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CHAPTER I
INTRODUCTION -

During the past ten years, printed-circuit antennas have
come into widespread use,. Thé most commonly used type is the
rectangular microstrip patch antenna. A number of models have been
developed for the design of rectangular patches [4,9,10], but these
fail to account rigorously for the fringe fields, radiation effects,
and the dispersion that is created by the presence of a dielectfic |
substrate. At lower operating frequencies where the patch dimensions
can be easiiy adjusted, the deficiencies in these models do not
create serious design problems. Because of advantages inherent in
using higher frequencies, microstrip antennas will become widely
used at millimeter wavelquths. At such short wavelengths, the
dimensions of patch elements become quite small so its dimensions
cannot be readily adjusted with techniques consistent with current
fabrication processes. Thus, at higher frequencies, the accurate
design of patch elements becomes much more critical which means the
line dispersion, radiation effects, and the fringe fields must be
more accurately modeled.

In order to provide a more rigorous accounting of these
effects, Chang and Kuester [1] have solved the canonical problem of

an obliquely incident TEM wave underneath a semi-infinite patch

supprrted by an infinite dielectric slab. The solution of this



problem rigorously accounts for the surface wave effects, fringe
fields, and radiation. Chang [2] applies the solution of the
canonical problem to an unloaded rectangular patch. This model
accounts for the dispersion of the microstrip patch, and it results
in radiating edge admittances that are a function of the dispersion,
frequency of operation, and the dielectric slab parameters. The
resulting admittances then are dynamic in néture.

Chang's formulation contrasts with the conventional approach
where the edge conductance and susceptance are separately evaluated
from a slot radiation calculation and a static fringing capaciﬁance
computation. Clearly, the slot radiation calculation does not
account for the dispersive effects of the microstrip line, nor does
it take into account surface waves that can be supported by the
dielectric slab. Also, calculating the susceptance from a static
formulation does not account for any high-frequency effects at all.
It therefore appears the conventional edge admittance is inadequate
to déscribe microstrip edge phenomena.

Thus, the purpose of this thesis is to investigate the
admittance and dispersion characteristics as predicted by the Chang-
Kuester model and to test the validity of this model. The thesis
is divided into three major parts covered in five chapters. In the
first portion, the theory of Chang and Kuester is discussed, and is
applied to microstrip transmission line structures. Numerical,
graphical, and analytical results pertaining to this formulation are
presented and discussed. In the second part, the widely used

conventional admittance formulation is presented, and numerical as



well as analytical results are given. The third and final portion
consists of the construction of an experimental setup designed to
provide accurate dispersion and edge admittance data. A number of
microstrip transmission line configurations are investigated, and
the experimental results are compared with the theoretical results
of the Chang-Kuester model and Fhe conventional admittance formula-
tion. On the basis of this comparison, conclusions are then drawn

about the validity of these two approaches.



CHAPTER II

THE WIENER~HOPF SOLUTION AND

THE OPEN-END MICROSTRIP TRANSMISSION LINE
2.1. Introduction

This chapter deals with the application of the Wiener-Hopf
solutioﬁ of Chang and Kuester to the modeling of the dispersion
characteristics and the open gnd admittance of an electrically wide
microétrip transmission line. In the first portion of this chapter,
the solution of the canonical problem of a semi-infinite microstrip
is presented. This solution is first used to characterize the
propagating modes that ‘can exist on a microstrip transmission line
with an infinitely long top conductor of finite width. The next
problem that is dealt with is a semi-infinite microstrip transmission
line with a finite width top conductor that is terminated in an open
circuit. This problem is used in conjunction with the Weiner-Hopf
solution to define and characterize the end admittance of an open-
circuited microstrip transmission line. In the final portion of
this chapter, the concept of equivalent length is introduéed and
developed. Throughout this chapter, numerical, analytical, and

graphical results are presented.



2.2. The Canonical Problem and

The Wiener-Hopf Solution

In Fig. 2.1, a peffectly conducting ground plane supports a
dielectric substrate of infinite extent and thickness d. The
. substrate has a relative permittivity Er and is assumed to be non-
magnetic. On top of the dielectric material, there is a perfectly
conducting, semi-infinite patch of zero thickness. A TEM wave,
inside the parallel plate region, is incident at an angle ¢ with
respect to a line drawn normal to the edge of the top conductor. At
a sufficient distance from Fhe edge, the reflected wave is TEM,
reflected back at an angle of ¢, since the higher order waveguide
type modes, generated at the discontinuityvdecay rapidly underneath

the patch. The incident electric and magnetic fields are given by

Ei expl{-jk [ax - Vnz - az v1} (2.1)
0 .

ﬁi -1 [;;{nz - az + aya]exp{—jko[ax - /a? - az y1} (2.2)
o}
where
n = /e
T
g =n sin ¢ .

The reflected fields are given by

g - f exp{—jko[ax + /nz - az v1} (2.3)

z
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Er - _nI‘_ [‘a' /n7 _ 0L2 _ -;ya]exp{_jko[qx - ;/n2 - OL2 y)} . (2.4)
(o]

~

In these equations, ' is a complex reflection coefficient, a time
factor of exp(+jwt) 1is suppressed throughout. The fields undergo
either a total or partial reflection depending on the angle of
incidence and the index of refraction n of the dielectric sub-
strate. Inspection of Eqs. (2.1) through (2.4) indicates that the

solution of the boundary value problem has the following variation:

exp[—Jkoax] .

From this variation, the farzone field form in the y-z plane

(Fig. 2.1) can be written as
f(e)exp[-jkou/l-a ol - (2.5)

Equation (2.5), of course, applies to the air region. In (2.5), 0
is the angle between the ground plane and a line drawn from the
parallel plate opening to a farzone field point at a distance e}
away from the edge.

From Eq. (2.8), it is observed that, for a < 1, the scat-
tered fields propagate radially away from the discontinuity, thereby
transferring power into the region external to the parallel plates
in the form of sky wave radiation. If o > 1, these fields become

evanescent, and power associated with the incident field is not

removed by radiation.



Sky wave radiation, however, is npt the only mechanism for
transferring power. The portion of the dielectric slab that is not
covered by the conducting is capable of supporting LSE or LSM (with
respect to the =z axis) surféce waves that can propagate along the
y-axis away from the parallel plate opening. Assuming that vy-axis
propagation occurs f?r o < ap, the surface waves in the air rggign

behave as
exp[—jkoax]exp[—jkowap - y]exp[—kovui -12z] . (2.6)

The value(s) of ap are determined from the following transcen-

dental equations:

€ /&2 - 1= /gz - az tan[/n2 - az k d] (LSE modes) 2.7)
r p P P o
W&i -1= /Qz - ai cot[»/n2 - ap kod] (LSM modes) . (2.8)

The solution of either Eq. (2.7) or (2.8) at a given kod yields a
finite number of ap values. Each ap corresponds to an individual
propagating surface wave. Inspection of Eqs. (2.7) and (2.8) reveals
that the ap values must always be greater than 1. From Eq. (2.6),
a surface wave is evanescent in the y direction when o > o

For o < ap, the surface wave propagates along the vy axis away
"from the discontinuity, which means that some of the incident wave
power is being used to excite surface waves. When either radiation
of surface wave propagation occurs, the magnitude of [ must be

less than one. Otherwise, the reflection coefficient magnitude is



unity, and complete reflection occurs.

to the largest solution of either Eq. (2.7) or Eq. (2.8), the results

of this discussion are éummarized in Table 2.1.

Assuming o

p,max

Table 2.1
Reflection
& Range Sky-WaYe Surface Wave Coefficient
Radiation Propagation -
Magnitude
0<acx<1 yes yes <1
l<a<ag no yes <1
p,max

=1

a <a<n no no complete
p,max reflection

corresponds

In order to solve the problem of Fig. 2.1 rigorously, D.C.

Chang and E.F. Kuester [1] have employed the Wiener-Hopf technique.

From their analysis, the reflection coefficient has been found to be

Pl
where

A ‘l
X =2 tan ————g———-tanh Ay - fe(— -a )

: Yo - a

2

oo un u +u tanhu k d

A - & f o o] n o n o ax
™ u 2
0 n nut u, tanh unkod A+

(2.9)

(2.10)

(2.11)
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- n2 - az
fe(— n - 0o ) = tan -3
a -1
i (n2 + l)u2 tanh u k d
0 n o

dA
u (nz.u + u tanh u k d }\2 - AIZ - OLZ
n (o] n n o

1

(2.12)

/[ 2
u = A+ uz -1 . (2.13)

>

u = /kz + a2 - n2 .
n

In order to gain insight into the Wiener-Hopf solution for T, the

integrals of Eqs. (2.11) and (2.12) are intestigated. These

integrals are written as

o |u n2 u +u tanh u k d QO
A = J gn| 2 — L 5 5 (2.14)
0 ™ nu +u tanh ukd AT+
o] n n o
2 2
o (n” + l)uo tanh unkod d
Io u-(n"u +u tanh u k d AT - /g -a
n fo) n n o

The integral (2.15) is a Cauchy principal value about the pole at
A =v/n" - a”. The integrands of Eqs. (2.14) and (2.15) contain
logarithmic singularities which may occur along the path of integra-
tion, depending on the value of «.

