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Direct numerical simulation of complex turbulence

Thesis directed by Professor Sedat Biringen

Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow were con-

ducted. The data base obtained from these DNS simulations were used to investigate the turbu-

lence generation cycle for simple and complex turbulence. For turbulent channel flow, three theo-

retical models concerning the formation and evolution of sublayer streaks, three-dimensional hair-

pin vortices and propagating plane waves were validated using visualizations from the present

DNS data. The principal orthogonal decomposition (POD) method was used to verify the ex-

istence of the propagating plane waves; a new extension of the POD method was derived to

demonstrate these plane waves in a spatial channel model. The analyses of coherent structures

was extended to complex turbulence and used to determine the proper computational box size

for a minimal flow unit (MFU) at Rob ≤ 0.5. Proper realization of Taylor-Gortler vortices in the

highly turbulent pressure region was demonstrated to be necessary for acceptably accurate MFU

turbulence statistics, which required a minimum spanwise domain length Lz = π. A dependence

of MFU accuracy on Reynolds number was also discovered and MFU models required a larger

domain to accurately approximate higher-Reynolds number flows.

In addition, the results obtained from the DNS simulations were utilized to evaluate several

turbulence closure models for momentum and thermal transport in rotating turbulent channel

flow. Four nonlinear eddy viscosity turbulence models were tested and among these, Explicit

Algebraic Reynolds Stress Models (EARSM) obtained the Reynolds stress distributions in best

agreement with DNS data for rotational flows. The modeled pressure-strain functions of EARSM

were shown to have strong influence on the Reynolds stress distributions near the wall. Tur-

bulent heat flux distributions obtained from two explicit algebraic heat flux models consistently

displayed increasing disagreement with DNS data with increasing rotation rate. Results were also
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obtained regarding flow control of fully-developed spatially-evolving turbulent channel flow us-

ing phononic subsurface structures. Fluid-structure interaction (FSI) simulations were conducted

by attaching phononic structures to the bottom wall of a turbulent channel flow field and reduc-

tion of turbulent kinetic energy was observed for different phononic designs.
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Chapter 1

Introduction and Motivation

1.1 Turbulence Production in Complex Turbulent Flows

The scientific field of turbulence has posed long-standing challenges to researchers due to

the inherent chaotic and irregular motions which define turbulent flows. Since turbulent flows, not

laminar flows, are predominantly found in nature and with the prevalence of rotation-dependent

machinery in engineering, a physical understanding of turbulent flow in these systems is a neces-

sity for engineering and scientific analyses. The present work examines simple channel turbulence

as well as complex turbulence, specifically spanwise-rotating turbulent channel flow. In this thesis,

simple turbulence is defined as a turbulent flow field with only one mean flow gradient; complex

turbulence is defined as a turbulent flow field with more than one mean flow gradient. Detailed

focus is placed on the roles and interactions of the coherent structures in the turbulence generation

cycle.

The fundamental structures involved in the turbulence sustenance cycle for turbulent chan-

nel flow have been well-documented in experimental (Kim, Kline, and Reynolds, 1971) and DNS

studies (Kim, Moin, and Moser, 1987). Near the channel walls, interactions between streamwise

vortices and streamwise elongated sublayer streaks result in ejections of the latter structures from

the near-wall region. The streaks break down into smaller instabilities which are swept back to-

wards the wall and reform into vortices and streaks. This cylical process is referred to as the

bursting cycle and the mechanism through which turbulence is sustained (Kim and Spalart, 1987).

Despite the lack of a constitutive theoretical model for governing the overall structure of the tur-
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bulence sustenance cycle, theoretical models have been proposed for selected components of the

cycle. Using direct numerical simulation (DNS), it is instructive to assess the validity of the the-

oretical model predictions. The present work examines the fundamental structures of turbulence

with comparison to the theoretical models proposed by Landahl (1990), Lengani and Simoni (2015)

and Sirovich et al. (1991) for the formation and evolution of such structures with the DNS data

base.

The models proposed by Landahl (1990) and Lengani and Simoni (2015) concern the for-

mation of sublayer streaks and three-dimensional hairpin vortices, respectively; both coherent

structures are well-known among turbulence researchers and have been the focus of previous

flow control efforts to suppress these structures (Kang and Choi, 2008, Lockerby et al., 2005). The

present work provides novel support for both theoretical models using visualizations from the

present DNS data to compare with the model predictions. The theoretical model proposed by

Sirovich et al. (1991) demonstrated the existence of propagating plane waves and the important

contributions of these waves to turbulence production. The model specifically delineated two

types of energetic modes in turbulent flows: propagating and non-propagating (kinematically

degenerate) modes. The non-propagating modes possessed streamwise homogeneity and corre-

spond to the sublayer streaks and vortices discussed in the first two theoretical models (Handler

et al., 1993). The experimental studies by Wallace et al. (1977) and Blackwelder and Kaplan (1976),

which analyzed the wall structure of turbulent flows, demonstrated the consistent lack of separa-

tion between these structures in the streamwise direction hence lending their energy to the zeroeth

streamwise mode (k1 = 0).

Propagating modes, despite possessing significantly less energy content than non-propagating

modes, were demonstrated by Sirovich et al. (1991) to be necessary for turbulence production us-

ing a periodic channel model. The flow control studies by Murakami et al. (1992) and Handler

et al. (1993) additionally affirmed the proposal by demonstrating that the phase randomization of

a small subset of propagating modes, primarily within the energy-containing scales, reduced tur-

bulent kinetic energy and drag by significant amounts. There were also concerns by Sirovich et al.
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(1990) about the possibility of insufficient mesh resolution in the periodic channel model which

would result in misplacement of the considerable energy in the slightly-off streamwise modes and

incorrect data regarding the energy content of the propagating waves. The present work aims to

substantiate the conclusions of Sirovich et al. (1991) for the periodic channel model and addition-

ally affirm the existence of these propagating waves in a spatial channel model for application to

future parametric studies for flow control (Kucala, 2015). Analysis of the propagating plane waves

required the method of principal orthogonal decomposition (POD) which was uniquely tuned for

application to the spatial model.

When turbulent channel flow is subject to rotation in the spanwise direction, asymmetry is

observed across the channel distinguished by reduced turbulence levels near one wall and ele-

vated turbulence levels near the opposite wall; these regions are known as the suction and pres-

sure sides, respectively (Grundestam, Wallin, and Johansson, 2008). In addition, rotation-induced

body forces (Coriolis, centrifugal) generate a secondary cross flow and consequently a particular

type of complex turbulent flow regime is developed with more than one mean flow gradient. The

analyses of such complexities on the structure and parameterization of turbulence have relevance

to engineering applications such as gas turbine blade and rotating turbomachinery design espe-

cially with regards to surface heat transfer and skin friction within the internal cooling passages

(Acharya, Sethuraman, and Nikotopoulos, 2012). The effects of rotation on channel turbulence are

comprehensively investigated including general turbulence statistics, higher-order statistics, en-

ergy budgets and coherent structures. For spanwise-rotating turbulent channel flow, the streaky

and vortical structures associated with the turbulence sustenance cycle (Kim et al., 1987, Landahl,

1990) persist in the pressure region and the generation of additional turbulence structures was

observed in the rotational turbulence studies of Kristofferson and Andersson (1993) and Grun-

destam et al. (2008). In order to determine the dimensions of a minimal flow unit, it is imperative

to examine the contributions of these rotation-induced structures to turbulence. Quadrant anal-

ysis is also used to elucidate a shift in phase relationship between streamwise and wall-normal

fluctuating velocity in the suction region.
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The analysis of coherent structures for rotational turbulence is also applied to the design of a

minimal flow unit (MFU) model at Rob ≤ 0.5. The concept of the minimal flow unit (MFU) model

is based on the determination of the smallest computational box size that will produce acceptably

accurate turbulence statistics at minimal computational cost. In the study by Jimenez and Moin

(1991), a proposed MFU model produced low-order turbulence statistics in good agreement with

experimental data in the near-wall region for non-rotating turbulent channel flow. As the depen-

dence of turbulence production on the interactions of various turbulence structures has been well

documented in literature (Landahl, 1990, Schoppa and Hussein, 2002), MFU design distinguishes

a basic set of structures necessary to sustain turbulence and constructs a shorter domain based on

this array of structures. A model’s success is determined by its ability to accurately predict essen-

tial turbulence statistical quantities at a significantly reduced computational cost compared to full

direct numerical simulation (DNS) on a well-resolved computational domain. The MFU models

analyzed in the present work reduced the grid number of the full simulations between one and

two orders of magnitude, corresponding to an equivalent decrease in computational cost. Such

MFU models are necessary for computational fluid dynamics research requiring large amounts

of simulations such as parametric studies for flow control (Hussein, Biringen, Bilal, and Kucala,

2015, Kucala and Biringen, 2014). In the present work, we utilize our DNS database for turbu-

lent channel flow, subject to varying rotation and Reynolds numbers, to assess the accuracy of the

MFU model for predicting low and high-order moments of turbulent fluctuations.

1.2 Turbulence Modeling

Computational modeling of all types of turbulent flows has been essential to the field of

engineering since the advent of the computer, allowing for engineering analysis to extend be-

yond theory and physical experimentation. As computers have increased in complexity and com-

putational power in the recent decades, new computational methods for turbulence modeling

have arisen. Direct numerical simulation (DNS) is a computational simulation in which the three-

dimensional, time-dependent Navier-Stokes and energy equations are numerically solved along
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with the full range of spatial and temporal scales of turbulence, resulting in the most accurate

computational solutions. However, direct numerical simulations are frequently cost-prohibitive

due to the high computational cost of resolving all scales, especially in cases of complex geometry

and flow configurations.

Another form of computational modeling is Reynolds-Averaged Navier-Stokes (RANS) based

modeling in which there is no numerical solution of the Navier-Stokes equations such as in DNS.

Instead an alternative form of the Navier-Stokes equations known the Reynolds stress equation

is derived and partial differential equations of various flow quantities within this equation are

solved for (Reynolds, 1976). While RANS-based models are less accurate than DNS, these mod-

els also require far less computational power and therefore RANS models, as well as the corre-

sponding turbulent heat flux models for heat transfer, are highly desirable if they can accurately

parameterize turbulent and thermal transport. However, the strong influence of rotational forces

on the Reynolds stress and turbulent heat flux transport equations impose significant challenges

for model development especially at high rotation numbers. In the present work, the DNS data

base is employed to assess four RANS models proposed by (a) Reif et al. (1999), (b) Speziale and

Gatski (1993), (c) Girimaji (1996) and (d) Grundestam et al. (2005). Two algebraic heat flux models

proposed by (e) Younis et al. (2012) and (f) Abe and Suga (2000), are also evaluated. In addi-

tion, the pressure-strain functions proposed in Speziale and Gatski (1993) and Girimaji (1996) are

investigated for their influence on the modeled Reynolds stress distributions and the pressure-

temperature-gradient functions proposed by Younis et al. (2012) and Abe and Suga (2000) are

similarly examined.

Two closure models used for predicting high-order moments as a function of lower-order

terms are evaluated. Higher-order closure is very relevant to computational modeling as the bud-

get terms of the Reynolds stress and turbulent heat flux equations, such as the pressure-strain

and pressure-temperature-gradient correlation terms, are higher-order moments. RANS and tur-

bulent heat flux models require approximation of these terms using lower-order moments and

consequently effective general higher-order closures may be applied to improve these models
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(Girimaji, 1996). Both higher-order models rely on the empirical coefficients that have been se-

lected to fit experimental observations; new optimal coefficients are recommended for highest

compatibility with the DNS results and are evaluated with respect to the empirical coefficients.

1.3 Control of Turbulent Flows

The purpose of coherent structures analyses in turbulent channel flow is for extension to-

wards flow control of turbulence. Drag and energy reduction in turbulent flows remains an im-

portant problem. The potential benefits of efficient flow control systems range from saving billions

of dollars in fuel costs for land, air and sea vehicles to achieving more economically and environ-

mentally competitive industrial processes involving fluid flows (Gad-el Hak and Tsai, 2006). Flow

control in regards to jet turbines has also been a subject of great interest in recent years. Turbu-

lence is an impediment to effective turbine design due to its flow regime consisting of chaotic

property changes and instabilities, leading to undesirable results such as higher drag and energy

losses (Rizzetta and Visbal, 2006). Flow control focuses on the reduction of these instabilities using

active (non-zero energy cost) or passive (zero energy cost) methods.

The present work considers the passive flow control method of compliant surfaces which

have long been used to reduce skin friction in the turbulent boundary layer (Bushnell et al., 1977,

Kramer, 1957), specifically subsurface phononic crystals. Phononic crystals are materials arranged

in an optimal banded lattice structure such that they exhibit desired band gaps, whereby elastic

waves are prohibited from propagation within certain frequency ranges (Hussein, Hamza, Hul-

bert, and Saitou, 2007). Investigations into the application of these periodic systems for control

of fluid flows have demonstrated the effectiveness of phononic subsurfaces in significantly re-

ducing the kinetic energy contributions from turbulent instabilities (Hussein et al., 2015). For

fully-developed spatially-evolving turbulent channel flow, the large range of frequencies in fully-

developed turbulence presents difficult challenges for phononic subsurface design. But by cor-

rect material selection and layering, the dispersion characteristics of the periodic material may be

tuned such that, when the channel walls are replaced by this material, the high-energy carrying
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frequencies present in the turbulent flow field may be reduced. The goal of these flow control

efforts is to optimize the reduction of turbulent kinetic energy through the suppression of the co-

herent structures which govern the near-wall turbulence sustenance cycle such as the propagating

plane waves proposed by Sirovich et al. (1991).

1.4 Thesis Outline

This paper is organized as follows: the second section will cover the governing equations,

numerical methods and parameters used in the direct numerical simulations. A detailed veri-

fication of the present DNS data base is also provided. The third section will first provide an

overview of turbulence dynamics in a plane channel with respect to the validation of three theo-

retical models for the turbulence generation cycle. This will be followed by an in-depth analysis

of the rotational effects on turbulence including the design of a minimal flow unit for spanwise-

rotating turbulent channel flow and demonstration of a phase shift in the re-laminarized suction

region. The fourth section will consider four RANS-based turbulence models and two turbu-

lent heat flux models with comparison to the DNS results for the modeled Reynolds stress and

turbulent heat flux distributions. The accuracy of the modeled pressure-strain and pressure-

temperature-gradient functions in the RANS and turbulent heat flux models, respectively, are

assessed for correlation to overall model accuracy. Also, two generalized higher-order closures

are examined and optimal coefficients are suggested. In the fifth section, an overview of flow con-

trol using phononic subsurface structures and the implementation of these structures within the

computational model is provided. Results for flow control of turbulence regarding the reduction

of turbulent kinetic energy using phononic structures are also shown.



Chapter 2

Governing Equations and Numerical Methods

2.1 Governing Equations

The time-dependent, three-dimensional incompressible Navier-Stokes and energy equations

were numerically integrated in a channel flow using a fractional step method (Waggy et al., 2013,

2014). With all spatial coordinates non-dimensionalized by the channel half-height δ and velocities

by the laminar centerline velocity uc, the Navier-Stokes and energy equations read (in conserva-

tive form)
∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1
Rec

∂2ui

∂xj∂xj
− Rocεijk

Ωj

Ω
uk (2.2)

∂θ

∂t
+

∂(θuj)

∂xj
=

1
Rec Pr

∂2θ

∂xi∂xj
(2.3)

where Rec = ucδ/ν, Pr = ν/κ, ν is the kinematic viscosity, κ is the thermal diffusivity and the vector

u = 〈u,v,w〉 is composed of three velocity components in the x (streamwise), y (wall-normal)

and z (spanwise) directions, respectively. The rotation number (or Rossby number) is defined as

Roc = 2Ωδ/uc where Ω is the spanwise angular rotation vector. p is the non-dimensional effective

pressure (p = p0 − (1/8)Ro2
cr2) which combines the static pressure (p0) and centrifugal force, r

represents the nondimensional distance away from the axis of rotation. Also, t is non-dimensional

time and θ is non-dimensional temperature (θ = [T− TL]/[TU − TL]) with TU and TL representing

dimensional temperatures on the upper and lower walls, respectively. Equation 2.2 is uncoupled
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Figure 2.1: Geometry of DNS computational domain for the a) periodic model; b) spatial model

from equation 2.3 and buoyancy effects are neglected. The Prandtl number (Pr) was kept constant

at 0.71.

Turbulent channel flow simulations were conducted using both a periodic and spatial model;

the flow geometries of the present DNS for the periodic and spatial simulations are shown in fig-

ures 3.29(a) and 3.29(b), respectively. No-slip conditions are imposed on the rigid channel walls

(y = 0,2). An isothermal boundary condition on the dimensionless temperature θ (θU = 0.5 and

θL = −0.5) was imposed at the upper and lower walls. Temperature coupling was initiated once

the turbulence field had reached a quasi steady-state solution and a linear distribution for the tem-

perature field was assumed as an initial condition in the wall-normal direction. For the periodic

channel in figure 3.29(a), the velocity flow fields are assumed to be statistically homogeneous in

the streamwise (x) and spanwise (z) directions allowing periodic boundary conditions in those

directions. For the spatial channel in figure 3.29(b), the velocity flow field possesses a periodic

boundary condition in only the spanwise direction. No assumptions are made in the streamwise

direction hence inflow and outflow boundary conditions are applied. The method developed by

Chung and Sung (1997) is used in which crossflow planes from an auxiliary periodic channel flow

simulation are used as inflow boundary conditions for the spatial model. The planes are sampled

over a sufficient duration and frequency such that both small and large time scales are adequately

represented. A spatial channel model is desirable due to a heightened degree of realism over the
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periodic model and is used in the present work for verification of the periodic channel results and

application for flow control.

2.2 Numerical Methods

All of the numerical methods and schemes presented in this work were performed using

a Navier-Stokes solver developed by Waggy (2012) for the simulation of the turbulent Ekman

layer. This code was further modified for plane channel flow (Kucala and Biringen, 2014) and

periodic channel flow; rotational effects were added and implemented smoothly in the present

work. The time integration scheme used is the semi-implicit Adams-Bashforth/Crank-Nicolson

(ABCN) method, which makes the numerical procedure second order accurate in time (Waggy

et al., 2013). The Crank-Nicholson method uses an implicit scheme for the diffusion terms in

equation 2.2, which is written as

ûi − un
i

∆t
≈ 1

2Re
∂2ûi

∂x2
3
+

1
2Re

∂2un
i

∂x2
3
+O

(
∆t2) (2.4)

where the predicted velocity ûi is solved implicitly using the linear system of equations shown in

equation 2.5. (
1− ∆t

2Re
∂2

∂x2
3

)
ûi ≈ un

i +
∆t
2

Mn
i (2.5)

with

Mn
i =

1
Re

∂2un
i

∂x2
3

(2.6)

The remaining terms in equation 2.2 are solved using the explicit Adams-Bashforth scheme

as shown in equation 2.7,
ûi − un

i
∆t

≈ 3
2

Ln
i −

1
2

Ln−1
i +O

(
∆t2) (2.7)

where

Ln
i = −

∂un
i un

j

∂xj
− 1

Ro
un

j ε ji3 −
∂P
∂xi

+
1

Re

(
∂2un

i
∂x2

1
+

∂2un
i

∂x2
2

)
(2.8)
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Combining both expressions from the Adams-Bashforth and Crank-Nicholson schemes yields

the expression for the predicted velocity in equation 2.9.(
1− ∆t

2Re
∂2

∂x2
3

)
ûi = un

i + ∆t
(

1
2

Mn
i +

3
2

Ln
i −

1
2

Ln−1
i

)
(2.9)

Once the predicted velocity ûi is computed, the velocity at the next time step (n+ 1) is found

by applying a corrector step as shown in equation 2.10, with φ representing the pseudo-pressure.

un+1
i = ûi − ∆t

∂φ

∂xi
(2.10)

The pseudo-pressure is computed by taking the divergence of equation 2.10 and enforcing equa-

tion 2.1 (continuity) at the next time step, yielding the expression shown in equation 2.11.

−∆t
∂2φ

∂xi∂xi
=

∂ûi

∂xi
(2.11)

The spatial derivatives are computed using a finite-difference approximation in all coordi-

nate directions with fourth order central differences by means of high-order Lagrangian polyno-

mials. The streamwise (u) and spanwise (w) velocity components are discretized on a ”centered”

vertical mesh, while the wall-normal (v) velocity component is discretized on a “staggered” verti-

cal mesh to enhance coupling between the vertical velocity and the pressure (Waggy et al., 2013).

In order to dissipate excess energy that remains unsolved by the grid when applying finite

difference methods, an artificial viscosity in physical space must be implemented to ensure numer-

ical smoothing and account for dealiasing. In this numerical integration scheme, this is applied by

adding a high-order dissipation term to the finite difference equations as shown in equation 2.12.

Ln
i = · · ·+ β∆x4

j
∂4un

i

∂x4
j

(2.12)

To prevent reflections at the outflow boundary for the spatial channel model, a buffer do-

main technique is employed to set the convective terms in the streamwise perturbation equations

to zero using a coefficient function, allowing perturbations to be convected by the base flow out

of the computational domain (Kucala, 2015, Kucala and Biringen, 2014). In general, the length of

the buffer domain is about 20 to 30 percent of the physical domain.
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2.3 Simulation Case Descriptions

The full listing of simulations and their corresponding grid resolutions are found in the case

descriptions (table 3.3). Using the periodic model, four simulation cases A-D were conducted for

Rossby numbers Rob = 0, 0.2, 0.5 and 0.9 to view the effects of rotational forces for a wide range

of rotation rates. An additional higher-Reynolds number simulation case E was conducted using

the periodic model for Rob = 0.2 to examine rotational effects in higher-Reynolds number flows;

simulation case S was conducted using the spatial model for non-rotating turbulent channel flow.

For simulation cases A-D, the Reynolds number based on the laminar centerline velocity Rec =

8000 was kept constant which resulted in a friction Reynolds number Reτ = 200 for the no-rotation

case (Rob = 0). The low Reynolds number was chosen such that reasonable comparisons could

be made with previous DNS studies of rotating turbulent channel flow with similar Reynolds

numbers (Grundestam et al., 2008, Kristofferson and Andersson, 1993). For simulation case E, the

Reynolds number based on the laminar centerline velocity was kept constant at Rec = 27000 which

resulted in a friction Reynolds number Reτ = 406. The asymmetric velocity distributions due to

the rotational effects decreased the value of Reτ which was calculated as an average between the

two walls. Simulations were performed at constant mass flux which resulted in a bulk Reynolds

number Reb = ubδ/ν, where ub is the mean bulk velocity defined as

ub =
1
2δ

∫ 2δ

0
udy (2.13)

where u denotes a plane-averaged quantity. The domain lengths for the periodic simulations

were selected as Lx = 4πδ, Ly = 2δ and Lz = 2πδ such that two-point spatial autocorrelations in

the streamwise and spanwise directions converged to zero at the largest separations. The domain

lengths for the spatial simulation were selected as Lx = 4πδ, Ly = 2δ and Lz = πδ.

