A POWERDOMAIN PRIMER
A Tutorial for The Bulletin of the EATCS

Michael G. Main

CU-CS-375-87

D
%JUniversity of Colorado at Boulder

~ DEPARTMENT OF COMPUTER SCIENCE

* Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science and Engineering from the
David and Lucile Packard Foundation.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A POWERDOMAIN PRIMER*
A Tutorial for The Bulletin of the EATCS

Michael G. Main
CU-CS-375-87 September 1987

*This research has been supported in part by National Science Foundation grant DCR-8402341.

A POWERDOMAIN PRIMER¥*

Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA
Phone: 303-492-7579

1. Motivation

The order-theoretic approach to programming semantics uses certain partially-ordered sets,
called domains. Typically, the elements of a domain D are the "machine states" in which a compu-
tation may proceed, and a program is represented by a state-transformation function f : D — D . The
meaning of such a function is this: when the program is started in a state x € D, then it will end in
the state f (x). This "end-state” might be a special element of D which indicates that the program
never terminated. This special element is usually considered to be just another "state" — one that

we frequently want to avoid.

Of course, this is not the entire story of order-theoretic semantics: for example, I have not even
mentioned what kind of partial-order a domain possesses, or the reason for the order. But this is
enough of the story to motivate powerdomains. The motivation comes from a problem with the
“typical” situation described above. We assumed that the state-transition relationship was a func-
tion, so that given a start-state x € D, there is a single end-state f (x) € D which will be reached by
the program. But, some programs are nondeterministic — meaning that a given start-state does not
uniquely determine an end-state. We may also be uncertain about precisely which state a nondeter-

ministic program starts in.

Powerdomains are the solution to this problem. Intuitively, a powerdomain P is a special kind
of domain whose elements are various "nondeterministic combinations of elements" from another
domain. In this setting, a nondeterministic program represents a function f : P —P. The meaning
of such a function is this: when the program is started in one of the states indicated by the nondeter-
ministic combination x € P, then it will end in one of the states of f (x). In general, different
notions of powerdomains are based on different intuitions about what constitutes a "nondeterminis-

tic combination of elements".

*This research has been supported in part by National Science Foundation grant DCR-8402341.

This paper is a tutorial to explain these different intuitions and the resulting powerdomains.
The tutorial begins with a review of domain theory and its use in the order-theoretic semantics of
deterministic programs. This is followed in Section 3 by an introduction to nondeterministic pro-
grams, and their order-theoretic semantics using Gordon Plotkin’s powerdomain. Section 4 provides
an algebraic justification for Plotkin’s choice of a powerdomain. Alternatives to Plotkin’s power-
domain are explained in Sections 5 through 7, each with a similar algebraic justification. As a refer-

ence, the symbols used in the paper are collected together in the following box.

b: a Boolean function.

e: an arithmetic function.

f through A4 : domain morphisms.
i through £ : integers.

m and n: natural numbers.

x and y: elements of a domain.

B : a Boolean expression in your favorite programming language.
C: a set of states for a computation.

D : a domain.

E': an arithmetic expression in your favorite programming language.
P and Q: nondeterministic domains.

R: a program.

S through V': subsets of a domain.

X and Y': variable names in a program.

Z: the set of integers.

| : the least element in a domain.

BASEp : the set of BASE elements of a domain D .

C | : the flat domain whose non- | elements are the set C.
[D — D]: the set of domain morphisms from D to itself.
P(D): the free powerdomain generated by D .

PanceL (D): the free angelic powerdomain generated by D .

Ppemon (D): the free demonic powerdomain generated by D .

S?: the upward-closure of a subset § of a domain.
M: an insertion morphism from a domain to a powerdomain.

Table of Symbols

2. Domains and Deterministic Semantics

In denotational semantics, a program denotes a function f :D — D, where the elements of D
represent "machine states" for the computation of the program. One goal of denotational semantics
is to assign such a function to each possible program in a programming language. The method of
making this assignment for recursive or iterative programs is a prominent part of order-theoretic
semantics — which is a particular kind of denotational semantics. This method of order-theoretic
semantics is based on the assumption that D forms a certain kind of partially-ordered set called a
domain. This section of the tutorial explains what domains are, and how they are used in order-

theoretic semantics.

2.1 Domains

Intuitively, the elements of a domain can be viewed as "partial descriptions" or "approxima-
tions" of objects. A good place to begin is an example domain called Pw. The elements of this
domain are finite and infinite sets of natural numbers. Any set in Po can be viewed as an approxi-
mation of its supersets. For example, the set {0,2} can be viewed as an approximation of the
infinite set {0, 2,4, - - - } of even natural numbers.

Of course, there are better and worse approximations to the even numbers. For example, {2} is
a worse approximation than {0,2}, while {0,2,8} is somewhat better. The best approximation to
the even numbers is the infinite set {0,2,4, - - -} itself. Every domain possesses a partial order
which indicates when one approximation is better than another. The symbol L indicates this rela-
tionship, so that {2} L {0,2} and {0,2} L {0,2,8}. In Pw the relationship L is completely
defined by x L y if and only if x is a subset of y. In a domain, this relationship is always a

partial-order — i.e., a reflexive, transitive and antisymmetric relation.

In our use of domains we will often see sequences of better-and-better approximations. The
notation xo L x; L x5 - - indicates such a sequence of elements x¢,Xx1,X5 - - - withxog £ x; and

x1 L x5 and soon. Such a sequence is called a chain. Here’s an example chain in Pw:
{0} L {0,2} L {0,2,4} L {0,2,4,6} L ---

This particular chain has the set of even natural numbers as an upper-bound — i.e. for any element

Xp in the chain x, £ {m| m is even }. In fact, the set of even numbers is the least upper-bound of

N

this chain, since whenever y is another upper bound of this chain, then {m| m iseven } L y. The

least upper-bound of a chainxg L xy £ x5 - isdenoted by || x,.
n=0
Another important concept in domain theory is the notion of an isolated element of a domain.

Informally, isolated elements are elements which contain only a finite amount of information. In
fact, isolated elements are sometimes called finite elements, but the use of this term can sometimes
cause confusion. Formally, an element x of a domain is isolated provided that whenever

o0

x L || x, then there exists some n such thatx L x,.
n=0
Exercise 1: Show that every chain in P has a least upper bound. Show that the isolated ele-

ments of Pw are precisely the finite sets. Show that every element of Pw is the least upper-bound of

asequence xg L x; £ x4, where each x,, is an isolated element.

With this background, domains can be defined, which is done in Figure 2.1. The domains

defined there are sometimes called ®-algebraic, complete partial orders.

Definition: A domain is a set D with a partial order L such that:

(1) There is an element | € D such that forallx e D: | L x. (This is called the bor-
tomof D).

(2) Every chain has a least upper-bound.

(3) There is a countable number of isolated elements, and every element of D is the least
upper-bound of a sequence xo L x; L x5, where each x,, is an isolated element.

The set {x € D| x is isolated } is called the base of D, denoted by BASEp. A partially-
ordered set which meets the first two conditions, but perhaps not the third, is called an ®-CPO
(complete partial order).

