The Interactions of Vigilin and the miRISC within

Caenorhabditis elegans

Brett Michael Weum

Department of Molecular, Cellular, and Developmental Biology

University of Colorado, Boulder

Defense Date: April 1st, 2015

Thesis Advisor:

Dr. Min Han, Department of Molecular, Cellular, and Developmental Biology Honor Council Advisor:

Dr. Jennifer Martin, Department of Molecular, Cellular, and Developmental Biology Defense Committee:

Dr. Min Han, Department of Molecular, Cellular, and Developmental Biology

Dr. Jennifer Martin, Department of Molecular, Cellular, and Developmental Biology

Dr. Dylan Taatjes, Department of Biochemistry

ABSTRACT

Developmental robustness and redundancy are properties of biological systems that facilitate adaptation and survival in stressful environments. Through use of novel screens for synthetic phenotypes, we have elucidated a fascinating interaction between miRNAs and Vigilin, an RNA binding protein predicted to have a variety of different cellular functions within development. Synthetic screening indicates that mir-52, mir-59, mir-83, mir-254, and mir-265 all interact redundantly with Vigilin to modulate larval progression. Computational analysis and further RNAi testing yielded a list of potential downstream targets that these miRNAs might regulate to control development in a complex and robust manner. RT-qPCR and genetics will be used to study these potential targets to provide further insight into the interactions between miRNAs and Vigilin with the overarching goal of gaining a better understanding of development within *C. elegans*.

INTRODUCTION

Developmental Robustness and Redundancy

Within animal and plant cells, there are numerous regulatory pathways that modulate when, where, and how much of a certain protein is produced and to what extent a gene is expressed. In recent years many of these pathways have been discovered to work together in a redundant fashion in order to dictate when and where a cell will reach a certain fate. In any organism there are numerous different pathways, cell types, signaling molecules, organ systems, and the like that all work together to craft the organism as a whole. Central to the study of molecular and developmental biology is ascertaining when, why, and how these various systems work together on the most basal levels to shape functions on the macro level.

2

The early developmental biologist C. H. Waddington described development as a bunch of marbles rolling down a hill towards a wall (Van Speybroeck, 2002). As each marble rolls down, it has the potential to fall into any sort of canal, crevice, canyon, or, as Waddington coined, "creode" that lines the path down the hillside. The marbles will compete for the grooves in the path and will all attempt to settle at the lowest point of the hill (the wall). The time and way they get to the bottom, however, is vastly different between the marbles depending on their timing (e.g. if they were released sooner or later than other marbles) and path. Waddington called this crevice-riddled landscape the "epigenetic landscape," referring to the factors and mechanisms outside genetic material that regulate why an organism takes on a certain fate over other fates.

While all cells take a different "path" down the hill, all of the cells must reach the bottom at some point—and more often that not a lot of these "paths" meld together, or level out. In this idea, Waddington presented the idea of robustness—the idea that a number of systems and conditions (a number of different grooves down the hill) work together redundantly to ensure the final fitness of an organism. While superficially rolling marbles down a hill seems like a random process, in actuality it is modulated and regulated by a number of different physical factors like gravity—that is to say each marble has a set trajectory. In biology the same is true. Each cell's "roll down that hill" while seemingly unique and independent is precisely regulated at each and every turn down that hill. The idea of redundancy causing robustness, is that even if one of these marbles misses a certain canal, there are other redundant canals available for it to take, all leading to the same final position, ensuring robustness. Similarly an organism trying to maintain evolutionary fitness also has a number of systems to ensure robust development and survival.

MicroRNA and the miRISC

One regulatory pathway that contributes to developmental robustness involves microribonucleic acid, or MicroRNA. The Han lab has studied the functions of these small RNA molecules for nearly two decades.

MicroRNA (abbreviated miRNA) are small, 22 to 23 nucleotide long RNA molecules that act to protect cells by managing when and where certain proteins are produced. To achieve this goal, the miRNA binds to the end of a target messenger RNA in the 3' untranslated region and either prevents the translation of that messenger RNA into a protein or degrades the messenger RNA (Lim *et al.*, 2005; Bagga *et al.*, 2005, Bartel *et al.*, 2009). These miRNAs accomplish this substantive feat through interactions with a set of RNA binding proteins that bind to the miRNA. Collectively, this combination of miRNA and RNA binding proteins is known as the microRNA Induced Silencing Complex, or the miRISC. Selective gene silencing, a mechanism used by the cell to stop a gene being transcribed or translated, is a vital function in all cells that enables cells with the exact same set of DNA to do strikingly different things.

miRNAs are transcribed in similar fashion to normal mRNAs, however after transcription they form a double stranded hairpin-loop structure with themselves and are processed by a number of proteins (known as the microprocessor complex in humans) within the nucleus to produce a pre-miRNA. This pre-miRNA is then exported out of the nucleus by another set of proteins. After it's exodus to the cytoplasm a pre-miRNA is then processed into its final form by an endoribonuclease, Dicer, and a number of other proteins that lead to a mature single-stranded miRNA (Lund and Dahlberg 2006). This single-stranded miRNA then localizes with the miRISC to promote gene silencing of a target by mRNA destabilization or translational blockage.

4

Figure 1: Processing of nascent miRNA (Winter et al., 2009).

The microRNA Induced Silencing Complex (miRISC) is a complex of ribonucleotide binding proteins that function together to facilitate miRNA silencing of a target gene. The complex consists of a microRNA bound to argonaute proteins (ALG-1 and ALG-2 in *C. elegans*), bound to GW182 which is in turn bound to a number of other proteins that assist in silencing (Hafner *et al.*, 2011, Tritschler *et al.*, 2010, Zhang *et al.*, 2005). Within *C. elegans*, AIN-1 and AIN-2 are homologous to GW182. Ain-1 has been shown to interact with worm argonaute homologs in a similar fashion to the human proteins (Ding and Han, 2005). MiRNA function is reduced when ain-1 or ain-2 are knocked out; when both are knocked out in tandem it results in a lethal phenotype.

Figure 2: miRISC Function and Group Members (Modified from Fabian et al., 2012)

MicroRNAs are conserved in higher organisms, and mutated miRNAs have been indicated as possible contributing factors in a variety of different human diseases including numerous forms of cancers (Malumbres *et al.*, 2013, Pereira *et al.*, 2013). MicroRNAs function in "families," such that the loss of one miRNA is often not deleterious as other family members make up for its loss of function with a similar activity, binding site, and purpose (Alvarez-Saavedra *et al.*, 2010). This redundancy within the miRISC provides a fascinating glimpse into the system of robustness that has developed among higher organisms. However, it has additionally made the study of miRNA difficult (as single miRNA knockouts often result in no phenotype) so the specific role of many miRNAs remains unknown or clouded. Deleting entire families of miRNAs further revealed that many families are not essential for development or viability (Alvarez-Saavedra *et al.*, 2010). This led the lab to hypothesize that miRNAs function redundantly with other gene regulation mechanisms.

Genome-wide Screen for Developmentally Vital Genes

Within the Han lab, a genome-wide screen was completed that was searching for genes that become essential for development when miRISC function was reduced (Weaver, Zabinsky, *et al.*, 2014). To complete this screen, Post-docs Ben and Yi Weaver and Ph. D. student Rebecca Zabinsky plated ain-1(lf) and ain-2(lf) worms on the RNAi of genes from the ORF RNAi library. The loss of ain-1 and ain-2 together (that is ain-1(-); ain-2(-)) results in a lethal phenotype within worms (due to non functional miRNAs); however, single mutants of either ain-1 or ain-2 results in only a minor developmental timing defect. The ain-1(-); ain-2(-) phenotype is an example of a synthetic phenotype: a phenotype that is observed when two genes are knocked out in tandem but not observed when knocked out individually. Within this synthetic screen, worms were scored for any abnormal phenotypes that were seen in the ain-1/2 worms on RNAi, but not observed on ain-1/2 worms on empty vector RNAi. Any phenotypes observed by this method are known as synthetic, since deletions in the genes by themselves result in little observable phenotype but deletion of both results in a severe phenotype.

