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Abstract

Andrew Beel (M.S., Civil Engineering, Department of Civil, Environmental and Architec-

tural Engineering)

Strong Form Meshfree Collocation Method for Higher Order and Nonlinear PDEs in Engi-

neering Applications

Thesis directed by Assistant Professor Jeong-Hoon Song

The strong form meshfree collocation method based on Taylor approximation and moving

least squares is an alternative to finite element methods for solving partial differential equa-

tions in engineering applications. This study examines how the proposed alternative method

solves (i) higher-order and (ii) nonlinear partial differential equations. First, the proposed

method is formulated in Chapter 2 for the general discretization and solution of strong forms

of partial differential equations. Chapter 3 presents the convergence and error behavior of

the proposed method for the fourth-order Stommel–Munk equation for wind-driven ocean

circulation, as well as the numerical solution of this equation on a domain of more realistic

geometry representing the Mediterranean Sea. In Chapter 4, the proposed method is used

to solve the nonlinear equations governing linear elastic, small-deformation multi-body ther-

momechanical contact, including a comparison with analytical and finite element solutions

for three verification problems.
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Chapter 1

Introduction

Higher-order and nonlinear partial differential equations (PDEs) arise in many engineer-

ing applications. For example, the PDEs governing Kirchhoff-Love plates and thin shells

are higher-order since they contain fourth-order spatial derivative terms [1]. Similarly, the

Cahn-Hilliard phase-field equation describing spontaneous separation of the components of

a binary fluid contains a biharmonic term, which is also of fourth order [2]. Nonlinear PDEs

are ubiquitous, arising for example in any study of inelasticity via material plasticity and

large deformation [3]. Engineers need reliable numerical methods to solve the PDEs arising

in such applications.

Most of the computational studies of higher-order and nonlinear partial differential equa-

tions in mechanics make use of the finite element method (FEM). However, the FEM has

disadvantages related to dependency on a mesh and complications arising from use of the

weak form, particularly in the context of higher-order and nonlinear PDEs in mechanics.

For example, to use the FEM for higher-order PDEs, the governing equations must be de-

composed into systems of lower-order PDEs. FEM solution of the corresponding weak forms

require higher-order polynomial shape functions and global continuity of the numerical solu-

tion, which results in higher computational cost [4]. In nonlinear problems involving material

or contact interfaces or other discontinuities, FEM domain integration with standard quadra-
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ture techniques becomes difficult and special modifications must be made to alleviate these

difficulties [5]. In particular, for contact problems, special techniques must be developed to

overcome the possibility of element node-to-segment contact [6].

Weak form-based meshfree methods such as the element-free Galerkin method have been

developed to alleviate some of the difficulties associated with the FEM [7]. Other interesting

weak form-based meshfree methods can be found in [8, 9, 10]. Although these methods

eliminate mesh dependency, they still require domain integration and exact computation

of derivatives, which increases computational cost. Due to these difficulties, it is worth

exploring other numerical methods for solving higher-order and nonlinear partial differential

equations.

1.1 An alternative method

An alternative to both traditional FEM and weak form-based meshfree methods is the

strong form-based meshfree point collocation method. The particular variation of this al-

ternative considered here, based on Taylor approximation and moving least squares (MLS),

was first developed in [11, 12, 13, 14, 15]. By directly discretizing the strong form of gov-

erning PDEs using a set of approximate derivative operators, the proposed method avoids

mesh dependency, domain integration, and exact computation of derivatives [5]. In addition,

the proposed method easily treats boundary conditions and adaptive refinement. Motivated

by these advantages, the method has been successfully applied to various problems such

as incompressible fluid flows [14], elastic crack problems [16], and the asymptotic crack tip

singularity in a linear elastic fracture [17, 18]. Later, the method was applied to weak and

strong discontinuities [5, 19, 20], diffusive interface modeling and stress analysis [21, 22, 23],

and inelastic material problems [24].

Despite the advantages originating from the flexibility in discretization, the strong form-

based meshfree collocation method also exhibits drawbacks. For instance, since the proposed
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method is based on the strong form, it lacks the corresponding advantages of methods based

on variational forms, e.g., accuracy of solutions in the sense of total energy and some of

the well-developed mathematical framework for analyzing error behavior. The proposed

method also struggles with instabilities and sensitivity to numerical parameters. While a

more thorough analysis of these drawbacks is needed to evaluate the proposed method, an

in depth discussion about the stability of a similar meshfree method can be found in [25].

In view of the advantages and challenges associated with the proposed method, the

present study seeks to demonstrate how the proposed method may be used to solve higher-

order and nonlinear PDEs. The higher-order PDE considered in this study arises in the

context of wind-driven ocean circulation, while the nonlinear PDEs considered in this study

arise in the context of multi-body thermomechanical contact.

1.2 Higher-order PDEs in wind-driven ocean circula-

tion

The equations describing wind-driven ocean circulation contain higher-order spatial deriva-

tive terms and are therefore of interest in this study. Understanding large scale wind-driven

ocean circulation at mid-latitude is important to predict weather, including extreme events

such as cyclones [26]. Common features of wind-driven ocean flows are strong western bound-

ary currents, weak interior flows, and weak eastern boundary currents, as in the north At-

lantic and Pacific oceans. Popular mathematical models to capture these phenomena are the

quasi-geostrophic equations (QGE), the Stommel model, and the Stommel–Munk model [27,

28]. Whereas the QGE are time-dependent nonlinear partial differential equations (PDEs),

the Stommel model and the Stommel–Munk model are stationary linear PDEs.

Existing numerical methods that can be employed to solve these mathematical models are

the finite difference method (FDM) [29], finite volume method (FVM) [30, 31], and the FEM

[32, 33, 34]. For geophysical flows, the FVM is particularly appealing due to its capability of
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unstructured grids along with preserving conservation properties of the underlying equations.

On the other hand, advantages of the FEM over the FDM are an easy treatment of complex

boundaries and grid refinement to achieve a high accuracy in regions of interest. Because

FEM techniques have achieved optimal rates of convergence for the equations formulated

based on the streamfunction, recent developments of numerical techniques have focused on

the streamfunction formulation [35]. Examples include a conforming Galerkin formulation

using C1-elements [35], a discontinuous Galerkin formulation using C0-elements [36], and B-

spline based FEM formulations [37, 38, 39]. Further development of the B-spline based FEM

was achieved by introducing an adaptivity technique for the Stommel and Stommel–Munk

models [40] and modeling arbitrary shaped coastal boundaries on embedded boundaries [41].

In the context of wind-driven oceanic flow simulation, it is challenging to achieve accurate

and efficient computational models in light of the complex boundaries of arbitrarily shaped

coastlines. Furthermore, capturing a strong western boundary layer requires an efficient

adaptive refinement technique. In handling arbitrarily shaped coastlines and strong western

boundary layers, the computational cost of a conforming Galerkin formulation using C1-

elements is relatively expensive. Using B-splines, modeling arbitrary shape geometries often

involves either a mapping (as in isogeometric analysis [42]) or a fictitious-domain approach

[43]. Moreover, B-splines have difficulty in applying boundary conditions, particularly in the

case of a strong boundary layer [44].

Unlike the other methods described here, the proposed strong form meshfree collocation

method provides a straightforward way to approximate higher-order derivatives and apply

boundary conditions. Thus, it represents a compelling alternative or complement to these

other methods for solving the equations governing wind-driven ocean circulation and for

higher-order PDEs in general. In Chapter 3 of this study, the proposed method is used

to solve the linear second-order Stommel and fourth-order Stommel–Munk equations for

various forcing terms. An error analysis is conducted for the verification examples presented,

including a brief discussion of stability and sensitivity to numerical parameters. Finally,
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the method is used to solve the Stommel–Munk equation on a polygon representing the

Mediterranean Sea, demonstrating the method’s potential to solve more realistic problems

involving higher-order PDEs.

1.3 Nonlinear PDEs in thermomechanical contact

The second application of the proposed method presented here is linear elastic, small-

deformation multi-body thermomechanical contact. Although the mechanical and thermal

equilibrium equations are linear under these assumptions, the constraints on the mechanical

and thermal fields at the contact surface introduce nonlinear equations in displacement and

temperature, making the overall problem nonlinear. Thermomechanical contact has wide-

ranging applications in engineering, from modeling automobile crash safety to hip joint

replacements to pellet-cladding interactions in a nuclear fuel rod [6, 45, 46].

In many of these applications, coupling between the mechanical and thermal fields is an

important concern. For example, temperature changes may cause significant thermal expan-

sion, mechanical friction may generate significant heat, and degree of heat transfer across

contact surfaces may depend significantly on the contact pressure [6, 47]. Two general ap-

proaches used to handle this coupling in a computational context are a staggered (loose

coupling) and a monolithic (tight coupling) approach. In each step of a staggered scheme,

the displacement and temperature fields are assumed to be fixed with respect to each other,

and both fields are adjusted individually in a fixed-point iteration until both converge. In

contrast, a monolithic scheme considers all interactions between thermal and mechanical

fields within one iteration and solves one system of equations including all solution variables

[48]. In general, a staggered approach is more likely to be successful if displacement due to

thermal expansion is expected to be small compared to displacement due to mechanical load-

ing. In contrast, a monolithic scheme would be more appropriate when thermal expansion

is significant. Other researchers have explored both monolithic and staggered approaches
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for thermoelasticity and thermomechanical contact problems. For example, a monolithic

approach was used in [49] to model thermo-structure interaction and applied to examples

related to behavior of rocket nozzles. In [50], an unconditionally stable staggered scheme

was developed for use in time-dependent thermoelasticity problems.

Over the last three decades, advances in computational contact mechanics have mainly

involved finite element methods that use special techniques to model contact interfaces and

handle associated constraints. For example, Papadopoulos and Taylor [51] developed a

mixed finite element method for contact problems. Wriggers and Miehe [52] developed a

finite element method for large deformation thermomechanical contact. Another popular

approach to solving contact problems is the mortar finite element method. This method

was developed, for example, in [53] and used in [54, 55, 56, 57, 58, 59] for various contact

problems.

In contrast to the other methods described here, the proposed method is meshfree and

allows for easy treatment of the contact interface. Also unlike the FEM, for which element

node-to-segment contact is a concern [6], ensuring pairs of corresponding contact nodes is

straightforward because new collocation points are easily added on the contact boundary as

needed. Due to this and other advantages, the proposed method has promise to be useful

for contact mechanics problems. In Chapter 4 of this study, a formulation of the proposed

method for thermomechanical contact is presented using a staggered Newton-Raphson ap-

proach. Then, numerical solutions are presented for three verification problems, including

frictional contact along an inclined contact surface, smooth and frictional contact between

two half-cylinders, and thermomechanical contact between two rectangular blocks. The nu-

merical solutions presented are compared with analytical or FEM solutions for verification.
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Chapter 2

Strong Form Meshfree Point Colloca-
tion Method

This chapter develops the proposed strong form meshfree collocation method for solving

partial differential equations. The material in this chapter is adapted from [4].

The meshfree point collocation method presented here allows the construction of numer-

ical derivative operators that are used to discretize the strong form of PDEs. We consider a

plane domain Ω in n-space. Let α = {α1, α2, ..., αn} be an n-dimensional array of nonnega-

tive integers and define |α| ∼= Σn
i=1αi. Let x = {x1, x2, ..., xn}T be an n-dimensional vector.

Then, we write

xα =
n∏
i=1

xαi
i and α! =

n∏
i=1

αi!. (2.1)

For convenience, such an array of nonnegative integers α will be referred to as an exponent

array from this point forward.

Given a function u(x) ∈ Cm(Ω) for a nonnegative integer m, we write the αth derivative

of u(x) as

Dα
x u =

∂|α|u

∂xα1
1 ∂x

α2
2 · · · ∂xαn

n

(2.2)

for |α| ≤ m. With this notation, the mth-order Taylor expansion Pm of u, centered at y
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and evaluated at x, is given by

Pm(x;y) =
∑
|α|≤m

(x− y)α

α!
Dα

x u(y). (2.3)

Recall that we seek a way to construct numerical derivative operators. The first step is

to order all derivatives of u(y) of up to order m in n variables and arrange them in a vector

a(y). Note that there are L = (m+ n)!/(m!n!) such derivatives. This vector is constructed

by placing all derivatives of each degree in lexicographical order, and then ordering these

partial lists in order of increasing degree. This ordering is chosen so that the position of

the αk entry of the polynomial vector is the same as that of the corresponding entry of

Pascal’s triangle. An advantage of this ordering is that the order of magnitude of the entries

generally decreases from the first to last entry, which facilitates scaling of the moment matrix

M described below for improvement of the condition number. For clarity, an example of this

derivative ordering is given in Table 2.1.

