Supporting Resource Discovery
Among Public Internet Archives
Using a Spectrum of Information Quality!

Michael F. Schwartz
Darren R. Hardy
William K. Heinzman
Glenn C. Hirschowitz

CU-CS-487-90 September 1990

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309-0430
(303) 492-7514

Abstract

Wide area networks offer access to an increasing number and variety of resources, such as documents,
software, data, network services, and people. Yet, it is difficult to locate resources of interest, because of the
scale and decentralized nature of the environment. We are interested in supporting a global confederation of
loosely cooperating systems and users that share far more resources than can be completely organized. There-
fore, mechanisms are needed to support incremental organization of the resources, based on the efforts of many
geographically decentralized individuals, and a range of different information sources of varying degrees of
quality. In this paper we describe a prototype implementation of a set of mechanisms intended to explore this
problem in the specific domain of public Internet archives, accessible via the "anonymous" File Transfer Proto-
col. This is an interesting test case, because it encompasses a very large scale, administratively decentralized
collection of resources, with considerable practical value. The resource discovery paradigm is exploratory in
nature, with users contributing to the global resource space organization as they discover new resources. At
present, three levels of information quality are supported. At the highest level, resources are described using an
archive-site-resident database, with individual resources described according to their conceptual roles. Below
that, per-user and per-user-site caches are maintained, to record resources that have been found by individual
users during their explorations. At the lowest level, the system monitors announcements of public archive avai-
lability from USENET electronic bulletin board articles, to provide a simple keyword-based index of resources
throughout the global network.

1 ¥This material is based upon work supported in part by NSF cooperative agreement DCR-8420944, and by a grant from AT&T Bell La-
boratories.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE

FOUNDATION

1. Introduction

The past five years have witnessed tremendous growth in the TCP/IP Internet, primarily through the highly
successful deployment of the NSFNet backbone, and through growth in regional networks. Interconnecting
academic, industrial, and government institutions, the Internet offers the potential for tremendous interorganiza-
tional sharing of resources, such as documents, software, data, network services, and people. Yet, to date this
sharing has been rather limited, consisting primarily of "arms-length" communication via electronic mail.2 A
relatively small amount of remote login and file transfer activity also takes place. However, because these forms
of sharing usually require that permissions be arranged explicitly for each individual through human-
administrative means, these more sophisticated sharing pattems are fairly restricted.

An interesting exception to these restrictions is the so-called "anonymous" File Transfer Protocol (FTP)
[Postel & Reynolds 1985]. FIP is an Internet standard protocol that supports transfering files between intercon-
nected hosts. Anonymous FTP is a convention for allowing Internet users to transfer files to and from machines
on which they do not have accounts, for example to support distribution of public domain software. The primary
means of securing systems that permit anonymous FTP is by limiting the domain of accessible file names, by
setting the name tree root of the logged-in FTP process to a limited subtree that does not contain sensitive files.
Most anonymous FTP sites support read-only access to a set of files placed in a public directory by a system
administrator. Some sites allow read-write access.

An enormous quantity and variety of resources are available through anonymous FTP. A single site can
offer the user many megabytes of resources. Most resources are ASCII files representing software, technical
reports, documentation, archived messages from interest group mailing lists, and databases. Binary-format exe-
cutable files for specific common architectures are also available,

Unfortunately, it is difficult to locate resources of interest using anonymous FTP, because of the scale and
decentralized nature of the environment. The available resources reside on tens of thousands of machines
around the world, and there is neither a uniform convention for the organization of these resources, nor a global
directory of the resources available through anonymous FTP. Given the decentralized administration of the
Intemet, this problem will become more pronounced with continued growth of the Internet.

In this paper we present an approach to this instance of the resource discovery problem, and discuss a proto-
type implementation of the approach. We do not address the problem of determining how to use resources once
they have been located, although that problem falls within the purview of the larger Networked Resource
Discovery Project, within which this work took place [Schwartz 1989].

The prototype we discuss is described in the context of a UNIX implementation, although there is nothing that
keeps the tools from interoperating with other types of systems. Indeed, the underlying FTP protocol accommo-
dates heterogeneity through the use of a standard set of commands and error return interface, and by automati-
cally translating between a small number of common file data representations.

There are a range of reasons why people provide anonymous FIP archive sites, and these reasons have
implications on resource discovery. Researchers use anonymous FTP to enhance rapid dissemination of their
results, via software prototypes and technical papers. Corporations use anonymous FTP to provide software
enhancements and general customer support. Network Information Centers and other institutions involved with
network administration use anonymous FTP to improve the network infrastructure (e.g., providing software
modifications to fix security problems, or network protocol enhancements to reduce network congestion).
Interestingly, some sites (such as wsmr-simte]20.army.mil) do not directly benefit from providing anonymous
FTP archives. Instead, individuals at those sites provide anonymous FTP out of a cooperative spirit. Given that
the administrators of these sites are already performing a public service, any solution to organizing the accessi-
ble resources must not require a great deal of effort on the part on site administrators.

2 Here we consider the number of users, rather than network traffic. File transfer currently generates the most network traffic [Horvath
1990].

1.1. Current Anonymous FTP Resource Discovery Paradigm

Currently, resources available via anonymous FTP are made known primarily through "postings" on various
USENET electronic bulletin boards [Quarterman & Hoskins 1986], announcing the availability of information
on a particular host. To gauge the volume of the announcements and scope of the public archive resource
discovery problem, we scanned the contents of the news spool files at the University of Colorado on February
15, 1990, using a partially automated set of program scripts. This snapshot revealed that among 549 newsgroups
received, there were 36,739 messages, consuming 96.5 megabytes of space. Within these messages were 214
different messages announcing the availability of some resource via anonymous FIP, in 89 different news-
groups. 98% of the news articles scanned were 2 months old or less.

These measurements indicate that even during a short period of time, a large number of resources were
announced. Yet, because of the the high volume of news, relevant information is difficult to find. Moreover,
because incoming news files are regularly deleted out of system spool directories as they age, these announce-
ments are short-lived. Furthermore, because no standards exist for the description of archive sites, providing a
high-quality directory of available resources is not easily amenable to automation.

