? Second, all spin-singlet su-

perconductors possess a pair of internal unbroken global symmetries: spin-rotation and “magnetic

flux,” the latter of which follows from the electromagnetic Bianchi identity, valid in the absence

of magnetic monopoles. Can these global symmetries be systematically included in the low-energy

TQFT description of 2 + 1D superconductors and the response properties of all spin-singlet su-

perconductors identified? In this chapter, we answer both of these questions in the affirmative

by deriving low-energy descriptions of all spin-singlet (Abelian) superconductors, thereby placing

them in the class of symmetry enriched topological (SET) phases.

A version of this chapter was first presented as [47] under the title “Topological Order, Sym-

metry, and Hall Response of Two-Dimensional Spin-singlet Superconductors,” and is a collaboration
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with Sergej Moroz, Victor Gurarie, and Leo Radzihovsky,

Phys. Rev. B 95, 014508 (2017)1

When I get to the bottom, I go back to the top.

3.1 Introduction

Topological order is a cornerstone of contemporary quantum condensed matter physics [147,

148]. Rooted in the discovery of the fractional quantum Hall effect, it arises in numerous phases of

matter such as spin liquids and fractional quantum Hall liquids. Topological order manifests itself

in the fractionalization of low-energy excitations, ground state degeneracy on closed manifolds, and

long-range entanglement [149].

The idea that two-dimensional superconductors, i.e., electrically charged paired fermions that

couple to a dynamical two-dimensional electromagnetic field, are topologically ordered has been

appreciated for some time [46, 89, 150–152]. Due to the Higgs mechanism, there are no Goldstone

modes in the energy spectrum and, at zero temperature, the superconductor is fully gapped. There

are two types of point excitations in a two-dimensional superconductor: Bogoliubov quasiparticles

and vortices. At energies much lower than the gap, only the topological properties of these low-

energy excitations (their braiding and fusion rules) and their symmetry quantum numbers matter.

1 Copyright 2017 American Physical Society, reproduced here in accord with the copyright policies of the American
Physical Society.
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This information can be effectively encoded in a topological field theory. For an s-wave supercon-

ductor, a topological Chern-Simons theory was elucidated and described in detail in a beautiful

paper by Hansson, Oganesyan, and Sondhi [46].

More recently, attempts have been made to construct topological theories for non-abelian p+

ip superconductors [153, 154]. These states are an important example in the field of two-dimensional

fermionic chiral superfluidity and superconductivity, which has been the focus of experimental and

theoretical condensed matter physics for decades. Today, chiral p+ ip pairing plays a central role in

research fields as diverse as the physics of 3He [155, 156], quantum Hall physics [89], unconventional

superconductivity [157], cold atoms [158, 159], and topological quantum computation [160].

Our focus in this chapter is on chiral spin-singlet paired states which have also received some

attention in the past. For example, in the weakly-coupled abelian topological phase, which falls into

class C of the ten-fold way classification [161], a chiral d+ id superconductor is predicted to exhibit

a spin Hall effect [89, 162], support four protected chiral edge modes [163], and have a non-universal

edge mass current carried by unpaired fermions [90, 124]. Over the past few years, new physical

motivations necessitating further study of chiral d + id pairing have emerged. Specifically, two-

dimensional materials with a hexagonal lattice symmetry necessarily have degenerate dx2−y2 and

dxy gaps [157], which makes them good candidates for chiral d+id superconductors. Two well-known

examples where d+ id pairing is currently believed to be relevant are the pnictide SrPtAs [164, 165]

and graphene doped to the van Hove filling [166–168]. Chiral spin-singlet superconductors paired in

higher partial even-waves are also theoretically interesting and are likely to become experimentally

relevant in the future.

In a two-dimensional chiral superconductor, the spontaneous breaking of parity and time-

reversal symmetries might lead one to expect a spontaneous generation of a finite magnetic field in

the ground state, which originates from the internal motion of fermions orbiting around each other

in Cooper pairs. For a type II superconductor, this would result in a finite density of quantum

vortices in the ground state. One might thus anticipate a relation between the density of elementary

fermions, nf , and the density of vortices, nv, of the form nv = νvnf . An important question that
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motivated this work is whether νv is a universal quantized number for chiral paired states such as

a d+ id superconductor.

To answer this question and to extend the understanding of superconductors as topologically

ordered states, we present a general framework for studying the low-energy physics of spin-singlet

superconductors. We start from the microscopic theory of these states that are spin-rotationally

invariant and conserve magnetic flux. From there, we derive topological field theories for different

gapped abelian states, i.e., s-wave, d+ id, and chiral superconductors paired in higher partial even-

waves. The virtue of this approach is that it naturally encodes the braiding and fusion rules of

low-energy excitations, incorporates symmetries, and captures the physics at the edge. In the case

of chiral states, we reproduce the known spin Hall effect [89, 162]. Moreover, we investigate the

vortex Hall response associated with the magnetic flux symmetry. The coefficient νv, introduced

above, equals the Hall coefficient for this response. Importantly, we demonstrate explicitly that for

all superconductors considered here, νv is zero. As a result, we predict that there is no spontaneous

magnetic field, and thus no dense array of vortices in the ground state of a chiral two-dimensional

superconductor. By merging the ideas discussed above, our work unifies topological order and

symmetries in superconductors and firmly establishes them as symmetry enriched topological (SET)

phases [56].

It is worth remembering that in this work the electromagnetic field is assumed to be strictly

confined to two spatial dimensions. Is such flatland electromagnetism actually realizable in an

experiment? It is clear that without special arrangements electromagnetism will penetrate into the

third dimension, and as a result, one has to deal with a mixed dimension problem where paired

fermions are confined to two spatial dimensions but electromagnetism is three-dimensional. By

embedding two dimensional electrons inside a specific dielectric medium, however, electromagnetism

can also be made effectively two-dimensional. To this end, one can engineer a two-dimensional

logarithmic potential between electric charges by surrounding the sample by a low-permittivity

medium with a dielectric constant εmedium � εsample [169]. Secondly, the magnetic field lines can

be arranged to be transverse to the boundary of the quasi-two dimensional sample by sandwiching it
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between a high-permeability (µmedium � µsample) material. Thus, at least static electromagnetism

can be effectively confined to two dimensions.

The outline of this chapter is as follows: In Sec. 3.2, we first introduce our framework – an

abelian Chern-Simons field theory that captures the topological properties, symmetries, and edge

physics of abelian gapped states. Next, in Sec. 3.3, we introduce topologically ordered spin-singlet

superconductors and identify their internal global symmetries. Then, in Sec. 3.4, we derive the

topological theories of s-wave and d + id superconductors by starting from the low-energy model

of a non-relativistic dx2−y2 paired state. In that section, we also extend this derivation to chiral

superconductors paired in higher partial even-waves. In Sec. 3.5, we analyze the resulting Chern-

Simons theories. Here, we first devote Sec. 3.5.1 to a conventional (s-wave) superconductor. In

Sec. 3.5.2, we then investigate the effective theory of a d+ id superconductor and calculate its spin

and vortex Hall responses. Next, in Sec. 3.5.3, we describe the extension of our construction to

chiral spin-singlet superconductors paired in higher partial even-waves and demonstrate that these

fall into the sixteen-fold way classification of chiral superconducting states developed by Kitaev [50].

Sec. 3.6 presents a general argument that elucidates why chiral superconductors have a zero vortex

Hall coefficient. Finally, in Sec. 3.7, we close with some open questions that go beyond the scope

of this thesis.

3.2 Abelian topological field theories

The low-energy physics of a completely gapped two-dimensional state of matter is encoded in

a topological field theory. Moreover, since the spin-singlet superconductors studied here are known

to form only abelian phases,2 we propose that topological aspects of such phases can be captured

by an abelian Chern-Simons field theory [27–29]

Lbulk =
1

4π
εµνρaIµKIJ∂νa

J
ρ − aIµjµI −

1

2π
tAIε

µνρAAµ ∂νaIρ. (3.1)

2 An abelian phase is characterized by a unique anyon resulting from the fusion of any two excitations. On the
other hand, non-abelian anyons can fuse into different outcomes.
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Here aI is a multiplet (I = 1, 2, . . . , N) of auxiliary statistical gauge fields,3 KIJ is a symmetric

integer-valued N ×N matrix that determines the self and mutual statistics of excitations, and jI

are quasiparticle currents. Note that aµ are coupled to quantized charges carried by the currents jI .

As a result, the first-quantized current densities are j0
I (r) =

∑
n l

(n)
I δ(r− r(n)), characterized by an

integer-valued gauge charge vector l(n) and the position r(n) of the nth quasiparticle excitation. The

third term in Eq. (5.34) represents the coupling to external sources AA of A = 1, 2, . . . ,M global

U(1)A symmetries. The theory (5.34) has proven to be successful in describing the low-energy

properties of abelian quantum Hall fluids [170].

Importantly, topological order is simply encoded in the effective theory (5.34). Indeed, the

ground state degeneracy on a torus, a direct manifestation of topological order, is fixed by the

determinant of the K-matrix [170]

#GS = |detK|. (3.2)

Moreover, this determinant also fixes the number of independent anyon types (see, for exam-

ple, [171]).

While the effective field theory (5.34) is quite an inefficient formalism for encoding the fusion

and braiding rules of the bulk excitations,4 it is in fact very well suited for understanding the

physics of the edge. Following Wen [172], in the absence of external sources AA, one finds a chiral

Luttinger theory of N chiral bosons φI propagating along the edge

Ledge =
1

4π

[
KIJ∂tφ

I∂xφ
J − VIJ∂xφI∂xφJ

]
. (3.3)

Here VIJ is a non-universal positive-definite real matrix that depends on the microscopic properties

of the edge.

Systems with a finite chiral central charge c at the edge have a non-zero thermal Hall con-

ductance and host c co-propagating bosonic edge modes that cannot be gapped by backscattering.

3 A remark regarding compactness: The statistical fields dual to global conserved currents are non-compact which
ensures absence of instanton magnetic monopoles and strict conservation of these currents. On the other hand,
compact statistical gauge fields are also present sometimes, but these do not encode any strict conservation laws.

4 Indeed, the number of entries of the K-matrix might be much larger than the number of independent braiding
phases.
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In particular, for chiral spin-singlet superconductors, with the chirality parameter k to be defined

in Eq. (3.10), one finds c = k.

A natural next question to ask is whether counter-propagating edge modes can be gapped

without breaking any symmetries or if they are symmetry-protected , i.e., are stable against ar-

bitrary symmetry preserving local perturbations. In the rest of this section, we present a brief

analysis of this question.

To understand the structure of a straight edge along the x direction in the presence of external

sources AA, we start from Eq. (5.34) in the absence of quasiparticle currents jµI . Following [172],

we first impose a gauge fixing condition in the bulk

aIt + vIaIx = 0. (3.4)

The Gauss law constraint (or incompressibility condition)

2π
δS

δaIt
= KIJb

J − tAIBA = 0, (3.5)

where bI = εij∂ia
I
j and BA = εij∂iAAj , is automatically satisfied by

aIi = ∂iφ
I +K−1

IJ tAJAAi . (3.6)

Substituting Eqs. (3.4) and (3.6) into the bulk action (5.34), with some manipulations, will result

in the generalization of the effective edge action (5.5.2.4) in the presence of sources AA. For the

purposes of understanding the fate of counter-propagating edge modes in the presence of symme-

tries, however, it suffices to work out the transformation properties of the edge fields φI . Under a

local U(1)A transformation parametrized by αA, the background gauge fields and the edge multiplet

transform as

δAAµ = −∂µαA,

δφI = αAK
−1
IJ tAJ .

(3.7)

The last equation follows from Eq. (3.6) and the U(1)A neutrality of all statistical gauge fields aI .

We consider now an edge perturbation of the form∫
dx dt cos(lIφI). (3.8)
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First, the requirement of locality of this term enforces that ~l ∈ ZN must be bosonic (have trivial self

and mutual statistics) [171]. Moreover, it follows from Eq. (3.7) that these terms (sometimes called

“Higgs” terms) are invariant under all global symmetries if lT ·K−1 · tA = 0 for all A = 1, . . . ,M .

In addition, according to the null vector condition of [173], such symmetry allowed Higgs terms

can now gap a pair of counter-propagating edge modes if and only if lT ·K−1 · l = 0 since the two

fields can then be rotated such that they form a single non-chiral Luttinger liquid that is gapped

by backscattering [174]. More generally, for gapping n pairs of counter-propagating edge modes,

we will require n-independent (commuting) Higgs terms that can simultaneously provide energy

gaps to all of these edge modes.

In summary, in the presence of U(1) global symmetries, n pairs of counter-propagating edge

modes can be gapped if and only if one can find ~li ∈ ZN (i = 1, · · · , n) such that

� The Higgs terms are constructed from elementary bosonic excitations:

2πlTi ·K−1 · l′ = 0 (mod 2π) ∀i,∀~l′ ∈ ZN (3.9a)

� The Higgs terms are charge neutral under all global symmetries:

lTi ·K−1 · tA = 0 ∀i,∀A (3.9b)

� The null vector conditions are satisfied:

lTi ·K−1 · lj = 0 ∀i, j (3.9c)

As shown later, all systems considered in this chapter host at least one pair of counter-propagating

modes which are gapped out by the Higgs terms satisfying the above conditions.

3.3 Spin-singlet superconductors: topological order and symmetries

In this chapter, we consider two-dimensional electrically charged spinful fermions which cou-

ple to a dynamical electromagnetic gauge field that is also confined strictly to two spatial di-

mensions. We will assume that, due to electromagnetism and some spin-independent short-range



68

attractive interaction, the fermions pair in a spin-singlet chiral channel with the gap

∆p = (px ± ipy)k∆0 (3.10)

where the sign defines the chirality and k is an even integer due to antisymmetry of the fermionic

singlet pair wave-function. In fact, k is just the orbital angular momentum carried by a Cooper

pair.

We will discuss separately a conventional s-wave superconductor (k = 0), d + id supercon-

ductor (k = 2), and higher partial even-wave chiral superconductors (k = 4, 6, . . . ). The explicit

construction and analysis of the topological Chern-Simons theories of these superconductors de-

pends on the chirality parameter, k, and will appear in separate sections below. Here, we first

highlight the generic properties that all of these systems have in common:

� Topological order: Two-dimensional spin-singlet superconductors with a dynamical gauge

field exhibit topological order. For an s-wave superconductor this has been emphasized

in [46], where the ground state degeneracy on a torus was found to be equal to four. In

fact, this result also holds for the d+ id superconductor [89] and can be easily extended to

higher partial wave spin-singlet chiral pairing. As a result, all superconductors considered

here have |detK| = 4 and contain four independent anyons, which we call 1, e, m, and ε,

following a common convention. As we will see in the following, topological order in super-

conductors leads to fractionalization of the quantum numbers and statistics of low-energy

excitations.

� Internal continuous global symmetries: In a superconductor, electromagnetism, being

a gauge redundancy, is not a global symmetry. There are, however, two internal global sym-

metries of spin-singlet superconductors to be considered in this thesis: First, the spin-singlet

structure of the pairing implies that a non-abelian SU(2)s spin rotation is a global symme-

try. Since by construction, the effective theory (5.34) can couple only to abelian sources,

here we consider the Cartan subalgebra of SU(2)s with the charge Qs ∼ Sz and introduce

in Eq. (5.34) an external abelian spin source As that couples to the z-component of the
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spin current. We will see that in superconductors, this charge is carried only by Bogoliubov

quasiparticles while vortices are spinless. Second, any two-dimensional superconductor has

a global abelian U(1)v magnetic flux symmetry with a charge Qv =
∫
d2xB [175]. The

conservation of this charge follows from the electromagnetic Bianchi identity (Faraday’s

law) εµνρ∂µFνρ = 0, which is valid provided there are no magnetic monopoles. This ap-

pears naturally in a model where the electromagnetic U(1) gauge group is non-compact,

which we consider here. In a type-II superconductor, a vortex carries one-half of a mag-

netic flux quantum, i.e., a π-flux, while a Bogoliubov quasiparticle is neutral with respect

to this symmetry. As a result, in a superconductor the flux charge defined above is carried

only by vortices. Correspondingly, in the effective theory (5.34) we introduce an external

abelian source, Av, which couples to the charge Qv. It is worth emphasizing that due to

the presence of a gap, neither of the two global symmetries introduced above are broken

spontaneously in a superconducting ground state.

3.4 Derivation of Chern-Simons topological field theories of spin-singlet

superconductors

We start from the low energy model of a weakly-coupled non-relativistic dx2−y2 superconduc-

tor and, by deforming it, will derive the topological Chern-Simons theories for s-wave and d + id

superconductors. At the end of this section, we will also extend this derivation to spin-singlet chiral

superconductors that are paired in higher partial even-waves.

Before presenting the derivation, it is worth noting that for a relativistic s-wave supercon-

ductor a topological Chern-Simons theory was derived in [46]. In contrast to that construction, our

derivation applies to all gapped spin-singlet non-relativistic superconductors and includes coupling

to external magnetic flux and spin symmetry sources.
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Our starting point is the Lagrangian of a gapless two-dimensional dx2−y2 superconductor5

L0 =− 1

4
FµνF

µν − nsDtϕ+
ns
2

1

c2
s

(Dtϕ)2 − ns
2

(Diϕ)2

−Aµjµions + L0
qp(ψi, A;As)− 1

2π
εµνρÃvµ∂νAρ,

(3.11)

where the covariant derivative Dµϕ = ∂µϕ − Aµ, ns is the superfluid density, and cs is the speed

of sound. The first term6 in Eq. (3.11) encodes the Maxwell dynamics of the electromagnetic field

A and the next three terms incorporate the dynamics of the fluctuating part, ϕ, of the supercon-

ductor phase. In addition, we have included the neutralizing ion static background that carries the

electromagnetic current jµions = nfδ
µ0, where nf is the density of elementary fermions that undergo

pairing. L0
qp, specified later in this section, incorporates the low-energy physics of gapless spinful

fermionic quasiparticles that couple to electromagnetism, A, and to the spin source, As. Finally,

the last term in Eq. (3.11) describes the coupling of the magnetic flux symmetry current to its

external source, Ãv. Its prefactor fixes the magnetic flux charge of an elementary counterclockwise

vortex to Qv = +1/2 (see footnote5).

3.4.1 Vortices

In the presence of vortices the superconductor phase ϕ can be split into the regular part ϕreg

and the vortex part ϕv, which has singularities at the positions of vortices. By a suitable regular

gauge transformation, the regular part ϕreg can be absorbed into the electromagnetic potential,

Aµ (Higgs mechanism). On the other hand, the singular part ϕv determines the conserved vortex

current

jµv =
1

π
εµνρ∂ν∂ρϕv. (3.12)

5 For simplicity we set the mass of an elementary fermion to unity. Its electric charge e is set to minus unity,
which fixes the magnetic flux carried by an elementary (counterclockwise) vortex ϕ(x) = arg(x)/2 to +π, i.e., a half
of a magnetic flux quantum.

6 Here the indices are raised and lowered with the Minkowski metric.



71

After introducing the statistical gauge field aµ ≡ ∂µϕv, that is dual to the vortex current, the

Lagrangian (3.11) becomes

L0 =− 1

4
FµνF

µν − bµ
(
jµv −

1

π
εµνρ∂νaρ

)
− ns(at −At) +

ns
2

1

c2
s

(at −At)2

− ns
2

(ai −Ai)2 −Aµjµions + L0
qp(ψi, A;As)− 1

2π
εµνρÃvµ∂νAρ,

(3.13)

where following [46] we introduced the (Lagrange multiplier) statistical gauge field bµ, whose equa-

tion of motion enforces the condition (3.12).

3.4.2 Bogoliubov quasiparticles

We now specify the quasiparticle Lagrangian, L0
qp. The dx2−y2 superconductor has four

nodes on the Fermi surface (see Fig. 3.1), where Bogoliubov quasiparticles become gapless. After

linearizing near these nodes one finds four massless two-component Dirac modes ψiα, where we

introduced the nodal index i = 1, 2 and the spin index α =↑, ↓. The low-energy Dirac Lagrangian

of these quasiparticles was derived in [152, 176] and also discussed in [177]. In the absence of

electromagnetism it is given by

L0
qp = ψ†1i∂tψ1 + ψ†1

(
ivF∂Xτz + iv∆

∑
s=+,−

eisϕ∂Y e
isϕτs

)
ψ1 + (1↔ 2, X ↔ Y ), (3.14)

where τ± = (τx ± iτy)/2. Here we have introduced the node-aligned spatial coordinates X =

(x + y)/
√

2 and Y = (−x + y)/
√

2 and suppressed both the spin index α and Dirac index in

particle-hole space, where the Pauli matrices τi operate. The gap terms proportional to τ+ and

τ− contain the coupling to the superconductor phase ϕ. Note that our normalization of this phase

differs from the normalization used in [152, 176] by a factor of two.

Since ψiα transforms as a doublet under the spin SU(2)s symmetry, the quasiparticles cou-

ple to the spin source As via the minimal coupling ∂µ → ∂µ + iσzAsµ/2, where the Pauli matrix

σz acts in spin space. On the other hand, the Bogoliubov quasiparticle spinor ψiα is a combina-

tion of a particle and hole, and thus it is more subtle to introduce the electromagnetic potential

A into Eq. (3.14). In fact, A appears only in the kinetic terms (but not in the gap term) in

Eq. (3.14) via the minimal coupling ∂µ → ∂µ + ieτzAµ, where we set e = −1 (see footnote5). In
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Figure 3.1: Four Dirac fermions ψiα arising from the two pairs of nodes (connected by dashed
lines) at the Fermi surface of a dx2−y2 superconductor.

the absence of vortices it is customary at this point to transform to electrically neutral fermions,

ψ̃i = exp(−iϕτz)ψi, which eliminates the phase ϕ from the gap term [152]. Importantly, in the

presence of vortices this transformation is not single-valued,7 and instead one should perform a

single-valued transformation [178] (see also [179] for a general discussion)

ψ̃i = exp(−iϕτz ± iϕv)ψi. (3.15)

The presence of these neutral fermions, that braid trivially with all other quasiparticles, will be

reflected in the fermionic nature of the K-matrices discussed in Sec. 3.5. After performing the

transformation with the minus sign in Eq. (3.15), we find

L0
qp(ψ̃i, A;As) = ψ̃†1

[
iDt + τz(At − at)

]
ψ̃1 + ψ̃†1vF

[
iDXτz + (AX − aX)

]
ψ̃1

+ ψ̃†1v∆iDY τxψ̃1 + (1↔ 2, X ↔ Y ),

(3.16)

where

Dµ = ∂µ + iaµ − iσzAsµ/2. (3.17)

7 Indeed, across the vortex branch cut, the phase of every Dirac component of the spinor ψ̃i = exp(−iϕτz)ψi
changes by ±π.
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Figure 3.2: Topological phase diagram of a deformed dx2−y2 superconductor as a function of
masses mi of the Dirac modes ψi. The origin represents the dx2−y2 superconductor.

3.4.3 s-wave and d+ id deformations of dx2−y2 superconductor

Crucially for us, one can enter into the s-wave or d+ id gapped phase by adding appropriate

masses to nodal Dirac quasiparticles that were introduced above. In particular, the terms [162]

Lδqp = −δ(ψ̃†1τyψ̃1 ± ψ̃†2τyψ̃2) (3.18)

add to the dx2−y2 superconductor some amount of is and idxy pairing, respectively. Topologically,

the resulting phases are equivalent to the s-wave and d + id superconductors. We see thus that

that Eq. (3.18) is nothing but the mass term for the nodal Dirac particles,8 with masses m1 = δ

and m2 = −δ. More generally, allowing arbitrary masses mi for the spinors ψi, one can show that

their signs are the same (m1m2 > 0) for the d+ id phase, while they are opposite (m1m2 < 0) for

the s-wave phase. The resulting phase diagram is summarized in Fig. 3.2. Since the s-wave and

the d+ id superconductors differ only in the sign of the mass of the Dirac mode ψ̃2, in the following

we consider them in parallel.

3.4.4 Integrating out electromagnetism

Henceforth, we will assume that the Bogoliubov quasiparticles ψi have a sufficiently large

gap and thus carry an electric density and current that are negligible compared to the superfluid

8 To this end, perform the following transformation of the last term in Eq. (3.16): first rotate by a π/2 angle, i.e.,
X → −Y , Y → +X and second apply a unitary rotation U = exp(iπτz) to ψ̃2.
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density and the supercurrent. As a result, the superfluid density ns is equal to the density nf of

the elementary fermions. Given this, we first impose the charge neutrality condition ns + j0
ions =

0 in Eq. (3.13). Combining now Eqs. (3.13), (3.16) and (3.18), we integrate out the massive

electromagnetic field Aµ, which to lowest order in derivatives is equivalent to the substitutions

Aµ → aµ. Keeping now only the leading terms in derivatives, we find

L → −bµ
(
jµv −

1

π
εµνρ∂νaρ

)
− nsat + LDqp(ψ̃i)−

1

2π
εµνρÃvµ∂νaρ (3.19)

with

LDqp(ψ̃i) = ψ̃†1

(
iDt + ivF τzDX + iv∆τxDY − δτy

)
ψ̃1

+ ψ̃†2

(
iDt + ivF τzDX + iv∆τxDY ∓ δτy

)
ψ̃2,

(3.20)

where the covariant derivative Dµ was defined in Eq. (3.17).

Since in a superconductor an elementary fermion carries a 2π flux of the vortex magnetic

field (see Appendix B), a finite density of these fermions gives rise to a finite background value of

Bv. It thus seems natural at this point to absorb the term −nsat in Eq. (3.19) into the source term.

This indeed can be done by writing nsat → εµνρĀvµ∂νaρ/(2π) with Āvt = 0 and B̄v = 2πns. As the

result, Eq. (3.19) simplifies to

L =
1

π
εµνρaµ∂νbρ − bµjµv −

1

2π
εµνρAvµ∂νaρ + LDqp(ψ̃i), (3.21)

where Av = Āv + Ãv.

3.4.5 Topological field theory

Finally, we integrate out massive Dirac fermions in Eq. (3.20), which are minimally coupled

to the statistical gauge field a and the spin source As. The resulting statistical and spin Hall

response is

LDres =
1

8π

∑
i=1,2

∑
α=↑,↓

mi

|mi|
εµνρ

(
aµ∂νaρ + q2

sAsµ∂νAsρ
)
, (3.22)

where the unit of spin charge qs = 1/2. This can be encoded within the Chern-Simons theories of

two statistical gauge fields c↑ and c↓.
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Specifically, for the s-wave case, where
∑

i,αmi/|mi| = 0, we use the zero-chirality theory

LDqp →
1

4π
εµνρ

(
c↑µ∂νc

↑
ρ − c↓µ∂νc↓ρ

)
+

1

2π
εµνρaµ∂ν(c↑ρ + c↓ρ)

− 1

2π
εµνρAsµ∂ν(c↑ρ − c↓ρ)− c↑µjµ↑ + c↓µj

µ
↓ −

1

π
εµνρAsµ∂νaρ

(3.23)

which by construction has a vanishing Hall response. In particular, integrating out c↑ and c↓ results

in a term ∼ As∂a which is exactly cancelled by the last term in Eq. (3.23).