Table 2.1: Entries of a(y) and p(x;y) for m = 4, n = 2, and L = 15 (0 ≤ i ≤ m and
0 ≤ k ≤ L)

i k αk Entries of a(y) Entries of p(x;y)

0 1 (0, 0) u(y) 1
1 2 (1, 0) uy1(y) x1 − y1

3 (0, 1) uy2(y) x2 − y2

2 4 (2, 0) uy1y1(y) (x1 − y1)2/2
5 (1, 1) uy1y2(y) (x1 − y1)(x2 − y2)
6 (0, 2) uy2y2(y) (x2 − y2)2/2

3 7 (3, 0) uy1y1y1(y) (x1 − y1)3/6
8 (2, 1) uy1y1y2(y) (x1 − y1)2(x2 − y2)/2
9 (1, 2) uy1y2y2(y) (x1 − y1)(x2 − y2)2/2
10 (0, 3) uy2y2y2(y) (x2 − y2)3/6

4 11 (4, 0) uy1y1y1y1(y) (x1 − y1)4/24
12 (3, 1) uy1y1y1y2(y) (x1 − y1)3(x2 − y2)/6
13 (2, 2) uy1y1y2y2(y) (x1 − y1)2(x2 − y2)2/4
14 (1, 3) uy1y2y2y2(y) (x1 − y1)(x2 − y2)3/6
15 (0, 4) uy2y2y2y2(y) (x2 − y2)4/24

Let αk be an exponent array like the one characterized by (2.1), with the property that
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the jth entry of αk equals the number of derivatives of u(y) with respect to yj taken when

evaluating the kth element of a(y). In other words, αk is the exponent array that makes

the kth entry of a(y) equal to Dαk
y u. For a given m, this exponent array may be used to

construct a polynomial vector p(x;y) with kth entry given by

pk(x;y) =
(x− y)αk

αk!
(2.4)

and corresponding to the kth entry of a(y) so that the Taylor polynomial in (2.3) may be

rewritten as

Pm(x;y) = p(x;y)Ta(y). (2.5)

For better understanding, the exponent arrays and entries of p(x;y) and a(y) for m = 4

and n = 2 are given in Table 2.1.

Next, the method of moving least squares is used in conjunction with the Taylor expansion

above to formulate discrete derivative operators. For a set of N points xJ (J = 1, 2, ..., N)

in Ω, we seek to minimize the discrete weighted residual functional

F [a(y)] =
N∑
J=1

w

(
xJ − y

ρ(y)

)[
p(xJ ;y)Ta(y)− uJ

]2
(2.6)

with respect to a(y). Here, w is a weight function and ρ(y), termed the dilation parameter,

is the radius of a ball around y called the compact support. Outside of this radius, the

weight function is set to zero. The dilation parameter need not be constant over the domain;

rather, it should be smaller in areas of local refinement and larger along boundaries. An

illustration of the dilation parameter is given in Figure 2.1. In this illustration, the dilation

parameter was computed as the distance between each center node and the farthest away of

its 60 nearest neighbors.

For a fixed y, F [a(y)] is minimized for a unique a(y) for which ∂F/∂a = 0 because

F is nonnegative and quadratic in a. If the local center is moved (hence the term moving

9
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Figure 2.1: For a uniform grid of collocation points, (a) examples of compact support domains
and (b) a surface plot of the dilation parameter are given for a search of the 60 nearest
neighbors of each point

least squares) to each point x at which a set of derivative operators is desired, then the local

F [a(x)] is minimized by the a(x) for which ∂F/∂a = 0. In other words, minimizing (2.6)

and taking y→ x results in

a(x) = M−1(x)B(x)u (2.7)

where u = {u1, u2, ..., uN}T is the nodal solution vector for the N points in Ω, and M and

B are given by

M(x) =
N∑
J=1

(
p(xJ ;x)w

(
xJ − x

ρ(x)

)
pT (xJ ;x)

)
(2.8)

and

B(x) =

[
w

(
x1 − x

ρ(x)

)
p(x1;x), w

(
x2 − x

ρ(x)

)
p(x2;x), ..., w

(
xN − x

ρ(x)

)
p(xN ;x)

]
. (2.9)

Note that the cost of computing derivatives of shape functions is replaced by that of

inverting N M matrices, each of which is only L× L. Also, since the method uses a diffuse

derivative approximation, computation of these derivative operators does not require exact

differentiation of shape functions or of the weight function, so there is no differentiability

requirement for either. Examples of non-smooth weight functions are plotted in Figure 2.2
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and given by

w(r) = (1− ||r||)4 (4th-order)

w(r) = (1− ||r||
1
2 )2 (root power)

(2.10)

-1 -0.5 0 0.5 1

Normalized distance from center

0

0.5

1

1.5
W

ei
gh

t
4th order
Root power

Figure 2.2: Examples of non-smooth weight functions

An important consequence of this result is that the kth entry of a(x) = M−1(x)B(x)u

gives approximation for the αkth derivative of u at x. Thus, for each xI ∈ x1,x2, ...,xN , we

can define differential operators Φ
αk
I defined to be the kth row of M−1(xI)B(xI), i.e.,

Φ
αk
I u ≈ Dαk

x u(xI) (2.11)

Using (2.11), all differential operators in the strong form of PDEs and their boundary

conditions can be discretized for any set of N collocation points in Ω̄.
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Chapter 3

Wind-driven Ocean Circulation

This chapter, which is largely reproduced from [4], examines how the proposed method is

used to solve higher order PDEs. The PDEs of interest in this study are the linearized quasi-

geostrophic equations used to model wind-driven ocean circulation, namely the second-order

Stommel and fourth-order Stommel–Munk equations. Section 3.1 describes these equations

and their boundary conditions, as well as how the proposed method is used to discretize

these equations. Section 3.2 presents the results of solving the Stommel and Stommel–Munk

equations, including numerical experiments of convergence behavior. The final numerical ex-

ample, the solution of the Stommel–Munk equation on a polygon representing the Mediter-

ranean Sea, demonstrates how the proposed method can be used in a real-world application.

3.1 Equations for wind-driven ocean circulation

In this section, the Stommel model and the Stommel–Munk model are first explained

and then discretized using the meshfree collocation described in Chapter 2.
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3.1.1 Linearized stationary quasi-geostrophic equations (SQGE)

As explained in Chapter 1, the quasi-geostrophic equations of the ocean are time-dependent

and nonlinear. However, linearized, stationary versions of these equations are available. Ex-

amples of these linearized SQGE are the Stommel and Stommel–Munk models. While the

Stommel model is a second-order PDE with respect to the streamfunction ψ, the Stommel–

Munk model is a fourth-order PDE. Similar to the QGE, the Stommel–Munk model contains

the biharmonic term ∆2ψ, the wind forcing term F , and the rotational term ∂ψ/∂x to in-

clude the effect of an asymmetry in the east-west direction. The Stommel–Munk model

involves a Laplacian term ∆ψ instead of the nonlinear Jacobian term.

We consider a plane domain Ω with boundary Γ. The Stommel–Munk model [27] is given

by

−εs∆ψ + εm∆2ψ − ∂ψ

∂x
= F in Ω,

ψ = 0 and ∇ψ · n = 0 on Γ

(3.1)

where n is the outward unit normal vector on the boundary Γ. For wind-driven ocean circu-

lation in an enclosed mid-latitude basin, let ψ and F denote the velocity streamfunction and

the wind forcing, respectively. The parameters εs and εm are the non-dimensional Stommel

and Munk numbers, respectively, which are defined by

εs =
γ

βL
and εm =

A

βL3
. (3.2)

Here, γ is the coefficient of the linear drag (or the Rayleigh friction) as might be generated

by a bottom Ekman layer, β is the coefficient multiplying the y-coordinate in the β-plane

approximation, A is the eddy viscosity parametrization, and L is the characteristic length

scale.

13



The Stommel model (Vallis [27]) is given by

−εs∆ψ −
∂ψ

∂x
= F in Ω,

ψ = 0 on Γ

(3.3)

where εs is the Stommel number defined in (3.2). Unlike the Stommel–Munk model, the

Stommel model is a second-order PDE and only ψ = 0 is imposed on the boundary.

3.1.2 Discretization of governing equations

For convenience, we define Λ = Λi ∪Λb where Λi is the set of Ni interior nodes and Λb is

the set of Nb boundary nodes, with Ni + Nb = N total nodes. If Φαk
IJ is used to denote the

Jth entry of the αkth derivative operator at xI , then substituting (2.11) into (3.1) yields

the discrete form of the Stommel–Munk PDE:

N∑
J=1

{−εs[Φ(2,0)
IJ + Φ

(0,2)
IJ ] + εm[Φ

(4,0)
IJ + 2Φ

(2,2)
IJ + Φ

(0,4)
IJ ]− Φ

(1,0)
IJ }ψJ = F (xI) (3.4)

for each xI ∈ Λi. The boundary conditions are similarly discretized as

N∑
J=1

Φ
(0,0)
IJ ψJ = 0,

N∑
J=1

[Φ
(1,0)
IJ n1 + Φ

(0,1)
IJ n2]ψJ = 0 (3.5)

for each xI ∈ Λb. If we define Fi ≡ {F (x1), F (x2), ..., F (xNi
)}T, then these discretized

equations may be assembled into an (Ni + 2Nb)×N system

Kψ = F (3.6)
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where

K =


Ki

Kd

Kn

 and F =


Fi

0

0

 . (3.7)

In (3.7), the (I, J) entry of the Ni ×N block K i is given by

K int
IJ = −εs[Φ(2,0)

IJ + Φ
(0,2)
IJ ] + εm[Φ

(4,0)
IJ + 2Φ

(2,2)
IJ + Φ

(0,4)
IJ ]− Φ

(1,0)
IJ (3.8)

The (I, J) entry of the Nb ×N block Kd is given by

Kd
IJ = Φ

(0,0)
IJ (3.9)

Finally, the (I, J) entry of the Nb ×N block Kn is given by

Kn
IJ = Φ

(1,0)
IJ n1 + Φ

(0,1)
IJ n2 (3.10)

Similarly, by substituting (2.11) into (3.3), the discrete form of the Stommel equation

and its boundary conditions can be obtained as

N∑
J=1

{−εs[Φ(2,0)
IJ + Φ

(0,2)
IJ ]− Φ

(1,0)
IJ }ψJ = F (xI), for xI ∈ Λi

and
N∑
J=1

Φ
(0,0)
IJ ψJ = 0, for xI ∈ Λd.

(3.11)

These equations can also be assembled into a system like (3.6), this time N ×N , with

K =

Ki

Kd

 and F =

Fi

0

 . (3.12)

15



where the (I, J) entries of the Ni ×N block K i and the Nb ×N block Kd are given by

K i
IJ = −εs[Φ(2,0)

IJ + Φ
(0,2)
IJ ]− Φ

(1,0)
IJ , Kd

IJ = Φ
(0,0)
IJ . (3.13)

3.2 Numerical study

To verify our method, we perform numerical studies on three benchmark problems com-

monly used in geophysical fluid dynamics [27]. The first two problems involve the Stommel

model on a rectangular domain with a strong western boundary layer and the Stommel–

Munk model without a strong western boundary layer, presented in 3.2.1 and 3.2.2. The

results from these studies motivate an examination of the effect of numerical parameters of

the proposed method on error behavior in the context of these benchmark problems, pre-

sented in 3.2.3. After this investigation, results from the third benchmark problem, the

Stommel–Munk equation on a rectangular domain with a strong western boundary layer,

are discussed in 3.2.4. This includes results from applying a local refinement of the dis-

cretization. Finally, the proposed method is used to solve the Stommel–Munk equation on

a polygonal domain representing the Mediterranean Sea in 3.2.5.

In the subsequent studies, we analyze convergence and error behavior by defining the the

following discrete L2-norm and L∞-norm errors:

‖e‖2 ≡

√
ΣN
i=1(ψhi − ψi)2

ΣN
i=1(ψi)2

(3.14)

and

‖e‖∞ ≡
max|ψhi − ψi|

max|ψi|
, (3.15)

respectively, where ψh is the approximation of the exact solution ψ. In (2.6), the weight

function does not need to be differentiable. Hence, all simulations are performed using the
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weight function

w

(
xI − y

ρ(y)

)
=

(
1−

∥∥∥∥xI − y

ρ(y)

∥∥∥∥)4

. (3.16)

The dilation parameter ρ, which represents the radius of the domain of influence of each

collocation point, should be chosen so that the resulting differential operators are sparse

to save computational cost. On the other hand, ρ should be large enough so that the M

matrices are nonsingular and the solution is accurate. In general, there is some minimum

number of points in a domain of influence such that all M matrices (2.8) are nonsingular [14].

This number of points dictates the radius of influence of each collocation point based on the

spacing of nodes and the geometry of the domain. More discussion of the dilation parameter

related to a specific example can be found in Section 3.2.3.