Figure 2.1 Definition of a Domain

Examples: The set N of natural numbers plus an infinity-element is partially-ordered by the
usual < relation. This is a domain, and infinity is the only non-isolated element. The set N*°XN* of
pairs is partially-ordered by the relation (i1, /1) L (is,/,) if and only if i1<i, and j;<j,. This is
also a domain, where (i, /) is isolated only if both i and j are finite. The set of non-negative
rational numbers plus an infinity-element is partially-ordered by the usual < relation. This is an -

CPO, but not a domain (zero is the only isolated element). If C is any countable set, then the set

C|=Cu{]} is a domain with the partial-order: x L y if and only if x = | orx =y. Thisis
called a flat domain — an apt name for the picture of C | in Figure 2.2. Most of the domains used to

provide semantics for simple programming languages are flat domains.

X1 X2 X3 X4

1

Figure 2.2. A Flat Domain C| where C = {x1,x9,x3, - -* }.

2.2 Domain Morphisms

In order-theoretic semantics, elements of domains represent different levels of information
about computation states. A program denotes a function f :D — D on such a domain. But, not just
any sort of function! The functions denoted by programs are domain morphisms, as defined in Fig-

ure 2.3.

Definition: Let D1 and D, be domains. A function f :D | — D, is a domain morphism provid-
ed that it meets these conditions:

Monotonicity: Wheneverx L y inDjthen f (x) C f@)inD,.
Strictness: f([)=].

Continuity: Forany chainxg L x1 L xy-+- inDy: f (|| x)= || f ().
n=0 =0

Figure 2.3. Definition of a Domain Morphism

The restriction to domain morphisms reflects our intuition about how programs work. For example,

the monotonicity requirement corresponds to the intuition that better information about an input

state results in better information about an output state.

Some of the mathematics of domains carries over to domain morphisms. For example, the set
of domain morphisms from D to D (written [D — D) is partially-ordered by the relation f L g if
and only if for all x e D: f (x) L g(x). The set [D — D] is an ®-CPO, but not always a domain.

This means that any chain fo £ fy C f, - - of domain morphisms has a least upper-bound

f =1l fa,definedby f (x)= || (f»(x)). In order-theoretic semantics, this least upper-bound of
n=0 n=0

a chain of domain morphisms is used to define the function denoted by an iterative or recursive pro-

gram.

2.3 Semantics of a Toy Language

Now that the mathematics of domains and domain morphisms has been established, the ideas
of order-theoretic semantics can be demonstrated on a little language called XY. The programs in
this language compute in a state space of two integer variables named X and Y. The programs may
also enter unending "loops”. The domain for these computations is the flat domain (Z xZ) | » where
Z is the set of integers and | represents an "unending computation". A pair (i,j)e Z xZ
represents a computation state where the variable X has value i and Y has value j. As an example,
consider a program which computes the factorial of X and stores it in ¥. This program denotes a
function f:(Z XZ)| =& xXZ)| with f(@,j)=(,i!) for any i 20 and any j. A program with
f(@,j)=] means that an input of (i, j) will result in an unending loop in the computation. All pro-
grams have f (]) = | ; intuitively this means that if the program which provided input to f had an

unending loop, then there is no way for f to correct this.

The legal XY -programs are defined recursively on the left side of Figure 2.4. Each time a new
program R is defined, then a function [[R]): (Z xZ) | 2 (Z xZ)| is also defined. This is the func-
tion which the program R denotes. The machinery of order-theoretic semantics comes into effect at
only one point: the definition of the function denoted by an iterative program. Throughout Figure
2.4, D is the flat domain (Z xZ) K

The XY -language is merely a toy, but it’s syntax and semantics in Figure 2.4 illustrate the most
important features of order-theoretic semantics for simple languages. The domain for the computa-

tions in such a language is typically a flat domain of the form C |» Where C is the state space of the

SYNTAX

SEMANTICS

1. Simple Commands: SKIP and FAIL are XY -
programs. Intuitively, SKIP is a program that
does nothing, and FA/L is a program that always
enters an unending loop.

1. [SxIP]:D — D is the identity function.
[FAILT: D — D 1is the constant function which
maps everything to | .

2. Assignment Starements: Let E be any totally
defined integer arithmetic expression with at
most two integer variables X and Y in your
favorite programming language. Then these are
XY -programs:

<

£

[Tt

E
E

k<:

2. Let e:ZXZ —Z be the funcdon which
maps a pair (I, /) to the value of the arithmetic
expression £ when X =/ and Y =,/. Then
[X =FE]:D —D maps a par (i,/j) to
(e(i,j),j),and [[Y =ETJ:D — D maps a pair
(i,j) to (i,e(i,j)). Both of these functions
map | to | .

3. Composition: Let Ry, Ry, -+ Ry be XV-
programs. Then this is an XY -program:
BEGIN Ri;Ry; -+ Ry END

3. Let R be the composition program. Then
[RI:D —-D is the composition function

(Relle - o[RoIl o [Ry]1.

4. Conditional Statement: Let Ry and R, be
XY -programs, and let B be any totally defined
Boolean expression with at most two integer
variables X and Y in your favorite program-
ming language. Then this is an XY program:

' [F B THEN Ry ELSE R,

4. Let b:Z xZ — {TRUE , FALSE } be the func-
tion which maps a pair (i, /) to the value of the
Boolean expression B when X =i and Y =.
Ifb(i,j)is TRUE then

[/F B THEN Ry ELSE R JI(i,))=[R 1, j),
otherwise

[/F B THEN Ry ELSE R,JJ(i, j)=[R,], /).
It always maps | to |.

5. [Iterative Statement: let R be an XV-
program, and let B be any totally defined
Boolean expression with at most two integer
variables X and Y in your favorite program-
ming language. Then this is an XY program:

- WHILE B DO R

5. Let Ry be the program FAIL; for any integer
n >0, let R, be this program:

IF B THEN BEGIN R; R, _{ END
ELSE SKIP

Then the sequence of functions
[Roll £ [RiT £ [Ry]) -~

is a chain. The function [WHILE B DO R is
the least upper-bound of this chain.

Figure 2.3. Syntax and Semantics of the X¥-language

computations and | is an extra element representing unending computations.

The function denoted by an iterative program is the least upper-bound of a sequence of better-
and-better approximations to the program. In part 5 of Figure 2.4, the programs R, are these
approximations. Intuitively, the program R, is the program WHILE B DO R — with a restriction
that the body of the loop cannot be executed more than n—1 times. The n'h attempt to execute the
loop’s body results in the FAIL program. So, the intuition embodied by the order-theoretic semantics
is this:

WHILE B DO R
is

lim [Execute WHILE B DO R — But FAIL if the loop needs more than n iterations]
R —c0

Exercise 2: Prove that the sequence of functions in part 5 of Figure 2.4 is indeed a chain.