On the other hand, for the d+ id case with
∑

i,αmi/|mi| = 4 we employ the chiral theory

LDqp →
1

4π
εµνρ

(
c↑µ∂νc

↑
ρ + c↓µ∂νc

↓
ρ

)
+

1

2π
εµνρaµ∂ν(c↑ρ + c↓ρ)

− 1

2π
εµνρAsµ∂ν(c↑ρ − c↓ρ)− c↑µjµ↑ − c↓µj

µ
↓ .

(3.24)

In Eqs. (3.23) and (3.24), we also included the coupling to gapped spin-up and spin-down Bogoliubov

quasiparticles that are represented in the Chern-Simons field theory by external bosonic currents

j↑ and j↓, respectively.9 By putting Eqs. (3.23), (3.24) that capture the quasiparticle sector of the

full Lagrangian into Eq. (3.21) results in the completely topological four-component (a, b, c↑, c↓)

Chern-Simons theories for s-wave and d + id superconductors which will be discussed in detail in

Secs. 3.5.1 and 3.5.2, respectively.

3.4.6 Extension to higher partial waves

The above construction can be straightforwardly generalised to chiral superconductors paired

in the kth partial wave, for k ∈ 2Z/{0}. We start from a time-reversal invariant superconductor

with a gap proportional to the real part of (px ± ipy)k which has k pairs of nodes at the Fermi

surface. This leads to k massless Dirac spin doublets. We can deform into the chiral (px + ipy)
k

state by adding masses of the same sign to all Dirac modes. This procedure gives rise to the Chern-

Simons theory that will be investigated in Sec. 3.5.3, following our presentation and analysis for

the s-wave and d+ id cases.

9 It would be instructive to derive Eqs. (3.23), (3.24) rigorously by using the functional bosonization approach
developed in [180].
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3.5 Topological field theories of spin-singlet superconductors

In this section we analyze the topological theories that were derived in the previous section.

In addition to summarizing the braiding properties of quasiparticles, we investigate the role of

global symmetries in the bulk and at the edge of spin-singlet superconductors.

3.5.1 s-wave superconductor

Having encoded the topological properties of vortices in Eq. (3.21) and of the nodal Dirac

quasiparticles in Eq. (3.23), we combine these to arrive at the four-component Chern-Simons theory

of the form (5.34) with aI = (a, b, c↑, c↓). The resulting K-matrix characterizing the s-wave state

is

K =



0 2 1 1

2 0 0 0

1 0 1 0

1 0 0 -1


. (3.25)

This K-matrix is fermionic (with two odd integers on the diagonal) encoding the presence of

an elementary10 fermionic excitation in the spectrum of the superconductor. Notably, the K-matrix

(3.25) does contain the (toric code) bosonic block

 0 2

2 0

, which, for the s-wave superconduc-

tor, was derived previously in [46]. The l-vectors, defining integer-valued charges of independent

excitations with respect to statistical gauge fields a, b, c↑, c↓, are shown11 in Fig. 3.3. The self and

mutual statistical angles can be extracted from the topological theory (5.34) as

θl = πlT ·K−1 · l, θl,l′ = 2πlT ·K−1 · l′. (3.26)

Thus, we find that e and m are bosons and ε is a fermion for the s-wave superconductor. In

addition, any mutual braiding gives the statistical angle π.

10 By definition, an elementary excitation has trivial mutual statistics with all anyons.
11 Specifically, in Fig. 3.3 we chose to identify ε with the spin-up Bogoliubov quasiparticle that carries the current

j↑ in Eq. (3.23). Alternatively, in the s-wave case one can choose lε↓ = (0, 0, 0,−1) which corresponds to the spin-
down Bogoliubov quasiparticle. The latter identification gives the same braiding and fusion rules as the former, but
obviously differs by the sign of the spin charge. Note that for the d+ id state, Eq. (3.24) leads to lε↓ = (0, 0, 0, 1).
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Figure 3.3: Integer-valued l-vectors of 1, e, m, ε excitations for the s-wave and d+ id
superconductor.

Now we consider the symmetries: In a generic effective theory (5.34) the charge QA of an

excitation characterized by the l-vector is given by

QAl = tTA ·K−1 · l. (3.27)

For the s-wave state, it follows from the derivation in Sec. 3.4 that the t-vectors for the spin and

magnetic flux symmetry are tTs = (2, 0, 1,−1), tTv = (1, 0, 0, 0). This fixes the spin and vortex

charges of m, ε and e to be

Qms = 0, Qεs = 1, Qes = 1,

Qmv = 1/2, Qεv = 0, Qev = 1/2.

(3.28)

Since we previously defined that in a superconductor, Bogoliubov particles carry only spin and

vortices carry only magnetic flux, we now must identify ε and m with the Bogoliubov quasiparticle

and vortex respectively. As expected, the Bogoliubov quasiparticle ε is a fermion, while the vortex

m is a boson. Their composite e is a boson, which carries the spin and vortex charge. The

mutual π-phase under the braiding of ε around m is consistent with the well-known fact that in a

superconductor the Bogoliubov quasiparticle (despite being electrically neutral [150]) accumulates

a minus sign upon encircling a vortex [181, 182].

The s-wave pairing does not violate two-dimensional parity P (x ↔ y) and time-reversal T

(t→ −t). As a result, the effective theory (5.34) should be invariant under these discrete symme-

tries. We specify the transformation properties of all fields: First, under P and T the Bogoliubov
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quasiparticle currents j↑, j↓ and the vortex current jv transform differently. The definitions of the

currents lead to the following nontrivial transformations

P : j0
↑ ↔ j0

↓ , jx↑ ↔ jy↓ , j0
v → −j0

v, jxv ↔ −jyv ,

T : j0
↑ ↔ j0

↓ , ji↑ ↔ −ji↓, j0
v → −j0

v.

(3.29)

Given these, the statistical gauge fields c↑ and c↓ in Eq. (3.23) transform as

P : c↑0 ↔ −c↓0, c↑x ↔ −c↓y,

T : c↑0 ↔ −c↓0, c↑i ↔ c↓i ,

(3.30)

while the statistical gauge field b, the vortex source Av and the spin source As transform like the

vortex current jv in Eq. (3.29). Finally, under P and T the statistical gauge field a transforms like

the electromagnetic gauge potential A,

P : ax ↔ ay

T : ai → −ai.
(3.31)

Using these transformation properties, it is straightforward to check that the effective theory (5.34)

is indeed invariant under P and T .

In the absence of external quasiparticle currents in Eq. (5.34), all statistical gauge fields can

be integrated out resulting in the Hall response

Lres = − 1

4π
tTA ·K−1 · tB︸ ︷︷ ︸

νAB

εµνρAAµ ∂νABρ . (3.32)

A simple calculation leads to νAB = 0. Thus the s-wave superconductor reassuringly exhibits no

Hall effects, which is consistent with P and T invariance of this state.

Finally, we look at the edge, where there are two pairs of counter-propagating chiral modes

because the K-matrix has two pairs of eigenvalues of the opposite sign. Note, however, that one

is allowed to add to the edge Lagrangian (5.5.2.4) two independent Higgs terms cos(2ts · φ) and

cos(2tv · φ) which satisfy the conditions Eq. (3.9). As a result, the two Higgs terms completely

gap out all four edge modes of the s-wave superconductor, consistent with the expectation that
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this state neither has gapless edge modes nor a Hall response. The above arguments explicitly

demonstrate that the low energy physics of the s-wave state cannot be completely characterized by

the toric code model since the edge of the toric code can be gapped out in two physically distinct

ways [183] whereas the edge of an s-wave superconductor with U(1)s×U(1)v symmetry is gapped

by the unique mechanism presented above.

3.5.2 d+ id superconductor

In a chiral d+ id superconductor, parity and time-reversal are broken spontaneously, which

gives rise to anyon self-statistics of excitations. In parallel with the s-wave case, in Sec. 3.4 we

derived the fermionic K-matrix for this state

K =



0 2 1 1

2 0 0 0

1 0 1 0

1 0 0 1


. (3.33)

It describes a chiral state with a chiral central charge c = k = 2. The l-vectors are identical to the

s-wave case and are illustrated in Fig. 3.3 (also see footnote12). As a result, in the weakly-coupled

topological phase of a d+ id superconductor, e and m excitations are semions [50], i.e., they have

the statistical angle θe = θm = π/2. On the other hand, ε is a fermion and has nontrivial mutual

π statistics with e and with m.

The derivation undertaken in Sec. 3.4 fixed the symmetry t-vectors for this state to be

tTs = (0, 0, 1,−1), tTv = (1, 0, 0, 0). (3.34)

Using Eq. (3.27), we find that the spin and vortex charges of the excitations equal

Qms = 0, Qεs = 1, Qes = 1

Qmv = 1/2 Qεv = 0, Qev = 1/2.

(3.35)

which are, in fact, identical to those for the s-wave case given in Eq. (3.28). As a result, in this

case ε and m will be still identified with the Bogoliubov quasiparticle and vortex, respectively. In
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contrast to the s-wave superconductor, the vortex here is a semion. In fact, the semion statistics

of the vortex can be extracted from the Berry phase accumulated under exchange of two identical

vortices in a d + id superconductor, which can be computed by a simple generalization of the

computation done for a p + ip superconductor in [179]. Alternatively, the semion phase follows

from a qualitative argument presented in [184] that views a d ± id superconductor as a stack of

four spinless p± ip layers.

The effective theory (5.34) with the K-matrix (3.33) is PT invariant, but breaks separately

P and T symmetries. Consequently, we find a nontrivial Hall response

ν =

 2 0

0 0

 . (3.36)

with ν defined in Eq. (3.32). We thus showed here that in the topological (weakly-coupled) phase

a chiral d-wave superconductor exhibits the spin Hall effects with νs = 2, but no vortex (νv = 0)

and mixed spin-vortex Hall (νvs = 0) responses. For the spin part, this reproduces in appropriate

units the findings from [89, 162]. In particular, in a d + id paired state a position-dependent

external magnetic Zeeman field B(x, y) will give rise to the Hall current of the z-component of spin

jis = −σsεij∂jB with the spin Hall conductivity σs = 1/(4π).12 But what is the physical implication

of the absence of the vortex Hall effect? Since the density and current of the elementary fermions

fix the background values of Bv and Evi (see Appendix B), a nontrivial vortex Hall effect would

imply

nv =
νv
2π
Bv = νvnf ,

jiv = − νv
2π
εijEvj = νvj

i
f ,

(3.37)

i.e., a linear relation between the densities of the elementary fermions and vortices in the ground

state of the d+ id superconductor. The fact that we found νv = 0 demonstrates explicitly that zero

magnetic field B (an thus zero density of vortices) is generated in the ground state of the chiral

d-wave superconductor. At first sight it might seem surprising that the unbroken magnetic flux

12 Restoring ~, in our convention the unit of the spin charge is equal to ~/2 and thus σs = νs(~/2)2/h = ~/(4π).
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symmetry has a vanishing Hall response in the d+ id paired state that breaks spontaneously parity

and time-reversal. In Sec. 3.6 we present a general argument which independently supports this

finding.

Consider now the edge of a chiral d-wave superconductor (3.33), where two co-propagating

chiral bosons appear together with a pair of counter-propagating chiral modes. For the purpose of

the upcoming discussion, it is convenient to transform the Chern-Simons theory into a GL(4,Z)

equivalent form (K, l, t) → (K̃, l̃, t̃), discussed in detail in Appendix C. In this formulation, the

K-matrix is block-diagonal

K̃B =



-2 2 0 0

2 0 0 0

0 0 1 0

0 0 0 1


, (3.38)

the l-vectors are

l̃Tm = (0, 1, 0, 0) = lTm,

l̃Tε↑ = (−1, 0, 1, 0), l̃Tε↓ = (−1, 0, 0, 1),

(3.39)

and the t-vectors are unchanged from Eq. (3.34): t̃s = ts, t̃v = tv. In this basis, the counter-

propagating modes φ̃1 and φ̃2 are gapped out by the Higgs term cos(2t̃v ·φ̃) that fulfils the conditions

(3.9) introduced at the end of Sec. 3.2. On the other hand, due to quantization of the thermal

Hall conductance [50, 185], the remaining two co-propagating chiral states φ̃3 and φ̃4 cannot be

gapped by edge interactions or disorder. These chiral states are neutral under the magnetic flux

U(1)v symmetry. This implies that there is no U(1)v gauge anomaly at the edge, consistent with

the vanishing vortex Hall effect found above (see also Sec. 3.6). In contrast, the spin Hall effect

with νs = 2 implies that the edge theory must have a spin gauge anomaly. In fact, the current

associated with the spin chiral boson l̃s · φ̃ with

lTs = l̃Tε↑ − l̃Tε↓ = (0, 0, 1,−1) (3.40)

realizes the U(1)2 Kac-Moody affine algebra, where the subscript denotes the level. From a standard

argument [186], the current affine algebra U(1)2 can be actually extended to a larger affine algebra
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SU(2)1. The spin sector is thus described by the chiral SU(2)1 Wess-Zumino-Witten edge theory [89]

that has the spin gauge anomaly. The complete bulk plus edge theory is of course consistent because

the edge anomaly is canceled by the inflow of the bulk spin Hall current.

Curiously, the current associated with the orthogonal combination lTtot = l̃Tε↑+l̃
T
ε↓ = (−2, 0, 1, 1)

realizes another copy of the U(1)2 → SU(2)1 Kac-Moody affine algebra. The above arguments thus

suggest that the edge theory of the chiral d-wave superconductor has an extra SU(2)tot symme-

try. As discussed in [89], the SU(2)tot is emergent and does not have a microscopic origin. In

a d ± id superconductor, with the spin and particle-hole symmetries, the velocities of the two co-

propagating chiral modes are necessarily equal. Therefore the edge supports an anomalous SO(4) ∼=

SU(2)s⊗SU(2)tot symmetry which rotates four edge Majorana modes; for more details, see [89]. In

the following subsection, we show how this discussion generalizes to superconductors paired in

higher partial even-waves.

3.5.3 Higher partial waves and the 16-fold way

So far, we have analyzed Chern-Simons theories for the specific cases of conventional s-wave

and chiral d-wave superconductors, the latter being the simplest example of a spin-singlet chiral

state. At this point we extend the discussion to include all chiral spin-singlet superconductors

paired in partial even-waves.

In [50], Kitaev demonstrated that chiral superconductors have a Z16 bulk classification. Using

either the language of axiomatic topological field theory or by considering stacked p+ip layers [184],

it can be shown that the statistical angle acquired upon exchanging two e-particles (or two m-

particles) has a 16-fold periodicity. That is, given a chiral superconductor with Chern number ν

that hosts ν Majorana chiral modes at the edge, the exchange angle of excitations [50]

θe = θm = 2πν/16, θε = π. (3.41)

Since every Majorana mode contributes a half unit of the central charge, the total chiral central

charge c = ν/2. Thus, systems with c = 0 and c = 8 have identical bulk anyonic excitations but
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Figure 3.4: Diagrammatic representation of the 16-fold way. The abelian states considered in our
work are represented by thick lines and the other abelian states by thin lines. Dashed lines
indicate the non-abelian states. For each state, the angle θ equals the exchange angle θe = θm.

have different edge theories manifested in different thermal Hall conductivities. The 16-fold way is

diagrammatically depicted in Fig. 3.4, where the angle θ represents θe for the different states. The

states with half-integer central charge (represented by dashed lines) are non-abelian whereas those

with integer central charge (represented by solid lines) are abelian. Among the latter, the thick

lines indicate states with c ∈ 2Z, which are realized by the spin-singlet superconductors studied in

this thesis. For these superconductors, the chiral central charge c equals the chirality parameter k.

From Sec. 3.4, it follows that the weakly-paired chiral superconductor paired in even kth

partial wave has the (k + 2)× (k + 2) K-matrix

K =


0 2 1k

2 0 0k

1Tk 0Tk 1k×k

 , (3.42)

where we introduced the notation xk = (x, x, . . . , x︸ ︷︷ ︸
k times

). In fact, this K-matrix has previously appeared

in a somewhat different context in [187]. The l-vectors of the excitations are

lTm = (0, 1, 0k),

lTε = (0, 0, 1, 0k−1).

(3.43)
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It is straightforward to demonstrate that these spin-singlet states k ∈ 2Z/{0} fall into the 16-fold

way since they have the chiral central charge c = k and lead to the statistics (3.41). Interestingly,

the states where c is an odd integer form a different class of abelian states which perhaps describe

certain phases of spin-triplet superconductors.

The charges of excitations are given by Eq. (3.35), i.e., they are identical to the s-wave and

d+ id cases. These states are fixed by the symmetry t-vectors, which in this case are given by

tTs = (0, 0,±1k),

tTv = (1, 0, 0k),

(3.44)

where ±1k = (1,−1, . . . , 1,−1︸ ︷︷ ︸
k/2 times

). We thus again find the Bogolibuov quasiparticle to be the fermion

ε, while the vortex is the anyon m that has the statistical angle θm = πk/8. An explicit calculation

gives the spin Hall coefficient νs = k and the vanishing vortex (νv = 0) and mixed vortex-spin

(νvs = 0) coefficients. This result is a natural generalization of Eq. (3.36) found for the d+ id state.

One can better understand the edge theory of chiral paired states by casting the K-matrices

(3.42) into two different GL(k + 2,Z)-equivalent block-diagonal forms K̃B and K̃C (see Appendix

C for details). Generalizing the discussion in Sec. 3.5.2, from the form

K̃B =

 −k 2

2 0

⊕ 1k×k, (3.45)

one finds that a pair of counter-propagating edge modes is gapped out by the allowed Higgs term

cos(2t̃v · φ). Similar to the d + id case, the remaining gapless chiral theory is neutral under the

magnetic flux U(1)v symmetry. On the other hand, symmetries of the edge appear naturally from

the Cartan block-diagonal form

K̃C = A
SO(2k)
k×k ⊕

 1 0

0 −1

 , (3.46)

where A
SO(2k)
k×k is the Cartan matrix of the Lie algebra SO(2k) and is defined in Eq. (C.8). For
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example, for the d+ id superconductor (k = 2), one finds

K̃C =

 2 0

0 2

⊕
 1 0

0 −1

 , (3.47)

with the SO(4) ∼= SU(2)s⊗SU(2)tot symmetry, discussed in Sec. 3.5.2, manifest. In a similar

fashion, following [186], we can show that the current operators arising from the Cartan block

satisfy SO(2k)1 Kac-Moody algebra. This seems to suggest that the chiral edge theory might have

an internal SO(2k) symmetry associated with rotations of the 2k multiplet of Majorana modes.

Generically, however, we expect this symmetry to be broken by the velocity matrix. As illustrated

in Fig. 3.5, in a chiral superconductor of chirality k, 2k Majorana edge modes split into n = k/2

quartets. The modes within each quartet are related by the spin and particle-hole symmetry, and

thus have the same velocity. However, nothing prevents different quartets from having different

velocities. As a result the nature of the residual symmetry at the edge of a chiral superconductor

depends on the velocity matrix and hence on the microscopic details.

Figure 3.5: A chiral superconductor with chirality k ∈ 2Z hosts 2k Majorana modes at the edge.
As indicated by the (↑↓) arrows, each mode is doubly degenerate due to spin symmetry and
modes with the same color are related by particle-hole symmetry. Thus, the modes within a
quartet have the same velocity vi, while generically different quartets will have different velocities.

From the Cartan form (3.46) of the K-matrices, it is clear that the fermionic block, σz, is

topologically trivial, i.e., it does not effect the ground state degeneracy, chirality, and statistics of the

system. In other words, in the absence of symmetries these K-matrices are stably equivalent [188]
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to the Cartan matrices ASO(2k).13 However, in the presence of coupling to the vortex source Av,

the fermionic block is essential because the vortex symmetry vector tv (in this basis) has non-zero

elements in this sector.

3.6 Absence of vortex Hall effect in superconductors

In the previous section we found for all superconductors that the vortex Hall effect for the

magnetic flux symmetry is zero. While for the s-wave state this is a completely expected result, for

chiral spin-singlet states it might seem surprising since parity and time-reversal are spontaneously

broken and one might expect that these unbroken symmetries should exhibit nontrivial Hall re-

sponses. Here we will argue that the vortex Hall effect should vanish in any superconductor due

to the finite mass of the photon field acquired via the Higgs mechanism.

Consider a general two-dimensional superconductor coupled to the magnetic flux source Av

L = LSC(f,A)− 1

2π
εµνρAvµ∂νAρ, (3.48)

where the elementary fermions f undergo Cooper pairing and thus generate a mass to the electro-

magnetic gauge potential A via the Higgs mechanism. After integrating out f and A, the vortex

Hall effect can in principle appear from the quadratic contribution to the effective action Γ[Av]. In

a translation-invariant system

Γ(2)[Av] =
1

2

∫
d3xd3yAvµ(x)Γµν(x− y)Avµ(y)

=
1

2

∫
d3pAvµ(−p)Γµν(p)Avµ(p),

(3.49)

where in momentum space the kernel Γµν(p) is given by

Γµν(p) ∼ εµαγpαDγδ(p)ε
νβδpβ (3.50)

with iDγδ(p) a fully renormalized photon propagator. The kernel is illustrated in Fig. 3.6 as a

Feynman diagram.

13 Incidentally, these purely bosonic Cartan K-matrices have also been proposed for describing s-wave supercon-
ductors strongly proximity-coupled to topological Chern insulators in [189].
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Figure 3.6: Feynman diagram for the kernel Γµν(p): the bold wavy line denotes the renormalized
photon propagator iDγδ(p), the red cross represents the vertex originating from the last term in
Eq. (3.48).

Let us start in the s-wave phase which obviously has a vanishing vortex Hall coefficient

νv = 0. As in Sec. 3.4, by tuning the Dirac masses of the Bogoliubov quasiparticles we can enter

into the chiral d+ id phase (see Fig. 3.2). Importantly, during this process the photon propagator

always remains gapped due to the Higgs mechanism. Since νv can only change at a point where the

photon gap closes, this shows that as we enter the d+ id phase νv remains zero. This result should

be contrasted to the spin Hall effect which arises from the fermionic one-loop diagram [89, 162].

It is clear from Fig. 3.2 that after starting in the s-wave state the fermionic gap must close as one

enters the d + id phase, allowing the spin Hall coefficient to jump from νs = 0 (s-wave) to νs = 2

(d+ id).

Clearly the argument above can be generalized to other chiral superconductors that can

be obtained by deformations of a time-reversal invariant superconducting state. In summary,

as long as the Higgs mechanism produces a finite gap for the photon field (along the deforma-

tion trajectory), the Hall coefficient for the magnetic flux symmetry should vanish. This is in a

stark contrast to the standard probes of time-reversal breaking, such as the polar Kerr, spin Hall

and Nernst/Ettingshausen effects that should give non-vanishing signals in chiral superconducting

states.

3.7 Open questions and outlook

In this work we have developed a topological framework for the low-energy physics of two-

dimensional spin-singlet superconductors. Here we discuss some open questions that go beyond the

scope of this thesis and are left for future studies.

As emphasized throughout this chapter, in this work the electromagnetic field is strictly
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confined to two spatial dimensions. On the other hand, in thin film superconductors the mixed-

dimensional problem of two-dimensional paired fermions interacting with a three-dimensional elec-

tromagnetic field is realized most naturally. For this reason, this system deserves to be studied in

detail. It also might fall into the class of quasi-topological phases introduced by Bonderson and

Nayak in [190].

Additionally, here we have considered a theory that allows topological defects (vortices) of

the matter field, but not topological defects (magnetic monopoles) in the electromagnetic (non-

compact) sector. It might be interesting to investigate a two-dimensional superconductor with

a compact electromagnetism; in this version of the theory, magnetic monopoles are allowed and

appear in the form of spacetime instantons [191]. As a result, the magnetic flux symmetry is lost

because a pair of vortices can instantly disappear into a monopole. This rich problem naturally

arises in the physics of spin liquids and was investigated in the seminal paper of Fradkin and

Shenker [192]. In the future, it would be interesting to extend our work to this model and to

investigate the interplay of the unbroken SU(2)s spin symmetry and topological order in it.

We have demonstrated in this chapter that all superconductors have a vanishing vortex Hall

response due to the finite gap of the photon field that arises from the Higgs mechanism. As long as

this gap can be closed, however, it seems possible that one can enter a distinct phase of matter with

νv 6= 0. In contrast to a superconductor, this phase is characterized by a finite flux of magnetic

field in the ground state, corresponding to a dense collection of vortices. It will hence be of interest

to find ways of closing the photon gap in our problem.

Moreover, the realization of the magnetic flux symmetry might be subtle in the problem

studied here. For a bosonic toric code model, for instance, it is known that it is impossible to realize

an internal global U(1) symmetry with the charges Qe = Qm = 1/2 in a purely two-dimensional

world. In fact, this realization of a symmetry can only appear on the surface of a three-dimensional

system. This is known as the statistical anomaly and, for bosonic systems, is discussed in detail

in [193, 194]. We believe that the fate of this anomaly in two-dimensional fermionic superconductors

deserves future investigation.
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Recently, it has also become clear that in a weakly paired d+ id superfluid (and also in chiral

superfuids paired in higher partial waves) not all fermions in the ground state are paired in the

presence of an edge [90]. These unpaired fermions are localized close to the edge and carry a mass

current that partially compensates the angular momentum L = lN/2 carried by the chiral Cooper

pairs. This current is non-universal since it depends on the structure of the edge. It would be

interesting to investigate the nature of this current in the presence of a dynamical electromagnetism.

A limitation of the K-matrix formalism is that it allows us to incorporate only the coupling

to the abelian subgroup of the spin symmetry. Currently, the Chern-Simons field theory does not

allow coupling to the full nonabelian spin symmetry because we do not know how to fractionalize

representations of nonabelian groups. Using an alternative formalism that allows coupling to all

non-abelian SU(2)s sources could thus generalize our work. In addition, since any physical system

breaks the spin symmetry due to spin-orbit coupling, it would be useful to study the effects of

(weakly) breaking this symmetry.

Finally, it is known that two-dimensional chiral superconductors and superfluids exhibit a

non-vanishing “shift” and Hall viscosity [195–197]. Following the seminal work of Wen and Zee [198],

it should be possible to account for these phenomena by coupling the spin connection to the

topological Chern-Simons theories developed here.



Chapter 4

Dynamics in Fracton Models: Life in the Slow Lane

In which Benny extricates himself

from all manners of tangled knots and

comes vertically unstuck.

The first half of this dissertation dealt with familiar quantum phases of matter—superfluids

and superconductors—albeit in novel settings. We now come to phases less familiar: fractons. As

discussed briefly in § 1, fracton phases of matter first appeared in certain exactly solvable models

in d = 3 spatial dimensions and host strange new excitations with restricted mobilities. These

gapped phases seem to evade our current frameworks for understanding topological order since

their ground state degeneracy on non-trivial manifolds is not entirely determined by the topology

of the underlying manifold but instead also depends on the geometry through e.g. the system size.