In addition to these problems of scale, anonymous FTP users are also presented with a low level means to
interact with archive sites. The typical paradigm involves logging in to a machine and performing a series of
directory listing and directory change commands, in search of relevant resources. Searching for a specific file
object can cause users to spend a large amount of time logging on and off remote machines and browsing
through the directories. Because of this, many sites provide a top-level "README" file that describes pertinent
information about the site’s contents, organization, and access policies. Another common file is "Is-IR"3 or
"INDEX", containing a recursive listing of the files at that archive site, which the user may retrieve and browse
locally.

1.2. Our Approach

Three premises guide the work reported in this paper. First, we believe that supporting sharing among a glo-
bal confederation of loosely cooperating systems and users implies the existence of far more resources than can
be completely organized. Therefore, mechanisms are needed to support incremental organization of the
resources, based on the efforts of many geographically distributed individuals. Our second premise is that some
resources are more valuable than others, and hence will merit more effort to organize. For this reason, a range
of mechanisms are needed to organize resources and support resource discovery to varying degrees of quality, in
accordance with the perceived value of the resources. Ideally, unpopular or relatively unimportant resources
will still be locatable at greater expense, and resource importance can evolve over time. This assumption differs
from the approach used in one of our earlier efforts, which biased resource discovery as a function of the size of
a resource class, and its popularity within some neighborhood of users [Schwartz 1990]. Our third premise is
that it is difficult to reach global agreement over information sources and formats, and hence that a number of
different types of resource information sources should be accommodated.

Our approach involves an exploratory paradigm, whereby users initially try to locate high quality informa-
tion about a resource, and progress to successively poorer quality information sources. Using poor quality infor-
mation means that users will need to follow system-provided hints and apply human judgement to determine the
best means for searching. During their exploration, users may choose to supply new information, to enhance
resource discovery for resources of particular interest for future users.

While the general model involves an arbitrary number of different information sources of varying quality,
our prototype supports three particular levels. At the lowest level, the system monitors announcements of public
archive availability from USENET electronic bulletin board articles, to provide a simple keyword-based index of
resources throughout the global network., The information at this level is collected using a set of heuristics
intended to capture potentially useful hints for a broadly distributed range of sites. As users search through
anonymous FTP sites, the system maintains two caches, to ease the task of finding one’s way back to resources
that were once visited. These caches represent the next higher level of information quality in our prototype.

3 so-named because of the UNix "Is -IR" command that performs a recursive directory listing, listing files in a long format that includes
sizes, update times, etc.

-3.

The first cache retains pointers to the directory names that were visited during searches. This cache is shared by
all users at a site, and could be made available by anonymous FTP to users at other sites. The second cache
allows users to maintain pointers to particular resources using explicit "mark" requests, for personal future refer-
ence. At the highest level of information quality, resources are catalogued using an archive-site-resident data-
base, with individual resources described according to their conceptual roles. The tool that supports this level
supports a manual means to generate the catalogue, as well as an automated (but less discerning) means to gen-
erate the catalogue, to reduce the human effort needed for this process.

Currently, the parts of the prototype are not integrated into a unified system, but instead exist as a set of tools
to support the mechanisms we describe. We intend to integrate the tools in the near future.

The remainder of this paper is organized as follows. In Section 2 we discuss related work. In Section 3 we
overview the highest level of information quality supported, namely, the archive-site-resident conceptual data-
base. In Section 4 we overview the next lower levels of information quality supported, namely the per-user and
per-user-site caches. In Section 5 we overview the lowest levels of information quality supported, namely, the
monitored USENET articles. In Section 6 we discuss some issues raised by our prototype implementation, con-
cerning proper Internet protocol support for resource discovery. Finally, in Section 7 we offer our conclusions,
and discuss future work.

2. Related Work

Several mechanisms currently address the resource discovery problem among Internet public archives.
Announcement condensing services filter the contents of various bulletin board articles, summarizing or provid-
ing pointers to other source material. One example is the "comp.archives” USENET news group, maintained by
a moderator who uses a set of program scripts to partially automate skimming through incoming articles, to find
messages of particular interest to other users [Vielmetti 1990]. One particularly relevant message is posted on
this news group monthly, describing the contents of various anonymous FTP sites. The list is provided by an
individual who collects the information both personally and from the contributions of other people around the
Intemet [Granrose 1990]. As of this writing the list contained 665 different hosts in 408 different administrative
domains, listing information about 1164 different topics. While significant, this list clearly only represents a
small proportion of available resources, considering the measurements of Section 1.1.

"Clarinet" is a commercial service that provides newsgroups with structure like those of USENET, but with
higher quality information (since it is controlled by a set of human editors), for a fee [Robinson 1990]. Com-
puServe provides a similar information service [CompuServe 1986], although Clarinet delivers its information to
the user’s machine, rather than requiring users to dial in to retrieve information.

Some sites (such as rodan.acs.syr.edu) maintain periodically updated listings of the directory names at vari-
ous Internet archive sites, which can be retrieved by anonymous FTP and browsed locally by a text search pro-
gram. The file name listings we observed encompass no more than a few dozen archive sites.

Other work on this problem includes archive sites that collect information related to specific interests, and
post periodic announcements of the existence of the sites to various electronic bulletin boards. Examples
include archives related to operating systems research (comp.os.research), telecommunications issues
(comp.dcom.telecom), and MacIntosh software (comp.sources.mac).