In order to provide a display of the singularities that
gives more physical insight into the problem, Eqs. (2.14) and (2.15)
can be integrated by parts. This, of course, does not change the

valve of the integrals or the singularity locations. The
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singularity types do change, however, the resulting integrals
contain poles in the A plane which can be determined from the

following transcendental equations:

Z /
/& + az -1+ /&2 + uz - 1 cotanh( Az + az - n2 kd) =0
m m m o)

(2.16)

2 42 A
n /&e +a° -1+ /&2 + az - n2 tanh(%ki + az - n2 kod) =0

(2.17)

Branch points, associated with ugs are located at

The phase on each side of the square root branch cut'ﬁust be
selected such that Re u > 0 along the path of integration in
o

accordance with the radiation condition. Making the substitutions,

AZ + az = az
(2.18)

Xz + a2 = az

P

in Egqs. (2.16) and (2.17) results in the LSE and LSM mode equations,
(2.7) and (2.8). At this point, as a matter of convenience, the
dielectric slab thickness d 1is assumed to be small enough to
allow only the LSEl surface wave mode (with the smallest ap value)

*o propagate. In terms of Eqs. (2.7) and (2.16), the quantities
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o and A are the quantities associated with the LSE. mode.
pel el 1
Inspection of Eqs. (2.17) and (2.18) indicates that the
integrand singularity locationsAare a function of o and, there-
fore, the angle of incidence ¢. In fact, there are three different
_cases relating to the singularity positions in the )\ plane. For
apel < o < n, the branch cuts at A = ij/az - 1 and the poles at

. /2 2
A= +iYao - apel lie along the imaginary axis of the A plane. 1In

this situation, which is illustrated in Fig. 2.2a, the values of the
iantegrals in Eqs. (2.11) and (2.12) are real, resulting in a i

that is real and a totally reflected incident TEM wave. When
l1<acx apel’ the singularities are located at Ae = *jvya -1 and
kel = i%apel - az as is depicted in Fig. 2.2b. Since Kel is now
located on the real axis, the integrals in Egs. (2.11) and (2.12)
have a complex value. Thus, f is now complex, and some of the
incident power is being used to excite an LSEl surface wave. 1In

the range 0 < o < 1, the integration path includes both the surface
wave pole and the branch cut coqtribution, resulting in a complex

f. Clearly for this situation, which is illustrated in Fig. 2.2c,
power is being transferred into the region external to the parallel
plates in ﬁhe form of both surface waves and sky wave radiation.
Thus, even more power is being transferred from the incident wave in
this o range. One then would ekpect the magnitude of [ to

decrease monotonically with o in the range a < apel until the

reflection coefficient magnitude is a minimum at o = O.
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Im (X))
§=arg u,
j(az—l)“2
~Ael
c
> Re (M)
\g:o
Aei
-j(a2-n'2
(a)
2 172
_xel J(d 1) .
® r;\)\
(a2 )72 =0
(b)

Fig. 2.2.
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2.3. The Numerical Evaluation of the

Wiener-Hopf Reflection Coefficient

The integrals of Egqs. (2.11) and (2.;2).cannot be evaluated
analytically unless approximations are made. In order to obtain an
exact value.for these integrals, numerical integration is necessary.
The Fortran IV program in Appendix B evaluates the integrals, and
it also computes V§ and f. The progfam contains a subroutine that
is designed to integrate a complex function along the real axis.

As has already been discussed, singularities may be located on the
positive real axis of the A plane. Before an integration is
performed, the program predetermines the location of tﬁe singular-
ities on the positive real axis. The program performs the integra-
tion up to a point that is close to a singularity, "and then the
integration resumes at a point immediately on the other side of

the singular ﬁoint. Assume now that a singularity is located on
the positive real axis at A= X If X is a logarithmic
singularity, the program stops the integration at A = 0.99999 X
and resumes it at A = 1.0001 X . In the case of the pole singu-
larity at xo.= /nz - az, the pcints are 0.99 X and 1.01 X»
respectively. The slowly varying nature of the logarithmic function
allows the logarithmic singularities to be more closely approached.

In order to present some résults generated by the program

of Appendix B, the Wiener-Hopf reflection coefficient is written in

magnitude and phase form as

=X et IX
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where ]FI and X are real. In Figure 2.3, the normalized trans-
mitted power, as a function of the electrical slab thickness kod,
is plotted where er = 2.49 and X = 0 (normal incidence). From the
curve, it is seen that the transmitted power increases linearly for
small values of kod. A departure from the linear behavior is noted
for larger kodf As a check of the program, the results of Fig. 2.3
were compared with curves presented in a péper by Bates and Mittra
[7]. Although they compute the transmitted surface wave and sky
wave power separately, addipg the two compoﬁents together at a given
kod results in an exqellent comparison with the values of Fig. 2.3.
In Fig. 2.4a, the transmitted power is plotted as a function of «
at a fixed kod' The-transmitted powver is maximum at normal
incidence, and it decreases with an increasing angle of incidence
until no more power is tranmsmitted for a > 1.02. The value

1
as determined from Eq. (2.17). Beyond o = 1.02, complete reflec-

o =1.02 is apel’ which corresponds to the LSE, mode wave number

tion is observed, and |I| is unity. The phase y of the reflec-
tion coefficient is plottéd if Fig. 2.4b. It varies from_a.small,
negative value at o = 0, to +m as o approaches n. The phase
curve crosses the o axis at o =~ 2.16. It is interesting to note
that the phase does-not change rapidly until o gets fairly close
to n, which corresponds to nearly grazing incidénce. The curve of
Fig. 2.3b is quite flat near o = 0, so the phase is essentially

constant when the angle of incidence is close to being normal.
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2.4. Approximate Analytical Formulas for

- The Wiener-Hopf Reflection Coefficient

So far, f has been evaluated by means of a computer program,
which is cumbersome, time consuming, and expensive to use. The
numerical approach also Has the disadvantage of not yielding as much
physical insight into the problem as can be gained from an analytical
solution. D.C. Chang [8] has produced some analytical expressions
for T under the aséumption of a thin dielectric slab. The
derivation of the analytical results is given in Appendix A, and the

final results are given here. 1In the case of normal incidence

(@ = ¢ = 0) with (nkod)2 < 1,

T = |T]e™3X (2.19)
. where

IT| = exp(-k d/n)

x=3nkd[:i (nkd+y-1) - &n 2Tr+2Q:]

T o 2 o o ?
n
m
Q0 = 3 (-Se) fnm |,
o=1

5§ = -1

€ n +1
and

vy = 0.57721 . . . {(Euler's constant)

For the more general case in which 0 < o < n (¢ not too close to 1
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or n) and (nkod) << 1, the following reflection coefficient has
been derived:

)

r = X . (2.20)

where

>
[]

fxa 2
2 tan T %_g-_z [(1 - %)(1—y—2n(k d/oc2—1)> +2Q:}
vn -Q n ° °

2k d ’
/ 2 /2

+— n2—<x [-in 27 +-17 (,Q,n(kod o -1)+Y—1)+2QO] .
- n -

m

As is stated in Appendix A, when ¢ < 1, the proper choice of branch
for Voo -1 is +j/1 - a”. As a check, Chang's results agree
completely with those derived by Kuester, Johmk, and Chang [5] who
employ a totally different approach. It is also of interest to note
that for n = 1 (air substrate), Eq. (2.19) reduces to a result given
in Lewin [15] and Weinstein [16].

In Figs. 2.5 and 2.6, a c0mparison of f values predicted
by the approximate formulas with those generated by the computer
is provided for Er = 2.56. It should be noted that the computer
program pfovides values which in principle are exact. Thus, the
program of Appendix B provides a basis for the verification of the
approximate formulas. Fig. 2.5 deals with a sitaution in which
o =0 and kod varies. It is seen that for small kod, there is
an excellent agreement between the appréximate values of Eq. (2.19)
and the numerical results. For larger kod, however, differences
“n the magnitude and phase, as predicted by the two approaches,

become greater. There are two reasons for this. First, the
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approximate formulas are valid when (nkod)2 << 1. As kod becomes
larger, this condition is violated, and the accuracy of approxima-
tion deteriorates. Second, the approximate formulas do not account
for the effects of surface waves (evanescent or propagating) that
exist in the dielectric slab region external to the conducting
patch. 1In the normal incidence case, the estimate of the integral

(k d)2\

of Eq. (2.12) is found to be O ——£%r—— (see Appendix A). Thus,
2n

for small kod, the surface wave effects can be neglected. But

as kod increases, the surface wave contribution becomes more
significant, and it must be accounted for. Fig. 2.6 illustrates
a case of near grazing incidence in which Y is plotted as a
function of o for €. = 2.56, kod = 0.174 and kod = 0.268. The
agreement between the appréximate phase values of Eq. (2.20) and
the numerically exact phase is quite good. As in the normal

"incidence case, the agreement is not as good for larger k d.
: o

2.5. The Transverse Resonance Condition and

The Graphical Solution

Fig. 2.7 shows a section of an infinitely long microstrip
transmission line. This configuration is similar to that of Fig.
2.1, except that the top conductor has the finite width 22. It
is also assumed that the dielectric slab is thin enough to allow

only an LSE, mode to propagate. If the slab relative permittivity

1
is not equal to one, this structure cannot support a mode that is

TEM with respect to the x-axis. However, a propagating mode can

be represented as a TEM wave underneath the top conductor, bouncing
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back and forth between the conductor edges as shown in Fig. 2.7.
The TEM wave is incident at an angle ¢ with respect to a line
drawn normal to the edges of the top conductor. Assuming that the
two edges of the top conductor are reasonably separated, the
reflection coefficient of the TEM wave, due to the diséontinuities
of the top conductor edges, is the same as the Wiener-Hopf reflec-
tion coefficient of the canonical problem (Fig. 2.1). Thus, the
reflection coefficient at each bounce is given by Eq. (2.9).