In this chapter we consider the closed quantum dynamics of gapped fracton phases, in par-

ticular those described by stabilizer Hamiltonians, including the X-Cube model [76] or Haah’s

code [75]. At the exactly solvable point, the dynamics of these models is trivial: since any config-

uration of local excitations is locally created by terms in the Hamiltonian and is hence labelled by

stabilizer eigenvalues, it is an eigenstate. Thus, we must consider arbitrary local perturbations in

order to find any non-trivial dynamical behaviour. Owing to the finite gap of the fracton phases

under consideration, we are guaranteed to remain in the fracton phase as long as the typical energy

scale of the perturbations is smaller than that set by the gap i.e. these phases are robust against

local perturbations [199, 200].
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Under such a setting, one can begin to study the quantum dynamics of isolated fracton

models. In particular, we can consider initializing the system in some eigenstate of the unper-

turbed Hamiltonian, with a definite real-space configuration of excitations, and then study its

evolution under the dynamics of the full Hamiltonian. For states initialized with a vanishing den-

sity of topological excitations, such a program was carried out in [201], where it was argued that

the superselection rules of gapped fracton phases allow them to retain a memory of their initial

conditions in local observables. At least in the subspace with a vanishing density of topological

excitations, fracton phases thus display a form of “localization” physics. The question addressed in

this chapter is whether this behaviour persists in the presence of a finite energy density of excita-

tions (equivalently, at finite temperature). We show that gapped fracton phases display a form of

asymptotic many-body localization, with a glassy approach to equilibration, and argue that these

phases constitute an intriguing platform for studying the interplay between topological protection

and constrained Hamiltonian dynamics within the same translation invariant models.

A version of this chapter was first presented as [88] under the title “Glassy Quantum Dynamics

in Translation Invariant Fracton Models,” and is a collaboration with Jeongwan Haah and Rahul

Nandkishore,

Phys. Rev. B 95, 155133 (2017) (2017)1

Oh that magic feeling, nowhere to go.

1 Copyright 2017 American Physical Society, reproduced here in accord with the copyright policies of the American
Physical Society.
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4.1 Introduction and Motivation

Recent years have witnessed an explosion of interest in many body localization (MBL) [69,

202–207], whereby isolated quantum systems with quenched disorder can exhibit ergodicity breaking

and fail to thermalize even at infinite times. Interest in the phenomenon is in part intrinsic (e.g.

many body localized systems can support entirely new types of quantum order [208–211]), in part

practical (e.g. MBL systems can serve as ideal quantum memories [69]), and in part due to the

tantalizing connections to other fields. For example, MBL can be viewed as a type of “ideal

quantum glass” which does not reach equilibrium at infinite times—can insights from MBL inform

the study of classical structural glass? (This particular question has been the focus of intensive

work [212–219] without any definitive conclusions). Recent experimental progress [220–226] has

further intensified interest in the field. However, theoretical insights have been hard won, due

to the fundamental challenges of describing a non-ergodic, non-equilibrium, strongly correlated,

highly disordered phase. Indeed most theoretical progress has required either a new idea (such as

the notion of emergent integrability [207, 227–230]), a new technique (such as dynamical versions

of real space renormalization [231])—or a new class of models which provide access to a new and

formerly unforeseen phenomenology (e.g. [232]).

The study of topological phases in three spatial dimensions has brought to light a new class

of models [73–77, 233] which have remarkable properties. These exactly solvable three-dimensional

(3D) lattice models have ground states that exhibit a sub-extensive topological degeneracy on the 3D

torus and possess point-like excitations, dubbed “fractons” [74] that cannot move without creating

additional excitations. Such systems are related by duality to spin models with symmetries along

lower-dimensional subsystems [76, 234] and were recently classified into Type I and Type II fracton

phases. In the Type I phases, fractons are created by the application of a membrane operator

and pairs of fractons form composite topological excitations that can move along lower-dimensional

subsystems. In the Type II phases, fractons are created by the application of a fractal operator and

all topological excitations are strictly immobile. The fracton models that have been introduced to
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date have all involved discrete symmetries, although there does not in principle appear to be any

obstruction to constructing continuous fracton models—indeed a stimulating series of works from

Pretko [80, 81] appears to reproduce much of the fracton phenomenology within a continuum field

theory with U(1) symmetry. Layer constructions of these phases have also recently been advanced

[78, 79].

In this chapter, we combine emerging ideas from research into (fracton) topological phases and

MBL by studying the dynamical behaviour of fracton models, revealing an intimate and provocative

connection between the two fields. We begin by discussing type I fracton models at finite energy

density and demonstrate that in these models, the mobility of charges is suppressed exponentially

in the inverse temperature. When a type I fracton model prepared in its ground space (i.e. at

zero energy density) is placed in contact with a finite temperature heat bath, we show that the

equilibration exhibits log t behaviour over an exponentially wide window of time scales—a classic

signature of glassy dynamics (see e.g. [235] and references contained therein). We emphasize that

this glassy quantum dynamics occurs in a three-dimensional, translation invariant Hamiltonian.

We then turn to type II fracton models, and demonstrate that charges exhibit subdiffusion upto a

relaxation time that diverges at low temperatures as a super-exponential function of temperature,

reminiscent of “near MBL” disordered systems [236, 237] and the ‘fragile liquid’ regime of classical

glaasses. Finally, we conjecture that fracton models with conserved U(1) charge could realize exotic

three-dimensional phases that are thermal metals but charge insulators.

Our work has striking implications for MBL, for the study of fracton phases, and for possible

technological applications of both. For MBL, our work illuminates new connections to glasses,

introducing a new class of models that exhibit glassy quantum dynamics with translation invariant

Hamiltonians. It may also inform investigations of localization and glassy dynamics in higher

dimensions [237–239]. For the field of fracton phases, our work reveals that not only do these

models have an unusual ground state structure, they also support rich quantum dynamics, thus

opening a new line of investigation for three-dimensional topological phases. Practically speaking,

our work also uncovers a new route to information storage, as well as identifying a potential



94

class of three-dimensional phases that are thermal metals but charge insulators. These last could

have applications e.g. in high density electronics, where the problem of heat dissipation currently

constrains possibilities for miniaturization.

4.2 Fracton Models

Fracton topological phases are a new class of three-dimensional phases of matter that display

features that go beyond those familiar from gauge theory. These phases can be obtained as the

quantum duals of three-dimensional systems with symmetries along lower dimensional sub-systems,

specifically along planes and fractals. A unified framework, based on a generalized lattice gauge

theory, for fracton topological order was recently proposed in [76]. Given the novelty of these

phases, in this section we provide a self-contained exposition of fracton systems, focusing primarily

on specific examples to elucidate the features most relevant to the dynamics.

Fracton phases arise in exactly solvable lattice models in three spatial dimensions and exhibit

a sub-extensive topological ground state degeneracy on the 3D torus. The distinguishing feature of

these systems is the presence of point-like fractional excitations—fractons—that are fundamentally

immobile i.e., they cannot move without creating additional topological excitations. In contrast

with anyons in two-dimensional topologically ordered systems, where anyons are created at the

ends of a Wilson line and are thus allowed to move by application of a local line-like operator, there

exists no local line-like operator that creates a pair of fractons. Instead, fractons are created at the

ends of membrane or fractal operators, leaving a single fracton immobile. A classification scheme

for fracton topological order was recently proposed in [76], where these systems were divided into

type I and type II phases.

Type I fracton phases, such as the X-Cube model discussed below, host fracton excitations

at the ends of membrane operators. While single fractons are immobile, bound-states of fractons

form composite topological excitations that are free to move along lower-dimensional subsystems

such as a line or a plane. There may also exist additional quasi-particles that are confined to move

only along lower-dimensional subsystems. In type II phases, such as Haah’s code [75], fractons are
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created by the application of fractal operators and all topological excitations are strictly immobile.

The latter feature leads to a fundamental difference between the dynamics of type I and II fracton

phases, which we now consider separately in the following sections.

4.3 Type I Fracton Models

The physics of type I fracton topological order is best illustrated through the example of the

X-Cube model [76] that displays the essential features of these phases. The X-Cube model is an

exactly solvable lattice model defined on a cubic lattice with Ising spins living on each link. The

Hamiltonian is

HXC = −
∑
c

Ac −
∑
v,k

B(k)
c , (4.1)

where the first term is the sum over all cubes of a twelve-spin σx interaction and the second term

is the sum over all vertices of planar four-spin σz interactions as depicted in Fig. 4.1. In contrast

with two-dimensional topologically ordered states, such as the Toric Code, that have a finite and

constant topological ground state degeneracy on the two-torus, the ground state of the pure X-

Cube model on the three-torus of linear dimension L has a sub-extensive topological ground state

degeneracy D, where log2D = 6L− 3.

A fracton is created by flipping the eigenvalue of the cubic interaction term. However, there

exists no local operator that can create a single pair of fractons. Indeed, applying a σz operator

to a link flips the eigenvalues of the four cubes sharing that link. Acting on the ground state by

σz along a membrane operator M̂ creates four fractons at the corners of the membrane, as shown

in Fig. 4.2i. A single fracton, denoted e(0) (where the superscript denotes that it is a dimension-0

excitation), is thus fundamentally immobile, as moving it would create additional fractons. This is

the fundamental “superselection” rule [201] that will lead to glassy dynamics. Pairs of fractons are

however free to move by repeated application of local membrane operators. A straight Wilson line

of σz operators creates a pair of fractons at each end—each pair is a composite excitation that can

move in two dimensions, and which we refer to as a dimension-2 (dim-2) excitation e(2), as shown
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Figure 4.1: The X-Cube model is represented by spins σ placed on the links of a cubic lattice and
is given by the sum of a twelve-spin σx operator at each cube c and planar four-spin σz operators
at each vertex v.

in Fig. 4.2ii. In the X-Cube model, there exist additional dimension-1 excitations (m(1)) created

at the ends of a Wilson line of σx operators, that are mobile along one-dimensional sub-manifolds.

Henceforth we will refer to the fully mobile four-fracton composites, created by single σz operators,

as the topologically neutral sector, and the lower dimensional excitations (fractons and e(2)’s) as

the topologically charged sector.

In the following sections, we will focus specifically on the X-Cube model in the presence of

transverse fields,

H = −J
∑
c

Ac −
∑
v,k

B(k)
c + Λ

∑
i

σz + λ
∑
i

σx, (4.2)

where i goes over all links in the cubic lattice. Since the pure X-Cube model Eq. (4.1) is a sum of

commuting projectors, the relative coefficient J simply sets the energy scale between the e and m

excitations when Λ, λ = 0. In the presence of the transverse fields, we expect that the fracton phase

will survive up to some finite Λ/J and λ/J since this is a gapped phase of matter that is stable to

local perturbations [199, 200]. In the limit of large transverse fields however, the fracton topological

order will be destroyed, but the precise nature of the transition between the fracton phase and the

trivial paramagnetic phase has yet to be understood [76]. Since we are interested in the dynamics
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(i) (ii)

Figure 4.2: Topological excitations of the X-Cube model are depicted in (i) and (ii). Fractons e(0)

are created at corners by acting on the ground state by a membrane operator M that is the
product of σz operators along red links. Wilson line operators create a composite topological
excitation e(2).

within the fracton phase, allowing only for weak local perturbations, we set J = 1, noting that

our analysis holds as long J is O(1). In addition, we will first set λ = 0 and consider only the

dynamics of the fractons and their composites. After analysing this sector, we will comment on the

consequences of a non-zero λ, which would allow the m(1) particles to hop as well. The Hamiltonian

pertinent for the following discussions is thus

H = −
∑
c

Ac −
∑
v,k

B(k)
c + Λ

∑
i

σz, (4.3)

with the perturbation strength Λ� 1. We note that while we are focusing on the specific example

of the X-Cube model, the results presented here hold broadly for all type I fracton phases.2

4.3.1 Type I Fractons at Finite Energy Density

We begin our discussion of dynamics in fracton models by considering the X-Cube model

Eq. (4.3) at finite energy density. Since we have switched off the term that would allow m’s to hop,

we have three kinds of excitations with dynamics in our system: neutral composites, which, being

fully mobile and created by local terms, are three-dimensional bosons; dim-2 excitations e(2), which

2 The X-Cube model lacks an exact electromagnetic duality, present in other type I models e.g., the Majorana
cube or Checkerboard models, which have two distinct fracton excitations, e(0) and m(0). However, we can always
choose to initialize the system with only one topological excitation or perturb the system only by terms that allow
one of the excitations to hop.
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are two-dimensional bosons [76]; and the topologically charged fractons. These excitations and their

properties are summarized in Table. 4.1. A word on notations—since both the neutral composites

and e(2)’s are bosonic, we will henceforth refer to the former as the composite (c) sector and the

latter as the bosonic (b) sector, with fractons (f) sometimes also referred to as the (topologically)

charged sector.

From the preceding general discussion of the model, it is clear that each fracton hop is

accompanied by the creation of two additional fractons, and so energetically costs an amount

W = 4. We will henceforth refer to this charge gap simply as W , since the analysis applies also to

generalizations of Eq. (4.3) that are in the same phase, but perhaps with a different charge gap. A

single fracton hop is depicted in Fig. 4.3: starting with an isolated fracton, we can move this over

by one site by acting by a single σz operator on the link adjacent to the fracton. This creates two

additional topological excitations; however, this pair is a dim-2 e(2) excitation and can be moved off

to infinity at no additional energy cost. Thus, each hop takes the system off energy shell. To fully

understand the relaxation in the fracton sector, we must thus take into account the fully mobile

neutral composites and the dim-2 excitations. These sectors act as a thermalizing bath for the

Excitation Type
Energy
Gap

Properties

Fracton, e(0) W/2
Immobile, topologically charged,
fracton(f) sector

Dim-2 Boson, e(2) W
Mobile along planes, topologically charged,
bosonic(b) sector

Boson 2W
Fully mobile, topologically neutral,
composite(c) sector

Table 4.1: Excitations in the X-Cube model. A single cube excitation is an immobile fracton
while a bound state of two fractons is mobile along two-dimensional manifolds. There exist
additional “magnetic” excitations, but these are not considered in detail here.
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Figure 4.3: A single fracton hop. Starting from a single isolated fracton, we can move it over by
one site by the action of a σz operator, shown in red, in step a). However, this creates two
additional fractons which together form a dimension-1 excitation that can move along a line
without creating any further excitations. As shown in b), this pair can then be moved off to
infinity by the action of a Wilson line of σz operators.

fractons as rearrangements within these sectors allow the system to come back on energy shell after

each hop.

Before studying the non-equilibrium dynamics, we consider the system—comprised of frac-

tons, e(2)’s, and neutral composites—in equilibrium, at some temperature T � W . The local

energy scale in the topologically charged sector is W , where W is the charge gap, i.e., the cost of

creating two fractons. Further, the fracton sector is coupled to a dense, high temperature bath

of neutral composites which hop at a rate Λ � W . Here each species is gapped, with a gap of

W/2, W , and 2W for creating a single fracton, e(2), and composite respectively. Additionally, since

the composites and e(2)’s are neutral, with the fractons carrying only a Z2 charge, the density

and temperature of these excitations cannot be controlled independently; rather, the equilibrium

temperature uniquely determines the density of each species,

nf ∼ e−
W
2T , nb ∼ e−

W
T , nc ∼ e−

2W
T , (4.4)

where nf is the density of fractons, nb is the density of dim-2 bosonic excitations, and nc is the

density of the composites.

Due to the form of the perturbation, σz, the only processes that lead to an exchange of energy
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Figure 4.4: a) Acting by a single σz operator decomposes a neutral composite (bosons) into two
dim-2 excitations (bosons). b) The reverse process, where two e(2)’s combine into a single
composite.

between the three sectors are those where the total Z2 charge along each row and each column of

the cubic lattice is conserved. For instance, in Fig. 4.3, the initial and final topological charges

along each column and each row are preserved (modulo 2). From all possible on-shell processes by

which the three sectors can exchange energy, we will consider only two body processes that are up

to second order in Λ (shown in Figs. 4.4 and 4.6) since all others will be further suppressed either

by density factors or by the perturbation strength. As an illustration, Fig. 4.4 depicts the processes

where a composite breaks into two e(2)’s and where two e(2)’s combine into a composite.

Within the thermalizing bath, the composites and e(2)’s can either hop at a rate Λ or scatter

off each other while remaining locally on-shell, at a rate Λ2/W . Since we are interested in the

regime where Λ � W , the heat bath has a narrow local bandwidth ∼ Λ, determined primarily

by the hopping. As discussed earlier, a single fracton hop takes the system off energy shell by an

amount W , and hence a single rearrangement within the bath cannot place the system on shell.

The traditional analysis of localized systems coupled to narrow bandwidth baths [236, 240, 241]

makes use of many body rearrangements in the charge sector to obtain a relaxation rate that is

power law slow in the bandwidth of the bath. However, in that setting the charge sector admits

local re-arrangements that are “uphill” or “downhill,” which may be combined into a many body

re-arragement that is off shell by much less than W . The present situation differs in that every local

re-arrangement in the charge sector is “uphill” in energy, so the dominant relaxation mechanism

from Ref. [236, 240, 241] does not apply. Since the maximum energy the bath can provide is

Λ̃ = min(Λ, T ), the bath must be probed n ∼W/Λ̃ times for the fractons to borrow enough energy
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Figure 4.5: A fracton hop mediated by an e(2) excitation. a) Starting from a single isolated
fracton and an e(2), we first act by a σz operator (in red) resulting in three fractons. b) Acting
with another σz takes us to a configuration with an e(2) and a fracton that has moved over by two
sites. In this manner, fractons can hop while remaining on-shell.

to perform a single hop. This leads to a relaxation rate in the charge sector that is exponentially

slow in W/Λ̃, scaling as

Γ ∼ nfe−n ∼ nfe−W/Λ̃. (4.5)

Alternatively, we could make use of the extensive nature of the many body bandwidth in the bath

and could use an n ∼W/Λ̃ particle rearrangement in the bath to place fracton rearrangements on

shell. However, this yields [242] an exponentially slow relaxation of the same form as Eq. (4.5), up

to subleading prefactors.

The fractons, however, have an additional channel through which they can hop in an on-shell

manner. This process, depicted in Fig. 4.5, requires the presence of an e(2) excitation in the vicinity

of the fracton. During this process, the fracton hops once, destroying the neighbouring e(2), and

hops again, thereby returning the system on-shell by creating an e(2) particle. Since this process

is mediated by the e(2)’s, the rate at which it proceeds is additionally suppressed by the density of

the bosons nb

Γ ∼ nfnb ∼ nf e−W/T , (4.6)

Thus, the fractons have two possible hopping channels—either by borrowing energy from the bath

or by using the bosons as intermediaries. The faster rate will dominate and so

Γ ∼ nf max
(
e−W/T , e−W/Λ̃

)
∼ nf e−W/T . (4.7)
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This behaviour is in marked contrast with the usual case of activated transport. In typical gapped

phases, the relaxation displays an Arrhenius law ΓA ∼ n ∼ e−∆/T , where n is the density of charge

carries and ∆ is the charge gap. This exponential slowness of the relaxation is governed primarily

by the exponential rarity of charge carriers, since the mobility of these excitations is generically

∼ O(1). In type I fracton models, while the relaxation is suppressed by the density of fractons

nf , which is exponentially small in the inverse temperature, it displays an additional suppression

due to mobility, which is also exponentially small in the inverse temperature. This is conceptually

different from Arrhenius behaviour. Additionally, we observe that insofar as T is the potentially

ergodicity restoring parameter here and the relaxation rate is exponentially small therein, Eq. (4.7)

corresponds to “asymptotic many body localization” in the taxonomy of Ref. [217, 218].

We note that hole burning, a scenario where, after a certain number of fracton hops, there

is a depletion in the density of composites causing the remaining fractons to essentially be frozen

until the composite sector thermalizes, does not arise here. This is due to the exponentially long

time scales, t ∼ eW/T , over which the composite bath is probed, allowing it to effectively thermalize

between probing attempts. Hole burning would only occur if the energy “consumption” WΓ is

larger than the energy “supply” T

We−W/T > T, (4.8)

which does not hold true for a low temperature bath.

We note that we have thus far neglected the “back action” of the fractons on the composite

sector. Insofar as W/T � 1, the back action is strong, and it thus may be tempting to postulate

that the composite sector itself could be localized by the coupling to the charge sector, in a form

of MBL proximity effect [241, 243, 244]. If the bath gets localized, then the relaxation rate will

be zero. However, there will inevitably be regions where the density of fractons is low enough for

the composite sector to be locally ergodic, and this argument will thus inevitably run into the rare

region obstruction to perturbative constructions that have derailed previous attempts to establish

translation invariant MBL [214]. We therefore do not pursue this particular line of reasoning
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further, noting only that Eq. (4.5) should properly be understood only as an upper bound on the

relaxation rate, which could be slower because of back action on the bath.

The situation considered above is one where the three sectors are in equilibrium. We could,

in principle, prepare the system out of equilibrium with the bath comprised only of the composites

and not the dim-2 e(2)’s. In this case, the hopping would proceed at a rate

Γ ∼ nf e−W/Λ̃, (4.9)

since the channel where hopping proceeds through an intermediate boson will be unavailable. Hole

burning will again be avoided here as we have a narrow bandwidth bath at high temperature.

However, as we show in Appendix D.1, there will be a rapid equilibration between the composite

and bosonic sectors, and upon equilibration, the relaxation will revert to the rate nf e
−W/T .

4.3.2 Glassy dynamics in the approach to equilibrium

We now consider the non-equilibrium dynamics of type I fracton models prepared in their

ground state (i.e., at vanishing energy density) in contact with a low but finite temperature

bath comprised of neutral composites (the fully mobile bosons) and dim-2 excitations (the two-

dimensional bosons). Let us begin our discussion more generally, by initializing the fractons at

a temperature T
(0)
f such that the density of fractons nf ∼ e−W/2T

(0)
f , where W is again the local

energy scale in the fracton sector. The neutral composites are prepared at a temperature T
(0)
c and

the e(2)’s are prepared at T
(0)
b , with corresponding densities nc ∼ e−2W/T

(0)
c and nb ∼ e−W/T

(0)
b .

Furthermore, since all three species are gapped here, every species has an exponentially small heat

capacity, Ci ∼ ni, for each species i = b, c, f . We note that the usual low-temperature T 3 heat

capacity that we expect for three-dimensional bosons holds only when the bosons are gapless and

thus does not apply to the neutral composites. Similarly, for the dim-2 bosons the usual T 2 be-

haviour which follows from the Stefan-Boltzmann law does not hold here since that applies only to
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gapless bosons. Hence, here we expect that

Ec ∼ 2Wnc =⇒ Cc ∼
4W 2

T 2
c

e−
2W
Tc ,

Eb ∼Wnb =⇒ Cb ∼
W 2

T 2
b

e
−W
Tb ,

Ef ∼
W

2
nf =⇒ Cf ∼

W 2

4T 2
f

e
− W

2Tf . (4.10)

The regime of interest is T
(0)
i � Λ where i = c, b, f , and we henceforth work in this regime. We

further show in the Appendix D that even if we start with Tc 6= Tb the boson and composite sectors

rapidly equilibrate, so we henceforth assume that Tc = Tb. That is, we assume that the bath is

itself in equilibrium, and examine the equilibration of the fracton sector with the bath.

We note that here we are interested in understanding equilibration within a closed quantum

system, in order for which we must initialize the different sectors at different temperatures. In

principle, this can be achieved by first allowing all sectors to equilibrate with a heat bath at some

initial low temperature T
(0)
f . Next, couple the system briefly to another heat bath at a temperature

T
(0)
b � T

(0)
f . The mobile bosonic and composite sectors will rapidly equilibrate with the heat bath

while the fracton sector will remain close to T
(0)
f , since it heats very slowly. This protocol will hence

naturally produce a fracton sector at a temperature ∼ T
(0)
f and bosonic and composite sectors at

∼ T (0)
b , allowing us to then study equilibration between these sectors.

4.3.2.1 Equilibration between Fractons and bath

We now consider the dynamics of the fractons when placed in contact with the thermal sector

which contains composites and e(2)’s at some initial temperature T
(0)
b . The fractons are prepared at

a low temperature, T
(0)
f � T

(0)
b , as we are interested in the dynamics of fractons prepared in their

ground state. Further, we will consider only two-body (processes involving more excitations will be

further suppressed by density factors) on-shell processes (upto second order in perturbation theory)

that lead to an exchange of energy between the bath and the Z2-charged fracton sector. Since we

are assuming that the composites and bosons have already equilibrated, the dominant processes

through which the bath and the Z2-charged fracton sector exchange energy will involve only the
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(i)

(ii)

(iii)

Figure 4.6: Dominant second order on-shell processes between charged fracton sector and thermal
bath. (i) Two bosons convert into four fractons. (ii) Two bosons convert into a boson and two
fractons. (iii) A boson and a fracton convert into three fractons.
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bosons and the fractons. This is because the density of neutral composites ∼ e−2W/Tb while that of

the bosons ∼ e−W/Tb , which dominates in the regime of interest Tb �W . The dominant processes,

shown in Fig. 4.6, are then

(1) Boson + Boson ↔ 4 Fractons,

(2) Boson + Boson ↔ Boson + 2 Fractons,

(3) Boson + Fracton ↔ 3 Fractons.

Two fractons cannot convert into a single boson due to the form of the perturbation, and all

other two body processes will involve at least one composite and are hence suppressed compared to

the others. Processes where a single composite converts into a pair of bosons which then convert into

four fractons or a boson and two fractons occur at third order in perturbation theory and can hence

safely be ignored. The above three channels all occur at second order and their rates are controlled

by the densities of the excitations involved. For instance, channel 1 (boson + boson) occurs at a

rate Γ ∼ Λ2

W n2
b . Since the bath lends energy 2W during this process, dEb/dt ∼ −2WΓ = −2Λ2nb.

Following this example, we can establish a detailed balance between the thermal and the charged

sector,

dEb
dt

= −Λ2
(
3n2

b + nbnf − nbn2
f − n3

f − 2n4
f

)
= −dEf

dt
. (4.11)

Here, the integer coefficients’ magnitude should not be taken seriously, since they are strongly

model dependent. However, the conclusions we draw below will not depend on these coefficients,

lending our results broader applicability across type I fracton phases.

Since the heat capacities are given by Eq. (4.10), the detailed balance leads to the rate

equations

dTb
dt

= −Λ2T 2
b

W 2

(
3nb + nf − n2

f −
n3
f

nb
− 2

n4
f

nb

)
,

dTf
dt

=
4Λ2T 2

f

W 2

(
3
n2
b

nf
+ nb − nbnf − n2

f − 2n3
f

)
. (4.12)
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Figure 4.7: Time dependence of the charged fracton Tf (t) and thermal Tb(t) sectors found by
numerically solving the detailed balance equation, Eq. (4.12). We have initialized the system at

W = 1, Λ = 10−1, T
(0)
b = 5× 10−2, and T

(0)
f = 5× 10−4.

We can analytically study the equilibration process in two regimes—when the fractons are prepared

in their ground space (Tf ∼ 0) and when the system nears equilibration (Tb ∼ Tf ).

