
Experimental evidence of chaotic dynamics in computer hardware

Todd Mytkowicz, Elizabeth Bradley, and Amer Diwan

University of Colorado at Boulder

Technical Report CU-CS-1031-07
June 2007

Deptartment of Computer Science

Campus Box 430

University of Colorado

Boulder, Colorado 80309-0430

In review, Physical Review Letters



Experimental evidence of chaotic dynamics in computer hardware

Todd Mytkowicz,∗ Elizabeth Bradley, and Amer Diwan
Department of Computer Science

University of Colorado

Boulder, Colorado

In this Letter, we demonstrate the first experimental evidence of chaotic dynamics in real computer hardware.

We use delay-coordinate embedding to reconstruct the state-space dynamics of a modern microprocessor while

it executes a standard benchmark program. Analyzing these dynamics, we establish multiple corroborating

measures of low-dimensional chaos. Our results indicate that traditional nonlinear analysis techniques are an

elegant and effective solution to understanding the dynamics of computer performance.

The growing complexity of computer architecture has over-

whelmed the analysis techniques used in that field. Traditional

models of computer performance, for instance, essentially ig-

nore the temporal details of behavior. Instead, hardware archi-

tects generally use aggregate measures like FLOPS (floating

point operations per second, calculated over an entire program

run) as measures of performance. In the past, when comput-

ers were simpler devices, measures like this may have been

adequate for understanding performance. With modern hard-

ware and software becoming so complex, however, even sim-

ple design changes can cause unintended and counterintuitive

effects. Aggregate measures, such as FLOPS, are not detailed

enough to elucidate the dynamics that underlie these effects.

At the same time, the act of making high fidelity measure-

ments can perturb the dynamics of the very system that we

want to understand. These are exactly the kinds of challenges

faced in physics problems, and the underlying premise of this

Letter is that the ideas and tools developed by the physics

community are an effective way to approach the analysis of

modern computer systems.

Though not a common view in the microprocessor

literature[16], a computer is clearly a high-dimensional non-

linear dynamical system. Viewed in this light, microprocessor

registers, main memory contents and even regional micropro-

cessor temperature are state variables of the system. The logic

hardwired into the microprocessor, combined with the soft-

ware executing on that hardware, defines the system dynam-

ics. Under the influence of these dynamics, the computer’s

state moves on a trajectory through this high-dimensional

space as the clock cycles progress and the program executes.

Taking this view of computers as dynamical systems, we

use traditional nonlinear time-series techniques to analyze

them. We measure how many instructions are executed per

clock cycle from a standard benchmark program. We use

a nonlinear noise reduction technique to filter our data, use

delay-coordinate embedding to reconstruct the state-space dy-

namics and then compute several standard invariants on this

reconstructed dynamics. The results are the first experimental

evidence of chaos on real computer hardware.

Measuring the behavior of a running computer without

perturbing its behavior is surprisingly difficult. Ideally, one

would inspect the contents of every microprocessor register

and main memory location on a cycle-by-cycle basis, thereby

directly measuring a large subset of the system’s state vari-

ables. This is completely impractical, of course. The hard-

ware does not expose all of these variables; even if it did,

this level of measurement intervention would perturb the very

program we were trying to understand. For example, simply

dumping the main memory of a 1GB machine running at 2.4

gigahertz once every 100,000 cycles would produce produce a

terabyte of data every 40 milliseconds. This process would not

only dominate the computer’s dynamics, but also overwhelm

any data analysis tool.

For these reasons, performance analysts measure only a few

internal variables using a hardware performance monitoring

facility (HPM). HPMs enable analysts to measure many as-

pects of a computer’s performance at a reasonable cost. The

HPM facilities typically contain two to eight dedicated reg-

isters, each of which can count a different, user-programmed

event. Using these registers, one can capture the total number

of instructions executed per cycle (IPC), for instance, or the

total number of data references that miss in high level caches

(i.e. L1 or L2). These are the most widely used metrics in

the computer performance analysis literature. IPC, in partic-

ular, is a good way to compare the performance of modern

microprocessors, most of which can execute more than one

instruction per clock cycle.