All solutions for the elliptic pressure equation, and the spatially elliptic momentum equa-

tions are obtained using iterative methods available on the Portable, Extensible Toolkit for Scien-

tific Computation (PETSc) library at the Texas Advanced Computating Center (TACC). As PETSc

routines are designed for solving massive systems of equations, implementation of the PETSc li-
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Table 2.1: Case descriptions and initial conditions.

Case Reτ Rob nx× ny× nz
A 200 0 256× 129× 256
B 197 0.2 256× 129× 256
C 192 0.5 256× 129× 256
D 183 0.9 256× 383× 256
E 406 0.2 512× 513× 512
S 200 0 200× 97× 128

braries enabled the simulation code to run optimally using as few processors as possible. As linear

solvers are necessary to compute the pseudo-pressure and predicted velocity, all solutions were

obtained using Krylov subspace methods found within the routines of the PETSc library. To vali-

date the accuracy of the code, numerical solutions were compared with the hydrodynamic linear

stability theory for plane channel (Poiseuille) flow. By measuring the growth rate and phase speed

of a primary two-dimensional disturbance from the computation and comparing these values to

the eigenvalues of the Orr-Sommerfeld equation, the accuracy of the code was assessed. Excellent

agreement between the theoretical predictions and DNS results was observed (less than 1% devi-

ation in amplitude) which gives confidence to the viability of the code for solving the unsteady

incompressible Navier-Stokes equations. More information on the code scheme and verification

may be found in the appendix and Waggy et al. (2011, 2013, 2014, 2015). Quantities denoted by

subscripts of m, c, and τ correspond to scaling using the mean bulk velocity, mean channel center-

line velocity, and global friction velocity, respectively. The original data base for the non-rotating

case A was initialized from an non-converged data field of non-rotating turbulent channel flow

given to this work’s author by colleague Alec Kucala.

Mesh independence was established by designating two high-resolution cases with grid

numbers nx× 2ny× nz for case A (Rob = 0) and 2nx× ny× 2nz for case D (Rob = 0.9). For both

cases, the distributions of mean velocity, Reynolds stresses and turbulent kinetic energy budgets

compared very favorably to those of the original simulations, demonstrating the selected meshes

of the present DNS cases were mesh invariant. The grid spacing is also comparable to other DNS
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studies of spanwise-rotating turbulent channel flow (Grundestam et al., 2008, Kristofferson and

Andersson, 1993).

Superscript “+” refers to nondimensionalization by the friction velocity, uτ =
√

ν∂u/∂y|wall

or friction temperature, Tτ = (κ/uτ)∂θ/∂y|wall. The global friction velocity for the rotational cases

is denoted as uτ =
√

u2
τs/2 + u2

τp/2 where uτs and uτp are the local friction velocities at the suc-

tion and pressure walls, respectively; an equivalent calculation of the global friction temperature

was used for the thermal statistics. Unless otherwise specified, all coordinate directions are non-

dimensionalized by δ. For all cases, the governing equations were integrated until both the friction

Reynolds number Reτ and friction temperature converged availing a sufficiently long time win-

dow (t+ = tu2
τ/ν ≥ 1000) to calculate statistics.

2.4 Code Verification

In fully resolved turbulent flow, energy spectra should demonstrate an energy density roll-

off of several decades with increasing wavenumber and negligible aliasing at high wavenumbers

(Kim et al., 1987). Sample power spectra (E) for case A and case S are shown in figures 2.2(a) and

(b), respectively. In figure 2.2(a), the streamwise energy spectra for case A demonstrate energy

drop-off with no aliasing at high wavenumbers, characteristic of low-Reynolds number turbu-

lence with discernable inertial and dissipative energy scales (Kim et al., 1987). In figure 2.2(b), the

energy spectra for case S is provided for the nondimensional frequency f and also displays proper

realization of the energetic scales.

In figure 2.3(a), the mean velocity distributions across the channel for cases P and S are

shown to be identical and properly represent the profile of a turbulent flow field. In figure 2.3(b),

both mean velocity distributions are also demonstrated to correspond well with the law of the

wall: u+ = y+ in the viscous sublayer (y+ < 5) and u+ = 2.5 ln(y+) + 5.8 in the log-law region

(y+ > 30).

In figure 2.4, the normalized root-mean-square (r.m.s.) fluctuating velocities for both simula-

tion cases are compared with the experimental hot-film data in Kreplin and Eckelmann (1979) and
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Figure 2.2: One-dimensional energy spectra. (a) Case A; (b) Case S. Black: Euu; red: Evv; blue:
Eww; dashed: Kolmogorov −5/3 spectrum.
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Figure 2.3: Mean velocity profiles for cases A and S. (a) Channel distribution. (b) Law of the wall.
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Kreplin and Eckelmann (1979).
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particle-tracking velocimetry data (PTV) in Kasagi and Nishino (1991). Both experiments were

performed at a friction Reynolds number Reτ ≈ 205. The reason for the discrepancy between the

experimental data for v
′
rms and w

′
rms was explained by Kim et al. (1987) to be the result of suspect

measurements from wall proximity. The present DNS results especially for case A are shown to

compare very favorably to the PTV data for all r.m.s. velocities.



Chapter 3

Simple and Complex Turbulent Flows

3.1 Simple Turbulence: Turbulent Channel Flow

3.1.1 Theoretical Models of Coherent Structures

In this section, visualizations from the turbulent channel flow simulation cases A and S are

used to substantiate the theoretical model predictions proposed by Landahl (1990), Lengani and

Simoni (2015), Sirovich et al. (1990). The DNS data from the periodic channel model in case A is

used to validate all three model predictions and results from the spatial channel simulation case

S are used to corroborate the periodic model validations for the theoretical models proposed by

Lengani and Simoni (2015) and Sirovich et al. (1990).

The Landahl model proposes the formation of sublayers streaks, or streamwise elongated u
′

structures, is a consequence of algebraic instabilities commonly found in turbulent flows (Landahl,

1980). The streaks are generated by the continuous linear growth of these algebraic instabilities

in the streamwise (x) direction, necessitated by a linear temporal growth of total streamwise mo-

mentum which continues indefinitely until viscous forces impede growth. Landahl (1990) used

the conditional sampling technique of variable interval time averaging (VITA) to obtain flow vi-

sualizations demonstrating the temporal structural evolution suggested by the theoretical model.

The model proposed two structure classes which formed from the original algebraic instabilities:

symmetrical and asymmetrical structures which correspond with oblique defomation angles in

the spanwise direction of θ = 0◦ and θ = 5◦, respectively. As the symmetrical structures did not
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demonstrate streamwise elongation over time, Landahl (1990) related the asymmetrical structures

to sublayer streaks. The asymmetrical structures demonstrated a consistent pattern dominated by

a high-speed structure side-by-side in the spanwise direction with a low-speed structure. Once

these structures elongated, an irregular wavy appearance was observed consistent with the oscil-

latory motion of streaks (Kim et al., 1971).

The present DNS results are also used to evaluate the coherent structure formation scheme

proposed in the experimental study by Lengani and Simoni (2015) which used Particle Image Ve-

locimetry (PIV) to examine a low-pressure-turbine blade flow regime. In contrast to the study by

Landahl (1990) which studied the initial development and evolution of sublayer streaks, Lengani

and Simoni (2015) examined the formation of complex three-dimensional coherent structures

which accompanied streak breakdown into turbulence. It was proposed that the breakdown of

elongated sublayer streaks in the near-wall region induced three-dimensional vortical structures

which manifested on the streak flanks. These large-scale structures were related to hairpin vor-

tices (Adrian, 2007), characterized by spanwise vorticity on the top and wall-normal vorticity on

the bottom legs. Smaller observed vortical structures, such as vorticity tubes, were proposed to

be residuals of the hairpin vortices which contributed to the sinuous motion of the streaks. The

breakdown of streaks and these vortical structures generate high velocity fluctuations and lead to

the formation of other large-scale turbulence structures.

The study of Sirovich et al. (1990) postulated the existence of secondary instabilities, mainly

propagating plane waves, which serve as a “trigger” for the interactions between these primary

turbulence structures. Landahl (1972) was one of the first to qualitatively analyze the role of these

secondary instabilities to the transition process and the later studies of Bayly et al. (1988), Herbert

(1988) supported this mechanism by discovering these secondary instabilities travel obliquely to

the streamwise direction and contributed to flow de-stabilization. The flow control studies by Mu-

rakami et al. (1992) and Handler et al. (1993) additionally affirmed the proposal by demonstrating

that the phase randomization of a small subset of propagating modes, primarily within the energy-

containing scales, reduced turbulent kinetic energy and drag by significant amounts. The present
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work aims to substantiate the low-Reynolds number results (Reτ = 120) of Sirovich et al. (1991)

for a turbulent flow field at Reτ = 200 and demonstrate the existence of these propagating waves

in a spatial channel for application to future parametric studies for flow control (Xu, Rempfer, and

Lumley, 2003). It is imperative to also establish propagating plane waves in a spatial channel due

to the significantly more realistic application of the spatial model compared to the periodic model.

However, the lack of directly imposed periodicity in the streamwise direction for the spatial chan-

nel eliminates the streamwise wavenumber, a necessary component of the theoretical model of

Sirovich et al. (1990). Therefore, an alternative proof and analysis is used for the spatial model

in the present work which replaces the streamwise wavenumber with a spatial-like wavenumber

derived from a temporal frequency and streamwise convection velocity. To establish the existence

of spanwise-propagating plane waves, the method of principal orthogonal decomposition (POD)

is used to analyze both a spatial and periodic channel.

3.1.1.1 Landahl Model

The Landahl model qualitatively examined the formation and evolution of sublayers streaks

in the turbulence system cycle and used the variable interval time averaging (VITA) method to

predict structural characteristics suggested by the theoretical model. From the present DNS re-

sults in case A, maps of fluctuating streamwise velocity u
′

are obtained in the x-z plane of peak

turbulent kinetic energy production (y+ = 15). To obtain figure 3.1(a), the variable interval spatial

averaging (VISA) method (Alfredsson et al., 1988) was applied with an averaging length of 200

wall units in the streamwise and spanwise directions. In accordance with the VISA method, a

detection criterion was used to isolate “islands” of high local u
′

variance and the space-time po-

sition of these islands was tracked to visualize the temporal evolution of sublayer streaks. These

VISA-educed structures are compared to the asymmetrical structures obtained from the modeled

VITA results of Landahl (1990) and numerical VISA results of Alfredsson and Johansson (1988) in

figures 3.1(b) and (c), respectively.

All three patterns demonstrate a structural inclination of approximately θ = 5◦ in accordance
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Figure 3.1: Maps of constant u
′
at y+ = 15. a) Numerical VISA-educed streaks from case A; b) Mod-

eled VITA-educed asymmetrical structures (Landahl, 1990); c) Numerical VISA-educed asymmet-
rical structures (Alfredsson and Johansson, 1988).
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with the theory of Landahl (1990). The spanwise lengths of the streak patterns are also shown to

be very similar at approximately z+ = 100, corresponding to the accepted mean spacing between

sublayer streaks (Alfredsson and Johansson, 1988). The numerical and modeled results display a

comparable streamwise streak length of approximately x+ = 500, demonstrating the three streak

patterns are in a similar stage of development. The present DNS results in figure 3.1(a) show

more similarity with the theoretical model of Landahl (1990), demonstrating an abrupt onset of

the disturbed region and more discernable wavy structure in correspondence with the modeled

results in figure 3.1(b).

Similarities with the theoretical model of Landahl (1990) are also observed in the temporal

evolution of VISA-educed structures from the present DNS in figure 3.2. The familiar spanwise

array of aligned high-speed and low-speed streaks is observed and this pattern demonstrates the

expected streamwise advection and elongation for increasing t+. Similar to the modeled asym-

metrical structures, the present DNS results show a consistent oscillatory shape with an increasing

amount of inflection points over time.

3.1.1.2 Lengani-Simoni Model

The Lengani and Simoni (2015) model proposed complex three-dimensional coherent struc-

tures accompanied the sublayer streaks of turbulence sustenance cycle. These three-dimensional

vortical structures manifested as vorticity tubes on the streak flanks or hairpin vortices which

envelop the streak. In figure 3.3, a three-dimensional contour representation of the near-wall co-

herent structures is shown for a single low-speed sublayer streak near the bottom channel wall

(y = 0) for the periodic channel. The blue streaky structure denotes high levels of negative stream-

wise fluctuating velocity and the yellow hairpin vortex is composed from high levels of combined

spanwise (ω
′
z). and wall-normal vorticity (ω

′
y). The smaller yellow vortical structures aligned

with the streak in the spanwise direction denote high levels of streamwise vorticity (ω
′
x) and the

vorticity field is filtered such that the coherent structures are isolated from one another.

Both views of the streak in figures 3.3(a) and (b) demonstrate good agreement with the pro-
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Figure 3.2: VISA-educed maps of constant u
′
at y+ = 15 for case A. a) t+ = 0; b) t+ = 10; c) t+ = 20;

d) t+ = 30. Isoline increment = 0.01; black lines: u
′ ≤−0.06; red lines: u

′ ≥ 0.06. t+ = 0 is a starting
reference time.
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Figure 3.3: An isolated three-dimensional field of coherent structures in the near-wall region for
simulation case A. Blue contours: sublayer streak; yellow contours: vorticity field. a) Front view;
b) top view.
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posed coherent structure organization by Lengani and Simoni (2015). The sinuous sublayer streak

is accompanied by a large hairpin vortex, characterized by spanwise and wall-normal vorticity,

which envelops a portion of the streak. The smaller vortical structures are observed to coincide

with the sinuous, wavy motion of the sublayer streak in figure 3.3(b). These numerical results

support the proposed development of three-dimensional vortical structures induced by sinuous

sublayer streaks close to breakdown. Figure 3.4 shows a similar coherent structure organization

for the spatial channel with a sinuous sublayer streak accompanied by a single hairpin vortex on

top and vorticity tubes along the sides.

3.1.1.3 Sirovich Model

To visualize the spanwise-propagating plane waves proposed in Sirovich et al. (1991), the

method of principal orthogonal decomposition was applied to a periodic and spatial channel.

Principal orthogonal decomposition (POD), also known as the Karhunen-Loeve decomposition,

is a procedure for extracting the coherent motions from two-point velocity correlations which

contain the most energy (Lumley, 1970). Further detailed in Berkooz et al. (1993), this method is

based on the decomposition of the velocity field

ui =
ny

∑
q=1

aqφ
q
i (3.1)

where aq and φ
q
i (y,z) are the basis-function coefficients and basis functions (eigenfunctions), re-

spectively. q is the quantum number which refers to two-point separations in the inhomogeneous

direction y. In addition, the basis-function coefficients correspond to their respective eigenvectors

via

an =
1
2δ

∫ 2δ

0
uiφ

q
i dy (3.2)

with satisfaction of the orthonormality condition for the eigenfunctions. The average mean energy

of the velocity field is defined by

Eii =
1
2δ

∫ 2δ

0

1
2

u2
i dy (3.3)
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Figure 3.4: An isolated three-dimensional field of coherent structures in the near-wall region for
simulation case S. Blue contours: sublayer streak; yellow contours: vorticity field. a) Front view;
b) top view.
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and through substitution of ui in equation 3.1, the contribution of energy from various N modes

is shown through the partial sum

EN =
N

∑
q=1

1
2

aq2 (3.4)

Using the above relations, an eigenvalue problem is created using the two-point autocorrelation

tensor Rij ∫ 2δ

0
Rijφ

q
j dy = λφ

q
i (3.5)

and if a structure contributes energy to the Reynolds stress tensor, it will dominate the two-point

correlation statistics and manifest in the POD (Berkooz et al., 1993). For the periodic channel with

periodicity in the streamwise (x) and spanwise (z) directions, the three-dimensional two-point

correlation tensor is (Moin and Moser, 1989)

Rij(rx,y,y
′
,rz, t) =< ui(x,y,z, t)uj(x + rx,y

′
,z + rz, t) > (3.6)

where rx and rz represent the two-point separations x− x
′

and z− z
′

in the streamwise and span-

wise directions, respectively. The brackets <> denote ensemble averaging in time and the ho-

mogeneous x and z directions. For the spatial channel, the lack of directly imposed periodicity

in the streamwise (x) direction prevents the streamwise wavenumber (k1) which is replaced for

POD analysis by a nondimensional frequency f , an important parameter for flow control designs

which target specific frequencies. Considering two-point separations in time (rt) and the periodic

spanwise direction (rz), the three-dimensional two-point correlation tensor for the spatial channel

becomes

Rij(y,y
′
,rz,rt) =< ui(x,y,z, t)uj(x,y

′
,z + rz, t + rt) > (3.7)

with the brackets <> denoting ensemble averaging in time, z and the quasi-periodic streamwise

direction x.

For multi-dimensional POD analysis and application to three-dimensional turbulent chan-

nel flow, it is fitting to convert the two-point correlation tensor Rij into the spectral density corre-
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lation tensor Φij (Moin and Moser, 1989)

Φij(kx,y,y
′
,kz) =

1
4π2

∫ ∫
e−ikxrx−ikzrz Rij(rx,y,y

′
,rz)drxdrz (3.8)

such that the flow field may be expressed as a function of streamwise (kx) and spanwise wavenum-

bers (kz) for the periodic channel. For the spatial channel, a similar transformation is made by

performing a two-dimensional Fourier transform of the rx-rt planes of Rij as a function of y and

y
′
. For all wavenumber combinations, a Φ matrix of dimensions 3ny× 3ny is assembled

Φ =


Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

 (3.9)

Hence, a new eigenvalue problem (Aφ = λφ) is generated where A, φ and λ represent the inte-

grated spectral density correlation tensor, corresponding eigenfunction and eigenvalue matrices,

respectively. To approximate the integral of Φ in the wall-normal y direction, the weighting func-

tion matrix D is calculated using the following trapezoidal numerical approximation (Reichert

et al., 1994) ∫ 2δ

0
Φdy =

ny

∑
i=1

ωiΦi =
1
2

ny

∑
i=2

(yi − yi−1)[Φ(yi−1) + Φ(yi)] (3.10)

where Φi is the value of Φ at a discrete grid point and ωi is the corresponding weight function. To

apply standard numerical eigenproblem solution techniques, it is required that the matrix-valued

function A, or ΦD in the eigenproblem, be symmetric. This is accomplished through the following

convolution

ΦDφ =
√

DΦ
√

Dφ = λφ (3.11)

Once the D and Φ matrices are created, the resultant eigenproblem is solved to return a system of

eigenvalues and eigenfunctions for various modal combinations: (k1, k3, q) and ( f , k3, q) for the

periodic and spatial POD analyses, respectively.

For both periodic and spatial POD analysis, instantaneous fluctuating velocity fields were

collected from simulation cases A and S for a large time window. For an accurate and relevant
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comparison to the results of Sirovich et al. (1991) regarding the wavenumber ranges, these fields

were interpolated onto an approximately equivalent domain: Lx = 5δ, Ly = 2δ and Lz = πδ. Using

the previously outlined procedure for periodic and spatial POD analysis, eigenvalues and eigen-

functions were obtained for a large number of modes.

In table 3.1, the top fifteen energetic modes and their corresponding energy fractions for

simulation cases A and S are compared to the results of Sirovich et al. (1991) for a low Reynolds

number Reτ = 125. m, n and o refer to indexes for the streamwise (k1 = 2πm/Lx), spanwise

wavenumbers (k3 = 2πn/Lz) and frequency ( f = 2πo/(tend − tinit)), respectively. As wavenum-

ber corresponds to frequency by the relation k = f /v where v is a convection velocity, a f = 0

mean mode is considered a non-propagating (k1 = 0) mode for the spatial POD analysis. For all

three cases, it is demonstrated that non-propagating modes, despite being a small fraction of the

total number of modes, are the most energetic. Table 3.1 also demonstrates identical propagating

modes which possess the highest energetical content such as the (1,3,1) and (1,2,1) modes, and that

a small range of spanwise wavenumbers (n = 2− 4) captures most of the highly energetic propa-

gating modes. This findings supports the flow control design of Handler et al. (1993), which found

that randomizing a small range of inertial scales reduced turbulent drag by significant amounts.

To visualize the presence and interactions of these propagating plane waves, Sirovich et al.

(1990) derived a frequency and corresponding wave speed for these structures. Using the method-

ology of Sirovich et al. (1990) to calculate the wave speed for the most energetic propagating modes

from table 3.1, we plot a normal speed locus for a discrete number of points for the periodic chan-

nel in figure 3.5. It is demonstrated that most waves do propagate at an oblique angle to the

streamwise direction in accordance with the expectation of Sirovich et al. (1991).

In order to visualize propagating plane waves in the spatial POD analysis, f requires con-

version to a spatial equivalent of the streamwise wavenumber. As Sirovich et al. (1991) postu-

lated that these plane waves advected in the streamwise direction with the mean velocity, the

following wavenumber relation kt = 2π f /vx was used where vx is the global convection velocity

in the streamwise direction. By tracking the evolution of sublayer streaks in figure 3.2, a veloc-
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Table 3.1: Energy content of the first 15 eigenfunctions obtained from POD analysis of simulation
cases A and S. The Sirovich case refers to Reτ = 125 data taken from Sirovich et al. (1991).

Sirovich Case A Case S
Index (m,n,q) Energy Frac. (m,n,q) Energy Frac. (o,n,q) Energy Frac.

1 (0,3,1) 0.0428 (0,2,1) 0.0484 (0,4,1) 0.0500
2 (0,1,1) 0.0399 (0,1,1) 0.0299 (0,2,1) 0.0450
3 (0,4,1) 0.0327 (0,4,1) 0.0286 (0,3,1) 0.0401
4 (0,5,1) 0.0287 (0,3,1) 0.0246 (0,1,1) 0.0295
5 (0,4,2) 0.0229 (0,5,1) 0.0221 (1,1,1) 0.0236
6 (0,1,2) 0.0210 (0,6,1) 0.0208 (1,2,1) 0.0204
7 (0,3,2) 0.0206 (0,4,2) 0.0144 (1,5,1) 0.0198
8 (0,2,1) 0.0197 (0,7,1) 0.0136 (0,5,1) 0.0184
9 (0,2,2) 0.0188 (1,7,1) 0.0116 (0,0,1) 0.0181
10 (0,6,1) 0.0138 (1,4,1) 0.0105 (0,6,1) 0.0176
11 (0,5,2) 0.0131 (1,3,1) 0.0100 (3,1,1) 0.0164
12 (1,3,1) 0.0125 (1,3,2) 0.0092 (1,3,1) 0.0163
13 (1,2,1) 0.0095 (1,1,1) 0.0092 (1,4,1) 0.0159
14 (1,4,1) 0.0084 (1,2,1) 0.0092 (0,2,2) 0.0151
15 (1,5,1) 0.0083 (0,8,1) 0.0090 (1,0,1) 0.0148
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Figure 3.5: Normal speed locus for simulation case A. Dots represent the wavespeed of selected
high energetic modes and lines represent high-energy wave envelopes. Black: (0,1) mode; red:
(3,1) mode; blue: (2,1) mode; green: (1,1) mode; cyan: (1,2) mode; yellow: (1,3) mode.
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ity vx = 0.25 was calculated. Using this conversion for kt, a normal locus plot was generated and

shown in figure 3.6 for the spatial channel, demonstrating similar plane wave orientations to those

found in the periodic POD analysis in figure 3.5.