In order for the wave to propagate in the x directien,
two requirements must be met. First, constructive interference
must occur on successive reflections. This means the wave must
undergo a phase shift that is a multiple of 27 in a complete
bounce. The second requirement is on the angle of incidence of
the TEM wave. The angle should be such that neither radiation nor
surface wave propagation occurs. Otherwise, energy is lost at each
reflection, resulting in decay. More precisely, the requirements

for propagation are

zk_ Q/ = % R m = 0’ 1_, 2, .« e . (2'21)
o) 2
n -ao

. (2.22)

Eq. (2.21) determines the o value at which constructive inter-
ference occurs, and (2.22) defines the range of o for which
neither surface wave propagation nor radiation occurs. apel is

.he solution of Eq. (2.7) for the lowest order LSE1 surface wave
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that propagates in the dielectric slab.

A graphical representation of Eq. (2.21) is provided in
Fig. 2.8 where f = 8 GHz, d = 3.2 mm, and . = 10. Alpha values
in the range 0 < a < n, corresponding to 0 < ¢ < /2, are located on-
the horizontal axis. The vertical axis contains values for the
elect;ical conductor width ZkOQ. The family of curves represents
the function ;%32;22?-, plotted as a function of o for
m= 0, i, and 2? ;hzse curves have been generated by means of the
computer program of Appendix B. Lines drawn normal to the coor-
dinate axis and intersecting on an mth curve in the unshaded
region correspond to the ,Zkol and o values for which the mth
mode propagates down the line. Constructive interference occurs

in the shaded region, where o < g but decay occurs due to

pel’
radiation and surface wave effects. A mode that satisfies Eq.

(2.27) but not Eq. (2.28) is referred to as a leaky mode. The leaky
mode solutions, therefore, lie in the shaded region of Fig. 2.8.

It is observed in Fig. 2.8 that only the fundamental (m = 0) mode

can propagate down the microstrip structure when

% & < —1 X
o

n -a
As an example, a line drawn from 2k02 = 0.6 at () (see Fig. 2.8)
to the point of intersection with the m = o curve at C) yields an
a = 2.85 at (3). Thus, for 2k02 = 0.6, the fundamental mode is
the only mode available for propagation, and it propagates at the

angle of incidence of ¢ = sin—l(2.85//16) = 65°. Equations (2.21)
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and (2.22),_then, provide a basis for designing a microstrip line
supporting only oﬁe mode. As 2k02 increases, a line projected
normal to the Qertical axis intersects curves corresponding to
modes other than the fundamental. This point is illustrated in
Fig. 2.8, where a line is drawn from the Zkol = 2.25 point at (&)
té @ on the m = 0 curve. The line also intersects the m = 2
and m = 1 curves at points () and C) , respectively, which means
that it is possible for three modes to propagate. Tﬁus, as the
strip is made Wi&er, higher modes are available to propagate in
addition to the fundamental. Fig. 2.8 indicates that the funda-
mental mode prépagates with an o value close to n, corresponding
to nearly grazing incidence. The higher modes, on the other hand,

begin to propagate when o > q In terms of Fig. 2.8, the

pel’
higher modes begin to propagate with ¢ = 18°, which is not too

far from normal incidence.

2.6. A Comparison of the Transverse Resonance

Formulation with Two Other Approaches

For the case of the fundamental mode, Fig. 2.9 shows a
comparison of the az values generated from the transverse reson-
ance condition (Eq. 2.21) with those of Kuester and Chang {1] and
Nefedov and Fialkovski [6]. The az values, produced by Eq. (2.21),
have been solved for numerically by means of the program of
Appendix B. The effective dielectric constant (az) is plotted as
a function of frequency ﬁith L/d = 2, 2/d = 4, er = 10, and

d = 1.27 mm. TFor nk % 2 0.5, the present approach (Eq. 2.21)
o
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closely agrees with the v;riational method of Kuester and Chang.
Since Nefedov uées an approach which is either similar to or
identical to the transverse resonance formulation, the curves
produced by the two methods ére virtually idéntical_for all
parameter values. As the frequency decreases, the electrical
width of the top conductor also decreases, resulting in an
increased coupling between the top conductor edges. Because of
this coupling effect, the present method, along with that of
Nefedov, break down at lower frequencies. Since the variational
approach of Kuester and Chang is known to give good results for
- electrically narrow strips, the breakdown in the present method
is seen to occur at nkod = 0.5 in Fig. 2.9. For electrically

wide strips, however, Eq. (2.21) should yield accurate results.

2.7. Approximate Expressions for o of the

Fundamental Propagating Mode

At this point, it is convenient to present approximate
formulas for the propagation constant o of the fundamental mode.

From Eq. (2.21) with m = 0,
2k02/n - az =X . (2.23)

Under typical operating conditions, the fundamental mode has an

o that is fairly close to n. However, 0 usually has a value

k do
such that the ratio Q is still small, assuming, of course,

a
that (nkod) << 1. This fact allows the arctangent term in Eq.
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(2.20) to be replaced by its small argument expansion, which

results in the following equation:

% d 2
1
|G B (e )
n -q n

o

2 2 27
-vn -0 {n| —FF— + 1 -v7 5. (2.24)
[ kod/oc -1 ]

Applying (2.24) to (2.23) yields the following approximate expres-

sion for a:

1+;‘12— = zn<‘———l————>+1-y +8n 27 - 2Q
n kodn—l °

s

a=n (2.25)
- d 27
ve & (2 ) v - 1]
T4 kod/n -1/
Since #%-<< 1 in the wide strip case, (2.25) can be further
simplified to-
05 =) )
a*xndl -~z ({1l - =) ta|—F5—) +1 - {) + 2Q
ZTTSZ,[ n2 kodn _1 _J o
(2.26)"

Equations (2.25) and (2.26) reveal the functional dependence of

- the fundamental mode propagation constant on the slab thickness d,
the aspect ratio £/d, and the substrate dielectric constant er.
It is clear from these equations that as 2/d increases, the angle
of incidence ¢ becomes more grazing. This is consistent with the

discussion of the graphical approach. A comparison of Eqs. (2.25)



and (2.26) with numerical and experimental results is provided

in Chapter V.

2.8. Electric Field and Surface Current Variations

On an Infinitely Long Microstrip Line

The z-directed E field associated with a propagating

mode can be written as [2]

-ik o x
E = Am cos (/nz - ai y> e ©Om (m=0, 2, 4, . . .)

Zm

o]
]

-jk a_x
Am sin </n2 - am y> e OO0 (m=1, 3,5, ...)

(2.28)

Zm

In these eqﬁations, o is the solution of Eq. (2.27) for the mth
mode, and Am is the modal amplitude which depends on the micro-
strip line parameters as well as the method by which the line is
excited. Eqs. (2.27) and (2.28) are valid in the -region underneath
the top conductor, away from the conductor edges. For m odd,

the resulting E-field, due to the mth mode, is antisymmetrical
with respect to the center of the top conductor. When m 1is even,
a symmetrical field distribution occurs. Applying Eqs. (2.27) and
(2.28) to Maxwell's curl relation and invoking the boundary

condition, 3; =1 x H, yields the following transverse ground plane

and top conductor surface current proportionalities,
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J « sin(v/n2 - az V) m=20, 2, 4, . . . (2.29)
sym m
I © cos (/a? - a:l ) m=1, 3,5, ... (2.30)

The range of y, for which these expressions are valid, is identical
to that of Egs. (2.27) and (2.28). Thus, with respect to the

center of the top conductor; even modes have associated antisym-
metrical transverse gdrrent distributions, and odd modes possess
symmetrical field variations. The importance of the results of

this section will become apparent in Chapter IV.
2.9. The Open-End Microstrip Line

Figs. 2.10 and 2.1la depict an open-end microstrip trans-
mission line. The only difference between this configuration and
the infinitely long line of Fig. 2.7 is the termination of the
tdp conductor at x = xo. It is also assumed that the line of
Fig. 2.10 is electrically wide and supports only the fundamental
(m = 0) mode. The incident mode is assumed to originate at
X = -« and has a propagation constant koqo’ which can be
determined from Eqs. (2.27). Once again, the fundamental mode is
represented iﬁ Fié. 2.10 as a TEM wave bouncing back and forth at
an angle ¢ with respect to a line normal to the top conductor
edges; In terms of the geometry of Fig. 2.10, this wave strikes
the edge at x = xo at an angle of incidence % - ¢, which, in