The HPM facility maintains a running count of events. To

capture that information and save it for later use, we wrote

a monitoring tool that periodically stops a running program,

reads the current values in the HPMs, and stores them to disk.

Because the HPM registers are in hardware, the counting of

events does not perturb the running program. Storing these

counters in memory, or on disk, can affect shared hardware

structures, such as the memory caches and thus introduce

noise into our measures. To avoid this insofar as possible,

our tool only monitors hardware events when the target pro-

gram is running, and not when the operating system (or the

monitoring tool itself) have control of the microprocessor.

Using this custom measurement infrastructure, we recorded

the performance of a single program from the SPEC2000 CPU

suite[1]. This suite is a standardized collection of benchmark

programs, assembled from real-world applications by a group

composed of both academic and industry officials. There are

many benchmarks used in the computer architecture field,

however the SPEC2000 CPU suite is the most broadly used



2

0 5 10 15 20 25 30 35

0
1

2
3

4
5

time (billions of cycles)

in
s
tr

u
c
ti
o
n
s
 p

e
r 

c
y
c
le

FIG. 1: The first 35 billion (of 250) cycles of IPC (filtered) versus

time for the POWER4+ microprocessor running the bzip2 bench-

mark program. The pattern seen here essentially repeats for the ex-

tent of the entire run.

and our use of it facilitates comparison with prior work.

Given measurements of a single state variable—IPC ev-

ery 100K cycles from a POWER4+ microprocessor, for

instance—one can use delay-coordinate embedding[2] to re-

construct the dynamics of the system. The Takens-Whitney-

Mane theorems guarantee that such an embedding, if done

correctly, is topologically equivalent to the underlying dynam-

ics. Because dynamical invariants like the largest Lyapunov

exponent are invariant under diffeomorphism, one can calcu-

late the invariants of the embedded dynamics and extrapolate

the results to the true dynamics. The balance of this Letter

describes the results of applying these ideas to modern com-

puter systems. Of course, IPC is most likely not a state vari-

able, but rather a complex nonlinear function of multiple state

variables. Even so, we believe it is appropriate to use IPC

for delay-coordinate embedding for two reasons. First, many

of our dynamical invariants corroborate each other. Second,

we repeated all our analysis with a different measure, total L1

data cache misses per cycle, and found almost identical values

for all measured dynamical invariants.

We are not the first to use nonlinear time-series techniques

on computer performance measures. Berry et al.[3] measured

a few salient metrics from several of the SPEC2000 bench-

marks running on a hardware simulator implemented in code,

embedded the data, and then computed dynamical invariants

using the TISEAN[4] tool-set. Their results show strong in-

dications of chaotic dynamics for some programs (including

bzip2, which we use here). The other programs in their study

were found to either be from a periodic process or the result

of some high-dimensional non-chaotic process.

While a novel application of nonlinear time-series analysis,

the methods of Berry et al. leave open one essential prob-

lem: the match between simulation and reality. In computer

architecture, even the most detailed and “validated” hardware

simulators have long known to be inaccurate models of the

actual machines they are built to emulate[5]. Systems in this

field are so complicated that researchers commonly sacrifice

simulator accuracy for simulation speed and lack of measure-

ment perturbation. (Indeed, Berry et al. cite this as one rea-

son for working with a simulator.) In order to obtain a true

picture of the dynamics, we ran our experiments on real com-

puter hardware—not software simulators of that hardware–

and dealt with the noise and measurement issues that come

along with that endeavor.