Vigilin

One of the many interesting genes identified in this screen was *vgl-1* (vigilin). When ain-2 worms were plated on vgl-1 RNAi, a 90% larval (L1) arrest phenotype was observed. Vgl-1 is a member of a family of RNA binding proteins proposed to have roles in a number of cellular processes including telomeric silencing, tRNA splicing, heterochromatin formation, and cholesterol export (Kügler *et al.*, 1996, McKnight *et al.*, 1992, Vollbrandt *et al.*, 2004,Woo *et al.*, 2011, Yang *et al.*, 2014). In humans loss of vigilin function has been observed to contribute to proliferation in several cancers (Woo *et al.*,2011, Molyneux *et al.*, 2014). However, the exact role and function of vigilin remains difficult to pin down and identifying an interaction with the miRISC is a novel result.

Vigilin was first identified and studied within chickens in the 1990s. Early studies suggested that vigilin (known as High Density Lipoprotein Binding Protein, or HDLBP, in humans) functioned to modulate cholesterol export by binding High Density Lipoprotein within cells. Additionally, vigilin weighs 150 kD, has 15 KH-binding domains that enable vigilin to bind to RNA (Kügler *et al.*, 1996), has a nuclear localization signal (Kügler *et al.*, 1996), is found in nearly all cells both cytoplasmically and in the nucleus, and is heavily conserved in a variety of different organisms. More recently vigilin has been shown to bind ribosomal proteins (Vollbrandt *et al.*, 2004) and interact with signal peptide peptidase (Lu *et al.*, 2012). Despite the current research on vigilin identifying these numerous functions and characteristics of the protein, the functional identity of vigilin still remains open to debate and elucidating the overall purpose of vigilin is an interesting mystery within development.

The purpose of this study was to examine this observed novel interaction between vigilin, the miRISC, and predicted downstream targets within *C. elegans* to identify how these interactions are modulating gene expression and perhaps provide clarity on vigilin's function within development. To study this interaction, a combination of methods was used. A synthetic screen for miRNA(-) single mutants on vigilin RNAi was performed to identify which specific miRNAs are contributing to the synthetic larval arrest phenotype. From here, crosses were carried out to confirm any observed phenotypes. Next, through the use of a variety of methods and databases a list (and then a second list) of predicted downstream targets was compiled and tested for any efficacy in suppressing the larval arrest phenotype. To identify specific targets contributing to the larval arrest phenotype, qRT-PCR was used to quantify expression

8

differences of the predicted miRNA target gene T24B8.5 in miRNA mutant worms and vigilin mutant worms. Together these methods provide novel insights into the role of vigilin and specific miRNAs in development.

METHODS

General C. elegans Strain Maintenance

C. elegans strains used were either obtained from the CGC or from the Han Lab's frozen stocks. Strains were maintained and picked weekly to remove contamination and prevent starvation. Strains were stored at 20°C unless otherwise noted. A list of strains used is attached (supplemental table 1).

miRNA(-) worms on Vigilin RNAi

To test for specific miRNA mutants contributing to the larval arrest phenotype observed in *ain-2(-); vgl-1(-)* worms, a list of the miRNAs identified within *C. elegans* was compiled, single mutant strains were unfrozen or ordered from the CGC from this list, and these single mutants were allowed to lay eggs on RNAi plates. The protocol for screening each single mutant is as follows:

Day 1: Inoculate cultures of vgl-1 RNAi and empty vector (control) RNAi.

Day 2: Inoculate cultures of vgl-1 RNAi and empty vector (control) RNAi, using cultures from previous day. Incubate for 4 hours and then spot onto to IPTG+AMP plates.

Day 6: 3 larval-4 stage miRNA-"X"(-) worms were picked to a single vgl-1 RNAi plate. 3 larval-4 stage miRNA-X(-) worms were picked to a mock RNAi plate.

Day 7: After 24 hours adult worms were singled to new RNAi plates.

Day 8: After 24 hours, gravid adults were flamed.

Day 10: F1 generation of worms were scored for larval arrest. The number of larval worms (errant phenotype) and adult worms (normal phenotype) were then compared.

This screen was completed for each of the 88 miRNA strains obtained.

miRNA(-) and vgl-1 Crosses

miRNA(-) single mutants with a larval arrest phenotype (observed in the screen above) on vgl-1 RNAi were crossed to *vgl-1*(-) worms to confirm the phenotype was not just an artifact of the RNAi feeding. NT1, a well-published balancer, was used to balance the strains throughout the crosses. Genotyping by PCR confirmed the genotype of the worms. These crosses are still in progress at time of writing.

miRNA Predicted Target Analysis—Pilot Analysis

The predicted targets of miRNAs identified in the miRNA on vgl-1 RNAi synthetic screen were compiled from the databases of mirbase (mirbase.org), target scan (targetscan.org), wormbase (wormbase.org), and pubmed (ncbi.nlm.nih.gov/pubmed). The compiled database contained data for every miRNA family in *C. elegans* and contained roughly 1,000,000 rows of data. From this set, predicted targets of the miRNAs identified in the synthetic screen with a 6mer, 7mer, or 8mer binding predicted binding site were selected, screened for duplicates (per each miRNA), and then compared to miRNA targets enriched in a neuronal IP, a L1 IP, and a egg IP (all studies performed earlier within the Han lab, Zhang *et al.* 2009, Kudlow *et al.* 2011, Than *et al.* 2012). This narrowed the list down to roughly 20,000. Worm mine (wormbase.org/tools/wormmine), a data mining tool, was then used to convert the data to an easily usable format and create a final predicted target list for each miRNA identified as contributing to the larval arrest phenotype in the synthetic screen. The final list of predicted targets was roughly 500 genes. From here, Venny (bioinfogp.cnb.csic.es/tools/venny/) was used

to compare the list of targets for each miRNA, looking for common predicted targets shared between miRNAs. This list had roughly 50 genes.

ain-2(-); vgl-1(-) Worms on RNAi of Predicted Targets

The RNAi of each of the 50 gene targets found by the protocol described above were obtained through the Ahringer and ORF RNAi libraries. The same protocol that was used for the miRNA single mutants on vigilin RNAi was conducted with these RNAi strains. Heterozygous HT2(with a GFP marker)/ain-2(lf); *vgl-1*(lf) worms were picked to the RNAi of these predicted targets and the F2 generation was scored for rescue. Progeny with homozygous ain-2(lf) are expected to have a 90% larval arrest phenotype when paired with a homozygous loss of function of *vgl-1*. In comparison, worms that keep the HT2 marker will show little to no arrest at the larval stage. Accordingly without rescue, a ratio of 1:25 Non-GFP:GFP worms is expected on the RNAi. The presence of a ratio different from this indicates the possibility that a suppression of the larval arrest has occurred.

miRNA Predicted Target Analysis—Second Round

A second round of miRNA target analysis was completed using data from TarBase and miRWip rather than the sources listed earlier. A list of 350 predicted miRNA targets was compiled and compared to enriched targets in a Dicer microarray (Welker *et al.*, 2007) and enriched hits from an IP of a intestine promoter, ges-3 (Kudlow *et al.* 2011). Results were visualized with Venny like before, and similar target analysis is planned.

GoTerm Analysis

Targets from this second list were then compared to a list of every gene in the *C. elegans* genome (list retrieved from wormbase) using Babelomics (Al-Shahrour *et al.*, 2004),

according to the Fatigo algorithm. GoTerms are a standardized list of descriptors ascribed to genes for specific functions.

RESULTS

Ain-2(lf) worms on Vigilin RNAi

Ain-2(-) worms on vigilin RNAi produced a L1 arrest phenotype of 90% (Fig. 1), similar

to results observed previously in the Han Lab

Figure 3: proportion larval arrest of wild type and ain-2 worms on vigilin RNAi. Error Bars represent standard error of proportion. P<<0.05 according to a Fischer's Exact P Test.

miRNA Single Mutants on Vigilin RNAi

Systematic analysis of 88 miRNA single mutant worms on vigilin RNAi in *C. elegans* found that over half of the strains tested contribute statistically significantly to the larval arrest phenotype as is expected according to the redundancy of miRNAs (Fig. 4). Values above 8% are significant according to a Fischer's Exact P Test.

Figure 4: miRNA(-) single mutants on vigilin RNAi. Error bars represent standard error of proportion. Values above 8% have a P value of <0.05 according to a Fischer's Exact P Test.