Sirovich et al. (1991) additionally proposed a relationship between these plane wave en-

velopes and other energetic turbulence structures which advected with the mean flow velocity

in the near-wall region, mainly the streaky structures and three-dimensional vortices discussed

in the previous theoretical models, which form the bursting process. As the energy contained

within the propagating modes is relatively small compared to the non-propagating modes (table

3.1), these plane wave modes were proposed by Sirovich et al. (1990) to be a triggering mechanism

for bursting events with the non-propagating modes providing the energy cascade necessary for

the bursts to occur. Through a decomposition of the Reynolds shear stress into separate contri-

butions from the non-propagating and propagating modes, Sirovich et al. (1991) demonstrated

the presence of both modes were necessary for strong turbulent activity. These discoveries bode

well for future flow control efforts as the present work and Sirovich et al. (1990) have collectively

shown that most of the turbulent kinetic energy is contained to a small range of modes. Since the

propagating waves have been established in both periodic and spatial models despite the lack of

a streamwise wavenumber in the spatial channel, flow control designs should aim to inhibit these

particular modes to reduce turbulent kinetic energy and drag.

3.1.2 Summary

In summary, the theoretical model predictions proposed by Landahl (1990) and Lengani and

Simoni (2015) for the coherent structures of sublayer streaks and accompanying vortical structures

were validated through comparison with the present DNS results. For the Landahl (1990) model,

the appearance and evolution of the sublayer streaks obtained using the VISA method from the

DNS data coresponded very well with the modeled VITA results. For the Lengani and Simoni

(2015) model, instantaneous snapshots of a sublayer streak and its surrounding vortical structures

were obtained from both the periodic and spatial DNS simulations which matched the pictorial
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Figure 3.6: Normal speed locus for simulation case S. Dots represent the wavespeed of selected
high energetic modes and lines represent high-energy wave envelopes. Black: (3,1) mode; red:
(1,1) mode; blue: (1,2) mode; green: (1,3) mode; cyan: (1,4) mode; yellow: (1,5) mode.
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representation of the theoretical model.

The principal orthogonal decomposition (POD) method was also applied to both a periodic

and spatial channel to confirm the theory of propagating plane waves by Sirovich et al. (1991). In

agreement with the results of Sirovich et al. (1991) for a lower Reynolds number, non-propagating

modes were found to possess the highest energetical content and a normal speed locus was gen-

erated in order to visualize the interaction and movement of propagating plane waves. A new

POD approach was designed for the spatial channel using two-point correlations in both space

and time due to the elimination of the streamwise wavenumber k1 and a frequency f was used

as a replacement. The spatial POD analysis demonstrated similar results to the periodic analysis:

mean modes ( f = 0) corresponded with non-propagating modes and were consistent in contain-

ing the highest energy fractions. In addition, a similar spanwise wavenumber range (n = 2− 4)

was observed for the highly energetic propagating modes in both periodic and spatial analyses.

A normal speed locus was then generated for the spatial channel which showed similar character-

istics to the periodic speed locus. These plane wave modes and structures have direct relevance

to flow control as the inhibition of the propagating modes would be ideal due to their relatively

small energy content and also necessary function towards turbulence production.

3.2 Complex Turbulence: Effects of Rotation

3.2.1 Introduction

In this section, the DNS data base from periodic simulation cases A (Rob = 0), B (Rob = 0.2),

C (Rob = 0.5) and D (Rob = 0.9) are examined for effects of rotational forces on turbulence over a

wide range of rotation rates. In spanwise-rotating turbulent channel flow, the Coriolis force acts

in the wall-normal direction, resulting in asymmetry across the channel and the creation of two

distinct flow regimes: the pressure and suction regions. In the pressure region of the channel,

secondary flow circulation and high levels of turbulence are present and in the suction region,

re-laminarization of the regime results in low levels of turbulence.
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3.2.2 Turbulence Statistics and Coherent Structures

3.2.2.1 General Turbulence and Thermal Statistics

Rotational effects on the mean velocity and temperature profiles are shown for simulation

cases A-D in figures 3.7 and 3.8, respectively. In figure 3.7, the mean velocity profile is symmetric

about the channel centerline (y = 1) for case A (Rob = 0). With system rotation, the mean velocity

distributions become asymmetric as the flow regime is separated into the pressure and suction

regions. For rotational cases B-D, a laminar-like (parabolic) profile is observed near the suction

wall (y = 0) which is characteristic of the suppressed turbulence in the suction region. As the flow

progressively relaminarizes with increasing rotation number, the suction region expands. Near

the pressure wall (y = 2), a constant gradient of −2Ω is shown in the mean velocity profiles at

all rotation rates which is consistent with previous DNS results in Grundestam et al. (2008) and

Kristofferson and Andersson (1993). In figure 3.8, the thickness of the thermal diffusive sublayer,

characterized by large near-wall temperature gradients, is broader near the suction wall than the

pressure wall for rotating simulation cases B-D. As the rotation number increases, the size of the

diffusive layer in the suction region increases and the mean temperature profile shifts towards the

pressure wall (Liu and Lun, 2007).

In figure 3.35, the Reynolds stress distributions are shown for simulation cases A-D. The

suppressed amplitudes near the suction wall compared to those near the pressure wall are dis-

played for all figures in the rotational cases. In figure 3.35(a), u′u′
+

amplitudes are initially in-

creased for case B (Rob = 0.2) near the pressure wall. However, the pressure wall amplitudes

gradually decrease with increasing rotation number in cases C (Rob = 0.5) and D (Rob = 0.9). In

figures 3.35(b) and (c), v′v′
+

and w′w′
+

amplitudes are shown to monotonically increase with ro-

tation number in the pressure region. In figure 3.35(d), u′v′
+

remain relatively consistent in the

pressure region for the rotational cases.

To illustrate the effects of rotation on wall shear stress and heat transfer, the dimension-

less friction Reynolds (Reτ) and Nusselt (Nu) numbers for both channel walls are provided for
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Figure 3.7: Mean velocity distributions with 2Ω lines for full simulation cases A-D. Black: case A
(Rob = 0); red: case B (Rob = 0.2); blue: case C (Rob = 0.5); magenta: case D (Rob = 0.9). −−−:
2Ω lines.
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Figure 3.8: Mean temperature distributions for full simulation cases A-D. Black: case A (Rob = 0);
red: case B (Rob = 0.2); blue: case C (Rob = 0.5); magenta: case D (Rob = 0.9).

the present simulation cases A-D in table 3.2. The introduction of rotation is shown to initially

decrease Reτ on the suction wall while increasing Reτ on the pressure wall. At higher rotation

numbers, these Reτ trends are shown to significantly weaken or even reverse in case D (Rob = 0.9)

for Reτ on the pressure wall. These results correspond well with Grundestam et al. (2008) which

demonstrated that Reτ on both walls trended towards convergence at high rotation numbers until

the eventual full re-laminarization of the flow regime. For the Nusselt number, a dimensionless
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Figure 3.9: Reynolds stress distributions for full simulation cases A-D: a) u′u′
+

; b) v′v′
+
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. Black: case A (Rob = 0); red: case B (Rob = 0.2); blue: case C (Rob = 0.5); magenta: case D
(Rob = 0.9).
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Table 3.2: Friction Reynolds (Reτ) and Nusselt (Nu) numbers for present DNS cases A-D. Sub-
scripts s and p denote the suction (y = 0) and pressure walls (y = 2), respectively.

Case (Reτ)s (Reτ)p Nus Nup

A 200 200 6.8 6.8
B 150 235 5.7 5.8
C 138 235 4.3 4.6
D 137 219 3.2 3.4

number generally used to represent surface heat transfer, increasing system rotation is shown to

continually decrease Nu on both channel walls. This trend was similarly observed in Liu and Lun

(2007).

3.2.2.2 Higher-Order Statistics

The third-moment of a fluctuating velocity component normalized by the cube of the root-

mean-square (r.m.s.) velocity component is known as the skewness:

S(u
′
i) =

u′iu
′
iu
′
i

(u′iu
′
i)

3/2
(3.12)

The skewness quantifies the asymmetry of a variable’s probability density function (PDF) distri-

bution about its mean and measures extreme events occuring in a velocity field. For example,

positive skewness indicates large amplitude positive fluctuations have a greater likelihood for

occurrence than negative fluctuations of similar strength. The flatness (F), also known as the kur-

tosis, represents the fourth-order moment of a fluctuating velocity component normalized by the

square of its corresponding Reynolds stress component:

F(u
′
i) =

u′iu
′
iu
′
iu
′
i

(u′iu
′
i)

2
(3.13)

The flatness is the measure of a variable’s “peakedness” and “tailedness” (DeCarlo, 1997), repre-

senting the frequency at which extreme events occur as a deviation from the Gaussian distribution

(F = 3). For example, a high value of flatness (F > 3) indicates relatively large values at the edges

of the PDF distribution and a higher concentration directly around the mean.
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To demonstrate the grid resolution for the full simulations is sufficient for proper higher-

order statistics, the skewness and flatness distributions for case A (Rob = 0) is compared to the

DNS results of Kim, Moin, and Moser (1987) and to the experimental measurements of Eckelmann

(1974) and Barlow and Johnston (1985) in figures 3.10 and 3.11, respectively. Good agreement is

shown between the present DNS and the referenced studies used for comparison. A significant

discrepancy is observed for F(v
′
) between the experimental and numerical results; this was ex-

plained by Kim et al. (1987) as a result of suspected measurement inaccuracies in the proximity of

the channel wall.

In figure 3.12, skewness and kurtosis distributions are shown for simulation cases A-D.

Asymmetry for the rotational cases is observed in all profiles. In figures 3.12(a) and (c), rotation

is shown to significantly increase values of S(u
′
) and S(v

′
) near the suction wall and decrease

those values in the pressure region. In figure 3.12(e), S(w
′
) remains zero throughout the channel

regardless of rotation number. In the kurtosis distributions, rotation is not shown to significantly

alter the profile values in the pressure region even at high rotation numbers. In the suction region,

there is a significant increase of kurtosis values for cases B (Rob = 0.2) and C (Rob = 0.2) from the

non-rotational case but a decrease for case D (Rob = 0.9).

3.2.2.3 Energy Budgets

It is instructive to examine the various energy budget components in order to discover

which force dynamics are primarily affected by rotational forces. The Reynolds stress equation

displays the intercomponent energy transfer (Launder et al., 1975)

Du′iu
′
j

Dt
= Pij + Πij − εij + Cij + DT

ij (3.14)

with the terms on the right-hand side of equation 3.14 representing, respectively, the production

(Pij), pressure-strain (Πij), dissipation (εij), Coriolis (Cij) and diffusion terms (DT
ij ).

In the present work, the production, Coriolis and pressure-strain budgets are investigated

due to their high contribution level compared to the other budget terms and correspondence with
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Figure 3.10: Validation of skewness statistics for case A (Rob = 0). Black lines: present simulations;
red lines: Kim and Moin (1984); ◦: Kreplin and Eckelmann (1974); x: Barlow and Johnston (1985).
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Figure 3.11: Validation of kurtosis statistics for case A (Rob = 0). Black lines: present simulations;
red lines: Kim and Moin (1984); ◦: Kreplin and Eckelmann (1974); x: Barlow and Johnston (1985).
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Figure 3.12: Skewness and kurtosis distributions for full simulation cases A-D: a) S(u
′
); b) F(u

′
);

c) S(v
′
); d) F(v

′
); e) S(w

′
); f) F(w

′
). Black: case A (Rob = 0); red: case B (Rob = 0.2); blue: case C

(Rob = 0.5); magenta: case D (Rob = 0.9).
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the turbulence generation cycle (Kim et al., 1971). These quantities are expressed in tensor form in

equations 3.15, 3.16 and 3.17

Pij = −u′iu
′
k

∂U j

∂xk
− u′ju

′
k

∂Ui

∂xk
(3.15)

Cij = 2Ωk(u
′
iu
′
mεmjk − εimku′mu′j) (3.16)

Πij = −(u
′
i
∂p′

∂xj
+ u′j

∂p′

∂xi
) (3.17)

and the total (summation of all tensor components) distributions are shown in figures 3.13(b), (c)

and (d), respectively.

In figure 3.13(a), the turbulent kinetic energy (k) distributions for simulation cases A-D are

shown. The expected suppression of k-amplitudes in the suction region is demonstrated for case B

(Rob = 0.2), but a significant peak near the suction wall continues to persist despite the elimination

of the turbulence sustenance cycle; no near-wall peak is observed for cases C (Rob = 0.5) and

D (Rob = 0.9). In figure 3.13(b), rotational forces are demonstrated to suppress the amplitudes

of production (P), the primary contributor to the near-wall k peak in figure 3.13(a) for case A

(Rob = 0). A small near-wall contribution of P is shown for case B (Rob = 0.2) but is significantly

diminished compared to case A (Rob = 0); no near-wall P contributions are observed for cases C

(Rob = 0.5) and D (Rob = 0.9). Hence for case B (Rob = 0.2), the observed peak in figure 3.13(a)

is demonstrated to be primarily composed of contributions from the other budget terms with

a small supplement from P, demonstrating a fundamental alteration to the dominant processes

which contribute towards turbulence production which manifests at low rotation numbers. At

higher rotation numbers, re-laminarization mechanisms suppress turbulence production in the

near-wall region of the suction side to negligible amounts.

In figure 3.13(c), the amplitudes of the pressure-strain distribution are shown to be sup-

pressed for the rotational cases with the exception of the region next to the pressure wall (y = 2).

In this region, the pressure-strain budget amplitudes monotonically increase with rotation num-

ber. In figure 3.13(d), the Coriolis force is shown to possess significant positive contributions in the

suction region for the rotational cases, therefore supplementing the suction side amplitudes seen
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in figure 3.13(a). However, the Coriolis force has significant negative contributions in the pressure

region, counteracting the production contribution increases shown in figure 3.13(b).

3.2.2.4 Coherent Turbulence Structures

In this section, visualizations of various coherent structures are extracted from the full DNS

cases A-C to ascertain the role of these structures to turbulence production amidst contributions

from rotational forces. Although the bursting cycle is maintained in the pressure region (Kristof-

ferson and Andersson, 1993), the subsequent re-laminarization of the suction region and addition

of rotation-induced structures dramatically increase the complexity of the flow regime.

In figure 3.14, maps of fluctuating streamwise vorticity ω
′
x are shown for a y-z crossflow sec-

tion at x = 2π for simulation cases A-C. In figure 3.14(a), there are spanwise arrays of alternating

high and low-speed streaks near both channel walls for case A (Rob = 0) which also represent the

local intensity of turbulence. In figures 3.14(b) and (c), the coherence of the high and low-speed

structures is disrupted near the suction wall for cases B (Rob = 0.2) and C (Rob = 0.5). With in-

creasing rotation number in the suction region, a significant reduction in the number of turbulence

structures is observed along with the expansion of a near-wall region of completely suppressed

turbulent activity. In contrast to the suction region, the pressure region continues to demonstrate

high levels of turbulent activity and the coherence of turbulence structures is preserved for all

rotation rates.

To assess the effects of re-laminarization on the structure of turbulence in the suction re-

gion, maps of fluctuating wall-normal vorticity (ω
′
y) for full simulation cases A-C at horizontal

x-z sections near the suction wall (y = 0.06) are shown in figure 3.15. Remarkable coherence of

ω
′
y structures is observed. With ω

′
y dominated by ∂u

′
/∂z, the elongated structures of ω

′
y shown

in figure 3.15(a) for case A (Rob = 0) may be considered the “sidewalls” of sublayer streaks as

these structures are composed of significant concentrations, and therefore variations, of stream-

wise fluctuating velocity u
′

(Jimenez and Moin, 1991).

With the introduction of spanwise rotation in case B (Rob = 0.2), the wall-normal vorticity
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Figure 3.13: Turbulent kinetic energy and energy budgets for full simulation cases A-D: a) Tur-
bulent kinetic energy; b) Production budget; c) Pressure-strain budget; d) Coriolis budget. Black:
case A (Rob = 0); red: case B (Rob = 0.2); blue: case C (Rob = 0.5); magenta: case D (Rob = 0.9).
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Figure 3.14: Instantaneous ω
′
x map for a y-z section at x = 2π. a) Case A (Rob = 0); b) case B

(Rob = 0.2); c) case C (Rob = 0.5).

field in figure 3.15(b) demonstrates a significant reduction in the number of ω
′
y structures near the

suction wall. The re-laminarization of the suction region also results in characteristics of reverse

transition such as dense pockets of vortical structures known as “turbulent spots” to be observed

(Biringen and Maestrello, 1984, Chambers and Thomas, 1983). The turbulent spots appear inter-

mittently and demonstrate an inclination to the streamwise (x) direction between 15◦ and 30◦,

which corresponds with the 30◦ inclination observed in the transitional flow study by Biringen

and Maestrello (1984). For case C (Rob = 0.5) in figure 3.15(c), the intermittent ω
′
y structures ap-

pear even less frequently compared to case B due to further increased re-laminarization of the

suction region.

In figure 3.16, maps of fluctuating spanwise vorticity ω
′
z are shown at x-y sections for sim-

ulation cases A-C. For case A (Rob = 0) in figure 3.16(a), spanwise vorticity is observed to be

densely concentrated at both channel walls. For cases B (Rob = 0.2) and C (Rob = 0.5) in figures

3.16(b) and (c), respectively, the strength of ω
′
z is augmented at the pressure wall (y = 2). Near

the suction wall (y = 0), large-scale vortical structures known as high shear layers are detached
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Figure 3.15: Instantaneous ω
′
y map for a x-z section of the near-wall region at y = 0.06. Figure

displays whole computational box. a) Case A (Rob = 0); b) Case B (Rob = 0.2); c) Case C (Rob = 0.5).
Isoline increment = 0.1; black lines: ω

′
y ≤ −0.3; red lines: ω

′
y ≥ 0.3.
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from the wall in the rotational cases. The wrinkling of the high shear layers is a fundamental

characteristic of transition and this feature is highlighted in a smaller x-y cross-section for case B

in figure 3.17 (Biringen, 1987). The concave distortion of the high shear layer at x = 9 is the result

of a secondary instability below the shear layer.

System rotation also generates rotation-induced structures in the pressure region in the form

of a spanwise array of longitudinal roll cells, known as Taylor-Gortler vortices (Kristofferson and

Andersson, 1993). Time-averaged spanwise and wall-normal velocity vectors from case C (Rob =

0.5) are shown for a y-z crossflow section at x = 2π in figure 3.18(a). These large-scale structures

arise from the secondary mean flow advected by the Coriolis force and are responsible for flow

circulation throughout the pressure region. The corresponding secondary flow streamlines are

shown in figure 3.18(b) and two full pairs of counter-rotating vortices are observed.

The three-dimensional structure of the Taylor-Gortler vortices is shown across the entire

channel in figure 3.19 using contours of time-averaged spanwise and wall-normal velocity from

case C (Rob = 0.5). The roll cells appear as streamwise-elongated cylindrical structures which

persist throughout the pressure region of the channel. The study by Kristofferson and Andersson

(1993) showed the number of roll cell pairs increased with increasing rotation number although

the wall-normal length of the circulation region is reduced from progressive re-laminarization.

Of the four coherent structures visualized in this section: sublayer streaks, turbulent spots,

high shear layers and Taylor-Gortler vortices, the Taylor-Gortler vortices are considered to be of

most interest for MFU design. As a capable MFU model must accurately capture turbulence quan-

tities, it is reasonable to assume that the roll cell arrays which dominate the highly turbulent pres-

sure region also possess a large contribution to turbulence production. Hence these structures are

chosen for further investigation. In a later section, a baseline MFU model for rotational turbulence

is chosen with Lz = πδ such that one full pair of roll cells is captured and the effect of further

spanwise domain length reduction on the Taylor-Gortler vortices is examined.
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Figure 3.16: Instantaneous ω
′
z map for a x-y section at z = π. Figure displays whole computational

box. a) Case A (Rob = 0); b) Case B (Rob = 0.2); c) Case C (Rob = 0.5). Isoline increment = 0.1; lines:
ωz ≤ −0.1.

Figure 3.17: Instantaneous ω
′
z map for a x-y section at z = π for case B (Rob = 0.2). Figure shows a

reduced cross section in the suction region between 0≤ y≤ 0.92 and 7≤ x≤ 9.5. Isoline increment
= 0.1; lines: ωz ≤ −0.1.
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Figure 3.18: (a) Time-averaged v and w velocity vectors for a y-z section at x = 2π for case C
(Rob = 0.5). (b) Secondary flow streamlines in the y-z section. Arrows denote the direction of
motion.
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Figure 3.19: Three-dimensional contours of time-averaged v and w velocity for case C (Rob = 0.5).
Blue and yellow contours denote clockwise and counter-clockwise motion, respectively.
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3.2.3 Quadrant Analysis

Quadrant analysis of the Reynolds shear stress, which divides u′v′ into four quadrants ac-

cording to the signs of fluctuating streamwise (u
′
) and wall-normal (v

′
) velocity where v

′
> 0

signifies motion away from the wall, provides important information on contributions to TKE

production (Kline et al., 1967). In equation 3.15, the Reynolds shear stress is shown to have a

significant contribution towards the production (P) term. For non-rotating flow, the second and

fourth quadrant events dominate the near-wall region of peak TKE production amd at the location

of peak production (y+ ≈ 12), the contributions from both events are approximately equal (Kim

et al., 1971). The second quadrant event, (u′v′)2 (u
′
< 0 and v

′
> 0), contains the motion attributed

with ejections of low-speed fluid away from the wall. The fourth quadrant event, (u′v′)4 (u
′
> 0

and v
′
< 0), contains the motion attributed to an inrush of high-speed fluid into the wall region. In

the present work, quadrant analysis is used to compare cases A (Rob = 0) and B (Rob = 0.2) in re-

gards to the relationship between u
′
and v

′
whose outer product forms the dominant contribution

towards the near-wall P peaks observed in figures 3.13(b).

For simulation case A (Rob = 0), figure 3.20 shows maps of significant quadrant events in an

x-z cross-section at y = 0.06, the location of peak production in figure 3.13(b). The bursting event

criterion recommended by Comte-Bellot, Sabot, and Saleh (1978)

|u′v′ |
urmsvrms

≥ H (3.18)

was used to define significant quadrant events, where H is the threshold level. This H value was

set to 1 in the present work and chosen to be similar to the selected threshold values in the bursting

event studies by Kim and Spalart (1987) and Bogard and Tiederman (1986). A significantly larger

number of powerful second (Q2) and fourth (Q4) quadrant events are observed in comparison to

the small number of powerful first (Q1) and third (Q3) quadrant events; the number of signifi-

cant Q2 and Q4 events is also approximately equal. In figure 3.20(b), the streamwise-elongated

structures correspond with the sublayer streaks of the turbulence generation cycle.