2.4 A Toy Program

It is traditional to provide the semantics of a small language, followed by an application of the
semantics to a small program which calculates the factorial function. I shall not violate this tradi-

tion, so here’s the factorial function written in the XY -language (the factorial of i is written i !):

(***

Program to calculate the factorial of a number i.

At the start of the program, the number i must be stored

in X, and some number j is stored in the variable Y.

At the end of the program, X will be 0 and Y will

be i!*j. If i is negative, then the program never

terminates.
**)

WHILE (X #0) DO BEGIN

Y =X *Y,
X =X-1;
END

Let R be the portion of the WHILE -loop from the BEGIN to the END. Note that the function
[RI:D —D is defined by [RII(i,j) = (i—1,i *,j) and [R](]) = | . We can use this to calculate
the function denoted by the WHILE -statement. This function is the least upper-bound of a chain of

functions fo L f1 £ f2- -, where f ¢ is the constant function which maps everything to | , and

if (i=0) then (i, j)
else f,_1(IIRTG, 7))

Fn,))=

What is the least upper-bound of the f,? We will show that it is the strict function
f:@Z XZ)| = (Z XZ)| defined by
if (i <0) then |

Fa,j)=
else(0,i!*j)

First we show that f is an upper-bound of the f,, — i.e. that f, T f for any n. The proof is by
induction on n, with the base step (f ¢ L f) being trivial since f is the least function. For the
induction step, assume that f; L f whenever k < n, for some fixed n >0. We must show that this

implies f, L f. Toward this end, let i and j be any integers and note the following relations:

Ifi=0:
Fnl,)=fn0,7)=0,7)=(0,0t*)=f0,/)=1,J)
Ifi<O:
FnG) =FnaROG, /) =faal-1,i *j) L f@-1,i*j)= | =£G,))
Ifi>0;

frn@,))=Fna(RIG,) = foaG-1,0 %) L f (i=1,i % j)=(0,G-D!*i *j) = (0,i! *j)=F (i,])

The L in the second and third lines follow from the induction hypothesis. Thus, we have shown
that for all n20: f, L f — so f is an upper-bound of the sequence. To show that it is the least
upper-bound, suppose that 4 is another upper-bound of the chain. Whenever i <0 then
fG,j)=1 L h({i,j). And wheneveri =0 then:

10
FGN=0it%j)=FinG,j) L ha,j)

Therefore, f L h, and f is the least upper-bound of the sequence — hence f is the function
denoted by the WHILE -statement.

3. A Domain for Nondeterministic Programs

3.1 Nondeterministic XY-programs and their Semantics

Programs in the XY -language are deterministic — meaning that any fixed input yields a unique
output. But there may be other situations where determinism does not hold. A situation which is
potentially nondeterministic is when two or more processes are running in parallel. It may be
impossible to calculate the precise relative speeds of the processes. In this case, different outcomes
may result from different relative speeds of the parallel processes. From a program designer’s
standpoint, it may also be desirable to explicitly introduce nondeterminism to a language — since a
designer may be willing to accept any one of several correct outputs. In this case, a designer may
specify several possibilities that he is willing to accept, and allow some considerations beyond his

control to dictate which of these possibilities is actually realized.

In order to study the semantics of nondeterminism in a simple setting, an explicit nondeter-
ministic construction to will be added to the XY -language. specifically, whenever Ry and R, are
XY -programs, then (R; or Ry) is a new program which is a nondeterministic choice between Ry and
R;. For example, the program (X :=1orX :=2) maps a pair (i, /) to one of two possible places:
(1,j) or (2,j). Obviously, such a program is not represented by a function on the domain (Z xZ) 1
Instead, we will create a new domain P, whose elements are various nondeterministic combinations
of elements from (ZxZ) 1- A nondeterministic program R denotes a function [R]:P — P . (Notice
the use of "bold" brackets [R] to distinguish this function from the function [[R]] which a deter-
ministic program R denotes.)

Elements of P will be collections of states such as {(1,0), (2,0)}, which is an appropriate out-

put for a program which can finish with ¥ =0 and either X =1 or X =2. From the direction of this

11

discussion, you might think that we can take the elements of P to be all possible subsets of (ZxZ) i

(i.e., P is the powerset of (ZxZ) 1)- But, this does not work, for at least two reasons:

(1) From a practical standpoint, there is no easy way to make the powerset of a domain into a

domain itself.

(2) There are subsets of (ZxZ) | Wwhich can never be the output of a nondeterministic XY -
program. Specifically, if a nondeterministic XY -program starts in a state (i, j), and if the
program is guaranteed to terminate regardless of the nondeterministic choices made, then
there are only a finite number of possible output states for the program. This suggests that
we should omit from P any infinite set that does not contain | . Also, each nondeterministic

XY -program has at least one output state for each input state (although this output may be
L.

The second point listed above suggests that we define P to be:
P ={Sc(ZxZ)|| S is non-empty and finite or | € S)
This is a subset of the powerset of (ZxZ) | » and it also forms a domain using a partial-order first

suggested by Egli and Milner Here’s the Egli-Milner order:

Forallx € S there existsy € T such thatx L y, and
S LT iff 5
Forally € T there exists x € S such thatx L y.

.

An equivalent definition of this order is:

S=T, or
S LT iff 5
leSandScTU{]}

.

Exercise 3: Prove the claim made about nondeterministic XY -programs in (2) above. Show
that the two definitions of L on P are identical, and that this partial order does make P a domain.

Show that the isolated elements of P are the finite subsets.

The domain P was arrived at through the considerations listed above, but it can also be
mathematically justified as being the least-constrained way of making certain subsets of (ZxZ) |
into a domain. This mathematical justification will also lead to a method for generating a "domain

of nondeterministic values" from any domain. For now, we will postpone this mathematical

SYNTAX

SEMANTICS

1. Deterministic Programs: Each deterministic
XY -program is also a nondeterministic pro-
gram.

1. Let [R]:D — D be the domain morphism
associated with the deterministic program R.
The morphism [R]:P — P for the nondeter-
ministic program is defined by

[R1GS) = {([RTCx) xeS)

2. Nondeterministic Statemenr: Let Ry and R,
be nondeterministic XY -programs. Then this is
a nondeterministic XY program:

(RyorRy)

2. For all SePr:
[RI(S) U IR(S).

[RyorRy)I(ES) is

3. Composition: Let Ry, Ra, -+ R, be non-
deterministc XY -programs. Then this is a non-
determinisdc XY -program:

BEGIN Ry{;Ry; -+ - Ry END

3. Let R be the composition program. Then
[R:D —-D is the composition function
[Redo - o[RS IRy]

4. Conditional Statemenr: Let Ry and R, be
nondeterministic XY -programs, and let B be any
totally defined Boolean expression with at most
two integer variables X and Y in your favorite
programming language. Then this is a non-
determinisdc XY program:

IF B THEN R ELSE R,

4. Let g:D — P be the unique strict function
such that if B is true at (i, /) then
g,) =IRJUG,),
and otherwise
8@, j)=IRIUE, HD.
Then [/F B THEN Ry ELSE R>1(S) is
{gix) xeS8).

