Constraints Provide Domain Behavior
in a Construction Kit

Mark D. Gross and Casey Boyd

CU-CS-583-92 February 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Constraints Provide Domain Behavior
in a Construction Kit

Mark D. Gross and Casey Boyd

CU-CS-583-92 February 1992

CONSTRAINTS PROVIDE DOMAIN BEHAVIOR IN A
CONSTRUCTION KIT

Mark D Gross and Casey Boyd

Human-Computer Communication Group
Department of Computer Science
University of Colorado
Boulder, Colorado 80309
mdg@cs.colorado.edu; cboyd @cs.colorado.edu

ABSTRACT

We have added constraint management (o a construction kit,
making its direct manipulation interface faster, easier, and
more natural-seeming to use. We began with the Janus
construction kit, a design environment which has been
oriented toward kitchen design by loading it with knowledge
of the kitchen domain. Our constraint management code has
allowed us to load the construction kit with knowledge of
how we want objects in the layout to relate to one another
and to behave. We report on how constraints produce
partially self-assembling configurations, how this changes
the construction kit interface, and the methods by which
constraint knowledge is acquired.

KEYWORDS: constraints, direct manipulation, design
process '

INTRODUCTION

Constraints offer a mechanism to build user interfaces that
embody and exhibit the behavior of a specific domain. In a
construction kit environment where users assemble complex
configurations from a simple palette of objects constraints
can provide graphic objects with specific interactive edit
behaviors. The environment can simulate the behavior in
the layout of the objects. Our constraint system extends the
Janus construction kit environment (reported on ecarlier |3,
4)) in several ways. First, construction objects have built-
in behaviors that enable the designer (o more quickly and
easily operate in the construction environment. Second, our
system provides the designer with constraint-defining tools
to program the interactive edit behavior of design objects.
Third, our system offers a "learn from examples”" mode
where the designer can show the system new constraint
relations.

Since Sutherland's Sketchpad program [17], constraints have
been used in various applications in computer graphics and
design. Inferactive constraint-based kits such as ThingLab
explored the interaction of constraint-based and object-
“oriented programming and showed how constraints could be
used to provide an interactive graphic environment with

object behaviors [1]. Constraint based techniques have also
been used in computer aided design {11,16,2,8]. More
general work on constraint satisfaction (e.g. [7,12]) has
supported the development of applications and constraint
programming languages and environments [10,15].

For those who are unfamiliar with the Janus construction
kit, a few words will provide some needed background.
Colleagues in our laboratory have developed the Janus
prograimn, a prototype design environment to explore issues
in computer supported cooperative design [5]. The two
faces of Janus are (1) a construction kit in which a designer
selects elements from a palette and combines them in a
work-area to make configurations, and (2) a hypertext
document of issues and arguments about the design domain,
which offers guidance about selection and placement of
elements.

The construction kit was developed around a specific
example domain from architectural design: the layout of
kitchens. The domain was chosen because it is small and a
significant portion of knowledge can be coded. 1t is familiar
to most people yet sufficiently rich to stimulate discussion. -
In kitchen layout and hence in Janus spatial constraints are
most important. Although nonspatial constraints (e.g.
cost, light, safety) play a role, ultimately the designer must
select, size, and place the elements in the workspace. Thus
many "higher level" constraints can be expressed and
realized in terms of specific spatial constraints. For
example, a safety constraint, "the kitchen should be safe
from fire hazard," can be specified in terms of lower level
spatial constraints: for example, "the stove should not be
under the window" (because curtains might catch fire).

The next section describes the use of our system and
explains the mechanisms that support it. Specifically, we
discuss the use of inherent constraints to give objects
default behavior, how the system resolves constraint
conflicts that arise when objects interact, how users define
new constraint types, how the system acquires constraints
from examples, and the algebraic constraint representation
that underlies the system's interactive behavior. We
conclude with a summary and a discussion of further work.

CONSTRAINTS IN A CONSTRUCTION KIT

Constraints in the Janus construction kit environment
enable the designer (o assemble a design more quickly and
easily. Without constraints, placcment was a tedious task.
With the constraints, objects first snap to a reasonable
location according (o their preprogrammed "inherent
constraints" and the designer can then edit the layout to
adjust the design. The following brief scenario illustrates
the system's behavior.