3.2.1 Stommel model

We consider the test problem (3.3) with the exact solution

ψ(x, y) =
sin(πy)

π(1 + 4π2ε2s )

[
2πεs sin(πx) + cos(πx) +

(1 + eR2)eR1x − (1 + eR1)eR2x

eR1 − eR2

]
(3.17)

over the domain Ω = [0, 1]× [0, 1], where R1 and R2 are given by

R1 =
−1 +

√
1 + 4π2ε2s

2εs
and R2 =

−1−
√

1 + 4π2ε2s
2εs

. (3.18)

This example was used for the test of an algorithm by Myers and Weaver [32], Foster et

al. [35], and Kim et al. [39]. Upon taking εs = 0.05, we work in a setting identical to that

considered in these references. The forcing term F is chosen to match with that given by

the exact solution (3.17). As shown in Figures 3.1 and 3.2, a rectangular ocean is chosen as

a computational domain. With the origin of a Cartesian coordinate system at the southwest

corner, the x- and y-axis point eastward and northward, respectively, and the boundaries of

the computational domain are the shores of the ocean.
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Figure 3.1: Examples of (a) a uniform distribution of 400 collocation points and (b) a random
distribution of 821 collocation points

In Figure 3.1, we display uniform and random distributions of collocation points used

for this study. In Figure 3.2, we compare the streamlines of the numerical solution using

the randomly distributed collocation points with the exact solution. Both solutions are

qualitatively indistinguishable from the exact solution. Notice that the similar solution

using the uniform distribution of collocation points is observed.

(a) (b)

Figure 3.2: Contour plot of the streamfunction for the Stommel model: (a) the numerical
solution and (b) the exact solution given by (3.17)

To study convergence rates as a function of average nodal distance h, ‖e‖2 and ‖e‖∞

are measured for approximately h = {0.020, 0.017, 0.014, 0.012}. Our method and the finite-

difference method (FDM) both use a Taylor expansion to approximate a solution variable.
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Table 3.1: Convergence rates in L2-norm ‖e‖2 and L∞-norm ‖e‖∞ with a second-order
polynomial using uniform distributions of collocation points

# of collocation points ‖e‖2 ‖e‖∞
2500 5.20e-03 1.27e-02
3600 3.38e-03 7.86e-03
4900 2.36e-03 5.21e-03
6400 1.73e-03 3.63e-03

Convergence rate 2.31 2.61

Table 3.2: Convergence rates in ‖e‖2 and ‖e‖∞ with a second-order polynomial using random
distributions of collocation points

# of collocation points ‖e‖2 ‖e‖∞
2212 7.16e-03 2.24e-02
3297 4.52e-03 1.31e-02
4705 2.92e-03 7.57e-03
6465 2.02e-03 5.03e-03

Convergence rate 2.37 2.82

Thus, based on such a similarity with the FDM, we expect that our approach also has an

optimal order of convergence equal to the order of the Taylor expansion used. In other words,

the optimal convergence rates for our method would be quadratic or quartic for the second-

order and fourth-order polynomials, respectively. Theoretical study for the error analysis

of the proposed method remains as the authors’ future work. Some theoretical work for

similar types of strong form meshfree methods can be found in [14, 25]. For the second-order

polynomial, Table 2 and Table 3 show the convergence rates for uniformly and randomly

distributed collocation points in both L2- and L∞-norm errors. The plots of convergence rate

in L2-norm for both second-order and fourth-order polynomials are displayed in Figure 3.3

and Figure 3.4. Note that the presented convergence analysis results, such as Fig. 3.3,

adopted log-log plots, although it is sometimes hard to recognize this due to the small range

of values on the horizontal axis.

In Table 3.3, we summarize the convergence rates for the second-order and fourth-order

polynomials for the Stommel model with the exact solution given by (3.17). The results

show higher than the expected convergence rates in both L2-norm and L∞-norm.
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Figure 3.3: Convergence plot in ‖e‖2 for the Stommel model using the 2nd-order polynomial
approximation. Slopes of the regression lines: 2.31 (uniform) and 2.37 (random)
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Figure 3.4: Convergence plot in ‖e‖2 for the Stommel model using the 4th-order polynomial
approximation. Slopes of the regression lines: 4.11 (uniform) and 4.16 (random)

3.2.2 The Stommel–Munk model without western boundary layer

In contrast to the Stommel model, a challenge in solving the fourth-order Stommel–Munk

model is the need to apply two Dirichlet boundary conditions ψ = ∇ψ · n = 0 on the entire

boundary. In applying the proposed method to a second-order PDE with only one boundary

condition, nodal solutions are found by solving a linear system in which each equation is a

discretized version of (3.1) (for each of Ni interior collocation points) or of the boundary

condition (for Nb boundary nodes). In this way, boundary conditions are applied directly,

and the resulting system of equations is square. However, for the Stommel–Munk model,

to apply both boundary conditions at each boundary node, two separate equations must be

written for each boundary node as shown in (3.5). This leads to a total of Ni +2Nb equations
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Table 3.3: Convergence rates in ‖e‖2 and ‖e‖∞ with a second-order polynomial using random
distributions of collocation points

2nd order 4th order

Nodal arr. ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞
Uniform grid 2.31 2.61 4.11 3.99

Random 2.37 2.82 4.16 4.07

in Ni +Nb unknown nodal values of ψ, i.e., an overdetermined system of equations.

Our approach is to solve this overdetermined system by the method of weighted least

squares. Introducing a diagonal matrix D containing positive weight values along its di-

agonal into the system of equations (3.6), the solution ψ that minimizes the norm (Kψ −

F)TD2(Kψ − F) is obtained by solving

KTD2Kψ = KTD2F. (3.19)

Why might it be advantageous to use some weight values in D other than 1.0 (standard

least squares)? As an example, consider a problem in which the error between the numerical

solution and the analytical solution is highest at the boundary when standard least squares

is used. Then, increasing the weight values applied to the boundary condition equations

penalizes this higher error at the boundary more heavily than does standard least squares,

potentially resulting in lower maximum or L2-error of the numerical solution. A discussion

of how weights are chosen for the problems in this study may be found in Section 3.2.3.

Using this weighted least squares strategy, we test the Stommel–Munk model on a rect-

angular ocean in similar fashion to the Stommel model. We consider a benchmark example

that is commonly used to test a finite-element algorithm [33, 39]. This example has a forcing

F corresponding to the exact solution given by

ψ(x, y) = sin2(πx/3) sin2(πy) in Ω = [0, 3]× [0, 1]. (3.20)

The Stommel and Munk numbers are chosen to be εs = 0.05 and εm = 6.0×10−5, respectively.
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To approximate the fourth-order derivative operators, at least a fourth-order polynomial

is required. As a result, we use fourth-order polynomials in this study. When assembling

the overdetermined system of equations in the solution of this problem, weights of 1.0 are

chosen for the rows corresponding to interior collocation points, whereas weights of 0.2 are

used for the rows corresponding to boundary points. A more thorough discussion of this

choice of relative weights may be found in Section 3.2.3.

In Figure 3.5, we display the streamlines of both numerical and exact solutions for the

fourth-order polynomial. Both results are qualitatively indistinguishable. In Figure 3.6, the

rates of convergence in L2-norm for both uniform and random distributions of collocation

points are presented. Moreover, convergence rates in both L2 and L∞-norms are summarized

in Table 3.4. While the order of convergence in L2-norm is quartic, slightly lower convergence

rate is observed in L∞-norm.

Table 3.4: Convergence rates in ‖e‖2 and ‖e‖∞ with a fourth-order polynomial using uni-
form and random distributions of collocation points for the test problem with the exact
solution (3.20)

Nodal arr. ‖e‖2 ‖e‖∞
Uniform grid 4.20 3.87

Random 4.06 3.74

(a) (b)

Figure 3.5: Comparison between (a) numerical and (b) exact solutions of the Stommel–Munk
model for the test problem with the exact solution (3.20)
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Figure 3.6: Convergence in ‖e‖2 for the 4th-order polynomial approximation for the problem
with the exact solution given by (3.20). The slopes of the regression lines are 4.20 (uniform)
and 4.06 (random)

3.2.3 Study of error behavior for numerical parameters

While obtaining results for the Stommel–Munk model above with the exact solution given

by (3.20), it became apparent that the error behavior of the numerical solution is sensitive to

the least squares weight values chosen for the diagonal matrix D in (3.19) and the number of

neighbors chosen for the compact support of each collocation point. This section explores the

effect of these numerical parameters on error behavior of the proposed collocation method.

First, we conduct a numerical experiment to determine the effect of weight values on

the error behavior. The Stommel–Munk model with the exact solution (3.20) is used as a

basis for this study. The number of neighbors in the compact support is held fixed at 35.

Weights corresponding to the interior nodes are fixed at 1.0, while weights corresponding to

the boundary nodes are varied between 0.001 and 100. We study the order of convergence in

both L2-norm and L∞-norm for both the uniform grid and random arrangements. The order

of convergence is based on the following ranges of total numbers of collocation points: For

the uniform grid, error is computed for 243, 300, 432, and 675 total points; for the random

arrangement, error is computed for 172, 304, 448, and 775 total points. In addition to

convergence rates, the values of ‖e‖2 and ‖e‖∞ are recorded for a fixed number of collocation

points (675 in the uniform grid case and 775 in the random arrangement case). The results

are displayed in Figure 3.7 and Figure 3.8.

For the uniform grid, the highest rate of convergence appears to occur when the boundary
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Figure 3.7: Effect of BC weights on error behavior, uniform grid
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Figure 3.8: Effect of BC weights on error behavior, random arrangement

condition (BC) weights are less than 1.0, but this choice produces largest overall error of the

solution for a fixed number of collocation points. A possible explanation for this phenomenon

is the following: When BC weights are less than 1.0, the error tends to be high at the

boundary and the weighted least squares method penalizes this high boundary error very

little. As a consequence, for low BC weights, the overall spatial distribution of error is

unbalanced with highest error at the boundary, causing the L2-norm ‖e‖2 and L∞-norm

‖e‖∞ errors to be relatively high. However, increasing the density of the collocation points

causes this boundary error to disappear rapidly, resulting in a high rate of convergence.

Conversely, strictly penalizing boundary error with larger weight values results in lower

overall error even for coarse discretizations, resulting in a lower rate of convergence. The

24



spatial distributions of error for two BC weight values, shown in Figure 3.9, bear out this

hypothesis. It is noteworthy that a choice of weights around 1.0 to 3.0 results in high error

and in the lowest rates of convergence, suggesting that it can indeed be advantageous to vary

weight values away from 1.0 for the boundary condition equations. Further research should

investigate what characteristics of a problem (e.g., the forcing term) make it advantageous

or disadvantageous to do so.

(a) (b)

Figure 3.9: Spatial distribution of absolute error for (a) BC weight = 5.0 and (b) BC weight
= 0.2

Similar error behavior occurs in the case of the random nodal arrangement, except with

respect to the rate of convergence in the L2-norm ‖e‖2 compared to the L∞-norm ‖e‖∞

errors for small values of BC weights. In this case, it is possible that the maximum value of

the error is localized to a few isolated collocation points at the boundary, which would cause

the maximum error to decrease slowly compared to the L2-norm error as the density of the

collocation points is increased. It is worth noting that the level of discretization and the

boundary condition weights (i.e. the matrix D) both have a limited effect on the condition

number of the matrix KTD2K in Eq. (3.19). However, proposed method has not exhibited

a severe dependency on the condition numbers according to the authors’ experience.

We also conducted a numerical experiment to determine the effect on error behavior

of the number of neighbors chosen for the compact support of each collocation point. As

before, the problem with the exact solution given by (3.20) was used. The weights applied

to the interior node equations were again fixed at 1.0, but this time the BC weights were

fixed at 0.5 for all boundary nodes. The number of neighbors specified for the compact

support of each collocation point was varied between 30 and 50. In each trial, the dilation
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parameter at each collocation point was taken to be the distance between the collocation

point and the farthest of its 30-50 neighbors identified using the k-nearest neighbors (KNN)

search algorithm [60]. An alternative algorithm to construct spatially varying continuous

compact support function, which uses a pseudo-counting function constructed based on

collocation point density, is described in [61]. Again, the convergence rates and error values

were measured for each choice of number of neighbors, for a uniform grid of points. The

results are shown in Figure 3.10.
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Figure 3.10: Effect of the number of neighbors in compact support on error behavior, uniform
grid

The highest rates of convergence were achieved when 41–43 neighbors were used. Some

of the lowest values of error for a fixed number of nodes were also achieved for this range of

numbers of neighbors. These results suggest that, for a uniform grid of collocation points,

there is an optimal number of neighbors to specify for the compact support. We propose the

following reason for the sensitivity of the error behavior to this parameter: Depending on the

number of neighbors chosen, the spatial pattern of neighbor nodes in a compact support will

be one of a variety of shapes. Thus, just as the error behavior of the FDM depends on the

choice of a five-point stencil versus a nine-point stencil due to the relative positions of the

neighbors and their effect on the numerical solution, so too is the present method sensitive
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to the choice of spatial pattern of neighborhood nodes.

Based on the studies discussed in this section, values of number of neighbor nodes and BC

weights were chosen so as to optimize the convergence rate for the above problem, leading

to the results displayed in Table 3.4 from the previous section.