5. [terative Starement: Let R be a nondeter-
ministic XY -program, and let B be any totally
defined Boolean expression with at most two
integer variables X and Y in your favorite pro-
gramming language. Then this is a nondeter-
ministic X program:

WHILE B DO R

5. Let Ry be the program FA/L; for any integer
n >0, let R, be this program:

IF B THEN BEGIN R; R, _{ END
ELSE SKIP

Then the sequence of functions
[Rol £ [RiJ L [Ral- -

is a chain. The function [WHILE B DO R is
the least upper-bound of this chain.

Figure 3.1. Syntax and Semantics of the Nondeterministic XY-language

13

framework, and concentrate instead on how P (our powerdomain!) can be used to give the seman-
tics of nondeterministic XY -programs. This is done in Figure 3.1, which defines a domain mor-

phism [R]: P — P for each nondeterministic XY -program R.

3.2 A Toy Nondeterministic Program

For any nondeterministic XY -program and element S € P, the following equation holds:

[RI(S) = ng[R]({x D

In other words, the functions denoted by XY -programs are additive. The proof of this is an induc-
tion on the structure of the program R. This property is useful because it means that the behavior of
a program R is completely determined by its behavior on deterministic (or singleton) inputs. Sec-
tion 4 will further explore this property and its consequences. For now, we will simply use this pro-

perty in examining the semantics of this nondeterministic XY -program:

WHILE X #0)DO (X =X -1 or Y :=Y +1)

Let R be the nondeterministic statement in the body of the WHILE -loop. For a deterministic
input (i, j), the function [R] is defined by IR1{(i,j)} = {(i-1,/),(i,j+1)}. The function denoted
by the WHILE loop itself is the least upper-bound of a chain of functions fo L f; L f 2+, where

f o is the constant function which maps everything to { | }, and for n >0, f,,:P — P is the additive

domain morphism whose behavior on singleton sets is:

if (i=0) then {(i, j)}
else f-1(IRIIG, /)

ful@,)} =

What is the function denoted by the entire loop? It is the strict additive function f:P — P defined
by

14

~

if (i <0) then (| }
F{@,7)) =qelseif (i=0) then {(i,)}
else { | JU{(0,k) k=/}

.

The proof that this function is an upper-bound of the f,, is by induction on n — much as in Section
2.4 for the deterministic program. The proof that this is in fact the least upper-bound is also
straight-forward. The moral of the story is that all of the techniques that you are familiar with from
deterministic order-theoretic semantics carry over to the nondeterministic programs with little

change.

Exercise 4: Complete the proof that the function denoted by the WHILE -loop is the function
defined above.

4. Powerdomains

Section 3 gave a first example of a powerdomain, P, which was used to provide semantics for
the nondeterministic XY -language. This section defines powerdomains in more generality, and

gives a mathematical justification for using the particular powerdomain P for the XY -language.

4.1 Nondeterministic Domains

In order to provide semantics for the nondeterministic XY -language, we needed a binary opera-
tion on the domain P which corresponded to the or operation on XY -programs. This binary opera-
tion was the union of two sets in P. Intuitively, an element S UT € P is a nondeterministic choice
between § and T. This view of P suggests that one important thing about a powerdomain is that it
is equipped with a binary operation that we can use in this way. We generally impose some con-
straints on the binary operation, to match our intuition about nondeterministic choice. This leads to

the definition of a nondeterministic domain in Figure 4.1.

15

Definition: A nondeterministic domain (or ND-domain) is a domain P together with a binary
operation or: P xXP — P, such that for all elements x,y,z € P and all chains xg,xq, - - in P:

Associativity: (x ory)orz) = (x or (y orz)).
Commutativity: (x ory) = (y orx).
Idempotence: (x orx) = x.

Continuity: (|| x,)ory = || (x,ory).

n=0 n=0
These ND-domains have also been called semilattice-domains.

Figure 4.1. Definition of a Nondeterministic-domain

Exercise 5: Show that the domain P from the last section is an ND-domain with the binary

operation U. (That is, show that U meets the four properties stated in the definition.)

4.2 ND-domain Morphisms

A nondeterministic program will be denoted by a morphism f:P — P, where P is an ND-
domain that is equipped with a binary operation or. Such a program should also preserve the or-
structure of the ND-domain, so that f (x ory)=f(x)orf(y). The or-preservation means that
"running a program on a choice of several inputs is the same as running the program on several
inputs and choosing between the outputs”. Such a function is called an ND-domain morphism (see
Figure 4.2).

Definition: Let P and P, be ND-domains. A domain morphism f :P — P, is an ND-domain
morphism provided that it meets this condition:

or-Preserving: For all elements x andy inPy: f(x ory)=f (x)orf (y).

Figure 4.2. Definition of an ND-domain Morphism

Preservation of the or-structure is the most common intuition for nondeterministic programs

3

although some research of Hennessy and Ashcroft has considered other ideas.

16

4.3 Free Generation of Powerdomains

Typically, powerdomains arise when we want to add nondeterministic features to a program-
ming language whose deterministic semantics is already specified over some ordinary domain D
(such as the deterministic XY -language over the domain (Z xZ) 1)- In this case we want to embed
the deterministic domain D into an ND-domain — in other words, we are looking for an ND-
domain P(D), together with a domain morphism n: D —P(D). In order to make P(D) free from
unintended constraints, the embedding morphism 1 should be universal. This means that any other
possible embedding of D into an ND-domain can be obtained by factoring through M in a unique
way. The universality requirement is formally stated as follows: if Q is any ND-domain and
8:D — 0 is any domain morphism, then there is a unique ND-domain morphism ¢:P(D)— Q

such that for any x € D :£(1(x)) = g (x), as in the following diagram:

p— " P(D)

4

I
i
]
i
]
:
I
i
v
Q

The ND-domain P(D) is called the free powerdomain generated by D with insertion 1. To be more
precise, we should probably call P(D) a free powerdomain generated by D with insertion 7, rather
than the free powerdomain. But, it is easy to show that P(D) and 1 are unique "up to isomorphism",
so that any other powerdomain freely generated by D is identical to P(D) except perhaps for renam-

ing. Therefore, we usually say the free powerdomain.

Now we can justify the domain P that we used in Section 3 for the semantics of nondeterminis-
tic XY -programs. Recall that this domain consists of all non-empty, finite subsets of (ZxZ) |» plus
infinite subsets which contain | . The order on P is the Egli-Milner order. Here is the result about

the freeness of P:

17

Theorem 4.1. Let P be the powerdomain used in Section 3, with set-union as the or -operation. Let
N:(ZXZ)| — P be the domain morphism that maps each element x to the singleton set {x}. Then P
is the free powerdomain generated by (ZxZ) | with insertion M.

Proof: To show the universality of 1, let Q@ be any ND-domain and let g :(ZxZ) | —Q be a domain
morphism. We must demonstrate a unique ND-domain morphism §:P — Q with g .n=g.