. 2 . .. .
terms of Qe 1is n - ao. The open end discontinuity results 1in

the partial reflection of the fundamental mode along with higher
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order waveguide type modes that decay rapidly underneath the top
conductor. As was the case in the canonical problem of Fig. 2.1,
the open end also produces radiation and surface waves in the
region extermal to the top conductor. In fact, wi;h the assumption
of an electrically wide top conductor, it appears that the reflec-
tion coefficient of Eq. (2.12) should accurately predict how much
of the fundamental mode is reflected. Thus, at a sufficient
distance from the open end, Egs. (2.9) and (2.27) yield the
follewing E-field underneath the top conductor (A0 is assumed to

be 1):

-jk o (x-x ) R 75 +i2k o (x-x )
E = cos{(v/n —ao)e ©o e [;L+F(a= n —ao)e oo ©

Z0

(2.31)

The open end, then, produces a standing wave field distribution
underneath the top conductor. Utilizing conventional transmission
line theory, a normalized end admittance is defined from the

reflection coefficient of Eq. (2.31) as

i- f(a = /n" - ao)
g = = : (2.32)
1+ I'(a /r12 - ai)

ti

With f(a = /nz - ao) = lF|e+JX, Eq. (2.32) is written as

A l‘ lrle+jx
y = =

- g + jb . (2.33)
1+ }F]e+JX

The normalized admittance consists of a conductance term and a
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capacitive suéceptance. The conductance term accounts for the
surface wave and radiation effects introduced by the open end, and
the susceptance accounts for the reactive power stored in the
fringe fields. It can be seen from Eq. (2;35) that the adﬁittance
depends on the line geometry, the frequency of operation, and the
angle of incidence, w/2 - ¢, at the open end. Defining the end
admittance in terms of the Wienmer-Hopf reflection coefficient,
therefore, results iﬁ a truly dynamic admittance. In general, the
conductance and susceptance terms are nonlinear functions of

frequency.
2.10. Approximate End Admittance Expressions

More knowledge about the nature of the end admittance can
be gained by approximating the right side of Eq. (2.33). Assuming
that the magnitude of the reflection coefficient of the open end

is close to one, Eq. (2.33) yields the following expressions:

1 2 2

g =7 (- |T%)sec <§>
(2.34)

bz—mn(§)

If, in addition, kod << 1, Eq. (2.34) further simplifies to
1-r]?

£° %

(2.35)
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The approximations in Eq. (2.36) provide a decoupling of the
reflection coefficient magnitude and phase in the admittance
calculation. The significance of the decoupling will become
apparent in Chapter V.
The approximate refiection coefficient relations can be
applied to Eqs. (2.34) and (2.36) to yield analytical admittance
2 2

expressions. Applying (2.24) to (2.34) (noting that +/n“~ - ao

=a and 0 < a < 1),

- 22k d(1-ad)
: o]
el T seezkﬁ——“—z——[(-i)(l—v
A L n’
- Qn(kod/l—a2)> + ZQJ - ;/nz—az E&n (L) +1—Y.]
=0

k_d/1 B
(2.36)

kdf 2
b~ tan| -2 J_0 [(1 _ _12.><1—y-52,n(k d/l—a2)>+ 2Q]
m vyn —Q n ° °

_MELn(ﬁj—)-#l—{J .

The expressions in Eq. (2.36) are complex functions of the micro-
strip line parameters, the value of s and the frequency of
operation of the line. The nonlinear nature of the end admittance
is clearly evident. The end admittance, in fact, can be modeled
as a dynamic resistance in parallel with a dynamic capacitance,

as is shown in Fig. 2.11b. Assuming that kodg<< 1 and o =0,

Egq. (2.36) can be simplified to
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k d
o

g 2n

1

(2.37)

o
[

nk d 1
o —_ - - -
p [nz (4n kod + v -1) n 2m + ZQJ .

In this case, the conductance varies linearly with kod, but the

susceptance b is still nonlinear in kod.
2.11. The Concept of Equivalent Length

The open end results in an excess charge accumulation in
the region around the discontinuity. This effect is accounted for
by the capacitance of Fig. 2.11b. In order to develop an alterna-
tive representation of this effect, consider a transmission line
that has a perfect open circuit, as is shown in Fig. 2.12a. A
perfect open circuit has no charge accumulation associated with it,
thus yielding no fringing fields in the region around it.
Referring to Fig. 2.12b, the charge accumulation can be accounted
for by defining the discontinuity to be at A and adding a section
of transmission line of length Ah. The additional length of lime
contains the excess charge accumuiation produced by the discon-
tinuity. Thus, the additiqnal length of line is equivalent to the
capacitance and, therefore, the susceptance of Fig. 2.1lb.
Utilizing a result in Gupta [14], the equation relating b to

Ah  is given by

bh _ B (2.38)



IDEAL OPEN CIRCUIT

(a)
A B
l i
OPEN END POSITION —=! 5
| l
&:2:2:::::::::::::::::1:1:1:3:1:3:1:1:5:3:3:1:1:3:3:3:3:1:3:1:1:3:3:5:3:1:3:1:3:3:3:1:3:3:3:3:3:3:3:3:3231352:11231:?:3:313:3:3:3:530
I
:<—A h —>:
!
i |
T s, § Sasnas ¥

IDEAL OPEN CIRCUIT

(b)

Fig. 2.12.

39



40

If the susceptance varies linearly as a function of frequency,

Eq. (2.38) indicates that Ah/d must be constant. This is not
surprising since a fixed equivalent length corresponds to a
constant, nondynamic capacitance. The application of either (2.36)
or (2.37) to (2.30) results in an equivalent length that varies
with kod' The Wiener-Hopf solution, then, predicts the dynamic

length extension Ah.



CHAPTER III
ADDITIONAL END ADMITTANCE FORMULATIONS
3.1. Introduction

In Chapter II, the Weiner-Hopf approach to the modeling of
the open end admittance of an electrically wide microstrip trans-
mission line, as developed by Chang and Kuesper, was presented.
This chapter, on the other hand, deals with several end admittance
formulations by individuals other than Chang and Kuester. The
second section of this chapter deals with the general features of
a Wiener-Hopf solution as presented by Lewin [15]. Although his
'solution has not been applied directly to microstrip problems, it
is of interest because it serves as a partial check of the Chapter
IT results, and it has been derived using the same mathematical
approach as is employed in the solution of the canonical problem
of Fig. 2.1. In order to gain insight into the significance of
the Wiener-Hopf solution, it is necessary to provide a comparison
with the more conventional technique of calculating the open end
conductance and susceptance of a microstrip transmission line
from two separate and unrelated approaches. Thus, the details of
the conductance and susceptance calculations are presented in the

last two sections of this chapter.
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3.2. Lewin's Parallel-Plate Solution

The system of Fig. 3.la consists of two perfectly conducting
parallel plates of zero thickness separated by a distance 2d.
The plates are infinitely long in the y direction and are semi-
infinite.in extent along the negative =z axis. The nonmagnetic
medium, in which the two conductors are immersed, is assumed to be
uniform with a relative permittivity er. It is assumed that a
pure TEM wave (with respect to the =z-axis) is normally incident
on the open end at z = Q. The dimension d is small enough sé
that only the TEM mode can propagate along the parallel-plate
transmission line. From image theory, the problem of Fig. 3.la
is identical to that of Fig. 3.1b in which a semi-infinite
conducting plate is located above a ground plane. In terms of
the reflection coefficient of the TEM mode, the solutions corres-
ponding to Figs. 3.1la and 3.1b are identical. Now, the effech of
the open end in Fig. 3.1b are similar to those of Fig. 2.1, except
that surface waves no longer occur on account of the uniform
medium. In fact, with e = 1, the problem of Fig. 3.1b is iden-
tical to that of Fig. 2.1 when o = 0. Lewin [15] has solved the
normally incident case of Fig. 3.1 using the Wiener-Hopf technique.
Lewin's solution for thé reflection coefficient of the TEM wave

is given by (Sr = 1)

P = |rledX (3.1)

where
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-k d
) e

o |

d g - -
2k d fn(2k d) 2koq(2n 4T + 1 - )

o -1 kd kd
21 z sin (—q—)— ©_
1 o mT

4

m=

When kod <<1, X becomes

2kod kd
- {ln(:;)-i—‘{—l} ; (3.2)

It can be seen that Lewin's solution corresponds to Eq. (2.19) with

a = 0 and er = 1. This comes as no surprise since both problems
 have been solved by the same method. As is mentioned in Chapter II,
Lewin's solution serves as a partial check of the oblique

incidence case. Finally, it should be mentioned that Weinstein

[16] has also solved the problem of Fig. 3.1 using the same approach

with identical results.
3.3. A Slot Radiation Conductance Calculation

A radiation conductance calculation based on a method given
in a paper by Derneryd {4] is now presented. TFrom the previous
discussion, a microstrip line terminated in an open circuit
generates radiation in the region external to the top conductor.
With the assumption of an electrically thin substrate, Derneryd
attributes the radiation to the electric fields in the vicinity

of the open end, external to the dielectric substrate. The flux
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lines of these fields are shown in Fig. 3.2a, with vertical and
horizontal components directed along the y and x axis,
respectively. It is assumed that the E field component parallel
to the x axis is constant at the substrate surface. The region
of constant electric field is shown in Fig. 3.2b, with EX
constant in the region - < z f_% and -d/2 < x < d/Z. EX is
assumed to be zero elsewhere in the x-z plane. Thus, the sub~-
strate surface outside the dashed line of Fig. 3.2b can be
replaced by a perfect electrical conductor. This transforms the
problem into a slot, containing a constant E field radiating
into the upper half space. The size of the slot has, of course,
been somewhat arbitrarily selected. However, as well become
apparent later, the conductance so obtained is actua}ly independent
of the slot width. The tangential E field in the slot can be

replaced by a magnetic current density given by

a J =2a E xa . (3.3)