‘While helpful, none of these mechanisms really solves the public archive resource discovery problem. Most
of the mechanisms involve a good deal of centralized manual human effort, usually in the form of coordination
centralized fashion by a human moderator. Such centralization slows progress and limits the perspective of the
directory. Moreover, maintaining centralized directories does not scale well in the size of the network. Those
mechanisms that do not involve manual human effort (such as the sites that retrieve directory listings of other
archive sites) do not supply any conceptual meaning above and beyond the basic textual strings they provide.
Most importantly, no attempt is made in any of these mechanisms to provide a general-purpose architecture in
support of administratively decentralized resource sharing. In essence, while helpful, these mechanisms are only
stop-gaps to a growing problem of the administratively decentralized organization of the Internet,

The more general problem of supporting shared information spaces has received considerable research atten-
tion. Schatz’s Telesophy system uses hypertext technology to provide access to information shared by a com-
munity [Schatz & Caplinger 1989], albeit of considerably smaller scale than the collection of resources available

globally through anonymous FTP. Whiteboards are an example of a still smaller shared information space
[Donahue & Widom 1986]. A number of recent efforts have been devoted to the problems of supporting access
to a digital library systems, intended to provide access to a range of documents [Arms 1989, Kahn & Cerf
1988].

3. Information Quality Level 1: Archive-Site-Resident
Databases

The top level of information quality is oriented towards sites that are willing to put a reasonable level of
effort into organizing their contents. The tool that supports this level of information quality is called afiptool.
Aftptool plays a dual role, providing the site administrator a means of documenting resources, and supporting
users in discovering resources.

3.1. Site Administrator Support for Organizing Resources

To assist the site administrator in organizing the files in an archive, aftptool provides a database to maintain
high-level conceptual descriptions of the resources, and a keyword-based index of the resources. Because the
information is stored in a database, more complex queries can be issued than are supported by the typical "Is-IR"
and "README" files found at many anonymous FTP sites. Descriptions may be associated with individual files
or with groups of files. For example, many resources are application source code. In this case, a logical group-
ing within a subdirectory is a realistic request, presumably users will want to retrieve all of the source files. The
archive site administrator then only needs to document the subdirectory, rather than each individual file.

Aftptool uses "gdbm", the GNU database package, to hold archive site databases. An example of the con-
tents of one such database is shown in Figure 1. The fields in each record contain file names, path names, the
FTP command needed to cause the file transfer, a description of the resource, and keywords describing the
TeSOource.

%A [pub/X/contrib

%B andrew

%C get andrew

%D Andrew -- X windows interface prototyping tool, from Carnegie Mellon University.
%K user interface source code cmu tool prototype X windows browse

Figure 1: Example Aftptool Site Archive Database Contents

Although aftptool allows a site administrator to enter information into the pertinent fields in the site archive
database, doing so can be human labor intensive. Therefore, an automatic mode of database creation is also pro-
vided. In this mode, aftptool generates a default set of keys based on the path names in the archive, excluding
the leaf nodes of each path name. For example, the file "pub/os/sun/tools/dd1.c" would generate the keys "pub”,
"o0s", "sun", and "tools". The leaf path name nodes are not used because these names usually do not impart
much additional meaning, beyond the context of their full paths. The description generated in automatic mode
consists of the final directory name of the data ("tools" in the above example).

Clearly, automatic mode generates less meaningful database entries for the resources. It cannot generate
truly conceptual descriptions of the resources. Moreover, automatic mode can generate a large number of keys
(often ten times as many as would be entered manually), , and can miss some relevant keys (as in the case, for
example, where a software distribution is "bundled" into a single "tar file", whose name is excluded as described
above). Another problem with automatic key generation is that no distinction is made between logical groupings
of files in a subdirectory vs. individual files, since there is no easy way to decide automatically whether a set of
files in a directory are related, or just happen to reside in the same directory.

-5-

Because of these problems, the most appropriate use for automatic mode is to generate a basic set of infor-
mation about a set of resources, which is then modified and improved by the site administrator. The site
administrator can manually prune through and add keys after they are generated, and can add conceptual
descriptions at this time as well.

Regardless of whether the site administrator is building the database automatically or interactively, the first
step is to build a temporary file containing the results of a depth first recursive listing of the all the subdirectories
and their files, generated using the UNIX "Is -IR" command. This listing is then parsed into subdirectories and
their files. If aftptool is being run in automatic mode, the keys for every file in the subdirectory are built from
the path names as described above, and the title field is generated using the file name. If the data base is being
built in interactive mode, the site administrator is prompted for a title, short conceptual description, and key
words, either for each file individually, or for the subdirectory as a whole. Based on the response, aftptool adds
the FTP command to retrieve individual files or all the files in the subdirectory. For example, a subdirectory that
contains the source and include files for an application will be documented as a whole with the appropriate FTP
command to transfer all of the files (mget *). For a subdirectory containing RFCs, each file would be docu-
mented individually, again with the appropriate FTP command (get "filename"). An example site administration
session is illustrated in Figure 2.

Build Database Automatically (y/n)? n

Directory pub/X.V11R4/FIXES/contrib/andrew/ has 8 files.
1 patch.001.Z

2 patch.002.Z

3 patch.003.Z

4 patch.004.Z

5 patch.005.Z

6 patch.06a.Z

7 patch.06b.Z

8 vui.patch.Z

Catalog separately or together (s) or (t)? t

Enter Title: Patches for CMU’s andrew interface tool, for X11R4,
Enter key words separated by spaces, maximum of 255 characters.
>X X11R4 andrew source cmu UI Camegie Mellon University

Figure 2: Example of Anonymous FTP Site Administration Session

Comparing this representation of archive site contents to the structure of an anonymous FTP site directory
without the database indicates how aftptool improves resource discovery. FTP treats files as unstructured byte
streams, without any semantics. While descriptive file and path names help to some extent, the user of
anonymous FTP must first search through a hierarchical arrangement of these files before any meaning can be
discerned from a particular name. In contrast, aftptool allows humans to associate meaningful keywords with a
resource, so that it may be found without exploring a hierarchical file name tree. Moreover, aftptool allows one
to associate a conceptual description with each resource, so that its semantics may be discerned without first
retrieving and examining it.

3.2. User Support for Discovering Resources

Aftptool presents the user with a quick and easy way to discover the resources of an archive site. The user is
first prompted for the remote site name (aftptool does not provide support for locating known sites; that support
is provided by other parts of the prototype). Aftptool connects to the remote site, logs in as user "anonymous",
and retrieves the archive database. The user then uses aftptool to search the database locally, using keyword

-6-

queries. The user can also view all of the keywords in the database as a means of finding resources. This capa-
bility is particularly useful if the database was built in the automated fashion described in Section 3.1.