In the case where the fractons are initially prepared at a vanishing energy density, we are in

the regime where T
(0)
f � T

(0)
b . Here, we find that (see Appendix D for details)

Tf (t) = − W/2

log
(

6Λ2

W t+ b
)
− 2W

T
(0)
b

, (4.13)

where b = exp

(
2W

T
(0)
b

− W

2T
(0)
f

)
, and

Tb(t) =
W

log
(

3Λ2

W t+ eW/T
(0)
b

) , (4.14)

such that the fractons display logarithmically slow heating and the bath correspondingly cools

logarithmically slowly. This behaviour persists until the fractons are close to equilibration, i.e.,

over an exponentially long time scale

0 ≤ t . t∗ =
W

6Λ2
exp

(
W

T
(0)
b

)
. (4.15)

Until this time scale, the dominant processes are those of channels 1 and 2, where two bosons

combine to pump energy into the fracton sector. Beyond this, however, channel 3 is activated
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Figure 4.8: The time dependence of the fracton sector Tf (t) displays a log(t) behaviour over an
exponentially long time scale. The red dashed line is the analytic approximation, Eq. (4.13) to
the solution of Eq. (4.12), with the numerical solution shown in blue. The same parameters are
used as those in Fig. 4.7.

since the fractons are close to equilibration (Tf (t∗) ∼ T
(0)
b /2) while the bath’s temperature has

only changed slightly (Tb(t
∗) ∼ T

(0)
b ), such that nf (t∗) ∼ nb(t

∗). Hence, we can no longer ignore

processes where a boson and a fracton convert into three fractons and the behaviour of the bath is

modified at this time scale,

Tb(t) ∼
W 2

Λ2t
eW/T

(0)
b , t > t∗. (4.16)

Thus, the bath first cools logarithmically over an exponentially long time scale, and then rapidly

equilibrates with power-law behaviour, since the logarithmic heating of the charged fracton sector

establishes a finite density of fractons at t ∼ t∗. This behaviour can be explicitly seen by numerically

solving Eq. (4.12) (see Fig. 4.7) and matching the analytic solutions with the numerical curves. As

can be seen in Fig. 4.8, the fractons display logarithmic heating essentially until equilibration while

the bath displays logarithmic cooling followed by rapid, power-law cooling, as shown in Fig. 4.9.

Thus, placing a type I fracton model prepared in its ground space3 in contact with a finite

temperature heat bath leads to equilibration that exhibits glassy behaviour (i.e. a log t approach

3 We note that while we are primarily interested in the limit T
(0)
f � T

(0)
b , due to the form of Eq. (4.12), our

discussion holds more generally as long as T
(0)
f < T

(0)
b /2.
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Figure 4.9: The time dependence of the bath Tb(t) displays a log(t) behaviour over an
exponentially long time scale, followed by power law cooling until equilibration. The red dashed
line is the analytic approximation, Eq. (4.14) to the solution of Eq. (4.12), with the numerical
solution shown in blue. The green dashed line is a fit to the 1/t behaviour. The same parameters
are used as those in Fig. 4.7.

to equilibrium) over an exponentially wide window of intermediate time scales,

0 ≤ t . cW

Λ2
exp

(
W

T
(0)
b

)
, (4.17)

for some positive constant c.

At long times, the system eventually equilibrates, Tb = Tf and close to equilibration, we

recover the standard exponential relaxation expected from Newton’s law of cooling,

δT (t) ∼ exp

(
−Λ2

W
e
− W

T
(0)
b t

)
, (4.18)

where δT = Tb−Tc. Thus, over exponentially long time scales, governed by W/T
(0)
b , the relaxation

displays logarithmic (glassy) dynamics but close to equilibrium we recover an exponential relaxation

with a relaxation rate that is exponentially small in W/T
(0)
b .

4.3.2.2 Fracton dynamics in an open quantum system

In principle, we can also consider an open quantum system such that the temperature of

the composites (and so also the dim-2 bosons) is pinned to that of an external heat bath. In this

situation, we are interested in the dynamics of the charged fracton sector which, following the
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discussion in the previous system, we expect will again demonstrate logarithmically slow heating

over exponentially long time scales.

We consider initializing the charged fracton sector at a temperature T
(0)
f , with the neutral

composites and dim-2 bosons coupled to an external bath at a temperature T � T
(0)
f . Since the

fracton sector only exchanges energy with the composites and bosons, most of the discussion from

the previous section holds i.e., the dominant processes by which the fracton sector exchanges energy

are unchanged. Hence, the rate equation for the fractons is

dTf
dt

=
4Λ2T 2

f

W 2

(
3
n2
b

nf
+ nb − nbnf − n2

f − 2n3
f

)
, (4.19)

where nb = e−W/T is set by the external heat bath and nf = e−W/2Tf . In the regime of interest,

T
(0)
f � T , the dynamics are initially governed by channels 1 and 2, such that the fractons display

logarithmically slow heating (see Appendix D for details)

Tf (t) = − W/2

log
(

6Λ2

W t+ b
)
− 2W

T

, (4.20)

where b = exp

(
2W
T − W

2T
(0)
f

)
. This behaviour persists over an exponentially long time scale,

0 ≤ t . t∗ =
W

6Λ2
exp

(
W

T

)
, (4.21)

controlled by the temperature of the heat bath, T � W . Around t = t∗, however, channel 3 is

activated since a finite density of fractons has been established, and the behaviour of the fractons

is modified,

Tf (t) ≈ − W/2
2Λ2

W e−W/T t+ log
(
3e−W/T

) , t > t∗. (4.22)

Hence, the fractons display logarithmically slow heating over an exponentially long time scale,

followed by rapid power-law behaviour until they are close to equilibration (see Fig. 4.10). Near

equilibration, Tf ∼ T , and the fractons follow the usual exponential behaviour expected from

Newton’s law

δT ∼ exp

(
−4Λ2t

W
e−W/T

)
, (4.23)
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Figure 4.10: In an open quantum system the fractons Tf (t) display a log(t) behaviour over an
exponentially long time scale, followed by power law heating until equilibration. The red dashed
line is the analytic approximation, Eq. (4.20) to the solution of Eq. (4.19), with the numerical
solution shown in blue. The green dashed line depicts the 1/t behaviour, Eq. (4.22). The

parameters are W = 1, Λ = 0.1, T = 0.05, and T
(0)
f = 10−3.

where δT = T − Tf . Thus, even in an open quantum system, fractons display glassy behaviour

over exponentially long time scales when prepared in their ground state, where the time scales are

controlled by W/T i.e., by the initial temperature of the heat bath. In principle, our discussion

applies as long as T
(0)
f < T/2, in which case the width of the log(t) behaviour will depend on the

initial temperature of the fractons, but the situation considered here T
(0)
f � T is of more interest.

While we have focused on the example of the X-Cube model Eq. (4.1) here, we expect that

our results should hold in general for Type I fracton models. In particular, our results here are

consistent with the glassy behaviour demonstrated for the related CBLT model [73], where a Type

I fracton system initialized with an isolated set of fractons and coupled to an external bath was

shown to display logarithmic relaxation. While that work considered fractons which were coupled

directly to the bath, in contrast we prepare our system with a finite density of fractons which are

coupled to neutral composites and dim-2 excitations held at a fixed temperature T .
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4.3.3 Role of m(1) excitations

Type I models, such as the X-Cube model Eq. (4.1), may host additional excitations created

in pairs at the ends of Wilson lines of σx operators. These excitations are free to move in one-

dimension and hence referred to as m(1) excitations. In order to study the X-Cube model in full

generality, we must thus consider the model in the presence of transverse fields, Eq. (4.2)

H = −J
∑
c

Ac −
∑
v,k

B(k)
c + Λ

∑
i

σz + λ
∑
i

σx (4.24)

where the term λσx introduces dynamics for the m(1) excitations. Importantly, since the m(1)

excitations are created by σx operators, they do not inter-convert with the e excitations (composites,

dim-2 bosons, and fractons). Thus, the only coupling between the e’s and m’s will be through the

exchange of energy between the two sectors.

Let us first consider the case where J = 1 with λ,Λ� W . Acting with a single σx operator

violates four vertex terms, B(k), such that the gap for creating a single m(1) is equal to W , which

is the same as that of creating a dim-2 boson. For a system in equilibrium at some temperature T ,

the density of m(1)’s will thus be nm ∼ e−W/T . In addition to the relaxation channels considered

in Sec. 4.3.1, the finite density of m(1)’s will then provide an additional relaxation channel for

the fractons, since they can now borrow energy from the one-dimensional bath of m(1)’s with a

bandwidth controlled by the hopping rate λ.

Since the “magnetic” bath can supply a maximum energy λ̃ = min(λ, T ), the relaxation rate

of the fractons due to coupling to this channel will proceed at a rate Γ ∼ nfe−W/λ̃. If T < λ, then the

relaxation will proceed at a rate controlled by the temperature T and λ will be rendered irrelevant.

On the other hand, if T > λ, then it is more efficient for the fractons to couple to the “electric”

bath, since boson mediated hopping (see Fig. 4.5) proceeds at a faster rate ∼ nfe
−W/T . Hence,

including the dim-1 excitations does not effect the relaxation of fractons, at least in equilibrium,

and can safely be ignored insofar as λ is weak enough to not destroy the fracton topological order.

As long as J = 1, the gap for creating an m(1) and an e(2) is the same. Thus, even if we were

to consider a system in non-equilibrium, there will be an efficient equilibration between the dim-2



113

bosons and the dim-1 magnetic excitations, since processes where two m(1)’s are destroyed and two

e(2)’s are simultaneously created will proceed in an on-shell manner, with the rate of equilibration

controlled by the relative strength of the transverse fields λ,Λ. Once these sectors have rapidly

equilibrated, we can again ignore the m(1)’s since the most dominant processes through which the

fractons equilibrate will be those considered in Sec. 4.3.2.

If J 6= 1, however, then there will exist an imbalance between the electric and magnetic gaps

and the equilibration between the e(2)’s and m(1)’s will no longer proceed in an on-shell manner.

Since the case where J 6= 1 may also de-stabilise the fracton topological order, depending on the

perturbation strengths, we leave the dynamics of the X-Cube model in this case as an open question,

to be studied once the phase diagram of this model is better understood [78, 79].

4.4 Type II Fracton Models

We now turn to type II fracton models, such as Haah’s code [75]. The fundamental difference

between type I and II models is the lack of any local string-like operator that allows topological

excitations to move in the latter. As we saw in the type I case, pairs of fractons form dimension-1

topological excitations, and as pairs are created at the ends of Wilson-lines, they can move along

the Wilson lines without creating any further excitations. However, in type II models, there are no

mobile subdimensional excitations.

Figure 4.11: The Cubic Code model is defined on a cubic lattice with two spins (qubits) living on
each vertex. The Hamiltonian is a sum of two eight-spin operators on each cube c.
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As a specific example of a type II fracton phase, let us consider Haah’s cubic code model.

This is an exactly solvable lattice model defined on a three-dimensional cubic lattice where each

site has two spins (or qubits) placed on it. The Hamiltonian is given by the sum over all cubes of

two eight-spin interaction terms

H = −J
∑
c

GXc −
∑
c

GZc (4.25)

with GXc and GZc defined in Fig. 4.11. In analogy with the X-Cube model, Eq. (4.1), we set J = 1

here, noting that once we perturb the system, our analysis will hold for J being order unity. The

pure Cubic Code model has a topological ground state degeneracy since the ground states cannot

be distinguished by any local operator. On a three-torus of length L, the ground state degeneracy

is 2k(L) for some integer 2 ≤ k(L) ≤ 4L; see [245, Corollary 9.3] for an explicit formula. There exist

two kinds of excitations in this model: e type (violation of the GXc term) and m type (violation of

the GZc term). This model has an exact duality between the two types as they are lattice inversions

of each other, so it suffices to consider only one sector. We can see that these topological excitations

are immobile since a single σz operator on a link creates four cube excitations (see Fig. 4.12i) and

there exists no local string-like operator that can create just a single pair of fractons. Here, single

fractons are created at the ends of fractal operators, as shown in Fig. 4.12ii. Importantly, the

“no-strings” rule [75] implies that any cluster of defects with a non-trivial topological charge must

be immobile.

Unlike type I fracton phases, where there is a finite and constant energy barrier for topological

charges to move, in type II fracton phases there exists an extensive logarithmic energy barrier

preventing topologically charged excitations from diffusing. In particular, as proved in [246], there

exists an energy barrier ∼ c log(R) for creating an isolated fracton with no defects within a distance

R, for some constant c.

The logarithmic energy barrier can be understood as follows. The transition from Fig. 4.12i

to 4.12ii is realized by overlaying four copies of 4.12i in the designated geometry. The resulting

configuration F1 of fractons in 4.12ii is similar to the configuration F0 in 4.12i with similarity ratio
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(i) (ii)

Figure 4.12: Excitations of the Cubic Code Model. Two spins (qubits) live on each vertex of the
cubic lattice. Acting by a σz operator on the ground state, as shown in (i), creates four fracton
excitations. Four fracton excitations are also created by acting by a µz operator or by violating
the GXc term. Acting by a fractal operator of σz’s, as in (ii), separates the fractons.

2. One can build a similar configuration F2 of four fractons with similarity ratio 22 = 4 relative

to F0 by overlaying four copies of F1. Continuing, one builds a configuration Fn of four fractons

that is similar to F0 by similarity ratio 2n = R. In order to separate the fractons by a distance

R, one needs to iterate the process n = log2R times. Now, consider a local process where one

applies a single σz at a time. Let ∆k denote the maximum energy reached by intermediate states

while building a standalone Fk under the local process. To go from Fk to Fk+1, one has to build

three other copies F ′k, F
′′
k , F ′′′k of Fk. The given configuration Fk already has four fractons of total

energy 2W , among which three fractons are far from the region F ′k is being built on. Hence, while

building F ′k (or any other copy of Fk), the system’s energy will reach ∆k + O(W ). This implies

that ∆k+1 = ∆k +O(W ), and therefore ∆n = O(nW ) = O(W logR).

The argument above only proves an upper bound on the energy barrier. The claim that there

is no process that uses less energy requires a separate proof, which relies on a quantitative form of

the no-strings rule and uses a renormalization-group-inspired argument [246].

Let us consider a type II fracton system in contact with a narrow bandwidth heat bath of

composites, with bandwidth Λ � W and temperature T . Let us consider a (non-equilibrium)

initial state containing a single fracton. Following our logic in the type I case and replacing the
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energy scale W in the charged sector by the new energy scale Wc logR, we conclude that to move

a distance R will take a time

t = (R)
cW
Λ̃ ; Λ̃ = min(T,Λ). (4.26)

Inverting this relation we obtain R ∼ tΛ̃/cW , which for Λ̃ � W implies strongly subdiffusive

behaviour in a translation invariant three-dimensional model. This subdiffusive behaviour will

persist up to the relaxation time, which (as we will shortly show) is super-exponentially long at

low temperatures, scaling as trelax ∼ exp(+c′W
2

T 2 ).

Of course, a type II system left in contact with a heat bath will eventually equilibrate to

have a non-zero density of fractons—fractons will be created in groups of four (borrowing the

energy to do this from the heat bath), and will then be redistributed over the system. However, to

achieve an equilibrium distribution with a thermal density of fractons nf ∼ exp(−W/2T ), it will

be necessary to move fractons over a lengthscale a ∼ exp(2W/3T ) (given that fractons can only be

created in groups of four). Substitution into the above equation then leads us to conclude that the

equilibration time will follow the “super-Arrhenius” scaling

tequilibrate ∼ exp

(
+c′

W 2

T 2

)
, (4.27)

when T < Λ, where c′ is an O(1) numerical constant. This is consistent with a lower bound on

relaxation rates derived in [247]. This “super-Arrhenius” scaling is reminiscent of various “near

MBL” models e.g. [236, 237] and provides another example of the provocative connections between

fracton dynamics and MBL.

We note that classical spin systems, such as the Newman-Moore model [248], have been

known to display similar phenomenology, in that there exists a logarithmic energy barrier for

transporting defects, leading to glassy behaviour. However, unlike type II fracton models, these

classical spin models do not have a topologically ordered ground-state subspace and hence lack the

robustness against generic local perturbation inherent in quantum fracton models, such as Haah’s

code [199, 200].

We now compare our results to [249], who argued that the memory of the initial conditions
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in the cubic code relaxes for long enough times at finite temperature, with a relaxation time that

scaled similarly to Eq. (4.27). Our broad conclusions are in agreement with [249]. However, our

analysis differs in that [249] examined dynamics towards Gibbs states making use of the Lindblad

formalism, which assumes decoherence, whereas we are discussing closed system quantum dynamics,

with equilibration implicitly defined in terms of eigenstate thermalization [69] and are making no

assumptions about decoherence. We note also that equilibration in closed quantum systems and

equilibration coupled to an external heat bath are conceptually different problems - closed quantum

systems can fail to equilibrate when isolated from the environment (see [69] for a review) but even

such ‘non-equilibrating’ quantum systems will equilibrate if connected to an external heat bath.

(see e.g. [241] and references contained therein).

To conclude, our analysis reveals that type II models exhibit subdiffusion of fractons on time

scales short compared to the relaxation time, and additionally the relaxation time diverges at low

temperatures as a super-exponential function of inverse temperature. This is reminiscent of MBL,

in that the closed system quantum dynamics of a zero temperature fracton sector coupled to a finite

temperature neutral sector could preserve a memory of the initial conditions in local observables

over extremely long times that, while finite, are super-exponentially long at low temperature.

4.5 Discussion and Conclusions

We have shown that fracton models naturally demonstrate glassy dynamics. Type I fracton

models at finite energy density exhibit a mobility that is exponentially small in the “temperature,”

corresponding to a type of “asymptotic many body localization.” Meanwhile, the equilibration of

type I fracton models at low temperatures involves a logarithmic approach to equilibrium over

an exponentially wide range of time scales—another signature of glassy dynamics. In Type II

models, individual fractons exhibit subdiffusive dynamics up to a relaxation time that is super-

exponentially long at low temperature, reminiscent of various near-MBL systems, but involving a

translation invariant three-dimensional Hamiltonian.

This work has intimate connections to earlier literature on glassy dynamics. For example,
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the dynamical rules governing the relaxation of fracton models are reminiscent of ‘kinetically con-

strained’ theories of classical glasses, in particular those in the ‘East model’ class (for a review see

e.g. [250, 251] and references contained therein). These classical models exhibit ‘dynamical facili-

tation,’ whereby excitations can move only in the vicinity of other excitations - a property that also

arises in the fracton models that we study. Such ‘dynamical facilitation’ provides a robust route

to glassy behavior (see e.g. [252, 253] and references contained therein). However, in kinetically

constrained models these dynamical constraints are imposed ‘by hand,’ whereas for fracton models

they emerge naturally from Hamiltonian dynamics.

It is worth noting, however, that classical ‘plaquette models’ also exhibit naturally emerging

dynamical constraints (see e.g. [248, 254]), and indeed the earliest fracton models were specifically

designed to be quantum generalizations of these, exhibiting naturally emerging kinetic constraints,

dynamic facilitation, and glassy dynamics [73, 255]. These earlier works (particularly [73, 255])

provide the intellectual inheritance on which we build. However, we emphasize also that this earlier

literature focuses on systems in contact with an external heat bath, whereas we have focused on the

conceptually different problem of many body quantum dynamics in an isolated quantum system.

In doing so our work makes contact between this earlier literature and the recent developments in

closed system quantum dynamics, localization and thermalization (see Ref.[69] for a review), and

highlights the connections between classical theories of glass and the rapidly developing theory of

slow dynamics in closed quantum systems.

This work has provocative implications for numerous fields. Firstly, it opens up a new

direction for the investigation of three-dimensional topological order, suggesting that certain three-

dimensional topologically ordered phases (the fracton models) naturally exhibit a rich glassy dy-

namics more conventionally associated with disordered systems. Can ideas from localization and

disordered systems be fruitfully employed to understand three-dimensional topological order? Are

there more surprises in store regarding the dynamical behaviour of such models? Given the novelty

of these systems, it seems likely that there is more to be discovered.

Additionally, this work may have implications for quantum foundations, in that it identifies
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a class of quantum systems as being unusually robust to thermalization (in which coupling to a

heat bath “observes” the system and “collapses” the wavefunction). This robustness is particularly

strong for type II models, for which the time scale for thermalization diverges super-exponentially

fast at low temperatures. These models could also have important technological implications,

insofar as they display a long lived memory of the initial conditions.

There may also be a connection to the “quantum disentangled liquids” (QDL) introduced

in [213]. The hallmark of the QDL is that it contains two species of particles, and the many body

eigenstates have volume law entanglement entropy, but after performing a projective measurement

on the more mobile species of particles, the resulting wavefunction has only area law entanglement

entropy. In the fracton models at non-zero temperature, there are indeed two species of particles

(fractons and neutral composites), and the neutral composites are in a thermal state, so the eigen-

states will indeed have volume law entanglement entropy. However, the fractons themselves can

only hop by coupling to the neutral sector, and after performing a projective measurement on the

neutral sector, the “fracton only” portion of the wavefunction may well have sub-volume law entan-

glement entropy. If so, then finite temperature fracton models would provide a three-dimensional

realization of a quantum disentangled liquid. Unfortunately, a direct numerical test of this scenario

seems difficult, since these models are intrinsically three-dimensional, and numerical tools capable

of dealing with three-dimensional glassy many body systems are severely limited.

Thus far we have worked with models with only a Z2 charge. However, fracton models

should admit of generalizations with U(1) conserved charge [80, 81] allowing us to define a charge

conductivity. It should then follow, through reasoning analogous to our previous discussion of type

II fracton models, that at zero temperature (but with the neutral composites prepared at finite

density), that these models should realize a phase that is a thermal conductor but a charge insulator.

Finally, there are the implications for the study of MBL and glass physics. We have in-

troduced a new class of translation invariant models which naturally exhibit glassy dynamics in

three dimensions. This new class of models may well provide a new line of attack on important

unsolved problems such as MBL in translation invariant systems [212–219] and in higher dimen-
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sions [239, 256]. Finally, while the fracton models are defined on lattices, analogous phenomenology

can also be obtained in the continuum by making use of higher rank gauge theories. Given the

interest in MBL in the continuum [237, 238], these too may be worthy of investigation. We leave

exploration of these various issues to future work.



Chapter 5

Fractons at Finite Density: Behold the Constant Crowd

In which Benny returns to street level.

In the penultimate chapter of this thesis, we commence the study of new emergent phenomena

which may arise in the presence of a finite charge density of fractons and their bound states, in a

sense initiating investigations into the “condensed matter physics” of fractons. The gapped spin

models considered in the previous chapter, such as the X-Cube model and Haah’s code, admit

only a Z2 fracton charge i.e fracton charge is only conserved modulo two. Owing to the lack of

a conserved U(1) charge in these models, we cannot independently tune the charge density and

energy density, since the temperature alone determines both.

To overcome the lack of a chemical potential with which to independently control the density

of fractons, we switch over to the framework of symmetric tensor gauge theories, briefly alluded

to in § 1, allowing us to more fully explore the space of possible “fractonic” phenomena. These

theories encode fracton phenomenology through the presence of higher moment conservation laws,

e.g. dipole moment conservation, which restricts the set of local operators at the ends of which

isolated fractons may be created. Within this gauge theoretic framework, we can independently

tune the densities of both fractons and their dipolar bound states by introducing separate chemical

potentials for the two sectors. We can thus study the ground state properties of either fractons or

their bound states, since finite charge densities of either can now be attained at vanishing energy

density.

Besides providing a platform in which to study the thermodynamics of fractons or their
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bound states at finite charge densities, symmetric tensor gauge theories naturally capture gapless

fracton theories. In these gapless states, fractons are strictly immobile only in isolation since at

finite densities, fractons endow each other with inertia. This becomes clear when considering two

fractons: while each fracton is immobile in isolation, it can now move by “pushing off” the other by

exchanging a virtual dipole. Since such processes conserve the overall dipole moment of the system,

they permit fractons to gain a mobility which is set by the background density of fractons. This

establishes a short-range attraction between fractons, which when balanced against the generic

power-law repulsion between them, creates a range of possible phases in which a finite density of

fractons can exist, delineated in this chapter. Also considered here are systems with a finite density

of bound states of fractons.

Similarly to compact vector U(1) gauge theories in 2+1D, compact tensor gauge theories are

unstable to a trivial gapped confined phase. However, much like their vectorial counterparts, we

show that the addition of a (generalized) Chern-Simons term completely gaps out the gauge mode

of the tensor gauge theory and leads to a stable chiral phase with deconfined fractonic excitations in

d = 2 spatial dimensions. This allows us both to bring fractons down a dimension and to establish

a connection between these states and quantum Hall physics.

A version of this chapter was first presented as [87] under the title “Emergent Phases of

Fractonic Matter,” and is a collaboration with Michael Pretko and Rahul Nandkishore,

Phys. Rev. B 97, 085116 (2018)1

With a little help from my friends. . .

1 Copyright 2018 American Physical Society, reproduced here in accord with the copyright policies of the American
Physical Society.
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5.1 Introduction

Quantum phases of matter with long-range entanglement, such as spin liquids and fractional

quantum Hall systems, are strikingly characterised by the presence of fractionalized quasiparticles.

As a familiar example, two-dimensional systems can host anyon excitations, characterized by their

non-trivial braiding statistics. In the presence of symmetries, these excitations can carry fractional

quantum numbers, exhibiting the phenomenon of symmetry fractionalization. Perhaps the most

famous manifestation of this behavior occurs in the celebrated ν = 1/3 Laughlin fractional quantum

Hall state [24], where the charge e/3 quasi-particles have been directly observed in experiment [17,

18, 257]. The phenomenon of fractionalization has been studied in great detail, specifically in the

context of symmetry enriched topological (SET) phases [43, 258–264]. It is now well-established

that the appropriate theoretical framework for understanding fractionalization is that of gauge

theories, which also describe the fundamental forces of our universe. The resulting theoretical

developments on fractionalization have led to a fruitful exchange of ideas between the condensed

matter and high energy communities.

The most familiar types of gauge theories can be formulated in terms of a vector gauge field

~A, just as in ordinary electromagnetism. Such vector gauge fields account not only for all gauge-

mediated interactions in the Standard Model, but also for the theory of the fractional quantum Hall

effect [147], superconductors with dynamical electromagnetism [46, 47], and most known examples

of spin liquid states [43]. As such, treatments of fractionalization have historically focused almost

exclusively on vector gauge fields. However, there is no reason in principle why the gauge field must

transform as a vector object under rotations. Motivated by this, recent work has set out to study

fractionalization patterns described by more general tensor gauge fields [80, 81, 265]. For instance,

a quantum phase of matter could be described by a two-index tensor Aij , or a tensor of even higher

rank.

Gauge theories with such a tensor gauge field can describe a radically different form of frac-

tionalization from that occurring in conventional vector gauge theories. Whereas vector gauge
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theories only feature fractionalization of internal quantum numbers, like charge or spin, parti-

cles coupled to a tensor gauge field can exhibit fractionalization of the ability to move through

space. The most notable example of this phenomenon is the existence of “fracton” excitations in

certain tensor gauge theories. These new particles, first seen in the context of exactly solvable

spin models [73–77, 233, 247, 255], have no ability to move by themselves, i.e. an isolated frac-

ton is strictly immobile. Nevertheless, when a fracton combines with an appropriate number of

other fractons, it can form a mobile bound state which is free to move around the system 2 . In

this sense, a fracton is only a fraction of a conventional mobile excitation. The condensed mat-

ter literature has seen a flurry of recent activity fleshing out the properties of these strange new

particles [78, 79, 82, 84, 88, 234, 266–278].