The factor 2 in (3.5) accounts for the imaging effects of the
ground plane. The problem, therefore, has been reduced to a
magnetic current density radiating into the region y > 0. The

equivalent problem is shown in Fig. 3.3 where

2zl <§5 el <2

-
1]

=0 elsewhere .
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The vector potential function associated with this current density
can be found by integrating over the magnetic current source as

follows:

_ =ik r d
_ae 9 o 2 jk (x'" sin 6 cos ¢ + y' cos 6)
F= z4ﬂr J I e ° dx' dz'
-4’4 *
"2
Performing the integration obtains
~jk r kod :
o o sin( 5 sin 8 cos d)) sux(kol cos 8)
F = — 2E (3.4)
z 4mr X

(kod
—— sin 6 cos ¢>(k02 cos 6)

For kod << 1, the sine function containing kod _becomes unity,

so Eq. (3.7) can be rewritten as

-jk r
o
e
= ————— (E d
Fz koﬂr ( b4 )

sin(koﬂ cos 6)

cos O (3.5)

From Harrington [21], the farzone E field compoment is related

to the potential F by the following equation:

= _l I 3‘6
E¢ Jko F sin 5 . (3.6)

Applying Eq. (3.5) to Eq. (3.6) yields

(E d) —jkor sin(k £ cos 6)
X e o sin 6 . (3.7)

¢ ] T r cos €
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In the farzone, the H field is given by

-E
. )
H, = — . (3.8)
8 .
no
In order to determine a conductance, the radiated power must be

evaluated in the farzone by means of a Poynting integration over

a hemisphere of radius r. The required integral is

~

= l“- = _* . s
Prad 2 js Re[E x H*] ds (3.9)

Applying Egs. (3.7) and (3.8) to (3.9) yields

(E d)2 T T sinz(k £ cos 8) 3
P = -3 o sin” © d6 d¢ . (3.10)
rad - 2 2
2m no 0°0 cos ©
The voltage across the slot is
V =Ed . : (3.11)

Inserting Eq. (3.11) into (3.10) and integrating with respect to

¢ results in the following expression for power:

V2 ™ sinz(k £ cos 6) 3
Py = o 5 J o 5 sin” 6 46 . (3.12)
ra 2401 0 cos” B

In terms of the slot voltage and the radiated power, the radiation

conductance is given by
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Prad T ) (3.13)

Combining Eqs. (3.12) and (3.13) yields

G = I

= 5 (3.14)
1207

where I deﬁotes the integral (omit the constant multiplier)
poftion of Eq. (3.12).. The integral I can be easily evaluated
by applying the transformation X = cos 6. The resulting expres-
sion contains trigonometric functions and a sine integral term.

The limiting forms of Eq. (3.14) then become

k 2
= o :
G =T (kg >> 13 kd<<1) (3.15)
k 2)?
G = &_Shaf. (k 2 << 1: kd<<1) . (3.16)
o )
90m

Eq. (3.15) indicates that the radiation conductance varies linearly
as a function of kol in the case of an electrically wide strip.
From Eq. (3.16), a narrow strip results in a square law conductance
variation. A comparison of the conductance of Eq. (3.16) and the
Wiener-Hopf conductance is of interest since these are applicable
to wide strips. For a wide microstrip line, the characteristic

impedance is

_ 1207w d
o n <22> : (3.17)
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Combining Eqs. (3.17) and (3.15) yields the normalized conductance

k d

8= 55 (k2>>1kd<<1) . (3.18)

Eq. (3.18) agrees with the approximate formula (2.37), which comés>
as no surprise since the Wiener-Hopf approximations apply to
electrically wide strips and electrically thin substrates.

Because these conditions are met in many practical sitautions,

. Eq. (3.18) is widely used in design problems.

Referring to Fig. 3.2b, the x-directed E field on the
surface of the substrate is assumed to extend a distance d from
the edge of the conductor at the open end. The choice of d, as
mentioned before, seems rather arbitrary. Inspection of Eq.
(3.11) indicates that the choice of d affects the slot voltage,
but it does not affect the shape of the farzome pattern since
kod << 1. VWhen -the conductancg is calculated from the radiated
power, a cancallation of voltage terms occurs, resulting in an
unnormalized conductance, independent of d. 1If, therefore, EX
were assumed to extend by the distance bd (b # 1; bkod << 1)
beyond the open end, the resulting conductance would still be
given by Eq. (3.15), due to the voltage cancellation. Thus, the
choice of the E field extension is arbitrary as long as the

electrical substrate thickness is much smaller than 1.
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'3.4. An Open-End Susceptance Calculated from

Static Considerations

In the last section, the conductance is found by use of a
slot radiation calculation. Since only the far fields are con-
sidered, no susceptance information can be obtaine& using this
approach. One can, however, determine the aperture susceptance by
an alternative formulation. A widely used approaéh’is to assume
a static charge distribution on the microstrip transmission system
as is shown in Fig. 3.4a. The top conductor is at a constant
potential ¢T with respect to the ground plane. On account of
the open end, an excess charge accumulation occurs oﬁ the top
conductor in the region near the discontinuity. The excess charge
concentration can be characterized by the open-end capacitance
Coc of Fig. 3.4b. Im terms of the capacitance, the open end

susceptance is written as

bY = 27fC .
o oc

The static formulation, then, results in a susceptance that is a
linear function of frequency. The Wiener-Hopf susceptance of
Chapter II, on the other hand, is a nonlinear function of frequency,
characterized by a dynamic capacitance. Clearly, the static
approach neglects the high frequency effects of the discontinuity.
The significance of this will be discussed in Chapter V.

According to Gupta [14], there are four approaches used in

the numerical computation of C ; these are the matrix inversion

I

ocC
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method, the variational method, Galerkin's method in the spectral
domain, and the method of line sources with charge reversal. The
first three utilize the configuration of Fig. 3.5a, a microstrip
line of length H and width 2%. fﬁe fringe capacitance is

determined from the following limit:

Coe = 3 Lim [, - C X 1

in which Ct is the total capacitance of the finite length line
of Fig. 3.5a, which includes the effect of fringing at both ends.
In order to isolate the contribution due to the fringe field, the
capacitance of a section of width 2% and length H in an
infinitely long microstrip line must be subtracted from Ct(H).
This term is C x H in Eq. (3.19), where C is the capacitance
per unit length of an infinite line. As H becomes larger, the
coupling effécts between the two énds are reduced until, in the
limit, Eq. (3.19) represents the fringing capacitance of a semi-
infinite microstrip line terminated in an open circuit. -To permit
evaluating Eq. (3.22) numerically, H is increased in increments,

and the difference

Ct(H) -CxH
2

is computed at each H. Beyond a certain point in the iteratiom,

the difference converges to C " An accuracy problem arises,
o

however, since Ct(H) and C X H are two large and nearly equal
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quantities. The first three methods, mentioned earlier, utilize
Eq. (3.19) to calculate Coc' Thus, because of this fact, they
suffer from error accumulation during the computation process.
In order to circumvent the accuracy difficulty inherent
in the first three approaches, Siivester and Benedek [3] have
developed the method of line sources with charge reQersla as a
means for computing Coc' Fig. 3.6 shows an infinitely long
microstrip line of width 2% supported by a substrate of thickness
d and permittivity €. Mathematically, the top conductor can
be represented in terms of z-directed, infinitely long line
sources. A single such line source is shown in Fig. 3.6.
Referring to this figure, the functional form of a single line

source component is written as

K ps(y')é(x - d)8(y - y") (3.20)

wherein K 1is a constant multiplier, and &8 is the Dirac delta
function, and the primed variables denote the location of the line
source. It is observed in Eq. (3.20) that the charge density on
the top conductor for an infinitely long line is a function of only
the transverse variable y'. Consider now the line source of

Fig. 3.7, supported by a substrate of thickness d and relative
permittivity er. Assuming that the charge &ensity +p of the
line is uniform, the appropriate Green's function for this region
is given by Ge(x,y,z'y'). The integral equation relating the

charge density o(y') on the top conductor (zero thickness) to
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the electrostatic potential for the infinitely long microstrip
line of Fig. 3.6 is given by

+2

<1>e(x,y,)'=] p(y')Ge(x,y;y')dy' . (3.21)

-2
Since the poﬁential on the top conductor is constant, Eq. (3.21)
can be solved for the charge density on the top conductor with
solutions obtainable using numerical methods.