1. In a typical design session the designer begins by placing
four walls from the palette. The walls snap together at
their corners to make a room. The four walls form a basis
for the design and create a framework for further action.
(figure 1a) The walls stay joined as the designer adjusts
their dimensions.

|

Figure la.

2. The next step brings in the doors and windows. These
elements snap into walls as they are placed and can be
dragged only along the lengths of the walls. (figure 1b) A
constraint keeps each window and door in the plane of its
wall but allows it to slide along the wall's length. By
default the constraint between a wall and a window (or door)
allows the wall to control the position of the window.

[

L-—-—-

Figure 1b.

3. Next, the designer brings in major appliances: stove,
sink, and refrigerator. These snap into position against the
nearest wall along the shortest path from where the user
released them, except the sink which snaps to center under
the window. Also, the corner cabinets snap into place in
the corners behind them. (figure Ic-d) Each of these
elements has preprogrammed inherent constraints that
govern their behavior. In each case, a default dependency
determines which element in a relation will be dominant and
which will be dependent.

Figure lc.

4. To complete the assembly, the designer brings in the
remaining cabinels and counters, which snap to the wall,
then slide along the wall to the nearest neighbor. (figure 1d)

Figure 1d.

5. Finally, the designer edits the layout, adding constraints
that atlow the cabinets (o stretch, and moving the
appliances slightly o improve the design. (figure le)

Figure le.

inherent Constraints Provide Default Behavior

Constraints associated with each clement class provide
default behavior. We call these inherent constraints because
they are applicd automatically when a new element is
instantiated. They describe the element's typical or expected
behavior. In figure 1a, walls have inherent constraints that
join them at their corners. In figure 1b, when the designer
places a window ncar a wall, the window attaches itself in
the wall. The window's inherent constraint places it in the
wall but free to move along the wall's Iength, In figure lc,
the sink has an inherent "in front of window" constraint,
and other appliances have an inherent "in front of wall"
constraint. Of course, the designer can override the defaults
or delete the inherent constraint.

An inherent constraint requires the system to find
appropriate arguments in the work area for the new
constraint, A sink placed in the work area must find a
window to attach itself to. Specific procedural code
belonging to each element class helps the system sclect
arguments for inherent constraints and determine how
constraints should be applied. For example, in figure la,
procedural code associated with the "corners” constraint that
joins two walls inspects the geometry of the walls in the
work area and determines which two edges to relate. Four
possible corner geometrics lead to four possible sets of
primitive algebraic relations. The procedure chooses the
two closest edges and establishes algebraic constraints that
bring and keep them together. The principle is that the user
makes decisions and indicates them with rough positions
and the system does the legwork.

Adding and Removing constraints

In addition to the automatically provided inherent
constraints, it is easy to interactively apply constraints (o
the design and to remove them. The system provides a
menu of commonly used spatial constraints that can be
applied to any two elements. For example, an "adjacent”
constraint applied to a scquence of elements keeps them
aligned on one edge and adjacent. The designer can use this
constraint to snap a selected set of elements together as a
group and keep them lined up. Other constraints may be
limited to certain types of elements. For example, a "sink-
window" constraint cannot be applied to a refrigerator.
- Type-checking the arguments allows the system to limit the
application of a constraint.

1t is also easy to remove previously established constraints.
After the user selects, drags, and releases an element, the
constraint propagator engages. It either moves the element
to a constrained position (perhaps returning it to its original
position) or it moves another related clement to maintain
the established constraints. To move an element without
the constrained behavior, the designer can select an element
- using a "remove-constraints” modifier key. Before dragging
the element, all its constraints will be deleted from the
network and the element may be freely placed.

Resolving Constraint Conflicts

Conlflicts arise and must be resolved almost every time a
new constraint is asserted [9]. Typically the new constraint
asserts some condition that is not true in the current state of
the design and the program must (ake action. For example,
in figure 1c, when the designer brings in a sink from the
palelte its inherent constraint asserts that "sink in front of
window." The new constraint conflicts with current
positions of the sink and the window. To resolve the
conflict the system must move the sink or the window and
other objects related to them. A resolution mechanism
determines how to restore the network to consistency.