After discovering an interesting resource, the user can enter the choice of the resource to retrieve. When the
user has made a choice, aftptool uses the path name, file name, and command in the archive site database to
retrieve the resource. After each retrieval, aftptool returns to the root of the anonymous FTP site, ready to
retrieve the next resource(s). From the user’s point of view, the location of the file and the details of navigating
through the archive site’s name tree are transparent. An example user search session is given in Figure 3.

Enter host to which you wish to connect: latour.colorado.edu
Do you want to browse (b) or keyword search (k)? k
Enter key: Xwindows

8 resources matched.

1 pub/X.V11R4/FIXES/contrib/XView/README

2 pub/X.V11R4/FIXES/contrib/Xcu/

3 pub/X.V11R4/FIXES/contrib/Xw/Xw.fix01

4 pub/X.V11R4/FIXES/contrib/gwm/

5 pub/X.V11R4/FIXES/contrib/kinput/

6 pub/X.V11R4/FIXES/contrib/winterp/patch-0

7 pub/X.V11R4/FIXES/contrib/xplaces/xplaces.fix03
8 pub/X.V11R4/FIXES/mit/

Choose an item for description (c), or quit keyword search mode (q)? ¢
Enter number of item: 6

The title of the resource is "Patches for winterp for version R4".
Retrieve this resource (r) or continue (c)? r

Resource will be placed in the directory /piper/student/heinzman

Figure 3: Example Resource Discovery Session Using Aftptool

3.3. Discussion

Aftptool addresses three basic resource discovery problems. First, it enriches the organizational structure of
the archive site, by using a database to describe resources held there, and by encouraging site administrators to
construct conceptual descriptions of the resources at their sites. Second, because building a database describing
the resources can be labor intensive, aftptool provides support for automating the process. Finally, aftptool
reduces the burden of retrieving files, by hiding the mechanical details of this process. The user simply requests
a resource (which may involve many files on a remote machine), and aftptool automatically contects to the
remote machine, moves to the appropriate directory, and retrieves the needed files.

There are several benefits of using a database for organizing resources available through anonymous FTP.
First, the database can support more sophisticated operations than are typically available when searching through
"Is-IR" files, such as searches on logical combinations of keywords. Second, once the database has been
retrieved, the user will perceive little network latency. Given that future networks will offer significantly
increased bandwidth but only moderately reduced latency, retrieving the database and searching it locally is
worthwhile. For networks links that have relatively low bandwidth, a future resource discovery protocol could
support running the database access program at the remote site. Doing so would require less bandwidth than the
typical means of searching for files now, using a series of "Is" and "cd" commands.

While aftptool eases the problem of resource discovery at a particular site, it does not address global resource
discovery over many AFTP sites. A clear future improvement will be to incorporate the ability to merge multi-
ple archive site databases into a database at a user’s own site, or at a known anonymous FTP site.

.

The source code for aftptool consists of 840 lines of C. In addition, some minor modifications were made to
the FTP client code, which is nearly 7000 lines long. Gdbm adds another 4200 lines of C code.

4. Information Quality Level 2: Per-User and Per-User-
Site Caches

The goal of the second level of information quality is to build a guide to the resources available via
anonymous FTP as users explore these resources. The hope is that if a sufficient number of people participate in
network exploration, a fairly complete "map" of the archive sites can be quickly compiled. Furthermore, since
many anonymous FTP sites will not assist in cataloging their resources, there must be local support for resource
discovery. A good way to fulfill these requirements is to cache information as it is discovered, during the course
of the usual anonymous FTP searching paradigm of repeated directory listing and directory change commands.
As usual with caching, this technique will work well if there is some locality of access to the data. In the present
case, caching information about public archive contents will work well to the extent that users that share a cache
have similar resource interests. The exact nature of the caches we support will be outlined shortly.

To implement this idea, we modified the standard FTP client program to support caching. We call this pro-
gram dftpcache. To make the cached information most useful, aftpcache divides the information into categories
through the use of keywords. For example, if users on a system are interested in UNIX source code and UNIx
applications, they can divide their cache into two categories, which aftpcache uses to divide cached data, show-
ing the host names and subdirectories where relevant located information has been found:

UNIX-src
/pub/UNIX/device_drivers@machineA.domain.name
/pub/source/UNIX/berkeley_4.2@machineB.domain.name

UNIX-app
JUNIX/applications/text_editors@machineC.domain.name
/pub/code/UNIX/games@machineD.domain.name

As was done in the top level of information quality (aftptool), only directory names are cached, rather than leaf
file names.

In our initial approach, aftpcache retrieved a recursive directory listing of each anonymous FTP site probed
by the user. Directory listings were retrieved after the user had disconnected from all sites, to minimize notice-
able effects of bandwidth limitations during the interactive session. After retrieving this information, this ver-
sion of aftpcache would extract the directory names from the listing, and cache directory names whose final
components exactly matched a pre-selected list of category names. An aliasing facility was also provided, to
group related resources under a common category title. For example, a UNIX source code category might have
looked something like:

UNIX/UNIX-src/srcs/source/sources
/pub/UNIX@machineA.domain.name
/pub/general/code/UNIX@machineB.domain.name
/binfop_systems/src@machine C.domain.name

The drawbacks to this method became clear fairly quickly. If an anonymous FTP directory contained
resources pertaining to a particular category but its name did not exactly match any of the aliases, it was not
entered into the cache. We tried defining a "default" cache category to hold directory names that did not fit any-
where else in the cache, but this category filled up quickly, containing so much unstructured information that it
was of little use. Moreover, the amount of information retrieved by recursive directory listings could be unac-
ceptably large, often exceeding a megabyte per archive site. Leaf file names account for much of the informa-
tion retrieved in this manner, yet we do not cache leaf file names anyway. Hence, this method was deemed too
wasteful of network bandwidth and cache space on the local disk.