At this point, consider the open end microstrip line of
Fig. 3.8. Assume that the charge density on the top conductor is
p(y'), the same density that occurs on the infinite line. In order
to formulate an integral equation of the form of Eq. (3.21), a
Green's function for a8 semi-infinite line source must be found.
The process by which the appropriate Green's function is determined
is shown in Fig. 3.9. 1In the three parts of this figure, the line
sources are associated with a substrate of thickness d and
relative permittivity er‘ The substrate, infinite in extent,
rests on top of a perfectly conducting ground plane. The line
source of Fig. 3.9a, with a uniférm charge density +p distributed
along its length, has already been discussed. Fig. 3.9b shows
a line source which has a constant charge density +p for z > 0
and a constant but opposite charge density -p for 2z < 0. This
charge distribution cannot bte. synthesized physically, but it is
mathematically valid. The Green's function, associated with this

line source is Go(x,y,z;y'). If the charge densities of parts a
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and b are superimposed, the resulting line source is semi-infinite
with a coﬁstant charge density in the region 2z > 0 as is illus-
trated in Fig. 3.9c. Thus, the Green's function of this source
can be found by combining the G;een's functions of parts a and b
(Fig. 3.9). The Green's function for the semi-infinite line

source, then, is
iy =1 ') +. -
G (x:y,237") = 5 [6_(x,y,23y } +6 (x,y,2;5")] (3.22)

Therefore, the integral equation which applies to the semi-infinite
microstrip of Fig. 3.8 is given by
+£
= "G 3y! ' .

¢ ; (x:7,2) j_ﬂ p(yNG_; (,y,25y")dy (3.23)
Assume now that ¢e and ¢si are the electrostatic potentials
that exist on the top conductors of the infinite and the semi-
infinite lines, respectively. Since p(y') in Eq. (3.23) has no

Z'

dependence, the potential ¢si is not constant on the top
conductor. In order to satisfy the boundary conditions, the
potential on the top conductor must be a constant. To force the
potential to be the constant value ¢e, an excess charge must be
added to the top conductor. This excess charge density, denoted
by pe(y',z'), has both a y' and z' dependence. The corres-

ponding integral equation, from which the required excess charge

is obtained, is given by
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%

f o (v',2")6_.(x,y,z;y',2")dy"' dz' . (3.24)
-y € si

Adding the potential defined by Eq. (3.24) to that of Eq. (3.23)
results in the constant potential ¢e on §he top conductor.

Since ¢si can be dete¥mined from Eqs. (3.21) gnd (3.23) (¢e is
a known constant), the functions ¢si and GSi that appear in
Eq. (3.26) méy be regarded as being known. The equation (3.24),
"then, provides a suitable integral equation for determining the
excess charge density directly. Once the excess charge density
pe(y',z') is known, the open end capacitance is found by integrating

the charge density over the top conductor as follows:
1 L '
- - ] 1 1 1
COc =% JO f—l pe(y ,z')dy' dz . (3.25)

Silvester and Bendek [3] solve the integral equation (3.24)
using numerical methods and thereby generate Coc from Eq. (3.25).
The computing strategy they use is not discussed here. The Green's
functions associated with the line sources of Figs. 3.9a and 3.9b
are derived in a paper by Silvester [22] using the method of

partial images. The Green's functions used in the numerical

solution are

G (d,y,255") = i%g—éﬁ' [}(0) -@a-1 § " f(m;w
or mn=1 _J

where
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_ )
K== €
o
and
+ 4n d + (y - v; )
Also,

"2
f_4n2 . (L‘LL)
X fn .

4n - 1) + (l;dl'>

I\
I |

Although the region of integration in Eq. (3.24) covers the semi-
infinite strip, the integral equation can be effectively solved
using numerical methods since ¢e - ¢si and pe(y’,z') decay
rapidly away from the discontinuity. Thus, at a sufficient
distance away from the open end (two or three substrate thicknesses)
¢é - ¢si and pe(y',z') are assumed to be‘zero for computational
purposes. Solving for the excess charge directly provides for

the efficient computation of COC without the problem of error
accumulation. The Silvester-Bendek approach, therefore, results

in an accurate static capacitance Coe’

Silvester and Bendek provide an extensive tabulation of

COC/ZR as a function of 2%/d and the substrate relative



65

permittivity Er. Their results are shown in Fig. 3.10. Since
the curves for Coc/22 vary so smoothly, an empirical formula
for the discontinuity capacitance, derived by Silvester [3] using

polynomial curve fitting, is given by
C 5

-1
. 20\ *
l =
21 exp {4n 10 izl Ci(er) loglO ( n ) (3.26)

The coefficients Ci(er) are listed in the following table.

Table 3.1
: €r 1.0 2.5 4.2 9.6 16.0 51.0
1 1.110 1.295 | 1.443 | 1.738 | 1.938 2.403

2 -0.2892 | -0.2817 | -0.2535 | -0.2538 | -0.2233 { -0.2220

3 0.1815| 0.1367] 0.1062| 0.1308{ 0.1317| 0.2170

4 ~0.0033 | -0.0133 | -0.0260 | -0.0087 | -0.0267 | =0.0240

5 -0.0540 | -0.0267 | -0.0073 | -0.0113 | -0.0147 | -0.0840

Eq. (3.26) provides a simple method with which to calculate
Coc' However, the use of Eq. (3.26) is restricted to values
listed in Table 3.1. 1In order to obtain a more versatile relation,
‘Hammerstad [11] simplifies Eq. (3.26) aﬁd expresses the result in

terms of the equivalent length as defined by Eq. (2.28). Hammer-

stad's result is given by
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An (e . + 0.3)(22/d + 0.264)

—_—— = r -
g - 0-412 (€ - 0.255)(2L/d ¥ 0.8) - (3.27)

In Eq. (3.27), Ere is the effective dielectric constant for the
microstrip line. From Gupta [13], simple and accurate formulas

for the effective dielectric constant are

I 1 28
e T T2 T3 (/1 T 6673?,) (Tf— l) (3.28)
e +1 e -1 2
__r: r 1 28
fre T T2 T /T +6d/g *0-04 (1 - d)

(%:<1)

Egs. (3.27) has the advantage of being able to generate Ah/d and,
therefore, C for any € . It is found that Eq. (3.27) has no
oc r -

more than a 47 error relative to Eq. (3.26) for &/h > 0.1 and

A comparison of the static susceptance values with the

Wiener-Hopf and experimental results is presented in Chapter V.



CHAPTER IV

THE SLOTTED GROUND PLANE SYSTEM AND

THE EXPERIMENTAL PROCEDURE
4.1. Introduction

In Chapter II, the feflection coefficient for the funda-
mental quasi-TEM mode is evaluated for an open end microstrip
lige. The reflection coefficient, evaluated using the Wiener-Hopf
technique, is used to define a normalized end admittance. Since
the admittance takes into account the line dispersion as well as
the operating frequency, it is truly dynamic in nature. A
fundamental question arises, however, as to the validity of
applying the‘solution of the canonical problem of Fig. 2.1 to the
truncated structure of Fig. 2.10. Since this approach ignores the
coupling bgtween the twq_edges of the top conductor and the corner
effects at the open end, the question that arises is: How
accurately does the Wiener-Hopf approach model the open-end admit-
tance? One of the objectives of this chapter is to provide a
basis from which the accuracy question can be dealt with.

Sections 3 and 4 of Chapter III provide an alternative
characterization of the open-end admittance. The conductance is
determined from a conventional slot radiation calculation, while

the susceptance is found using an electrostatic solution. Tt is
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clear that this apprdaéh lacks the unity of the Wiener-Hopf method
because the admittance terms are calculated from two unrelated
techniques. The conductance found from the slot calculation
agrees completely with the Wiener-Hopf conductance for an elec-—
trically thin substrate (kod << 1) and normal incidence (o = 0).
The slot conductance calculation, which is not a function of the
angle of incidence, does not account at all for the microstrip
line dispersion. The Wiener-Hopf susceptance, on the other hand,
is found toAbe in major disagreemént with the static formulation.
Discrepancies of greater than 257 (relative error) are typical.
The next question that>naturally arises is: Which of the two
approaches more accurately models the open end? In order to
answer this question and the previous one, an experiment has to
be devised in order tb determine the open end admittance. With
experimental results, more insight can be gained into the problem

of modeling the end admittance.
4.2. Slot Design Considerations

At this point, the problem that must be addressed is how
one can experimentally obtain end admittance values. In Chapter II,
the E field fér the fundamental mode underneath the top conductor
of an electrically wide microstrip is given by Eq. (2.31). For
convenience, Eq. (2.31) is written here:

—jkouo(x—xo){~

_

+32k o (x-x f}
0o o

E =4 cos( n2 -ae 1
) 0

zZo

+ f(a =4n -q e
O
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It is apparent from this equation that if a detailed knowledge of
the fundamental mode electric field can be gained, then the reflec-
tion coefficient [ and, thgrefore, the normalized end admittance
can be determined. A requirement of the experiment, then, is to
somehow probe the z-directed E field underneath the top con-
ductor of the microstrip line in the region where Eq. (2.34) is
valid. As has been mentioned earlier, this region must be located
away from the open end and the top conductor edges so that only the
fundamental mode field component is present. To allow the higher
order modes that are generated at the edges to decay, this distance
should be three or four substrate thicknesses.

There are two main considerations in selecting a probing
technique. First, the probing arrangement should provide a
minimum distqrbance of the microstrip fields. Second, the method
by which the electric field is probed should be as simple as
possible to implement, while at the same time, producing accurate
results. In the case of rectangular waveguides and coaxial
transmission lines, an approach that fulfills the above criteria
is to probe thé electric fields by use of a slotted line section
in which an E field probe is introduced through a slot. Sketches
of waveguide and coaxial slotted lines are shown in Figs. 4.l1a and
4.1b. By analogy with these systems, it seems that an appropriate
slotted section for a microstrip transmission line should involve
a probe through a slot cut in the ground plane zs is shown in
Figs. 4.2a and 4.2b. In this configuration, the slot, which is

cut parallel to the edges of the top conductor, is symmetrically
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displaced with fespect to the top conductor.