Figure 3.21 shows the spatial x-z distributions of significant quadrant events for simulation



52

(a)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

(b)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

(c)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

(d)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

Figure 3.20: Instantaneous spatial distribution of significant quadrant events in a x-z plane at
y = 0.06 for simulation case A (Rob = 0): a) First quadrant; b) second quadrant; c) third quadrant;
d) fourth quadrant.
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case B (Rob = 0.2) at y = 0.14, the corresponding location of peak production in figure 3.13(b).

The number of regions with significant Q2 and Q4 activity is significantly diminished compared

to case A (Rob = 0) in figure 3.20. In figures 3.21(b) and (d), structures resembling ”turbulent

spots” (Biringen and Maestrello, 1984), a characteristical structure of transitional turbulence, are

observed. These structures affirm the undergoing process of reverse transition in the suction re-

gion as rotational forces drive the flow regime from turbulence towards re-laminarization.

The spatially-averaged (in x and z) quadrant contributions are also shown in figures 3.22(a)

and (b) as a function of nondimensional time (t) for cases A (Rob = 0) and B (Rob = 0.2), respec-

tively. In figure 3.22(a), the temporal variations are shown to be random and small for case A

(Rob = 0), indicative of the consistent cycle of turbulence production in the near-wall region of

turbulent channel flow. Figure 3.22(a) also quantifies the significantly higher contributions from

Q2 and Q4 to turbulence production than Q1 and Q3. In figure 3.22(b), the time history for case

B (Rob = 0.2) displays significant changes from figure 3.22(a). For all four quadrants, large, quasi-

periodic temporal variations of u′v′ values are observed over long time scales; the motions are also

simultaneous. Although the amplitudes are heavily suppressed compared to case A (Rob = 0), sig-

nificant bursts of energetical activity are demonstrated at peak values. The differences between

the contributions from Q2 and Q4 to those from Q1 and Q3 are also significantly diminished. At

peak amplitude, Q4 events are observed to be the largest contributor to turbulence production.

To analyze the phase differences between the streamwise (u
′
) and wall-normal (v

′
) fluctu-

ating velocities for cases A (Rob = 0) and B (Rob = 0.2), the temporal distributions of u′v′ are

decomposed using Fourier transforms. The separate u
′

and v
′

signals in figures 3.22(a) and (b)

are transformed into spectral signals and a dot product is performed between the two signals.

The phase component is extracted from the dot product and visualized in the polar plots in figure

3.23. 0◦ and 180◦ refer to the signals being completely in-phase and out-of-phase, respectively. In

figure 3.23, a massive shift of the phase contours between the simulation cases A (Rob = 0) and B

(Rob = 0.2) is observed for all quadrants. Hence a remarkable alignment between streamwise and

wall-normal fluctuating velocity, which manifests as the two quantities being almost completely



54

(a)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

(b)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

(c)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

(d)

0 2 4 6 8 10 12

x

0

1

2

3

4

5

6

z

Figure 3.21: Spatial distribution of significant quadrant events in a x-z plane at y = 0.14 for sim-
ulation case B (Rob = 0.2): a) First quadrant; b) second quadrant; c) third quadrant; d) fourth
quadrant.

5050 5100 5150 5200 5250 5300 5350 5400 5450

t

0

0.5

1

1.5

2

2.5

u
′
v
′

×10
-4 (a)

5050 5100 5150 5200 5250 5300 5350 5400 5450

t

0

0.5

1

1.5

2

2.5

u
′
v
′

×10
-4 (b)

Figure 3.22: Temporal distribution of quadrant events. a) Case A (Rob = 0); b) case B (Rob = 0.2).
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in-phase or out-of-phase for all four quadrants, is demonstrated in the suction region for case B

(Rob = 0.2). This alignment is also corroborated by the quasi-periodic motions in figure 3.22(b)

which occur concurrently for all four quadrants.

3.2.4 Higher-Reynolds number effects

In engineering applications, turbulent flows often encounter higher-Reynolds number ef-

fects. Hence it is prudent to investigate how turbulence production and the corresponding tur-

bulence structures are different in higher-Reynolds number flows compared to lower-Reynolds

number flows. The higher-Reynolds number simulation case E (Reτ = 406) is examined and com-

pared to the lower-Reynolds number simulation case B (Reτ = 197).

In figures 3.24(a) and (b), the mean velocity and temperature distributions are shown for

simulation cases B (Reτ = 197) and E (Reτ = 406), respectively. In figure 3.24(a), a higher-Reynolds

number is shown to significantly decrease the amplitudes of the mean velocity distribution al-

though other distribution characteristics such as the shape and slope in the pressure region are

preserved. The decreased amplitudes were expected due to the significant increase of Reτ (and

subsequently uτ) in simulation case E (Reτ = 406), which affected the scaling of the distribution.

In figure 3.24(b), the mean temperature distribution for case E (Reτ = 406) is shown to be signifi-

cantly less asymmetric than the distribution for case B (Reτ = 197) and resembles the distribution

for the no-rotation case A shown in figure 3.8.

In figure 3.25, the turbulent kinetic energy and energy budget (production, pressure-strain

and Coriolis) distributions for case B (Reτ = 197) and case E (Reτ = 406) are displayed. In figure

3.25(a), case E demonstrates characteristics of higher-Reynolds number flows such as the shifts

of both near-wall peaks towards the channel walls and the increasing amplitude of the pressure

region peak in the case E (Reτ = 406) distribution compared to the case B (Reτ = 197) profile. In

figure 3.25(b), the near-wall peak in the pressure region for the case E (Reτ = 406) distribution also

increases in amplitude and shifts towards the channel wall compared to the case B (Reτ = 197)

profile.
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Figure 3.23: Polar plots displaying the respective phase differences between u
′

and v
′
. a) First

quadrant; b) second quadrant; c) third quadrant; d) fourth quadrant. Black: Simulation case A
(Rob = 0); red: simulation case B (Rob = 0.2).
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Figure 3.24: Mean velocity and temperature distributions for full simulation cases B and E. a)
Mean velocity; b) mean temperature. —: case B (Reτ = 197); −−−: case E (Reτ = 406).
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In figure 3.25(c), the amplitudes of the pressure-strain distribution for case E are shown to

be very similar to that of case B with exception of the region near the pressure wall. Similar to

the effects of high-rotation numbers, a higher-Reynolds number increases the amplitude of the

pressure-strain budget near the pressure wall significantly. In figure 3.25(d), the near-wall peaks

of the Coriolis energy budget distribution are also shown to shift towards the channel walls with

a higher Reynolds number, similar to the production budget, although there is less amplitude

increase compared to the other energy budget distributions.

It is also imperative to look at how turbulence structures in both the pressure and suction

regions are altered by higher-Reynolds number effects. In figure 3.26, x-z planar contours of fluc-

tuating streamwise velocity are shown for simulation cases B (Reτ = 197) and E (Reτ = 406) in

the region near the suction wall (y = 0.05). In figure 3.26(b), the number of powerful fluctuations

comprising the “turbulent spots” have increased significantly for simulation case E (Reτ = 406)

and the shape of the overall structure is much more defined.

In figure 3.27, contours of fluctuating streamwise velocity are shown for simulation cases

B (Reτ = 197) and E (Reτ = 406) in the region near the pressure wall (y = 1.95). Similar to figure

3.26(b), figures 3.27(b) demonstrate that higher-Reynolds number effects cause turbulence struc-

tures to become smaller and more numerous. Although the overall characterization of the flow

field is not changed, the specific characteristics of the turbulence structures is different for high-

Reynolds number flows, specifically the diminution and number magnification of the structures.

In figure 3.28, instantaneous x-y maps of fluctuating spanwise vorticity (ω
′
z) are shown at

z = π for simulation cases B (Reτ = 197) and E (Reτ = 406). In the regions near both channel walls,

the overall turbulence structure is preserved: although the number of structures has increased,

elongated slanted structures and clusters of high vorticity concentrations are seen near the suc-

tion and pressure walls, respectively. In the center of the channel however, vorticity has clearly

increased in the case of simulation case E (Reτ = 406) perhaps resulting from the alterations to the

flow dynamics near both channel walls.
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Figure 3.25: Turbulent kinetic energy and energy budgets for full simulation cases B and E. a)
Turbulent kinetic energy; b) Production budget; c) Pressure-strain budget; d) Coriolis budget. —:
case B (Reτ = 197); −−−: case E (Reτ = 406).
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Figure 3.26: Instantaneous u
′

map for a x-z section of the near-wall region at y = 0.05. a) Case B
(Reτ = 197); b) Case E (Reτ = 406).
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Figure 3.27: Instantaneous u
′

map for a x-z section of the near-wall region at y = 1.95. a) Case B
(Reτ = 197); b) Case E (Reτ = 406).

Figure 3.28: Instantaneous ω
′
z map for a x-y section at z = π. a) Case B (Reτ = 197); b) Case E

(Reτ = 406). Isoline increment = 0.1; lines: ωz ≤ −0.1.
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Figure 3.29: Geometry of DNS computational domain for a) full simulations; b) baseline MFU
simulations

3.2.5 Minimal Flow Unit

3.2.5.1 Simulation Overview

The direct numerical simulations for the design of the minimal flow unit (MFU) model were

computed using the same numerical methods and parameters outlined previously. Additional

MFU-specific information regarding the simulations is provided below.

The flow geometries of the present DNS for the full and baseline MFU simulations are

shown in figures 3.29(a) and 3.29(b), respectively; all simulations are based on the periodic chan-

nel model. Initial MFU fields were generated by data extraction from the steady-state solutions

of the full simulations and interpolation onto MFU grids. The listing of simulations and their

corresponding domain lengths and grid resolutions are found in the case descriptions (table 3.3).

The streamwise length of all MFU simulations was selected as Lx = πδ as examinations of box

domains with Lx = 2πδ and πδ showed that a streamwise length of πδ generally approximated

the length of sublayer streaks in the near-wall region. This characteristic streak length did not

change within the pressure region in the case of spanwise rotation and is also equivalent to the

MFU model proposed by Jimenez and Moin (1991) for the non-rotating channel. The MFU simu-

lations AM1 and CM1 were used to study MFU accuracy for higher-order statistics at the baseline
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MFU spanwise domain length Lz = πδ. The MFU models denoted M1-M4 for simulation cases B,

C and E gradually reduced the spanwise domain length to Lz = 0.18πδ to study box minimization

in that direction and its effect on the accuracy of turbulence statistics.

3.2.5.2 MFU: Spanwise Box Minimization

This section proceeds with the determination of an MFU model for rotational turbulence.

In the box minimization study by Jimenez and Moin (1991) for non-rotating turbulent channel

flow, the critical spanwise domain length for self-sustaining turbulence was found to be approx-

imately λ+
z = 100. This spanwise wall unit length is in good agreement with the accepted mean

value for sublayer streak spacing in the near-wall region, indicating these structures require cor-

rect characterization for accurate turbulence statistics (Smith and Metzler, 1983). When turbulent

channel flow is subject to spanwise rotation, these sublayer streaks persist in the pressure region.

The mean spacing between these structures is calculated for full simulation cases A-C in order to

determine if system rotation causes fundamental changes to the structural organization of these

sublayer streaks.

In the present work, the mean streak spacing is determined using the spanwise burst dis-

tance which is the mean spanwise spacing between bursting events. The bursting event criteria

recommended by Comte-Bellot, Sabot, and Saleh (1978)

|u′v′ |
urmsvrms

≥ H (3.19)

was used where H is the threshold level which was set to 1 in the present work, as in Kim and

Spalart (1987) and Bogard and Tiederman (1986). The latter study also reported the average burst

distance was independent of the threshold value over the range H = 0.25 to 1.25. In the present

work, bursting events were detected at the wall-normal locations y = 0.06 for case A (Rob = 0) and

y = 1.95 for rotational cases B (Rob = 0.2) and C (Rob = 0.5), which corresponded with the location

of peak turbulent kinetic energy production for the simulations. A procedure similar to Kim and

Spalart (1987) was performed to calculate the bursting distance. Instantaneous fields were checked
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Table 3.3: MFU case descriptions and initial conditions.

Case Reτ Rob Type Lx × Ly × Lz nx× ny× nz
A 200 0 Full 4πδ× 2δ× 2πδ 256× 129× 256
B 197 0.2 Full 4πδ× 2δ× 2πδ 256× 129× 256
C 192 0.5 Full 4πδ× 2δ× 2πδ 256× 129× 256
E 406 0.2 Full 4πδ× 2δ× 2πδ 512× 513× 512
AM1 196 0 MFU πδ× 2δ× πδ 64× 97× 96
BM1 188 0.2 MFU πδ× 2δ× πδ 64× 97× 96
BM2 191 0.2 MFU πδ× 2δ× 0.36πδ 64× 97× 32
BM3 196 0.2 MFU πδ× 2δ× 0.24πδ 64× 97× 24
BM4 194 0.2 MFU πδ× 2δ× 0.18πδ 64× 97× 16
CM1 190 0.5 MFU πδ× 2δ× πδ 64× 97× 96
CM2 192 0.5 MFU πδ× 2δ× 0.36πδ 64× 97× 32
CM3 193 0.5 MFU πδ× 2δ× 0.24πδ 64× 97× 24
CM4 194 0.5 MFU πδ× 2δ× 0.18πδ 64× 97× 16
EM1 390 0.2 MFU πδ× 2δ× πδ 128× 97× 192
EM2 385 0.2 MFU πδ× 2δ× 0.36πδ 128× 97× 64
EM3 387 0.2 MFU πδ× 2δ× 0.24πδ 128× 97× 48
EM4 382 0.2 MFU πδ× 2δ× 0.18πδ 128× 97× 32
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Table 3.4: Comparison of mean streak spacing in the peak TKE production planes for full simu-
lation cases A-C using inner (λ+

z ) and outer (λz/δ) variable scaling. Inner scaling is shown using
both global (λ+

zg = zuτ/ν) and local (λ+
zl = zuτp/ν) friction velocities. The minimum spanwise

lengths proposed by Jimenez and Moin (1991) for no rotation are provided for comparison.

Case Reτ Rob λz/δ λ+
zg λ+

zl

Jimenez (1991) 200 0 0.5655 113 113
A 200 0 0.5950 119 119
B 197 0.2 0.5694 112 134
C 192 0.5 0.5333 103 125

at every grid point for the satisfaction of equation 3.19 and points which satisfied the criteria

were defined as bursts. The distances between these bursts were calculated and averaged in the

streamwise (x) direction. In addition, more than 100 groups were examined for each simulation

case to provide an adequate statistical sample.

In table 3.4, the mean spanwise streak spacing (λz) is shown for the three full simulation

cases along with the critical spanwise domain length proposed by Jimenez and Moin (1991). The

results are shown under three different scalings: outer variable scaling (λz/δ), inner global vari-

able scaling (λ+
zg = zuτ/ν) and inner local variable scaling (λ+

zl = zuτp/ν) where uτp denotes the

local friction velocity on the pressure wall. For no rotation, uτp is equivalent to the global friction

velocity uτ.

From case A (Rob = 0) to C (Rob = 0.5), table 3.4 demonstrates a decrease in the mean streak

spacing for λz/δ and λ+
zg. The inner local variable scale λ+

zl is shown to increase from case A to C

due to a significantly larger value of uτp. The study by Kristofferson and Andersson (1993) simi-

larly showed a decrease in λz as the rotation number increased. However, their reported decline

of λz was more significant and offsetting the increase of uτp at all rotation rates. This resulted

in a constant reduction of λ+
zl with higher rotation number and a value of λ+

zl = 60 for Rob = 0.5.

There are various estimates for sublayer streak spacing in the pressure region of rotating turbulent

channel flow. The large-eddy simulation (LES) study of Miyake and Kajishima (1986) reported λz

remained constant up to a rotation number of Rob = 0.165 which implied λ+
zl increased with rota-
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tion number due to rising values of uτp. For the purposes of present MFU design, sublayer streak

spacing for cases B and C was determined to be generally similar to the no-rotation case A as both

λ+
zl and λ+

zg remain near the critical value of λ+
z = 100 reported by Jimenez and Moin (1991).

3.2.5.3 MFU accuracy and roll cells

A box minimization study was first conducted using four models with varying spanwise

domain lengths for Rob = 0.5. The MFU simulation cases CM1, CM2, CM3 and CM4 correspond

to spanwise domain lengths of Lz = πδ, 0.36πδ, 0.24πδ and 0.18πδ, respectively. The largest

spanwise length Lz = πδ was selected to capture one full pair of Taylor-Gortler vortices visual-

ized in the previous section and the smallest length Lz = 0.18πδ was chosen to match the critical

length proposed by Jimenez and Moin (1991) for non-rotating turbulent channel flow. In figure

3.30, mean streamwise velocity distributions for Rob = 0.5 demonstrate the MFU model becomes

less accurate with decreasing spanwise domain length. All four models correctly characterize the

laminar-like (parabolic) profile of the suction region and the constant gradient profile of the pres-

sure region. However, cases CM3 (Lz = 0.24πδ) and CM4 (Lz = 0.18πδ) reveal an inaccurate slope

in the pressure region.

Although simulation cases CM3 and CM4 possess spanwise domain lengths equal to or

larger than the calculated streak spacing distances in the previous section, significant mean ve-

locity distribution inaccuracies are observed for their respective box dimensions. Hence it is con-

cluded that for rotational turbulence, alternative coherent structures which operate on larger ed-

dies than sublayer streaks are primarily responsible for turbulence production and require proper

characterization for accurate MFU models. A relation to the large-scale Taylor-Gortler vortices is

examined. In figure 3.31, secondary flow streamlines in the y-z crossflow section for each MFU

model are shown at x = 0.5π. Longitudinal roll cells are well-defined in figures 3.31(a) and (b)

which correspond to MFU simulation cases CM1 (Lz = πδ) and CM2 (Lz = 0.36πδ), respectively.

For simulation case CM3 (Lz = 0.24πδ) in figure 3.31(c), significant discrepancies are observed in

the roll cell characteristics. The wall-normal width of the vortices is decreased by approximately
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Figure 3.30: Comparison of the mean velocity distributions for Rob = 0.5. Black: Case C (Lz =
2πδ); Red: Case CM1 (Lz = πδ); Blue: Case CM2 (Lz = 0.36πδ); Green: Case CM3 (Lz = 0.24πδ);
Magenta: Case CM4 (Lz = 0.18πδ); −−−: 2Ω line.
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50 percent, resulting in a smaller flow circulation region. For simulation case CM4 (Lz = 0.18πδ)

in figure 3.31(d), only a single, thin vortex is observed adjacent to the pressure wall. It is also im-

portant to note that in figure 3.31(b) for case CM2 (Lz = 0.36πδ), the two vortices are not of equal

size in the wall-normal y direction as the roll cells in figure 3.18, which indicates some character-

istic transformation of the vortices. Hence case CM1 (Lz = πδ) is the only MFU simulation case to

capture at least one full pair of roll cells.

In figure 3.32, a three-dimensional representation of the MFU roll cells for case CM1 is

shown using contours of time-averaged spanwise and wall-normal velocity. It is demonstrated

that the streamwise coherence of the roll cells’ tube-like struture is preserved despite the signifi-

cant reduction of the streamwise domain from Lx = 4πδ in case C (figure 3.19) to Lx = πδ.

The normal and shear Reynolds stress distributions for the full and MFU simulations are

shown in figure 3.33. Similar to the mean velocity distributions in figure 3.30, increasing inaccu-

racy is observed for smaller Lz in the distributions of u′u′
+

and w′w′
+

in figures 3.33(a) and (c),

respectively. The underestimations of the normal Reynolds stresses in case CM4 (Lz = 0.18πδ)

correspond with the absence of a Taylor-Gortler vortex pair in figure 3.31(d). Without the flow

circulation advected by these vortices in the pressure region, it is expected that turbulent fluctu-

ations are reduced. The overestimations of peak u′u′
+

and v′v′
+

amplitudes in simulation case

CM2 (Lz = 0.36πδ) can be attributed to the reduced size of a vortex in figure 3.31(b) and case CM1

(Lz = πδ) is the most accurate MFU model for general turbulence statistics. The Reynolds shear

stress u′v′
+

distributions from the MFU simulations are demonstrated to be remarkably accurate

for all spanwise domain lengths although only case CM1 captures a small range of negative u′v′
+

amplitudes in the suction region at approximately y = 0.4.

For MFU model design, accurate mean velocity distributions are shown to correlate with a

longitudinal roll cell pair which is captured in full length. Past a critical value which is marginally

less than Lz = 0.36πδ, reduction of the spanwise domain length results in the contraction of the

Taylor-Gortler vortices in the wall-normal direction, leading to inaccurate mean flow statistics.

The relationship between Taylor-Gortler vortices and mean flow is supported by the formation of
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Figure 3.31: MFU secondary flow streamlines in the y-z section at x = 0.5π for Rob = 0.5. Arrows
denote the direction of motion. (a) Case CM1 (Lz = πδ); (b) Case CM2 (Lz = 0.36πδ); (c) Case CM3
(Lz = 0.24πδ); (d) Case CM4 (Lz = 0.18πδ).
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Figure 3.32: Three-dimensional contours of time-averaged v and w velocity for MFU simulation
case CM1 (Rob = 0.5). Blue and yellow contours denote clockwise and counter-clockwise motion,
respectively.
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Figure 3.33: Comparison of Reynolds stress distributions for Rob = 0.5: a) u′u′
+

; b) v′v′
+

; c) w′w′
+

;

d) u′v′
+

. Black: Case C (Lz = 2πδ); Red: Case CM1 (Lz = πδ); Blue: Case CM2 (Lz = 0.36πδ);
Green: Case CM3 (Lz = 0.24πδ); Magenta: Case CM4 (Lz = 0.18πδ).
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Figure 3.34: Comparison of Reynolds stress distributions for Rob = 0.2. a) u′u′
+

; b) u′v′
+

. Black:
Case B (Lz = 2πδ); Red: Case BM1 (Lz = πδ); Blue: Case BM2 (Lz = 0.36πδ); Green: Case BM3
(Lz = 0.24πδ); Magenta: Case BM4 (Lz = 0.18πδ).

roll cells in the secondary mean (time-averaged) flow advected by the Coriolis force. In addition,

the roll cell characteristics are shown to influence the accuracy of the Reynolds stress distributions

as well; a single reduced vortex in case CM2 resulted in inaccurate distributions of u′u′
+

and v′v′
+

.

Consequently, accurate turbulence statistics with system rotation are not dependent on turbulent

sublayer streak spacing as in non-rotating turbulent channel flow, but instead they depend on

capturing at least one full pair of large-scale roll cells, necessitating a longer spanwise domain

length for a capable MFU model.

MFU results for simulation case B (Rob = 0.2) were very similar to those for simulation

case C (Rob = 0.5). The streamwise and shear Reynolds stress distributions for the full and MFU

simulations are shown in figure 3.34 for Rob = 0.2. Increasing inaccuracy was observed with

decreasing Lz and MFU case BM1 (Lz = πδ) performed the best for accurately approximating the

Reynolds stresses.