Strains that had a larval arrest phenotype of >20% were considered "extremely significant" and useful for further procedures. Of the miRNA mutants tested, mir-35-41(-), mir-52(-), mir-58(-), mir-59(-), mir-83(-), mir-254(-), mir-265(-), and mir-61(-); mir-250(-) worms all produced an extremely significant L1 arrest phenotype on vigilin RNAi with p <0.00001 using a Fischer's Exact P-Test (Fig. 5).

Figure 5: miRNA(-) mutants with elevated L1 arrest on vigilin RNAi. Error bars represent standard error of proportion. miRNA Predicted Targets and Results (Pilot Analysis)

miRNA(-) single mutant strains with an elevated larval arrest phenotype of more than 25% on vigilin RNAi were analyzed using the methods listed above for potential targets. Accordingly, miRNA-35-41(-), miRNA-59(-), miRNA-83(-), miRNA-254(-), mir-265(-), and miRNA-52 were examined for potential targets using miRbase and targetscan for a base list of hits. This list for each miRNA was then compared to enriched targets in an L1 IP, neuronal IP, and egg IP done previously and common targets between each subset were selected for further examination (example 1).

Example 1: Comparison of mir-83 predicted targets to targets enriched in various IPs. This was performed for each miRNA.

A final list of filtered targets (those predicted to be targeted by a miRNA mutant and enriched in one or more IPs) was assembled in this way, creating a final list of 346 genes (sup. table 2) from the initial list of over 5000. The predicted function of these genes (from the Ahringer RNAi library "suspected function" column) was compiled and compared (Fig. 6).

Figure 6: Numbers and percentages of miRNA targets' predicted functions.

Additionally, the predicted targets of each miRNA on this final list were then compared to each other (Example 2) for common hits.

Example 2: Comparison of predicted miRNA targets between multiple miRNAs. This was performed for all miRNAs identified in the synthetic screen as extremely significant to the larval arrest phenotype.

This analysis resulted in a list of	of 53 predicted targets regula	ted by 2 or more miRNA (Table 1)

Sequence	Gene Name	Number of miRNA predicted to be targeted by
R10E12.2		4
Y38F1A.5	ddl-3	4
C01C7.1	madf-5	3
F07C3.4	adt-2	3
F13D11.2	lips-10	3
F13H6.1	acy-1	3
H13N06.2		3
K08H10.4		3
B0410.3		2
B0464.4	bre-3	2
B0464.4	ark-1	2
C01G12.1	swt-3	2
C06G8.1	nas-7	2
C07D10.4		2
C13B4.1	dyci-1	2
C17H12.1	anat-1	2
C17H12.13	cab-1	2
C23H4.1		2
C26B9.1		2
C30F12.2		2
C34B2.11	lon-2	2
C39E6.1		2
C53B4.3	nhr-19	2
E02H1.7	glo-4	2
F07C3.4	hbl-1	2
F08C6.1		2
F14E5.5		2
F17C8.1	egl-1	2
F18C5.10	snb-2	2
F23B12.9	cdh-4	2
F23H12.1	rgl-1	2

F25F2.2		2
F28B4.2	vha-5	2
F29B9.8	wrt-3	2
F35H10.4	dep-1	2
F38E11.7	swan-2	2
F44G4.8		2
F53C11.7		2
F59B2.2		2
H10E21.5	ser-3	2
K02F2.6	uda-1	2
K08E3.4	erv-46	2
К09Е9.2	msi-1	2
R10E9.1	tlp-1	2
T23B12.6		2
T23G4.1	snf-1	2
T28D6.4	vab-2	2
W03G9.1	tcl-2	2
Y37E11AR.6	cyd-1	2
Y38C1AA.4	rig-4	2
Y42H9B.2	lron-11	2
Y54G11A.8		2
Y71F9B.8		2

Table 1: list of predicted targets regulated by more than one miRNA identified in the synthetic screen. To test if any of these 53 genes are contributing to the larval arrest phenotype, ain-2(-);*vgl-1*(-) worms were plated on RNAi of each of the targets from table 2 to observe if knockout of these predicted targets can suppress the larval arrest, however no statistically significant suppression was observed.

miRNA Predicted Target Analysis (Second Round)

Following the analysis of the first data list, a second list of downstream potential miRNA targets was compiled using similar but refined methods to those used above. Predicted targets of miR-52, miR-59, miR-83, miR-254, and miR-265 were compiled using recent data from miRWip (Hammell *et al.*, 2006) and TarBase (Vlachos *et al.*, 2014), creating a list of roughly 550 targets. Predicted targets from the mirWIP list were only considered if identified in an Ain-2 or Alg-1 IP. This list was then compared to a list of mRNAs that are increased in a Dicer mutant (Welker *et al.*, 2007). Additionally, the initial list was compared to enriched targets in a Pges-1:Ain-2 IP, because it was found that intestine specific ain-2 expression can somewhat suppress the larval arrest phenotype within the double mutant. The comparison is shown below (Figure 7). This list was then compared to the list compiled in the pilot analysis (Figure 8).

Figure 7: Comparison of Raw list of predicted miRNA targets (blue), Intestine IP enriched targets (yellow), and enriched targets from the Dicer IP (green).

Figure 8: Comparison of Old miRNA predicted targets (from the pilot screen) to the "new" list of potential hits. List of targets within each segment of the diagram are found in supplemental table 3. This list of final targets and their commonalities with the Intestine IP, Dicer mutant, and old targets is attached (supplemental table 3).

GoTerm Analysis

GoTerm analysis was completed for this new list of targets, computing significant (according to a Fischer's P test) differences between terms identified with the compiled gene list and a control gene list of all the genes in the *C. elegans* genome (list of genes taken from Wormbase). Comparisons of significant GoTerms by percentages are shown below for biological function, molecular function, and cellular components (Figure 9). Each comparison compares the percentage of the potential list of targets ("Experimental Gene List Percentage") to the percentage in overall genome ("Control List Percentage").

Figure 9: GoTerms with significant (p<0.05) enrichment. Chart A represents biological process GoTerm enriched differences, Chart B represents molecular function GoTerm enriched differences, and Chart C represents cellular component enriched term differences.

Assorted Other RNAi Results

In addition to the miRNA(-) on vgl-1 RNAi screen that was completed, a number of other synthetic screens were completed with candidate genes we hypothesized might be synthetic either with vgl-1 or ain-2. Notably, the insulin pathway was screened for potential interactions due to the known role of insulin signaling in dauer and larval arrest formation (Fig. 10).

Figure 10: vgl-1(-) worms on insulin pathway RNAi. Error bars represent standard error of proportion.

Additionally, a number of other interesting genes known to contribute to development were also

screened (Fig. 11).

Figure 11: ain-2(-) and *vgl-1*(-) worms on various RNAi. Here "CO8" refers to vigilin RNAi. Error bars represent standard error of proportion.

DISCUSSION

Based upon the data presented in figure 4 in the miRNA and vgl-1 synthetic screen, it is likely that many microRNAs act redundantly in parallel with Vigilin to modulate development within *C. Elegans*. The fact that so many of the screened miRNAs contributed to the phenotype is consistent with the redundancy of microRNAs. Additionally, the high number of significant strains could indicate sensitivity to the RNAi; however the large range of larval arrest between significant strains makes RNAi sensitivity likely not the only causative factor for the larval arrest phenotype. This issue of RNAi sensitivity will be addressed once crosses of the highly significant (>20% larval arrest) miRNAs with *vgl-1*(-) are complete, but this is still in progress.

Of the microRNAs that produced a phenotype of greater than 20% larval arrest, mir-52, mir-59, mir-83, mir-254, and mir-265 seem to be the most reliable for future study. The mir-35 family, while producing an extremely significant larval arrest phenotype, has been already shown to have some deleterious effects on development and has been shown to be sensitive to RNAi. Additionally initial results were misleading, as further testing of both strains used to test the miR-35 family produced varying degrees of embryonic lethality, indicating a possible sensitivity to the RNAi. Of the 5 remaining targets, miR-254 and miR-52 are conserved while miR-59, miR-83, and miR-265 are not. Mir-254 is homologous to human miR-19, a miRNA indicated in a number of cancers. Of the other four targets, little study has been done and their overall function remains unknown, so the results postulated here present an interesting link between these miRNA and early development within *C. elegans*.