3.2.4 Stommel–Munk model with western boundary layer

Having studied the effect of numerical parameters on error behavior, we are able to use

our method to solve the Stommel–Munk model with a different forcing term. This problem

has a forcing corresponding to the exact solution given by

ψ(x, y) =
[
(1− x/3)(1− e−20x) sin(πy)

]2
. (3.21)

In contrast to the previous example in Section 3.2, this one has a strong western boundary

layer as shown in Figure 3.11. This boundary layer results in a region of very high gradient

on the left side of the domain, which is difficult to capture. For this reason, fourth- and

fifth-order polynomials are unable to achieve reliable solutions due to instability on the

left side of the domain. Thus, a sixth-order polynomial is used. Fortunately, the jump

in computational cost due to using a sixth-order polynomial approximation rather than a

fourth-order approximation is relatively small because the number of small matrices needing

to be inverted while computing the differential operators remains unchanged.

A comparison of the numerical solution with the exact solution shows qualitative agree-

ment, as shown in Figure 3.11. Moreover, as shown in Table 3.5, for the uniform grid

arrangement of collocation points, slightly lower than optimal (sixth-order) convergence rate

is obtained in both ‖e‖2 and ‖e‖∞ due to the presence of the western boundary layer. The

convergence for uniform collocation points is remarkably steady, as shown in Figure 3.12.

For the random arrangement of collocation points, low convergence rates and largely unpre-

dictable error behavior are observed due to local instabilities in the solution.
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(a) (b)

Figure 3.11: Comparison between (a) numerical and (b) exact solutions of the Stommel–
Munk model with the western boundary layer
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Figure 3.12: Convergence in ‖e‖2 for the Stommel–Munk model with the western boundary
layer

To improve accuracy, local refinement is applied to the left side of the domain where

the strong western boundary layer is found. This is done for both uniform and random

arrangements of collocation points. For the uniform grid, we locally refined the domain by

placing an extra collocation point at the centroid of each group of four existing nodes in

the left sixth of the domain. For the random arrangement, the left sixth of the domain

had an average nodal distance three times that of the right side of the domain; the gmsh

software allowed a smoother transition between the right side of the domain and the locally

refined area on the left than in the case of the uniform grid. Examples of the refined nodal

arrangements used are given in Figure 3.14.

Figure 3.13 shows the convergence plots in ‖e‖2 for uniform and random arrangements

with and without local refinement. Table 3.5 contains the rates of convergence for these

various schemes in ‖e‖2 and ‖e‖∞. It should be noted that in the case of both uniform and

random arrangements, the rate of convergence for the refined nodal arrangements is much
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better than that for the uniform-density nodal arrangements. In addition, the errors for

the refined random arrangement are the lowest of all the schemes, suggesting that properly

implemented refinement would improve both the accuracy and the rate of convergence of the

numerical solution for a problem with a high-gradient region such as this one.

As shown in Fig. 3.13, instability (or suboptimal convergence) is exhibited by the pro-

posed method for the western boundary layer example, especially for the random arrange-

ments of collocation points. As explained in [25], this is expected since the proposed method’s

formulation is based on the strong form and avoids the Galerkin framework. Currently, to

the best of the authors’ knowledge, there are no theoretical stability and perturbation anal-

yses available for the proposed method other than numerical studies of the method. More

numerical results for the discretization sensitivity-induced instability of the method within

similar contexts can be found in authors’ previous works [24, 21, 19]. Theoretical study for

the error and stability analysis of the proposed method remains part of the authors’ future

work.
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Figure 3.13: Influence of local refinement for the Stommel–Munk model with the western
boundary layer

3.2.5 Wind-driven ocean circulation in the Mediterranean Sea

To demonstrate the usefulness of the proposed method in solving real-world problems

on arbitrary shaped domains, the method is used to solve the Stommel–Munk model on the
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Table 3.5: Rate of convergence (ROC) in ‖e‖2 and ‖e‖∞ with local refinement for both
uniform and random distributed collocation points

Scheme ROC in ‖e‖2 ROC in ‖e‖∞
Unif. 5.23 5.78
Rand. 1.90 1.27

Unif. ref. 6.02 7.65
Rand. ref. 2.39 2.81
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Figure 3.14: Illustration of nodal arrangements for local refinement applied to (a) uniformly
spaced collocation points and (b) randomly spaced collocation points
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Figure 3.15: Polygon representing the boundary of the Mediterranean Sea

interior of a polygon representing the coastlines of the Mediterranean sea. This example

was studied by Foster et al. [35] and Jiang and Kim [41] for the test of their finite-element

formulations of the stationary quasi-geostrophic equations. We use the forcing term F =

sin(πy/4) arising from the derivative of the wind stress (Myers and Weaver [32]). The same

values of the Stommel and Munk numbers (0.05 and 6.0×10−5, respectively) are used. Notice

that an analytical solution is not available, so a convergence study cannot be performed.

This polygon shown in Figure 3.15 encloses a simply connected region. However, this

region’s concavity and various narrow subregions present challenges to solving the model on

its interior. The first challenge in solving the Stommel-Munk model on this domain is that of
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generating an arrangement of collocation points for the Mediterranean sea region. Without

an unreasonable degree of refinement, the use of a uniform tensor-product grid of points

would have been insufficient to capture the geometry of the region. Even in the case of the

rectangular domain with western boundary layer in Section 3.2.4, the random arrangement

with selective refinement resulted in consistently lower error than the uniform grid with no

refinement, as shown in Fig. 3.13. The random arrangement was also less cumbersome to

produce than the uniform grid with selective refinement. For domains with complicated ge-

ometry, producing a uniform grid with selective refinement is much more difficult and tedious,

while producing a random arrangement with selective refinement remains straightforward us-

ing readily available FEM meshing software. Thus, for complicated geometries, a selectively

refined random arrangement of collocation points is more practical than a selectively refined

uniform arrangement, but still exhibits less error for a given number of collocation points

than a uniform grid with no selective refinement. Thus, generating a random arrangement

of nodes is preferred and left to the open-source meshing software gmsh [62]. Each segment

of the polygon boundary is assigned a number of boundary collocation points approximately

proportional to this segment’s fraction of the total length of the boundary. If this results

in a number of boundary nodes that is too small for this segment (e.g., only two or three

nodes), this segment is assigned five nodes. Given these specifications, gmsh generated the

arrangement of collocation points shown in Figure 3.16.

After discretizing the region, another challenge is to ensure that the domain of influence

of each collocation point is reasonable despite the concavity of some parts of the domain.

For example, consider points A and B in Figure 3.15. Although these points are very close

each other, the solution of the PDE at point A cannot reasonably be expected to affect

the solution at point B because these points are separated by land. Thus, the domain of

influence of point A should exclude point B and vice-versa. To accomplish such exclusions,

the domain is divided into the subregions as shown in Figure 3.17. Then, in selecting the

points to include in the domain of influence of a given point D, only candidate points from
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the subregion containing point D or adjacent subregions are considered.

Using MATLAB’s knnsearch accomplishes this task of selecting points for the domain

of influence of each point. Each domain of influence contains 18 collocation points, which

proved the optimal number of points in terms of ensuring invertibility of the M matrix (2.8),

stability of the solution field at the boundary, and reasonable computational time. Finally,

the value chosen for the dilation parameter ρ at each collocation point D was simply the

distance between point D and the farthest-away point in the domain of influence of point

D. An illustration of the domain of influence for a point in this problem and related ideas

is shown in Figure 3.18. Once these tasks are complete, we solve the Stommel–Munk
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Figure 3.16: Arrangement of 4,834 collocation points used for the Mediterranean sea example

Figure 3.17: Mediterranean Sea domain subdivided into cells in order to control the domain
of influence of each collocation point and direction of the normal vectors along the boundary

model using the point collocation method. In order to balance the errors between the

boundary and the interior, we choose BC weights corresponding to the boundary condition

u = 0 as 100 times those corresponding to the zero-flux boundary condition ∇u · n = 0.

A similar scheme weighting the Dirichlet boundary condition equations more heavily than
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Figure 3.18: Domain of influence of Point A (largest dot, in blue) from Figure 3.15 containing
18 points. The radius of the circle is ρ for Point A. Note that the domain of influence does
not contain points from the subregion across land from Point A

Figure 3.19: Contour plot of the numerical solution in the Mediterranean Sea example

the Neumann boundary condition equations was used in the weighted collocation method

of Chen et al. [63]; one should refer to the guidelines presented in [63] to choose the proper

values of BC weights for a general problem. In Figure 3.19, we display a contour plot

of the streamfunction. The plot shows qualitative agreement with the one obtained using

finite-element methods by Foster et al. [35] and Jiang and Kim [41]. This result verifies

the capability of our method on realistic ocean circulation problems with arbitrary shaped

coastal boundaries.
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Chapter 4

Thermomechanical Contact

The next test of the proposed method is whether it can be used to solve nonlinear

PDEs. The problem of multi-body thermomechanical contact provides such nonlinear PDEs.

Section 4.1 details the formulation of these equations. Section 4.2 describes how these

equations are discretized using the differential operators formulated in 2. Finally, Section

4.3 examines three numerical verification examples: frictional contact on an inclined surface,

Hertzian contact between two half-cylinders, and thermomechanical contact between two

rectangular blocks.

4.1 Equations for thermomechanical contact

In this section, the governing equations for thermomechanical contact are developed.

First, an overview of the geometry, domain interior equations, and boundary conditions

are given. Next, the mechanical contact constraints are described and regularized using a

penalty approach. Finally, the thermal contact model is introduced.
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4.1.1 Geometry, governing equations, and boundary conditions

This study concerns loosely coupled thermo-mechanical contact between two deformable

bodies in two dimensions, the interiors of which are denoted by Ω1 and Ω2, as shown in

Figure 4.1. For α ∈ {1, 2}, the closure of the domain Ωα is denoted by Ω̄α, i.e., Ω̄α = Ωα∪Γα,

where Γα is the entire boundary of the domain Ωα. Each total boundary Γα is partitioned

such that Γα = Γαu∪Γαt ∪Γαc with Γαu∩Γαt = Γαu∩Γαc = Γαc ∩Γαt = ∅. Here, Γαu denotes the subset

of the boundary of Ωα on which displacement u is prescribed, Γαt the subset on which traction

is prescribed, and Γαc the subset on which contact between the two bodies is expected to

occur. Each total boundary Γα is simultaneously partitioned in terms of temperature-related

boundary conditions such that Γα = Γαθ ∪ Γαq ∪ Γαc with Γαθ ∩ Γαq = Γαθ ∩ Γαc = Γαc ∩ Γαq = ∅.

Here, Γαθ denotes the subset of the boundary of Ωα on which temperature θ is prescribed

and Γαq the subset on which normal heat flux is prescribed. Finally, Ω̄ = Ω̄1 ∪ Ω̄2 is used to

denote the entire domain of interest, namely the set of all points in either of the two bodies

or their boundaries; Ω = Ω1 ∪ Ω2 denotes the interior thereof.

Ω1

Ω2

Γ𝑐
1 Γ𝑐

2

Γ𝑡
1

Γ𝑢
1

Γ𝑢
2

Γ𝑡
2

𝐱𝛽

𝐧

𝝂

𝝉

𝐱𝛼

Γ𝜃
1

Γ𝜃
2

Γ𝑞
1

Γ𝑞
2

Figure 4.1: Notation for two-body contact

The objective in this study is to find the displacement u and change in temperature θ

(from some reference temperature θ0) over Ω that satisfy mechanical equilibrium and thermal

equilibrium subject to boundary conditions. The equations for mechanical equilibrium are

35



given by

∇ · σ + b = 0 in Ω (4.1)

Here, σ is the Cauchy stress tensor and b is a body force. Although the two bodies are

permitted to have different material properties, they are assumed to be homogeneous, linear

thermoelastic and isotropic. Thus, the appropriate constitutive equation is

σ = 2µ
(
ε− εθ

)
+ λtr

(
ε− εθ

)
1 (4.2)

In (4.2), λ and µ are Lamé constants, 1 is the second-order identity tensor, and ε is the

mechanical strain tensor, and εθ is the thermal strain tensor. Small displacement and strain

are assumed, so the mechanical strain is defined by

ε =
1

2
(∇u + (∇u)>) (4.3)

The thermal strain is related to the temperature change by

εθ = αvθ1 (4.4)

The constant αv in (4.4) is the coefficient of thermal expansion.

The equations for thermal equilibrium are given by

∇ · q + s = 0 (4.5)

Here, q is heat flux and s is a heat source. The heat flux is assumed to be proportional to

the temperature gradient according to Fourier’s Law:

q = −κ∇θ (4.6)

36



The constant κ in (4.6) is the thermal conductivity.

Which fields u and θ satisfy the equations above depends on the boundary conditions.