3.2.5.4 MFU: Higher-Reynolds Number Effects

Since the focus of MFU model design in the previous section involved turbulence struc-

tures in the outer layer of the channel, it is necessary to demontrate clear separation between
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Figure 3.35: Comparison of Reynolds stress distributions for Rob = 0.2 for a lower and higher-

Reynolds number: a) u′u′
+

; b) u′v′
+

. Black: Case B (Reτ = 197); Red: Case E (Reτ = 406).

the inner and outer regions of the channel, which occurs at higher-Reynolds number flows, to

clarify the application of the proposed MFU model towards rotational flows. In addition, the

study by Brethouwer et al. (2013) demonstrated through the examination of oblique turbulent-

laminar patterns in the suction region for a wide range of rotation and Reynolds numbers, that

Reynolds number effects were significant for spanwise-rotating turbulent channel flow. Hence a

higher-Reynolds number simulation case E was performed for rotation number Rob = 0.2 and a

corresponding MFU analysis was conducted such that the results were compared to those from

the lower-Reynolds number simulation case B.

First, it is prudent to demonstrate that the lower and higher-Reynolds number simulations

possess distinct characteristics in their corresponding turbulence statistics. A comparison of the

distributions of the streamwise and shear Reynolds stresses from the low (Case B) and higher

(Case E) Reynolds number simulations is shown in figures 3.35(a) and (b), respectively. Charac-

teristics of higher-Reynolds number flows are observed for simulation case E such as the shifts of

the near-wall peaks towards the channel walls and the increasing amplitude of the peaks in both

case E distributions compared to the case B profiles (Moser et al., 1999).

For the higher-Reynolds number simulation case E, the box minimization study performed
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in the previous section for the lower-Reynolds number simulation was also conducted using four

MFU models with varying spanwise domain lengths for Rob = 0.2. Similarly, the MFU simulation

cases EM1, EM2, EM3 and EM4 correspond to spanwise domain lengths of Lz = πδ, 0.36πδ,

0.24πδ and 0.18πδ, respectively. In figure 3.36, the mean streamwise velocity distributions for the

higher-Reynolds number simulation case continued to demonstrate that the MFU model became

less accurate with decreasing spanwise domain length. All four MFU simulations captured the

laminar-like (parabolic) profile of the suction region. However, there were significant amplitude

differences between the four MFU distributions and the full simulation distribution; case EM4

(Lz = 0.18πδ) also failed to capture the constant gradient profile of the pressure region. Case EM1

(Lz = πδ) possessed the most accurate approximation of the four MFU models but was inaccurate

compared to its corresponding MFU case BM1 for a lower-Reynolds number.

The normal and shear Reynolds stress distributions for the full and MFU simulations are

shown in figure 3.37 for the higher-Reynolds number case. Similar to the lower-Reynolds number

results in figure 3.33(a), increasing inaccuracy was observed with decreasing Lz in the distribu-

tion of u′u′
+

in figure 3.37(a). In figures 3.37(b) and (c), there was little correlation with Lz and

MFU model accuracy for the distributions of v′v′
+

and w′w′
+

, respectively. As with the lower-

Reynolds number simulations, the domain box with Lz = πδ (Case EM1) was the most accurate

MFU model for general turbulence statistics. However, the MFU model performed more poorly

for the higher-Reynolds number simulation than the lower-Reynolds simulation. For example, the

Reynolds shear stress u′v′
+

distribution in figure 3.37(d) for case EM1 was significantly less accu-

rate than the corresponding distribution for case CM1 in figure 3.33(d). This loss of accuracy with

increasing Reynolds number concurs with the study by Lozano-Duran and Jimenez (2014), which

demonstrated that a larger domain size at very large Reynolds numbers (Reτ ≈ 4200) was required

to calculate accurate one-point turbulence statistics compared to the lower-Reynolds number MFU

domain proposed by Jimenez and Moin (1991).
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Figure 3.37: Comparison of MFU Reynolds stress distributions for Rob = 0.2 at a higher-Reynolds

number. a) u′u′
+

; b) v′v′
+

; c) w′w′
+

; d) u′v′
+

. Black: Case E (Lz = 2πδ); Red: Case EM1 (Lz = πδ);
Blue: Case EM2 (Lz = 0.36πδ); Green: Case EM3 (Lz = 0.24πδ); Magenta: Case EM4 (Lz = 0.18πδ).
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Figure 3.38: Comparison of statistical pressure distributions for the full simulation cases A-C, E.
a) p; b) p

′
rms. Black: Case A (Reτ = 200, Rob = 0); Red: Case B (Reτ = 197, Rob = 0.2); Blue: Case C

(Reτ = 192, Rob = 0.5); Green: Case E (Reτ = 406, Rob = 0.2).

3.2.5.5 MFU: Pressure Statistics

For rotational flows, the pressure gradient is an important factor in the radial flow spread

as it is comprised of the contributions from the centrifugal forces (see Chapter 2). Hence a study

of pressure statistics is appropriate for comparing the effectiveness of a model’s ability to char-

acterize turbulence. The mean pressure and root-mean-square fluctuating pressure distributions

from full simulation cases A-D are shown in figures 3.38(a) and (b), respectively. In figure 3.38(a),

the Coriolis force in simulation cases B-D was shown to generate an asymmetric profile with a

negative and positive mean pressure in the suction and pressure regions, respectively. A higher-

Reynolds number was shown to decrease the gradient of the linear mean pressure distribution for

Rob = 0.2. In figure 3.38(b), an increasing rotation number was demonstrated to significantly in-

crease the amplitudes of the pressure fluctuations in the pressure region but the higher-Reynolds

number simulation case D showed significantly suppressed p
′
rms amplitudes throughout the chan-

nel.

The effect of a decreasing spanwise length Lz was examined using distributions of pressure

statistics for full simulation case B and MFU simulation cases BM1-BM4 in figure 3.39. In fig-

ure 3.39(a), the spanwise length was shown to not affect the accuracy of the MFU model as all
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Figure 3.39: Comparison of statistical pressure distributions for the full and MFU simulations for
Rob = 0.2. a) p; b) p

′
rms. Black: Case B (Lz = 2πδ); Red: Case BM1 (Lz = πδ); Blue: Case BM2

(Lz = 0.36πδ); Green: Case BM3 (Lz = 0.24πδ); Magenta: Case BM4 (Lz = 0.18πδ).

four MFU simulations accurately approximated the linearity and slope of the mean pressure dis-

tribution across the channel. In figure 3.39(b), none of the MFU models were shown to have an

accurate root-mean-square pressure fluctuation distribution and little correlation between Lz and

MFU accuracy was observed.

3.2.5.6 MFU: Higher-Order Statistics

In a previous section, the baseline MFU model (Lz = πδ) was shown to produce accurate

mean velocity and Reynolds stress distributions in comparison to the full simulations. By de-

sign, MFU models are not expected to accurately model higher-order statistics (Jimenez and Moin,

1991). However, it is instructive to understand the limit at which the MFU models fail to represent

the fundamental physics of rotational turbulence. Hence an assessment of higher-order velocity

statistics is conducted based on the DNS results of the full and MFU simulations.

For the no-rotation case A (Rob = 0), the skewness and kurtosis distributions of the full

and MFU simulations are shown in figures 3.40(a) and 3.40(b), respectively, indicating favorable

comparisons with the full simulation. The main features of S(u
′
i) are captured in the MFU model

although higher amplitude oscillations and increased asymmetry are observed, as a result of the
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decreased grid resolution and domain lengths in case AM1. For the flatness distributions dis-

played in figure 3.40(b), the MFU model shows good accuracy throughout the channel.

The higher-order statistics of skewness and kurtosis are shown for cases C and CM1 (Rob =

0.5) in figures 3.40(c) and 3.40(d), respectively. In the pressure region, the MFU model provides an

accurate approximation. However, large increases in S(u
′
), F(u

′
) and F(v

′
) distributions near the

suction wall are not correctly realized in the MFU simulations where these quantities decrease. For

the full simulations, the increase of F(u
′
) from case A to case C in the suction region is attributed

to the disappearance of the turbulence sustenance cycle and subsequent re-laminarization of that

region. The turbulence sustenance cycle is characterized by interactions between coherent high

and low-speed structures which would produce a leveled PDF distribution and consequently low

kurtosis levels. Rotational forces eliminate this structural organization in the suction region and

the study by Brethouwer et al. (2013) demonstrated that the flow regime becomes quiescent al-

though it is punctuated by quasi-periodic bursts of high turbulence activity which corresponds

with a “peaked” PDF distribution and high kurtosis levels.

The reason for the discrepancy in F(u
′
) between the full and MFU simulations in the suction

region in figure 3.40(d) is the MFU model’s inability to capture extreme high and low-amplitude

fluctuations as shown in the time-averaged x-z plane comparison of u
′

in figures 3.41(a) and (c).

The flow regime of the full simulation in figure 3.41(a) displays pockets of extreme u
′

levels but

no corresponding events are seen in the MFU regime in figure 3.41(c). This issue is also reflected

in the comparison of PDF distributions in figures 3.41(b) and (d). Unlike the full simulation PDF

shown in figure 3.41(b), a non-physical limitation on u
′
amplitudes is shown to exist on both ends

of the MFU PDF in figure 3.41(d). This truncation results in an incorrect PDF distribution with no

tails, causing large underestimations of kurtosis in the suction region as shown in figure 3.40(d). A

similar mechanism is also responsible for the suction side differences in F(v
′
) and S(u

′
) between

the full and MFU simulations.

Hence MFU inaccuracy in the suction region is attributed to the inability of the MFU model

to accurately capture the re-laminarized flow regime characterized by extreme fluctuations in a
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Figure 3.40: Comparison of MFU higher-order statistics. Cases A and AM1 (Rob = 0): a) Skewness;
b) Kurtosis. Cases C and CM1 (Rob = 0.5): c) Skewness d) Kurtosis. —: Full simulations; −−−:
MFU simulations. Black: u

′
; Red: v

′
; Blue: w

′
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Figure 3.41: Full/MFU simulation comparison of time-averaged x-z fields and probability density
functions of u

′
at y = 0.06 (Suction region) for Rob = 0.5. a) Case C field; b) Case C PDF; c) Case

CM1 field; b) Case CM1 PDF.
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quiescent regime (turbulent spots). The MFU model demonstrated good accuracy for higher-order

statistics in regions of high turbulent activity, which came as a result of the MFU design capturing

the Taylor-Gortler vortices responsible for turbulence production in the pressure region. But with

respect to higher-order statistics, the MFU model failed to maintain accuracy in the re-laminarized

suction region which is governed by different physical dynamics and coherent structures than the

pressure region.

3.2.6 Summary

Results from a direct numerical simulation of complex turbulent channel flows were ex-

amined with respect to Taylor-Gortler vortices (roll cells). For the design of a minimal flow unit

for rotational turbulence, a baseline MFU model with spanwise domain length of Lz = πδ was

selected to accomodate a single full pair of Taylor-Gortler vortices due to the presence of these

structures in the highly turbulent pressure region. An examination of the spacing between sub-

layer streaks in the pressure region of the rotational case showed that the spacing distance re-

mained approximately the same in comparison to the near-wall region of a no-rotation case. A

box minimization study with reduced spanwise domain lengths down to Lz = 0.18πδ, the MFU

length for the non-rotating turbulent channel flow, was conducted. Observed discrepancies in the

mean velocity distributions demonstrated that MFU accuracy did not depend on sublayer streak

distance as for the non-rotational channel and a significantly larger minimum spanwise length

Lz = πδ was required for accurate turbulent statistics, corresponding to the minimum length for

proper realization of one full pair of Taylor-Gortler vortices. If these vortices were inaccurately

represented from further truncation of the spanwise domain length, turbulent fluctuations were

inaccurate and/or an incorrect mean velocity gradient was produced in the pressure region.

This MFU model analysis was extended to another low-Reynolds case with a different rota-

tion number and similar results were observed. For a higher-Reynolds number, the MFU model

demonstrated decreased accuracy compared to the lower-Reynolds simulation. Hence for large

Reynolds numbers, MFU models may require a significantly larger domain box to accurately ap-
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proximate turbulence statistics and alternative factors for MFU design require consideration, such

as Reynolds number effects on sublayer streak length and turbulence structures in the suction re-

gion. MFU accuracy for pressure statistics was also examined and it was observed that the MFU

model accurately approximated the distributions of mean pressure but not fluctuating pressure.

To test the limitations of the MFU model, higher-order statistics from the baseline MFU model

were compared to those from the full simulations. The model produced accurate distributions of

skewness and kurtosis for a non-rotating channel but was unable to maintain this accuracy with

rotation in the suction region. The MFU model accurately captured higher-order statistics in the

pressure region due to the successful realization of roll cells but could not properly capture the

re-laminarized suction region which contained intermittent high-amplitude velocity fluctuations,

a consequence of the “turbulent spots” structures. These findings indicate that when the MFU

model is extended beyond its intended function of general turbulence quantities (mean velocity,

Reynolds stresses) to higher-order statistics, the model continues to perform well in regions of

high turbulence due to its ability to capture the coherent structures which contribute to turbu-

lence production. However, the model fails in regions with different physical dynamics such as

the low-turbulence suction region.



Chapter 4

Turbulence Closures Models

4.1 Reynolds-Averaged Navier-Stokes (RANS) Models

4.1.1 Introduction

Due to significantly reduced computational costs compared to DNS, Reynolds-Averaged

Navier-Stokes (RANS) are highly desirable if they can accurately parameterize turbulent trans-

port. In the present work, we employ DNS to integrate the Navier-Stokes and energy equations

and utilize this database to assess four RANS models proposed by (a) Reif et al. (1999), (b) Speziale

and Gatski (1993), (c) Girimaji (1996) and (d) Grundestam et al. (2005). In addition, the pressure-

strain functions proposed in Speziale and Gatski (1993) and Girimaji (1996) are investigated for

their influence on the modeled Reynolds stress distributions.

4.1.2 RANS Model Overview

The engineering approach for the calculation of turbulent flows generally consists of the use

of Reynolds-averaged (time-averaged) Navier-Stokes (RANS) equations which require heuristic

closure approximations to model the Reynolds stresses that appear in these equations as a result

of the time-averaging process. Accurate parameterization of these quantities in terms of the fun-

damental variables of the problem, often with the application of an eddy (turbulent) viscosity

coefficient, is essential for an accurate prediction of turbulent transport. RANS models are of-

ten incorporated into engineering applications but have difficulties especially for the modeling of



84

complex flows with extra mean rates-of-strain. In the present work, the current state of turbulence

models in regards to spanwise-rotating turbulent channel flow is evaluated through the examina-

tion of four commonly used turbulence models in their ability to accurately characterize turbulent

transport with rotational effects.

In the present work for model testing, nonlinear eddy viscosity models are used due to their

advantages over linear eddy viscosity models such as the k-ε model (Launder and Shama, 1974) for

complex turbulent flows. Linear eddy viscosity models invoke a linear constitutive relationship

between the Reynolds stresses and mean flow straining field (Boussinesq approximation) and al-

though these models have produced satisfactory predictions in two-dimensional thin shear flows,

they perform poorly in complex turbulent flows with more than one mean flow velocity gradient

such as the spanwise-rotating turbulent channel flow considered here (Launder et al., 1975). In fig-

ure 4.1, the Reynolds stress distributions of the k-ε model were compared to the present DNS data

and a sample nonlinear eddy viscosity model (Grundestam et al., 2005) for case D (Rob = 0.9).

In comparison to the nonlinear eddy viscosity model, the k-ε model demonstrated significantly

poorer accuracy especially in regards to proper characterization of the pressure region (1≤ y≤ 2).

The k-ε model does produce a very similar distribution with the nonlinear eddy viscosity model

for u′3u′3
+

but in general, a clear disadvantage for the linear eddy viscosity model is observed at

the high rotation number compared to the nonlinear model.

All of the turbulence closure approximations considered in this work invoke the nonlinear

eddy viscosity hypothesis which models the Reynolds stresses as functions of the turbulent kinetic

energy (k), dissipation rate (ε) and mean flow gradients in the form of the mean strain rate (Sij)

and rotation tensors (Wij). The turbulence model proposed by Reif et al. (1999) (hereafter referred

to as the PRDO model) is similar to the k− ε model in which partial differential equations (PDEs)

for k and ε are solved. In addition, the PRDO model incorporates two PDEs for the temporal

evolution of v2 and f , where v2 is the modeled (time-averaged) wall-normal Reynolds stress and f

is an elliptic relaxation function which provides kinematic blocking of turbulent transport near the

channel walls. Through analytical derivation for this set of four PDEs, the PRDO model produces
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Figure 4.1: Modeled Reynolds stress profiles for case D (Rob = 0.9). (a) u′1u′1
+

; (b) u′2u′2
+

; (c)

u′3u′3
+

; (d) u′1u′2
+

. Black: DNS; red: linear eddy viscosity model (Launder and Shama (1974)); blue:
nonlinear eddy viscosity model (Grundestam et al. (2005)).

the explicit expression for the Reynolds stresses shown in equation 4.1

u′iu
′
j =

2
3

kδij − 2C∗µv2TSij (4.1)

where C∗µ is a function of the strain rate (Sij) and rotation tensors (Wij) and

T = max
[

k
ε

;6
(ν

ε

)1/2
]

(4.2)

represents a turbulent timescale.

The Speziale-Gatski (SG) and Girimaji (GI) turbulence models, proposed by Speziale and

Gatski (1993) and Girimaji (1996), respectively, are EARSM which belong to a common subtype

of nonlinear eddy viscosity models. In EARSM, an implicit algebraic model for the anisotropic

tensor (bij) is constructed from the Reynolds stress transport equation through the modeling of

individual energy balance terms and an explicit form for bij is derived analytically. An expression
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for the Reynolds stresses is then obtained using the following relation:

bij =
u′iu

′
j

2k
− 1

3
δij (4.3)

The explicit expressions for the Reynolds stresses from the SG and GI models are shown in equa-

tions 4.4 and 4.5, respectively. In both models, the terms η1 and η2 are equivalent to invariants

of the normalized strain rate and rotation tensors, or SijSij and WijWij, respectively. In equation

4.4, α1 is a function of the production-dissipation ratio and in equation 4.5, the G coefficients are

functions of η1 and η2.

u′iu
′
j =

2
3

kδij − 2(SikSkj −
1
3

SmnSmnδij)−

6(1 + η2
1)α1k

3 + η2
1 + 6η2

2η2
1 + 6η2

2
(Sij + SijWkj −WikSkj)

(4.4)

u′iu
′
j = 2kG1Sij + 2kG2(SikWkj + WikSkj)+

2kG3(SikSkj −
1
3

SmnSmnδij) +
2
3

kδij

(4.5)

The model proposed by Grundestam et al. (2005) (hereafter refered to as the GWJ model)

is also an EARSM derived from the Reynolds stress transport equation. Unlike the SG and GI

models which use the linear SSG pressure-strain function to model the pressure-strain energy

balance term (Speziale et al., 1991), the GWJ model uses a nonlinear pressure-strain function in its

formulation. The GWJ model proposes the explicit expression for the Reynolds stresses

u′iu
′
j =

2
3

kδij + k
10

∑
k=1

βkTk
ij (4.6)

where the Tij tensor components are various functions of the mean strain rate and rotation tensors.

Similarly, the β coefficients depend on the tensor invarants defined as

ΠS = SijSji, ΠΩ∗ = WijWji, IV = SijWjkWki (4.7)

Most of these closure formulations have been shown to produce significant errors in predicting the

mean velocity and temperature distributions for rotating turbulent channel flow (e.g. Grundestam

et al. (2005) for the GWJ model). Hence in this work, we examine the details of these models to

assess the likely sources of such errors in the modeled mean and fluctuating quantities.
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4.1.3 RANS Model Results

The normal Reynolds stress u′iu
′
i
+

and primary shear Reynolds stress u′1u′2
+

distributions

calculated using the four aforementioned RANS-based models are compared directly to the present

DNS results for simulation cases A-D. For the no-rotation case A, the comparisons are shown

in figure 4.2. The approximations of the GWJ and GI models are observed to be similar for all

Reynolds stress components. The SG and PRDO models demonstrate the best agreement with

DNS results for the normal and shear Reynolds stress distributions, respectively. Also noted in

Rung and Thiele (1999), the SG model is observed to not satisfy realizability as the modeled distri-

bution of u′2u′2
+

contains non-physical negative amplitudes near both channel walls. Realizability

is a set of mathematical and physical principles that need to be satisfied to prevent the turbu-

lence model from generating non-physical results. The three realizability conditions proposed by

Schumann (1977) are

u′iu
′
i ≥ 0 (4.8)

u′iu
′
j
2
≤ u′iu

′
i u′ju

′
j (4.9)

det(u′iu
′
j) ≥ 0 (4.10)

where det is the tensor determinant.

For case B (Rob = 0.2), the modeled Reynolds stresses and DNS results are shown in figure

4.3 and all four turbulence models demonstrate proper characterization of the suppressed and

enhanced turbulence levels in the suction and pressure regions, respectively. However, the three

EARSM-type models (GWJ, SG, GI) display better agreement with DNS results than the PRDO

model, which displayed identical distributions of u′iu
′
i
+

. The poor performance of the PRDO

model is likely the result of the linear relationship between the Reynolds stress and mean strain

rate tensors (Equation 4.1). With respect to the DNS, the SG model showed the best agreement for

the normal Reynolds stresses but all four turbulence models failed to predict the Reynolds shear

stress profile in the pressure region. For all cases, the PRDO and GWJ models produce identical

distributions for spanwise Reynolds stress u′3u′3
+

which was unexpected due to the significant dif-
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Figure 4.2: Modeled Reynolds stress profiles for case A (Rob = 0). (a) u′1u′1
+

; (b) u′2u′2
+

; (c) u′3u′3
+

;

(d) u′1u′2
+

. Black: DNS; blue: PRDO; green: SG; red: GI; magenta: GWJ.
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Figure 4.3: Modeled Reynolds stress profiles for case B (Rob = 0.2). (a) u′1u′1
+

; (b) u′2u′2
+

; (c) u′3u′3
+

;

(d) u′1u′2
+

. Black: DNS; blue: PRDO; green: SG; red: GI; magenta: GWJ.
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Figure 4.4: Modeled Reynolds stress profiles for case C (Rob = 0.5). (a) u′1u′1
+

; (b) u′2u′2
+

; (c) u′3u′3
+

;

(d) u′1u′2
+

. Black: DNS; blue: PRDO; green: SG; red: GI; magenta: GWJ.
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Figure 4.5: Modeled Reynolds stress profiles for case D (Rob = 0.9). (a) u′1u′1
+

; (b) u′2u′2
+

; (c) u′3u′3
+

;

(d) u′1u′2
+

. Black: DNS; blue: PRDO; green: SG; red: GI; magenta: GWJ.
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ferences in the modeled PRDO and GWJ expressions shown in equations 4.1 and 4.6, respectively.