The pilot target analysis of each of the miRNAs individually and in comparison to each other and various microarrays and immunoprecipitation data has yielded a list of potential downstream targets whose misregulation might be contributing to this larval arrest phenotype. Further analysis, in the form of tests to see if the RNAi of these targets can suppress the larval arrest phenotype, remain to be done as presented methods of testing HT2/ain-2(-); vgl-1(-)/vgl(-) remain somewhat ineffective as the double mutant is extremely sick, making screens difficult. Testing with the less ill miRNA-"X"; vgl-1(-) crosses might yield better and more conclusive results and should be easier to screen. It is expected, according to the general mechanism of miRNA action, that the larval arrest phenotype is induced by a number of misregulated downstream targets acting together so any suppression by an individual gene is expected to not be a complete rescue.

The second round of data analysis done recently has yielded a list of predicted targets perhaps more promising than the last, as each target was identified as enriched within a previous ain-2 IP or alg-1 IP (tarbase, Zisoulis *et al.* 2010) in comparison to the pilot list where this was not the case. Between these two data analyses, targets selected for further analysis include hbl-1, lin-17, F26A3.4, skn-1, and daf-12. These targets were selected because they are downstream within known growth signaling pathways and it is hypothesized that overexpression of these targets (caused by loss of specific miRNAs) is causing or contributing to the larval arrest.

Testing RNAi of these targets with the crosses for suppression, in addition to qRT-PCR of the targets to ascertain if mRNA levels of the targets change between the mutants remains to be completed. Initial RT-qPCR data with T24B8.5 (an initial target from the first analysis), as a previously published test gene (Troemel *et al.*, 2006), remains cursory and in need of further replicates. It is expected that mRNA levels of the predicted targets should rise within the respective miRNA mutants, as these miRNA should be downregulating these targets normally. RT-qPCR should provide another meaningful avenue for approaching the remaining question of whether or not these potential targets are actual targets.

Together, the miRNA synthetic screen, RNAi data, and data analysis yielding potential downstream targets provide interesting clues as to how vigilin and the miRISC are interacting together to influence development. Much work remains to be done to further investigate the potential targets, however the list presented here provides an ample starting position. Further analysis with genetic approaches and RT-qPCR should solidify the interactions of these miRNA with specific previously unexplored downstream targets and further our understanding of the interactions between vigilin and the microRNA induced silencing complex.

REFERENCES

- Al-Shahrour F, Díaz-Uriarte R, Dopazo J. (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. <u>Bioinformatics</u> 20(4):578-80.
- Alvarez-Saavedra E, Horvitz HR (2010) Many families of *C. elegans* microRNAs are not essential for development of viability. Curr Biol 20: 367–73.

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

- Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (July 2005). "Identification of hundreds of conserved and nonconserved human microRNAs". Nat. Genet. 37(7): 766–70.
- Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in *C. elegans*. Curr Biol 20: 1321–1325.
- Chen, Kevin; Rajewsky, Nikolaus (2007). "The evolution of gene regulation by transcription factors and microRNAs". Nature Reviews Genetics 8 2: 93–103.

- Ding, L., Spencer, A., Morita, K. and Han, M. (2005). The developmental timing regulator AIN-1 interacts with argonaute protein ALG-1, miRISCs and may target al.G-1 to cytoplasmic P bodies in *C. elegans*. Mol. Cell. 19: 437-447.
- Fabian, M.R., and Sonenberg, N. (2012a). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19, 586–593.
- Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes shape. Cell, 128, 635-638.
- Goolsby KM, Shapiro DJ. 2003. RNAi-mediated depletion of the 15 KH domain protein, vigilin, induces death of dividing and non-dividing human cells but does not initially inhibit protein synthesis. Nucleic Acids Res. 31:5644–5653.
- Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V. (2008). mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat. Methods *5*, 813–819.
- Karp X, Hammell M, Ow MC, Ambros V (2011) Effect of life history of microRNA expression during *C. elegans* development. RNA 17: 639–651
- Kudlow BA, Zhang, L. and Han M. (2012). Systematic Analysis of Tissue-Restricted miRISCs
 Reveals a Broad Role for microRNAs in Suppressing Basal Activation of the *C. elegans*.
 Pathogen Response. Mol Cell, 46: 530-41.
- Kügler, S., Grünweller, A., Probst, C., Klinger, M., Müller, P.K., and Kruse, C. (1996). Vigilin contains a functional nuclear localisation sequence and is present in both the cytoplasm and the nucleus. FEBS Letters 382, 330–334.
- Lai, E. C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30: 363-364.

- Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell *120*, 15–20.
- Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, *et al.* (2003) The microRNAs of *Caenorhabditis elegans*. Genes Dev 17: 991–1008.
- Lu, S.H.-J., Jeon, A.H.W., Schmitt-Ulms, G., Qamar, S., Dodd, R., McDonald, B., Li, Y., Meadows, W., Cox, K., Bohm, C., *et al.* (2012). Vigilin interacts with signal peptide peptidase. Proteome Sci 10, 33.
- Lund E, Dahlberg JE (2006). "Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs". *Cold Spring Harb. Symp. Quant. Biol.* 71: 59–66.
- Malumbres M (2013). "miRNAs and cancer: an epigenetics view". *Mol. Aspects Med.* 34 (4): 863–74.
- Matyash V, Geier C, Henske A, *et al.* (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell. 12(6):1725-36.
- McKnight, G.L., Reasoner, J., Gilbert, T., Sundquist, K.O., Hokland, B., McKernan, P.A., Champagne, J., Johnson, C.J., Bailey, M.C., and Holly, R. (1992). Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells. J. Biol. Chem. 267, 12131–12141.
- Nousch M, Techritz N, Hampel D, Millonigg S, Eckmann CR (2013) The Ccr4-Not deadenylase complex constitutes the major poly(A) removal activity in C. elegans. J Cell Sci 126: 4274–4285.
- Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html

- Pereira, D.M., Rodrigues, P.M., Borralho, P.M., and Rodrigues, C.M.P. (2013). Delivering the promise of miRNA cancer therapeutics. Drug Discovery Today *18*, 282–289.
- Shim YH, Chun JH, Lee EY, Paik YK. Role of cholesterol in germ-line development of Caenorhabditis elegans. Mol Reprod Dev. 2002;61(3):358-66.
- I. S. Vlachos, M. D. Paraskevopoulou, D. Karagkouni, G. Georgakilas, T. Vergoulis, I. Kanellos,
 I-L. Anastasopoulos, S. Maniou, K. Karathanou, D. Kalfakakou, A. Fevgas, T.
 Dalamagas and A. G. Hatzigeorgiou. DIANA-TarBase v7.0: indexing more than half a
 million experimentally supported miRNA:mRNA interactions. Nucl. Acids Res. (2014).
- Vollbrandt, T., Willkomm, D., Stossberg, H., and Kruse, C. (2004). Vigilin is co-localized with 80S ribosomes and binds to the ribosomal complex through its C-terminal domain. The International Journal of Biochemistry & Cell Biology *36*, 1306–1318.
- Weaver, B.P., Zabinsky, R., Weaver, Y.M., Lee, E.S., Xue, D., and Han, M. (2014). CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. eLife 3, e04265.
- Welker, N.C., Habig, J.W., and Bass, B.L. (2007). Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes. RNA 13, 1090–1102.
- Woo, H., Yi, X., Lamb, T., Menzl, I., Baker, T., Shapiro, D.J., and Chambers, S.K. (2011).
 Posttranscriptional Suppression of Proto-Oncogene c-fms Expression by Vigilin in Breast Cancer. Mol Cell Biol *31*, 215–225.
- Yang, W., Wei, L., Huang, W., Li, R., Shen, W., Liu, J., Xu, J., Li, B., and Qin, Y. (2014). Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncology Reports.

- Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, et al. (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28: 598–613.
- Zhang X, Zabinsky R, Teng Y, Cui M, Han M (2011) MicroRNAs play critical roles in the survival and recovery of *Caenorhabditis elegans* from starvation-induced L1 diapause. Proc Natl Acad Sci 108: 17997–8002.
- Zisoulis, D.G., Lovci, M.T., Wilbert, M.L., Hutt, K.R., Liang, T.Y., Pasquinelli, A.E., and Yeo, G.W. (2010). Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 17, 173–179.