The field u at each point on the boundary Γ is subject to one (or a mix) of the following

conditions:

u = ū on Γαu ,

σn = t̄ on Γαt ,

σn = tc on Γαc

(4.7)

for each α ∈ {1, 2}. In (4.7), n is the unit outward normal vector to Ω, ū is the prescribed

displacement on Γαu , t̄ is the prescribed traction on Γαt , and tc is the contact pressure on Γαc .

This contact pressure is determined based on the formulation in subsequent sections. The

field θ at each point on the boundary is subject to one of the following conditions:

θ = θ̄ on Γαθ ,

q · n = q̄ on Γαq ,

q · n = qc on Γαc

(4.8)

In (4.8), θ̄ is the prescribed temperature change on Γαθ , q̄ is the prescribed normal heat flux

on Γαt , and qc is the normal heat flux across the contact surface Γαc .

The following sections describe the contact constraints that govern the interaction be-

tween Ω̄1 and Ω̄2. Some basic assumptions motivate the formulation presented here. First,

at this length scale, it is assumed that there is no interpenetration between the two bodies

during contact (although this assumption is relaxed during the penalty regularization of the

normal contact constraint). Second, it is assumed that any force exerted on one body by

the other is compressive, i.e., no cohesion exists between the bodies. Coulomb friction is

assumed between the bodies, controlled by a coefficient of friction µf . Finally, it is assumed

that the heat flux across the contact interface is strictly conductive and depends on the
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contact pressure at the interface.

4.1.2 Normal and frictional contact constraints

First, we must define quantities associated with two points potentially in contact. Since

both bodies subject to contact are deformable, the contact traction at a point xα ∈ Γαc will

depend on the relative displacement between xα and the corresponding point xβ(xα) ∈ Γβc

with which xα is potentially in contact. For each pair of corresponding contact points, a

vector n(xα) is used to denote the outward unit normal to Γαc at xα, while ν(xα) = n(xβ)

is used to denote the outward unit normal to Γβc at xβ. The vector τ (xβ) denotes the unit

tangent to Γβc at xβ. Specifically, this unit tangent is defined by

τ = ν × e3 (4.9)

where e3 is the unit basis vector pointing out of the paper. It is convenient to decompose

the contact traction tc at a point x into components along ν and τ , as follows:

tc = tN − tT = tNν − tTτ (4.10)

For a more detailed discussion of these definitions, the reader is referred to Laursen’s book

[64].

Next, given a displacement field u : Γ1
c ∪ Γ2

c → R2, we define a so-called gap function

g : Γ1
c ∪ Γ2

c → R in terms of the relative displacement between a point on Γα and the

corresponding contact point on Γβ. Roughly speaking, the gap function represents the

component of the vector between corresponding contact points in the deformed configuration

normal to one of the contact surfaces. For all xα ∈ Γαc and xβ(xα) ∈ Γβc ,

g(xα) = g0(xα)−
[
u(xα)− u(xβ(xα))

]
· ν(xα), (4.11)

38



where g0(xα) = −
[
xα − xβ(xα)

]
· ν(xα) denotes the initial gap between the two bodies.

Based on the assumptions outlined at the beginning of this section, the gap function g

and contact pressure tN are related through the Kuhn–Tucker complementary conditions:

g ≤ 0, tN ≥ 0, tNg = 0. (4.12)

Equation (4.12)1 reflects the impenetrability of the bodies. Equation (4.12)2 reflects the

solely compressive nature of the contact pressure. Equation (4.12)3 reflects that contact

pressure is nonzero only if the gap between two points is closed and the two points are

separated only if the contact pressure is zero.

The tangential component of the contact traction is governed by Coulomb friction. In

other words, the tangential traction may not exceed µf tN in magnitude. If tT reaches

µf tN between two contact points, then the points will begin to displace relative to each

other along the tangential direction (slip condition). Short of this, however, there will

be no relative tangential displacement between the points (stick condition). Introducing

the following definitions will help express these frictional constraints symbolically. Let the

relative tangential displacement between two contact points be denoted by

ψ(xα) :=
[
u(xα)− u(xβ(xα))

]
· τ (xβ(xα)) (4.13)

Let the difference between the tangential traction magnitude and its upper limit, called the

trial function, be denoted by

Φ := |tT | − µf tN (4.14)

With these definitions, the friction constraints may be expressed as follows:

Φ ≤ 0, sign(ψ) = sign(tT ), Φψ = 0. (4.15)

Equation (4.15)1 reflects the friction limit on the magnitude of the tangential traction. Equa-
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tion (4.15)2 reflects that the direction of the tangential traction vector is opposite the rel-

ative displacement after taking into account the convention used for τ . Equation (4.15)3

reflects that relative tangential displacement between two corresponding contact points can

be nonzero only if the magnitude of the tangential traction has reached its Coulomb friction

limit as a function of the normal traction; conversely, the tangential traction has not reached

its friction limit unless the relative tangential displacement is nonzero.

4.1.3 Penalty regularization of mechanical contact constraints

To simplify the numerical solution of such contact problems, the Kuhn–Tucker condi-

tions (4.12) and (4.15) are relaxed by introducing a penalty regularization of the normal

and frictional contact constraints. To regularize the normal contact constraint, the nor-

mal contact pressure is assumed to vary sharply linearly with the normal component of the

interpenetration between the two bodies:

tN = εN〈g〉 (4.16)

Here, εN is the normal penalty parameter (chosen to be a few orders of magnitude higher

than the stiffness of the bodies), g is the familiar gap function, and 〈·〉 is the Macaulay

bracket defined by

〈g〉 =


g if g ≥ 0,

0 otherwise.

(4.17)

To regularize the frictional contact constraint, the tangential traction under the stick condi-

tion is assumed to vary sharply linearly with the relative tangential displacement:

tstick
T = εTψ (4.18)
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Here, εT is the tangential penalty parameter (also chosen to be a few orders of magnitude

higher than the stiffness of the bodies).

Whether two corresponding contact points are under the stick or slip condition is deter-

mined from the trial state/return mapping algorithm, outlined as follows. First, the stick

condition is assumed as the trial state, and the trial function (4.14) is computed based on

the normal traction from (4.16) and the trial state tangential traction from (4.18). If the

trial function is positive, the stick assumption is determined to be incorrect. Thus, in the

return mapping, the tangential traction is equated to its friction limit. In summary, the trial

state/return algorithm based on the regularized contact constraints proceeds as follows:

1. Compute the trial state, assuming the stick condition.

tN = εN〈g〉,

ttrial
T = εTψ,

Φtrial = |ttrial
T | − µf tN .

(4.19)

2. Check the slip condition.

tT =


ttrial
T if Φtrial ≤ 0 (stick),

µf tNsign(ψ) otherwise (slip).

(4.20)

The regularizations of the normal and frictional contact constraints are represented graphi-

cally in Figure 4.2.

4.1.4 Thermal contact constraint

The heat flux across the contact interface is assumed to be conductive and to depend on

both the contact pressure and the temperature jump between the two bodies at the interface.

Based on these assumptions, the following empirical law suggested by [47] is introduced for
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Figure 4.2: Penalty regularization of normal (left) and frictional (right) contact constraints.
Solid lines represent the strict Kuhn-Tucker constraints, while dotted lines represent the
regularized constraints

the normal heat flux due to contact between xα ∈ Γαc and xβ ∈ Γβc :

qc(xα) = h(tN)
[
θ(xα)− θ(xβ(xα))

]
(4.21)

Here, h(tN) is the pressure-dependent conductivity across the interface. This conductivity

is determined using the empirical power law

h(tN) = h0

(
tN
He

)P
(4.22)

In (4.22), h0 is a reference conductivity determined experimentally, P is an exponent deter-

mined experimentally, and He is the Vickers hardness. The contact pressure tN is determined

from (4.16).

4.2 Discretization of governing equations

The strong form collocation method may be employed in a staggered Newton-Raphson

framework to solve the nonlinear problem represented by the governing equations presented

in Section 4.1 with the regularized contact constraints from Section 4.1. To develop this

approach, we begin by introducing the Newton-Raphson framework to be used in Section

4.2.1, followed by discretizing the governing equations and contact constraints using the
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collocation method approximation described in Chapter 2.

4.2.1 Staggered Newton-Raphson scheme

Any nonlinear system of equations may be written as

R(u) = y(u)− f = 0 (4.23)

Here, R, called the residual, is a nonlinear mapping of the solution vector u. The terms y

and f are the non-constant and constant parts of R, respectively. The traditional Newton-

Raphson (NR) technique for finding the root u of this equation is defined by the iterative

scheme

uk+1 = uk −K−1
k R(uk) (4.24)

Of course, an initial guess u0 is required to begin the iteration. In (4.24), k denotes the

iteration step and K, called the tangent stiffness matrix, is defined on the kth step by

K :=
∂R(uk)

∂u
(4.25)

It is convenient to denote the update term in (4.24) by

δuk := −K−1R(uk) (4.26)

The iteration in (4.24) is repeated until a desired stopping criterion is reached. A commonly

used stopping criterion based on the magnitude of the solution vector update is

IF
||δuk||
||uk − u0||

< TOL, THEN Stop NR loop. (4.27)
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Another commonly used stopping criterion based on the magnitude of the residual is

IF
||Rk||
||R0||

< TOL, THEN Stop NR loop. (4.28)

In the context of the present study, the nonlinear system of interest consists of the strong

forms of both the mechanical and thermal governing equations, boundary conditions, and

contact constraints discretized directly at the collocation points. There are two separate

solution vectors in this system. The first is the nodal displacement solution vector given by

U =



uh1(x1)

uh2(x1)

uh1(x2)

uh2(x2)

...

uh1(xN)

uh2(xN)



(4.29)

The second solution vector is the nodal temperature change vector, given by

T =



θh(x1)

θh(x2)

...

θh(xN)


(4.30)

Here, xI is the Ith collocation point, N is the total number of collocation points, uhi

corresponds to the ith displacement degree of freedom, and T h corresponds to the tem-

perature change. In the present study, there are a total of three degrees of freedom,

namely the x- and y-components of displacement and temperature change. For convenience,

Ui := {uhi (x1), ..., uhi (xN)}T will be used to denote the separated solution vectors for the two
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degrees of freedom. Note that the shape functions described in 2 do not have the Kronecker

delta property, so true values of displacement at the collocation points must be reinterpolated

from the nodal solution vector u using the (0, 0) differential operator:

ui(xI) ≈ Φ
(0,0)
I Ui (4.31)

Similarly, true values of temperature change at the nodes must be reinterpolated according

to

θ(xI) ≈ Φ
(0,0)
I T (4.32)

With this iterative solution framework, the proposed strong form collocation method may

be used to determine the appropriate tangent stiffness matrices KU and KT and residual

vectors RU and RT for the two-body thermo-mechanical contact problem. Using these ma-

trices and vectors, the staggered Newton-Raphson scheme outlined below may be used to

determine the solution vectors U and T:

Staggered Newton-Raphson scheme for thermo-mechanical contact

1. Compute residual vector RU and tangent stiffness matrix KU using U and T from

previous iteration.

2. Compute update δU from (4.26) using RU and KU. Update U according to (4.24).

3. Compute residual vector RT and tangent stiffness matrix KT using updated U.

4. Compute update δT from (4.26) using RT and KT. Update T according to (4.24).

5. Check convergence criteria (e.g. (4.27) or (4.28)) separately for U and T.

6. Repeat steps 1-5 until both convergence criteria are satisfied.
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4.2.2 Discretization of mechanical equilibrium and boundary con-
ditions

To determine the discrete form of the equilibrium equations (4.1), the constitutive equa-

tion (4.2), and the strain-displacement equations (4.3) and (4.4) are substituted in (4.1) to

yield

µ∆u + (λ+ µ)∇(∇ · u)− 2α′v(λ+ µ)∇θ + b = 0 in Ω (4.33)

Here, plane strain is assumed, so that the Lamé constants are given by

λ =
νE

(1− 2ν)(1 + ν)

µ =
E

2(1 + ν)

(4.34)

where E is Young’s modulus, and ν is Poisson’s ratio (not to be confused with ν, the

contact normal vector). Note that a modified plane strain coefficient of thermal expansion

α′v = (1 + ν)αv is used in (4.33). In index notation for Cartesian components, (4.33) is

written equivalently as

µui,jj + (λ+ µ)uj,ji − 2α′v(λ+ µ)θ,i + bi = 0 in Ω (4.35)

where i, j = 1, 2 in two dimensions and repeated indices obey the summation convention.