Now, let T be an arbitrary set in P. Since P is a domain whose isolated elements are the finite
subsets of (ZXZ) |, it follows that T' is the least-upper bound of a chain So £ §; L §, - - - of finite
sets. Since each §, is ﬁmte these sets can be expressed as S ={Xpn1,Xn2, " »Xnk,) fOr some

integers ny. Thus, T is I_J ({xna}or -+ or{x, ¢ .
n=0

Define §(T) to be || (g (xpa)or - - - org(x,)). It is easy to show that this is the unique
=0
ND-domain morphism with g.n=g. [
Exercise 6: Let C| be any flat domain. Show that P(C |) consists of of all non-empty finite

subsets of C | , plus any countably infinite subsets that contain | . The order is the Egli-Milner order

and the or -operation is set-union.

5. Demonic and Angélic Powerdomains

This section provides two alternatives to the freely generated powerdomain. Each of these
alternative powerdomains has a universal property of its own. These universal properties make it

easy to provide semantics for nondeterministic languages using any of the powerdomains.

5.1 Demons and Angels

When a nondeterministic XY -program is run on some input, the result is a set of possible out-
puts S € P(ZxZ)| . Suppose I am not interested in these sets themselves — but instead I only want
to ask certain kinds of questions about these sets. For example, let b:(ZxZ) | = {TRUE ,FALSE } |
be a domain morphism. If we are interested in the correctness of a program, then we would ask

questions like these:

18

Isb(y) TRUE foreveryy € S?
Isb(y) TRUE foranyy e §?

The first question would be asked to guarantee that b will be TRUE for the output of a program,
regardless of any nondeterministic choices that may occur during the execution. Just one state y € S
where b (y) is not TRUE will cause this question to be answered negatively. The policy of asking
this kind of question has been called the demonic approach to nondeterminism, because it assumes
that there is some malicious demon controlling the nondeterminism. If there is but one nondeter-
ministic choice that I don’t want, then the demon will find this choice and the program will fail.

Therefore, if I want b to be TRUE of my program’s output, then I must ask whether b is TRUE for
every possible output.

The second question would be asked to determine whether there’s any possibility that b will be
TRUE for the output of my program. The policy of asking this kind of question has been called the
angelic approach to nondeterminism, because it assumes that there is some benevolent angel con-
trolling the nondeterminism. If there is but one nondeterministic choice that I want, then the angel
will find this choice and the program will succeed. Therefore, if I want » to be TRUE of my
program’s output, then I need only ask whether b is TRUE for any possible output.

If a semantics will only be used to answer demonic questions, then the powerdomain
P((ZxZ)|) can be simplified. Similarly, the powerdomain is simplified for angelic questions.
These two simplifications provide two alternative ND-domains for nondeterministic XY -programs:

Ppevon and Panger . These two ND-domains are defined in the two columns below.

Ppevmon

Consider a set S of possible outcomes,
with | € S. The answer to a demonic question
about S is always "no" (because b(])= |).
Therefore it does no harm to add other elements
to § — adding these elements won’t change the
"no" answer to demonic questions. In fact, I
may as well add every possible state to S, mak-
ing it the complete set (ZxZ)|. This set is also
called chaos, since it is the most nondeterminis-
tic set possible. Hence, if | is a possible out-
come of a program with input x, then (in the
demonic semantics) we say that the program
maps x to chaos — and this does not change
the answer to demonic questions.

With this in mind Ppgyoy can be formed
from the sets of P((ZxZ) |) by changing any set
with | to chaos. Hence, the elements of
Ppeyon are all the nonempty, finite subsets of
(ZXZ)|, plus one more set: chaos. The partial
order is defined so that higher elements have
more "yes" answers to demonic questions. For-
mally, § L T if and only if S 2T, and or is
set-union. The least element is chaos, and the
least upper-bound operation is intersection of
countably many sets.

19

P ANGEL

Consider a set S of possible outcomes,
with | €S. The answer to an angelic question
about S is always the same as the answer to the
same question about SuU{]|} (because
b(|)=]). Therefore it does no harm to add
| to S —adding | won’t change the answer to
any angelic question.

With this in mind Pgygg, can be formed
from the sets of P(ZxZ)|) by adding | to
every set. Hence, the elements of Pyygg are
all the subsets of (ZxZ)|, which contain | .
The partial order is defined so that higher ele-
ments have more "yes" answers to angelic ques-
tions. Formally, S L T if and only if S cT,
and or is set-union. The least element is { | },
and the least upper-bound operation is union of
countably many sets.

These ND-domains can be used to provide a semantics for nondeterministic XY -programs,

which will be adequate if we are only interested in program properties that can be answered with

demonic or angelic questions. But before this is shown I want to discuss some universal properties

that these domains possess.

5.2 Free Generation of Demonic and Angelic Powerdomains

The partial order on Pppyopn is such that a higher position in the order corresponds to more

"yes" answers to demonic questions, while Pyycp, has the same property for angelic questions.

These correspondences translate to properties about the or-operation, namely: (x ory L x)

20

always holds in Ppgyoy, and (x L x ory) always holds in Payggr. We use the term demonic
ND-domain for any ND-domain with this first property (x ory L x), and angelic ND-domain for
any ND-domain with the second property (x L x ory). When we are wanting answers to demonic

questions we need a demonic ND-domain, and similarly for angelic questions.

Now, suppose I want to give a demonic nondeterministic semantics for a language whose
deterministic semantics is already specified over some domain D . In this case, I must search for a
demonic ND-domain Ppgyon (D), together with a domain morphism 1: D — Ppgyron (D). As in
Section 4.3, I want Ppgyon (D) to be free from any unintended constraints. This is achieved by
requiring the embedding M to be universal with respect to other possible embeddings of D into
demonic ND-domains. This is formally described in the left-hand column below, and the same

ideas are defined for angelic ND-domains on the right.

Free Demonic Powerdomain Free Angelic Powerdomain

Let D be any domain. The free demonic
powerdomain generated by D is a demonic
ND-domain Pppyon (D) together with a
domain morphism MN:D — Ppgyon (D) (called
the insertion). The insertion 1 is universal, so

Let D be any domain. The free angelic
powerdomain generated by D is an angelic
ND-domain Ppgyon (D) together with a
domain morphism 1n:D — Ppgyon (D) (called
the insertion). The insertion 1 is universal, so

that if Q is any demonic ND-domain and
g:D — Q is any domain morphism, then there
is a unique ND-domain morphism
$8:Ppryon (D) — Q such that

that if Q 1is any angelic ND-domain and
g2:D — Q is any domain morphism, then there
is a unique ND-domain morphism
£:PanceL (D) — Q such that

§MMx)=gx)foranyx e D. §Mx))=gx)foranyx e D.
Exercise 7: Let C | be any flat domain. Show that Pppyon (C |) consists of the non-empty
finite subsets of C plus chaos (all of C |), with the insertion mapping | to chaos, and each other
element is mapped to the corresponding singleton. The order is the superset order (S L T if and
only if § ©7) and the or-operation is set-union. Hence, Ppgyon (from Section 5.1) is the free

demonic powerdomain generated by (ZxZ) K

Exercise 8: Let C | be any flat domain. Show that Psyggr, (C |) consists of the countable sub-
sets of C' | which contain | . The insertion maps each element x to {x, | }. The order is the subset

order and the or-operation is set-union. Hence, Pyyggr, (from Section 5.1) is the free angelic

21

powerdomain generated by (ZxZ) |-

6. Semantics via Free Powerdomains

A flat domain D | generates three powerdomains:
P(D) — the freely generated powerdomain,
Ppemon (D) — the freely generated demonic powerdomain,

PanceL (D) — the freely generated angelic powerdomain.