A simple but effective resolution mechanism handles most
conflicts in our system based on a partial ordering of

element classes. Most constraints relate slot values of
elements that belong to different classes, (e.g. a sink and a
window). Domain knowledge provides a default resolution
strategy: in architectural design some types of element are
dominant to or "more fixed than" others. Windows are
usually more fixed than sinks. Walls are more fixed than
windows. By default, a window — a built-in clement —
will control the position of a sink — an appliance. If the
window is moved the sink will follow, but if the sink is
moved it will snap back to maintain its relation. with the
window. This is the default one-way dependency behavior
referred to carlier. However the designer can override this
one-way dependency, either for particular clements ("this
sink should control this window") or reprogramming the
default behavior of element classes.

Element classes are ordered with a "fixity" number assigned
to each class. When constrained slot values in two
elements conflict, the element with higher fixity wins. The
conflict resolver retracts the other slot value and the solver
then computes a new value consistent with the rest of the
network. In the example above (figure 1c), the sink moves
to take its place at the window. When a constraint relates
two elements of equal fixity, they are mutually dependent:
Whichever clement is moved causes the other to
accommodate.

This simple scheme handles many cases in kitchen layout.
However, in some cases a spatial constraint should not be
satisficd by moving an element, but by changing a
dimension. A counter between a stove and a refrigerator
might stretch as the designer separates the refrigerator and
stove; refrigerators and stoves should not freely change their
dimensions. We implement these preferences by attaching a
fixity (o each slot in addition to the element's overall fixity.
A counter's size slot has a lower fixity than its edge
position slots; when we constrain a counter adjacent to
other elements it will stretch not move. The conflict
resolution functions process these fixity numbers to
determine which variable to relax.

Extending the Constraint Knowledge

Experienced designers use certain preferred relationships
frequently. Designers can program these preferred
relationships in two different ways, neither of which
requires writing code. In the first method, the user defines a
new constraint type by explicitly combining several
existing ones, thereby determining for the system how the
new constraint will be implemented. In the second method,
the user lays out an example and the system determines how
to implement the new constraint. Here as elsewhere rough
positioning is sufficient.

Defining Constraint Types Explicitly

The designer can extend the built-in behaviors by defining
new constraint types composed from existing ones. The
designer defines a new constraint type by selecting already
known constraints from menus and applying them to
specific elements in the work arca. The new definition
collects the constraints and. abstracts them from their

specific element arguments. The new constraint type is
then added to a menu and is available for immediate
application.

Acquiring Constraints from Examples

Constraints give the user a powerful way lo program the
construction kit with desired design behavior. However, it
requires the user to explicitly specify the constraints.
Specifying all the desired relationships can be tedious;
therefore we have developed a way for our system to acquire
knowledge of constraints based on observing relationships
that the designer establishes [14,13]. This approach relieves
the overhead often associated with programming of
constraint-based environments.

The designer can program a new constraint by showing the
system an example design configuration. In the course of a
brief graphical dialogue with the designer the system tries to
identify the precise relation that the designer intended, then
it stores the induced relation for later use.

The designer selects two or more elements in the work arca
and gives the acquire constraint command. The system
displays a graphical menu at the top of the work area in
which each option represents a different interpretation of the
selected configuration of elements. Each interpretation
embodies a different set of spatial relations. For example,
figure 2 shows three guesses as to the user's intended
relationship between a sink and a window. The example is
ambiguous about whether the sink is centered, lelt- or
right-aligned in front of the window. The designer intended
the sink to be centered in front of the window and will
select the guess on the left. The system removes the menu
and applies the new constraint relationship to the selected
configuration. The sink centers itself beneath the window
and moves adjacent to it. The system also adds the new
constraint type to its menu of preprogrammed constraints.
This can be done during a design in progress.

P

[
[

Figure 2: the system acquires new constraints from
examples.

The algorithm for constraint acquisition is straightforward.
It identifies a set of alternative parses of the relationships
found in the configuration. The system takes the elements
in the example configuration pairwise, in this case the sink
and window. It compares each pair with a list of known
spatial relations, and produces a sublist of relations that

hold for the pair. In this example, three relationships are
identified: left-aligned, right-aligned, and centered. When
the example contains more than one pair of elements, the

-system produces a list of relations for each pair. The

system then produces all permutations taking one relation
from each pair. This constitutes the complete set of all
candidate interpretations of the relations in the example.