When these equations are expanded explicitly, they become the pair of equations

(λ+ 2µ)u1,11 + µu1,22 + (λ+ µ)u2,21 − 2α′v(λ+ µ)θ,1 + b1 = 0

(λ+ µ)u1,12 + (λ+ 2µ)u2,22 + µu2,11 − 2α′v(λ+ µ)θ,2 + b2 = 0

(4.36)

The strong form of the PDEs in (4.36) are discretized by replacing the various derivative

terms with approximate derivatives constructed using the differential operators from Chapter

2. This discretization is used to construct the equations for each interior collocation point.

Suppose xI ∈ Ω is an interior collocation point and let Φα
IJ represent the J th entry of the αth
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differential operator at collocation point xI . Then the equations in (4.36) for node xI ∈ Ω

are discretized as

RintU
I1 :=

N∑
J=1

[(
(λ+ 2µ)Φ

(2,0)
IJ + µΦ

(0,2)
IJ

)
uh1(xJ) +

(
(λ+ µ)Φ

(1,1)
IJ

)
uh2(xJ)

]
−

N∑
J=1

(
2α′v(λ+ µ)Φ

(1,0)
IJ

)
θh(xJ) + b1(xI)

RintU
I2 :=

N∑
J=1

[(
(λ+ µ)Φ

(1,1)
IJ

)
uh1(xJ) +

(
(λ+ 2µ)Φ

(0,2)
IJ + µΦ

(2,0)
IJ

)
uh2(xJ)

]
−

N∑
J=1

(
2α′v(λ+ µ)Φ

(0,1)
IJ

)
θh(xJ) + b2(xI)

(4.37)

Thus, for node xI ∈ Ω, the 2× 2 IJ block of KU is given by the partial derivative of (4.37)

with respect to {uh1(xJ), uh2(xJ)}, i.e.,

KintU
IJ =

(λ+ 2µ)Φ
(2,0)
IJ + µΦ

(0,2)
IJ (λ+ µ)Φ

(1,1)
IJ

(λ+ µ)Φ
(1,1)
IJ (λ+ 2µ)Φ

(0,2)
IJ + µΦ

(2,0)
IJ

 (4.38)

Note that the derivatives of the residual with respect to the nodal temperatures are not

included due to the staggered coupling scheme.

Substituting (4.2) and (4.3) in (4.7), the traction condition can be expressed in index

notation as

σijnj − t̄i = λuj,jni + µ(ui,j + uj,i)nj − 2α′v(λ+ µ)θni − t̄i = 0 (4.39)

This is expanded as

(λ+ 2µ)n1u1,1 + µn2u1,2 + λn1u2,2 + µn2u2,1 − 2α′v(λ+ µ)θn1 − t̄1 = 0

λn2u1,1 + µn1u1,2 + (λ+ 2µ)n2u2,2 + µn1u2,1 − 2α′v(λ+ µ)θn2 − t̄2 = 0

(4.40)

Then, following the example of the interior nodes, if xI ∈ Γαt is a prescribed traction boundary
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node, the discretized equation at node xI is expressed as

Rtrac
I1 :=

N∑
J=1

[(
(λ+ 2µ)n1Φ

(1,0)
IJ + µn2Φ

(0,1)
IJ

)
uh1(xJ) +

(
λn1Φ

(0,1)
IJ + µn2Φ

(1,0)
IJ

)
uh2(xJ)

]
−

N∑
J=1

(
2α′v(λ+ µ)n1Φ

(0,0)
IJ

)
θh(xJ)− t̄1(xI)

Rtrac
I2 :=

N∑
J=1

[(
λn2Φ

(1,0)
IJ + µn1Φ

(0,1)
IJ

)
uh1(xJ) +

(
(λ+ 2µ)n2Φ

(0,1)
IJ + µn1Φ

(1,0)
IJ

)
uh2(xJ)

]
−

N∑
J=1

(
2α′v(λ+ µ)n2Φ

(0,0)
IJ

)
θh(xJ)− t̄2(xI)

(4.41)

For convenience in discretizing the contact constraints in Section 4.2.3, the non-constant

part of (4.41) will be denoted

ytrac
I := Rtrac

I + t̄(xI) (4.42)

Each corresponding IJ block of the tangent stiffness KU for xI ∈ Γαt is then given by

Ktrac
IJ =

(λ+ 2µ)n1Φ
(1,0)
IJ + µn2Φ

(0,1)
IJ λn1Φ

(0,1)
IJ + µn2Φ

(1,0)
IJ

λn2Φ
(1,0)
IJ + µn1Φ

(0,1)
IJ (λ+ 2µ)n2Φ

(0,1)
IJ + µn1Φ

(1,0)
IJ

 (4.43)

Finally, if xI ∈ Γαu is a prescribed displacement boundary node, the discretized equation at

node xI is simply expressed as

Rdisp
I1 :=

N∑
J=1

Φ
(0,0)
IJ uh1(xJ)− ū1

Rdisp
I2 :=

N∑
J=1

Φ
(0,0)
IJ uh2(xJ)− ū2

(4.44)
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Each corresponding IJ block of the tangent stiffness KU for xI ∈ Γαu is then given by

Kdisp
IJ =

Φ
(0,0)
IJ 0

0 Φ
(0,0)
IJ

 (4.45)

In the event that there is a mixed boundary condition at a node, e.g., a roller boundary

condition, the appropriate discretized equations can be formulated as a suitable hybrid of

(4.41) and (4.44). Given these discretized boundary conditions and governing PDE for the

interior nodes (4.37), the full tangent stiffness matrix and residual vector are almost ready

to be assembled. Notice that the equations developed so far are linear due to the linear

elastic constitutive law and small displacement and strain assumption. The nonlinearity for

the contact problem in this study comes solely from the contact constraints, discretized in

the following section.

4.2.3 Discretization of regularized mechanical contact constraints

Like the traction boundary condition (4.7)2, the contact condition (4.7)3 contains the

σn term. Unlike prescribed traction t̄, however, the contact traction tc depends on the

displacement field. To discretize the contact constraints, we begin by substituting (4.10) in

(4.7)3 and writing this equation in index notation:

σijnj − tci = λuj,jni + µ(ui,j + uj,i)nj − tNνi + tT τi = 0 (4.46)

The values of contact pressure tN and tangential traction tT depend on the gap function and

the slip/stick state of the system, as explained in Section 4.1. The gap function is discretized

in terms of both the primary contact node xαI ∈ Γαc and the corresponding contact node

xβI ∈ Γβc as follows:

g(xαI ) ≈ GI := g0(xαI )−
N∑
J=1

(
Φ

(0,0)
IJ − Φ

(0,0)
I′J

) [
ν1u

h
1(xJ) + ν2u

h
2(xJ)

]
(4.47)
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Here, Φ
(0,0)
IJ is the reinterpolation operator for xαI , while Φ

(0,0)
I′J is the reinterpolation operator

for xβI . The initial gap g0 is known a priori based on the undeformed geometry of the

problem. Similarly, the relative tangential displacement is discretized as follows:

ψ(xαI ) ≈ ΨI :=
N∑
J=1

(
Φ

(0,0)
IJ − Φ

(0,0)
I′J

) [
τ1u

h
1(xJ) + τ2u

h
2(xJ)

]
(4.48)

In the event that the bodies are not in contact (i.e. g < 0) at two corresponding contact

points, there is neither contact pressure nor tangential traction between the bodies at those

points. Thus, for a node xI ∈ Γαc for which g < 0,

Rg<0
I1 := ytrac

I1

Rg<0
I2 := ytrac

I2

(4.49)

Here, ytrac
I is given by (4.42). Each corresponding IJ block of KU is given by

Kg<0
IJ = Ktrac

IJ (4.50)

Notice that this case is equivalent to a traction-free boundary condition.

If the gap between two corresponding contact points xαI ∈ Γαc and xβI ∈ Γβc is closed

and the points are under the stick condition, then substituting (4.16) and (4.18) in (4.46),

expanding, and applying the differential operators yields

Rstick
I1 := ytrac

I1 − εNGIν1 + εTΨIτ1

Rstick
I2 := ytrac

I2 − εNGIν2 + εTΨIτ2

(4.51)

Note that the terms involving the gap function have been discretized using (4.47). Differ-

entiating the normal and tangential traction terms with respect to uh1 and uh2 leads to the
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expression for the IJ blocks of KU for each xαI ∈ Γαc , α ∈ {1, 2}:

Kstick
IJ = Ktrac

IJ − εN
(

Φ
(0,0)
IJ − Φ

(0,0)
I′J

)ν1ν1 ν1ν2

ν2ν1 ν2ν2

+ εT

(
Φ

(0,0)
IJ − Φ

(0,0)
I′J

)τ1τ1 τ1τ2

τ2τ1 τ2τ2

 (4.52)

Finally, if the gap between xαI and xβI is closed and the two points are under the slip condi-

tion, then substituting (4.16) and (4.20) in (4.46), expanding, and applying the differential

operators yields

Rslip
I1 := ytrac

I1 − εNGIν1 + µfεNGIsign(ΨI)τ1

Rslip
I2 := ytrac

I2 − εNGIν2 + µfεNGIsign(ΨI)τ2

(4.53)

Each corresponding block IJ of KU in the case of stick is then given by

Kslip
IJ =Ktrac

IJ − εN
(

Φ
(0,0)
IJ − Φ

(0,0)
I′J

)ν1ν1 ν1ν2

ν2ν1 ν2ν2


+ µfεNsign(ΨI)

(
Φ

(0,0)
IJ − Φ

(0,0)
I′J

)τ1ν1 τ1ν2

τ2ν1 τ2ν2


(4.54)

In summary, each portion of the residual vector and block of the tangent stiffness matrix

corresponding to a contact collocation point xαI ∈ Γαc , α ∈ {1, 2} is given by

RcontU
I =


Rg¡0
I , if g < 0

Rstick
I , if stick

Rslip
I , if slip

(4.55)
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Each IJ block of the contact condition part of KU is given by

KcontU
IJ =


Kg¡0
IJ , if g < 0

Kstick
IJ , if stick

Kslip
IJ , if slip

(4.56)

These expressions (4.55) and (4.56) may be used in conjunction with the discretized equations

in Section 4.2.2 to assemble the total residual vector and tangent stiffness matrix for the

problem. No special method of assembly is required, unlike in the context of finite elements;

the expressions developed above are simply concatenated I = 1 : N according to the type

(interior, boundary, contact, etc.) of node I. Thus, the Ith block of RU, i.e. entries 2I − 1

and 2I of RU, is given by

(RU)I =



RintU
I , if xI ∈ Ω

Rtrac
I , if xI ∈ Γt

Rdisp
I , if xI ∈ Γu

RcontU
I , if xI ∈ Γc

(4.57)

Similarly, the IJ block of KU is given by

(KU)IJ =



KintU
IJ , if xI ∈ Ω

Ktrac
IJ , if xI ∈ Γt

Kdisp
IJ , if xI ∈ Γu

KcontU
IJ , if xI ∈ Γc

(4.58)

Note that the tangent stiffness matrix KU is discontinuous at the transitions between

non-contact and contact, and between stick and slip. For this reason, the Newton-Raphson
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iteration using RU and KU is not guaranteed to converge mathematically. However, in

practice, this process does converge for the problems considered in this study, so smoother

regularizations of the contact pressure and tangential traction are not considered. It would

be straightforward to modify these expressions to have continuous first and second derivatives

using, for example, Hermite interpolation of contact pressure and tangential traction in a

user-defined radius around g = 0, ψ = 0, and Φtrial = 0.

4.2.4 Discretization of thermal equations

The thermal governing equation, boundary conditions, and contact constraints are dis-

cretized in a similar fashion. When (4.6) is substituted in (4.5) and expanded, the result is

Poisson’s equation:

−κ (θ,11 + θ,22) + s = 0 (4.59)

Thus, for an interior collocation point xI ∈ Ω, this is discretized as

RintT
I :=

N∑
J=1

[
−κ
(

Φ
(2,0)
IJ + Φ

(0,2)
IJ

)
θh(xJ)

]
+ s(xI) (4.60)

The IJ entry of KT corresponding to xI ∈ Ω is then given by

K intT
IJ = −κ

(
Φ

(2,0)
IJ + Φ

(0,2)
IJ

)
(4.61)

The prescribed heat flux boundary condition is expanded to yield

−κ (θ,1n1 + θ,2n2)− q̄ = 0 (4.62)

Thus, for a prescribed heat flux boundary point xI ∈ Γq, this is discretized as

Rflux
I :=

N∑
J=1

[
−κ
(

Φ
(1,0)
IJ n1 + Φ

(0,1)
IJ n2

)
θh(xJ)

]
− q̄(xI) (4.63)

53



For convenience in discretizing the contact condition, let yflux
I = Rflux

I + q̄(xI). The IJ entry

of KT corresponding to xI ∈ Γq is then given by

Kflux
IJ = −κ

(
Φ

(1,0)
IJ n1 + Φ

(0,1)
IJ n2

)
(4.64)

The discretized equation for a prescribed temperature boundary collocation point xI ∈ Γθ

is simply given by

Rtemp
I :=

N∑
J=1

[
Φ

(0,0)
IJ θh(xJ)

]
− θ̄(xI) (4.65)

The IJ entry of KT corresponding to xI ∈ Γθ is then given by

Ktemp
IJ = Φ

(0,0)
IJ (4.66)

Finally, if xαI ∈ Γαc is a contact node and xβI ∈ Γβc is its corresponding contact node on

the other body, the discretized form of the thermal contact condition is given by

RcontT
I := yflux

I −
N∑
J=1

[
h0

(
εN〈GI〉
He

)P (
Φ

(0,0)
IJ − Φ

(0,0)
I′J

)
θh(xJ)

]
(4.67)

Here, as in the discretized mechanical contact constraints, GI is the discretized gap function

(4.47) and Φ
(0,0)
IJ and Φ

(0,0)
I′J are the reinterpolation operators for xαI and xβI respectively.