There is an insertion from D to each of these domains, with a certain universal property. When this
kind of property exists, we can usually give the semantics of a nondeterministic language simply by
using the universal property. We don’t even need to know what the powerdomain looks like. That’s

what we’ll do in this section for the nondeterministic XY -language.

To start things off, let P be any of the three powerdomains P((Z xZ) 1) or Pppyon (ZXZ) |)or
PanceL (ZXZ)|). Letn:D — P be the corresponding universal insertion. For each nondeterminis-
tic XY -program R, we will give the ND-domain morphism [R]: P — P denoted by R.

Deterministic Programs: Each deterministic XY -program R is also a nondeterministic pro-
gram. Suppose [[R]]:D — D is the deterministic domain morphism associated with a program R.
Notice that the composition function 1 -[[R]] maps D to P. The ND-domain morphism [R]: P — P
is the unique ND-domain morphism such that [R] o1 =1 .[[R]]:

No[[R]] [R]

p— 1N __.p
v

P
This unique morphism exists because 1 is universal. Intuitively, [R]: P — P is the unique power-

domain morphism whose value at a "singleton" {x } is [R]](x).

Exercise 9: Prove that [FAIL]: P — P maps every element of P to |, and that [SKIP] is the
identity on P.

22

Nondeterministic Choice: Let Ry and R be nondeterministic XY -programs. Then (R; or R,) is
a new nondeterministic XY -program. The ND-domain morphism [(R; or Ry)]: P — P maps an ele-
ment S € P to [R{1(S) or [Ry1(S).

Composition: Let Ry, Ry, - -+, Ry be nondeterministic XY -programs. Then
BEGIN Ry;Ry; -+ - Ry END

is a nondeterministic XY -program whose ND-domain morphism is the composition

[Relo - - oIR1-IR1:P - P

Conditional Statements: Let Ry and Ry be XY -programs and let B be any Boolean expression
in the XY -language. Then this is a nondeterministic XY -program:
IF b THEN R, ELSE R,
To define the semantics of the conditional, let b:(ZxZ) — (TRUE ,FALSE } be the function which
corresponds to the Boolean expresséon B . Next, define a domain morphism g :D — P by this:
ifx=| then |
g(x)=<elseif b(x)is TRUE then [RiI(NKx))

else [Ro](M(x))

The function [IF b THEN R; ELSE R;]:P — P is the unique ND-domain morphism such that
[/F b THEN R ELSE Ry} .M = g, as shown here:

D n

-

[IF b THEN R, ELSE Ry]

L

Exercise 10: Prove that each of the functions defined on P in the above paragraphs is an ND-

domain morphism.

Iterative Statements: Let R be a nondeterministic XY -program, and let B be a Boolean expres-

sion in the XY -language. Then this is a nondeterministic XY -program:

23

WHILE B DO R
The ND-domain morphism [WHILE B DO R], is defined as a least upper-bound of a sequence, just
as we did in the other examples of semantics. Namely, Ry is the XY -program FAIL, and for any
integer n >0, R, is the XY -program:

IF B THEN BEGIN R; R,,_; END
ELSE SKIP

The meaning of the iterative XY -program is the least upper-bound of the chain
[Rad LR LIRAL -

Exercise 11: Justify the following statement: In order to use a powerdomain, it is generally

enough to know that the powerdomain is freely generated by a fixed domain D .

7. A Free Powerdomain Construction

So far, we have used powerdomains to define the semantics of nondeterministic programming
languages. These examples used powerdomains of the form P(D), Ppgyon (D) or Paycer (D),
where D was a flat domain. What if D is a more complicated domain? Are there always free

powerdomains, generated by D , with the desired universal properties?

For P(D), Ppemon (D) and Pynger (D), the answer is yes! The easiest way to prove this
existence makes use of some category theory, and will not be given here — but see the bibliography
if you’re interested. Usually, this existence of freely generated powerdomains is sufficient to define
the semantics of nondeterministic languages — since once the existence of a free powerdomain is
known, we can make use of its universal properties without really knowing what the powerdomain

looks like in set-theoretic terms — as was done in Section 6.

But, sometimes a more concrete construction of a free powerdomain is needed — or at least

comforting. This section provides such a construction for my favorite powerdomain: Ppgyon (D).

7.1 What Ppryon (D) Looks Like.

Let D be any domain. In order to describe Ppgyon (D), we need some definitions about sub-

setsof D .

24

Definitions. The upward-closure of a subset S D is the set
S‘i = {y| There exists somex € § withx L y}.
A subset S ¢ D is called upward-closed if S = Sli. A set C covers another set S provided that

Cli 28. AsetS is called Scott-compact provided that whenever a set C of isolated elements
covers S, then some finite subset of C also covers S.

Figure 7.1 Definitions of Upward-Closed and Scott-Compact Sets

Now we can describe Ppgyon (D). The elements of this domain are certain subsets of D.
Namely, the elements of Ppgyoy (D) are the non-empty, upward-closed, Scott-compact subsets of
D . Intuitively, such a subset S =D is a nondeterministic choice between all of the elements of S.
The intuition behind upward-closure comes from the idea of asking demonic questions, as defined in
Section 5. Part of a demonic question is the implicit idea that whenever we are willing to accept an
outcome x from our program, then we should also accept any outcome y with x Z y. Hence, it
does no harm to add a possible outcome y to a set of nondeterministic choices which already con-
tains some lower element x The intuition behind Scott-compactness is essentially that Scott-
compact sets are the kinds of nondeterministic choices that can occur in a program with finitely-
branching nondeterminism (similar to the way that | had to be added to each of the infinite sets in
P(C).

The partial-order on Ppryon (D) is S L T iff S ©T. Again, this is justified by the idea that
we will use this domain to answer demonic questions, and that a higher location in the semantic
order corresponds to more "yes" answers to demonic questions. The leastooelement in this order is

the set D itself. If S1 L Sy L S3--- is a chain in Ppgyon (D), then || S, is the intersection
n=0

N Sn.

n=0

Exercise 12: Prove that this intersection is indeed a non-empty, upward-closed, Scott-compact

set. Therefore, Ppeyon (D) has least upper-bounds of all chains, and hence is a CPO.

Exercise 13: Let S be a non-empty finite set of isolated elements from D . Show that Szi is an

element of Ppryon (D). As a further exercise, show that these elements are isolated in the CPO

25

Ppeyon (D), and that this CPO is actually a domain with these elements forming the base.
The binary operation or in Ppgyon(D) is union: Sor7T =S UT. Since f”\ S, uT)=
n=0

(M S»)UT, this is a continuous operation.
n=0

Exercise 14: Prove that S UT is non-empty, upward-closed and Scott-compact whenever S

and T are. Therefore, this addition operation is well-defined on Ppgyon (D).