In order to justify more rigorously the slot location,
consider tﬁe currents which are produced on the ground plane
surface by the fundamental mode. From Eqs. (2.29) and (2.30),
the form of the ground plane current densities underneath the top

conductor are

« co§(¢n2 - ai ¥)

J
sxo

J « sin(/nz‘— ai y) .

syo

To minimjze the field distortion, the slot should be oriented

such that the flow of surface currents is not interrupted. From
Eq. (2.29), one component of the surface current flows in the x
direction. Clearly, since the slot is also oriented in the

x direction, only a minimal disturbance of the surface currents
of this component occurs.. The transverse surface current, which
flows in the y-direction, however, appears to be interrupted by
the slot. Inspection of Eq. (2.3C), however, reveals that the
tfansverse current density is zero at y = 0. Thus, the placement
of the slot at the y = 0 position, as in Fig. 4.2, produces a
miﬁimal amount of field distortion. If the slot is not symmetri-
cally displaced, it is evident from Eq. (2.30) that transverse
ground plane currents will be interrupted. When this occurs, the
microstrip fields will be perturbed from the origidal configuration,
and energy will be radiated from the slot to the region underneath

the ground plane. It is important, therafore, to maintain the
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position of the slot underneath the center of the top conductor so
that accurate information regarding the microstrip electric fields
can be obtained. It is also apparent from these considerations
that the field distortion effect is reduced as the slot is made
narrower. The width of the slot, then, sﬁOuld be made as small

as practical considérations allow. Referring once again to Fig.
4.2, an E-field probe extends through the slot by only a short
distance into the dielectric substrate. The probe removes a small
amount of the power flowing in the microstrip line, and it thereby
permits the éxploration of the electric field. The penetration of
the probe above the ground plane should be kept at the minimum
which permits accurate measurements. .This minimal penetration is
enhanced by making use of a high gain amplifier at the detector

output.
4.3. Feed Design Considerations

Up to this point in the discussion relating to the open—enq
microstrip line, it has been assumed that the incident fundamental
mode originates at a point infinitely far away from the discon-
tinuity. This assumption leaves the question unanswered as to how
one can practically excite the fundamental mode. One, then, must
consider techniques by which the propagating mode can be launched
from an external source located at a reasonable distance down the
line. There are a number of ways of feeding energy into a micro-

strip line, but only the coaxial feed is to be considered.
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The coaxial feed is shown in Fig. 4.3 in which energy from
& source generator is introduced to the microstrip ‘structure by
means of a coaxial transmission line. The-outer conductor is
attached to the bottom of the ground plane so that good electrical
contact is made. The center conductor extends vertically through
a hole in the groﬁnd plane until it makes electrical contact with
the top conductor of the microstrip line. 1In order to ensure
strong excita;ion, the hole in the ground plame should be cut to
a diameter of at least four or five times that of the coax inner
conductor.

Assuming that fhe width 2& 1is such that only the funda-
mental quasi-TEM mode can propagate, the coax feed introduces
this propagating mode as well as higher order evanescent modes. In
the region near the feed, higher order waveguide type modes are
excited, but these are evanescent, and rapid decay occurs. Thus,
this effect ié localized to the region immediately around the feed
point. The coax feed also introduces a spectrum of TEM waves with
z-directed E-fields that propagate radially away from the feed in
all directions. The arrows of Fig. 4.4 denote the directions of
propagation of some of the TEM waves produced by the coax feed.
Since the microstfip structure supports only the fundamental mode,
only the plane wave component that is launched at the specific
angle ¢O will continue to bounce back and forth between the
top conductor edges and thereby propagate down the line. The
plane waves that are launched at angles other than ¢0 also are

refiected from the top conductor edges, but these decay on account
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of destructive interference or energy loss produced by radiation
and surface wave effects. As the distance from the feed point
increases, the modes which are produced by plane waves striking

the conductor edges at angles other than ¢0 will decay until only
the fundamental mode is present.

In Fig. 4.3, the coax feed is symmetrically located with
respect to the top conductor with the center conductor of the
coaxial line-protfuding vertically from the ground plane. 1In
order to understand reasons for these details, the factors
affecting the modal amplitudes should be discussed. From Egs.
(2.27) and (2.28), the fields produced by the fundamental mode

and the next higher mode are given by

1
I

-jk a x
Ao cos(/n2 - ai ye ©° ° (4.1)

Z0

-jk o x
Al sin(/a’ - oci pe °t (4.2)

Ezl

In terms of the experimental setup, which is introduced later in
this chapter, the two lowest modes have the most significance.
Instead of placing the feed point directly under the center of the
top conductor as in Fig. 4.3, assume that the feed is displaced to
x=x"' and vy =-y' as is shown in Fig. 4.5a. It is assumed that
the coax feed remains underneath the top conductor in the region
where Eq. (2.31) is still valid. If the center conductor of the

coax feed is assumed to be thin, and the diameter of the hole in

the ground plane is assumed to be small, the section protruding
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above the ground plane can be modeled as a z-directed electric
current filament. Since the substrate is electrically thin, the
current density of the current filament has no variations in the

z-direction. The filament current can be written as

J

Zz[cs(y - y"8(x - x")] 0<z<4d (4.3)
=0 ' elsewhere .

Here, C denotes the constant value of the current density, and
§ 1is the Dirac delta function. Applying the modes as defined by
Eqs. (2.27) and (2.28) to a result given by Harrington [21] yields

the following proportionality:

A«ff[F-Z(E av' . (4.4)
m z Zm

In this relation, J is the electric current density of the feed
point, dv' denoting the volume integfation over the feed point.
In the case of the equivalent current density of Eq. (4.3), Eq.

(4.4) becomes

Eq. (4.5) is maximized when the currnet density J is oriented

in the 2z-direction. Thus, the center conductor of the coaxial
feed should protrude vertically above the ground plane in order to
achieve the maximum amount of excitation. When the current

density (4.3) is substituted into Eq. (4.5), proportionalities for
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the modal amplitudes of the microstrip modes are generated,

becoming

]Aml « cos(¢n2 - ai ' AD) m= 0, 2; 4y, . .. (4.6)

1}
'—-l
-
w
-
w
-

(4.7)

IAmI « sin(/n2 - ai ") m

Eq. (4.6) indicates that the placement of the center conductor of
the coax feed at y = y' = 0 results in the maximum excitation of
the fundamental mode. Also, from Eq. (4.7), it is clear that the
next higher (m = 1) mode will not be exicted with v' = 0, even
if the electrical width kol is large enough to allow the m = 1
mode to propagate. In fact, with y' = 0, the fundamental mode
will be the only propagating mode until kol increases to the
point where the m = 2 (even) mode is allowed to propagate. Thus,

when the feed point is placed at y' = 0, the microstrip line can

become electrically wider before higher modes appear than if y'# 0.

4.4. General Features of the Microstrip

Slotted Line System

Having considered the placement of the slot and the coax
feed, the general features of the system of Fig. 4.5, on which the
measurements ére to be performed, are now discussed. The configu~
ration of Fig. 4.5 differs from the ones previously dealt with
in that the top conductor, the ground plane, and the substrate

possess finite dimensions. The top conductor has a length 2h
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and a width 2%. The width of the microstrip line is chosen so
that only the fundamental mode propagates. The placement of the
feed point and the slot are also indicated in this figure. It is

seen that the distance x between the feed and the slot is

fs
selected to be of the order of Xo’ the free space wavelength at
the lowest operating frequency of the system. The distance
xfs 2 Ao is chosen to allow the higher modes, produced by the feed,
to decay, leaving only tﬂe fundamental mode to be measured in the
slotted section. Similarly, the distance x from the open end
to the slot is also =2 Ao to ensure that the slotted region
contains only the fundamental mode. For reasons which will bé
given later, the length of the slot has been chosen as X, = 1.5 AO.
Unlike any of the previous configurations, the microstrip line of
Fig. 4.5 has a second open end at a distance Xerq from the feed
point. Sincé no measurements are to be made in this section of
line, fol can be made smaller. Thus, x

Fig. 4.5, this open end is loaded with absorbing material which has

fL1 2 0.5 A - As seen in
been included in 6rder to reduce the amount of reflection. However,
as will be explained, the absorbing material is not in principle
necessary, but its use improves the performance of the measurement
system. Up to this point, the ground plane length and width have
been assumed to be infinite. Thus, the ground plane in the
experiment should be made as large as possible in order to

minimize the effects due to the ground plane edges. It is assumed
that a ground plane length and width of approximately 8AO should

be rufficiently large. Ideally, the substrate should cover the
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entire ground plane in order to reduce field distortion produced
by truncation. As will be seen, this may not be possible due to
practical limitations. Finally, the distance X e between the

unloaded open end and the ground plane edge is set at X B 2 2A .

o
Since the fields of a microstrip line are mainly confined to the
region underneath the top conductor, the above choice of XLE is

assumed to be sufficient to avoid measurable edge effects.

