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Abstract 

The binding of streptavidin to biotin is one of the strongest non-covalent interactions observed 

in nature. However, we have observed that streptavidin rapidly dissociates from biotinylated double 

stranded DNA in the presence of free biotin. In contrast, streptavidin does not rapidly dissociate from 

single stranded biotinylated DNA under identical conditions. Due to the ubiquitous exploitation of the 

streptavidin-biotin system in the laboratory, we investigated this phenomenon in greater detail. To 

study the dissociation of streptavidin from biotinylated DNA, we used fluorescence polarization and 

electrophoretic mobility shift assays. We found that the binding of streptavidin to double stranded DNA 

can be stabilized by one or more mismatches across from the biotinylated site. Moreover, molecular 

modeling of the interaction suggests that steric and electrostatic effects may play a role in catalyzing 

streptavidin dissociation. We propose that the weaker interaction between streptavidin and double 

stranded DNA is stabilized by mismatches because they make the DNA more locally fluid, and thus allow 

the DNA to adopt a more sterically and electrostatically favorable orientation in relation to streptavidin. 

More investigation is necessary to validate these speculations, but, regardless, these findings are 

valuable to the scientific community. 
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Introduction 

Streptavidin and avidin: A brief history 

Streptavidin (SA) is a homotetrameric protein isolated from the bacterium Streptomyces avidinii 

that is best known for its ability to form a strong non-covalent interaction with the growth factor biotin 

(also known as vitamin H/B7 or coenzyme R) [1]. In fact, with a KD on the order of 10-14 M, the 

interaction between SA and biotin is one of the strongest non-covalent interactions that exists in nature 

[2]. For this reason, this complex is 

frequently exploited in the laboratory 

setting, and numerous genetically 

engineered SA-like proteins have been 

developed that exhibit enhanced binding 

properties, such as increased biotin 

affinity or functional monomeric or 

monovalent SA mutants [3, 4, 5, 6]. 

SA is structurally similar to 

another biotin-binding protein, avidin, 

which preceded SA in discovery. Avidin is 

isolated from avian and amphibian egg whites and is thought confer antibiotic properties [1]. The 

biological function of SA is unknown—however, it is believed to impart similar antibiotic qualities. 

Although avidin and SA share some amino acid homology (approximately 30 percent), the secondary 

and tertiary structures of the two proteins are remarkably similar [8]. The primary difference between 

the two proteins is in their post-translational modifications. In particular, SA lacks glycosylation, which 

results in less non-specific binding and makes SA more useful in laboratory applications than avidin [1]. 

 

 

Figure 1: Structural representation of one SA dimer bound 

to biotin. Biotin is shown in space-filling mode and the 

flexible binding loops are indicated in red (modified from 

Le Trong et al. 2011 and edited in Pymol) [7]. 
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Structural origins of high affinity binding 

There are many structural aspects of SA that allow it to tightly bind biotin. However, the 

anomalous strength of this bond is still being investigated [9, 10]. Three types of interactions have been 

identified that seem to account for the high affinity binding of biotin to SA (Fig. 2). First, there is 

extensive hydrogen bonding between biotin and polar residues within the binding pocket of SA. SA 

residues N23, S27, Y43, S88, T90 and D128 have been shown to hydrogen bond with biotin via its ureido 

and terminal carbonyl groups [11]. Second, there are multiple tryptophan residues (W79, 92, 108 and 

120) that are believed to contribute to binding via strong hydrophobic interactions [12]. W120 is 

donated from an adjacent SA subunit and thus is believed to contribute to cooperativity and SA subunit 

communication upon biotin binding [13]. It should be noted, however, that there does not seem to be a 

consensus about whether SA subunits bind biotin in a cooperative manner [9, 14, 15]. 