At this point, we came to the conclusion that aftpcache was trying to satisfy two different goals. The first
goal is to assist users in discovering what resources are available. The second goal is to assist users in resource

-8-

management, or keeping track of interesting resources that they have previously found (a problem some refer to
as information retrieval [Fischer & Stevens 1990]). Essentially, the problem with our initial caching mechanism
was that it tried to address both goals with a single cache. Therefore, we modified aftpcache to use two separate
caches, with two separate cache management policies. Furthermore, we modified aftpcache so that it did not
retrieve and cache entire recursive directory listings of probed sites.

4.1. Resource Discovery Cache

The resource discovery cache is shared by all users at a particular site (such as a department or a company).
Users of aftpcache therefore get the benefits of seeing the cached explorations of previous users, and their
explorations are recorded for future users. Resources are organized by their directory names as before, but now
the category names simply reflect the machine on which the directories can be found.

The caching policy used for the resource discovery cache is to save information in response to the movement
of the user through the remote site. In other words, the only directories that are cached are those into which the
user explicitly requests aftpcache to move. The motivation for this change is the assumption that users will only
visit directories that contain resources of interest to them, and that these directories will likely be of interest to
future users at their site. This change drastically reduces the storage requirements of aftpcache over caching
entire recursive directory listings.

The possibility exists, of course, that something very useful to another user might get skipped over by this
policy. Yet, we prefer missing some resources over having aftpcache guess what is valuable or, worse yet,
retrieve all of the available information and make the user sift through it. Thus, even if a user locates nothing on
a remote site that is of interest to someone else, a second user at least has the machine’s name and can can chose
to investigate that site. Moreover, the discovered information accumulates over time, so that if the second user
moves to a different part of this archive site’s name tree, the discovered directories will be added to those found
by the first user, thereby offering future users the sum of their explorations.

A second reason why the cache size remains reasonable is that the data storage technique is more intelligent
than that used by the first stage prototype. Originally, a directory was stored by its full path name. Thus, if
aftpcache added two sibling subdirectories, the cache might contain something like:

UNIX-src/UNIX-app
/pub/code/UNIX-src@machine A.domain.name
/pub/code/UNIX-app@machineA.domain.name

In this case, the directory names and the archive site names are repeated. With the new mechanism, the full
resource name is stored only once. Aftpcache maintains the full tree structure by storing a directory tree’s level
and relative tree location along with its name. Thus the previous example becomes:

machineA.domain.name
/ Flpub F2code FAUNIX-src N3UNIX-app

pub is the (F) first child of / and it is on level 1.

code is the (F) first child of pub and itis on level 2.

UNIX-src is the (F) first child of code and it is on level 3.
UNIX-app is the (N) next sibling of UNIX-src and it is on level 3.

For this small example, a 42% reduction in space (62 vs. 36 bytes) was realized, excluding category names. Of
course, this encoding is transparent to the user.

4.2. Resource Management Cache

A separate resource management cache is provided per user, and is maintained on the user’s local host. As
with the first prototype, the unit of storage is the directory name, with the anonymous FIP site attached. How-
ever, with the resource management cache, users must explicitly declare that they wish to save a pointer to the
directory, using a simple mark primitive. When a user requests that a directory be marked, aftpcache prompts
for a category under which to store it in the resource management cache. If the category already exists, the

-9.

directory is appended to its list of directories. Otherwise, a new category is created, and the directory name is
entered as the first member. Furthermore, we modified the matching algorithm so that category names no longer
need to match the resource names within them. Category names can then reflect logical organization.

To allow the user to better manage this cache, aftpcache has a category manager that allows users to add,
delete, and merge categories. Using this cache manager, the user may adapt the cache to suit his/her changing
notion of how resources are related to one another throughout the Internet, independent of how directories are
named differently across Intemet sites.

4.3. Example Session

Figure 4 shows an example session of using aftpcache. When first issuing the browse command, the user is
placed at the top level of the resource management cache, and the categories are listed. In this particular cache,
there are only two categories: graphics and example. The user chooses the example category, and aftpcache
then lists the member directories of this category. There is only one member directory, which the user selects.
Aftpcache then logs the user into the hosts that holds that resource. The user then disconnects and begins to
browse the resource discovery cache, which holds information that has been explored on particular hosts. There
are only two hosts listed. The user then requests that aftpcache display the directories contained for the second
anonymous FTP site.

ftp> browse

0: graphics

1: example

(D)isplay ALIASES (N)ext screen (Q)uit (S)can HOST CACHE or number of ALIAS? 1
0: /cisco/test@spot.colorado.edu

(D)isplay ALIASES (N)ext screen (Q)uit (S)can HOST CACHE or number of ALIAS? 0
Connected to spot.colorado.edu.

220 spot.colorado.edu FTP server (Version 4.1 Sun Aug 7 19:42:25 EDT 1988) ready.
331 Guest login ok, send ident as password.

230 Guest login ok, access restrictions apply.

250 CWD command successful.

browse> pwd

257 "[ciscoftest" is current directory.

browse> close

221 Goodbye.

0: graphics

1: example

(D)isplay ALIASES (N)ext screen (Q)uit (S)can HOST CACHE or number of ALIAS? s
0: boulder.colorado.edu

1: spot.colorado.edu

(D)isplay HOSTS (N)ext screen (Q)uit or number of HOST? 0

/
3bl
TeX
X-seminars
X-toolkit
Xaw
usenet

(D)isplay HOSTS (N)ext screen (Q)uit or number of HOST? q

Figure 4: Example Aftpcache Session

-10-

Aftpcache involved modifying or adding approximately 400 lines of C code to the standard FTP client, as
well as interfacing this code with gdbm.

5. Information Quality Level 3: Monitored USENET Arti-
cles

The third level of information quality is oriented towards providing a simple means of finding even vaguely
relevant information about the broadest possible range of topics spanning as many archive sites as possible. We
have built a tool called aftpgather for this purpose. By using a number of simple heuristics to scan the unstruc-
tured information available in USENET articles, aftpgather generates a simple keyword-based index of potential
public archive sites. With this index users can then form conceptual ideas about the global network, and make
educated guesses as to which potential public archive might have the desired software. Regular expression
matching facilitates searches of this index, leading to a quick search of the global network based on little initial
information.