The system rests on algebraic constraints

Each object has a set of slots that describe its attributes,
including its x- and y- coordinates in the work area and its
size. Table 1 shows the slots for a typical design element,
stove-1.

#<(FOUR-ELEMENT-STOVE FOUR-ELEMENT-STOVE-1 300082434>
is an object of class
#<CLOS:STANDARD-CLASS JC: :FOUR-ELEMENT-STOVE 33151337>

OC: :NAME: FOUR~ELEMENT-STOVE~1
JC::LEFT-K: 78.8

JC::T0P-Y: 210.5

JC: :WIDTH: 3e

JC::DEPTH: 24

JC: :ROTATION: [}

JC::18-A JC: :FOUR-ELEMENT-STOVE
JC::15-A JC::STOVE

JC::1S-A JC: :APPLIANCE

Table I: slots in stove-1.

Algebraic constraints on object slot values enable a user to
program the interactive edit behavior of design elements.
Our constraint manager parses linear equations, constructs a
network, and propagates values through the network. It
provides functions for adding and deleting constraints to the
network and for fixing and retracting variable values.
Standard propagation techniques [6] are employed, with
dependency maintenance to support retraction of constraints
and values. We have not concentrated on building a
powcdul constraint solver; for example, it does not handle
cycles in the constraint network. However the constraint
mechanisms in our system are sufficient for the ideas
explored in this paper.

Lincar equations and slot values are appropriate for the
constraint solver but not for the end user. The constraints
described above are composed of these lower level algebraic
primitives. Procedural code associated with each
constraint type determines how to implement the constraint
using algebraic primitives. That code is run each time a
constraint is applied. For example, when a stove is attached
to a wall, the system asserts the cquation:

stove.top-y = horizontal-wall.top-y +
horizontal-wall.depth + 1

With this constraint the stove moves to a position adjacent
to the wall. In this case adjacent means placing the top
edge of the stove one unit below the bottom of the wall
(i.c., the top edge of the wall plus the wall's depth). When
two clements are constrained in this fashion, they maintain
this relationship thereafter. 1f the wall is moved (to enlarge
or reduce the kitchen's size), the stove will move along with
it. A variable changes and the system adjusts other
variables to restore network consistency.

DISCUSSION AND FURTHER WORK

What role should constraints play in a design environment
and how can they be effectively integrated into a
construction-kit? In our system constraints animate the
design. Constraints make it easier and faster to assemble a
layout, because elements tend to find their place in the
design automatically. It streamlines thc process,
eliminating what had been awkward and tedious in Janus. A
key issue is whether users consider the elements to be well-
behaved, and whether it is easy for users to change an
element's behavior if they do not like it.

Embedding constraints into the construction environment
simplifies the layout task but the need to program the
behavior adds a potential for complication. We would like
designers to use constraints to program design behavior
without learning a complicated constraint programming
language. It is important that a designer be able to easily
define new constraint types to extend the built-in constraints
and to specify mechanisms to resolve constraint conflicts.
The program must acquire knowledge — in the form of
constraints — about the domain in general and about the
developing design in particular. The system can also
acquire new constraint types by examining examples

provided by the designer and it can also be programmed.

explicitly by combining existing constraints.

The domain of kitchen design has served us well as an
initial testing ground for our ideas. The small and finite set
of clements and relations made it a comprehensible domain.
How will our ideas extend to domains where the problems
“are larger and more complicated?

We have chosen as a successor domain the problem of Local
Area Network design and layout in buildings. We are
interested in this domain because it has an architectural
component yet it requires new and fundamentally different
behaviors which we think can be modeled by constraints.
In addition to position and size of architectural elements,
constraints will control the selection and connection of
network hardware. Workslations, transceivers, thinnet and
thicknet cables must be assembled giving consideration to
cable length limits, network topologies, and connectivity
requirements. As the network design develops and evolves,
the constraint management system will continue (o support
the designer by maintaining consistency and correctness.
The value should be greater as the interactions between
elements are more intricate and less visible.