ACKNOWLEDGEMENTS

Min Han

Rebecca Zabinsky

Mandy Johnson Ben

and Yi Weaver

Aileen Sewell Cierra

Walker Hongyun

Tang

The Han Lab

The Biological Sciences Initiative

The Howard Hughes Medical Institute

The Undergraduate Research Opportunity Program

Strain name	Gene Mutant name	Strain Name	Gene Mutant Name	Strain Name	Gene Mutant Name
CU8018	miR-34 (gk437)	MT14091	mir-79(n4126)	MT15312	mir-239a mir-239 b(nDf62)
DR721	lin-4(e912) II.	MT14118	mir-241; mir-84	MT15454	mir-243(n4759)
MH 4379	Mir-80	MT14119	mir-35-41(nDf50)	MT15517	mir-233(n4761)
MH4360	mir-253(nDf64)	MT14347	mir-273(n4438)	MT15767	mir-258.2
MH4364	fer-15(b26); ain-1(tm3681)	MT14449	mir-232(nDf56)	MT15873	Mir-240; mir-786 (n4541)
MH4368	mir-58(n4640)	MT14450	Mir-51 (n4473)	MT15982	Mir-67
MH4379	mir-80(nDf53)	MT14451	mir-76(n4474)	MT15982	mir-67(n4899)
MT12945	mir-52(n4100)	MT14452	Mir-46 (n4475)	MT16308	mir-252(n4570)
MT12954	Mir-1	MT14525	MIR-254	MT16309	Mir-247 & mir-707 (n4505) X
MT12958	mir-87(n4104)	MT14588	mir-234(n4520)	MT16310	mir-269(n4641)
MT12969	mir-259(n4106)	MT14661	mir-265(n4534)	MT16311	mir-77(n4286)
MT12988		MT14662	Mir-230 (n4535)	MT16316	mir-355(n4618)
MT12989	Mir-53 (n4113)	MT14673	mir-359(n4540)	MT16335	mir-251(N4606)
MT12993	mir-71(n4115)	MT14682	mir-257(n4548)	MT16336	mir-86(n4607)
MT12999	mir-85(n4117)	MT14767	Mir-54; mir-55	MT16337	mir-245(n4798)
MT13015	mir-72(n4130)	MT14768	Mir-231	MT16471	mir-60(n4947) II.
MT13016	Mir-64; mir-229 (nDf52)	MT14875	Mir-61; Mir-250 (nDf875)	MT16494	Mir-64-66; mir-229 (nDf63) III
MT13016	Mir-64; mir-229 (nDf52)	MT14876	mir-261(n4594)	MT16696	mir-244(n4367)
MT13078	mir-73-74(nDf47)	MT14878	mir-270(n4595)	MT16848	mir-249(n4983) X
MT13292	mir-124(n4255)	MT14919	mir-260(n4601)	MT17445	mir-62(n4539) X.
MT13372	Mir-42-44 (nDf49)	MT14935	mir-59(n4604)	MT17997	mir-235(n4504)
MT13433	Mir-45 (n4280)	MT14936	mir-242(n4605)	MT18037	mir-75
MT13650	Lin-58;mir-48	MT14993	Mir-46 (n4475) & mir-47 (gk167)	MT7626	Let-7
MT13651	Mir-84	MT15018	mir-360(n4635)	OH2535	lsy-6(at71)
MT13652	Mir-48; mir-84	MT15019	Mir-357-358(nDf60)	VC328	mir-47(gk167)
MT13653	Mir-237	MT15020	mir-246(n4636) IV	VC347	Mir-57
MT13897	Mir-241	MT15021	mir-78(n4637)	VC495	mir-2(gk259)
MT13949	mir-80	MT15022	mir-83(n4638)	VC514	mir-35(gk262)
MT13954	Mir-81; Mir-82 (nDf54)	MT15023	mir-268(n4639)	VT1289	mir-63(n4568) X
		MT15024	mir-58		N2 (wild type)
					Ain-2

Supplemental Table 1: List of Strains used.