Aftpgather scans newly arrived USENET articles from a selected set of promising newsgroups (such as
comp.archives and comp.sources.wanted) once per week, looking for keywords such as "anonymous," "ftp," and
"archive". Generally, when people announce the availability of software, only one site or software package is
discussed. Therefore, for each article containing a possible archive site announcement, aftptool builds an index
that associates the keywords found in the article with the hostnames and Internet addresses found there. This
association allows any of the keywords to retrieve the host names and articles at lookup time. The list of key-
words, hostnames, IP addresses, and words found in lines containing keywords are saved as an additional infor-
mation section of each resource record. This information is helpful when searching the keyword-based index, as
it helps the user form ideas about not only what these potential public archive sites have to offer, but also other
hosts possibly holding related resources.

In generating the index, aftpgather applies a number of simple heuristics to help exclude irrelevant keywords,
that we devised through iterative experience. First, long articles are excluded from consideration, because they
tend to generate too many keywords, degrading the quality of the individual keywords. Second, if a line has too
many words or too few long words, it is omitted from the index, because lines containing a few long words more
often contain useful keywords. Third, words less than four characters long are excluded, since short words often
make poor keywords. Finally, if a word is found to be in a list of common words (such as "the", "and", etc.), it
is excluded.

Because the index associates all of the keywords extracted from an article with all of the hostnames and
Internet addresses found, an article that has a large number of unrelated keywords will degrade the quality of the
data because of the "crosstalk” between the keywords. Ironically, one place where this problem occurs is in arti-
cles listing public archive sites, such as the anonymous FIP site list discussed in Section 2. To reduce this prob-
lem, articles are saved and marked for later reference when they contain too many hostnames or IP addresses.
The site administrator or the user can look at the full article text to clarify the hints from the displayed informa-
tion.

The database collected by aftpgather can be searched either by host (using afiphost) or by keyword (using
afipkey). Figure 5 shows an example usage of each of these tools. First, a host name is given as a keyword.
This search results in showing the hints about the available software at that host. In the example, the database
shows that boulder.colorado.edu might have a resource called "mactivation". Furthermore, a human might infer
that this resource is software related to neural networks. Next, the user uses a keyword to find which host might
software related to that keyword. In this example, the user might infer that decwrl.dec.com has some technical
reports on virtual memory systems.

We considered making aftpgather retrieve directory listings from the sites it finds. We decided against doing
this because we considered it to be too expensive, and unlikely to yield much useful information. It seems more
reasonable to let users guide the searches, and save the discoveries in the per-user and per-user-site caches.

Aftpgather was implemented in C and PERL (the Practical Extraction and Report Language, an interpreted
language that supports many of the features of a full programming language and system call library [Wall
1989]), and used the GNU dbm library. The code totals about 2000 lines, two thirds of which were in C, and
one third of which were in PERL. PERL was effective in retrieving the USENET articles from the NNTP server

-11-

eclipse% aftphost boulder.colorado.edu
Host: boulder.colorado.edu

network, neural, original-subject, simulator, version
Additional information:

original-subject, simulator, version

Full Articles:
[latour/users/hardy/saved_articles/{327,342}

eclipse% aftpkey virtual
Key:
virtual
Hosts:
decwrl.dec.com

Additional information:

ang-90, wil-techreports@decwrl.dec.com

Full Articles:
Matour/users/hardy/saved_articles/{73,121,204,212}

Keys: 128.138.240.1, author, called, info, kranzdorf, mactivation, mactivation/27-aug-90, mike, net,

128.138.240.1, anonymous, archive-name, archive-site, author, available, boulder.colorado.edu,
called, from, info, kranzdorf, mactivation, mactivation/27-aug-90, mike, net, network, neural,

90/4, archive-name, archive-site, authors, available, file, help, line, memory, nelson, original-subject,
publication, reports, research, subject, system, title, virtual, western, with, word, wrl-techreports/27-

Figure 5: Example Usage of USENET Hint Lookup Tools

and quickly parsing them. Since PERL only supports standard UNIX dbm, C was used to interface with the GNU
dbm routines. After scanning approximately 1,000 articles, the database is approximately eight megabytes long.
Most of the size of this database is caused by gdbm’s data representation, plus some smaller inefficiencies in the
way our code stores data in the gdbm records. For example, currently an 11 megabyte gdbm file contains less
than 250,000 bytes of "real" information. Clearly, this is an area we will need to improve prototype in the near
future.

The use of heuristics for scanning USENET articles was inspired by our earlier work on a "white pages"
directory tool that locates electronic mail and postal address information about Internet users [Schwartz & Tsiri-
gotis 1990]. We call this technique exploiting application semantics, because it involves building an understand-
ing of the semantics of a particular application into the algorithms that support searches. The advantage of this
technique is that it permits resource discovery given simply structured information. This is advantageous in
heterogeneous, administratively decentralized environments, where global agreement is difficult to reach over
highly structured information formats. Our experience with the Internet white pages tool indicates that this tech-
nique is a powerful way to support resource discovery. Indeed, that tool is capable of locating information about
over 1.1 million users distributed across approximately 1,900 administrative domains around the Internet. More-
over, it has been our experience that the process of evolving the heuristics used by the technique of exploiting
application semantics leads to further insights about resource discovery.

6. Discussion

In this section we discuss conceptual problems with anonymous FTP’s support for global sharing, and sug-
gest aspects of a future Internet protocol that might better support the needed functionality.

-12-

‘While the prototype tools we have built help with the resource discovery problem, they also underscore ways
in which a more powerful sharing paradigm could be achieved, given a more suitable protocol than anonymous
FTP. In this section we discuss some of the conceptual shortcomings of anonymous FTP, as regards global shar-
ing.