Again recalling that the derivative terms with respect to the nodal displacement solution

vector are neglected because this study is considering a staggered Newton-Raphson scheme,

the IJ entry of the tangent stiffness KT is given by

KcontT
IJ := Kflux

IJ − h0

(
εN〈GI〉
He

)P (
Φ

(0,0)
IJ − Φ

(0,0)
I′J

)
(4.68)

The full residual vector RT and tangent stiffness matrix KT are assembled in similar fashion

as (4.57) and (4.58).
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4.3 Numerical study

In this section, the proposed nonlinear strong form collocation method is verified through

two numerical examples related to two-body mechanical contact alone and one related to

thermomechanical contact. The first, involving frictional contact between two blocks along

an inclined surface, is used to assess the ability of the proposed method to distinguish

between slip and stick conditions. The second, involving Hertzian contact between two half-

cylinders, verifies the method against a nontrivial analytical solution. The third, involving

thermomechanical contact between two rectangular blocks, verifies the pressure-dependent

thermal contact model and that the mechanical and thermal problems may be accurately

solved together using the staggered Newton-Raphson scheme.

4.3.1 Mechanical contact along an inclined surface

The first numerical example considered in this study concerns mechanical contact between

two blocks along an inclined surface. A version of this example was used in [56] to verify

a mortared finite element method for multi-body frictional contact. The geometry for this

problem is shown in Figure 4.3. In their reference configuration, the two blocks together form

a square of side length 2.0. They are separated by a contact surface of frictional coefficient µf

along a line of slope m = 0.2 through the centroid of the square. The block below the contact

surface is pinned at the bottom right corner and resting on rollers along the remainder of

its bottom surface. The top block has a prescribed displacement of uy = −0.01 at its top

surface. It is restrained in the x-direction at the top right corner but free in the x-direction

along the rest of the top surface. The left and right sides of the block are traction-free. For

both blocks, the Young’s modulus and Poisson’s ratio are E = 1.0 and ν = 0.3. The normal

and tangential penalty parameters are chosen to be εN = εT = 1.0× 106E (as for the rest of

the numerical examples in this section unless otherwise stated).

The purpose of this numerical example is to determine with what sensitivity the proposed
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𝑢𝑦 = −0.01
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2
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Ω2

𝑦

𝑥

Figure 4.3: Free-body diagram for the problem of mechanical contact along an inclined
surface

method can distinguish between the slip and stick conditions. Theoretically, if the coefficient

of friction µf is chosen to be greater than the slope of the interface m, then the entire contact

surface will be under the stick condition. Conversely, if µf is chosen to be less than the slope

of the contact interface, then the entire contact surface will be under the slip condition.

However, in practice, there will be some threshold coefficient of friction µthresh 6= m above

which the contact surface sticks and below which it slips. Thus, how small a difference exists

between µthresh and m is a measure of the sensitivity with which the method can distinguish

between stick and slip.

Figure 4.4 shows an example arrangement of collocation points used for this problem.

This arrangement is a uniform Cartesian-product grid perturbed so that the number of

contact points along the inclined surface is equal to the number of points along the bottom

edge of the domain. Using the nodal arrangement shown in Figure 4.4, the displacement

field is computed using the proposed method for various values of the friction coefficient µf

near 0.2. The results of these trials indicate that the threshold friction coefficient for the

proposed method is µthresh = 0.1999997 = m− (3×10−7). Contour plots of the displacement

field are shown for µf = 0.19 in Figure 4.5 and for µf = 0.21 in Figure 4.6. Slip is clearly
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Figure 4.4: Example arrangement of collocation points for the inclined surface problem

visible in the discontinuity in the u1 field for µf = 0.19 in Figure 4.5.
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Figure 4.5: (a) x-component and (b) y-component of displacement for the inclined surface
problem, µf = 0.19

In order to verify the results of the proposed method for the inclined contact surface

example, the contact pressure and tangential traction computed from the method are com-

pared with results from FEM. In addition to the sum of normal contact tractions from each

side of the interface (which should be zero in equilibrium), Figures 4.7 and 4.8 shows the

contact pressure profile along the contact surface according to the stress field, the contact

algorithm, and an ABAQUS FEM model. The FEM model was chosen to have roughly the
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Figure 4.6: (a) x-component and (b) y-component of displacement for the inclined surface
problem, µf = 0.21

same level of discretization as the collocation point arrangement in Figure 4.4.
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Figure 4.7: (a) Sum of normal tractions from top and bottom surface of contact interface
and (b) contact pressure from stress, contact algorithm, and FEM for µf = 0.19
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Figure 4.8: (a) Sum of normal tractions from top and bottom surface of contact interface
and (b) contact pressure from stress, contact algorithm, and FEM for µf = 0.21

A similar comparison is shown in Figures 4.9 and 4.10. For both contact pressure and tan-

gential traction, the results from different parts of the proposed method algorithm agree

with each other and with the FEM model.

4.3.2 Hertzian contact between two half-cylinders

The second numerical example considered in this study concerns Hertzian contact be-

tween two half-cylinders. A version of this example was used in [54] for verification purposes.

The geometry for this problem is shown in Figure 4.11. As shown, two half-cylinders of ra-

dius R = 8 are in kissing contact at the origin. They are separated by a flat contact surface

of frictional coefficient µf = 0.2. The bottom edge of the bottom half-cylinder is fixed in

both directions. The top block has a prescribed displacement of ū(x) = {ūx(x), ūy(x)} along

its top surface. All other boundaries (other than the contact interface) are traction-free. For
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Figure 4.9: (a) Sum of tangential tractions from top and bottom surface of contact interface
and (b) tangential traction from stress, contact algorithm, and FEM for µf = 0.19
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Figure 4.10: (a) Sum of tangential tractions from top and bottom surface of contact interface
and (b) tangential traction from stress, contact algorithm, and FEM for µf = 0.21
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Figure 4.11: Free-body diagram for Hertzian contact problem

both bodies, the Young’s modulus and Poisson’s ratio are E = 200 and ν = 0.3. The normal

and tangential penalty parameters are again chosen to be εN = εT = 1.0× 104E.

The arrangement of collocation points used for this problem is shown in Figure 4.12. It

is a random arrangement of points generated using the open-source meshing software gmsh.

The spacing of collocation points around the contact point is much smaller than that in the

rest of the domain to ensure a sufficient number of contact nodes and local precision of the

solution.
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Figure 4.12: (a) Arrangement of collocation points for the Hertzian contact problem and (b)
Detail of nodal arrangement near contact surface
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Before applying both horizontal and vertical loads to the top edge of the top cylinder,

a simplified case is considered in which µf = 0 and only vertical loading is applied. Under

these conditions, x = 0 is a line of symmetry, allowing half the problem to be considered.

When only half the problem is considered, the numerical algorithm proposed here is suf-

ficiently stable that a vertical traction may be considered at the top surface. (When the

full problem is considered, the algorithm becomes unstable because the top cylinder is not

sufficiently constrained and undergoes uncontrolled rigid body motion). For the Hertzian

contact problem with only vertical traction loading, an analytical solution is available. Thus,

we can use this example to compare the results from the proposed method with an analytical

solution for a problem in which the contact traction distribution is nontrivial. The analytical

solution for contact pressure along the contact surface was provided by [65] and is given by

the elliptical profile

tN(x) =
2ptop

πa2

(
a2 − x2

)1/2
(4.69)

Here, ptop is the prescribed normal traction at the top edge. The value of a is found from

a =

√
4ptopR

πE
(4.70)

In (4.70), R is the radius of the cylinder and E is the Young’s modulus of the cylinders.

Contour plots of the x- and y-components of displacement computed using the proposed

method are given in Figure 4.13. A comparison between the contact pressure computed

from the proposed method and that from the exact solution is shown in Figure 4.14. Figure

4.14 shows agreement between the proposed method and the exact solution, particularly

with respect to the peak contact pressure. There is higher error in the contact pressure near

the edge of the contact boundary. However, as the collocation point arrangement is further

refined, the discrepancy between the computed and analytical solution near the edge of the

contact boundary is reduced. It should also be noted that finite element methods such as

[55] experience similar difficulties.
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Figure 4.13: (a) x-component and (b) y-component of displacement for the half-Hertzian
contact problem according to the proposed method
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Figure 4.14: Contact pressure profile for half Hertzian contact problem

Next, the full Hertzian contact problem is solved using the proposed method. The nu-

merical solution to the full problem with ū = {0.0002,−0.0014} is shown in Figure 4.15.

63
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Figure 4.15: (a) x-component and (b) y-component of displacement for the full Hertzian
contact problem according to the proposed method

4.3.3 Thermomechanical contact between rectangular blocks

In this section, thermomechanical contact between rectangular blocks is examined. A

version of this example was used in [47] to verify an enriched finite element method for ther-

momechanical contact. The geometry and uniform nodal arrangement for this problem are

shown in Figure 4.16. Each block is a square of side length 1.0 meter. They are separated by

a contact surface of frictional coefficient µf = 0.2, resistivity coefficient h0 = 1.0, resistivity

exponent P = 1.5, and Vickers hardness He = 3.0 along a horizontal line through the origin.

The block below the contact surface is fixed in both directions along its bottom surface

and is fixed at a temperature change of 0 K. The top block has a prescribed displacement

of u = {0, ūy} along its top surface. The left and right sides of the blocks are traction-

free and perfectly insulated. For both blocks, the Young’s modulus and Poisson’s ratio are

E = 0.07MPa and ν = 0.3, while the thermal conductivity and expansion coefficient are

κ = 150J/m · s ·K and αv = 1.0× 10−7K−1. The normal and tangential penalty parameters

are εN = εT = 1.0× 104E.

Using this numerical example, the implementation of the pressure-dependent thermal
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Figure 4.16: (a) Free-body diagram and (b) arrangement of collocation points for the problem
of thermomechanical contact between rectangular blocks

contact model can be verified using an analytical solution for the temperature on either side

of the contact interface. Specifically, for the pressure dependent model, the contact boundary

temperatures are given in [47] and originally in [52] by

θ+ =
(κ+ h(tN))θtop + h(tN)θbottom

κ+ 2h(tN)

θ− =
(κ+ h(tN))θbottom + h(tN)θtop

κ+ 2h(tN)

(4.71)

Here, θ+ and θ− are the temperatures on the edge above and below the contact surface

respectively, θtop and θbottom are the prescribed temperatures at the top and bottom edges

of the entire domain respectively, and h(tN) is given by (4.22). To find the temperature

profiles along the contact interface numerically, the proposed method is used with the uniform

nodal arrangement shown in Figure 4.16 to solve the contact problem for various values of
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prescribed displacement. Figure 4.17 shows contour plots of the components of displacement

and temperature for ūy = −1.0×10−3. The computed displacement and temperature fields in
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Figure 4.17: (a) x-component of displacement, (b) y-component of displacement, and (c)
temperature for the problem of thermomechanical contact between rectangular blocks

Figure 4.17 are reasonable. As expected in the x-displacement field, the top and bottom edges

are held fixed in the x-direction while the left and right sides experience a Poisson’s effect.

The y-component of displacement has an approximately constant slope in the y-direction,

as expected since the two blocks have the same material properties. Any discrepancy from

constant strain εyy can be explained by the thermal expansion of the top block. Finally, the

temperature field has a jump at the contact interface but there is a temperature gradient

across each block, reflecting the imperfect heat conduction across the interface modeled by

(4.22).

Beyond these initial assurances, the numerical solution is verified by its agreement with

the analytical solution for the temperature jump across the contact interface. The analytical

temperatures along the contact interface are computed based on the computed contact pres-

sure because an analytical solution based directly on prescribed displacement is unavailable.
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Figure 4.18 shows that the temperature jump across the contact interface becomes smaller

as the contact pressure increases because the increased contact pressure makes the surface

more conductive, as expected. It also shows that the analytical temperature vs. contact
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Figure 4.18: Temperature jump across contact interface for various values of contact pressure

pressure is visually indistinguishable from the computed solution. The maximum relative

error between the analytical temperature and the computed temperature is

max|θexact − θnumer|
max|θexact|

= 2.3× 10−4 (4.72)

The numerical results from this section verify the implementation of the proposed method

for thermomechanical contact. From the first example, it is clear that the method can accu-

rately distinguish between stick and slip in the case of frictional contact. The second example

(Hertzian contact) demonstrates that the proposed method can successfully match the an-

alytical solution for a nontrivial contact pressure profile in the frictionless case and predict

a reliable numerical solution of the governing equations in the frictional case. Based on the

third example, the method can handle the additional nonlinearity of the thermal field, since

the method accurately predicts the temperature jump across the contact interface for various

levels of contact pressure. The results from this study are promising for future developments

to the strong form meshfree collocation framework for thermomechanical contact.
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Chapter 5

Conclusion

In this study, the strong form meshfree collocation method was used to solve higher-order

and nonlinear PDEs arising in engineering applications. For both classes of problems, the

proposed method produced reliable results that agreed with analytical or FEM solutions.