More generally, the restriction on mobility of charges in tensor gauge theories need not occur

in all directions. There are other types of “subdimensional particles” which are immobile in only

certain directions [80]. For example, some tensor gauge theories host one-dimensional particles,

which are free to move only along a particular line. The physics of tensor gauge theories is therefore

much richer than simply the theory of fractons. Nevertheless, fracton excitations have been studied

in more detail than the other members of the subdimensional family, and we will focus in this work

on fractons and their bound states.

Essentially all research in this area to date has focused on the properties of fractons in

isolation, or in the presence of a small number of other fractons. Such treatments are, in a sense,

determining the fundamental particle physics governing the behavior of fractons. For example,

previous work has formulated the generalized electromagnetic interactions between fractons and

U(1) tensor gauge fields [81]. We can regard all of these previous studies as mapping out the

“Standard Model” of fractons.

While the fundamental behavior of fractons has been studied in detail, there has been com-

paratively little work studying the behavior of a system with a finite density of fractons. This

2 The smallest mobile bound state of fractons is usually also a non-trivial excitation of the system, which cannot
decay directly into the vacuum, and therefore exists as a stable particle. The exception to this is in certain “fractal”
fracton models, such as Haah’s code, where all mobile bound states are trivial [75].
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is an important problem to study, since a system with emergent tensor gauge structure will not

necessarily be at zero chemical potential of fractons. In fact, there are multiple different chemical

potentials to consider. As we will review, these tensor gauge theories have higher moment charge

conservation laws, beyond the conventional monopolar charge conservation law. As a simple exam-

ple, some systems exhibit conservation of both charge and dipole moment of fractons, which leads

directly to their immobility. This extra conservation law allows us to consider a second type of

chemical potential in the system. Even when there is zero net charge density of fractons, we can

still tune a dipolar chemical potential to obtain a finite density of dipoles. To fully understand the

behavior of fracton systems, we must therefore study not only finite densities of fractons, but also

finite densities of the non-trivial bound states. In doing so, we will be formulating the “condensed

matter theory” of fractons, mapping out the phases in which emergent fractonic matter can exist.

In this thesis, we will content ourselves with studying fracton systems which have two non-trivial

types of particles: immobile fractons and fully mobile dipoles. Many of these principles can be

carried over to future studies of more complicated systems.

We will begin by studying the case of a finite density of fractons. This may seem trivial at first,

since fractons tend to be locked in place. However, while a fracton in isolation is strictly immobile,

multiple fractons are capable of limited motion via “pushing off” of each other, leading to a mutual

sense of inertia, in a manifestation of Mach’s principle [82]. In particular, for a system of fractons at

density ρ, the fractons will possess a finite effective mass, m ∼ ρ−1. While the fractons have now lost

their characteristic immobility, there is still one crucial difference between fractons and conventional

mobile particles. Like-charged fractons in a U(1) tensor gauge theory experience two types of forces:

a long-range repulsion mediated by the gauge field [81], and an effective “gravitational” attraction

which is generically short-ranged [82]. This type of situation, with short-range attraction and long-

range repulsion, provides the natural conditions for microemulsion physics. The fractons will bind

into small-scale clusters dominated by the short-range attraction, which in turn act as droplets

“emulsed” in a phase dominated by the long-range repulsion. At low densities, the system will

form a Wigner crystal of such fracton clusters. As the strength of the repulsion is increased, the
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size of clusters will decrease until the system becomes a Wigner crystal of individual fractons. We

will determine the necessary conditions on the repulsive potential for microemulsion physics to hold

and will estimate the typical size of fracton clusters.

We will then move on to the study of systems with zero fracton density, but with a finite

density of dipoles. We will assume throughout that dipole moment is quantized (such that there

is a minimal dipole moment) as is always the case when the theory arises from an underlying

lattice model.[80] Dipoles are intrinsically mobile particles, which allows their phases of matter to

be studied through more conventional means. Furthermore, these dipoles can have either bosonic

or fermionic statistics. We can therefore imagine putting these mobile dipoles into almost any

phase encountered in conventional condensed matter. In this thesis, we will focus on the dipolar

analogues of two familiar phases of matter: Fermi liquids in three-dimensions (3D) and quantum

Hall phases in two-dimensions (2D).

We study a system with a finite density of fermionic dipoles, primarily focusing on the case

of a single species of dipole (i.e. all polarized in one direction) in 3D. In this case, we expect the

dipoles to form a Fermi surface. In the fracton model we focus on, the dipoles interact with a 1/r

repulsive interaction, which will be screened at finite density, just like the conventional Coulomb

interaction between electrons. All of the usual arguments for Fermi liquid theory can be carried over

esssentially unchanged. One notable feature of this dipolar Fermi liquid is the behavior of fractons.

We show that fractons in such a system have a logarithmic interaction energy. This leads to a

finite-temperature phase transition, corresponding to the unbinding of fractons, in similar spirit to

a BKT transition. In the low-temperature phase, the presence of a sharp Fermi surface will result

in Friedel oscillations in the spin density, which is a useful experimental diagnostic. When this

phase is realized in a weak Mott insulator (i.e. close to the metal-insulator transition), one should

also be able to observe Friedel oscillations in the charge density.

Finally, we will consider systems in two spatial dimensions which have both a finite density of

dipoles and a non-zero expectation value of the emergent magnetic field associated with the tensor

gauge field. In this case, the mobile dipoles will respond to this field much like an electron would
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respond to an external magnetic field, forming the dipolar analogue of a quantum Hall state 3 . We

will show that these dipolar quantum Hall states fit naturally into the framework of the recently

discovered chiral fracton phases, described by tensor Chern-Simons theories [272]. We will study

many of the natural questions associated with these generalized quantum Hall states, such as their

level quantization and ground state degeneracy. We will also demonstrate the existence of gapless

chiral edge modes, which will result in a robust thermal Hall effect.

5.2 Review of U(1) Fractons

Recently, in a series of papers [80–82, 269, 272], one of the authors (M.P.) has worked out

the properties of 3D U(1) tensor gauge theories, which host fractons and other subdimensional

excitations. These theories provide the natural analogue of the discrete fracton theories formulated

by Vijay, Haah, and Fu [74, 76]. We will here review the simplest example of a U(1) tensor gauge

theory—the “scalar charge theory”—in order to illustrate the main principles underlying these

phases.

Instead of a conventional vector gauge field Ai, this theory is formulated in terms of a rank 2

symmetric tensor gauge field Aij and its canonical conjugate, Eij . The properties of the theory are

almost entirely determined by the form of the Gauss’s law for the theory, which takes the form 4

∂i∂jE
ij = ρ. (5.1)

Whereas the conventional Gauss’s law only leads to the conservation of charge, this new Gauss’s

law has two associated conservation laws,∫
ρ = const.,

∫
~xρ = const., (5.2)

corresponding to conservation of charge and dipole moment respectively. This extra conservation

law has a severe consequence for the charges of the theory. A single charge cannot move while

3 Importantly, there is no quantum Hall effect of normal electrical conductivity. Physically, these states will be
most likely to occur in Mott insulating spin liquids.

4 In this thesis, we use a notation where Greek indices vary over space-time components (µ = 0, 1, 2, 3) and Latin
indices are used for spatial components only (i = 1, 2, 3). Repeated indices will be implicitly summed over and we
will work in units where e = ~ = c = 1, with c being the velocity of the gauge mode.
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conserving the dipole moment of the system. Therefore, isolated charges in this system are locked

in place and are fracton excitations. A charge can only move if it combines with an opposite

charge to form a dipolar bound state, which is free to move around the system. Such dipoles are

themselves non-trivial objects, since dipole conservation prevents them from decaying directly into

the vacuum.

Within the low-energy sector, where ∂i∂jE
ij = 0, the system is invariant under the following

gauge transformation

Aij → Aij + ∂i∂jα, (5.3)

for gauge parameter α(~x) with arbitrary spatial dependence. The most relevant “magnetic field”

object consistent with this gauge transformation takes the form of a non-symmetric traceless rank

2 tensor

Bij = εiab ∂
aAbj . (5.4)

In terms of the electric and magnetic fields, the Hamiltonian for this theory is given by

H =

∫ (
1

2
EijEij +

1

2
BijBij +AijJij

)
, (5.5)

where Jij is a symmetric current tensor describing the motion of fractons. Note that, whereas

normal particles have a vector current describing their motion, fractons can only move through

multi-body hopping processes, which are conveniently captured by a symmetric tensor satisfying

∂tρ+ ∂i∂jJ
ij = 0. (5.6)

which serves as the generalized continuity equation of the theory [81].

This theory can also be formulated in Lagrangian language as

L =
1

2

(
Ȧij − ∂i∂jφ

)2
− 1

2
BijBij −AijJij − φρ, (5.7)

where dots denote temporal derivatives and where φ is a field analogous to the temporal component,

A0, of the more familiar rank 1 gauge theory, serving as a Lagrange multiplier enforcing Gauss’s

law [272]. (Note that this theory does not have Lorentz invariance, so φ does not transform as a
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“0 component” of the gauge field.) In this language, we can write a more general time-dependent

gauge transformation within the low-energy sector

Aij → Aij + ∂i∂jα, φ→ φ+ α̇ (5.8)

for scalar field α(~x, t) with arbitrary dependence on space and time.

One curious feature of this particular model is the fact that the interfracton potential grows

linearly, V (r) ∼ r. (This is not generic to U(1) fractons, which in other models have a standard

decaying potential.) In conventional vector gauge theories, a linear interparticle potential is indica-

tive of an instability to a gapped confined phase. In this theory, however, there is a stable gapless

phase, regardless of the large energy cost necessary to separate particles [80, 265]. Furthermore,

once this energy cost has been paid, the immobility of fractons stabilizes them from collapsing

directly back into the vacuum. Nevertheless, the linear energy cost indicates that these fractons

cannot be thermally excited in large numbers. We will see later, however, that the presence of a

dipolar Fermi surface can screen the linear potential down to a logarithmic interaction, which will

allow for the proliferation of fractons above a certain temperature.

5.3 Microemulsions of Fractons

We begin by considering a three-dimensional system which has a finite density of U(1) frac-

tons. At finite density, fractons endow each other with inertia through the virtual exchange of dipole

moment, and their characteristic immobility disappears [82]. Even though the fractons can now

freely move around the system, there is still one crucial feature which sets fractons apart from con-

ventional mobile particles. A fracton will lower its effective inertia, and thereby move more quickly,

when it is in the immediate vicinity of another fracton. The result is an always-attractive geometric

force between fractons, which plays the role of an effective gravitational interaction. As shown in

previous work [82], the gravitational attraction between fractons is generically short ranged in the

models studied in the condensed matter literature. The effective short-ranged attractive potential
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takes the form

Vs(r) = −V0e
−Mr, (5.9)

where M is the mass scale of the mobile dipoles and V0 is a constant.

While the emergent gravitational force provides a short-range attraction, this is not the only

interaction between fractons. Like-charged fractons in U(1) models also exhibit a conventional

gauge-mediated long-range repulsion. The precise power law of this repulsive interaction depends

on the model, but we can readily identify an interesting universal feature which holds for a range

of different potentials. A model with short-range attraction and long-range repulsion provides

precisely the sort of conditions necessary for microemulsion physics (for discussions of microemulsion

physics in a more traditional context, see [279–281]). At short distances, fractons attract each other

and will have a tendency to bind together into clusters. At longer distances, however, we expect the

power-law repulsion to take over, preventing the fractons from coalescing into a single large cluster.

Instead, fracton clusters will have some typical intermediate size and will behave as mesoscopic

“particles” with an effective repulsive interaction. This repulsion will keep the fracton clusters

emulsed in the surrounding medium, instead of phase separating into a single large cluster. The

situation is reminiscent of protons in a nucleus, held together by short-range attraction, which

interact with other nuclei through a long-range Coulomb repulsion. At low densities, the system

will form a Wigner crystal of fracton clusters.

This physical picture, while appealing, will turn out to hold only for a certain range of

potentials. If the repulsion is too weak, all fractons will collapse into a single cluster. If the

repulsion is too strong, all clusters will break apart into a Wigner crystal of individual fractons.

In order to make more concrete statements, we must consider the precise form of the repulsive

interaction. We will break up the analysis into two classes of repulsive power-law potentials, both

of which are relevant in fracton phases.
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Figure 5.1: V (r) vs r. The decaying potential has both long-range and “hard-core” repulsions,
with a region of attraction just outside the core.

5.3.1 Decaying Potentials

We first assume that, in addition to the short range attraction, the fractons have a conven-

tional decaying repulsive potential

Vl(r) =
α

rn
, (5.10)

for some power n. This is the situation which holds in some fracton models, such as the Gu-Wen

emergent gravity model, for which n = 1 (i.e. a Coulomb potential) [282, 283]. Such a potential

provides both a long-range repulsion and also a “hard-core” repulsion at the shortest distances, with

the short-range interaction providing an attraction immediately outside the core (see Figure 5.1).

On short scales, we expect to see fractons clustering together into bound states. Taking the

fractons to have a hard core of radius a, the lowest energy configuration will be approximately close-

packed out to some radius R, as in Figure 5.2. The total number N of particles in the cluster scales

as N ∼ (R/a)3. In order to determine the most energetically favorable value for N (and thereby

R), we need to estimate the contributions to the energy of the cluster from both the short-range

and long-range potentials.

For the short-range potential, it is sufficient to consider interaction energy between nearest

neighbors. We therefore approximate the potential by Vs = −V0 for nearest neighbor pairs, Vs = 0

otherwise. The total contribution to the energy of the cluster from the short-range interaction is
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Figure 5.2: We consider a cluster of fractons that is approximately close-packed, assuming a
hard-core radius a for the fractons. The radius of the cluster scales as R ∼ N1/3.

then given by

Es = −c1V0N + c2V0N
2/3, (5.11)

where c1 and c2 are positive numbers of order unity. The first term represents the interaction

energy of particles in the bulk, with c1 quantifying the number of nearest neighbors. The positive

N2/3 term represents the number of particles on the surface, which do not get all the energetic

benefits of particles in the bulk, due to having fewer nearest neighbors. Keeping this surface term

will turn out to be crucial.

In addition to the short-range interaction energy, we also need the contribution to the energy

from the long-range repulsive potential. This interaction energy behaves as El ∼ αN2/Rn ∼

αN2−n
3 /an, so we write

El = c3
α

an
N2−n

3 , (5.12)

for c3 of order unity. The total energy of the cluster is then given by

E = −c1V0N + c2V0N
2/3 + c3

α

an
N2−n

3 , (5.13)

and the energy per fracton is

E

N
= −c1V0 + c2V0N

−1/3 + c3
α

an
N1−n

3 . (5.14)

We can find the most energetically favorable configuration of the whole system by minimizing the
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Figure 5.3: V (r) vs r. The growing potential has a similar profile to the decaying case, except
that the long-range repulsive potential now grows unbounded in magnitude, destabilizing the
microemulsion.

energy per fracton

d(E/N)

dN
= −1

3
c2V0N

−4/3 + c3(1− n

3
)
α

an
N−n/3 (5.15)

⇒ Nc ∼
(

V0a
n

α(1− n
3 )

) 3
4−n
∼
(

Vs(a)

Vl(a)(1− n
3 )

) 3
4−n

. (5.16)

In other words, the optimal particle number of the cluster is determined by the ratio of the short-

range and long-range interaction energies of neighboring fractons. When the total number of

fractons in the system is less than Nc, all of the fractons will clump together into a single cluster.

At larger particle numbers, the system will have multiple clusters, interacting with each other

through the long-range repulsion. The typical size of these clusters is given by

R ∼ aN1/3
c ∼ a

(
Vs(a)

Vl(a)(1− n
3 )

) 1
4−n

. (5.17)

It is worth noting that, for n ≥ 3, the cluster size blows up. This indicates that a long-range

repulsion weaker than 1/r3 is no longer enough to keep the fractons from phase-separating into a

single cluster, in a form of “gravitational collapse” of the system 5 . We therefore see that only

repulsive interactions with n < 3 will exhibit microemulsion physics.

5 Note that the hard core prevents the fractons from further collapsing into a black hole. Whether or not black
hole physics is accessible within the fracton framework remains an important open question.
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5.3.2 Growing Potentials

While some U(1) fracton models feature a conventional decaying potential, other models have

a repulsive potential which increases in magnitude as the fractons are separated. For example, we

have already discussed that the scalar charge theory exhibits a linear repulsive potential between

fractons, V = −αr. More generally, we can consider a growing repulsive potential of the form

Vl(r) = −αrn. (5.18)

When combined with short-range effects, this produces the potential energy profile seen in Figure

5.3. For a potential of this form, the system can always lower its energy by breaking apart a cluster

into a configuration with well-separated fractons. This becomes readily apparent if we attempt to

determine the typical cluster size using the strategy of the previous section. All previous statements

about the short-range interaction carry over directly. The long-range interaction is slightly trickier.

This contribution to the energy behaves as

El ∼ −αN2(Rn − Ln), (5.19)

where L is the system size. We are here writing the energy of the cluster relative to a state in

which the fractons are well-separated, which has energy of order −αN2Ln. With respect to this

reference point, the total energy of a cluster is given by

E = −c1V0N + c2V0N
2/3 + c3αL

nN2 − c4αa
nN2+n

3 . (5.20)

The energy per particle is given by

E

N
= −c1V0 + c2V0N

−1/3 + c3αL
nN − c4αa

nN1+n
3 . (5.21)

Since L � a, the fourth term is negligible compared to the third, so we can drop it. (The fourth

term only becomes relevant when N ∼ (L/a)3, at which point the notion of separate clusters breaks

down anyway.) Within this approximation, we can find the optimal cluster size by minimizing the

remaining terms with respect to N ,

d(E/N)

dN
= −1

3
c2V0N

−4/3 + c3αL
n (5.22)
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⇒ Nc ∼
(
V0

αLn

)3/4

. (5.23)

If we take the thermodynamic limit, L→∞, we see that the typical cluster size vanishes, Nc → 0,

indicating that the repulsion has caused all clusters to break apart. The resulting state will feature

fractons which are spaced apart as much as possible, in a Wigner crystal configuration.

We have now seen that a repulsive potential V ∼ rn for n > 0 leads to no clusters at all in the

system, whereas a potential V ∼ r−n for n ≥ 3 leads to the formation of a single phase-separated

cluster. We can therefore conclude that microemulsion physics, with finite size clusters emulsed in

a Wigner crystal of clusters, only holds for repulsive potentials V ∼ r−n with 0 < n < 3. Stronger

repulsions will result in a single-particle Wigner crystal, while weaker repulsions will result in the

“gravitational collapse” of the fractons.

5.4 Dipolar Fermi Liquids

We now move on to study a system which does not have a finite density of fractons, but

rather a finite density of mobile dipoles. We will focus our attention specifically on the dipoles

of the scalar charge theory, discussed in Section 5.2. We will assume throughout that there is a

certain minimal size for dipole moments (i.e. dipole moment is quantized), as is always the case

when the scalar charge theory arises from an underlying lattice model [80]. These dipoles can be

either bosons or fermions, as discussed in Appendix F. In this work, we will focus on fermionic

dipoles, which have phases of matter directly analogous to conventional electronic phases. For a

system with a finite density of fermionic dipoles, the simplest fate for the system would seem to be

that the dipoles form a Fermi surface, which is the first possibility that we will explore. We will

study a three-dimensional system, where there are no instanton effects which could destabilize the

system. It is possible that a two-dimensional dipolar Fermi surface is stable as well, similar to the

conventional 2D spinon Fermi surface [284], but this would require a more detailed analysis which

we leave to future studies.



136

We first study the case where there is only a finite density of one species of dipole pi, with

a specific orientation of dipole moment. Recall that dipole moment is a conserved quantity, so

an isolated dipole cannot change its orientation. Furthermore, dipole moment is quantized in the

system, so scattering between dipoles cannot change the orientation without paying a large finite

energy cost. We assume that all interaction energies in the problem are small compared to this scale.

It is then valid to consider a system of only pi-oriented dipoles. Of course, such a polarized state

breaks any rotational or inversion symmetries of the system. In terms of the microscopic degrees

of freedom from which these dipoles emerge (e.g. spins in a spin liquid), a single-species dipolar

Fermi liquid will be a state in which symmetry breaking and long-range entanglement coexist.

5.4.1 Justification of Fermi Liquid Theory

A finite density of noninteracting fermions will always form a Fermi surface. But in order

to justify the existence of a stable interacting Fermi liquid, we must examine precisely how these

dipoles interact with each other. We will confine our attention to the scalar charge theory discussed

earlier. From the generalized electromagnetism of this model [81], we know that the interparticle

potential between two dipoles, p and p′, takes the form

V (r) =
(p · p′)

8πr
− (p · r)(p′ · r)

8πr3
. (5.24)

For identical dipoles, p = p′, this reduces to

V (r) =
p2 sin2 θ

8πr
, (5.25)

where θ is the angle between p and r. The corresponding force between identical dipoles is generi-

cally repulsive, except for a line of zero force at θ = 0. Importantly, the force is never attractive.

Also, we note that the 1/r potential (and corresponding 1/r2 force) scales exactly like the normal

Coulomb interaction between electrons. We can hence essentially regard the interaction between

dipoles as simply an anisotropic Coulomb force. Then, just as in normal Fermi liquid theory, the

dipoles will be able to screen each other. (The details of dipolar screening are worked out explicitly
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in Appendix E.) After accounting for screening, the resulting screened quasiparticles will only have

weak short-range interactions.

At this point, the dipole moment of the fermions becomes mostly irrelevant to the problem.

We have a system of fermions with short-range interactions, with the dipole moment simply serving

as an extra internal quantum number which has no effect on the traditional Fermi liquid analysis.

All of the usual interesting aspects of Fermi liquid theory will carry over unchanged. There will be

a discontinuity in dipole occupation number at a sharp Fermi surface in momentum space (with a

quasi-particle residue Z < 1). Also, for appropriate values of Landau parameters, the system will

host a zero sound mode, representing oscillations of the Fermi surface, which provides a way to

distinguish the system from a free Fermi gas of dipoles.

While the dipole quantum number does not significantly affect the Fermi liquid analysis,

there is one important way in which it makes its presence known in the low-energy physics. While

the bare interaction of Eq. (5.25) is screened, it remains highly anisotropic, with a strong repulsion

between side-by-side dipoles and zero interaction between end-to-end dipoles. As such, the dipoles

will tend to be arranged more densely in the direction of their dipole moment. This corresponds to

a larger Fermi momentum kF , in this direction than in the two perpendicular directions. Thus, the

anisotropic interaction between dipoles will lead to a Fermi surface which is elongated along the

direction of the dipole orientation. Starting from a nearly isotropic system, the interactions will

cause the Fermi surface to roughly take the shape of a prolate spheroid, as illustrated in Figure 5.4.

This elongation should manifest itself in the Friedel oscillations of the system, which will have

a shorter wavelength in the direction of the dipole moment. When this dipolar phase of matter is

realized in a Mott insulating spin liquid, these Friedel oscillations will be most prominently seen

in the spin density, since the dipoles will carry spin but not charge. However, for a weak Mott

insulator (close to the metal-insulator transition), the coupling between the charge and spin sectors

is strong enough to observe Friedel oscillations in the charge density as well, as seen in certain Mott

transitions with a “ghost” Fermi surface [285].

It is worth noting that, as in more familiar U(1) spin liquids with spinon Fermi surfaces, the
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Figure 5.4: The anisotropic nature of the interaction between dipoles will cause the Fermi surface
to elongate in the direction of the dipole moment, forming roughly a prolate spheroid.

Fermi velocity of the dipoles will generically be of the same order as the speed of the gapless gauge

mode. As such, the dynamical screening of this system will be more complicated than that of a

normal metal, which should manifest itself in the response functions of the system. We leave the

detailed study of dynamical screening as a problem for future study.

5.4.2 Finite-Temperature Phase Transition

Another important aspect of the dipolar Fermi liquid to investigate is the behavior of fractons,

which still occur as excitations of the system (even though they are no longer at finite density). The

bare fractons of the scalar charge theory have a linear interfracton potential, V ∼ r. This is the

phenomenon of “electrostatic confinement” [80], which usually makes these fractons irrelevant to

the low-energy physics. In the presence of a finite density of dipoles, however, previous work [269]

has indicated that the interfracton potential is partially screened. The present case is slightly

different from previous work due to the presence of a Fermi surface and also due to having only

one orientation of dipole. We leave the details of the calculation to Appendix E. Here, we simply

quote the result that the screened potential grows only logarithmically,

Vscr(r) ∼
1√
g

log r, (5.26)
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where g is the density of states of dipoles at the Fermi surface. The fractons now interact through

a logarithmically increasing potential, which is a much milder sort of growth than the bare linear

potential.

The logarithmic potential still results in a significant energy cost for an isolated fracton,

scaling as logL, where L is the system size, much like a vortex in a two-dimensional superfluid.

Just as in a superfluid, we expect that the fractons will only proliferate above a certain temperature.

The free energy associated with an isolated fracton in a system of size L will take the schematic

form

F ∼
(

1√
g
− kBT

)
logL. (5.27)

Fractons will therefore only proliferate at temperatures above a certain critical temperature, where

the free energy per particle becomes negative

Tc ∼
1

kB
√
g
. (5.28)

Below this temperature, fractons will mostly exist in small bound states, such as dipoles. Above the

transition temperature, fractons will be able to unbind and behave independently, just like in the

BKT transition of vortices in a superfluid. When this happens, the dipoles will lose their integrity

and break apart into separate fractons, destroying the Fermi surface. Furthermore, in such a finite

temperature system, fractons lose their characteristic immobility and can move around the system

(albeit very slowly) [269]. At this point, all interesting properties of both fractons and dipoles have

been lost, and the system is in a trivial phase.

We note that, for a three-dimensional system, the density of states g increases with the size

of the Fermi surface, indicating a decrease in Tc as the Fermi surface gets bigger. In contrast, the

Fermi temperature TF ∼ EF increases with the size of the Fermi surface. For a sufficiently large

dipolar Fermi surface, the transition will happen at temperatures well below the Fermi temperature,

Tc � TF , so we do not need to worry about thermal smearing of the Fermi surface. The Fermi

surface should remain fairly sharp up until the critical temperature, where the dipoles are destroyed.
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Figure 5.5: Fermi surfaces of different species of dipoles will be elongated along different
directions, which drastically reduces their overlap, shown here by the solid black curves.

5.4.3 Multi-Species Fermi Liquids

One might also consider the case where there are finite densities of two or more different

orientations of dipoles in the system. We would like to imagine each species as entering its own Fermi

liquid phase, with perhaps some weak coupling between them. However, the form of the interaction

between dipoles (Eq. (5.24)) brings a complication into this picture. For simplicity, consider the case

of two species, p and p′, with dipole moments of equal magnitude but in perpendicular directions.