Finally, a conformational change of the flexible binding loop between β strands 3 and 4 is 

thought to close over bound biotin and further stabilize its binding to SA. However, instead of 

interacting directly with the biotin, it is believed that intramolecular interactions within the protein are 

primarily responsible for the increase in binding strength [16]. Residues S45, V47, G48, N49 and A50 

seem to be particularly important and make hydrogen bonding contacts with other SA residues [7, 16, 

17].  

Interestingly, the conformational change of the binding loop is practically the only large-scale 

conformational change that is observed upon biotin binding. In general, there are only local 

conformational changes upon binding, but a general overall contraction of the protein occurs [7]. 



6 
 

Biotin-modification of biological substrates 

Biotinylation is the process of covalently linking a biotin molecule to an organic substrate of 

choice. This is most commonly accomplished through chemical means; although, it can be achieved 

enzymatically [18]. In general, biotin modifications are most commonly attached to proteins and nucleic 

acids, but the chemistry of biotinylation allows a biotin tag to be attached to any substrate that can 

react with the reactive moiety (Fig. 3A). 

         
 

         
 

Figure 2: A. Hydrogen bonding contacts between SA and biotin in the binding pocket [11]. B. Tryptophan 

contacts between biotin and streptavidin that mediate strong hydrophobic interactions [11].  

C. Graphical representation of the flexible binding loop3-4 in its open (purple) and closed (green) 

conformations [10]. D. Residue contacts mediating the open (left, black and white) and closed (right, 

colored) conformations of the binding loop3-4 [12]. 

 

A                     B  

      

C                     D 
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Both the reactive moiety and spacer arm are variable portions of the biotin modification. For 

example, more precise reactive moieties can be substituted that only react with specific amino acids or 

functional groups and the length of the spacer arm can be modified depending on the needs of the 

project [18]. The length of the spacer arm is particularly important for protein binding of biotinylated 

compounds, as steric hinderance can have a significant detrimental effect on the strength of 

streptavidin binding [18]. 

One of the most useful substrates for biotinylation is DNA. One application for biotinylated DNA 

bound to SA is to assay the protein displacement ability of certain proteins, such as DNA helicases [20, 

21, 22, 23]. Biotin modifications of DNA bases have become readily available from custom 

oligonucleotide services like Integrated DNA Technologies and ThermoFisher Scientific or they can be 

added to an oligonucleotide of choice using a biotinylation kit. Such modifications can be placed at the 

5’ or 3’ ends of DNA, or added to internal nucleotides via covalent modification of a thymidine base 

(biodT) (Fig. 3B) [18]. In the case of biodT, the biotin moiety is attached to the 5’ carbon of the 

thymidine base via a variable length organic spacer arm. When referring to biotinylation, this is the 

modification that we will be addressing throughout the rest of this paper. 

 

Figure 3: A. Structure of a generic biotinylation reagent containing a non-specific reactive moiety and a 

relatively short spacer arm [18]. B. Structure of Integrated DNA Technologies’ internal biotinylated 

thymidine nucleotide with a 11 Å spacer arm [19]. The Watson-Crick base-pairing face remains intact 

after biotinylation, and thus this modification can be used for assays involving both single and double 

stranded DNA. 
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Exploitation of the streptavidin-biotin complex in the laboratory 

Not only is the biotin-SA interface incredibly strong, but it is also highly resistant to changes in 

temperature, pH, and the presence of detergents [14, 24]. For this reason, biotin-SA or biotin-avidin 

complexes are frequently used in a multitude of biochemical laboratory applications. ELISA (enzyme-

linked immunosorbent assays) [25, 26], oligonucleotide labeling [20, 21, 23], immunoprecipitations [1, 

27], affinity chromatography [28, 29, 30], DNA sequencing [31], electron microscopy [32, 33], and 

various types of blotting [34, 35] are just a few of the current applications for the biotin-SA/avidin 

systems. The potential uses for the exploitation of this complex are nearly endless—and one would be 

hard-pressed to find a biochemistry laboratory that has not used biotin and SA in one context or 

another. 