7.2 The Universal Insertion Function, and Some Preliminaries

We want to show that Ppgyony (D) is the free demonic powerdomain generated by D, with
some universal insertion function N: D — Ppgyon (D). For this construction, the insertion function

T maps each element x € D to the set {x }? € Ppryon (D).

Exercise 15: Clearly the set n(x) is non-empty and upward-closed for any x € D. Show that

it is Scott-compact. Also show that the function 1 is a domain morphism.

The idea behind a proof that Pppyon (D) is freely generated by D is this: Intuitively, the sets
of Pppuyon (D) are those sets which can be formed from the upward-closure of singletons — using
only the or -operation (union) and putting in least upper bounds (intersections) whenever chains are

formed. A more formal proof will be aided by the following preliminary definitions and results.

Definition. A subset S of a domain D is called directed provided that any two elements in S have
an upper bound in §. That is: whenever x,y € S, then there exists some z € § withx L z

andy L z. Note that every chain is an example of a directed set.

Exercise 16: Let S ¢ D be a directed subset of a domain D. Prove that S has a least upper-
bound (which we will denote by | |S). Also prove that every domain morphism preserves the least

upper-bound of every directed set.

26

Definition. Let D be a domain, Q a demonic ND-domain, and g:D —Q a domain morphism,.
Then for any finite subset S ={xy, ---,x,}cD, define g(S§) to be the element
gxpor - orgx,)of Q.

Lemma 7.1. Let D be a domain, Q a demonic ND-domain, and g:D — Q a domain morphism.
Then for any set T € Pppyon (D), the set
{g(S) S is afinite set of isolated elements which covers T}

is a directed subset of O .

Proof: Let U be the indicated subset of Q, which we must show to be directed. Suppose S and S,
are finite sets of isolated elements which cover T, so that g (S;) and g (S,) are elements of U. We
must find another finite set S of isolated elements which covers T, and with g (S) an upper bound

for g (S1) and g (S,). Before we define this set S, we define another set of isolated elements:
V = {x € BASEp| Forsomexi€ Sy, x,€ Sy, andte T :(x; L x)and (x £ x)and (x L 1)).

It is easy to show that V covers T, and since T is Scott-compact there is some finite subset S cV
which also covers T. For this S, the element g (§) is in U, and it is an upper-bound for g (S;) and

g (S2). Therefore, U is directed, as required. []

Exercise 17: In the proof of the last lemma, show that V covers T.

Lemma 7.2. Every domain morphism between demonic ND-domains is also a ND-domain mor-

phism.

Proof: The proof relies on the fact that in a demonic ND-domain, x ory is always the greatest
lower-bound of x and y. (It is a lower bound since x ory L x is an axiom in a demonic ND-
domain. Itis the greatest lower bound since wheneverz L x and z L y then also

z=(zorz) L (x ory).) But this g.l.b. can also be written as the least upper-bound of the directed
set {z] z L x and z L y}. (The set is directed since it contains its own upper-bound, namely
xory.) Since a domain morphism preserves the least upper-bound a of directed set, it also
preserves the greatest lower-bound of a pair of elements, hence it also preserves the sum of a pair of

elements.]

27

7.3 The Proof that Ppgyon (D) is Free

Let D be a domain. We will show that Ppgyon (D) is generated by D with the insertion
N:D — Ppryon (D), defined above. To do this, let O be a demonic ND-domain, and let g:D — Q
be a domain morphism. We must show that there is a unique ND-domain morphism

£:Ppepon (D) — Q such that §(M(x)) =g (x) for all x € D, as in this commuting diagram:

Figure 7.2

With the aid of Lemma 7.1, the definition of ¢ is simple:
Forany T € Ppryon (D): §(T)= | [{g(S) S is a finite set of isolated elements which covers T }.

Lemma 7.1 is used to guarantee that the set on the right is indeed directed, and hence has a least

upper-bound in 0.

Now we will demonstrate that this definition of ¢ meets the properties stated above. The first

property required of £ is that § (M(x)) = g (x) for any x € D . This is shown here forany x € D :

e =g ih

| g (S)| S is a finite set of isolated elements which covers {x }? }

(g ()] S is a finite set of isolated elements with some y € S and y L x}

=gx)

Exercise 18: Show that g (x) is indeed the least upper-bound indicated above.

Next we must show that § is an ND-domain morphism. By Lemma 7.2, every domain mor-
phism on demonic ND-domains is also an ND-domain morphism, so really we only need to show
that § is a domain morphism — i.e., that £ is strict, monotonic and continuous. Strictness and

monotonicity are easy (try them and see!). For continuity, let To £ Ty £ T5 -+ be a chain in

28

Ppeyon (D). The equality §(|| T,)= || (£(T,))is shown here:
n=0 n=0
§CU T =4(ATw)
n=0 n=0

| {g (S) S is afinite set of isolated elements which covers R T,}

n=0

| (g (S)| S is afinite set of isolated elements which covers some T,}

o0

|| LKeg(S) S is afinite set of isolated elements which covers T,}
n=0

= || ETn)
n=0

Exercise 19: Demonstrate in detail the above equalities. Hint: the second equality uses the fact that
whenever S is a finite set of isolated elements from D, then S‘i is an isolated element in
Ppemon (D).

So, we have shown that § is an ND-domain morphism which makes the triangle in Figure 7.2
commute. To finish the free construction proof, we only need to show that it is the only ND-domain
morphism with this property. For this purpose, let 4:Ppryon (D) —Q be an ND-domain mor-
phism with 2A(M(x)) =g (x) for all x e D. We need to show that § and 4 are identical. It is
sufficient to show that § and 4 are identical when applied to isolated elements of Ppgion (D). As
stated above, an isolated element of Ppeymon (D) has the form Sli where S is a non-empty finite sub-
set of isolated elements from D. If § ={sy, ---,s,), then Szi can also be written as

n(syor - - - orn(s,). Hence we have these equalities:

s8h=gmesor - orns,))
=gMm(sp)or - - orgM(s,))

=g(syor ---org(s,)

29

=hM(sy)or - -+ or h(M(sy,))
=hM(spor - - ornis,))

=n(sh)

7.4 Constructions of P(D) and Pnggr, (D)

The powerdomains P(D) and Pynggr (D) also have constructive characterizations similar to

the one given here for the demonic powerdomain. Here’s what these characterization are:

For any subset § D, the *-closure of S, written CLOSURE (S) is the set:

{x € D| For any isolated y withy L x there existsz € X with y L z}
The powerdomain Pgngp, (D) consists of those non-empty subsets of D with
S =CLOSURE(S). The order is defined by § L T if and only if § T, and the insertion
N:D — Pyncer (D) maps x € D to CLOSURE ({x }). The binary or -operation is union.