	Sequence Name Gene Name Predicted Function				Sequence Name	Predicted Function	Sequence Name Gene Name Predicted Function Se				Sequence Name	Gene Name	Predicted Function	Sequence Name	Gene Name	Predicted Function			
1	B0024.13		Unknown	81	Y42H9B.2	rig-4	Unknown	161	Y45F10D.3	gly-10	Metabolism	241	Y38E10A.12	nspe-3	Unknown	321	F20D1.7	iglr-1	Unknown
2	B0379.4	scpl-1	Unknown	82	Y44A6D.3		Unknown	162	B0416.6	gly-13	Metabolism	242	Y43F8C.3		Unknown	322	F32D8.1		Signalling
3	B0454.6		Metabolism	83	Y47H9C.4	ced-1	Signalling	163	C26C6.2	goa-1	Signalling	243	Y48C3A.11	dmsr-3	Unknown	323	F58E10.1	ric-7	Unknown
4	B0564.6	l. 1	Ciacolline	84	Y53C12B.5	map-3	Unknown	164	F13D11.2	noi-1	Franscription Factor	244	Y106G6H.14	4	DNA-Cell Cycle	324	KU9E9.2	erv-46	Unknown
5	C01C7.1	ark-1	Signalling	85	154G11A.8	001-3	Unknown	105	K13H4.4	hmp-1	Signalling	245	T111B2A.15	upsu-1	Unknown	325	KIUEIZ.Z		Unknown
7	C04A2 2	giy-20	Chromatin	97	Y60A2A 21	coq-s	Unknown	167	E26D11 11	lot-412	Signalling	240	ZK737.4 7¥705.1	unne-4	Unknown	320	V54G11A 8	ddl-3	Unknown
é	C04D8 1	nac-1	Unknown	99	Y67D8C 10	mca-3	Unknown	169	E5780 2	let-711	Linknown	249	7K1128 /		RNA Synthesis	329	C06E1 2	dor-5	Unknown
9	C05D11.4	let-756	Signalling	89	Y67D8C 9	inca-5	Unknown	169	C39F6 1	lon-2	Unknown	240	B0238 11		Linknown	329	C2485 1	00/8-1	Neuro
10	C07D10.4	nas-7	Proteases	90	Y71F9B.8	Iron-11	Unknown	170	R03F9.1	mdl-1	Transcription Factor	250	B0410.3		Unknown	330	C30F12.2		Unknown
11	C08B11 1	7Vg=11	Unknown	91	7K370 3	hinr-1	Unknown	171	Y57F12AL 5	mdt-6	Unknown	251	C01F4 2	rga-6	Unknown	331	C34B2 11		Unknown
12	C1384.1	-16	Unknown	92	ZK418.7	inpi 1	Neuro	172	R10F9.1	msi-1	RNA Binding	252	C14C11.3	hex-2	Unknown	332	C34H3.1	tag-275	Unknown
13	C16C8.2		Metabolism	93	7K682.2		Cell Arch	173	W04H10.3	nhl-3	Unknown	253	C14F5.4	sfxn-2	Metabolism	333	C54D1.5	lam-2	Cell Arch
14	C16D9.6		Unknown	94	ZK867.1	svd-9	Unknown	174	E02H1.7	nhr-19	Transcription Factor	254	C17H12.13	anat-1	Unknown	334	F07C3.4	glo-4	DNA-Cell Cycle
15	C23H4.1	cab-1	Neuro	95	C17H12.1	dvci-1	Unknown	175	F11C1.6	nhr-25	Transcription Factor	255	C26B9.1		Unknown	335	F13H6.1	0.0 .	NA Binding
16	C24A8.4	cst-2	Unknown	96	C52A11.4	mpz-1	Signalling	176	F48F7.4	pan-39	Unknown	256	C30A5.3		Unknown	336	F20D6.10		Unknown
17	C30F12.2		Unknown	97	C53B4.3		Unknown	177	F45H7.4	prk-2	Signalling	257	C30H7.2		Metabolism	337	F28E10.2	igeg-1	Signalling
18	C33A11.2		Unknown	98	F13D11.2	hbl-1	Transcription Factor	178	R07H5.1	prx-14	Unknown	258	C48E7.1		Unknown	338	F29B9.8		Unknown
19	C34B2.11		Unknown	99	F14E5.5	lips-10	Unknown	179	ZK675.1	ptc-1	Signalling	259	C55C3.5	perm-5	Unknown	339	F42H10.3		Signalling
20	C39E6.1	lon-2	Unknown	100	F47G9.4		Unknown	180	C53C11.3	ptr-5	Signalling	260	EEED8.10		RNA Binding	340	H10E21.5		Unknown
21	C43F9.8	efn-2	Unknown	101	F53C11.7	swan-2	Unknown	181	F46G10.5	ptr-24	Signalling	261	EGAP2.1		Unknown	341	K07C11.8		Unknown
22	C52E4.5	mans-2	Unknown	102	H13N06.2		Unknown	182	K09E2.4	rig-1	Signalling	262	F07C3.4	glo-4	DNA-Cell Cycle	342	M03F8.1		Unknown
23	D1046.5	tpra-1	Unknown	103	K03C7.2	fkh-9	Transcription Factor	183	ZK20.5	rpn-12	Degradation	263	F13H6.1		NA Binding	343	R05H11.2		Unknown
24	F07C3.4	glo-4	DNA-Cell Cycle	104	K08H10.4	uda-1	Metabolism	184	C18F3.2	sax-7	Signalling	264	F18C5.10		Unknown	344	R12E2.2		Unknown
25	F10C5.2		Degradation	105	R10E12.2		Unknown	185	R12H7.3	skr-19	Degradation	265	F22D3.2	flcn-1	Unknown	345	T23B12.6		Unknown
26	F16A11.1		Unknown	106	T23G4.1	tlp-1	NA Binding	186	W03G9.1	snf-1	Neuro	266	F28B4.2	rgl-1	Signalling	346	Y71F9B.8	lron-11	Unknown
27	F16F9.4		Metabolism	107	Y38F1A.5	cyd-1	DNA-Cell Cycle	187	Y110A2AL.14	sqv-2	Unknown	267	F28C10.3		Signalling				
28	F20B10.1	nir-1	Signalling	108	Y54E10A.16	mab-31	Unknown	188	C52E12.3	sqv-7	Cell Arch	268	F28H1.1		Unknown				
29	F20G4.3	nmy-2	Cell Arch	109	Y38F1A.5	cyd-1	DNA-Cell Cycle	189	ZK1307.5	sqv-8	Metabolism	269	F32B5.7		Unknown				
30	F23B12.9	egl-1	Unknown	110	F13D11.2	hbl-1	Transcription Factor	190	F54C9.2	stc-1	Protein Synthesis	270	F39G3.5		Metabolism				
31	F23H12.1	snb-2	Cell Arch	111	T23G4.1	tlp-1	NA Binding	191	D1014.1	sul-2	Metabolism	271	F40A3.7		Neuro				
32	F25H2.13	rtel-1	DNA-Cell Cycle	112	C53B4.3		Unknown	192	T22B2.4	sup-12	RNA Binding	272	F41A4.1	cutl-28	Unknown				
33	F26A3.4		Signalling	113	F14E5.5	lips-10	Unknown	193	K03A1.5	sur-5	Metabolism	273	F41H10.5		Proteases	mir-	52 nred	icted '	target
34	F26E4.11	hrdl-1	Degradation	114	F53C11.7	swan-2	Unknown	194	R13A1.2	kcc-1	Small Molecule Trans	274	F42A10.7		Unknown		2 pica	leteu	unger
35	F28B4.2	rgl-1	Signalling	115	H13N06.2		Unknown	195	Y38C1AA.4	tcl-2	Unknown	275	F54A3.6		Unknown	main	EQ maadi	at a d	orgot
36	F28D1.10	gex-3	Signalling	116	K08H10.4	uda-1	Metabolism	196	F39H11.2	tit-1	RNA Synthesis	276	F55D10.3	glit-1	Metabolism	rmr-	sa predi	clea	larget
37	F29B9.8		Unknown	117	R10E12.2		Unknown	197	T23D8.2	tsp-7	Unknown	277	F56H1.5	ccpp-1	Unknown	•			