The clearest problem with using anonymous FTP for supporting global sharing is the fact that FTP was
designed with a point-to-point paradigm in mind. The protocol has no notion of distribution, and no means to
provide linkages between sites. One can store files in public directories listing linkages (e.g., listing other
relevant sites to check), yet this type of linkage is not part of the protocol, and can only be used by users or pro-
grams separate from FTP. If FTP did support such inter-site linkages, it would be possible to build a distributed
data structure linking related sites, or providing some type of global indexing/directory scheme. Instead, inter-
site organization takes place "outside the system", primarily in news articles. Besides the obvious problem of
making it difficult to find existing resources, the lack of intersite linkage and directory support within the proto-
col means that users may waste a good deal of network bandwidth, repeatedly connecting to sites, performing
directory listings, fetching inappropriate files, etc.

A related problem is the fact that FTP incorporates a very limited notion of trust, by exporting underlying file
system authorization mechanisms that were designed for centralized systems to users from outside administra-
tive domains. For example, the UNIX file system protection mechanism only allows one to define access permis-
sions for file owners, group members, and all others. There is no distinction between outside administrative
domains. Therefore, it is not possible to allow some sites to have update access to an anonymous FTP archive
without giving that access to all Internet users, or giving regular accounts to some subset of users. This fact
makes it difficult to use the disk space provided by anonymous FTP sites for storing intersite linkages. Alterna-
tively, the site administrator could act as a central coordinator of organizational information. However, doing so
unduly centralizes the effort and authority of the distributed directory.

Also related to the problem of forming intersite linkages is the fact that FTP does not provide a general
means to run programs on behalf of clients. The only software that a client may run using FIP are various
built-in commands (such as changing directories and retrieving files), and one specific program for performing a
directory listing ("Is" in the case of UNIX). If the protocol were just slightly more general, it would permit site
administrators to place any program in a specified directory containing executable programs, rather than just Is.
This would, for example, allow an implementation of our top-level of information quality (aftptool) to run the
database lookup software remotely, rather than first retrieving the index across the network. For network links
with low bandwidth and reasonably low latency, this may be worthwhile.

Another problem with using FTP for supporting global sharing is that there are no common formats for file
naming and data representation. As a result, each site currently decides its own formats. Sometimes these for-
mats are described in "README" files. In this case, however, it would be difficult to make an automated means
of inferring the organization; a human must apply conceptual reasoning abilities to understand the organization.
Even in such a case, the organization of a large archive site may be so complex or counter-intuitive that even
experienced humans cannot easily find the resources at that site. This is the case, for example, at several sites
we have seen that group files by physical disk location rather than by logical organization.

We do not advocate requiring a global standard in this regard. We believe it is too difficult to reach con-
sensus on such standards. Even if standards evolved, there would still be the problem of upgrading existing
information to fit the standards. Instead, we believe it would be worthwhile to support a number of formats, and
to use some type of language to describe the particular formats being used, so that a program may connect to a
site, determine the format(s) in use, and properly interpret the organization. We will discuss this notion further
in Section 7.

Another problem is the fact that FTP’s primary abstraction is that of a file containing an uninterpreted stream
of bytes. Even given support for specifying global organization and data representation, FTP does not associate
any notion of semantics with files. While a file typing system would help this problem, we believe that typing
systems are typically oriented more towards machine automation than towards human conceptual understanding.
In Section 7 we will discuss an idea we have to support an evolving taxonomy space that can represent the glo-
bal conceptual relationships between resources.

Note that this discussion is not intended as an indictment of FTP. Rather, our point is that FTP was designed
at a time when point-to-point communication was the goal. The concept of global distributed collaboration

-13-

involving widely distributed sites was simply not feasible when network bandwidth was so scarce. We also do
not mean to imply that resource discovery cannot be supported with FTP. Rather, it is our intention to further
develop this work, to support basic resource discovery among existing anonymous FTP archives, and also to
develop a more sophisticated mechanism that might be used by future archive sites.

7. Conclusions and Future Work

Given increases in Intemet bandwidth and interorganizational computing, the time is ripe for significant
advances in the technology that supports Internet resource sharing. Resource discovery is an integral part of the
picture, since it is currently a limiting technology. We assume that far more resources exist than can be com-
pletely organized; that it will be more important to organize and locate some resources than others; and that it is
difficult to reach global agreement over information sources and formats. Our approach is to allow incremental
organization of the resource space, based on a range of different information sources of varying degrees of qual-
ity, ranging from high-quality descriptions of particularly popular resources to heuristically gathered hints about
where a search for less popular resources might begin.

We have built a set of mechanisms that form an initial basis for resource discovery in the domain of public
Intemet archives, accessible via the "anonymous” File Transfer Protocol. This is an interesting test case,
because it encompasses a very large scale, administratively decentralized collection of resources, with consider-
able practical value. The prototype currently supports a range of activities corresponding to various levels of
effort and levels of information quality that can be extended by a distributed collection of people contributing to
the global organization of the resource space. The highest quality of information is derived from database sup-
port for cataloging the conceptual nature of individual resource repositories. Below that, caches are maintained
to ease the task of finding resources that have been located in the past. Below that, the system monitors
announcements of public archive availability from USENET electronic bulletin board articles, to provide a sim-
ple keyword-based attempted index of potential anonymous FTP sites around the global network.

An important aspect of our approach is that it makes use of existing infrastructure. We believe this technique
will become increasingly important as widely distributed, heterogeneous networks become increasingly com-
mon. Even so, the technique has limitations compared to what could be achieved given an optimal set of proto-
cols and services to use for gleaning resource information. We are therefore pursuing a hybrid approach, involv-
ing existing protocols to achieve rapid deployment among current archives, and a set of more sophisticated
mechanisms for supporting resource discovery among future sites. We now describe these ideas.