A variety of sources of noise can possibly infiltrate the time-

series data in our experiment. As mentioned earlier, no mea-

surement methodology can avoid perturbing the program that

it monitors. Other programs that are running on the computer,

such as the operating system, can affect the data, as can en-

vironmental variables like temperature. For these reasons, we

filtered the bzip2 IPC data before embedding it. Linear fil-

ters, which assume noise exists in higher frequencies of the

Fourier spectrum, are known to be problematic with chaotic

data[6]. Instead, we used a nonlinear noise reduction routine

due to Grassberger et al. that assumes that the data lie on a

low-dimensional manifold[7]. This technique has been shown

to be fairly robust with regards to parameter choices[8], even

when used on noisy, experimental data, as long as one does

not over-iterate the algorithm[9]. We are confident that this is

not a problem in our application of this technique, as we have

only used a single iteration of locally linear projection.

According to Theiler[6], one should exclude temporally

correlated points from the estimation of dynamical invariants

like λ1 and D2. In the calculations reported here, we varied

the Theiler window, up to 200 million cycles, and found that

this parameter did not affect our results. A natural way to

think about program structure is a composition of loops and

conditional branches. As a program executes, it bounces to

different sections of its code when a branch is taken. While

our IPC data are continuous, this branching dynamics gives

the embedded trajectory some map-like behavior, in which

temporally correlated points jump large distances in the re-

constructed state space. For this reason, the Theiler correction

window was not a necessary element of our analysis.

In order to investigate the dynamics of computer perfor-

mance, and facilitate easy comparison with prior work, we

focused on a single program—bzip2 from the SPEC2000

suite—and ran it on an IBM 1.2GHz POWER4+ processor.

We compiled bzip2 with gcc version 3.2, ran the program

with the SPEC2000 CPU input.sourcedata set as input, and

gathered data using the monitoring facility described above.

All experiments were run on the Linux operating system and

analyzed with the TISEAN tool set[4]

We first filtered the data using Grassberger’s method, as im-

plemented in TISEAN’s ghkss tool. Figure 1 shows the first

35 billion cycles of filtered IPC versus time from the bzip2

program running on the POWER4+ microprocessor. We only

show a prefix of the time-series for readability; the total ex-

ecution of the program takes roughly 250 billion cycles and

essentially repeats this same pattern. This periodicity reflects

the internal loop structure of the bzip2 code[17]. Collapsing

this trace into aggregate metrics—average IPC over the entire

run, for instance—would not capture, among other things, this



3

0.0 0.5 1.0 1.5

−
1
.6

−
1
.4

−
1
.2

time (billions of cycles)

S
(ε

,m
,t
)

FIG. 2: Average divergence (log10) of neighboring points in the re-

constructed state-space as a function of time. A characteristic linear

regime, the slope of which is an estimate of the largest Lyapunov

exponent, is shown for the POWER4+ micro-architecture

obvious feature of the data. Taking a physics-based dynamical

systems approach to this problem does capture this feature.

Our dynamical systems approach uses delay-coordinate

embedding to reconstruct the state-space trajectory from the

filtered POWER4+ IPC time series. We followed standard

procedures to choose appropriate embedding parameters: the

first minimum of the mutual information curve[10] as an es-

timate of the delay τ and the false-nearest neighbors tech-

nique of Kennel et al.[11] to estimate the embedding dimen-

sion m. For the POWER4+ IPC data, the resulting values,

obtained using TISEAN’s mutual and false nearest tools,

were τ= 460 and m= 13, respectively.

The Lyapunov exponent λ is a measure of the sensitivity of

the dynamics to perturbations; a positive largest λ1 is com-

monly taken as an indication of chaos in the system. We used

the algorithm of Rosenstein et al.[12] to estimate λ1 from the

POWER4+ time-series, embedded using τ= 460 and m= 13.