Spontaneous dissociation of streptavidin from biotinylated double stranded DNA 

 Although the biotin-SA interaction is generally believed to be quite robust, we have identified a 

phenomenon in which the biotinylation of double stranded DNA (dsDNA) results in a very unstable 

interaction between SA and the biotin modified base. In comparison to biotinylated single stranded DNA 

(ssDNA), which stably complexes with SA, biotinylated dsDNA dissociates from SA at an anomalously 

high rate. This phenomenon has also been observed by other groups [20, 21]—however, none of them 

have attempted to determine why this occurs.  

 To determine how dsDNA instigates SA dissociation, we first endeavored to determine the rate 

at which SA dissociates from biotinylated dsDNA relative to its dissociation from biotinylated ssDNA. 

Using both electrophoretic mobility shift assays (EMSA) and fluorescence polarization assays, we 

determined the relative dissociation rates for dsDNA compared to ssDNA. Additionally, we explored 

several differently structured biotinylated DNA constructs to determine if small stretches of ssDNA are 

sufficient to stabilize SA binding. Eventually, we hope to determine the mechanism by which dsDNA 

causes the dissociation of SA.  
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Materials and Methods 

The following table outlines each of the DNA sequences that were used at some point in this 

project along with their corresponding names as referenced in this thesis. Note that assays involving 

ssDNA (only top strand of a given duplex) will be referred to as “ss[DNA name]” (ex. “ssShort 

Complement”). Additionally, note that Long Fork, Long Complement, LC1, LC3, and LC5 all contain 

identical top strands, thus only ssLong Complement will be addressed in later sections. 

Name Sequence 
Short 

Complement 

 

5’-TCCATATCACA/BiodT/CGAGAATAGATAG -3’ 

3’-AGGTATAGTGT     A GCTCTTATCTATCT-5’ 

 

Long Fork  

5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGATTAAGTTGGGTAACGCCAGGG/BiodT/TTTCCCAGTCAA   -3’ 

                                          ACTAATTCAACCC ATTGCGGTCCC    A AAAGGGTCAGTTGGG-5’ 

 

 

 

 Short Fork  

5’-CCCAACTTAATCACTCATGCGGAC/BiodT/TAACACGATAGGAAAAAGGAATAC/AlexF488/-3’ 

                     CGCCTG     A ATTGTGCTATCCTTTTTCCTTATG          -5’ 

 

 

Short Fluor  

5’-/Alex488/CGCAACT/BiodT/AATCACTC-3’ 

3’-         GCGTTGA     A TTAGTGAG-5’ 

 

Long 
Complement 

 

5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGATTAAGTTGGGTAACGCCAGGG/BiodT/TTTCCCAGTCAA-3’ 

3’-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTAATTCAACCCATTGCGGTCCC     A AAAGGGTCAGTT-5’ 

 

LC1   

5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGATTAAGTTGGGTAACGCCAGGG/BiodT/TTTCCCAGTCAA-3’ 

3’-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTAATTCAACCCATTGCGGTCCC     T AAAGGGTCAGTT-5’ 

 

LC3   

5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGATTAAGTTGGGTAACGCCAGGG/BiodT/TTTCCCAGTCAA-3’ 

3’-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTAATTCAACCCATTGCGGTCCG     T TAAGGGTCAGTT-5’ 

 

LC5  

5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGATTAAGTTGGGTAACGCCAGGG/BiodT/TTTCCCAGTCAA-3’ 

3’-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTAATTCAACCCATTGCGGTCGG     T TTAGGGTCAGTT-5’ 

 

 
Table 1: Names and sequences of each DNA construct to be discussed in this thesis. Fluorescent tags are 
noted in blue and mismatched DNA bases are indicated in red. 
 

1) DNA oligos 

Synthetic DNA oligomers were ordered from Integrated DNA Technologies with or without an 

internal biodT modification (containing a standard length (11 Å) spacer arm). DNA stocks were 

rehydrated with water and stored at -20 °C until purification. 