The resulting interparticle potential is

V (r) = −(p · r)(p′ · r)
8πr3

= −p
2 sin 2θ

16πr
, (5.29)

where θ is the angle between p and the component of r in the p− p′ plane. Note that, whereas the

interaction between identical dipoles was strictly repulsive, the interaction between perpendicular

dipoles can be either attractive or repulsive depending on the relative positions of the dipoles. We

now have a channel with an attractive interaction, so the system may have pairing instabilities. A

further complication is the fact that the Fermi surfaces of the different dipole orientations will not

overlap, as shown in Figure 5.5, which will make the interspecies pairing problem more intricate.

Ultimately, the study of multi-species dipolar Fermi liquids will be a much more difficult problem

than the single-species case, and we leave this to future work.
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5.5 Dipolar “Quantum Hall” Phases

The preceding sections of this chapter have focused on fracton models in three spatial dimen-

sions, which until recently had been the sole focus of the fracton community, due to folklore that

fractons could not occur in less than three dimensions. The discrete spin models [74, 76] seem to

have some fundamental obstruction to being realized in two dimensions (though this issue is not

yet fully settled). Meanwhile, the lattice rotor fracton models [80, 265] are described by compact

U(1) tensor gauge theories, which are unstable in two dimensions due to instanton effects, just like

a conventional compact U(1) gauge field in 2D.

Despite these earlier difficulties, recent work has shown that fractons can exist in two spatial

dimensions, and in fact are realized in a simple two-dimensional quantum crystal as disclination

defects [84]. The elastic theory of such a crystal can be mapped directly onto a noncompact U(1)

tensor gauge theory, which avoids instanton effects, thereby providing an example of a stable fracton

model in two dimensions. This realization opens the door to a whole new class of fractonic phases of

matter. For example, we can place the mobile dipoles into any of the conventional two-dimensional

phases of matter. In this work, we will focus on dipolar analogues of one of the most well-studied

types of two-dimensional phases: quantum Hall systems.

Conventional quantum Hall phases can be productively studied through the use of Chern-

Simons theories, which capture the flux attachment physics of the composite fermion picture.

Similarly, we should be able to study dipole “quantum Hall” states by attaching to each dipole

some amount of its effective magnetic flux. Luckily, the appropriate tool for studying such dipolar

flux attachment has already been developed, in the form of tensor Chern-Simons theories, first

seen in the context of boundary theories to certain three-dimensional fracton models [272]. We will

here apply these generalized Chern-Simons theories to the study of purely two-dimensional dipolar

“quantum Hall” phases. (We will drop the quotes from here on, with the understanding that these

phases do not exhibit a quantum Hall response to the physical electromagnetic field.) By coupling

a Maxwell-type tensor gauge theory (arising from elasticity theory, for example) to a tensor Chern-
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Simons gauge field, we obtain a gapped chiral phase of matter hosting fracton excitations. We

work out some of the basic properties of these new two-dimensional gapped phases, such as their

response properties, ground state degeneracies, and edge modes.

We note that these tensor Chern-Simons theories also provide a way to stabilize compact

U(1) tensor gauge theories in two dimensions. Such theories can arise, for example, by coupling a

two-dimensional quantum crystal to a substrate [84]. They can also arise directly in lattice rotor

models. A compact Maxwell tensor gauge theory of this sort has an instability to a trivial gapped

confined phase, driven by instanton effects. However, by adding a tensor Chern-Simons term to the

critical point, we can drive the system towards a different nontrivial gapped fixed point, described

by dipolar quantum Hall physics.

We emphasize that the U(1) fracton models we consider evade the usual arguments for non-

existence of fracton theories in two dimensions. Such arguments apply to stabilizer code models

where the fracton charge is only conserved modulo an integer. In contrast, we consider only

systems of U(1) fractons with an absolutely conserved charge, such as the topological defects in

two-dimensional quantum crystals [84]. In the following, we will always take the tensor Chern-

Simons theories to be coupled to such fractons with conserved charge.

5.5.1 Review of Chern-Simons Theory

We begin by reviewing the basics of Chern-Simons field theories described by vector gauge

fields, highlighting the elements most relevant for our higher rank generalizations (for a more com-

prehensive review, we refer the reader to Refs. [23, 147].). The structure of these topological quan-

tum field theories (TQFTs) was elucidated in a remarkable paper by Witten [30], and it has since

been realized that they describe the low energy physics of a large class of two-dimensional gapped

topological phases of matter, including quantum Hall fluids [27–29], superconductors [46, 47], and

spin liquids [43]. In particular, they correctly capture the non-trivial ground state degeneracy

(GSD) of topological phases on a torus (a direct manifestation of topological order), in addition to

the braiding and statistics of fractionalized excitations. While a general discussion should include
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non-Abelian Chern-Simons theories (which appear e.g., in the context of the ν = 5/2 quantum Hall

state [286] and chiral spin liquids [287]), for simplicity we will restrict our discussion to the Abelian

case.

The Chern-Simons action at level k for a vector gauge field Aµ is

SCS =
k

4π

∫
d3x εµνλAµ∂νAλ, (5.30)

where µ, ν, λ = 0, 1, 2. This term is rotationally invariant but breaks parity and time-reversal.

Moreover, it is gauge-invariant under Aµ → Aµ + ∂µα

SCS → SCS +

∫
d3x ∂µ

(
αεµνλ∂νAλ

)
, (5.31)

only upto a total derivative term which vanishes on closed manifolds. The Chern-Simons term (5.30)

naturally captures the basic physics of the integer quantum Hall (IQH) effect, since

δSCS
δA0

= J0 =
k

2π
B, (5.32)

δSCS
δAi

= Ji = − k

2π
εijEi. (5.33)

Identifying k with the number of filled Landau levels ν, we see that the Chern-Simons term captures

the flux-attachment in the quantum Hall state and describes a Hall conductivity σxy = ν/(2π).

While ν is naturally quantised since it describes the number of filled Landau levels, at first glance k

need not be quantized. However, the level k is necessarily quantized as a result of gauge invariance

(see Appendix G.1 for details).

While the above discussion focused only on the integer quantum Hall state, Chern-Simons

theory can more generally describe the low-energy physics of phases with fractionalized excitations.

The long-distance physics of (Abelian) topological phases is captured by an Abelian Chern-Simons

field theory, with the Lagrangian

L =
1

4π
εµνλaIµKIJ∂νa

J
λ . (5.34)
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Here, aI is a multiplet (I = 1, 2, . . . , N) of compact U(1) statistical gauge fields and KIJ is a

symmetric integer-valued N ×N matrix which encodes the statistics of quasi-particles. The parity

of the diagonal entries of the K-matrix specify whether the state is fermionic (odd) or bosonic

(even). The K-matrix describing a gapped Z2 spin-liquid is given by

K =

 0 2

2 0

 , (5.35)

while fractional quantum Hall (FQH) states are described by N = 1 and K = m, with m odd

(even) for fermionic (bosonic) states.

As an additional simplification, let us consider this latter case, where K is simply an integer

and the theory is governed by a single statistical gauge field a,

L =
m

4π
εµνλaµ∂νaλ. (5.36)

In order to completely specify the phase, we would also need to specify the quantum numbers

carried by quasi-particles, which in the context of FQH states refers to their charge. While this is

easily accomplished within the Chern-Simons formalism by adding a mixed Chern-Simons term

Lmixed = − 1

2π
εµνλAµ∂νaλ (5.37)

to the Lagrangian (5.36), it leads to a description of the phase as not simply topologically ordered,

but rather as a symmetry enriched topological (SET) phase, which is outside the scope of this

review.

A clear manifestation of topological order in the Chern-Simons description of topological

phases is that the degeneracy of ground states depends on the topological properties of the man-

ifold the system lives on. Specifically, it is possible to show that while there are no topologically

degenerate ground states if the system (5.36) is defined on a sphere, on a torus the GSD is m (see

Appendix G.2 for details). More generally, it can be shown that the ground state degeneracy of

the K-matrix theory (5.34) on an arbitrary Riemann surface of genus g is |det(K)|g [170].

Another characteristic feature of FQH states is the existence of chiral gapless edge excitations,

which cannot be gapped by any local perturbations. Placing the system described by (5.36) on a



145

semi-infinite plane, it is possible to derive the effective action governing these boundary modes (see

Appendix G.3 for details). The resultant theory,

Sedge =
m

4π

∫
d2x (∂tϕ∂xϕ− v∂xϕ∂xϕ) , (5.38)

is a conformal field theory (CFT), also known as a chiral Luttinger liquid or level m Kac-Moody

theory, which describes a chiral boson moving at a velocity v. Importantly, these one-dimensional

boundary CFTs allow us to directly calculate the wave-function of the two-dimensional bulk, as

was established in a landmark paper by Moore and Read [31]. For instance, from the conformal

blocks of the chiral CFT (5.38) it is possible to derive the Laughlin wave-function for the ν = 1/m

FQH state.

5.5.2 Generalized Chern-Simons Theories

We now turn our attention towards two-dimensional higher rank generalizations of Chern-

Simons theories, which host excitations with restricted mobility, including fractons. Here, we will

focus on a specific chiral phase described by a rank 2 symmetric tensor gauge field—the “scalar

charge theory” in the taxonomy of Ref. [272]—to demonstrate the general phenomenology of such

phases, with generalizations to different higher rank theories left for future work.

We first consider a phase described by a rank 2 spatial symmetric tensor Aij , with its canon-

ically conjugate variable Eij playing the role of an electric field tensor. This theory, similar to the

3D rank 2 theory reviewed in Section 5.2, is uniquely specified by a generalized Gauss’ law which

takes the form

∂i∂jE
ij = ρ, (5.39)

for a scalar charge density ρ. The excitations carrying this charge obey two constraints,∫
ρ = const.,

∫
~xρ = const., (5.40)

corresponding to the conservation of charge and of dipole moment respectively. The fundamental

charges of this theory are hence fractons, unable to move in any direction due to the dipole moment
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conservation law. Importantly, however, the dipolar bound states of this theory are completely

mobile, possessing both longitudinal and transverse motion [81]. The constraint in the low energy

sector, ∂i∂jE
ij = 0, leads to invariance under the gauge transformation

Aij → Aij + ∂i∂jα, (5.41)

for gauge parameter α(~x, t) with arbitrary space-time dependence. The long-distance Hamiltonian

consistent with this gauge structure is

H =
1

2
EijEij +

1

2
BiBi, (5.42)

where the magnetic field is a vector quantity,

Bj = εib∂iA
j
b , (5.43)

and the constraint ∂i∂jE
ij = 0 is implicitly assumed. The Hamiltonian (5.42) leads to a linearly

dispersing gapless gauge mode with two polarizations. We also note that the magnetic flux vector

Bi in this case satisfies the constraint ∫
xiB

i = const., (5.44)

which implies that the magnetic fluxes are one-dimensional, with only transverse mobility.

Following the discussion presented in Ref. [272], we can also formulate this theory in terms of

a Lagrangian by introducing a Lagrange multiplier field φ which imposes the Gauss’ law constraint.

The Lagrangian of this two-dimensional theory is

L0(Aij , φ) =
1

2

(
Ȧij − ∂i∂jφ

)2
− 1

2
BiBi, (5.45)

which is gauge-invariant under the transformations

Aij → Aij + ∂i∂jα,

φ→ φ+ α̇,

(5.46)

where α(~x, t) has arbitrary space-time dependence.
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5.5.2.1 Feeding the Gauge Field

Having established the properties of the tensor gauge field with a Maxwell action, we now

consider the effects of a Chern-Simons term, which we expect will gap the theory and perform some

type of flux attachment. As we discuss in the next section, a tensor Chern-Simons term attaches

magnetic flux to dipoles. First however, we verify that the Chern-Simons term fully gaps the gauge

field, giving a gapped chiral phase of matter with fracton excitations.

We introduce a Chern-Simons term for the tensor gauge field Aij as:

S[Aij , φ] = S0[Aij , φ] + SgCS [Aij , φ], (5.47)

where we have added to the Lagrangian (5.45) a generalized Chern-Simons action

SgCS [Aij , φ] = − θ

4π2

∫
d3xφεbi∂i∂jA

j
b +

θ

8π2

∫
d3x εbiȦijA

j
b , (5.48)

parametrized by θ. We note that this Chern-Simons action can be derived as the boundary theory

of a 3D higher rank tensor gauge field with a generalized “E·B” term parametrized by a coefficient

θ [272]. Here, we study the action (5.48) in strictly two-spatial dimensions, observing that, unlike

the vector Chern-Simons theory (5.30), the generalized action (5.48) does not describe a topological

quantum field theory, as there does not appear to be any metric-independent formulation of this

theory [272].

In order to understand the consequences of the Chern-Simons action for the gapless gauge

modes, we decouple the symmetric gauge field Aij into its trace γ and a symmetric traceless tensor

Ãij

Aij = Ãij + γδij . (5.49)

Substituting this into the action (5.47), we obtain

S[Ãij , γ, φ] =
1

2

∫
d3x

(
˙̃Aij −

(
∂i∂j −

1

2
δij∂

2

)
φ

)2

− 1

2

∫
d3x

(
∂iγ + εijεab∂aÃbj

)2

+

∫
d3x

(
γ̇ − 1

2
∂2φ

)2

+ SgCS [Ãij , φ].

(5.50)
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Let us unpack this expression. First, we note that in terms of the separated fields Ãij and γ, the

action is invariant, up to a boundary term, under the gauge-transformation

Ãij → Ãij +

(
∂i∂j −

1

2
δij∂

2

)
α,

γ → γ +
1

2
∂2α,

φ→ φ+ α̇,

(5.51)

where α(~x, t) has arbitrary space-time dependence. Remarkably, we see that the trace component

does not appear in the Chern-Simons action, which ostensibly gives a mass only to the traceless

component of the gauge mode while leaving the trace component massless.

To decipher the fate of the traceless component, we focus on the terms in the action (5.50)

containing γ,

S[Ãij , γ, φ] =

∫
d3x

(
γ̇ − 1

2
∂2φ

)2

− 1

2

∫
d3x

(
∂iγ + εijεab∂aÃbj

)2
+ S2[Ãij , φ] (5.52)

where S2 contains the remaining terms in the action. Re-parametrizing Ãij in terms of an effective

gauge field

Γi = εijεab∂aÃbj , (5.53)

we can re-write Eq. (5.50) as

S[Ãij , γ, φ] =

∫
d3x

[(
γ̇ − 1

2
∂2φ

)2

− 1

2
(∂iγ + Γi)

2

]
+ S2[Ãij , φ]. (5.54)

Once written in this form, it is clear that the trace mode γ couples to the effective gauge field Γi in

a manner redolent of the coupling between a superfluid phase ϕ and an ordinary vector potential

Aµ: (∂µϕ− Aµ)2. By analogy with the case of a superfluid, where the vector potential “eats” the

gapless Goldstone mode, we thus expect that the gapless trace mode will get eaten by the effective

gauge field Γ. This can be seen explicitly by making a gauge transformation

Ãij → Ãij +

(
∂i∂j −

1

2
δij∂

2

)
α, φ→ φ+ α̇, (5.55)

with α(~x, t) such that

1

2
∂2α = γ. (5.56)
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While S2[Ãij , φ] is invariant under such a transformation, the magnetic flux vector and effective

gauge field transform as

Bj → B̃j = εib∂iÃ
j
b ,

Γi → Γi −
1

2
∂i∂

2α = Γi − ∂iγ,
(5.57)

thereby completely eliminating the trace mode γ from the theory. Surprisingly, we have found that

the gauge field eats its own trace component, leading us to christen this higher rank tensor gauge

field an “ouroboros” gauge field. We note that similar behavior may be displayed by non-Abelian

vector gauge theories in the context of SU(2) spin liquids [147].

Since γ is a compact field, we should, in principle, account for the presence of vortices as

is often done when studying ordinary superfluids. Specifically, on splitting γ into a regular part

γr and a singular part γs, only the regular part would get absorbed into the effective gauge field

Γi, with γs describing gapped vortices with short-range interactions. We can then also imagine

integrating out the gapped gauge mode, leading to an effective action for these vortices, which

would take the form of a conventional vector Chern-Simons theory. We leave a detailed discussion

of these vortices for future work.

The preceding discussion establishes that the higher rank Chern-Simons term leads to a com-

pletely gapped phase, with the low energy physics of this phase described by a traceless symmetric

rank 2 field Ãij
6 . The effective action describing the long-distance physics of this gapped phase

is hence the generalized Chern-Simons term

SgCS [Ãij , φ] = − θ

4π2

∫
d3xφεbi∂i∂jÃ

j
b +

θ

8π2

∫
d3x εbi ˙̃AijÃ

j
b , (5.58)

since it has one fewer derivative than the Maxwell-like term in the action. As mentioned earlier, in

principle we should also include the gapped vortices of the trace mode γ, but we will focus here on

the physics captured by the higher rank Chern-Simons term (5.58), which is gauge-invariant (on a

6 Since the trace mode disappears from the theory, it is natural to ask whether we could simply start from the
theory of a traceless symmetric rank 2 tensor. However, the particle structure for such a theory would differ from
the one studied here and must thus be considered separately.
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closed manifold) under

Ãij → Ãij +

(
∂i∂j −

1

2
δij∂

2

)
α, φ→ φ+ α̇, (5.59)

for arbitrary α(~x, t).

Similarly to the quantization of the level k of a vector Chern-Simons theory, the coefficient θ

of the action (5.58) is also quantized in units of 2π (see Appendix H.1 for a derivation),

θ = 2πk, k ∈ Z. (5.60)

We will henceforth refer to k as the level of the higher rank tensor Chern-Simons theory, which we

will now demonstrate describes an emergent integer quantum Hall state of mobile dipoles at the

filling fraction ν = k. We note that, similarly to the CS theory describing the quantum Hall effect,

we will see that when k ∈ Z, the generalized CS term (5.58) describes an IQH state of dipoles while

for fractional values, it is describing an FQH state.

5.5.2.2 Integer quantum Hall state of Dipoles

So far, we have established that the addition of the higher rank Chern-Simons term leads

to a fully gapped phase, where the trace mode of the symmetric tensor Aij has been eaten by the

traceless mode Ãij . With the gauge sector of the theory fixed, we now examine the particle content

of the low-energy theory (5.58).

The Lagrange multiplier field φ constrains the low-energy sector of this theory,

− k

2π
εbi∂i∂jÃ

j
b =

k

2π
∂jB̃

j = 0, (5.61)

where B̃j is the magnetic flux vector. More generally, allowing for the appropriate gauge charges

coupled to the Chern-Simons field,

ρ = − k

2π
εbi∂i∂jÃ

j
b . (5.62)

It can readily be checked that the excitations carrying this charge obey the constraints∫
ρ = const.,

∫
~xρ = const.,

∫
x2ρ = const., (5.63)
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corresponding to the conservation of charge, dipole moment, and a specific component of the

quadrupole moment. The fundamental charges are thus fractons, while the dipolar bound states

are only mobile in the direction transverse to their dipole moment.

While it seems surprising that the dipoles, which were fully mobile in the absence of the

Chern-Simons term, now have restricted mobility, this restriction arises naturally as a consequence

of flux-attachment (5.62),

ρ =
k

2π
∂jB̃

j , (5.64)

which indicates that the Chern-Simons term binds a flux 2π/k to each dipole. Since the mag-

netic flux vector in this theory is one-dimensional, it follows that dipole excitations in the gapped

deconfined phase inherit the restricted mobility of the fluxes.

The physics of this gapped phase can be understood through a simple semi-classical picture,

where fully mobile dipoles at some finite density move in the presence of an emergent finite back-

ground magnetic field. In analogy with electrons in a perpendicular magnetic field, these dipoles

move in quantized circular orbits and perform cyclotron motion, as depicted in Figure 5.6. In this

context, the integer k has a natural interpretation as the number of filled Landau levels ν occupied

by the mobile dipoles, and this phase hence corresponds to an emergent integer quantum Hall phase

of dipoles. Since we are attaching an integer amount of flux to the dipoles, which are originally mo-

bile, there is no fractionalization of charge or statistics of the deconfined quasi-particles. Instead, a

striking new feature of the generalized Chern-Simons theory considered here is the fractionalization

of mobility of the underlying dipoles forming the state, resulting in deconfined dipolar excitations

with only one-dimensional motion allowed.

Pushing on the semi-classical picture further, we expect that the circular orbits will reduce

to skipping orbits in the presence of a boundary, leading to a chiral dipolar current propagating

along the edge. Indeed, as we will show later (see Section 5.5.2.4), the presence of these boundary

modes can be established directly by placing the tensor Chern-Simons theory (5.58) on an open

manifold.
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Besides these boundary modes, we can also characterize this phase through its generalized

“Hall” response, which follows from varying the action (5.58) with respect to Ãij ,

〈J ij〉 =
k

4π

(
εib ˙̃A j

b + εjb ˙̃A i
b

)
=

k

4π

(
εibE j

b + εjbE i
b

)
. (5.65)

We can thus define a “Hall” conductivity which is given by

σijkl =
k

4π

(
εikδjl + εjkδil

)
. (5.66)

The only non-trivial components of this tensor are

σxyyy = σyxyy = −σyxxx = −σxyxx =
k

4π
, (5.67)

and

σxxyx = −σyyxy =
k

2π
. (5.68)

Unlike the Hall response in an integer quantum Hall state of electrons, which represents the response

of the system to an externally varying electric field, here the conductivity tensor σijkl encodes the

response to the internal emergent tensor field Eij .

5.5.2.3 Fractional quantum Hall analogues

Thus far, we have focused on the case where k is restricted to take integer values, which is re-

flected in the lack of fractional charges in the system and corresponds to a generalized Hall response

Figure 5.6: Fully mobile dipoles, indicated by the pair of connected spheres, in the presence of an
emergent finite background magnetic field perform cyclotron motion. In the presence of a
boundary, these skipping orbits result in chiral dipolar edge currents.
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which is an integer multiple of a fundamental constant. In analogy with the fractional quantum Hall

effect, we can also consider fractional values of the level k, which will lead to deconfined fractons

with fractional charges and a fractional generalized Hall response.

In order to study the fractional generalizations of the tensor Chern-Simons theory, we intro-

duce a rank 2 symmetric traceless gauge field aij . In analogy with the Chern-Simons description of

FQH states (see Section 5.5.1), the higher rank Chern-Simons theory of this compact U(1) statisti-

cal gauge field will capture the long-distance physics of a fracton phase with fractionalized charges.

The effective low-energy theory for an emergent fractional quantum Hall state of dipoles at filling

fraction ν = k = 1/m (m ∈ Z) is described by

S[Ãij , φ; aij , χ] = SgCS [aij , χ] + Sc[Ãij , φ; aij , χ] + SMax[Ãij , φ]. (5.69)

The first term in the action is the generalized Chern-Simons term at level m for the statistical gauge

field aij and a Lagrange multiplier field χ, which enforces a low-energy constraint on the theory,

leading to fractionalized excitations with restricted mobility. The last term is the bare Maxwell

action of the original tensor gauge field of the emergent fractons.

The middle term

Sc =
1

2π

∫
d3xφ εbi∂i∂ja

j
b +

1

2π

∫
d3xχ εbi∂i∂jÃ

j
b −

1

2π

∫
d3x εbi ˙̃Aija

j
b , (5.70)

describes the coupling between the emergent electro-magnetic field Ãij and aij ; this is the analogue

of the mixed Chern-Simons term (5.37) in the vector Chern-Simons theory, which couples the

statistical gauge field to the physical gauge potential. This coupling term will be our primary focus

from hereon. Though the field Ãij is technically dynamical, we will now treat it as an effective

static background source. This is completely analogous to the normal treatment of quantum Hall

states, where the dynamical electromagnetic field is treated as an effective background.

That the action (5.69) is indeed the correct low energy description of an emergent FQH state

can be verified directly by integrating the massive gauge field aij out of the theory—a few lines of

algebra will lead to the action (5.58) with coefficient θ = −2π/m, where 2πm flux is attached to each
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dipole. Note that while we could have added a generalized Chern-Simons term for Ãij to (5.69),

this merely shifts the generalized Hall response by an integer. Thus, setting the coefficient of this

term to zero corresponds to working in the lowest Landau level.

Alternatively, we could have started from the effective theory for Ãij and introduced a finite

density of dipoles ρ in addition to a current Jij , by including source terms

Lsource = −φρ− ÃijJ ij , (5.71)

to the action (5.58). As discussed in Section 5.2, these satisfy the generalized continuity equation

ρ̇+ ∂i∂jJ
ij = 0, (5.72)

which is solved by taking

ρ =
1

2π
εib∂i∂ja

j
b , J ij =

εbi

2π

(
ȧ j
b + ∂b∂

jχ
)
, (5.73)

for arbitrary χ. Inserting these into Lsource and adding a generalized Chern-Simons term for the

aij , χ fields leads precisely to the action (5.69) for an emergent FQH fracton phase. Note that

similar arguments are used to arrive at a Chern-Simons effective description for conventional FQH

states of electrons [147].

The field χ plays the role of a Lagrange multiplier and places a low-energy constraint on the

gauge charges of the statistical gauge field aij . Specifically, these charges are fractons, while their

dipolar bound states are one-dimensional, with mobility only in the direction transverse to their

dipole moment. We can also explicitly see that the quasi-particle excitations carry fractionalized

charge by introducing an excitation that carries gauge charge q under aij . This is achieved by

adding a term

δL = qχ δ(~x− ~x0) (5.74)

to the action (5.69). Varying the action with respect to χ leads to the equation of motion

ρ =
1

2πm
∂jB

j +
q

m
δ(~x− ~x0), (5.75)
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which explicitly demonstrates that the filling fraction of the underlying dipoles forming the state is

ν = 1/m and that the one-dimensional dipolar excitations carry fractional charge q/m. Following

the arguments for electronic FQH states [147], it is now easy to show that the excitations in

this theory have fractional statistics 7 . In particular, we can define a “braiding” process along

intersecting lines for a q1 dipole with a q2 dipole which has dipole moment orthogonal to that of

the q1 dipolar quasi-particle. Such a process will induce a phase

θ12 =
2π

m
q1q2. (5.76)

Additionally, we can infer from the equation of motion (5.75) that a quasi-particle carrying m

units of aij charge corresponds to a dipole excitation forming the FQH liquid. We can identify

the excitations carrying m units of the a charge with the bosonic (fermionic) dipoles forming the

underlying FQH state when m is even (odd).

As discussed above, for cases where k = 1/m, the excitations exhibit fractionalized charge

and statistics, and our experience with FQH states of electrons would lead us expect a constant

ground state degeneracy on a torus. There is, however, a crucial difference between electrons

and the dipolar bound states—the dipoles have mobility only transverse to their dipole moment.

Imagine placing the system on an Rx×Ry periodic lattice with lattice spacing a = 1. Now consider

the Wilson-line operator that creates a pair of dipoles at spatial position (x, y) = (0, 0), wraps one

of the dipoles along a non-contractible cycle in the y-direction, and annihilates it with its partner

to return the system to the vacuum state. If the dipoles were fully mobile, this operator could

be locally deformed into one which initially creates the pair at (x, y) = (1, 0). Due to the one-

dimensional nature of the dipoles, it appears that these operators may no longer be continuously

deformed into one another. While this may lead one to expect a ground state degeneracy which

grows exponentially with system size, there in fact exist a sub-extensive number of relations between

certain products of the Wilson string operators which reduce the degeneracy to a constant8 . Indeed,

7 While the dipolar excitations are one-dimensional, there still exists a well-defined notion of statistics for sub-
dimensional particles. This is discussed in detail in the context of discrete fracton models [78].