Figure 2 shows the average divergence of neighboring points

in the reconstructed state space as a function of time, com-

puted using TISEAN’s lyap r tool. This graph shows a linear

regime from 0≤ time≤ 1 billion cycles, and then saturates be-

cause the spread between the points tracked by the algorithm

reaches the diameter of the data. The linear region indicates

exponential divergence in the reconstructed dynamics. We

used linear regression to fit a line in this region and calculated

λ1 = 0.179±0.0006 per billion cycles. We repeated this anal-

ysis with m > 13 and obtained identical results, which both

corroborates the false nearest result and strengthens our

belief that the dynamics of bzip2 on the POWER4+ micro-

processor exhibit sensitive dependence on initial conditions.

These dynamics were not desired or anticipated by the engi-

neers who designed this computer system, nor can their anal-

ysis tools elucidate it; a physics-based approach, however,

brings out this interesting and important dynamical property

clearly.

We then calculated the correlation sum[13] of the embed-

ded dynamics using the TISEAN tool d2. Figure 3 shows the

0.02 0.05 0.20 0.50 2.00 5.00

0
5

1
0

1
5

ln(ε)

C
(ε

,m
)

FIG. 3: Local slopes of the correlation sum as a function of neighbor-

hood size for 11 ≤ m ≤ 25. A characteristic linear regime exists in

the range of ln(0.1)≤ ln(ε)≤ ln(0.5). We estimate D2 = 5.6±0.01

(horizontal line) for the POWER4+ micro-architecture. This argues

for determinism at work, rather than a random process, and hints at

a fractal state-space geometry.

local slopes of the correlation sum from 12 ≤ m ≤ 25 as a

function of the natural log of the neighborhood size ε. Clearly

there is a linear scaling region in the range ln(0.1) ≤ ln(ε) ≤

ln(0.5). The slope of a linear fit in this range, shown as the

line in the plot, yields an estimate of the correlation dimen-

sion D2 = 5.6± 0.01. This argues for determinism at work,

rather than a random process, and hints at the fractal state-

space geometry that is seen in the state-space dynamics of

many chaotic systems.

Lastly, we calculated the correlation entropy, which is a

lower bound on all the positive Lyapunov exponents[14] and

thus a good check on our estimate of λ1 = 0.179. Figure 4

shows the estimate of the correlation entropy as a function

of ln(ε). A linear scaling region exists in the same range

(ln(0.1) ≤ ln(ε) ≤ ln(0.5)) as in the correlation dimension

estimate. A linear fit to this region provides an estimate of

h2 ≈ 0.35. This value is a barometer by which we can gauge

our estimation of λ1. For our data, h2 ≥ λ1 which reflects

the fact that there may be more than one positive Lyapunov

exponent and strengthens our estimation of both dynamical

invariants.

Using nonlinear techniques to diagnose the dynamics of

any experimental process should be done with extreme cau-

tion. Many of the associated algorithms are highly sensitive to

noise, data quantity, and their own parameters, and all of their

results require expert human interpretation. To truly trust the

output of any of these methods, one seeks corroboration with

different algorithms, much like we just described with the cor-

relation entropy and the largest Lyapunov exponent.

In our results, the various dimensions corroborate quite

nicely. The original embedding theorems require m ≥ 2d,

where d is the dimension of the underlying dynamics, but

other, tighter bounds have been established since then (e.g.,

m ≥ 2DA, the box-counting dimension[15]). The false-near

neighbor algorithm—which is highly pessimistic—produced



4

0.05 0.10 0.20 0.50 1.00 2.00 5.00

0
.0

0
.5

1
.0

1
.5

2
.0

ln(ε)

h
2
(m

)

FIG. 4: Correlation entropy as a function of neighborhood size for

11 ≤ m ≤ 25. In the range of ln(0.1)≤ ln(ε)≤ ln(0.5) for values of

m, the estimate of the correlation entropy collapses to a scaling re-

gion. We estimate the correlation entropy to be h2 ≈ 0.35 (horizontal

line).

an estimate of m = 13 for bzip2 IPC dynamics on the

POWER4+ architecture, while the arguably tighter ghkss al-

gorithm suggested that m= 5 was adequate and the correlation

dimension was 5.6±0.01.