The SG model again fails to satisfy realizability as negative amplitudes of u′2u′2
+

are observed near

the pressure wall (y = 2) in figure 4.3(b).

The DNS and modeled Reynolds stresses for cases C (Rob = 0.5) and D (Rob = 0.9) are shown

in figures 4.4 and 4.5, respectively. The invariance of the normal Reynolds stress distributions from

the PRDO model continues to result in poor agreement with the DNS in relation to EARSM. The

GWJ model demonstrates the best correspondence with DNS data for cases C and D. For case C,

the modeled SG Reynolds stress distributions develop disparities with the DNS near the pressure

wall as the peak modeled amplitude of u′1u′2
+

is significantly over-estimated in figure 4.4(d) and

an unexpected decrease of u′3u′3
+

amplitudes is observed in figure 4.4(c). For case D, these issues

worsen and the modeled SG distributions demonstrate significant deviations from the DNS for all

Reynolds stress components except u′2u′2
+

. For cases C and D, the SG model is shown to satisfy the

previously violated realizability condition as the modeled distributions of u′2u′2
+

in figures 4.4(b)

and 4.5(b) remain non-negative throughout the entire channel.

For no-rotation, all four tested turbulence models produced Reynolds stress distributions

in close agreement with the present DNS results. For rotating simulation cases B-D, the EARSM

(GWJ, SG, GI) had significantly better agreement with the DNS than the PRDO model, a different

type of nonlinear eddy viscosity model. This observation supports the current trend of turbulence

model design for rotational favoring EARSM-type closures Grundestam et al. (2005). One notable

deficiency of EARSM is generally manifested in the near-wall regions where significant deviations

of u′iu
′
j from the DNS distributions are observed. It is therefore instructive to examine the parame-

terization used for the pressure-strain term as this term is responsible for intercomponent energy

transfer.

4.1.4 EARSM: Pressure-Strain Modeling

The pressure-strain term (Equation 3.17) is of paramount importance as the correlations

between pressure and rate-of-strain fluctuations play a dominant role in intercomponent energy



91

transfer (Launder et al., 1975) within the Reynolds stress equation (Equation 3.14). Both the SG and

GI EARSM apply the linear Speziale, Sarkar and Gatski (SSG) pressure strain function (equation

4.11), albeit with different sets of numerical coefficients as their algebraic formulations differ.

Πij = −C1εbij + C2kSij + C3k(bikSkj + Sikbkj)−

2
3

C3bmnSmnδij − C4k(bikWkj −Wikbkj)

(4.11)

In figures 4.6 and 4.7, the distributions of the pressure-strain closure formula for the SG and GI

models are compared to the pressure-strain distributions directly extracted from the present DNS

data to evaluate possible sources of error specifically for cases A (Rob = 0) and B (Rob = 0.2).

Figure 4.6 displays results for case A (Rob = 0), the modeled pressure-strain function values

for both models are similar to the DNS results in the interior of the channel. However, near both

walls where most of the intercomponent energy transfer takes place, the modeled pressure-strain

amplitudes are drastically overestimated for both the SG and GI models. This discrepancy is not

unexpected as the SSG function is a single-point closure which captures only the local effects of the

pressure-strain correlations, neglecting nonlocal effects such as wavevector information (Mishra

and Girimaji, 2013). In figure 4.7, similar comparisons are presented for case B (Rob = 0.2). It is

observed that the modeled pressure-strain distributions have better agreement with the DNS data

with increasing rotation number near the suction wall (y = 0) and the only major disparity occurs

near the pressure wall with suppressed amplitudes from re-laminarization in the suction region.

In figures 4.6 and 4.7, it is observed that Π11 is a loss term for u′1u′1
+

and Π22 and Π33 are

gain terms for their corresponding Reynolds normal stresses. This is expected because the main

contribution of the pressure-strain correlation term is to isotropize (return-to-isotropy) the nor-

mal Reynolds stress components. In non-rotating turbulent channel flow, the production term

contributes only to u′1u′1
+

, so the pressure-strain tensor isotropizes the normal Reynolds stresses

through a negative contribution to u′1u′1 and positive contributions to u′2u′2
+

and u′3u′3
+

. It is

also observed that these pressure-strain models extract too much energy from u′1u′1
+

and trans-

fer excess energy to u′2u′2
+

and u′3u′3
+

, which is directly reflected in the corresponding modeled
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Figure 4.6: Modeled pressure-strain budget term profiles for case A (Rob = 0). (a) Π11; (b) Π22; (c)
Π33; (d) Π12. Black: DNS; red: SG; blue: GI.
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Figure 4.7: Modeled pressure-strain budget term profiles for case B (Rob = 0.2). (a) Π11; (b) Π22;
(c) Π33; (d) Π12. Black: DNS; red: SG; blue: GI.
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Reynolds stress distributions in figures 4.2 and 4.3.

4.1.5 Summary

For spanwise-rotating turbulent channel flow, the Reynolds stress distributions produced

from a linear and nonlinear eddy viscosity model were compared to demonstrate improved ac-

curacy for the nonlinear model over the linear model. In a comparison of four nonlinear eddy

viscosity models with DNS data, EARSM were the most compatible with DNS results in modeling

the Reynolds stresses for turbulent channel flow subject to spanwise rotation. The Speziale-Gatski

(SG) model was shown to be the most compatible for zero and low rotation numbers but displayed

significant deviations near the pressure wall at high rotation numbers. The Grundestam-Wallin-

Johansson (GWJ) model showed the best agreement with the DNS data at high rotation numbers.

The pressure-strain models of two EARSM (Girimaji, SG) were shown to have significant

disagreements with the DNS data in the near-wall regions. The errors in the modeled contribu-

tions from these terms resulted in degeneration of the predictive capabilities of their respective

closure models. These errors contributed to inaccurate Reynolds stress amplitudes in the near-

wall regions. Present results indicate correct characterization of pressure fluctuations is a crucial

factor in EARSM design for spanwise-rotating turbulent channel flow.

4.2 Heat Transfer Models

4.2.1 Introduction

Due to significantly reduced computational costs compared to DNS, turbulent heat flux

models are also highly desirable if they can accurately parameterize thermal transport in rota-

tional turbulence. In the present work, we employ DNS to integrate the Navier-Stokes and energy

equations and utilize this database to assess two algebraic heat flux models proposed by (a) Younis

et al. (2012) and (b) Abe and Suga (2000). In addition, the pressure-temperature-gradient functions

proposed in the two models are investigated for their influence on the modeled turbulent heat flux
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distributions.

4.2.2 Heat Transfer Model Overview

Heat transfer models parameterize turbulent heat fluxes which are correlations between

velocity and temperature fluctuations. The following two heat flux models that we consider in the

present work are used frequently in engineering calculations (Li et al., 2014). The YWL heat flux

model proposed by Younis et al. (2012) is an Explicit Algebraic Heat Flux Model (EAHFM). For

EAHFM, the transport equation for u′iθ
′ may be written as

Du′iθ
′

Dt
= Diθ + Piθ + Giθ + Πiθ + εiθ

(4.12)

The terms Diθ , Piθ , Giθ , Πiθ and εiθ represent heat flux diffusion, production of heat flux through

shear forces, production of heat flux through rotational forces, pressure-temperature-gradient cor-

relations and viscous dissipation, respectively.

The u′iθ
′ expression obtained from the YWL model is given in equation 4.13 below. Here,

the coefficients C2t, C3t and C4t are absolute constants while C1t is a wall function dependent on

invariants of the anisotropic stress tensor; Ω is the angular rotation rate vector.

−u′iθ
′ = C1t

k2

ε

∂θ

∂xi
+

∂θ

∂xj

[
C2t

k
ε

u′iu
′
j + C3t

k3

ε2

(
∂Ui

∂xj
+ εmjiΩm

)]
+C4t

k2

ε2
∂θ

∂xj

[
u′iu

′
k

(
∂Uj

∂xk
+ εjmkΩm

)
+ u′j u

′
k

(
∂Ui

∂xk
+ εimkΩm

)] (4.13)

The heat flux model proposed by Abe and Suga (2000) (hereafter referred to as the SA model) is

also an EAHFM but unlike the YWL model, the SA model incorporates nonlinear Reynolds stress

terms in its model expressions given in equation 4.14. The terms Cθ and τ represent a wall function

and time scale (k/ε), respectively. The expressions for tensors αij and σij are shown in equations

4.15 and 4.16, respectively. Ωij is the mean rotation tensor and the coefficients cα0, cα1, cσ0, cσ1 and

cσ2 are composed of weight functions and the normalized second invariant of the mean strain rate

tensor.

u′iθ
′ = −Cθkτ(σij + αij)

∂θ

∂xj
(4.14)
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αij = cα0τΩij + cα1τ(Ωilu
′
lu
′
j/k + Ωilu

′
lu
′
j/k) (4.15)

σij = cσ0δij + cσ1u′iu
′
j/k + cσ2u′iu

′
l u′lu

′
j/k2 (4.16)

4.2.3 Heat Transfer Model Results

Similar to previous RANS model testing, the YWL and SA modeled turbulent heat flux

distributions are directly compared to DNS results for simulation cases A-D. In figures 4.8(a) and

(b), the DNS and model distributions of the streamwise and wall-normal turbulent heat fluxes,

u′1θ ′
+

and u′2θ ′
+

, respectively, are shown for the no-rotation case A (Rob = 0). Good agreement is

displayed with the DNS results for both u′1θ ′
+

and u′2θ ′
+

. In figures 4.8(c) and (d), inconsistencies

develop in the YWL and SA modeled heat flux distributions for case B (Rob = 0.2). Both models

show good agreement with the DNS for u′1θ ′
+

in the suction region but overestimate the peak

amplitudes near the pressure wall (y = 2). In addition, neither model approximates the linear

distribution of u′2θ ′
+

at the channel centre shown in the DNS results.
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Figure 4.8: Modeled turbulent heat flux profiles for cases A (Rob = 0) and B (Rob = 0.2). (a) u′1θ ′
+

(case A); (b) u′2θ ′
+

(case A); (c) u′1θ ′
+

(case B); (d) u′2θ ′
+

(case B). Black: DNS; red: YWL; blue: SA.
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Figure 4.9: Modeled turbulent heat flux profiles for cases C (Rob = 0.5) and D (Rob = 0.9). (a) u′1θ ′
+

(case C); (b) u′2θ ′
+

(case C); (c) u′1θ ′
+

(case D); (d) u′2θ ′
+

(case D). Black: DNS; red: YWL; blue: SA.

In figure 4.9, the modeled heat flux distributions from the YWL and SA models are shown

and compared with the DNS results for cases C (Rob = 0.5) and D (Rob = 0.9). In figure 4.9(a),

a non-physical dropoff in u′1θ ′
+

distributions from both the SA and YWL models is observed for

case C near y = 0.6. In figure 4.9(c), this discrepancy worsens at a higher rotation number in case D

(Rob = 0.9). Increasing departure from DNS data was also observed for increasing rotation num-

ber in the modeled distributions of u′2θ ′
+

. With an increase in Rossby number, the DNS amplitudes

of u′2θ ′
+

are shown to become more suppressed in the suction region but the modeled distribu-

tions instead display significant amplitude increases of u′2θ ′
+

throughout the channel. Through

comparison of turbulent heat flux distributions with DNS results for system rotation, both heat

transfer models displayed significant deviations that increased with increasing rotation number.

As pressure-strain correlations were shown to influence EARSM accuracy, it is instructive to ex-

amine the parameterization used for the pressure-temperature-gradient correlations in EAHFM.
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4.2.4 EAHFM: Pressure-Temperature-Gradient Correlation Modeling

In the present work, EAHFM modeling of the pressure-temperature-gradient correlation

term,

Πiθ = p′∂θ ′/∂xi (4.17)

in the transport equation for the turbulent heat fluxes (equation 4.12) is investigated for error

contributions to the corresponding modeled profiles of u′iθ
′ . In the previous section, correlations

of pressure fluctuations were demonstrated to produce significant contributions to turbulence

dynamics and Liu and Lun (2007) noted Pi2θ was a major source term to u′2θ ′ . The SA model

uses the pressure-scalar correlation model proposed in Launder (1975)

Πiθ = −C1θ
ε

k
u′iθ − C2θu′kθ

∂Ui

∂xk
(4.18)

where (C1θ , C2θ) = (3, 0.4). The YWL model uses the same pressure-scalar correlation model with

additional corrective terms,

Πiθ = −C1θ
ε

k
u′iθ

′ − C2θu′kθ ′
∂Ui

∂xk
− Cw

1θ Piθ − Cw
2θC2θ Piθnink f (4.19)

where (C1θ , C2θ , Cw
1θ , Cw

2θ) = (3, 0.5, 0.5, 0.5) and Piθ represents the production rate of heat flux

through mean velocity and temperature gradients,

Piθ = −
(

u′kθ ′
∂Ui

∂xk
+ u′ku′i

∂θ

∂xk

)
(4.20)

n and f denote a unit vector and wall-damping function, respectively.

In figure 4.10, the modeled pressure-temperature-gradient distributions from the YWL and

SA models are compared to DNS results for selected cases A (Rob = 0) and B (Rob = 0.2). For case

A, Π1θ and Π2θ are gain terms for the corresponding turbulent heat fluxes, in agreement with Liu

and Lun (2007). In figures 4.10(a) and (b), both models demonstrate significant overestimations

of Π1θ in the near-wall regions, similar to the tested pressure-strain models. There is significantly

better agreement between the modeled and DNS distributions for Π2θ and the SA model shows

exceptional accuracy.
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Figure 4.10: Modeled pressure-temperature-gradient profiles for cases A (Rob = 0) and B (Rob =
0.2). (a) Π1θ (case A); (b) Π2θ (case A); (c) Π1θ (case B); (d) Π2θ (case B). Black: DNS; red: YWL;
blue: SA.

For case B, Π1θ continues to be a source term for u′1θ ′
+

but Π2θ changes to become a loss

term for u′2θ ′
+

in the suction region. This feature is not captured by the YWL and SA models,

resulting in significant model disparity from DNS results in the suction region. This major error in

the pressure-temperature-gradient correlation term is shown to contribute to inaccuracies in the

corresponding modeled heat flux distributions in figure 4.8(d). Π2θ is incorrectly characterized by

both models as a gain term for case B, resulting in significant overestimations of modeled u′2θ ′
+

in the suction region. The examination of error contributions from Πij and Πiθ functions to their

corresponding models demonstrated the profound effects of pressure correlations on turbulent

transport in non-rotating and rotating turbulent channel flow.

4.2.5 Summary

For spanwise-rotating turbulent channel flow, the turbulent heat flux models were in good

agreement with DNS data for the no-rotation case but with system rotation, the models deviated
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from the DNS, increasing at higher rotation rates. The pressure-temperature-gradient models of

two EAHFM (YWL, SA) demonstrated inaccurate characterization of the suction region with sys-

tem rotation. The errors in the modeled contributions from these terms resulted in degeneration

of the predictive capabilities of their respective closure models. These errors contributed to an

inaccurate modeled distribution shape for EAHFM and present results indicate correct charac-

terization of pressure-temperature-gradient correlations is a crucial factor in EAHFM design for

spanwise-rotating turbulent channel flow.

4.3 High-Order Closures

4.3.1 Introduction

Two closure models used for predicting high-order moments as a function of lower-order

terms will be evaluated here. These models rely on the empirical coefficients that have been se-

lected to fit experimental observations. Using data obtained from the DNS, the two models, orig-

inally developed for application to the neutral and unstable turbulent Ekman layer (Gryanik and

Hartmann, 2002, Mole and Clarke, 1995), are applied to rotating turbulent channel flow. New co-

efficients are recommended for highest compatibility with the DNS results and are evaluated with

respect to the empirical model coefficients.

4.3.2 Kurtosis Model

The higher-order moments of skewness and kurtosis computed from the DNS data base are

used to test the quadratic skewness-kurtosis model proposed by Mole and Clarke (1995)

Kui = α
(
S2

ui
+ 1
)

(4.21)

The DNS plots of kurtosis vs. skewness are shown for case A (Rob = 0) in figures 4.11 – 4.13 with

modeled distributions using selected α coefficients.

From Fig. 4.11, it is demonstrated the near-wall regions (Su > −0.5) are well approximated

by the α = 2.1 curve. However, in the channel center (Su < −0.5), the modeled distribution be-
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Figure 4.11: Skewness vs. kurtosis distributions for the streamwise velocity component for sim-
ulation case A (Rob = 0). Black line: DNS; Red line, α = 2.1; Blue line, α = 2.5. Arrow indicates
increasing y.

comes inaccurate and α = 2.5 is shown to better approximate this region. The recommendation

of α = 2.3 by Tampieri et al. (2000) fits well with these observations. For the wall-normal and

spanwise skewness-kurtosis diagrams in figures 4.12 and 4.13, respectively, the quadratic model

is incapable of modeling the near-wall region where large increases of kurtosis occur for small

changes in skewness. For selected ranges of α, the model does approximate the centre channel

region accurately for these quantities. The coefficient ranges areα = 3.0− 3.7 in figure 4.12 and

α = 3.2− 3.6 in figure 4.13.

The selected α values for case A (Rob = 0) differ significantly from the best-fit coefficients for

the neutral Ekman layer which found the proposed coefficients of Alberghi et al. (2002) provided

the closest approximation. Instead the coefficients proposed by Tampieri et al. (2000), α = 2.3 and

3.3 respectively for the streamwise and wall-normal kurtosis, are shown to be more accurate for

non-rotating turbulent channel flow. The quadratic approximation for kurtosis as a function of

skewness is effective with exception of the near-wall region for the spanwise and wall-normal ve-

locity components as the model is unable to capture the significant near-wall increases of kurtosis.

The quadratic model of Mole and Clarke (1995) is tested for rotational case B (Rob = 0.2) and
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Figure 4.12: Skewness vs. kurtosis distributions for the wall-normal velocity component for sim-
ulation case A (Rob = 0). Black line: DNS; Red line, α = 3.0; Blue line, α = 3.7. Arrow indicates
increasing y.

Figure 4.13: Skewness vs. kurtosis distributions for the spanwise velocity component for simu-
lation case A (Rob = 0). Black line: DNS; Red line, α = 3.2; Blue line, α = 3.6. Arrow indicates
increasing y.
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Figure 4.14: Skewness vs. kurtosis distributions for the streamwise velocity component for sim-
ulation case B (Rob = 0.2). Black line: DNS; Red line, α = 1.9; Blue line, α = 3.3. Arrow indicates
increasing y.

plots of skewness vs. kurtosis are shown in figures 4.14 - 4.16 with selected modeled distributions.

For the streamwise velocity component in Fig. 4.14, the α = 1.9 curve is shown to match areas

corresponding to the suction wall (y = 0) and portions of the pressure region while the α = 3.3

curve more closely matches the suction side. The large magnitude difference between the two α

values is not ideal and significant portions of the DNS curve are not represented by either modeled

distribution.

In the skewness-kurtosis diagram for the wall-normal velocity (Fig. 4.15), it is demonstrated

that the modeled distributions have very poor correlation with the DNS curve and only a portion

of the pressure side (Kv > 5) is represented by the range covered by α = 2.2− 3.3. For Fig. 4.16, the

quadratic model well approximates the pressure region using the coefficient range of α = 3.0− 3.7

but cannot accurately model the near-wall region on the suction side (Kw > 4). Similar to case A

(Rob = 0), the near-wall event of large spanwise kurtosis increases coupled with minor skewness

changes causes significant modeling inaccuracies.

The selected values for case B (Rob = 0.2) deviate significantly from the idealized coefficients

for case A (Rob = 0) and coefficients sets proposed by Alberghi et al. (2002) and Tampieri et al.
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Figure 4.15: Skewness vs. kurtosis distributions for the wall-normal velocity component for sim-
ulation case B (Rob = 0.2). Black line: DNS; Red line, α = 2.2; Blue line, α = 3.3. Arrow indicates
increasing y.

w

w

Figure 4.16: Skewness vs. kurtosis distributions for the spanwise velocity component for simu-
lation case B (Rob = 0.2). Black line: DNS; Red line, α = 3.0; Blue line, α = 3.7. Arrow indicates
increasing y.
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(2000). Despite α coefficients being selected for skewness-kurtosis curves which displayed best

agreement with the DNS, the modeled distributions showed major inaccuracies most prominently

near the suction wall. The near-wall increases of kurtosis in the suction region, resulting from

decreased Reynolds stress amplitudes used for higher-order moment normalization, causes the

quadratic approximation of kurtosis as a function of skewness to fail in the presence of rotational

effects.

4.3.3 Generalized Higher-Order Model

Here the DNS data will be used to evaluate a closure which parameterizes the third and

fourth-order moments as functions of the heat flux (v′θ′), vertical velocity variance (σ2
v = v′v′),

temperature variance (σ2
θ = θ′θ′), and the velocity and temperature skewness (Sv and Sθ). A simple

set of third and fourth-order closures is given by (Gryanik and Hartmann, 2002, Zilitinkevich et al.,

1999)

v′2θ′ = a1Svσvv′θ′ − K1
∂v′θ′

∂y
(4.22a)

v′θ′2 = a2Sθσθv′θ′ − K2
∂θ′2

∂y
(4.22b)

v′4 = a3
(
1 + d3S2

v
)

σ4
v (4.22c)

θ′4 = a4
(
1 + d4S2

θ

)
σ4

θ (4.22d)

v′3θ′ = a5
(
1 + d5S2

v
)

σ2
v v′θ′ (4.22e)

v′θ′3 = a6
(
1 + d6S2

θ

)
σ2

θ v′θ′ (4.22f)
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The third-order moments include a form of down-gradient diffusion of second-order moments.

Zilitinkevich et al. (1999) proposed

a1 = 1 (4.23a)

a2 = 1 (4.23b)

K1 = CkKvθ (4.23c)

K2 = 0 (4.23d)

where Ck = 0.1 and Kvθ = 0.2τZσ2
v . The characteristic time τZ was parameterized as τZ = k/ε.

Gryanik and Hartmann (2002) instead related the diffusivities to the kinetic energy by

Ki = di
√

kyi (4.24)

for i = 1,2 (note that yi refers to the inversion height).

Gryanik and Hartmann (2002) argue that, in the limit that skewness goes to zero, the fourth-

order statistics should approach Gaussian behavior. This implies ai = 3 for i = 3− 6. For turbu-

lence with large skewness, the coefficient aidi should approach 1. So, di = 1/3 for all fourth-order

moments.

To assess the ability of the above closures to correctly parameterize high-order moments,

Gryanik and Hartmann (2002) use the explained variance to quantify the difference between the

modeled moment and the actual moment:

σ2
f = 1− (yi − f (xi))

2

(yi − y)2
(4.25)

Actual measurements are given by yi while the parameterization is given by f (xi). The overbar

denotes an averaged quantity. To account for the clustering of mesh points in the near-wall region,

the explained variance is redefined for this work as an integral over the channel:

σ2
f ≡ 1−

∫ Ly
0 (yi − f (xi))

2 dy∫ Ly
0 (yi − y)2 dy

(4.26)
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where yi are values from the DNS and f (xi) are, once again, the corresponding model predictions.