10 
 

2) DNA Purification 

DNA stocks were thawed and mixed with 30% formamide. DNAs were run for 4 to 8 hours 

(depending on DNA length) at 50 watts on a 15% denaturing (8 M urea) polyacrylamide gel to 

isolate the primary nucleic acid species. DNA was then visualized using UV light, and DNA bands 

were cut from the gel. DNA was eluted from the gel in water overnight, and filtered to remove 

any remaining impurities. Note that unless DNA length exceeded 50 nucleotides, only 

biotinylated DNA strands were purified, and not their complements. Also note that ssShort Fork 

DNA was never purified and exhibits significant length variations. 

3) 5’ radiolabeling of biotinylated DNA and duplex preparation 

Purified DNA was incubated with T4 polynucleotide kinase (PNK) (NEB), T4 PNK buffer (NEB) and 

[γ-P32]-ATP (Sigma) at 37 °C for 90 minutes. Then, the enzyme was heat-inactivated at 95 °C for 5 

minutes. If duplex DNA was needed, freshly-labeled DNA was incubated with a 1 to 1.1 ratio of 

its respective complement DNA in 1X annealing buffer (10 mM tris, 6 mM magnesium chloride, 

and 50 mM sodium chloride). The solution was heated at 95 °C for 5 minutes, then allowed to 

slow cool to room temperature (23 °C) and stored at -20 °C. 

4) Electrophoretic Mobility Shift Assays (EMSA) 

Labeled single stranded or duplex DNA was incubated in 1X reaction buffer (20 mM HEPES (pH 

7.6), 1 mM DTT, 2 mM magnesium chloride, 10 percent glycerol, 20 mM EDTA, 0.01 mg/ml BSA) 

with or without SA. SA was provided at approximately 8 to 16-fold greater concentration than 

DNA to ensure that only one DNA molecule would be bound to each SA in solution. Reaction 

mixtures were incubated at 37 °C for 5 min to facilitate SA binding, then an excess of biotin was 

added at varying timepoints. All samples were then loaded onto an 8% to 15% non-denaturing 

polyacrylamide gel and run at 8 watts for 30 to 120 minutes depending on DNA length. 
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If DNA was radiolabeled, then the gel was exposed and phosphorimaged on a Typhoon gel 

imager. Otherwise, if the DNA was fluorescently-labeled, the gel was directly imaged on the 

Typhoon. The resulting gel images were quantitatively analyzed using ImageQuant software. 

5) Fluorescence polarization assays 

a) SA binding assays 

Fluorescently-labeled DNA was incubated with 1X reaction buffer and increasing concentrations 

of SA. The reactions were allowed to equilibrate at 37 °C, then duplicate samples were loaded 

onto a black-bottomed polystyrene microplate (Corning). The plate was then read by a 

CLARIOstar microplate reader to obtain fluorescence polarization and anisotropy values for each 

sample. 

b) SA dissociation assays 

Fluorescently-labeled DNA was incubated with 1X reaction buffer and SA. SA was supplied at 

approximately 8 to 16-fold greater concentration than DNA to ensure only one DNA molecule 

was bound per SA tetramer. The reactions were then allowed to equilibrate at 37 °C for 15 

minutes, then duplicate samples were loaded onto a black-bottomed polystyrene microplate 

(Corning). After plating, an increasing concentration of biotin was added to each well, and the 

plate was read by a CLARIOstar microplate reader to obtain fluorescence polarization and 

anisotropy values for each sample. 

*All reagents for FP assays were filtered through 2μ filters before use. 
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Results 

Biotinylated ssDNA binding to SA is stable 

In accordance with accepted views regarding the strength and stability of biotin-SA binding, the 

binding of SA to single stranded biotinylated DNA is exceptionally stable. Figure 4A demonstrates that 

the binding of SA to ssLong Complement is stable up to 50 minutes after adding an excess of free biotin. 