Figure 7.3 Characterization of the Free Angelic Powerdomain

P(D) consists of those non-empty subsets of D with S = Sli NCLOSURE(S). The order is the
Egli-Milner order, and the insertion m:D —P(D) maps x e D to {x }? NCLOSURE ({x }).
The binary or -operation is union.

Figure 7.4 Characterization of the Free Powerdomain

These characterizations are taken from Gordon Plotkin’s postgraduate notes. See the historical

bibliography for details.

30

8. Other Powerdomains

A powerdomain is a domain together with extra structure for handling nondeterminism. In
P(D), this structure is a binary operation or which is associative, commutative, idempotent, and
continuous. For demonic and angelic powerdomains, the same kind of operation is used, but with

additional constraints.

These three powerdomains have not exhausted the possible structures for handling nondeter-
minism. For example, Kozen, Saheb-Djahromi and Graham have all proposed probabilistic struc-
tures that can be placed on top of a domain. David Benson and I have suggested the algebraic struc-
ture of a semiring-module for describing certain kinds of nondeterminism. At a recent talk at the
Workshop on Mathematical Semantics of Programming, Gordon Plotkin suggested an algebraic

structure containing several operations including nondeterministic choice and parallel composition.

The basic idea of a universal or free construction should be applicable to all these suggested
structures. In each of these cases, we should be looking for a way to take a domain D and embed it
in another domain which has additional algebraic structure. Let’s call this latter domain a structured
domain. So, what we are looking for is a structured domain S(D), together with a domain morphism
N:D —S(D). As usual, we want 1 to be universal so that if Q is another structured domain and
g:D — Q is a domain morphism, then there exists a unique structure-preserving domain morphism
§:SD)—>Q suchthat g .n=g.

Several papers in the historical bibliography show conditions under which the existence of such

free structured domains is guaranteed.

9. Historical Bibliography

A. Origins. The problem of defining domains of nondeterministic values has its origin in R.
Milner’s research on denotational semantics of nondeterministic and parallel programs [A.1,A.2].
He proposed a solution for flat domains, which was also proposed by H. Egli in unpublished notes.
G. Plotkin extended Milner’s proposal to a class of domains which he called SFP — although the
construction was not characterized as a universal construction in his original paper [A.3]. M. Smyth
refined Plotkin’s construction — characterizing it in terms of a completion by ideals of a pre-domain

[A.4]. Smyth also defined the demonic powerdomain construction — which he called the "weak"

31

powerdomain, andeothers have sometimes called the Smyth powerdomain. Smyth later recognized
the angelic powerdomain as the dual to the demonic powerdomain, and connected all three power-
domains to topological constructions proposed by Vietoris in the 1920’s [A.5]. The view which I’ve
presented — powerdomains as freely generated ND-domains — came from Plotkin’s postgraduate
notes and a paper of Plotkin and M. Hennessy [A.6,A.7]. They also used the term Hoare power-
domain for the angelic powerdomain — because of a connection of the angelic powerdomain with
Hoare’s partial correctness logic for nondeterministic programs. D. Schmidt’s text on Denotational

Semantics also has a chapter presenting these constructions [A.8].
[A.1]

R. Milner, An approach to the semantics of parallel programs. In: Proceedings of the Con-

vegno di Informatica Teorica, Instituto di Elaborazione della Informazione, Pisa (1973).
[A.2]

R. Milner, Processes: A mathematical model of computing agents. In: Logic Colloquium ’73,

North-Holland, Amsterdam (1973).
[A.3]

G. Plotkin, A powerdomain construction, Siam J. Computing 5 (1976), 452-487.
[A.4]

M. Smyth, Powerdomains, Journal of Computer and System Sciences 16 (1978), 23-36.
[A.5]

M. Smyth, Powerdomains and predicate transformers: a topological view, In: Automata,

Languages and Programming, 10th Colloquium, Lecture Notes in Computer Science 154,

Springer-Verlag, Berlin (1983), 662-675.
[A.6]

G. Plotkin, Computer Science Postgraduate Notes, University of Edinburgh, 1980-81.
[A.7]

M. Hennessy and G. Plotkin, Full abstraction of a simple parallel programming language, In:

Mathematical Foundations of Computer Science '79, Lecture Notes in Computer Science 74,

Springer-Verlag, Berlin (1979), 108-120.
[A.8]

D. Schmidt, Denotational Semantics: A Methodology for Language Development, Allyn and
Bacon, Boston (1986).

B. Characterizations of Powerdomains. Apart from Smyth’s topological characterization of

32

powerdomains, and the Plotkin/Hennessy view as a universal construction, there have been several
other views of powerdomains. S. Abramsky constructed the powerdomains as capturing the
discriminations that can be made by different kinds of finite experiments on nondeterministic pro-
grams [B.1]. G. Winskel defined the powerdomains in terms of statements in a modal logic [B.2].
In fact, these two papers — presented at the same conference — are the origin for the demonic ques-
tions and angelic questions which I used as motivation in Section 5. For a special kind of domain
(called consistently complete) a topological characterization in terms of the Lawson topology of a

domain has been given by M. Mislove [B.3].
[B.1]

S. Abramsky, Experiments, powerdomains and fully abstract models for applicative multipro-

gramming, In: Foundations of Computation Theory, Lecture Notes in Computer Science 158,

Springer-Verlag, Berlin (1983), 1-13.
[B.2]

G. Winskel, A note on powerdomains and modality, In: Foundations of Computation Theory,

Lecture Notes in Computer Science 158, Springer-Verlag, Berlin (1983), 505-514.
[B.3]

M. Mislove, On the Smyth powerdomain, In: Third Workshop on the Mathematical Founda-

tions of Programming Language Semantics, Springer-Verlag, Berlin (1987), to appear.

Alternative Algebraic Structures. Here are some of the alternative algebraic structures that have

been proposed for handling nondeterminism in a domain.
[C.1]

S. Graham, Closure properties of a probabilistic powerdomain construction, In: Third
Workshop on the Mathematical Foundations of Programming Language Semantics, Springer-

Verlag, Berlin (1987), to appear.
[C.2]

K. Hrbacek, A powerdomain construction, In: Third Workshop on the Mathematical Founda-

tions of Programming Language Semantics, Springer-Verlag, Berlin (1987), to appear.
[C.3]

D. Kozen, Semantics of probabilistic programs, Journal of Computer and System Sciences 22

(1981), 328-350.
[C.4]

M. Main, Free constructions of powerdomains, In: First Workshop on the Mathematical

33

Foundations of Programming Language Semantics, Springer-Verlag, Berlin (1985), 162-183.
[C.5]

A. Poinge, A remark on variations of powerdomains, Bulletin of the EATCS 31 (1987), 38-41.
[C.6]

G. Plotkin, A powerdomain for countable nondeterminism, In: Automata, Languages and Pro-

gramming, 9th Colloquium, Lecture Notes in Computer Science 140, Springer-Verlag, Berlin
(1982), 418-428.

[C.7]
N. Saheb-Djahromi, CPO’s of measures for nondeterminism, Theoretical Computer Science 12
(1980), 19-37.