38	F29F11.4	twk-12	Small Molecule Transport	118	C1/H12.1	dyci-1	Unknown	198	KU/B1.3	ucp-4	Metabolism	278	F59A3.2		Unknown	mir-	83 predi	cted 1	arget
39	F32F2.1	uig-1	Signalling	119	H04M03.4	git-1	Unknown	199	K12H7.1	unc-9	Cell Arch	279	F59A3.4		Unknown				
40	F35H10.4	VIId-5	Small Molecule Transport	120	B0238.11		Unknown	200	13/EIIAK.0	vap-2	Unknown	280	KOZETU.T		Cell Arch	mir-7	65 nrod	lictod	target
41	F37U0.0	Lag-08	Neuro	121	B0410.3	bro 2	Unknown	201	F2080.2	Viia-12 modf E	Unknown	281	N01E11 1		Motabolism	11111-2	.05 preu	icieu	laiget
42	F38E11.7	den-1	Signalling	122	C01C7 1	ark-1	Signalling	202	C03C10.4	maur-5	Unknown	202	M01H0 1	try-3	Metabolism			the second	townst
43	F4404.0	dep-1	Signalling	123	C01C7.1	madf E	Jighaning	205	C05C10.4	curt 2	Unknown	203	R0EC6 10	ux-5	Signalling	mir-2	254 pred	Icted	target
44	E52B1 8	gei-1	Small Molecule Transport	124	C01G12.1	maur-5	Metabolism	204	C0008.1	SWI-5	Protesses	204	10205.2	iacm-3	Signalling		•		
43	F33B1.0	ina 1	Coll Arch	125	00508.7	come 4	Metabolism	203	C16C10.1		Motabolism	203	T02C5.5	igcili-5	Unknown	mir-3	5-41 nre	dicted	target
40	F58H1 5	110-1	Unknown	120	C0668 1	swt-3	Unknown	200	C39F9 10		Signalling	287	T03F1 1	1111100-1	Unknown			dietet	
48	F5982.2		Small Molecule Transport	128	C1085.3	5411 5	Unknown	208	C5384.6	nstp-1	Unknown	288	T05A7.1		Unknown				
49	H03A11.1		Unknown	129	C13G3.1		Unknown	209	F02A10.4		Unknown	289	T19A5.1		Unknown				
50	H10E21.5		Unknown	130	C17H12.13	anat-1	Unknown	210	F11A5.9		Cell Arch	290	T24H7.3		Unknown				
51	H12C20.2	nms-2	DNA-Cell Cycle	131	C18A3.2		Unknown	211	F11A10.6		Unknown	291	W0485.5		Signalling				
52	K02F2.6	ser-3	Neuro	132	C26B9.1		Unknown	212	F21G4.1		Proteases	292	W06B11.1	atat-2	Unknown				
53	K07G5.1	crml-1	Unknown	133	D1014.4		Unknown	213	F25H9.6		Metabolism	293	Y37E11B.6		Unknown				
54	K08E3.4		Cell Arch	134	F08C6.1	adt-2	Proteases	214	F28D1.9	acs-20	Metabolism	294	Y43H11AL.1		Unknown				
55	K08H10.7	rde-1	RNA Binding	135	F09E10.3	dhs-25	Metabolism	215	F36H2.1	tat-5	Small Molecule Transp	295	Y49G5B.1		Unknown				
56	M01F1.4		Unknown	136	F13H6.1		NA Binding	216	F37A8.5		Unknown	296	Y55B1AL.1		Unknown				
57	M110.5	dab-1	Signalling	137	F16B4.8	cdc-25.2	DNA-Cell Cycle	217	F44G4.8	dep-1	Signalling	297	Y59H11AR.2	catp-7	Unknown				
58	M28.6	lact-3	Unknown	138	F17C11.3	col-153	Collagen	218	F46G10.2		Unknown	298	Y97E10AR.2		Unknown				
59	R08C7.12		Unknown	139	F17C8.1	acy-1	Signalling	219	F53E4.1		Unknown	299	R11B5.1	tbc-12	Cell Arch				
60	R10E12.2		Unknown	140	F17E5.2		Metabolism	220	F55H2.7		Unknown	300	C33H5.19	tag-321	Unknown				
61	R13H8.1	daf-16	Transcription Factor	141	F18C5.10		Unknown	221	F56H11.2		Unknown	301	T14B1.2	aex-2	Neuro				
62	T03F6.4		Unknown	142	F20D1.1		Unknown	222	F59B2.2		Small Molecule Trans	302	C01C7.1	ark-1	Signalling				
63	T07F12.2		Unknown	143	F25B3.1	ehbp-1	Cell Arch	223	H13N06.2		Unknown	303	C23H4.1	cab-1	Neuro				
64	T13H5.6		Unknown	144	F25F2.2	cdh-4	Signalling	224	K08E3.4		Cell Arch	304	Y38F1A.5	cyd-1	DNA-Cell Cycle				
65	T22D1.8		Unknown	145	F26A1.6		Unknown	225	K08H10.4	uda-1	Metabolism	305	F23B12.9	egl-1	Unknown				
66	T23B12.6		Unknown	146	K08F8.2	atf-2	Transcription Factor	226	K09A9.6		Unknown	306	R10E9.1	msi-1	RNA Binding				
67	T24C4.6	zer-1	Unknown	147	T07F10.4	bus-19	Unknown	227	K09E9.2	erv-46	Unknown	307	C07D10.4	nas-7	Proteases				
68	T27F7.2	shc-2	Signalling	148	Y108G3AL.1	cul-3	Unknown	228	R03A10.4	nkat-3	Metabolism	308	E02H1.7	nhr-19	Transcription Facto	r			
69	T28B11.1		Degradation	149	Y65B4BL.5	acs-13	Unknown	229	R90.1		Signalling	309	ZK270.1	ptr-23	Signalling				
70	T28C12.4		Metabolism	150	F17C8.1	acy-1	Signalling	230	T04F3.2		Unknown	310	Y42H9B.2	rig-4	Unknown				
71	128D6.4		Unknown	151	F08C6.1	adt-2	Proteases	231	105H10.7		Unknown	311	K02F2.6	ser-3	Neuro				
72	T28F3.3	hke-4.1	Unknown	152	B0464.4	bre-3	Unknown	232	T13H5.1		Signalling	312	F23H12.1	snb-2	Cell Arch				
/3	W01G7.1	uat-5	UTIKNOWN	153	F25F2.2	can-4	Signalling	233	121810.6	cuti-15	Unknown	313	20404.8	spn-4	KINA BINDING				
74	W03G9.1	snt-1	Neuro	154	C07H6.5	cgn-1	KINA BINDING	234	12109.4	odka 1	Unknown	314	138C1AA.4	tob 1	UnKnown				
75	W1005.1	met-z	Transcription Factor	155	E42C0 2	cic-2	Unknown Motabolism	235	12311.3	cuKa-1	Unknown	315	124A11.3	tro 4	Proceases				
70	V22D7AP 12	cor 4	Unknown	150	C0156 4	cyrl=0	NA Synthesis	230	12488.4		Unknown	310	F25H10 4	up-4	Small Molecule Tree	coort			
79	V27E11AP 6	ser-4 vab-2	Unknown	159	T07D1 4	fox-1	NIXA SYNTHESIS RNA Binding	237	12488.5	toe-4	Unknown	31/	P0226 1	viid-D	Signalling	isport			
70	V29E1A 5	cvd-1	DNA-Cell Cycle	150	C51E7.1	frm-7	Unknown	230	W0006 5	100-4	Unknown	210	E29E11 7	wrt.2	Neuro				
20	Y40H4A 1	gar-3	Neuro	159	T22H6 6	gei-3	Chromatin	239	W0963.6		Unknown	320	C13B4 1	WIL"D	Unknown				
00	- 101 PMA.1	Pai - 2	recul U	100		PCI-D	comacm	240			GUARDWIT	320	01304.1		CONTOWN1				