This stability was also mirrored by other ssDNA complexes such as ssShort Fork (Fig. 4B). 

Biotinylated duplex DNA dissociates rapidly from SA in the presence of free biotin 

Until the addition of free biotin, binding of biotinylated dsDNA to SA is relatively stable, as 

evidenced by the presence of dsDNA primarily in its bound form in lane 2 of Figure 6A and B. However,  

 

Figure 4 A. EMSA of ssLong Complement stably binding to SA. 160 nM SA was added to 5 nM P32-labeled 

DNA in 1X reaction buffer, and 10 μM free biotin was added at varying timepoints. Samples were all 

loaded onto the gel at the same time, and lanes 3-5 correspond to 15, 25, and 50 minutes since biotin 

addition, respectively. B. EMSA of ssShort Fork binding to SA. 160 nM SA was added to 5 nM 

fluorescently-labeled DNA in 1X reaction buffer, and 10 μM free biotin was added at varying timepoints. 

Samples were all loaded onto the gel at the same time, and lanes 3-5 correspond to 15, 25, and 50 

minutes since biotin addition, respectively. Note that there seems to be significant impurities in ssShort 

Fork DNA, as it was not purified before use, but both major species appear to bind SA relatively stably. 
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Figure 5 A. Long Fork duplex dissociates from SA rapidly. 160 nM SA was added to 5 nM P32-labeled DNA 

in 1X reaction buffer, and 10 μM free biotin was added at varying timepoints. Samples were all loaded 

onto the gel at the same time, and lanes 3-5 correspond to 15, 25, or 50 minutes since biotin addition, 

respectively. B. Long complement duplex also dissociates from SA rapidly. 160 nM SA was added to 5 nM 

P32-labeled DNA in 1X reaction buffer, and 10 μM free biotin was added at varying timepoints. Samples 

were all loaded onto the gel at the same time, and lanes 3 and 4 correspond to 25 or 50 minutes since 

biotin addition, respectively. C. Determination of kOFF for Short Complement duplex DNA and SA. 160 nM 

SA was added to 9 nM P32-labeled DNA in 1X reaction buffer, and 10 μM free biotin was added at varying 

timepoints. The resulting gel (right) was quantified, then analyzed using Microsoft Excel to fit the data 

curve (left) and determine kOFF. Note that only the top and bottom bands were used for quantification. 

The intensity of the middle band appears to remain constant throughout the assay, and thus is believed 

to be an impurity in the DNA. 

C 
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upon adding an excess of free biotin, the dsDNA rapidly dissociates and primarily exists in its free form 

(Fig. 5A and B lanes 3-5 and 3-4, respectively). We also attempted to quantify the off-rate of SA from 

dsDNA, and found that it was approximately 10-3 s-1 (Fig. 5C)—however, this experiment was only 

conducted once, and thus should be repeated to confirm this off-rate. 

Mismatches across from the biotinylation site stabilize SA binding 

 Given that duplex DNA destabilizes SA binding in the presence of free biotin, we sought out to 

test whether short stretches of “ssDNA” within a duplex sequence could stabilize binding. As such, we 

assayed three mismatched DNAs with varying numbers of mismatches (1, 3, or 5 mismatches centered 

across from the biotinylated site) in addition to their full complement and single stranded counterparts. 

We found that all three mismatch sequences stabilized SA binding, and even a single mismatch across 

from biodT was sufficient to achieve this effect (Fig. 6A and B). 

Short biotinylated oligomers show unusual activity compared to longer DNAs  

While investing SA binding using FP assays, we also noticed that the Short Fluor DNA behaved 

differently than any of the longer complexes we have investigated—both in terms of its behavior in 

binding SA as a duplex and as single stranded DNA. Upon the addition of free biotin to the complex of 

ssShort Fluor, there was significant dissociation of the single-stranded DNA from SA as measured using 

fluorescence polarization—something that has never been seen for longer ssDNAs (Fig. 7A and C). 