At this point, we have plans for a number of pieces of future work on this prototype. The first step is to
improve some inefficiencies in the prototype (such as the size of the gdbm databases). Next, we will integrate
the individual pieces of the prototype, to provide a unified tool interface. After these modifications, we hope to
gain a large enough user base to try charting a significant number of Internet archive sites, to uncover problems
and principles with this style of wide-area distributed collaboration. Deployment of this prototype will also
allow us to experiment with a dynamic resource organization mechanism outlined in a recent paper, whereby
related resources are clustered according to access patterns, to provide a dynamically evolving set of links
between related resources [Schwartz & Wood 1990].

Next, we will extend the range of information quality levels to support finer-grained distinctions between
information sources. Examples of the sorts of distinctions that can be made include the difference between
moderated news groups, expert (peer) reviewers, archive curators, and voting.

The next step involves making the per-user-site caches available by anonymous FTP, so that users may share
the map generated by the sum of each others’ explorations. Such a map would likely grow to quickly cover a
sizable proportion of the more popular Internet public archive resources. Of course, such a map raises privacy
issues. There must be a way for users to specify that they do not wish their explorations to be recorded in the
shared map. Moreover, the usual problems of cache consistency must be addressed. For this purpose we intend
to use fairly simple techniques, such as timeouts and the detection of stale data upon use.

After these changes, we will explore a more sophisticated mechanism for describing resources, based on a
Resource Description Language that can represent both conceptual descriptions and underlying concrete
representations of data. While the conceptual descriptions will be used for resource discovery, the concrete
representations can be used to support automatic translations among common data representation formats, and to

-14-

allow independently catalogued data to be compared, using techniques from redundancy/reliability theory to
improve the quality of the descriptions.

We are also interested in exploring a means of describing resources based on separate taxonomy and
resource spaces. The idea is to allow the taxonomy space to evolve through a distributed collaboration process,
and allow entries in the resource space to be attached to appropriate taxonomy space entries. This method will
improve resource description uniformity, yet allow the organization to evolve smoothly.

As a longer-term goal, we plan to define a new Internet protocol that provides better support for distributed
collaboration than can be provided by anonymous FTP. The chief advantage of anonymous FTP in our opinion
is that it exists currently, and hence offers the possibility for rapid deployment of an interesting experimental
system. However, as outlined in Section 6, anonymous FTP has a number of limitations for supporting global
sharing. We plan to address these limitations using a protocol that is backwards-compatible with anonymous
FTP.

Acknowledgements

We would like to express our appreciation to David Goldstein, Panos Tsirigotis, and David Wood, who pro-
vided feedback on a draft of this paper. We would also like to thank the administrators of the many anonymous
FTP sites around the world, without whose cooperative spirit this interesting resource discovery test bed would
not be possible.

8. References

[Arms 1989] W. Y. Amms. Electronic Publishing and the Academic Library. Paper presented to the Society for Academic
Publishing, 11th Annual Meeting, May 1989.

[CompuServe 1986]
CompuServe. CompuServe Information Service. CompuServe Inc., Oct. 1986. Sales literature.

[Donahue & Widom 1986]
J. Donahue and J. Widom. Whiteboards: A Graphical Database Tool. ACM Trans. Office Information Syst.,
4(1), pp. 24-41, Jan. 1986.

[Fischer & Stevens 1990]
G. Fischer and C. Stevens. Information Access in Complex, Poorly Structured Information Spaces. Tech. Rep.
CU-CS-461-90, Dept. Comput. Sci., Univ. Colorado, Boulder, CO, Feb. 1990.

[Granrose 1990]
J. Granrose. Personal Communication. Cowell College, University of California at Santa Cruz, Sep. 1990.
Electronic bulletin board posting containing Anonymous FTP site list.

[Horvath 1990]
S. M. Horvath. NSENET Usage by Service. Message sent to nsfnet-reports@merit.edu electronic mail
distribution list, Aug. 1990.

[Kahn & Cerf 1988]
R. E. Kahn and V. G. Cerf. The Digital Library Project - Volume 1: The World of Knowbots. Corp. for National
Research Initiatives, Mar. 1988.

[Postel & Reynolds 1985]
J. Postel and J. Reynolds. File Transfer Protocol (FIP). Req. For Com. 959, USC Information Sci. Institute,
Oct. 1985.

[Quarterman & Hoskins 1986]
J. 8. Quarterman and J. C. Hoskins. Notable Computer Networks. Commun. ACM, 23(10), pp. 932-971, Oct.
1986.

[Robinson 1990]
G. Robinson. Personal Communication. Clarinet Communications Corp., Aug. 1990. Description of Clarinet
communication service.

[Schatz & Caplinger 1989]

B. R. Schatz and M. Caplinger. Searching in a Hyperlibrary. Proc. Sth IEEE Int. Conf. Data Eng., pp. 188-197,
Feb. 1989.

-15-

[Schwartz 1989]
M. F. Schwartz. The Networked Resource Discovery Project. Proc. IFIP XI World Congress, pp. 827-832, San
Francisco, CA, Aug. 1989.

[Schwartz 1990]
M. F. Schwartz. A Scalable, Non-Hierarchical Resource Discovery Mechanism Based on Probabilistic
Protocols. Tech. Rep. CU-CS-474-90, Dept. Comput. Sci., Univ. Colorado, Boulder, CO, June 1990. Submitted
for publication.

[Schwartz & Wood 1990]
M. F. Schwartz and D. C. M. Wood. A Measurement Study of Organizational Properties in the Global
Electronic Mail Community. Tech. Rep. CU-CS-482-90, Dept. Comput. Sci., Univ. Colorado, Boulder, CO,
Aug. 1990. Submitted for publication.

[Schwartz & Tsirigotis 1990]
M. F. Schwartz and P. G. Tsirigotis. Experience with a Semantically Cognizant Internet White Pages Directory
Tool. To appear, J. Internetworking Research and Experience, 1(2), Dec. 1990.

[Vielmetti 1990]
E. Vielmetti. Personal Communication. Univ. of MI Statistics Dept., Mar. 1990. Discussion of method of
curating comp.archives USENET news group.

[Wall 1989] L. Wall. Manual Page for PERL - Practical Extraction and Report Language. Jet Propulsion Laboratory,
NASA, Oct. 1989.