Supplemental Table 2: 1st List of predicted miRNA(-) targets and predicted function.

Mir-83	Sequence	Gene	60	C04E6.7		116	C09D8.1	ptp-3	176	F55C12.1		232	W08D2.1	egl-20	292	C54G10.4		352	C06G1.1	
1	C23H4.1	cab-1	61	C06G1.4	ain-1	117	F53G12.1	rab-11.1	177	F56C9.8		233	Y40H4A.1	gar-3	293	F01D5.10		353	C16D9.6	
2	F25F2.2	cdh-4	62	C16A3.2		118	C05B5.7	rgs-1	178	H34C03.2		234	F28D1.10	gex-3	294	F11E6.3		354	C23H3.2	
3	F46C8.5	ceh-14	63	C34H3.1	tag-275	119	C18F3.2	sax-7	179	K07H8.2		235	ZC308.1	gld-2	295	F11E6.8		355	C26B9.1	
4	ZC64.3	ceh-18	64	C42C1.4		120	H20J18.1	scd-1	180	R01B10.5	iamp-1	236	B0416.6	gly-13	296	F14E5.2		356	C31H1.8	
5	T25F10.2	dbl-1	65	C45E5.4		121	F57C7.3	sdn-1	181	R12E2.2	<i>7</i> F	237	C03E10.4	gly-20	297	F16A11.1		357	C49H3.9	
6	C56C10.13	dni-8	66	C53D5.1		122	F35G12.3	sel-5	182	T07E3.6	ndf-1	238	C18A3.8	hlh-14	298	F21A3.3		358	C53D5.1	
7	K09G1.4	dop-2	67	F42H10.3		123	W03G9.1	snf-1	183	T07F12.2	p	239	C16F9.4	inx-1	299	F25D7.2	tag-353	359	C56C10.11	
8	C26D10.5	off_1	68	H18N23.2		124	T0165.3	sri_27	18/	T22E3 3		240	K11D9 1	kin-7	300	F26A3 /		360	C56E6.6	Iron-15
q	E35D6 1	fem-1	69	K02F10 1		125	F35B12 1	sry_8/	185	T24H7 3		240	C0168.9	let-526	301	F26F4 11	brdl-1	361	CC8 2	11011 15
10	E56A11 1	gov-2	70	P05C11 2	mca.2	125	P02E1 1	51X 04	196	T26A5 5	ibdm_1	241	C05D114	lot 756	202	E21C2 2	mon 1	267	E12U9 11	
11	C02E10.4	gex-2	70	T28D0 7	dol-10	120	E44A2 1	tog 152	197	W02C12.2	hlb 20	242	E26U1 /	lin_2	202	E40E12 5	culd_1	362	E19A12.9	non-11
12	C16E0 4	gly-20	71	12003.7	uei-10	127	D12A1 2	tag-155	100	V20C10AB 18	1111-30	243	V71F0D F	lin 17	204	F40112.5	dop 1	303	F21A0 2	nep-11
12	C10E9.4	111X-1	72	WU6A12.1	unc-152	120	K15A1.2	KUU-1	100	159G10AR.18		244	1/1/90.5	1111-17	205	F4404.8	ueh-1	304	F21A9.2	
15	03011.4	101-750	75	134D9A.2	11p1-25	129	C07A9.5	UK-1	109	151F10.7		245	N0462.1	inep-1	505	F45D3.5		505	F21F5.0	
14	W06F12.1	lit-1	74	Y/3B6BL.6	sqa-1	130	123G4.1	tip-1	190	Y59E9AL.4		246	R07E4.4	mig-23	306	F45D3.4		366	F41C3.2	
15	ZK112.2	ncl-1				131	F39C12.3	tsp-14	191	Y/1H2AM.5		247	T20B12.6	mmI-1	307	F46C5.1		367	F44A2.3	
16	F25G6.6	asns-1	miR-59	Sequence	Gene	132	C47E12.5	uba-1	192	ZK418.7		248	F46G10.6	mxI-3	308	F46G10.2		368	F49H12.6	acl-4
17	T21D12.4	pat-6	75	F44E5.1		133	Y54E10A.9	vbh-1				249	K08E5.2	nac-3	309	F52D10.2		369	F52F10.2	
18	T27B1.2	pat-9	76	H19N07.1	erfa-3	134	C04C11.2	arrd-25	miR-265	Sequence	Gene	250	C07D10.4	nas-7	310	F58H1.5		370	F53B1.2	
19	T14F9.4	peb-1	77	R107.5		135	C05C12.6		193	C01G6.5		251	C02B4.2	nhr-17	311	F59B2.13		371	F57F10.1	abts-3
20	W01C9.3	pqn-73	78	T21C9.3	del-6	136	C07A9.9		194	C18E9.2		252	E02H1.7	nhr-19	312	H03A11.1		372	F59G1.1	cgt-3
21	C48D5.2	ptp-1	79	T24B8.3		137	C13G3.1		195	C34B4.2		253	C01H6.5	nhr-23	313	H27A22.1		373	K03E6.7	
22	F53G12.1	rab-11.1	80	W02B12.9	mfn-1	138	C17G1.4	nra-3	196	C37E2.1	idhb-1	254	C07A12.3	nhr-35	314	K01B6.1	fozi-1	374	M01B12.4	
23	K01G5.6	rib-2	81	Y17G7B.20		139	C34E11.2		197	F26A3.4		255	C45E5.6	nhr-46	315	K01D12.6		375	R01B10.5	jamp-1
24	F18C12.2	rme-8	82	B0041.5		140	DH11.5		198	F45D3.3		256	T09A12.4	nhr-66	316	K07A12.2	egg-6	376	R05G6.10	
25	F57C7.3	sdn-1	83	C06A8.3		141	F09B12.3		199	F47G4.4		257	F20B10.1	nlr-1	317	K08E4.3		377	R12C12.3	frpr-16
26	F15C11.1	sem-4	84	C06E7.1	sams-3	142	F14B4.3	rpoa-2	200	F58E10.1	ric-7	258	C07G1.3	pct-1	318	K10D6.4		378	T01A4.1	gcy-28
27	C14F5.5	sem-5	85	C06E7.4		143	F17C11.9	eef-1G	201	H36L18.2		259	T14F9.4	peb-1	319	M88.5	zbp-1	379	T06F4.1	
28	T10H9.4	snb-1	86	C16A3.10		144	F31D4.8		202	T21C9.3	del-6	260	C09D8.1	ptp-3	320	R08D7.6	pde-2	380	T07F12.2	
29	W03G9.1	snf-1	87	C32F10.8		145	F39B2.1		203	T27D12.1		261	C54A12.1	ptr-6	321	R10E12.2		381	T19A5.1	
30	F21F8.10	str-135	88	D1009.1	acs-22	146	F55H2.2	vha-14	204	T28F4.5		262	Y38F1A.3	ptr-18	322	R13H4.5		382	T27E4.7	
31	K02E10.8	svg-1	89	F13H6.1		147	F57G12.1		205	Y39A1A.9		263	C18F3.2	sax-7	323	R107.5		383	W02C12.3	hlh-30
32	F39C12.3	tsp-14	90	F21F3.6		148	T05D4.1	aldo-1	206	ZK131.11		264	Y22D7AR.13	ser-4	324	T02E9.1	npr-25	384	Y39A3B.2	lgc-42
33	F41C6.1	unc-6	91	F23F12.12		149	T05H10.7		207	B0361.9		265	T19F7.2	skn-1	325	T04F3.2		385	Y58A7A.6	glb-32
34	F14D12.2	unc-97	92	F35H10.10		150	T12G3.2		208	C30G4.7		266	Y51A2D.19	slo-1	326	T05B9.2		386	Y61A9LA.1	0
35	F09B9.2	unc-115	93	K07B1.8		151	T14B1.1		209	C48A7.2	pitr-1	267	F35G12.8	smc-4	327	T07F10.1		387	Y65B4BL.5	acs-13
36	Y54F10A.9	vbh-1	94	K08D12.6		152	T24B8.4		210	D1009.1	acs-22	268	Y22D7AL.8	sms-3	328	T12G3.2		388	Y67D8C.9	
37	V53C12A 1	wee-1 3	95	R151 2		153	T25E12 /	dkf-2	211	E35H10.10		269	AC7 2	500-2	379	T13H5.6		389	V71D11A 5	lac-46
38	B0344.2	wrt-9	96	V73B6BL 24	acn-6	154	W08D2 5	catn-6	212	F36D4 5		270	C09H6 1	spr-4	330	T24B8 4		390	V71H2AL 2	ige io
30	E28E9 1	729-1	50	1750000.24	dep o	155	V11D7A 13	flb_3	212	K0/E10 3		270	E54C9 2	stc-1	331	T2400.4		391	V73F7A 3	
40	C01612.1	madf 5	miP 254	Soquence	Gono	156	V45E10D 2	1111 5	213			271	E12E6 5	crap_1	222	W01E2 1		207	V102A11A 9	iacm 4
40	C02C10.4	mau-5	07	PO464 4	bro-2	157	V40E10 11	tot.1	214	R03113.7		272	P0222 4	tog 29	222	W0113.1		202	7K154.6	igciii-4
12	C17E4 10		08	51107.4	crb-1	159	V57A10P 1	42069	215	P05D2 2		273	E27D6 6	tag 50	224	W04G2 2	Inr 5	204	7/255 2	
42	C17L4.10		00	F1101.3	dof 12	150	V76A2D E	42008	210	T3754 7		274	T37D0.0	the 1	225	V/9C2A 4	1p1-5	394	2K3333.2	
45	C35A11.2		39	F11A1.5	uai-12	159	T/0A2B.5	+ 22	217	7/270.4		275	520511.4	tip-1	222	140C5A.4	201-22	395	ZK410.7	
44	F01D5.10		100	C43C3.3	dyi-7	160	ZK1037.3	Srt-22	218	2K370.4		276	F29F11.4	LWK-12	330	Y5/G110.31		390	2K082.2	
45	F13E9.1		101	C02C6.1	ayn-1	101	BU336.3			C	6	277	F25H2.8	ubc-25	337	164G10A.6	-1- 2	Frankala and in 1	Di 84i	
40	F21A3.3		102	T01H8.5	gon-z	162	C10G6.1	egai-1	mik-52	Sequence	Gene	278	Y3/EIIAR.b	vab-z	338	2084.3	CIS-3	Enriched in i	Dicer Microarra	ay and Gut iP
47	F43D9.1		103	F13D11.2	nbi-1	163	C13F10.4	6 3	219	F31A3.1	abu-3	279	F08B1.1	vnp-1	339	20376.7	atrs-1	E	nriched in Gut	IP
48	H19N07.2	matn-33	104	C49H3.10	xpo-3	164	C26F1.6	Trpr-3	220	F1/C8.1	acy-1	280	C46C2.1	WNK-1	340	ZK131.11		Enrich	ed in Dicer Mic	roarray
49	K09E9.2	erv-46	105	R07E4.6	kin-2	165	C30B5.7		221	F08C6.1	adt-2	281	F38E11.7	wrt-3	341	ZK673.2				
50	R07B1.9		106	F58H12.1	kin-29	166	C35A11.1	dmsr-7	222	F25F2.2	cdh-4	282	C08B11.1	zyg-11	342	ZK1321.2	shk-1			
51	T04F3.2		107	F36H1.4	lin-3	167	C42C1.4		223	F56D1.4	clr-1	283	B0024.14	crm-1	343	D2023.1		mi	ir-83 from mirV	VIP
52	T07F10.4	bus-19	108	T12F5.4	lin-59	168	C43G2.1	paqr-1	224	F11C7.4	crb-1	284	B0334.6		344	B0034.1		mi	ir-59 from tarba	ase
53	T23F11.3	cdka-1	109	T24A11.1	mtm-3	169	C48A7.2	pitr-1	225	K10B4.6	cwn-1	285	B0491.1		345	B0410.2	vang-1	mir-254 f	rom mirWIP an	d tarbase!
54	T24B8.4		110	C10G8.5	ncx-2	170	CC8.2		226	T25F10.2	dbl-1	286	C03C10.4		346	B0410.3		mi	r-265 from tarb	ase
55	W01F3.1		111	T09A12.4	nhr-66	171	F21A9.2		227	C18D1.1	die-1	287	C06G8.1	swt-3	347	B0454.6		mir-52 fr	om mirWIP and	d tarbase!
56	Y11D7A.13	flh-3	112	D2005.2	nlp-8	172	F26F12.3		228	F54D5.8	dnj-13	288	C08B11.3	swsn-7	348	C01F1.6				
57	Y38H6C.14		113	F35C8.6	pfn-2	173	F31A3.5		229	C26D10.5	eff-1	289	C18E9.7		349	C04D8.1	pac-1			
58	Y41E3.1		114	E01H11.1	pkc-2	174	F32B5.6		230	C43F9.8	efn-2	290	C29A12.4	nrx-1	350	C05D11.7				
59	Y45F10D.2		115	F55A12.3	ppk-1	175	F52G3.1		231	C08C3.1	egl-5	291	C35C5.6		351	C06E1.3	doxa-1			

Supplemental Table 3: 2nd list of predicted miRNA targets and associated Dicer microarray and Gut IP enrichment.