Moreover, full dissociation of the duplex Short Fluor-SA complex upon the addition of free biotin did not 

occur (Fig. 7B and C). These unusual results were also seen for these DNAs with EMSA (Fig. 7D). 

Additionally, upon determining a binding curve for streptavidin via fluorescence polarization, 

there was a significant increase in KD for both ssDNA and dsDNA compared to free biotin. Upon the 

addition of increasing concentrations of SA, it was found that DNA binding was saturated around a 5:1 

ratio of SA to DNA. From this data, we were also able to obtain preliminary KD values for ssShort Fluor 

and duplex Short Fluor DNA association with SA of 7 nM and 19 nM, respectively (Fig.8A and B). 
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Figure 6 A. EMSA of mismatched DNAs (LC1, LC3, and LC5) as well as their full complement and single 

stranded counterparts (Long Complement and ssLong Complement). 160 nM SA was added to 5 nM P32-

labeled DNA in 1X reaction buffer, and 10 μM free biotin was added at varying timepoints. Samples were 

all loaded onto the gel at the same time, and lanes 3, 7, 11, 15, and 19 correspond to 15 minutes since 

free biotin addition, while lanes 4, 8, 12, 16, and 20 correspond to 25 minutes since free biotin addition. 

B. Quantification of (A) represented in graphical form. Graph was generated in Microsoft Excel. 
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Figure 7 A. Dissociation of ssShort Fluor DNA over time as measured by fluorescence polarization. 160 

nM SA was added to 5 nM fluorescently-labeled DNA in 1X reaction buffer, and increasing 

concentrations of free biotin were added to each individual reaction. Each reaction was run in duplicate 

and multiple measurements were taken over time.  B. Dissociation of Short Fluor duplex over time. 160 

nM SA was added to 5 nM fluorescently-labeled DNA in 1X reaction buffer, and increasing 

concentrations of free biotin were added to each individual reaction. Each reaction was run in duplicate 

and multiple measurements were taken over time. C. Fraction bound of both ssShort Fluor and Short 

Fluor duplex decreases as the concentration of free biotin increases. Duplicate samples from (A) and (B) 

were averaged, then timepoints 10, 15, and 60 minutes were also averaged. Fraction bound was 

calculated from changes in anisotropy and plotted versus the concentration of biotin added. Error bars 

represent the standard deviation of averaged data points. All graphs were generated in Microsoft Excel. 

D. Confirmation of fluorescence polarization results by EMSA of Short Fluor DNA. 160 nM SA was added 

to 5 nM fluorescently-labeled ssDNA (right lanes 1-5) or dsDNA (left lanes 1-5) in 1X reaction buffer, 

and 10 μM free biotin was added at varying timepoints. Lanes 3-5 for both ssDNA and dsDNA 

correspond to 20, 56, and 96 minutes since free biotin addition, respectively. 
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Figure 8 A. ssShort Fluor binding to SA. 5 nM fluorescently-labeled DNA in 1X reaction buffer was added 

to increasing concentrations of SA. Change in anisotropy was used to calculate the fraction of DNA 

bound at each concentration and was plotted against the concentration of free SA to determine KD and 

n, where n is the number of equivalent binding sites that are occupied. B. Short Fluor duplex binding to 

SA. 5 nM fluorescently-labeled DNA in 1X reaction buffer was added to increasing concentrations of SA. 