This surprisingly consistent cohort of numbers is a strong

indication of low-dimensional dynamics, which is somewhat

surprising in a system as complex as a modern microproces-

sor. All modern computer hardware, however, uses an in-

struction set architecture (ISA), and high level programming

languages are compiled down to this ISA. The ISA for the

POWER4+ machine provides 32 general-purpose registers,

only a few of which are used extensively during a program’s

execution. With this in mind, low-dimensional dynamics in

computer systems make more sense.

In this Letter, we have shown strong indications—

from multiple corroborating methods—of low-dimensional

chaotic dynamics in bzip2 traces on the POWER4+ micro-

architecture. By using standard methods from the physics lit-

erature on this engineered system, we were able to keep mea-

surements to a minimum, thereby limiting perturbation caused

by a measurement infrastructure while still providing salient

analysis that illuminate the actual dynamics of the micropro-

cessor.

This has two important implications for the computer ar-

chitecture community, which employs software simulation in

lieu of real hardware prototyping and uses aggregate measures

of performance, thereby ignoring the time-varying aspects of

the behavior. First, the temporal complexity of the dynamics

that we observe defies analysis by means of aggregate mea-

sures, so performance analysts should not rely on those kinds

of metrics. Instead, computer architects can use the tech-

niques of nonlinear dynamics, which were developed specifi-

cally to elucidate the kind of time-varying behavior that is so

important in computer analysis and design. And second, the

dynamics of computer systems are so sensitive to initial con-

ditions, the common practices of testing out one’s ideas on a

model of the architecture—a hardware simulator implemented

in code—should only be reserved for cases when one is sure

that the dynamics of the model simulator closely match the

target hardware. A physics based approach to understanding

the performance of computer systems provides the architect a

rich set of methods with which she can truly understand the

dynamics of today’s modern hardware.

∗ Electronic address: Todd.Mytkowicz@colorado.edu

[1] J. L. Henning, Computer 33, 28 (2000), ISSN 0018-9162.

[2] F. Takens, in Dynamical Systems and Turbulence, edited by

D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–

381.

[3] H. Berry, D. G. Perez, and O. Temam, Chaos: An Interdisci-

plinary Journal of Nonlinear Science 16, 013110 (pages 15)

(2006).

[4] R. Hegger, H. Kantz, and T. Schreiber, Chaos: An Interdisci-

plinary Journal of Nonlinear Science 9, 413 (1999).

[5] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and

M. Heinrich, SIGPLAN Not. 35, 49 (2000), ISSN 0362-1340.

[6] J. Theiler and S. Eubank, Chaos 3, 771 (1993).

[7] P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and

T. Schreiber, Chaos: An Interdisciplinary Journal of Nonlinear

Science 3, 127 (1993).

[8] H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L. G.

Flepp, J. Simonet, R. Badii, and E. Brun, Phys. Rev. E 48, 1529

(1993).

[9] A. I. Mees and K. Judd, Physica D Nonlinear Phenomena 68,

427 (1993).

[10] A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134 (1986).

[11] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Phys. Rev. A

45, 3403 (1992).

[12] M. T. Rosenstein, J. J. Collins, and C. J. D. Luca, Physica D 65,

117 (1993).

[13] P. Grassberger and I. Procaccia, Physica D Nonlinear Phenom-

ena 9, 189 (1983).

[14] Y. B. Pesin, Russian Math. Surveys 33 (1977).

[15] T. Sauer, J. A. Yorke, and M. Casdagli, Journal of Statistical

Physics 65, 579 (1991).

[16] Since 2004, 364 papers about understanding the performance of

microprocessor innovations have been published in the top three

micro-architecture conferences (ASPLOS, ISCA and MICRO),

only nine of which looked at the time-varying behavior of real

hardware.

[17] bzip2 is a data compression utility that uses several encoding

schemes