8 A similar situation arises in discrete fracton models such as the X-Cube model, where certain relations between

products of Wilson string operators reduce the ground state degeneracy from ∼ 2L
2

down to ∼ 2L [273]
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a detailed derivation (see Appendix H.2) shows that the ground state degeneracy for the generalized

Chern-Simons theory SgCS [aij , χ] for the statistical field aij at level m (where k = 1/m is the filling

fraction) is a constant,

GSD = 2m, (5.77)

where the factor of m arises as a consequence of the fractional statistics (the factor of two stems

from having two species of dipoles).

Having established this formalism, it is now tempting to generalize this construction to dipolar

analogues of hierarchical quantum Hall states, described by a K-matrix and a multiplet of tensor

gauge fields a Iij , or of non-Abelian quantum Hall states, such as the Moore-Read Pfaffian state [31,

286]. While such generalizations appear fairly straightforward to construct, we will leave this for

future work and focus instead on the novel boundary theories of these generalized Chern-Simons

theories.

5.5.2.4 Chiral Edge Modes

From the semi-classical picture for the emergent quantum Hall state of dipoles, where a finite

density of dipoles responds to a finite background magnetic field, we expect that the system will

host chiral modes localized at spatial boundaries. This is illustrated schematically in Figure 5.6 for

the quantum Hall state of dipoles, described by the higher rank Chern-Simons theory with level

m ∈ Z.

Here, we will show the existence of chiral edge modes explicitly, working with the generalized

Chern-Simons theories for dipolar FQH states at filling fraction 1/m. Indeed, in analogy with vector

Chern-Simons theories describing FQH states of electrons, we expect that the chiral higher rank

Chern-Simons theories also exhibit a chiral anomaly, a direct manifestation of which are gapless

chiral edge modes. Note that the case m = 1 describes dipoles in a completely filled lowest Landau

level, i.e., an IQH state of dipoles.

Consider the higher rank Chern Simons term describing dipoles at filling fraction ν = k =
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1/m,

S[aij , χ] = −m
2π

∫
d3xχεbi∂i∂ja

j
b +

m

4π

∫
d3x εbiȧija

j
b , (5.78)

where aij is a compact U(1) symmetric traceless tensor of rank 2. Under a gauge transformation

aij → aij +

(
∂i∂j −

1

2
δijδ

2

)
α,

χ→ χ+ α̇,

(5.79)

this action is invariant only up to a boundary term,

S[aij , χ]→ S[aij , χ] +
m

4π

∫
d3x ∂i

(
εbi∂jα̇ ∂b∂

jα
)
. (5.80)

To derive the action for the boundary degrees of freedom, we fix the gauge χ = 0 in the bulk such

that the constraint imposed by the gauge-fixing condition remains

εbi∂i∂ja
j
b = 0. (5.81)

This constraint can be solved in terms of the field ϕ

a j
b = εij∂i∂bϕ. (5.82)

Note that unlike the edge theory of a vector CS theory (see Appendix G.3), which is described in

terms of compact scalar field, here ϕ has dimensions of length ([ϕ] = L1) and it is instead ∂ϕ which

is a compact dimensionless field. In addition, since aij is a symmetric tensor, ϕ must be a solution

of the two-dimensional Laplace equation

∂2ϕ = 0. (5.83)

Tracelessness of aij is automatically satisfied by (5.82).

For concreteness, we consider the semi-infinite geometry depicted in Figure 5.7, which has a

spatial boundary at y = 0 between the dipolar FQH state and vacuum. Inserting the solution (5.82)

into the action (5.78), we obtain the edge action

SgCS =
m

4π

∫
y=0

dxdt (∂t∂xϕ∂x∂xϕ) +
m

4π

∫
y=0

dxdt (∂t∂yϕ∂x∂yϕ) . (5.84)
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Since ϕ and ∂yϕ can be varied independently on the boundary, we have thus found two modes

propagating along the boundary.

Physically, it is natural to expect two distinct boundary modes corresponding to the two

linearly independent dipole orientations. This is depicted schematically in Figure 5.7. In particular,

this figure illustrates the distinct nature of these two boundary modes. Consider first dipoles with

their dipole moment oriented perpendicular to the boundary and propagating transversely to their

dipole moment. Labelled by a in Figure 5.7, the motion of these dipoles along the boundary looks

identical to that of a usual charged particle. The boundary action for this mode should hence be

identical to that of a chiral Luttinger liquid of electrons. Indeed, when re-phrased in terms of a

new compact scalar field ξ ≡ ∂yϕ, the boundary action for ξ becomes

Sedge[ξ] =
m

4π

∫
y=0

dxdt (∂tξ ∂xξ) , (5.85)

which is precisely the chiral CFT describing the boundary of a conventional FQH state (see Sec-

tion 5.5.1). We can thus introduce a velocity for this field by adding a term −v∂xξ ∂xξ to the

action. Given the extensive literature on edge theories of quantum Hall states (see e.g., [147]), we

will not investigate this mode further.

In addition to the conventional mode described by ξ, the boundary of a rank 2 Chern-Simons

Figure 5.7: Semi-infinite geometry for studying the edge physics of the higher rank Chern-Simons
theory. The boundary at y = 0 separates the dipolar FQH state from the vacuum. The boundary
hosts two independent co-propagating gapless chiral modes, which correspond to the motion of
dipolar bound states in two distinct orientations, a and b, along the edge.
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theory hosts an additional chiral edge mode, with the low-energy behavior governed by

SgET [ϕ] =
m

4π

∫
dxdt (∂t∂xϕ∂x∂xϕ) , (5.86)

where “gET” denotes a “generalized edge theory,” and it is implicit that this theory lives on the

boundary y = 0. As depicted in Figure 5.7, this mode (b) corresponds to the motion of dipoles

with their dipole moment oriented parallel to the boundary, with longitudinal motion along the

boundary. Since dipole moment is conserved, these excitations are constrained to move in dipolar

bound pairs even along the boundary. As a consequence of this, we expect the low energy theory

describing these edge modes to obey an additional constraint besides charge conservation. We will

now explicitly demonstrate this by working directly with the action (5.86).

As noted earlier, the field ϕ has dimensions of length and so under scale transformations of

the coordinates

σa → λσa (5.87)

transforms as

ϕ(σ)→ ϕ(λ−1σ), (5.88)

leaving the action (5.86) invariant under scale transformations. Indeed, due to the unconventional

scaling of the field ϕ, the action (5.86) is a conformally invariant field theory despite initial appear-

ances.

In addition to the term (5.86), we can also add non-universal energetic terms to the action.

Following standard procedure, we identify ∂x∂x∂xϕ as the field canonically conjugate to ϕ, from

which we can derive the commutation relations

[∂xϕ(x), ∂xϕ(x′)] = − iπ
m

sgn(x− x′), (5.89)

establishing both ϕ and ∂xϕ as non-local fields. Thus, adding the lowest order spatial derivative

term, consistent with locality, we find the low-energy theory for the field ϕ

SgET [ϕ] =
m

4π

∫
dxdt (∂t∂xϕ∂x∂xϕ− v∂x∂xϕ∂x∂xϕ) , (5.90)
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which describes a chiral gapless mode with dispersion ω = vk, where v is some non-universal

velocity determined by the microscopic details of the edge. Note that the velocity of this mode will

generically be distinct from that of the ξ edge mode, although the two modes will co-propagate,

resulting in a thermal Hall coefficient which is twice that of conventional FQH states.

Given the novelty of the generalized edge theory, we leave a thorough discussion of its prop-

erties to future work. Instead, we focus on a remarkable new property of this theory, absent in

boundary theories of vector Chern-Simons theories. Specifically, we observe that the density of

dipoles at the boundary is defined by

ρ =
1

2π
∂x∂xϕ, (5.91)

as evinced by the commutation relations

[ρ(x), ∂xϕ(x′)] = − i

m
δ(x− x′),

[ρ(x), ρ(x′)] =
i

2πm
∂xδ(x− x′).

(5.92)

Due to the additional spatial derivative present in ρ, the dipolar density at the boundary satisfies

the constraints ∫
ρ = const.,

∫
xρ = const., (5.93)

corresponding to conservation of charge and of centre of mass, the latter of which we anticipated

in our earlier discussion. We have thus found that the boundary theory of the generalized Chern-

Simons theory hosts gapless excitations with centre of mass conservation i.e., there exist gapless

fracton excitations at the edge of a higher rank Chern Simons theory in addition to fully mobile

one-dimensional dipolar bound states. Since chirality guarantees the absence of back-scattering

terms, regardless of the interactions present at the boundary, we expect that both of these edge

modes will be robust against arbitrary weak perturbations. However, given the unusual nature of

the generalized edge theory, we leave a careful analysis of stability to future work.

Although we have focused on a semi-infinite planar geometry here, in principle we could

consider other finite samples as well. Interestingly, we expect that on a square geometry (or any
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sample with sharp corners) there will exist finite-energy localized modes at the corners, owing to

the one-dimensional nature of the dipolar excitations. While this behavior is distinct from the zero-

energy protected corner modes recently discovered in higher-order topological insulators [288–294],

the existence of such corner-localized modes opens up the possibility of finding protected zero-

energy corner modes or hinge states in fracton models. We leave a detailed study of the generalized

edge theory and its localized modes on general finite samples for the future.

As a final remark, we note that the generalized edge theory (5.86) provides us with another

window into the emergent FQH state present in the bulk. Specifically, since the edge theory

is Gaussian, the correlation function for the ∂xϕ fields can be calculated exactly and takes the

suggestive form

〈∂xϕ(x)∂xϕ(0)〉 = − 1

m
log(x− vt), (5.94)

where m is the inverse filling fraction ν of the dipolar bound states. Since the boundary theory is

conformal, we conjecture that the bulk-boundary correspondence for vector Chern-Simons theories

holds also for the higher rank chiral theory studied here. Hence, from the correlator of the vertex

operators eim∂xϕ (which correspond to creation operators of elementary dipoles at the boundary),

〈: eim∂xϕ(x) : : eim∂xϕ(0) :〉 ∼ 1

(x− vt)m , (5.95)

we should be able to construct the bulk wave-function for the emergent dipolar degrees of freedom,

which in this case will take the form of a Laughlin state at filling fraction ν = 1/m. We stress

that while this is consistent with the picture developed here, the real object of interest would be

the wave-function of the underlying degrees freedom from which the higher rank tensor gauge field

emerges.

Nonetheless, we have discovered an intriguing connection between “fracton” phases and quan-

tum Hall physics, in that chiral higher rank tensor gauge fields with a finite density of mobile dipoles

form an emergent fractional quantum Hall phase, albeit with novel ground state degeneracies and

edge physics. We have identified chiral gapless edge theories which transport dipoles along the

edge of the system. As emphasized throughout, these dipoles do not carry physical electric charge,
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so there is no Hall response of the electric current. Nevertheless, the dipoles carry energy, and in

the spin liquid context, will carry spin. A spin liquid supporting a dipolar quantum Hall phase

will therefore be characterized by robust thermal and spin Hall responses, which will be useful for

identifying these phases experimentally.

While we have focused only on a specific higher rank tensor gauge theory (the “scalar charge”

theory) in this work, a larger class of chiral two-dimensional phases hosting subdimensional fractons

has been recently uncovered [272]. It would certainly be of interest to generalize our analysis here

to these other cases, with the aim of developing a more general framework for understanding these

higher rank chiral phases. For instances, in the “traceless scalar charge” theory [81], flux is attached

directly to the fractons and not their dipolar bound states, which are mobile only in the direction

transverse to their dipole moment even prior to flux attachment. The physics of a finite density of

fractons in a background emergent magnetic field remains to be understood, with simple analogies

to quantum Hall states ruled out due to immobility of fractons. We leave such questions to future

work.

5.6 Conclusion

In this chapter, we have studied systems with a finite density of fractons or their dipolar

bound states, mapping out some of the interesting phases in which this emergent fractonic matter

can exist. In so doing, we have initiated the study of “condensed matter” of fractons. We have

uncovered a cornucopia of new phases including ‘fractonic’ microemulsions, Fermi liquids, and

quantum Hall states, as well as new finite temperature phase transitions. Of course, there remain

numerous open directions. In principle, the mobile dipoles can be placed into any phase of matter

accessible to conventional bosons or fermions, and we have only studied a small sampling of possible

phases. As an example, it would be interesting to investigate topologically ordered states of dipoles.

There are also still many generalizations to explore within the dipolar Fermi liquid and quantum

Hall frameworks, as we have discussed in the main text. Furthermore, it is far from obvious that

such analogues of conventional phases provide an exhaustive account of dipolar phases of matter.
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There may be intrinsically new fractonic phases of matter with no natural analogue in conventional

condensed matter, which is an intriguing possibility. We leave further investigation of the condensed

matter physics of fractonic matter to future work.



Chapter 6

Conclusions and Outlook

In which Benny must go on,

but can’t go on,

yet will go on.

In the preceding chapters, we have discussed various emergent phenomena which may arise in

many-body quantum systems with strongly correlated degrees of freedom. We saw how the presence

of topological defects in fermionic superfluids unexpectedly gives rise to novel pairing mechanisms

with experimentally observable consequences; how the interplay of symmetry and topology in su-

perconductors naturally leads to a low-energy topological quantum field theory description; and

finally, how finite densities of topological excitations with restricted mobilities lead to striking be-

haviour both in and out of equilibrium. The underlying theme unifying these seemingly disparate

strands in the landscape of quantum phases of matter is that of the topology of their underlying

ground states.

The phenomena encountered in this thesis clearly, however, comprise a small fraction of

the cornucopia of effects associated with topological quantum phases of matter. Even amongst the

topics discussed in this dissertation, there are several aspects which scream for further investigation:

for instance, since the superconductors considered in § 3 were spatially confined to live in two

dimensions, in order for this work to have significance outside the theoretical realm it is of interest

to devise a physical situation where such flatland electromagnetism may arise. Alternatively, one

should study the interplay between topological order and symmetry in a three-dimensional system
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with dynamically fluctuating electromagnetism. While this generalisation appears straightforward

in the s-wave case, chiral superconductors in d = 3 generically possess nodal points or lines and

hence require more care. It might be of interest to study cases with nodal lines, since they harbour

the possibility of topological phenomena not possible in d = 2. It is also not obvious that the

procedure for gapping out nodal line follows that for gapping out the nodal Dirac points devised

in § 3 and will likely require further analysis.

Beyond these specific possibilities concerning the study of topologically ordered supercon-

ductors, this work opens up several avenues for further explorations of the fractonic frontier. Given

the paucity of exactly solvable gapped fracton models at our disposal, an obvious direction is the

theoretical design and investigation of new models displaying excitations with restricted mobility.

An intriguing possibility is opened up by the layer construction of the X-Cube model presented

in [78, 79]: instead of coupling together layers of Z2 topological order, we can now imagine that

appropriately coupling together layers of inter-penetrating non-Abelian topological orders will lead

to novel fracton phases with non-Abelian excitations. Such an approach also provides an indirect

route towards establishing a coherent mathematical framework for describing fracton phases which,

despite sharing many features with conventional topological order, are distinctly not topological in

the usual sense and, as such, exist beyond current categoric descriptions of gapped topologically

ordered systems. With the discussion contained in § 4 in mind, it would also be worth investi-

gating the potential applications of non-Abelian excitations with restricted mobility to topological

quantum computation and quantum information storage.

So much for exactly solvable lattice models for gapped fracton phases. The language of higher-

rank symmetric tensor gauge theory offers a complementary route for approaching systems with

sub-dimensional excitations, with the benefit of having much in common with the usual vector

gauge theories used to describe long-range entangled systems. Future studies of tensor gauge

theories will certainly uncover novel new phenomena, with straightforward extensions of existing

work being the study of tensor gauge theories on spatially curved manifolds and investigations of

non-Abelian tensor gauge theories. The discovery of a duality between certain tensor gauge theories
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and elasticity theory [83, 84] further opens the door for studying fracton physics in experimentally

feasible settings, with the fracton theory naturally interpreted as a gauge theory of translations and

rotations in this context. Perhaps of most immediate interest is the search for material candidates

where the tensor gauge structure emerges at low-energies. A first step in this direction would be

characterising the experimental signatures expected to appear in such “higher-rank spin liquids,”

such as their heat-capacities or pinch-point singularities.

Of course, the question of how best to demystify Haah’s code casts a large yet inexorable

shadow over the (currently) small but vibrant community of researchers investigating fracton order.

While certain aspects, such as the closed quantum dynamics and entanglement structure, of Haah’s

code have been amenable to analytic study, there does not exist any description of this phase in

terms of tensor gauge theory or layers of coupled topological orders. While the existence of such

descriptions is not a priori precluded, at this juncture it does appear to be the case that Haah’s code

occupies its own, largely empty, page in the bestiary of ineffably strange and beautiful quantum

phases of matter.
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Epilogue

In which Benny attempts to tame the Jabberwock,

ETC.

T. S. Eliot, Little Gidding :

“We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And
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[205] M. Žnidarič, T. Prosen, and P. Prelovšek. Many-body localization in the heisenberg xxz
magnet in a random field. Phys. Rev. B, 77:064426, Feb 2008.

[206] A. Pal and D. A. Huse. Many-body localization phase transition. Phys. Rev. B, 82:174411,
Nov 2010.

[207] J. Z. Imbrie. On many-body localization for quantum spin chains. J. Stat. Phys., 163(5):998–
1048, 2016.

[208] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L. Sondhi. Localization-protected
quantum order. Phys. Rev. B, 88:014206, Jul 2013.

[209] R. Vosk and E. Altman. Dynamical quantum phase transitions in random spin chains. Phys.
Rev. Lett., 112:217204, May 2014.

[210] D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan. Hilbert-glass transition: New
universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X,
4:011052, Mar 2014.

[211] C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi. Absolute stability and spatiotemporal
long-range order in floquet systems. Phys. Rev. B, 94:085112, Aug 2016.

[212] Y. Kagan and L. A. Maksimov. Effect of interparticle interaction on localization in a non-ideal
crystal with a narrow band. ZhETF, 87:348, 0 1984. JETP 60, 201 (1984).

[213] T. Grover and M. P. A. Fisher. Quantum disentangled liquids. J. Stat. Mech. Theor. Exp.,
2014(10):P10010, 2014.

[214] M. Schiulaz, A. Silva, and M. Müller. Dynamics in many-body localized quantum systems
without disorder. Phys. Rev. B, 91:184202, May 2015.

[215] N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore. Quasi-many-body
localization in translation-invariant systems. Phys. Rev. Lett., 117:240601, Dec 2016.

[216] Z. Papic, E. M. Stoudenmire, and D. A. Abanin. Many-body localization in disorder-free
systems: The importance of finite-size constraints. Ann. Phys., 362:714 – 725, 2015.

[217] W. De Roeck and F. Huveneers. Asymptotic quantum many-body localization from thermal
disorder. Commun. Math. Phys., 332(3):1017–1082, 2014.

[218] W. De Roeck and F. Huveneers. Scenario for delocalization in translation-invariant systems.
Phys. Rev. B, 90:165137, Oct 2014.

[219] J. M. Hickey, S. Genway, and J. P. Garrahan. Signatures of many-body localisation in a
system without disorder and the relation to a glass transition. J. Stat. Mech. Theor. Exp.,
2016(5):054047, 2016.

[220] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco. Three-dimensional anderson
localization of ultracold matter. Science, 334(6052):66–68, 2011.

[221] S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco. Disorder-induced localization in a
strongly correlated atomic hubbard gas. Phys. Rev. Lett., 114:083002, Feb 2015.



181

[222] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman,
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Appendix A

Observables from BdG solutions

The particle number N̂ and OAM L̂z in the BCS ground state can be found by numerically

diagonalizing the BdG Hamiltonian H(l). To obtain a finite spectrum we introduce a cutoff M � 1

on the radial quantum numbers such that H(l) is a 2M × 2M Hermitian matrix. The eigenstates

(u, v)T of the BdG Hamiltonian satisfy

M∑
n′=1

H
(l)
n,n′

 u
(l)
n′m

v
(l)
n′m

 = E(l)
m

 u
(l)
nm

v
(l)
nm

 , (A.1)

and are normalized as
∑M

n=1

(
|u(l)
nm|2 + |v(l)

nm|2
)

= 1. Given these, we obtain

N̂ =
∑
l,n,m

|v(l)
nm|2,

L̂z = −
∑
l,n,m

l|v(l)
nm|2,

(A.2)

where the sum over m is restricted to the positive part of the energy spectrum.
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Appendix B

Relation between “magnetic field” Bv and fermion density nf

Here we demonstrate that in a superconductor the background vortex “magnetic field” Bv =

εij∂iAvj is fixed by the density of the elementary fermions nf . Indeed, in a superconductor the

Lagrangian of a single vortex located at position Xi is given by [295]

Lv = −π
2
nf εijX

iẊj . (B.1)

Alternatively, we can rewrite the same Lagrangian as a minimal coupling of a vortex current to its

gauge potential Lv = −qvAvj Ẋj with qv = 1/2 because in a superconductor the vortex carries only a

half of a unit flux quantum of the magnetic field. As a result, we find that the density of elementary

fermions fixes the background value of Bv to be Bv = 2πnf . At the same time the fermion current

jif fixes the background value of the “electric field” Evj via the relation jif = − 1
2π ε

ijEvj .



Appendix C

Block-diagonal forms of K-matrices of spin-singlet chiral states

It is well-known that different K-matrices can represent the same topological state in the

Chern-Simons theory (5.34). Indeed, one is allowed to relabel the statistical gauge fields aI

aI → ãI = XIJa
J , (C.1)

where X ∈ GL(N,Z) is a N × N matrix of integers with the determinant ±1. Under such a

transformation

K → K̃ = XTKX,

l→ l̃ = XT l,

t→ t̃ = XT t

(C.2)

and the theories defined by (K, l, t) and (K̃, l̃, t̃) are equivalent.

We demonstrate that the K-matrix of a chiral spin-singlet superconductor paired in the (even)

kth partial wave can be put into block-diagonal forms. The two distinct block-diagonal forms used

in the main text are highlighted here. We start from the K-matrix, l-vectors, and t-vectors that

were derived in Sec. 3.5.3 and are given by Eqs. (3.42), (3.43), and (3.44) respectively.

If one chooses now the X-matrix

X =


1 0 0k

0 1 0k

−1Tk 0Tk 1k×k

 , (C.3)
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one finds

K̃B =

 −k 2

2 0

⊕ 1k×k, (C.4)

l̃Tm = (0, 1, 0, . . . , 0) = lTm,

l̃Tε = (−1, 0, 1, 0, . . . , 0),

(C.5)

t̃Ts = (0, 0, 1,−1, . . . , 1,−1) = tTs ,

t̃Tv = (1, 0, . . . , 0) = tTv .

(C.6)

In Eq. (C.4) the topological order and chirality is encoded in the first and second factor, respectively.

Alternatively, one can find a GL(N,Z) transformation that transforms the K-matrix (3.42)

into the Cartan block-diagonal form

K̃C = A
SO(2k)
k×k ⊕

 1 0

0 −1

 , (C.7)

where we introduced the Cartan matrix of of the Lie algebra SO(2k)

A
SO(2k)
k×k =



2 −1 0 0 . . . 0

−1 2
. . .

. . .
. . . 0

0
. . . 2 −1 0 0

0
. . . −1 2 −1 −1

...
. . . 0 −1 2 0

0 0 0 −1 0 2


. (C.8)

In the form (C.7) both the topological order and chirality are encoded in the first factor, while the

second factor is topologically trivial. The X matrix for the d+ id (k = 2) case is

Xk=2 =



−1 −1 0 −1

−1 0 0 0

1 −1 0 0

1 1 1 1


. (C.9)
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X matrices for higher partial even-waves can also be found. For k = 4, k = 6, and k = 8, for

instance, we find

Xk=4 =



−1 0 0 0 0 −1

−1 0 0 1 0 0

0 0 1 −1 0 0

0 1 −1 −1 0 0

1 −1 0 0 0 0

1 0 0 0 1 1


, (C.10)

Xk=6 =



−1 0 0 0 0 0 0 −1

−1 0 0 0 0 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 1 −1 −1 0 0

0 0 1 −1 0 0 0 0

0 1 −1 0 0 0 0 0

1 −1 0 0 0 0 0 0

1 0 0 0 0 0 1 1



, (C.11)

Xk=8 =



−1 0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1



. (C.12)

While these X matrices are not unique, the ones presented here easily generalize to higher k.



Appendix D

Details on Type I Relaxation Dynamics

Here, we discuss in detail the solutions of the relevant differential equations encountered in

the main text. All of the relevant equations can be brought to the form

dy

dt
= ay2e

± 1
y . (D.1)

Since this is a separable equation, this is equivalent to∫ y(t)

y(0)

dz

z2
e∓

1
z = at. (D.2)

Changing variables to x = ±1
z , we get

∓
∫ ±1/y(t)

±1/y(0)
e−x = at. (D.3)

Thus, the solution is

y(t) =
∓1

log
(
e∓1/y(0) ± at

) (D.4)

D.1 Equilibration within the bath

First, we consider the dynamics within the bath, ignoring the fractons. As depicted in Fig. 4.4,

a composite can decompose into two bosons while remaining on-shell. Being a first order process (in

Λ� W ), this occurs at a rate ∼ Λnc. Similarly, the reverse process where two bosons combine to

form a composite occurs at a rate ∼ Λn2
b . To leading order, these are the only two processes which

contribute to the equilibration between these two sectors, as all other processes require additional
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composites/bosons and are suppressed by additional density factors. Considering only the leading

order processes, a detailed balance is established between these two sectors,

dEc
dt

= −2WΛ(nc − n2
b) = −2WΛ

(
e−

2W
Tc − e−

2W
Tb

)
dEb
dt

= −2WΛ(n2
b − nc) = −2WΛ

(
e
− 2W
Tb − e−

2W
Tc

)
(D.5)

Putting in the heat capacities Eq. (4.10), we get

dTc
dt

= − Λ

2W
T 2
c

(
1− e2W

(
1
Tc
− 1
Tb

))
,

dTb
dt

= −2Λ

W
T 2
b

(
1− e2W

(
1
Tb
− 1
Tc

))
e
−W
Tb . (D.6)

In the regime where T
(0)
b � T

(0)
c , the bath is initially comprised primarily of neutral composite

excitations, and in this limit the above equations are approximately

dTc
dt
≈ − Λ

2W
T 2
c ,

dTb
dt
≈ 2Λ

W
T 2
b e

W
Tb e−

2W
Tc . (D.7)

For Tc(t), with initial condition Tc(0) = T
(0)
c , we find

Tc(t) =
2W

Λt+ 2W

T
(0)
c

. (D.8)

Since we are working in the limit T
(0)
c �W , Tc(t) ∼ T (0)

c for a time t ∼ W

ΛT
(0)
c

. We can hence treat

Tc(t) as a constant over this time scale such that Tb(t) satisfies

dTb
dt
≈ 2Λ

W
T 2
b e

W
Tb e
− 2W

T
(0)
c . (D.9)

This is equivalent to Eq. (D.1) with y = Tb/W and a = 2Λe
− 2W

T
(0)
c , and hence has the solution

Tb(t) =
−W

log (2Λt+ b)− 2W

T
(0)
c

, (D.10)

where b = e

2W

T
(0)
c

− W

T
(0)
b . This behaviour is expected to hold until the bosons are close to equilibration

Tb ∼ T (0)
c /2, i.e., over the window

0 ≤ t . k

2Λ
(D.11)
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Figure D.1: The composite sector (blue) cools with power-law behaviour while the bosonic sector
(orange) displays a log(t) behaviour over a short time scale, set by ∼ 1/Λ. The red dashed line,
Eq. (D.10), is the approximate analytic solution to Eq. (D.6) in the regime of interest

T
(0)
b � T

(0)
c , shown here against the numerical solution for Tb(t). The in-set compares the

analytic 1/t behaviour Eq. (D.8) (red dashed line) with the numerical solution for the composite

sector (blue). The parameters here are W = 1,Λ = 10−1, T
(0)
c = 10−2, and T

(0)
b = 0.5× 10−3.

where k is some positive constant.