Change in anisotropy was used to calculate the fraction of DNA bound at each concentration and was 

plotted against the concentration of free SA to determine KD and n. Graphs were generated and fitted in 

OriginPro. 
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Discussion and Conclusions 

Given the disparate structures of ssDNA 

and dsDNA, structural aspects unique to dsDNA 

are potential candidates for causing the observed 

dissociation. These include, but are not limited to, 

the DNA double helix and an increased potential 

for electrostatic interactions due to the additional 

phosphate backbone. In particular, the DNA helix 

gives dsDNA a rigid, rod-like structure, while 

ssDNA is far more flexible and fluid. As such, steric 

hindrance due to the rigidity of dsDNA could 

potentially interfere with SA binding. To partly 

address this question, we attempted to model the 

interaction between Long Complement duplex 

DNA in its β helix form with SA using the 

molecular modeling program Pymol (Fig. 9). The 

Long Complement duplex 3D structure was 

generated online by the make-na server provided 

by James Stroud [36]. 

There are many assumptions made in this 

modeling scheme, including that the biotin modification binds in the same orientation as free biotin and 

that the DNA helix and SA subunits assume the same conformations under our assay conditions as when 

they were crystalized. If we consider these assumptions to be correct, however, there are several 

interesting insights that can be gained from these models. 

 

Figure 9 (Top) Theoretical model of one SA subunit’s 

interaction with biodT of Long Complement duplex. 

(Bottom) Theoretical model of the entire SA 

tetramer binding to biodT of Long complement 

duplex DNA, as well as the solved structure of the 

other subunits binding free biotin. Binding loop3-4 is 

shown in red for each subunit. Both figures were 

modified from LeTrong et al. 2011 and renderings 

were generated in Pymol [7]. 
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Figure 10 A. Steric hindrance between Long Complement duplex and loop4-5 of the SA subunit. The DNA 

is represented in space-filling mode in grey with biodT shown in teal, while SA is represented in purple, 

with only loop4-5 (green) shown in space-filling mode. Binding loop3-4 is shown in red. 

B. Potential electrostatic repulsion between the DNA backbone and SA. Both structures are color-coded 

with red atoms representing oxygen, blue atoms for nitrogen, orange atoms for phosphorus, and grey 

and white for carbons of DNA and SA, respectively. All figures were modified from Le Trong et al. 2011 

and renderings were generated in Pymol [7]. 

 

A 

 

 

 

 

 

 
 

B 
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Based on this model, both steric and electrostatic interactions may impact SA dissociation from 

dsDNA. Figure 10A demonstrates that there appears to be significant steric clash between SA loop4-5, the 

DNA helix backbone, and the biodT spacer arm. Moreover, in Figure 10B, one can see that there is 

significant potential for electrostatic repulsion between SA and the DNA backbone given the proximity 

of backbone phosphate groups with negatively-charged functional groups of the SA tetramer. However, 

if this were true, one would expect high salt concentrations to also have a positive effect on SA binding 

to DNA, since the phosphate backbone can essentially be equated to a high local salt concentration. Yet, 

Koussa 2015 notes that high salt concentrations have little effect on biotinylated ssDNA binding to SA 

[37]. Thus, electrostatic interactions between SA and the DNA backbone might be less prominent in 

triggering dissociation compared to steric effects.  

The observed KD’s for short fluorescently labeled ssDNA and dsDNA were approximately 105-fold 

larger than that of free biotin and SA when measured by fluorescence polarization. Since both ssDNA 

and dsDNA have the same biotinylated linker, this linker effect may also be responsible for such an 

increase in KD. Interestingly, Yardimici et al. found that when the length of this linker is nearly tripled 

(Fig. 11), there is still approximately 20 percent spontaneous dissociation of SA from biotinylated dsDNA 

[20]. This would seem to suggest that steric and/or electrostatic interactions with duplex DNA are 

responsible for most the observed dissociation, since 29 Å is more than enough space to ensure proper 

 

Figure 11 NHS-PEG4-Biotin with a 29 Å 

linker. NHS-PEG4-Biotin will react with 

primary amines, and thus can be used to 

biotinylate amine modified thymidine 

bases. The increased length of the 

spacer arm also reduces steric 

hindrance upon SA binding. 
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clearance between SA and the biotinylated DNA. Perhaps the other 20 percent of spontaneous 

dissociation is due to the linker itself—however, why we do not see similar amounts of dissociation for 

ssDNA remains to be determined. 