The results of this study demonstrate that the proposed method has potential to be a viable

alternative to the FEM for solving the higher-order and nonlinear PDEs that govern systems

and processes of interest in engineering design. This study also elucidates the wide range of

applications—from ocean circulation to thermomechanical contact—for which the proposed

method is useful.

The first application considered in this study was the solution of higher-order PDEs in

the context of wind-driven ocean circulation. To solve the fourth-order linear Stommel–

Munk model for ocean circulation, the proposed method was modified using a weighted

least squares approach to allow two boundary conditions to be applied simultaneously along

the entire boundary. For each verification problem considered, the numerical results of the

proposed method exhibited at least near-optimal and in some cases better than optimal

convergence. Furthermore, local refinement was shown to improve the accuracy and conver-

gence rate for both uniform grid and random nodal arrangements in the context of a problem

whose exact solution had a difficult-to-capture high-gradient region in the form of a strong
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western boundary layer. Finally, it was demonstrated that the proposed method successfully

solved the fourth-order Stommel-Munk model on a polygon representing the Mediterranean

Sea (a domain with complicated geometry), further implying the robustness and real-world

applicability of the method. The proposed method’s ability to predict wind-driven ocean cir-

culation with reliable error convergence and on a domain with arbitrarily shaped boundaries

bodes well for its ability to solve higher-order PDEs in other engineering contexts.

The second application considered in this study was the solution PDEs governing multi-

body thermomechanical contact, which are nonlinear due to the contact constraints. To

solve these nonlinear equations, the proposed method was adapted to a staggered Newton-

Raphson framework. In each example, the solution by the proposed method agreed with

analytical or finite element solutions. In the inclined interface verification example, the

method demonstrated a marked ability to distinguish between the stick and slip conditions

and the contact traction profile agreed with results from commercial FEM software. The

proposed method solution was shown to agree with the analytical solution for frictionless

Hertzian contact, for which the contact pressure profile at the contact interface is nontrivial.

Moreover, the method yielded a reasonable numerical solution for the Hertzian contact with

friction. Finally, the method was shown to be accurate even with the additional nonlinear-

ity introduced by the thermomechanical coupling, as evidenced by the example involving

thermomechanical contact between rectangular blocks. Now that the proposed method has

been verified for mechanical and thermomechanical contact, it can be used for more realistic

applications, such as modeling of thermomechanical interactions in a nuclear fuel rod.

Future work will further explore the capability of the proposed method by solving the

nonlinear stationary and the time-dependent quasi-geostrophic equations and contact prob-

lems with tighter coupling, large deformation, material nonlinearity, and time dependence.

In particular, solving the nonlinear quasi-geostrophic equations presents the interesting chal-

lenge of combining the higher order and nonlinear capabilities of the current computational

framework for the method. Expanding the capabilities of the contact framework presents
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numerous challenges, including the additional material and geometric nonlinearities intro-

duced, the need to implement a contact search algorithm and built-in adaptive refinement

scheme, and the need to consider frictional heat sources and dynamic effects. More broadly,

in light of the proposed method’s potential for solving higher-order and nonlinear PDEs in

a variety of contexts, opportunities abound for applying the method to wide-ranging engi-

neering applications for which the method has particular advantages over more traditional

computational methods.

70



Bibliography

[1] J.N. Reddy. Theory and Analysis of Elastic Plates and Shells. Boca Raton: CRC Press,
2007.

[2] J.W. Cahn and J.E. Hilliard. “Free energy of a nonuniform system. I. Interfacial free
energy”. In: J. Chem. Phys. 28 (1958), pp. 258–267.

[3] J.C. Simo and T.J.R. Hughes. Computational Inelasticity. New York: Springer-Verlag,
1998.

[4] A. Beel, T.Y. Kim, W. Jiang, and J.H. Song. “Strong form-based meshfree collocation
method for wind-driven ocean circulation”. In: Computer Methods in Applied Mechan-
ics and Engineering Accepted (2019).

[5] Y.C. Yoon and J.H. Song. “Extended particle difference method for weak and strong
discontinuity problems: part I. Derivation of the extended particle derivative approx-
imation for the representation of weak and strong discontinuities”. In: Computational
Mechanics 53.6 (2014), pp. 1087–1103.

[6] P. Wriggers. Computational Contact Mechanics. Springer-Verlag, 2006.

[7] T. Belytschko, Y.Y. Lu, and L. Gu. “Element free Galerkin Methods”. In: International
Journal for Numerical Methods in Engineering 87 (1994), pp. 229–256.

[8] T. Rabczuk and T. Belytschko. “Cracking particles: a simplified meshfree method
for arbitrary evolving cracks”. In: International Journal for Numerical Methods in
Engineering 61 (2004), pp. 2316–2343.

[9] T. Rabczuk, T. Belytschko, and S.P. Xiao. “Stable particle methods based on La-
grangian kernels”. In: Computer methods in applied mechanics and engineering 193
(2004), pp. 1035–1063.

[10] C. Anitescu, Y. Jia, Y.Z. Zhang, and T. Rabczuk. “An isogeometric collocation method
using superconvergent points”. In: Computer Methods in Applied Mechanics and En-
gineering 284 (2015), pp. 1073–1097.

71



[11] S. Li and W.K. Liu. “Synchronized reproducing kernel interpolant via multiple wavelet
expansion”. In: Computational Mechanics 21 (1998), pp. 28–47.

[12] S. Li and W.K. Liu. “Reproducing kernel hierarchical partition of unity, Part I-formulation
and theory”. In: International Journal for Numerical Methods in Engineering 45 (1999),
pp. 251–288.

[13] S. Li and W.K. Liu. “Meshfree and particle methods and their applications”. In: Ap-
plied Mechanics Reviews 55 (2002), pp. 1–34.

[14] D.W. Kim and Y. Kim. “Point collocation method using the fast moving least-square
reproducing kernel approximation”. In: International Journal for Numerical Methods
in Engineering 56.10 (2003), pp. 1445–1464.

[15] M. Hillman and J.S. Chen. “An accelerated, convergent, and stable nodal integration
in Galerkin meshfree methods for linear and nonlinear mechanics”. In: International
Journal for Numerical Methods in Engineering 107 (2016), pp. 603–630.

[16] S.H. Lee and Y.C. Yoon. “Meshfree point collocation method for elasticity and crack
problems”. In: International Journal for Numerical Methods in Engineering 61.1 (2004),
pp. 22–48.

[17] D.W. Kim, W.K. Liu, Y.C. Yoon, T. Belytschko, and S.H. Lee. “Meshfree point col-
location method with intrinsic enrichment for interface problems”. In: Computational
Mechanics 40 (2007), pp. 1037–1052.

[18] D.W. Kim, Y.C., Yoon, W.K. Liu, and T. Belytschko. “Extrinsic meshfree approxima-
tion using asymptotic expansion for interfacial discontinuity of derivative”. In: Journal
of Computational Physics 221 (2007), pp. 370–394.

[19] Y.C. Yoon and J.H. Song. “Extended particle difference method for weak and strong
discontinuity problems: part II. Formulations and applications for various interfacial
singularity problems”. In: Computational Mechanics 53.6 (2014), pp. 1105–1128.

[20] Y.C. Yoon and J.H. Song. “Extended particle difference method for moving boundary
problems”. In: Computational Mechanics 54.3 (2014), pp. 723–743.

[21] J.H. Song, Y. Fu, T.Y. Kim, Y.C. Yoon, J. G. Michopoulos, and T. Rabczuk. “Phase
field simulations of coupled microstructure solidification problems via the strong form
particle difference method”. In: International Journal of Mechanics and Materials in
Design 14 (2018), pp. 491–509.

[22] Y. Fu, J.G. Michopoulos, and J.H. Song. “Bridging the multi phase-field and molecular
dynamics models for the solidification of nano-crystals”. In: Journal of Computational
Science 20 (2017), pp. 187–197.

72



[23] A. Almasi, A. Beel, T.Y. Kim, J.G. Michopoulos, and J.H. Song. “Strong form collo-
cation method for solidification and mechanical analysis of polycristaline materials”.
In: ASCE Journal of Engineering Mechanics Accepted (2019).

[24] Y.C. Yoon, P. Schaefferkoetter, T. Rabczuk, and J.H. Song. “New strong formulation
for material nonlinear problems based on the particle difference method”. In: Engi-
neering Analysis with Boundary Elements 98 (2019), pp. 310–327.

[25] H.Y. Hu, J.S. Chen, and S.W. Chi. “Perturbation and stability analysis of strong
form collocation with reproducing kernel approximation”. In: International Journal
for Numerical Methods in Engineering 88 (2011), pp. 157–179.

[26] H.A. Dijkstra. Nonlinear Physical Oceanography: A Dynamical Systems Approach to
the Large Scale Ocean Circulation and El Niño. Springer-Verlag, 2005.

[27] G.K. Vallis. Atmosphere and Ocean Fluid Dynamics: Fundamentals and Large-scale
Circulation. Cambridge University Press, 2006.

[28] J. Pedlosky. Geophysical Fluid Dynamics. Springer-Verlag, 1992.

[29] O. San, A.E. Staples, Z. Wang, and T. Iliescu. “Approximate deconvolution large eddy
simulation of a barotropic ocean circulation model”. In: Ocean Modelling 40 (2011),
pp. 120–132.

[30] T.D. Ringler, J. Thuburn, J.B. Klemp, and W.C. Skamarock. “A unified approach to
energy conservation and potential vorticity dynamics for arbitrary-structured C-grids”.
In: Journal of Computational Physics 229 (2010), pp. 3065–3090.

[31] Q. Chen, T.D. Ringler, and M. Gunzburger. “A co-volume scheme for the rotating
shallow water equations on conforming non-orthogonal grids”. In: Journal of Compu-
tational Physics 240 (2013), pp. 174–197.

[32] P.G. Myers and A.J. Weaver. “A diagnostic barotropic finite-element ocean circulation
model”. In: Journal of Atmospheric and Oceanic Technology 12 (1995), pp. 511–526.

[33] J.M. Cascón, G.C. Garcia, and R. Rodriguez. “A priori and a posteriori error analysis
for a large-scale ocean circulation finite element model”. In: Computer Methods in
Applied Mechanics and Engineering 192 (2003), pp. 5305–5327.

[34] G.J. Fix. “Finite element models for ocean circulation problems”. In: SIAM Journal
on Applied Mathematics 29.3 (1975), pp. 371–387.

[35] E.L. Foster, T. Iliescu, and Z. Wang. “A finite element discretization of the stream-
function formulation of the stationary quasi-geostrophic equations of the ocean”. In:
Computer Methods in Applied Mechanics and Engineering 261 (2013), pp. 105–117.

73



[36] T.-Y. Kim, E.-J. Park, and D. Shin. “A C0-discontinuous Galerkin method for the
stationary quasi-geostrophic equations of the ocean”. In: Computer Methods in Applied
Mechanics and Engineering 300 (2016), pp. 225–244.

[37] D. Kim, T.-Y. Kim, E.-J. Park, and D. Shin. “Error estimates of B-splined based
finite-element methods for the stationary quasi-geostrophic equations of the ocean”.
In: Computer Methods in Applied Mechanics and Engineering 335 (2018), pp. 225–272.

[38] N. Rotundo, T.-Y. Kim, W.-L. Heltai, and E. Fried. “Error analysis of a B-Spline
Based finite-element method for modeling wind-driven ocean circulation”. In: Journal
of Scientific Computing 69.1 (2016), pp. 430–459.

[39] T.-Y. Kim, T. Iliescu, and E. Fried. “B-spline based finite-element method for the
stationary quasi-geostrophic equations of the ocean”. In: Computer Methods in Applied
Mechanics and Engineering 286 (2015), pp. 168–191.

[40] I. Al Balushi, W. Jiang, G. Tsogtgerel, and T.-Y. Kim. “Adaptivity of a B-spline
based finite-element method for modeling wind-driven ocean circulation”. In: Computer
Methods in Applied Mechanics and Engineering 332 (2018), pp. 1–24.

[41] W. Jiang and T.-Y. Kim. “Spline-based finite-element method for the stationary quasi-
geostrophic equations on arbitrary shaped coastal boundaries”. In: Computer Methods
in Applied Mechanics and Engineering 299 (2016), pp. 144–160.

[42] T.J.R. Hughes, J.A. Cottrell, and S.Y. Bazilevs. “Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement”. In: Computer Methods in
Applied Mechanics and Engineering 194 (2005), pp. 4135–4195.
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