SUMMARY

- We are using our system to explore the effective integration
of constraint representations for design knowledge and
behavior into construction kit cnvironments. Our
constraint system adds to the Janus construction
environment a way to program design elements with
inherent interactive behavior. Appliances stick to walls,
sinks find their place under windows, counters stretch, and
elements line up. The system's inherent constraints enable
a designer to program the design elements with placement

and layout knowledge. Designers can extend our system by
interactively defining their own constraints.

A simple algebraic constraint management system unlerlies
our extensions to the design environment. We described a
facility for defining constraints, a conflict resolution
procedure that uses an ordering of object classes to select
which variable to relax, and our scheme of packaging
inherent constraints in object classes that are applied when
new clements are instantiated. To lighten the burden of
explicitly describing all the relations to be maintained in a
design, our system acquires new constraint relations by
observing configurations that the designer makes. The
result is an interface that is smoother, faster, less tedious,
more natural-seeming, and easier to use.

We are currently working on a LAN layout editor based on
the ideas we have developed. We expect that our approach
will extend naturally to the new domain but will offer new
challenges for constraint solving and conflict resolution.

REFERENCES

1. Borning, A. Programming Language Aspects of
Thingl.ab. ACM Transactions on Programming Languages
and Systems, 3,4, (1981) pp. 353-387.

2. Bowen, J., and O'Grady P. Constraint Networks for
Life-Cycle Engineering. In: Proc. Al & Engineering '90.
(Boston, MA, 1990), Computational Mechanics Press, pp.
281-296. ’

3. Fischer, G., and Lemke, A. Construction Kits and
Design Environments: Steps Toward Human Problem-
Domain Communication. Human-Computer Interaction,
3,3 (1988) pp. 197-222.

4. Fischer, G., and Morch, A. JANUS - Integrating
Hypertext with a Knowledge-based Design Environment. In:
Proc. Hypertext '89 Proceedings. (1989), pp. 105-117.

5. Fischer G., and Nakakoji, K. Empowering Designers
with Integrated Design Environments. In: Artificial
Intelligence in Design. J. Gero, Ed. Computational
Mechanics Press, 1991,

6. Frceman-Benson, B., Maloney, J., and Boi‘ning, A. An
Incremental Constraint Solver. CACM, 33,1 (1990) pp.
54-63.

7. Freuder, E. Synthesizing Constraint Expressions.
Communications of the ACM, 21,11, (1978) pp. 958-966.

8. Gross, M. Knowledge-Based Support for Subsystem
Layout in Architectural Design. In: Artificial Intelligence in
Engincering: Design. Gero J, Ed. Computational
Mechanics Press, Southampton, UK, 1990.

9. Klein, M., and Lu, S. Conflict resolution in
cooperative design. Artificial Intelligence in Engineering,
4,4 (1989) pp. 168-180.

10. Leler, W. Constraint Programming Languages.
Addison Wesley, Boston, 1987.

11. Lin, V.C., Gossard, D.C., and Light, R.A. Variational
Geometry in Computer Aided Design. Computer Graphics
(SIGGRAPH -81 Proceedings), 15,3 (1981) pp. 171-177.

12. Mackworth, A. Cbnstraim Satisfaction. In:
Encyclopedia of Artificial Intelligence. S. Shapiro, Ed.
Wiley, NY, 1987, pp. 205-211.

13. Maulsby, D., and Witten, 1. Inducing Programs in a
Direct-manipulation Environment. In: Proc. Human Factors
in Computing (SIGCHI '89). (1989), ACM Press / Addison
Wesley, pp. 57-62.

14. Myers, B. Creating User Interfaces by Demonstration.
Academic Press, Boston, 1988.

15. Myers, B. Graphical Techniques in a Spreadsheet for
Specifying User Interfaces. In: Proc. Human Factors in
Computing Systems (SIGCHI '91). (New Orleans, 1991),
ACM Press / Addison Wesley, pp. 243-249.

16. Sapossnck, M. Research on Constraint-Based Design -
Systems. In: Proc. 4th Intl. Conf. Applications of Al in
Engineering. (Cambridge, England, 1989).

17. Sutherland, 1. Sketchpad - a Graphical Man-Machine
Interface [Ph.D. Dissertation]. M.LT., 1963.