It should be noted that the fluorescent tag on DNAs used in fluorescence polarization 

experiments may have interfered with SA binding given that the length of the DNA on either side of the 

biotin tag is approximately equal to the diameter of SA. Fluorescence polarization assays using Alexa 

488-tagged DNA must be relatively short in length to observe changes in anisotropy upon SA binding. 

Initially, we attempted these assays using the short fork DNA—however, this DNA proved to be too large 

for such experiments. Given that the Alexa 488 tag has numerous negatively-charged functional groups 

and has 4 aromatic rings, the fluorescent tag could potentially inhibit binding of ss- and dsDNA to SA 

given the proximity of the tag to SA due to the short DNA length. Since such dissociation of ssDNA was 

observed in both fluorescence polarization experiments and EMSA for Short Fluor DNA, but not for Short 

Fork DNA, it is likely the length of the DNA that is responsible for this phenomenon. 

Unfortunately, our modeling is not sophisticated enough to explain why a single mismatch 

across from the biotinylated site is sufficient to stabilize SA binding. According to Rossetti, transversion 

mismatches (such as T-T) produce significant local structural alterations of the DNA helix, including 

 

Figure 12 Wobble base pair conformations for T-T mismatches, as well as their relative abundances in 

solution. Figure reproduced from Rossetti et al. [38]. 
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decreased helical bend, increased breathing, and increased helical twist [38]. Unlike most base 

mismatches, T-T mismatches form wobble base pairs, rather than bulging out of the DNA helix [38]. This 

requires local translational movement of the DNA helix, which may be enough to shift the orientation of 

the biodT spacer arm such that SA binding is no longer sterically impacted. Additionally, T-T mismatches 

also form two varieties of wobble pairs that are in equilibrium [39] (Fig. 12), which makes the DNA more 

locally fluid. It is possible that these local structural perturbations are sufficient to stabilize SA binding 

because the mismatch forces the biodT base out of its normal Watson-Crick hydrogen bonding position, 

thus altering the orientation at which the DNA binds relative to SA. It would certainly be interesting to 

crystalize the SA-biotinylated dsDNA complex to see if these structural effects do, in fact, impact 

binding. However, this type of work is beyond the specialties of the Kuchta Lab, as well as the existing 

time restraints for this project.  

Another interesting phenomenon is why SA binding to biotinylated dsDNA is stable until the 

addition of free biotin. This result could be due to a cooperativity effect of biotin binding to another 

subunit of the SA. As mentioned previously, the cooperativity of SA binding is a contested topic. It has 

been found that binding of biotin to SA induces tighter association of the SA subunits via W120, which 

suggests that the protein exhibits some degree of cooperativity [13, 14]. However, other studies have 

found that biotin binding is noncooperative [15]. To determine whether cooperativity is involved in SA 

dissociation, we are currently in the process of procuring a monovalent form of SA from the Ting group 

at MIT [6]. If, upon the addition of free biotin, SA still rapidly dissociates from dsDNA, then it is likely an 

effect of the kOFF for the complex—otherwise, cooperativity may be the cause. 

In conclusion, the spontaneous dissociation of SA from biotinylated DNA is likely due to a 

combination of factors. Steric, electrostatic, and potentially cooperative effects may be responsible for 

this phenomenon, but further investigation is necessary to precisely determine the mechanism by which 

this occurs. In the meantime, it is useful to know that SA binding to dsDNA can be stabilized by base 
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mismatches or double biotinylation of the DNA [21]. Thus, SA can still be used to assay for helicase 

displacement of DNA-bound proteins if the DNA is appropriately modified. However, caution should be 

taken in other cases where biotinylated dsDNA and SA are being used.  
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