The bosons thus display logarithmic heating over a time scale 0 ≤ t . k
Λ , for some positive

constant k. They reach the equilibrium temperature faster than the neutral composites, which

cool down with power-law behaviour over a time scale 0 ≤ t . k′W

ΛT
(0)
c

governed by their initial

temperature, T
(0)
c . The equilibration process is depicted in Fig. D.1, where the approximate analytic

solutions developed above are shown to be in good agreement with the numerical solutions for

Eq. (D.6). In particular, as illustrated in Fig. D.2, the approximate analytic solution Eq. (D.10)

fits the numerical solution for Eq. (D.6) quite well, confirming the logarithmic heating of the bosonic

sector.

Close to equilibration, we set Tc = T + δT
2 and Tb = T − δT

2 , such that Eq. (D.6) leads to

d(δT )

dt
≈ −ΛT, (D.12)

in the limit δT � T and T = T
(0)
c /2 � W . Thus, close to equilibration the system recovers

an exponential relaxation rate since δT (t) = Tc(t) − Tb(t) behaves according to Newton’s law of

cooling: δT (t) ∼ e−Λt.

The above discussion demonstrates that while we could, in principle, initialize our system
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Figure D.2: The bosonic sector displays a log(t) behaviour over a short time scale, set by ∼ 1/Λ.
The red dashed line is the approximate analytic solution, Eq. (D.10), for Eq. (D.6) shown against

the numerical solution for Tb(t), in blue. The parameters here are W = 1,Λ = 10−1, T
(0)
c = 10−2,

and T
(0)
b = 0.5× 10−3.

without any bosonic excitations, the presence of a finite density bath of neutral composites will

quickly establish a finite density of bosons in equilibrium with the composites (see Fig. D.1).

Following this discussion, it is easy to show that starting in the opposite limit i.e., with T
(0)
c � T

(0)
b

will result in the same equilibrium configuration, except with the dynamics reversed: the bosons

will cool with a power law while the composites will display a log(t) behaviour. When considering

the dynamics of the fracton sector, it is therefore reasonable to assume that the composite and

bosonic sectors have already equilibrated. Thus, we make this assumption in the main text and

consider a heat bath with both the composites and bosons at an initial temperature T
(0)
b .

D.2 Equilibration between bath and fractons

We now consider equilibration between the charged fractons and the bath (comprised of e(2)’s

and composites). The equilibration process is governed by Eq. (4.12),

dTb
dt

= −Λ2T 2
b

W 2

(
3nb + nf − n2

f −
n3
f

nb
− 2

n4
f

nb

)
,

dTf
dt

=
4Λ2T 2

f

W 2

(
3
n2
b

nf
+ nb − nbnf − n2

f − 2n3
f

)
. (D.13)
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In the regime of interest, T
(0)
f � T

(0)
b , such that the above equations reduce to

dTb
dt
≈ −3

Λ2T 2
b

W 2
e
−W
Tb ,

dTf
dt
≈ 12

Λ2T 2
f

W 2
e
W

2Tf e
− 2W
Tb . (D.14)

The first equation is equivalent to Eq. (D.1) with y = Tb/W and a = −3Λ2/W and hence has the

solution

Tb(t) =
W

log
(

3Λ2

W t+ eW/T
(0)
b

) , (D.15)

establishing the logarithmic cooling displayed by the bath. To understand the heating of the

fractons, we first note that the bath temperature stays roughly constant, Tb(t) ∼ T
(0)
b , for an

exponentially long period of time t ∼ W
3Λ2 e

W/T
(0)
b . We can hence treat Tb as a constant, so that the

behaviour of the fractons is governed by

dTf
dt
≈ 12

Λ2T 2
f

W 2
e
W

2Tf e
− 2W

T
(0)
b , (D.16)

which is again of the form Eq. (D.1) and has the solution

Tf (t) = − W/2

log
(

6Λ2

W t+ b
)
− 2W

T
(0)
b

, (D.17)

where b = e

2W

T
(0)
b

− W

2T
(0)
f . Since the bath cools logarithmically over an exponential time scale, this

behaviour of the fractons holds until Tf (t) ∼ T (0)
b /2 i.e., over an exponentially long time scale

0 ≤ t . W

6Λ2
eW/T

(0)
b . (D.18)

Thus far, we have only considered processes where two bosons combine to pump energy into the

fracton sector, and have neglected processes where a boson and a fracton convert into three fractons.

This is no longer accurate once the fracton temperature Tf ∼ T
(0)
b /2. At this time scale t ∼

W
6Λ2 e

W/T
(0)
b , the fracton density nf ∼ nb, since the temperature of the bath has yet to significantly

deviate from its initial temperature T
(0)
b while the fracton temperature has almost reached its

equilibrium value, T
(0)
b /2. Once the fractons are close to equilibration, the behaviour of the bath
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is hence governed by

dTb
dt
≈ −Λ2T 2

b

W 2
(3nb + nf ), (D.19)

where we are dropping terms of O(n2
f ) and higher. The second term on the r.h.s ∼ nf corresponds

to channel 3, which is now activated. Treating nf as a constant (since the fracton sector is close to

equilibration), we find that the bath’s behaviour is now modified,

Tb(t) ∼
W 2

Λ2t
eW/T

(0)
b . (D.20)

To study the behaviour close to equilibration, we set Tb = T + δT
2 and Tf = T − δT

2 , which

leads to

d

dt
δT = −Λ2

W
e−W/2T δT, (D.21)

in the limit T = T
(0)
b /2�W and where we are interested in the infinite time i.e, δT � T behaviour.

Here, we recover the standard exponential relaxation expected from Newton’s law of cooling

δT (t) ∼ exp

(
−Λ2t

W
e−W/T

(0)
b

)
. (D.22)

D.3 Equilibration between fractons and external heat bath

Finally, we consider the situation where the fractons are prepared at an initial temperature

T
(0)
f � T , where T is the temperature of an external heat bath, to which the temperatures of the

composites and dim-2 bosons are pinned. In this scenario, the behaviour of the fractons is governed

by Eq. (4.19)

dTf
dt

=
4Λ2T 2

f

W 2

(
3
n2
b

nf
+ nb − nbnf − n2

f − 2n3
f

)
, (D.23)

where nb = e−W/T and nf = e−W/2Tf . As we are interested in the dynamics of fractons prepared

in the ground state, in the regime of interest T
(0)
f � T we find that

dTf
dt
≈

12Λ2T 2
f

W 2
e−2W/T eW/2Tf . (D.24)

Thus, the fractons display logarithmic heating

Tf (t) = − W/2

log
(

6Λ2

W t+ b
)
− 2W

T

, (D.25)
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where b = e

2W
T
− W

2T
(0)
f . Note that this is the same behaviour encountered in the previous section.

However, once Tf (t) ∼ T/2, we can no longer ignore processes where a boson and a fracton convert

into three fractons (channel 3) since n2
bnf ∼ nb at this point. This is in contrast to the previous

section, where the fractons had almost equilibrated by the time channel 3 was activated, leading

to a logarithmic heating of fractons essentially over the entire equilibration time scale.

Hence, when the composites and dim-2 excitations are coupled to an external heat bath, the

logarithmic behaviour of the fractons persists until Tf (t) ∼ T/2, i.e., over an exponentially long

time scale

0 ≤ t . W

6Λ2
eW/T (D.26)

controlled by the temperature of the heat bath, T �W . Beyond this time scale, however, channel

3 is active, and the dynamics of the fractons are governed by

dTf
dt
≈

4Λ2T 2
f

W 2

(
3
n2
b

nf
+ nb

)
, (D.27)

with the solution

Tf (t) ≈ − W/2
2Λ2

W e−W/T t+ log
(
3e−W/T

) . (D.28)

Thus, the fractons first heat up logarithmically slowly, but once a finite density of fractons is

established, they display power law heating until they are close to equilibration. Near equilibration,

Tf = T − δT with δT � T , and the fractons then heat according to

d

dt
δT ≈ −4Λ2

W
e−W/T δT, (D.29)

such that the fractons follow the usual Newton’s law close to equilibration,

δT ∼ exp

(
−4Λ2t

W
e−W/T

)
. (D.30)



Appendix E

Screening in the Dipolar Fermi Gas

We will here treat the different types of screening that occur in the single-species dipolar

Fermi gas, adapting the techniques of Ref. [269].

E.1 Dipole-Dipole Screening

We first investigate the ability of the dipoles to screen their interactions with each other. We

emphasize that the following is an electrostatic calculation which will not capture e.g. dynamical

screening properties of the phase, but an electrostatic calculation of this form is sufficient for our

present purposes.

Let us consider a system with an equilibrium density of fermionic dipoles, all with the same

orientation pi, forming a Fermi surface. We then consider adding a static “test dipole” in the pi

direction and seeing how the system responds. In the presence of a perturbing scalar potential φ,

the potential energy felt by a dipole is pi∂iφ [81]. Correspondingly, the induced dipole moment

density is −pj(gpi∂iφ), where g is the density of states of the dipoles at the Fermi surface. Using

the form of the potential created by a dipole, φp(r) = (p · r)/8πr, we can write a self-consistent

equation for the potential φ as

φ(r) = φbare(r)−
∫
dr′(gpi∂iφ(r′))

pj(rj − r′j)
8π|r − r′| , (E.1)

where φbare(r) = (p · r)/8πr is the bare potential associated with the test dipole. Integrating by
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parts, we obtain

φ(r) =
(p · r)
8πr

− gpipj

8π

∫
dr′φ(r′)

(
δij
|r − r′| −

(ri − r′i)(rj − r′j)
|r − r′|3

)
. (E.2)

Taking a Fourier transform, we find

φ(k) = −i(p · k)

k4
− gφ(k)

(p · k)2

k4
. (E.3)

Solving for the potential φ(k), we have

φ(k) = −i (p · k)

k4 + g(p · k)2
= −i pkp

k4
⊥ + gp2k2

p

, (E.4)

where kp is the component of ki in the pi direction, and k⊥ is the two-dimensional orthogonal

projection. (We drop the k4
p term, since it is irrelevant compared to the k2

p term at small k.)

Converting to the interparticle potential energy for dipoles, V = pi∂iφ, we have

V (k) =
(pkp)

2

k4
⊥ + gp2k2

p

. (E.5)

We see that, after screening, V (k) remains bounded at k = 0, indicating that the long-range

interaction has been screened out, leaving only a short-range repulsion between dipoles.

E.2 Screening of Fractons

We now investigate the ability of a Fermi surface of dipoles to screen a fracton, which has

a much stronger electric field and potential. The potential of a fracton of charge q takes the form

φq = −qr/8π. The dipoles will still have an induced dipole moment density given by −pj(gpi∂iφ),

where φ is the total potential. Using this information, we can easily modify the self-consistent

equation for φ from the previous section,

φ(r) = − qr
8π
− gpipj

8π

∫
dr′φ(r′)

(
δij
|r − r′| −

(ri − r′i)(rj − r′j)
|r − r′|3

)
. (E.6)

After a Fourier transform, we obtain

φ(k) =
q

k4
− gφ(k)

(pkp)
2

k4
. (E.7)
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Solving for the potential φ(k), we find

φ(k) =
q

k4
⊥ + gp2k2

p

, (E.8)

where we have once again dropped a k4
p term, which is irrelevant at small k. We now reverse the

Fourier transform to find the real-space behavior of the potential,

φ(r) =

∫
dkpd

2k⊥
(2π)3

q

k4
⊥ + gp2k2

p

ei(kprp+k⊥·r⊥). (E.9)

We first set rp = 0, investigating screening transverse to the dipoles.

φ(r⊥) =

∫
dkpd

2k⊥
(2π)3

q

k4
⊥ + gp2k2

p

eik⊥·r⊥

=
q

2
√
gp2

∫
d2k⊥
(2π)2

1

k2
⊥
eik⊥·r⊥

=
q

4π
√
gp2

log r⊥.

(E.10)

Similarly, if we set r⊥ = 0, studying screening purely along the direction of the dipoles, we obtain

φ(rp) =

∫
dkpd

2k⊥
(2π)3

q

k4
⊥ + gp2k2

p

eikprp

=
q

8
√
gp2

∫
dkp
2π

eikprp

kp

=
q

16
√
gp2

log rp.

(E.11)

Directions between r⊥ and rp will behave similarly, with coefficient interpolating between Eqs. (E.10)

and (E.11). In either case, we see that the bare linear potential between fractons has been screened

down to a logarithmic interaction (with an anisotropic coefficient). The presence of a dipolar Fermi

surface is therefore able to eliminate the issues of “electrostatic confinement” and allow the fractons

to be separated much more easily.



Appendix F

Fermi Statistics of Dipoles

In the main text, we have often considered the mobile dipoles of fractons to have fermionic

statistics. This is in contrast to some of the simplest lattice models for U(1) fractons [80, 265], in

which the dipoles are bosons. However, there is in principle nothing to prevent the dipoles from

being fermions. Indeed, some of the previously studied discrete fracton theories featured bound

states with fermionic statistics [74].

One can present field theoretic arguments which indicate that fermionic dipoles should be

realizable. Furthermore, these arguments will teach us how to go about constructing appropriate

lattice models. The primary argument arises from the recently studied “θ terms” which can appear

in the action for U(1) tensor gauge theories [272]. These terms have no effect on the gapless gauge

mode, but can alter the particle structure of the theory. A θ term will attach electric charge to

the magnetic monopoles of the theory. This charge attachment can result in the transmutation of

statistics, since electric and magnetic charges pick up phases when moved around each other. As an

example of this phenomenon, in Maxwell theory coupled to bosonic charges, adding an appropriate

θ term will leave the theory almost invariant, with the exception that the magnetic monopole

becomes a fermion [60, 296].

A similar θ term can be added to the scalar charge theory, which has the effect of attaching

dipoles to the magnetic monopoles of the theory (which are vector charges) [272]. The dipoles and

magnetic monopoles pick up phases when moved around each other, so this attachment procedure

can produce the same sort of statistical transformations as in conventional Maxwell theory. By
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adding an appropriate θ term, one can convert the dipoles into fermions. (In the discussion of

Ref. [272], it was always the monopoles which had their statistics changed. But the electric charge

can also have its statistics changed, simply by looking at the problem from the dual perspective.)

At the field theory level, one can conclusively formulate a theory with fermionic dipoles. As

mentioned earlier, there has yet to be a concrete lattice model written down with such particles, but

the field theory perspective gives an important clue. The θ term in a gauge theory will naturally

appear when the charges enter a symmetry protected topological (SPT) phase, protected by time-

reversal [60]. In this specific case, the statistics of the dipoles will be transmuted by placing the

magnetic vector charges into a bosonic topological insulator phase. By tweaking the dynamics of

the “plain-vanilla” lattice models [80, 265], one can drive the monopoles into such a topological

insulator state, with the result that the dipoles become fermions.

As an alternative strategy to get fermionic dipoles, one could also consider adapting the

strategy of Reference [297]. In conventional Maxwell theory, the ground state wavefunction is

written in terms of closed string configurations (i.e. a loop gas), and the charges of the gauge field

correspond to the endpoints of open strings. In order to modify the statistics of these charges, one

can thicken the strings into ribbons. By giving the wavefunction an appropriate sign structure,

picking up negative signs for each twist of a ribbon, one can thereby change the charges from

bosons to fermions [297]. A similar strategy will likely work for the case of dipoles. By adding

extra internal structure to the models, along with an appropriate sign structure, one should be able

to turn the dipoles into fermions. Explicitly constructing such a “ribbon”-like wavefunction is left

as a task for future work.



Appendix G

Details on Vector Chern-Simons Theories

For completeness, here we review some of the established facts regrading Chern-Simons the-

ories of vector gauge fields before calculating the properties of higher rank Chern-Simons gauge

theories.

G.1 Level Quantization

In order to establish the quantization of the level k of the Chern-Simons term (5.30), we

consider the thermal partition function

Z[Aµ] = eiSCS [Aµ], (G.1)

by taking time to be Euclidean S1, parametrized by τ ≡ τ +β, where β is the inverse temperature.

As mentioned earlier, the action (5.30) is invariant under Aµ → Aµ + ∂µα. Let us consider a large

gauge transformation which winds around the circle, with α = 2πτ/β, under which the temporal

part of the gauge field gets shifted by a constant,

A0 → A0 +
2π

β
. (G.2)

Furthermore, we now imagine placing the system on a sphere and placing a magnetic monopole

inside the sphere (equivalently, threading a background magnetic flux through the sphere), given

by ∫
S2

εij∂iAj = 2π, (G.3)
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which is the minimum flux allowed by the Dirac quantization condition. Evaluating the Chern-

Simons action (5.30) in such a configuration, and with constant A0 = a, we find that

SCS =
k

2π

∫
d3x a

(
εij∂iAj

)
= kaβ. (G.4)

Hence, under a gauge transformation of the form (G.2), the action transforms as

SCS → SCS + 2πk, (G.5)

and in order for the partition function Z[Aµ] to remain gauge invariant, we require that k is

quantized to be an integer, k ∈ Z.

G.2 Ground State Degeneracy on a Torus

Let us consider the Chern-Simons action for the statistical gauge field a

SCS =
m

4π

∫
d3x εµνλau∂νaλ. (G.6)

The equation of motion for the temporal component a0 (or Gauss’ Law) is

εij∂iaj = 0. (G.7)

We now imagine placing this theory on a torus T2 = S1 × S1, with the radii of the two circles R1

and R2. On the torus, we can solve the constraint (G.7) by setting

ai =
ãi
Ri

+ ∂iΛ, (G.8)

where Λ is periodic on the torus and ãi is spatially constant. Inserting these solutions into the

action (G.6), we find that it reduces to

SCS =
m

4π

∫
dt εij ˙̃aiãj , (G.9)

which identifies ãi as the physical degrees of freedom. The canonical commutation relations follow

directly from this action,

[ã1, ã2] =
2πi

m
, (G.10)
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and since the operators ãi are compact, we need to instead consider the algebra of the corresponding

gauge-invariant Wilson loop operators,

Wi = exp

(
i

∮
γi

dxj ãj

)
, (G.11)

where γi are the two non-contractible loops on the torus. The commutation relations of ã imply

the algebra

W1W2 = e2πi/mW2W1, (G.12)

the smallest representation of which has dimension m,

W1 |n〉 = e2πin/m |n〉 , W2 |n〉 = |n+ 1〉 . (G.13)

Thus, the ground state degeneracy of the Chern-Simons action (G.6) on a torus is m.

G.3 Edge Modes of Chern-Simons Theories

Let us consider the Chern-Simons action (5.36) which describes the FQHE state at filling

fraction ν = 1/m,

SCS =
m

4π

∫
d3x εµνλaµ∂νλ. (G.14)

In order to study the edge excitations of this system, we imagine placing it on a semi-infinite plane

with a boundary at y = 0 such that the quantum Hall fluid lives at y < 0 with vacuum at y > 0.

Under a gauge transformation aµ → aµ + ∂µα, the action transforms as

SCS → SCS +
m

4π

∫
y=0

dxdt α (∂tax − ∂xat) , (G.15)

i.e., it is gauge-invariant only up to a surface term. Thus, we require additional degrees of freedom

living at the edge in order to have a fully gauge-invariant theory.

In order to deduce these additional degrees of freedom, we consider the variation of the

action (5.36) in the presence of a boundary,

δSCS =
m

4π

∫
d3x εµνλ (δaµfνλ + ∂µ (aνδaλ)) , (G.16)
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where fµν = ∂µaν − ∂νaµ. Thus, we see that minimizing the action leads to the required equation

of motion fνλ = 0 (equivalently, the zero flux condition) only if we can set the second term to zero.

We can achieve this by setting at = 0 at the boundary y = 0.

Now, in order to derive the action for the boundary degrees of freedom, we extend this

boundary condition into the bulk i.e., we fix the gauge at = 0 in the bulk. Then, the constraint

imposed by the gauge-fixing condition remains

εij∂iaj = 0, (G.17)

which is solved in terms of a compact scalar field ϕ by taking ai = ∂iϕ. Inserting this into the

action SCS , with at = 0, we obtain the edge action

SCS =

∫
y=0

dxdt ∂tϕ∂xϕ. (G.18)

This is, however, not the most general action we could write down at the edge since we can

add energetic terms which respect the shift symmetry ϕ→ ϕ+ constant. A mass term ∼ ϕ2 term

is prohibited (even in the absence of U(1) symmetry) since the field ϕ is non-local, as evidenced by

the commutation relation

[ϕ(x), ϕ(x′)] =
iπ

m
sgn(x− x′). (G.19)

Including the lowest order spatial derivatives, we find the general edge action for a chiral Chern-

Simons theory

Sedge =

∫
y=0

dxdt (∂tϕ∂xϕ− v∂xϕ∂xϕ) , (G.20)

where v is a non-universal velocity which depends on the microscopic details of the edge. The

equation of motion satisfied by ϕ is

∂t∂xϕ− v∂x∂xϕ = 0. (G.21)

Re-stated in terms of the field ρ = 1/(2π)∂xϕ,

(∂t − v∂x)ρ = 0, (G.22)
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we find the equation governing a chiral density wave propagating along the boundary with velocity

v. By coupling the action SCS, one can show that ρ is indeed the charge density along the edge

and that the operator describing electrons at the boundary is

Ψ =: eimϕ : (G.23)

where the colons denote normal ordering. We refer the reader to the excellent reviews [23, 147] for

a more comprehensive discussion of these boundary CFTs.



Appendix H

Details on Generalized Chern-Simons Theories

Here, we derive some of the technical details regarding higher rank U(1) Chern-Simons the-

ories described by a traceless symmetric rank 2 tensor. The action for such a theory is

SgCS [Ãij , φ] = − θ

4π2

∫
d3xφεbi∂i∂jÃ

j
b +

θ

8π2

∫
d3x εbi ˙̃AijÃ

j
b . (H.1)

A remark regarding the dimensions of these fields: in units where ~ = c = 1, Ãij has the same

units as those of a vector gauge field Ai,

[Ãij ] = [Ai] = L−1, (H.2)

where L denotes length. However, while the temporal component of a vector gauge field also has

dimensions L−1, the Lagrange multiplier field φ has dimension

[φ] = L0. (H.3)

Since under a gauge transformation φ transforms as φ → φ + α̇, this implies that the gauge

parameter α has dimensions of length,

[α] = L1, (H.4)

consistent with the gauge transformation and dimension of Ãij .

H.1 Quantization of θ

Recall that the magnetic flux vector Bj = εib∂iÃ
j
b in the higher rank theory (5.58) is one-

dimensional, moving only transversely i.e., on a square lattice, Bx may only move in the y-direction.
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If we now place the system on a sphere, we can imagine threading a flux through this sphere. The

minimum such flux allowed by the Dirac quantization condition is∫
S2

Bj = 2πx̂j , (H.5)

where x̂j simply reflects the vector nature of the magnetic flux in this theory.

Generalizing the discussion of level quantization in Appendix G.1, we consider the thermal

partition function

ZgCS [Ãij , φ] = eiSgCS [Ãij ,φ] (H.6)

by taking time to be Euclidean S1, parametrized by τ ≡ τ +β, where β is the inverse temperature.

As established earlier, the theory (5.58) is invariant under the gauge transformation φ → φ + α̇.

Since the field φ acts as a Lagrange multiplier and has no dynamics of its own, its role in the theory

is analogous to that of A0, the temporal component of a vector gauge field. However, as mentioned

earlier, φ is dimensionless and we should instead consider a transformation of ∂iφ, which has the

same dimensions as A0: [∂iφ] = L−1. We hence consider a large gauge transformation

α(~x, t) =
2πτ

β
(x1 + x2), (H.7)

under which ∂iφ transforms as

∂iφ→ ∂iφ+
2π

β
x̂i. (H.8)

Evaluating the generalized Chern-Simons action (5.58) on a configuration specified by the flux

threading condition (H.5) and with constant ∂iφ = Φx̂i, we find

SgCS = − θ

4π2
Φx̂j

∫
Bj = − θ

2π
Φβ. (H.9)

Under the large gauge transformation specified by Eq. (H.8), the action shifts by a constant

SgCS → SgCS − θ, (H.10)

and hence, in order for the partition function to be gauge-invariant, the coefficient θ must be

quantized in units of 2π,

θ = 2πk, k ∈ Z. (H.11)
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H.2 Ground State Degeneracy

The generalized Chern-Simons action for an emergent FQH state of dipoles at filling fraction

ν = 1/m is

SgCS = −m
2π

∫
d3xχ εbi∂i∂ja

j
b +

m

4π

∫
d3x εibȧija

j
b , (H.12)

where aij is a traceless symmetric tensor. On a closed manifold, SgCS is gauge-invariant under

aij → aij +

(
∂i∂j −

1

2
δijδ

2

)
α, χ→ χ+ α̇, (H.13)

for arbitrary gauge parameter α(~x, t). The Gauss’ law constraint for this theory, enforced by the

Lagrange multiplies field χ, is

−m
2π
εbi∂i∂ja

j
b = 0. (H.14)

We note that the two independent components of aij are combined into one canonically conjugate

pair, with commutation relations

[axx(~x), axy(~x
′)] = − iπ

m
δ(~x− ~x′). (H.15)

Due to the Gauss’ law constraint on aij , the theory is fully constrained and there are no local

degrees of freedom.

We now imagine placing this system on a torus T2 = S1×S1, with the radii of the two circles

R1 and R2. On an R1 × R2 torus, we can satisfy the Gauss’ law constraint (H.14) by setting the

two conjugate variables to

axx = −ayy =
a(t)

R1R2
+

1

2
(∂2
x − ∂2

y)Λ, axy = ayx = ã(t) + ∂x∂yΛ, (H.16)

where Λ(~x, t) is an arbitrary continuous, periodic function on the torus. Note that a and ã only

describe the topological contribution to the action, since we have separated them from the gauge-

redundant part Λ. Inserting these solutions into the action (H.12), we find

SgCS =
m

π

∫
dt ȧ(t)ã(t). (H.17)

This theory has a ground state degeneracy [273, 298]

GSD = 2m. (H.18)