The mean y is computed by

y =
1
Ly

∫ Ly

0
yi dy (4.27)

The definition in Eq. 4.26 eliminates the bias associated with the clustering of meshpoints at the

boundaries. Explained variance was used to find optimal modeled coefficient values of ai and di

associated with the largest explained variance.

It must be noted that for coefficients K1 and K2 proposed by Gryanik and Hartmann (2002) in

equation 4.24, the inversion height (yi) for the turbulent Ekman layer is defined as the wall-normal

coordinate where the wall-normal turbulent heat flux (v′θ ′) distribution reaches a minimum value.

However the turbulent wall-normal heat flux associated with turbulent channel flow does not dis-

play this property as its distribution instead maintains a minimal value over a large section of the

channel. Rotational dynamics do not alter this aspect of the heat flux distribution. Consequently

for model testing, yi was first varied to find an optimum value associated with the largest ex-

plained variance for cases A-D. The optimized yi values were 0.15 for case A (Rob = 0), 0.01 for

case B (Rob = 0.2) and 0 for cases C (Rob = 0.5) and D (Rob = 0.9).

For case A (Rob = 0), the contour plots in Fig. 4.17(a) and (b) show the explained variance

for v′2θ′ and v′θ′2, respectively. The black circles correspond to values of ai and di which maxi-

mize the explained variance in relation to the DNS data; the red circles give values proposed by

Gryanik and Hartmann (2002) and the blue circles correspond to coefficients recommended by

Zilitinkevich et al. (1999). For a1 and d1, the values which match the DNS are respectively larger

and smaller than both recommended values. The ranges of optimal values for a2 and d2 in Fig.

4.17(b) are demonstrated to be significantly smaller than the range in Fig. 4.17(a) and differ sig-

nificantly from the coefficient sets of Gryanik and Hartmann (2002) and Zilitinkevich et al. (1999)

with respect to a2. The maximum explained variances associated with v′2θ′ and v′θ′2 are 0.8362

and 0.3295, respectively, which demonstrate poor model fit with the DNS data.

The contour plots for fourth-order moments are shown in Fig. 4.18 with optimal coefficients



107

plotted alongside the recommended coefficients of Gryanik and Hartmann (2002) and Zilitinke-

vich et al. (1999). Obtained optimum values of ai and di show significant differences from the

recommended coefficients although no outstanding trends are observed. Disparity in the ai co-

efficients appears to be more common than for di. The diagram of Fig. 4.18(c) for v′3θ ′ shows

the worst model performance among the fourth-order moments with a maximum explained vari-

ance of 0.8958. Although this value is not ideal, model agreement with fourth-order moments is

significantly greater than demonstrated for third-order moments.

For case A (Rob = 0), the DNS data vs. modeled predictions is plotted with unity for third-

order order moments v′2θ′ and v′θ′2 in Fig. 4.19(a) and (b), respectively. The friction velocity (v∗)

and temperature (θ∗) were used to scale the high-order moments. The optimum coefficients ai

and di found in Fig. 4.17 are demonstrated to do a poor job at modeling DNS results. The opti-

mized modeled distributions are also plotted against DNS and modeled profiles using coefficients

proposed by Gryanik and Hartmann (2002) and Zilitinkevich et al. (1999) in Fig. 4.20. The big

”sine”-like difference between unity and case A (Rob = 0) data in Fig. 4.19(a) is demonstrated

to be a result of incorrect model approximations of the maximum peak locations in the log-law

regions. The smaller ”eight”-shaped deviation from unity in Fig. 4.19(a) results from additional

inaccuracy in the viscous sublayer region near both walls. As expected from Fig. 4.19(b), the

modeled distributions are shown to have poor accuracy throughout the entire channel.

For case A (Rob = 0), the DNS data vs. modeled predictions for fourth-order order moments

are displayed in Fig. 4.21 and modeled distributions are shown with predictions by Gryanik and

Hartmann (2002) and Zilitinkevich et al. (1999) in Fig. 4.22. The generalized model performs

well in figures 4.21(a), (b) and (d). Some deviation is shown for v′3θ′ in Fig. 4.21(c), which is

demonstrated in Fig. 4.22(c) to stem from slight over-predictions of the twin peak amplitudes and

under-prediction of centre channel region amplitudes. The relative inaccuracy of the generalized

closure model in approximating third-order moments compared to fourth-order moments may be

attributed to specialized coefficient tuning for third-order moments.

Similar analysis to case A (Rob = 0) is performed for cases B-D. Contours of sampled ai and
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Figure 4.17: Calculation of empirical constants for third-order distributions. a) v′2θ ′ ; b) v′θ ′2. Con-
tours give explained variance as calculated by Eq. 4.26. Contour interval is ∆ = 0.1 for the contours
(minimum of σ2

f = 0.1) Black circles: Case A (Rob = 0); Red circles: Gryanik and Hartmann (2002);
Blue circles: Zilitinkevich et al. (1999).

Table 4.1: Coefficients for third and fourth-order moment closures with corresponding maximum
explained variance: Best-fit for rotating turbulent channel flow cases A-D.

ai, di A B C D σ2
f

∣∣∣
A

σ2
f

∣∣∣
B

σ2
f

∣∣∣
C

σ2
f

∣∣∣
D

a1 1.347 1.221 1.397 1.681
0.8362 0.6010 0.6515 0.6999d1 -0.04774 -0.304 -0.098 0.00251

a2 0.103 0.5427 0.4673 0.4322
0.3295 0.1759 0.4765 0.6516d2 0.01256 -0.06784 0.00251 0.00251

a3 3.487 2.794 2.432 2.538
0.9859 0.9945 0.9979 0.9991d3 0.00503 0.146 1.06 1.161

a4 2.492 2.251 2.613 3.095
0.9309 0.9992 0.9957 0.9958d4 1.186 0.809 1.01 0.7085

a5 3.095 3.503 2.749 2.643
0.8958 0.9639 0.9746 0.9838d5 0.2563 0.00503 0.3568 0.5578

a6 2.734 2.327 3.126 3.623
0.9880 0.8501 0.8456 0.9769d6 0.4322 0.8501 0.1558 0.00503
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Figure 4.18: Calculation of empirical constants for fourth-order distributions. a) v′4; b) θ ′
4; c) v′3θ ′ ;

d) v′θ ′3. Contours give explained variance as calculated by Eq. 4.26. Contour interval is ∆ = 0.05
for the contours (minimum of σ2

f = 0.8). Black circles: Case A (Rob = 0); Red circles: Gryanik and
Hartmann (2002); Blue circles: Zilitinkevich et al. (1999).
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Figure 4.21: Fourth-order moments: (a) v′4, a3 = 3.487, d3 = 5.03× 10−3, σ2
f = 0.9859; (b) θ′4 a4 =

2.492, d4 = 1.186, σ2
f = 0.9309; (c) v′3θ′, a5 = 3.095, d5 = 0.2563, σ2

f = 0.8958; (d) v′θ′3, a6 = 2.734,
d6 = 0.4322, σ2

f = 0.9880. Dots are Case A (Rob = 0) data and the line is unity.
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Figure 4.22: Modeled fourth-order distributions with DNS for Case A (Rob = 0). a) v′4; b) θ′4; c)
v′3θ′; d) v′θ′3. Black: Case A (Rob = 0); Red: Optimal coefficients; Blue: Gryanik and Hartmann
(2002); Green: Zilitinkevich (1999).
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di were computed for large ranges of values and optimal coefficients corresponding to maximum

explained variance were selected, the resulting modeled distributions were then compared to the

DNS data. The recommended coefficients of ai and di along with the maximum explained variance

are summarized for the six higher-order moments in table 4.1 for all rotating turbulent channel

flow cases.

Rotation is demonstrated in table 4.1 to have significant effects on the optimal model coef-

ficients and maximum explained variance for both third and fourth-order moments. The model

produces a poorer approximation for v′2θ′ in the rotational cases compared to case A (Rob = 0). For

the rotational cases, the best-fit a1 values are observed to steadily increase as a function of rotation

number and the best-fit d1 coefficients also display this trend. The optimal a2 coefficient is shown

to decrease for increasing rotation number. Although the model showed significant σ2
f increases as

the rotation rate increased, the model showed poor performance for v′θ ′2 and demonstrated large

inaccuracies for third-order moments in regards to spanwise-rotating turbulent channel flow.

In table 4.1 for rotational cases B-D, it is observed that the generalized model holds signif-

icantly greater accuracy for fourth-order moments than third-order moments. Rotational effects

resulted in better modeled approximations of v′4 and θ′4 (σ2
f > 0.99). Observation of coefficient

trends showed increases of a4 and d3 with higher rotation number. For v′3θ′, the model was also

demonstrated to have better performance for higher rotation number although its maximum ex-

plained variance reached 0.9838 in case D (Rob = 0.9). In contrast, modeled approximations for

v′θ ′3 displayed decreased accuracy for the rotational cases in comparison to case A (Rob = 0).

A higher rotation number was shown to increase the maximum explained variance similar to

model approximations of v′θ ′2 and the model displayed reasonable accuracy for v′θ ′3 in case D

(Rob = 0.9).

The effectiveness of the generalized model in approximating tested fourth-order moments

for spanwise-rotating turbulent channel flow demonstrates possible universal relevance for the

model beyond its development for the turbulent Ekman layer. Similar to the basic turbulent

quantities of mean velocity and Reynolds stresses, asymmetry is observed in the distributions
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of higher-order moments as a consequence from rotational effects. The shift of peak amplitudes

for v
′
rms to the pressure region and T

′
rms to the suction region has been well-documented in the

direct numerical simulation studies of Grundestam et al. (2008) and Liu and Lun (2007), respec-

tively. Correspondingly, moments dominated by v
′

and θ
′

are demonstrated to shift towards the

pressure and suction walls, respectively. The generalized closure model displayed great accuracy

in modeling these rotational effects on fourth-order moments, even showing increased accuracy

for most high-order moments compared to the non-rotational case.

4.3.4 Summary

Higher-order moments for turbulent channel flow subject to spanwise rotation were as-

sessed for two closure models. The kurtosis closure model proposed by Mole and Clarke (1995)

and the generalized higher-order moment model proposed by Gryanik and Hartmann (2002), Zil-

itinkevich et al. (1999) were evaluated using DNS data for effectiveness in modeling rotation. It

was demonstrated that the kurtosis model using selected best-fit coefficients, similar to those pro-

posed by Tampieri et al. (2000), produced accurate distributions with exception of the near-wall

region for spanwise and wall-normal velocity. In the case of rotation, the model failed to gener-

ate good approximations for any set of coefficients and the quadratic approximation of kurtosis

as a function of skewness was a poor-fit. Parametric studies using explained variance were con-

ducted to obtain optimal coefficients for the generalized closure model. For non-rotation, it was

demonstrated that the model was highly inaccurate for tested third-order moments but gener-

ally accurate for tested fourth-order moments. Rotation was shown to decrease the accuracy of

third-order moments but enhance the accuracy of most fourth-order moments.
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Control of Turbulent Flows

5.1 Overview

The present work considers passive flow control methods using phononic subsurfaces which

are dynamic material systems composed of components with spatially varying material or geo-

metric properties. Phononic subsurfaces exhibit frequency-dependent dynamic properties and

the development of phononic crystals for control of vibrational waves relies on the attenuation or

propagation of specific frequencies, which commit either destructive or constructive interference

on the transmitted waves (Hussein et al., 2015). The terms ”stop band” and ”pass band” refer

to attenuating and propagating specific frequency ranges, respectively. Subsequently, a phononic

crystal structure can be designed such that a range of excitation frequencies would not be allowed

to propagate through the structure. In our computational models for flow control, a phononic sub-

surface replaces a portion of the bottom wall in the channel flow as shown in figure 5.1 in order to

interact with the flow field.

Within the bounds of the phononic structure at the lower channel wall, a fluid/structure

interaction problem is solved at every time step of the flow control simulations. To couple the

fluid and solid systems, the stresses and velocities are required to match at the interface. A con-

ventional serial staggered (CSS) procedure is used at the interface where the pressure acts on the

structure as a force and the resulting wall-normal displacements are imposed as flow field bound-

ary conditions at the interface.
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Figure 5.1: Schematic of plane channel flow with a phononic subsuface covering a segment (Hus-
sein et al., 2015).
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5.2 Fluid-Structure Interaction (FSI) Simulation Model

The resolution of the control simulations in Hussein et al. (2015) was 200× 97× 128 in the

streamwise, wall-normal and spanwise directions, respectively. In the coupled model, a portion

of the bottom wall of the channel was replaced by the phononic subsurface structure covering a

streamwise distance spanning from xs to xe. In the current simulations, xs and xe were 3.0927δ

and 4.6706δ, respectively. The streamwise size and location of the phononic subsurface structure

was kept constant from previous flow control simulations for two-dimensional disturbances as it

corresponded to a one-quarter wavelength of the primary Tollmien-Schlicting disturbance wave

(Kucala and Biringen, 2014). The buffer domain length was 50 percent of the total channel length

to prevent reflections at the outflow boundary.

The materials composing the phononic subsurface unit cells were as in Hussein et al. (2015),

aluminium and ABS polymer. The density (ρ) and Young’s modulus (E) for aluminium are ρAl =

2700 kg
m3 and EAl = 68.8 GPa; the respective quantities for ABS polymer are ρABS = 1040 kg

m3 and

EABS = 2.4 GPa. The phononic subsurface structure as a whole consisted of ten unit cells with a

total length of l = 4 meters.

At each iteration for the control simulations, the dimensional wall pressure (equation 5.1)

was calculated on the streamwise midpoint on the fluid-structure interface

pw = pρ f U2
c (5.1)

where p and ρ f are the dimensional pressure and fluid density, respectively. The pressure acts on

the subsurface structure as a force, resulting in a displacement (η(0, t)) and velocity (η̇(0, t)). The

flow-field boundary conditions were then set using the following equations

u(xs ≤ x ≤ xe,y = 0,z, t) = −η(0, t)
∂ub

∂y
(5.2)

v(xs ≤ x ≤ xe,y = 0,z, t) = η̇(0, t) (5.3)
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In previous work (Hussein et al., 2015), phononics structure designs have been successfully

implemented to significantly suppress the amplification of Tollmien-Schlicting (TS) waves in tran-

sitional turbulence. When the frequency of the TS instability wave was greater than the truncation

frequency of the phononic subsurface structure within the stop band limits, the wave was shown

to stabilize with a significant loss of total energy compared to an un-controlled wave. A similar

approach was applied to investigate the effectiveness of phononic subsurface control on fully-

developed turbulent channel flow. However, the current structures are one-dimensional and are

limited in their ability to mitigate waves across a broad frequency spectrum; hence turbulent ki-

netic energy was not expected to be significantly mitigated due to the wide range of scales and

frequencies operating within fully developed turbulence. Future designs exhibiting a broader

design space are more applicable for flow control of turbulence. Higher-dimensional phononic

structures will be of special use due to the added ability to target a wider frequency range which

would ultimately affect a spanwise wavenumber range (k3) which corresponds to the propagating

plane waves proposed by Sirovich et al. (1990). However, some promising results were discovered

concerning the reduction of energy using the current one-dimensional phononic subsurface con-

figurations despite the structural limitations.

5.3 Control Simulation Results and Analysis

Flow control simulations using two phononic subsurface designs were conducted. The first

control simulation S1 used a unit cell which consisted of a layer of ABS polymer (90 percent vol-

ume fraction) and a layer of aluminium (10 percent volume fraction). The second control simu-

lation S2 used a unit cell which consisted of a single layer of ABS polymer (100 percent volume

fraction). Based on the tenets of phononic subsurface theory (Hussein et al., 2015), design S2 was

tuned to exhibit more favorable phase and amplitude properties for the reduction of energy in a

turbulent flow field than design S1. The details of the phononic subsurface control designs are

beyond the scope of this dissertation but are under further current investigation by researchers at

the Hussein Group at CU-Boulder.
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Results from the control simulations are shown in figure 5.2 which displays the streamwise

spatial distributions in the y+ = 0.06 plane of the normalized percentage differences of turbulent

kinetic energy between each control design and the rigid-wall case: 100× KEcontrol−KErigid
KErigid

. Hence

positive and negative values denote flow de-stabilization and stabilization, respectively.

In figure 5.2, the presence of the phononic subsurface within the slot marked by dashed

lines is expressively demonstrated through the immediate decline in turbulent kinetic energy

upon nearing the slot for both passive control designs; significant downstream effects were also

observed as maximum flow stabilization was located in the region following the slot. The ap-

plication of control design S2 was observed to result in a stronger reduction in energy than the

application of control design S1, demonstrating remarkable adherence to phononic subsurface

theory. One caveat of these results is the small amplitudes of the turbulent kinetic energy re-

ductions (a maximum reduction of 0.6 percent was observed for case S1) but is a consequence of

the one-dimensionality of the phononic subsurface unit cell which is limited in its performance. In

the future, multi-dimensional phononic designs will circumvent this problem and will likely show

much more significant turbulent kinetic energy reductions, which would lead to the suppression

of multiple k3 wavenumbers.

In order to analyze how the phononic subsurface structures are affecting the physics of the

turbulent flow field, a quadrant analysis was completed to examine the control structure effects

on the second and fourth quadrant event contributions which relate to the powerful turbulence

generation cycle. In figures 5.3(a)-(d), the streamwise spatial distributions of the normalized per-

centage differences between the control designs and the rigid wall case (similar to figure 5.2) are

shown in the y+ = 0.06 plane for the four different quadrants Q1-Q4. In figures 5.3(b) and (d), the

second and fourth quadrant distributions generally follow the same trends as the overall turbu-

lent kinetic energy distributions shown in figure 5.2, demonstrating that the phononic subsurface

structures are suppressing the ejection and sweep events which compose the turbulence genera-

tion cycle. Conversely, the first and third quadrant distributions in figures 5.3(a) and (c) generally

demonstrated flow de-stabilization.
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Figure 5.2: Spatial streamwise distributions of the percentage change in kinetic energy for the
control simulations cases S1 and S2 as compared to the rigid wall simulation case S at the y+ = 0.06
plane. Red: case S1; blue: case S2. The dashed black lines denote the location of the slot.
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However, the first and third quadrant contributions did display reductions of turbulent ki-

netic energy in the regions downstream and slightly upstream of the slot despite the slot showing

flow de-stabilization for both control cases. Similarly, the second and fourth quadrant contri-

butions showed some initial flow de-stabilization in the region near the front edge of the slot,

demonstrating that edge effects for the phononic subsurfaces are very significant and produce

different flow dynamics along the streamwise direction. It should be noted that due to the second

and fourth quadrant contributions to turbulent kinetic energy being an order of magnitude greater

than the first and third quadrant contributions, reduction of overall turbulent kinetic energy is ob-

served consistently throughout the channel. The location of maximum flow stabilization in figure

5.2 is a consequence of all quadrant contributions showing energy reductions in that region.
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Figure 5.3: Spatial streamwise distributions of the percentage change in kinetic energy contribu-
tion from various quadrants for the control simulations cases S1 and S2 as compared to the rigid
wall simulation case S at the y+ = 0.06 plane. a) Q1; b) Q2; c) Q3; d) Q4. Red: case S1; blue: case
S2. The dashed black lines denote the location of the slot.



Chapter 6

Conclusion

6.1 Overview

The focus of this thesis was to investigate in detail the dynamics of turbulence in simple and

complex turbulent flows, primarily with regards to understanding the contributions of coherent

structures to the turbulence generation cycle and the ability of closure models to accurately ap-

proximate turbulence. In ascertaining the interactions and roles of energetical structures as well

as their relationships with intercomponent energy transfer and overall turbulent kinetic energy,

the underlying complex mechanisms behind turbulence are better understood and can be applied

towards flow control of turbulence. The examination of turbulence and heat transfer closures also

assists this goal as in addition to attaining significant reductions of computational costs, the un-

derstanding of intercomponent energy transfer and turbulence production is crucial within model

design and improvement. With the results of these investigations, this collective knowledge of tur-

bulence has been applied towards passive flow control techniques using phononic structures for

the reduction of turbulent kinetic energy.

6.2 Contributions

Research from the present work has been presented in the following scientific conferences

and journals.

Conference Presentations:
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• Hsieh, A., Biringen, S. and Kucala, A. ”Use of DNS Data to Evaluate Closure Models for

Spanwise-Rotating Turbulent Channel Flow.” Bulletin of the American Physical Society -

DFD13-2013-000875. Pittsburgh, Pennsylvania, 2013.

• Hsieh, A., Biringen, S. and Kucala, A. ”Evaluation of Turbulence Closure Models for Ro-

tating Turbulent Channel Flow.” International Conference on Computational Heat and

Mass Transfer. Istanbul, Turkey, 2015.

• Hsieh, A. ”The Minimal Flow Unit in Rotating Wall-Bounded Turbulence.” Boulder Fluids

Seminar. University of Colorado-Boulder, 2015.

• Hsieh, A. ”DNS of Rotational Turbulence: Structures and MFU Design.” Sandia Confer-

ence. University of Colorado-Boulder, 2015.

Journal Manuscripts:

• Hsieh, A., Biringen, S., and Kucala, A. ”Simulation of rotating channel flow with heat

transfer: evaluation of closure models.” J. Turbomach. 138:111009. pp. 1-15. 2016.

• Waggy, S.B., Hsieh, A. and Biringen, S. ”Modeling high-order statistics in the turbulent

Ekman layer.” Geophysical and Astrophysical Fluid Dynamics. 5:391-408. 2016.

• Hsieh, A. and Biringen, S. ”The minimal flow unit in complex turbulent flows.” Phys.

Fluids. 28:125102. pp. 1-18. 2016.

• Hsieh, A. and Biringen, S. ”Effects of Rotation on Turbulence Production” J. Fluid Mech.

pp. 1-38. 2017. (Submitted)

• Hsieh, A. and Biringen, S. ”Modeling high-order statistics in spanwise-rotating turbulent

channel flow.” J. Turbomach. 2017. (In preparation)

Contributions:
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• Demonstrated the validity of the theoretical models proposed by Landahl (1990) and

Lengani and Simoni (2015) using turbulent channel flow visualizations obtained from di-

rect numerical simulation. The visualizations confirmed the theoretical model predictions

made for the formation and structure of sublayer streaks and three-dimensional hairpin

vortices in the turbulence generation cycle.

• Developed a specific, new extension of the principal orthogonal decomposition (POD)

method to demonstrate the existence of propagating plane waves in a spatial channel

model. Despite the targeting of these structures in previous flow control studies by Han-

dler et al. (1993) and Murakami et al. (1992), propagating plane waves have only been

previously demonstrated by Sirovich et al. (1990, 1991) using periodic channel models.

With a lack of streamwise wavenumber in the spatial model, a new version of the POD

method was constructed using a nondimensional frequency for the streamwise number

and the creation of a spectral density tensor in both space and time. A conversion for

this nondimensional frequency to a spatial-like streamwise wavenumber was conducted

for the successful demonstration of these coherent structures in the spatial model. This

contribution also resolved concerns from Sirovich et al. (1990) that the streamwise compo-

nent of these traveling waves were a possible result of insufficient mesh resolution of the

periodic model and subsequent mode truncation.

• Discovered the presence of a phase shift between the fluctuating streamwise and wall-

normal velocities in the suction region for spanwise-rotating turbulent channel at a low

rotation number. Using quadrant analyses, DNS data was examined to find a large-

amplitude, quasi-periodic energy contribution from all four quadrants in the suction re-

gion of spanwise-rotating turbulent channel flow which replaced the consistent contribu-

tions in nonrotational turbulence. The strong velocity correlations related to this quasi-

periodic event manifested as a significant phase shift in the analysis of the spectral com-

ponents from these signals.
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• Developed a new minimal flow unit model for rotational turbulence (Rob ≤ 0.5). The min-

imal flow unit is a desirable computational model which significantly reduces computa-

tional costs and has been previously designed for only simple turbulent flows. By per-

forming a similar analysis to the study by Jimenez and Moin (1991) which demonstrated

the necessary box size for non-rotating turbulent channel flow was related to sublayer

streak width in the near-wall turbulence cycle, a corresponding investigation of rotational

turbulence demonstrated the necessity of a minimum box width (Lz = π) for capturing at

least one full pair of Taylor-Gortler vortices (roll cells) to achieve an accurate MFU model.

In addition, a unique examination of the MFU model’s capability to produce accurate

higher-order statistics was conducted and the model demonstrated accurate results in the

pressure region but not the suction region. A significant dependence on Reynolds number

for MFU accuracy was also discovered.

• Tested a large number of RANS and turbulent heat flux models at high rotation number

limits and proposed reasons for the subsequent failure of these models at high rotation

rates. An unique investigation into the pressure-strain and pressure-temperature-gradient

correlation functions of several explicit algebraic Reynolds stress models (EARSM) and

explicit algebraic heat flux models (EAHFM) was conducted which revealed strong need

to revise and improve these budget functions.

• Tested two higher-order closure models initially proposed for the turbulent Ekman layer

for rotating turbulent channel flow. The kurtosis model completely failed in the presence

of rotation but the generalized velocity-temperature model demonstrated strong accuracy

for fourth-order moments even at high rotation rates. Optimized coefficients were pro-

posed for non-rotation and rotational cases.

• Developed a comprehensive strategy for researching the effectiveness of phononic sub-

surface structures on the stabilization of fully-developed spatially-evolving channel

turbulence. Fluid-structure interaction (FSI) simulations using a spatial channel DNS
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code demonstrated that the application of these structures to the bottom channel wall

reduced turbulent kinetic energy in turbulent channel flow; the respective reductions

between two control designs also demonstrated remarkable adherence to phononic

subsurface theory. Post-processing routines were also created to examine the physi-

cal changes to the turbulent flow field by the phononic structures, such as quadrant

analyses to examine changes to burst and sweep events.

6.3 Ongoing Work

• Demonstrate significant reduction of turbulent kinetic energy within fully turbulent chan-

nel flow using new phononic structure designs. These designs will aim to suppress a

significantly greater number of energetic modes as opposed to the current designs which

are unable to reduce turbulent kinetic energy by large amounts.

• Simulate thermal transport using the spatial channel model and film cooling methods to

enhance heat transfer in the near-wall channel regions for turbulent channel flow. High

heat transfer coefficients are desirable near the walls for efficient mixing of coolant mate-

rials in rotating turbomachinery applications. These simulations will aim to examine the

effects of different blowing ratios on local heat transfer coefficients.
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Appendix A

Details of Coding Numerical Structure

A.1 Overview

This appendix section will discuss the numerical structure and details of the two main codes

(spatial and periodic models for channel flow) used for thesis research. As there are extensive sim-

ilarities between the two codes, code details will be given in generalities and specific differences

between the codes will be addressed where they exist.

A.2 Overall Code Structure and Routines

The code is written in the Fortran language and hence the main code files possess the ex-

tension “.F” which corresponds with the FORTRAN 77 fixed format. For MATLAB users, there

are two primary differences (and innumerable lesser ones) between the coding structure of the

MATLAB and Fortran languages. Unlike MATLAB, Fortran requires that for each subroutine, all

variables used within the subroutine must have their variable class (i.e. integer, double precision,

real, etc.) declared before being used in the subroutine. Also, unlike MATLAB, Fortran subrou-

tines do not separate input and output variables during the subroutine calls. Hence the order of

the variable listings during the subroutine call and definition must be exactly the same.

The main file and routine of the code is named ’main.F’. This routine contains the main

structure of the code and all major subroutines are called by the main program. The other major

files of the code include ’initialize.F’, ’comp setup.F’, ’analysis.F’, ’change grids.F’, ’create mats.F’,
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’explicit terms.F’, ’grid stuff.F’, ’phi RHS.F’ and ’update velocity.F’. There may be numerous sub-

routines located within each of these major Fortran files and further details on these subroutines

are discussed later on in this section. In addition, there are also the supplementary files ’make-

file’ and ’petsc include.inc’, as well as the infile program which is located in the subfolder ’in-

clude files’ within the main code directory. Within the designated destination folder, there needs

to be two subfolders ’Analysis’ and ’FieldSaves’ for the output files to be placed.

It must be noted that contrary to the directional notation used in the main portion of the

thesis, the code treats the spanwise and wall-normal directions as the y- and z-directions, respec-

tively; hence the velocities in the spanwise and wall-normal directions are respectively v and

w. The ’petsc include.inc’ file contains the commands to link to the necessary PETSc include

files required for code parallelization as these numerical algorithms were programmed using the

Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. These routines were

specifically designed for solving large systems using massively parallel algorithms. PETSc also

gives the user the option to specify tolerances, the choice of the linear solution procedure, and

other computation parameters directly from the command line, which allows a level of versatility

for quickly tuning simulations.

The ’makefile’ program contains the commands necessary for code compilation. The pro-

gram links the compilation to the appropriate PETSc library using the aforementioned PETSc in-

clude file and then compiles the main Fortran files of the code to produce an executable program

which can be run either on a local machine or remote supercomputer. A flowchart for the code

is provided in Fig. A.1 (Waggy, 2012). The shaded boxes indicate portions of the code where

each individual process can work relatively independent. A white box indicates an action which

has extensive interprocess communication. The lower half of the flowchart (below the dashed

line) represents the time integration sequence. One complete cycle will advance the velocity and

temperature from time step n to n + 1.
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Figure A.1: Direct Numerical Simulation Flowchart: Shaded box, each process works indepen-
dent; White box, global communication. Dashed line separates startup and time integration se-
quences (Waggy, 2012).
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A.3 Initialization

The majority of the code parameters used for the direct numerical simulations are spec-

ified within an infile program located within the subfolder ’include files’ inside the main code

directory. More than one infile program can be created within the subfolder; the desired infile

program is specified within the ’initialize’ subroutine which reads the data from the infile. Within

the infile program, important computational details such as the simulation case name (casen) and

path (caspath), starting (itstrt) and ending (itend) iterations, boundary conditions, relevant nondi-

mensional quantities such as the Reynolds (Re), Rossby (Ro), Prandtl (Pr) and Richardson (Ri)

numbers, as well as the computational box lengths in the streamwise (xlngth), spanwise (ylngth)

and wall-normal (zmax) directions, are set by the user. A number of coding flags are also set in

the infile program including ’restart’ which can be set to true or false for a simulation which con-

tinues from a previous field save or a simulation which begins anew from a user-specified flow

state, respectively. A full listing and corresponding descriptions of the parameters set in the infile

program may be viewed in the ’initialize.F’ subroutine in the main folder. The code is robust and

offers a numerous array of optional variables relevant to testing linear stability theory and flow

control. There is also support for variable grid spacing.

In the main program ’main.F’, the resolution of the simulations is first specified for the

streamwise (nx), spanwise (ny) and wall-normal (nz) directions. The main code then calls forth

the initialized variables from the ’initialize.F’ subroutine and file. Subsequently, the code gener-

ates the computational mesh and obtains the finite difference and Lagrangian interpolation coef-

ficients from the ’gridgen’ and ’coefcomp’ subroutines located within the ’grid stuff.F’ file. The

Lagrangian interpolation coefficients are used to interpolate flow variables from the cell-wall mesh

(zw) to the cell-centered mesh (zc) in the wall-normal direction. The initialization routine of the

code also allocates storage according to the resolution of the simulations. Flow variables are stored

on all processors in a PETSc vector structure. In total, 25 vectors are declared (as outlined in Ta-

ble A.1) leading to a large amount of storage due to the allocation of each right-hand-side (RHS)
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Table A.1: Vector Storage (Waggy, 2012).

# of Vectors Description

3 Full-step velocity
1 Temperature
3 Velocity on staggered mesh
1 Temperature on staggered mesh
1 Pseudo-pressure
6 Ln

i and Ln−1
i for velocity

2 Ln
θ and Ln−1

θ for temperature
3 RHS of velocity predictor equation
1 RHS of temperature equation
1 RHS of pseudo-pressure equation
3 Fractional velocities

individually (including staggered velocities).

The code initialization concludes by computing the user specified base velocity and temper-

ature profiles within the ’get base profiles’ subroutine in the ’comp setup.F’ file. The base profiles

will also adhere to the user-specified boundary conditions for the velocity and temperature that

were delineated in the infile program. However, these base profiles are not necessary if the case is

a restarted simulation or there are available input files to be read. In the case of the spatial channel

model, the flow profiles for the inflow planes are also specified here. For turbulent simulations

using the spatial model, turbulent inflow planes are read using the available turbulence flags set

within the code.

A.4 Generate Linear Operators

Linear solvers are required to advance the velocity in the predictor step and to compute the

pseudo-pressure due to the use of the Crank-Nicolson scheme to integrate the vertical diffusion

terms in the Navier-Stokes and energy equations. For the model equation

∂ui

∂t
≈ 1

Re
∂2ui

∂x2
3

(A.1)
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the Crank-Nicolson scheme can be written as

ûi − un
i

∆t
≈ 1

2Re
∂2ûi

∂x2
3
+

1
2Re

∂2un
i

∂x2
3
+O

(
∆t2) (A.2)

where O
(
∆t2) implies that the solution is second-order accurate in time. The predicted velocity

ûi is obtained from the solution of the linear system(
1− ∆t

2Re
∂2

∂x2
3

)
ûi ≈ un

i +
∆t
2

Mn
i (A.3)

where

Mn
i =

1
Re

∂2un
i

∂x2
3

(A.4)

For the temperature equation, advancement of θn to θn+1 is accomplished by substituting (Re)

with (Re Pr), un
i with θn, and ûi with θn+1 in Eq. A.3 and A.4.

These velocity and temperature operators are computed within the ’make uv operator’,

’make w operator’ and ’make T operator’ subroutines located within the ’create mats.F’ file. All

solutions are obtained using the Krylov subspace methods of the PETSc library, specifically using

the BCGS (Biconjugate gradient method) iterative algorithm to solve the linear system Ax = b.

However, PETSc allows for multiple solution algorithms to be employed and also possesses op-

tions to set the relative tolerance error and a maximum iteration count for the iterative solver.

Solution of the Navier-Stokes and energy equations using the fractional step method results

in N2 × N2 systems of equations where N = N1N2N3. A row in the coefficient matrix A for the

system Ax = b is locally owned by the processor which stores the flow variables for the row’s

corresponding gridpoint. The coefficient matrices for the linear systems are stored in parallel in

the same manner as velocity and temperature vectors. For large systems, storage savings are

obtained by preallocating non-zeros in the banded matrix. Boundary conditions, either Dirchlet

or Neumann, are imposed directly through the A matrix. No ‘folding-in’ occurs as this operation

would require allocating a smaller matrix to store coefficients.
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A.5 Generate Initial Conditions

The initial conditions are created by either reading a previously saved velocity and temper-

ature field or generating an initial condition (in the ’get base profiles’ subroutine). These final-

ized initial conditions for velocity and temperature are respectively set in the ’set init velocity’

and ’set init temp’ subroutines located in the ’comp setup.F’ file. These conditions will also fac-

tor in user-prescribed perturbations such as random noise, which will eventually transition into

turbulence through the growth of primary and secondary instabilities, or user-defined functions

depicting an unstable solution of the linearized equations. Once the initial conditions have been

properly generated, the main time integration loop for the Navier-Stokes solution is entered.

A.6 Compute Ln
i and Solve for Fractional Velocity and Temperature

The advection, horizontal diffusion, Coriolis, and mean pressure gradient terms in the Navier-

Stokes equation are advanced using the fully explicit Adams-Bashforth method, which utilizes a

two-level integration technique:

ûi − un
i

∆t
≈ 3

2
Ln

i −
1
2

Ln−1
i +O

(
∆t2) (A.5)

where

Ln
i = −

∂un
i un

j

∂xj
− 1

Ro
un

j ε ji3 −
∂P
∂xi

+
1

Re

(
∂2un

i
∂x2

1
+

∂2un
i

∂x2
2

)
(A.6)

Combining Eq. A.3, A.4, A.5, and A.6 yields the following linear system of equations for the

predictor velocity: (
1− ∆t

2Re
∂2

∂x2
3

)
ûi = un

i + ∆t
(

1
2

Mn
i +

3
2

Ln
i −

1
2

Ln−1
i

)
(A.7)

where Ln
i and Mn

i are given by Eq. A.6 and A.4 respectively. A similar time advancement is used

for the conservation of energy equation(
1− ∆t

2Re Pr
∂2

∂x2
3

)
θn+1 = θn + ∆t

(
1
2

Mn
θ +

3
2

Ln
θ −

1
2

Ln−1
θ

)
(A.8)
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where the explicit terms are given by

Mn
θ =

1
Re Pr

∂2θn

∂x2
3

(A.9)

and

Ln
θ = −

∂un
j θn

∂xj
+

1
Re Pr

(
∂2θn

∂x2
1
+

∂2θn

∂x2
2

)
(A.10)

The explicit terms for the velocity and temperature given by Ln
i and Ln

θ are first computed in the

subroutine and file ’explicit terms’. In order for the terms to be computed, a grid transform using

fourth-order Lagrangian polynomials is performed within the subroutine and file ’change grids’

for each variable to allow products such as u1u3 to be computed on either the vertical wall (zw)

or centered (zc) grids. The RHS of the u3 and θ linear system must be on the zw mesh, and conse-

quently, the advective terms are also defined on the zw mesh by interpolating u1 and u2 onto zw.

On the other hand, u1 and u2 explicit terms require the RHS to be on the zc mesh; hence variables

u3 and θ are interpolated from zw to zc.

The fractional velocity ûi and updated temperature θn+1 are then solved using the linear

operators previously defined and the newly computed RHS from the ’explicit terms’ subroutine.

For this purpose, the ’KSPSolve’ PETSc subroutine is employed.

A.7 Solve for Pseudo-Pressure / Updating Velocity

While the energy equation will have been integrated successfully using the above methods,

a zero divergence for the velocity field needs to be enforced. The velocity field at the advanced

time step (n + 1) is obtained by a pressure corrector step to the predicted velocity field.

un+1
i − ûi

∆t
= − ∂φ

∂xi
(A.11)

The variable φ acts as a pseudopressure to account for small fluctuations in the turbulent field that

are not accounted for when applying a mean pressure gradient. Taking the divergence of Eq. A.11

yields
1

∆t

(
∂un+1

i
∂xi

− ∂ûi

∂xi

)
= − ∂2φ

∂xi∂xi
.
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Continuity is enforced by stipulating that the advanced field be divergence free (i.e. ∂un+1
i /∂xi =

0). This results in the following linear system for φ based only on the fraction step velocity ûi:

−∆t
∂2φ

∂xi∂xi
=

∂ûi

∂xi
(A.12)

The updated velocity is then found using a rearranged form of Eq. A.11.

un+1
i = ûi − ∆t

∂φ

∂xi
(A.13)

The divergence of the predictor velocity, ∂ûi/∂xi, is a simple operation which requires up-

dating boundary points of each processor in a similar manner as discussed for the explicit terms.

Since the pseudo-pressure φ is defined on the zc mesh, u3 is interpolated from its original zw grid

onto zc. Upon interpolating and updating boundary points for each processor, the RHS of Eq.

A.12 is computed within the ’get phi rhs’ subroutine and file. The solution of Eq. A.12 is obtained

using the same algorithm used for the velocity and temperature equations. The linear operator

for φ was obtained in the ’get phi operator’ subroutine within the ’create mats.F’ file, which was

computed prior to the time integration process. Neumann conditions (∂φ/∂x3 = 0) are imposed

at both the lower and upper boundaries. This system is ill-conditioned since a null-space exists in

the solution but PETSc provides an easily implemented function which removes the null-space by

setting the mean of the pressure field to 0.

Once the pseudo-pressure is calculated, the velocity field at the advanced timestep, un+1
i , is

computed via Eq. A.13 within the ’update velocity’ subroutine and file. In summary, advancing

from the time level n to level n + 1 requires solving 3 linear systems for the fractional velocity

components (û, v̂, and ŵ), 1 linear system for the updated temperature (θ) field and 1 linear system

for the pseudo pressure (φ).

A.8 Numerical Stability

When using numerical methods to solve a system of equations, there are generally two

conditions for numerical stability which must be continuously fulfilled during the time integration
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process. The first condition is that the velocity field must be divergence free ( ∂ui
∂xi

= 0). The second

condition is that the Courant number

CNmax =
|ui|max∆t

∆xi
(A.14)

must be below a certain threshold depending on the governing equations and the numerical

scheme. For the current simulations, it was found that keeping CNmax < 0.5 was required to en-

sure stability. These computations are performed within the ’check divergence’ and ’get courant’

subroutines located in the ’analysis.F’ file.

A.9 Field Saves

Field saves are conducted at a frequency defined by the user and consist of the full statis-

tical fields (nx × ny× nz + 1) for the streamwise (u), spanwise (v), and wall-normal (w) velocity,

temperature (t), pressure (p) and an accompanying data file (dat) for a given case name and it-

eration. The data file contains relevant information such as the iteration count, simulation time,

grid resolution and nondimensional quantities (Reynolds number, Prandtl number, etc.). These

computations are performed within the ’save field’ subroutine and file. If statistical turbulent

averages are of interest, a field is typically saved every hundred or thousand iterations. If time

varying analysis is to be completed, the frequency would increase to every few iterations.

The data files can become quite large and memory is an issue for high-resolution simula-

tions. For example, a 256× 256× 129 mesh requires approximately 320 MB per field save for the

velocity, temperature, and pressure files. After saving the field, the code checks to determine if

the last iteration has been reached. If so, all parallel vectors and matrices are deallocated and the

computation concludes. If not, the code begins computing the explicit terms for the next time step.

A.10 Linear Stability Theory Testing

Both the periodic and spatial channel models offer extensive support for testing temporal

and spatial linear stability theory, respectively. For the periodic model, the Reynolds number
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and streamwise wavenumber (α) are specified to solve for a temporal frequency (ω). For the

spatial model, the Reynolds number and frequency (ω) are specified to solve for a real streamwise

wavenumber (α). Furthermore, both channel models can investigate three-dimensional stability

theory through the additional specification of the spanwise wavenumber (β).

In addition to specifying the aforementioned quantities within the infile program, the two-

dimensional (eig2Dfil) and three-dimensional (eig3Dfil) eigenfunction files must be specified along

with the maximum amplitude of the two-dimensional (amp2d) and three-dimensional (amp3d)

perturbations (assuming the maximum amplitude of the eigenfunctions in the corresponding files

have been normalized to 1). The eigenfunction files should have the length of the wall-normal

direction (nz + 1) and contain six columns for the real and imaginary component values for the

streamwise (first and second columns), spanwise (third and fourth columns) and wall-normal

(fifth and sixth columns) perturbation velocities, although only the real components are read by

the code. The eigenfunctions are added to the flow variables first in the initialization process

(’set init velocity’) and then during the explicit terms (’explicit terms’) and velocity update (’up-

date velocity’) computations.

A.11 Flow Control Options (Spatial Model)

The spatial channel model also possesses support for flow control, specifically regarding a

control subsurface consisting of a phononic structure. The coding of the phononic subsurface unit

cell was done by members of Prof. Mahmoud Hussein’s research group at CU-Boulder and the

code file was supplied as a ’.cpp’ extension file written in the C + + language. These structure

code files are placed in the main code folder and called by the makefile program; hence switching

between different versions of the structure code will require editing the name of the structure file

in the makefile program.

In order to be read properly by the main code, the structure file requires linking to the lo-

cation of the Template Numerical Toolkit (TNT) library. The structure code may also be edited

to change the layers and composition of the unit cell. This is accomplished by editing the ’ratios’
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variable to reflect the elemental composition of the unit cell (100 elements) and creating an equiv-

alent number of node variables (first nodes, second nodes, etc.) to match the number of layers

within the unit cell.

In the infile program, flow control is enacted by setting the ’wall2D’, ’dbot’ and ’FEM’ flags

to ’true’, in which case the phononic subsurface is activated on the bottom channel wall. The

material properties of the unit cell are set using the ’c1’, ’c2’, ’rho1’ and ’rho2’ variables; the length

of the unit cell in meters is set using the ’unit length’ variable. The number of phononic subsurface

slots and its resolution is set using the ’n slot’, ’n pts slotx’ and ’n pts sloty’ variables; the starting

and ending locations of the slot (in terms of the grid points) is set using the ’stxv’ and ’styv’, and

’exv’ and ’eyv’ variables, respectively. It should be noted that turning on flow control will result

in additional structure files (’FEM.’) being created and saved in the FieldSaves subfolder.

The fluid-structure interaction portion of the code is located within the ’FSIcalc’ subroutine

in the ’FSI.F’ file. In order to calculate the streamwise and wall-normal velocities at the fluid-

structure interface, the code first calculates the force and displacement occurring at the interface

using the dimensional wall pressure and mean velocity gradient. These force and displacement

values are then passed into the structure code which outputs the corresponding velocities (u FEM

and w FEM) at the interface. The dimensional wall pressure and mean velocity gradient are first

computed within the ’get pressure’ and ’calc grad’ subroutines and files, respectively.

A.12 Buffer Region (Spatial Model)

The spatial channel model also includes a buffer region in order to prevent reflections at

the outflow boundary by convecting the perturbations by the base flow out of the computational

domain. The buffer domain technique sets the convective terms of the streamwise perturbation

equations to zero using a coefficient function

c(x) =
1
2

tanh[s(Lh − x)] +
1
2

(A.15)
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where Lh is half the length of the buffer domain and s is a stretching parameter controlling the

gradient of the coefficient function. s corresponds to the variable ’cbf’ located in the infile program

and the ’xbuff’ variable sets the start of the buffer domain in the streamwise direction. The buffer

region is computed in the ’get buffer’ subroutine located in the ’grid stuff’ file. The coefficient

function is also written to a file named ’buff.’ in the Analysis subfolder. It is ideal for the coefficient

to fall gradually (not in a vertical or steep manner) from one to zero once the buffer region is

encountered.