4.5. The Transmission Line Representation

of the_Slotted Ground Plane System

The system of Fig. 4.5 can be viewed as a coaxial line
feeding two sections of microstrip line. One section is of length
Xer1o terminated by a load comsisting of absorbing material. The

other section of length x is terminated by an open end. The

fL
fundamental modes that propagate both have the form of Eq. (2.31),
although the reflection coefficient due to the end with the
absorbing material differs from that of the open end. The micro-
strip line sections are, in general, dispersive; but at a single
frequency, the field variation alomg the x axis is identical in
form to the voltage variations along a conventional TEM trans-
mission line. Until now, the analogy between the propagation of
the fundamental mode down a microstrip line and the propagation of
a voltage wave down a conventional TEM transmission line have not
been precisely defined. Since EZo is probed directly underneath

the top conductor of the microstrip line, E_ | is assumed to

x0 'y=0

be equivalent to a voltage wave V on a two-conductor TEM
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~transmission line. In terms of the geometry of Fig. 4.5 and Eq.
(2.31), the electric field variation in each microstrip line

‘'section can be written as (the open -end is at x = 0)

jk a x 2k o x
= C 0 0 | _ (4.8)
E20|y=0 1° (1 + Te ) (-xg; < x<0)
jk a x -32k o (x+x___+x__)
=Ce OO (; +T e 00 fL1 “fL )
2 a
with
- + < x < =
(x Bep) < x < g,

fL1

In these equations, C1 and C2 are complex constants that depend
on the modal excitation. Also [ is the open end reflection
coefficient. Since the absorbing material alters the fundamental

mode reflection coefficient, T

A is introduced in the second

equation to account for this effect. As will be seen, it is not

~

necessary for this experiment to evaluate FA‘ Defining Ci and

Cé as analogs of Cl and C2, the corresponding voltage equations

for the system of Fig. 4.5 are

=ik aox 32k aox
— t o i (o} - .
\ Cle <i + Te . > ( Xer < x < 0) (4.9)
. , _ P +
e kaao(x+fo+fol) R JZkoao(x+fol fo)
= e 1+T. e
2 A
with
- (X + X ) < x < =x .

fLl fL fL
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Based on Eq. (4.9), the system of Fig. 4.5 can be repre-—
sented by the equivalent transmission line representation of Fig.
4.6a. In this figure, the characteristic impedances of the trans-
mission line sections are assumed to be unity while the source and
load impedances are normalized. The impedance Z represents the
impedance of the open end, and it is defined in terms of the

reflection coefficient as

s_1_1+Ff
y 1-T -

It is £ or equivalently § that is to be calculated from the
field measurements. The impedance % is connected to the source

through a transmission line section of length Xep - In terms of

the actual system, this line represents the section of microstrip

between the feed point and the open end. The source and the

~

coaxial feed are represented by the voltage generator Vg and

~ ~

the normalized impedance zg. zA is the normalized impedance of

the end that is loaded with absorbing material. Now, EA is

connected to the feed through a section of length Xle of
transmission line. Physically this represents the section of
miérostrip line that is terminated with absorbing material. Since
it is not desired to perform measurements in this section of line,
the impedance gA can be transformed to the load by means of the
conventional tfanSmission line equations, as is shown in Fig. 4.6b.

The wave number of the fundamental mode is kouo’ so the trans-

formed impedance for a lossless line is given by [20]
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z + tan k :

Zp T tER RO Ry
X

tan koao fil

L
z, = :
A 1 - iz,
Utilizing a result from network theory [19], the combination of
ZA in parallel with the source can be simplified to the configu-
ration of Fig. 4.6c by means of Thévenin's theorem. The relation—

ship between the voltages and impedances of Fig. 4.6¢c are

2, = —& & ' (4.10)

V., = =84 (4.11)

Thus, the microstrip section of Fig. 4.5 can.be represented in
terms of the transmission line configuration of Fig. 4.6c. This
is significant because the method of determining an unknown load
impedance using slotted line measurements on the configuration of
Fig. 4.6¢ is well known and straightforward. The details of the
actual procesé by which the open end impedance (or admittance) is
calculated from slotted line measurements is deferred until a
later section.

It should be noted that ga governs the values of VTh

~

and zTh as an inspection of Eqs. (4.10) and (4.11) reveals.

Referring to Fig. 4.6¢c, it is well known that the transmission line
A ~ .
termination 2z (or y) determines the form of the transmission line

fields, and V., and 2% affect how strongly the transmission

Th Th

line fields are excited. In terms of the actual physical system,
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the form of the field due to the fundamental mode is governed
only by.the nature of the open end. Thus, the location of the
coaxial feed along with the configuration of the line section that
is loaded with the absorbing material determine only how strongly
the fundamgntal mode is excited in the slotted section.

Thus, the measurement procedure is, in principle,
and z and, therefore, also independent of

Th

the feed location and the section of microstrip line with the

independent of VTh
absorbing material load. However, because of noise limitations
inherent in the measurement system,vTh and gTh should have
values that result in a strong field excitation of the microstrip
line section that éontains'the slot. It was observed experimentally
that the use of absorbing materials produced strong microstrip
fields over a broad range of frequencies. Without the absorber,
strong signals were produced at only a few specific frequencies.
Thus, the use of an absorbing load produces a better match (EA

is closer to 1), and a more desirable frequency charactgristic
results. Without the absorbing material present, one can alter-
natively view the microstrip line of Fig. 4.5 as being a high-Q
resonant cavity in which strong signals appear at the resonant
frequencies and weak signals occur at the remaining frequencies on
account of destructive interference. The addition of the absorber,
therefore, makes the system of Fig. 4.5 behave more like a semi-—
infinite transﬁission line, which has a smooth broadband frequency
behavior. Since the generator impedance along with the effects of

the absorbing material are not precisely known, no further analysis
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regarding these quantities is carried out. Also, for the purposes

of the experiment, no further analysis is necessary.
4.6. The Slotted Ground Plane Construction

This section deals with the implementation of the slotted

ground plane system of Fig. 4.5 along with the associated substrates
and top conductors. Of fundamental concern in the system design
is how accurately it enables one to determine the admittance of
the microstrip open end. The system accuracy, in turn, is deter-
mined by the frequency of operation along with the mechanical
tolerances and distance measurement limitations. In designing
the actual ground plane sy;tem, it was decided that being able to
resolve distances on the order of 1/1000 wavelength would be ‘
sufficient to obtain accurate end admittance information. A lO_3
wavelength resolution should allow the phase of the open end
reflection coefficient to be measured to within 1° (er = 1) if
the effects of the slot and the probe are not considered. What
does this resolution mean in terms of an operating frequency? If,
for instance, the operating frequency is chosen to be 10 GHz, the
distance resolution as well as the tolerance on the slotted
section must be on the order of 0.03 mm (less than 1/1000").
This requirement, in terms of available machining facilities and
distance measurement techniques is quite difficult to meet. On
the other hand, a frequency of 1 GHz produces a 0.3Amm tolerance
requiremgnt, which is much more easily met. Thus, as the

operating frequency decreases, the tolerance requirements become
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less stringent. However, sinée the system dimensions are based
on free space wavelength at the lowest operating frequency, the
overall dimensional requirements must increase as the operating
frequency decreases. An operating frequency that is tco low
requires a large and cumbersome ground plane arrangement. Even
if the system could be made very large in size, the measurement
accuracy would improve only marginally since there are errors
introduced by factors other than the distance measurement accuracy
and the mechanical tolerances.

On the basis of these considerations as well as the avail-
ability of equipment, the ground plane system was designed to
operate at a minimum frequency of 1 GHz, which corresponds to a
free space wavelength of 33 cm (= 1'). It was concluded that
operation in the 1 GHz range would result in a relatively simple
construction of the slotted ground plane while providing sufficient
accuracy tovinvestigate the behavior of the end admittance. The
critical dimensions of the actual ground plane that was constructed
are based on those of Fig. 4.5 with Ao =33 em (1').

The ground plane constructed for the experiment is shown
in Fig. 4.7. As can be seen from this figure, the ground plane,

in

with overall dimensions of 8' X 8' consists of two 8' x 4% x 3

%" slotted center piece. The three

aluminum sheets and an 18" x 8%
piece arrangement is necessary‘for two main reasons. First, the
largest available width in the desired grade of aluminum is only
4', so two of these sheets are required. Finally, the section

that contains the slot requires a precision which can be
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" accomplished only on a smaller, separate section of metal stock,
considerably smaller than 4' x 8'. The slotted section, therefore,
has overall dimensiops of 18" x 10". 1In order to provide a smooth
and level surface, the two large aluminum sheets are fastened to
two 8' x 4' x %ﬁ pieées of particle board by means of flush-mounted
wood screws. The entire ground plane, in turn, rests on top of a
15" x 9' platform. Access to the center piece as well as the coax
feed was gained from underneath the platform. The three-piece
construction of the ground plane resulted in small gaps along the
lines where the three pieces fit toéether. In order to avoid field
distortion due to the interruption of the surface current flow, the
gaps were bridged by a thin, aluminum conducting tape permitting
currents to flow through its adhesive surface. A photograph of the
top of the ground plane is shown in Fig. 4.8.

A top view of the center piece is shown in Fig. 4.9. The
top of the center piece consists of two 5" x 24" x L' aluminum
sheets with a precision machined 0.08" (2 mm) slot cut along the
axis where the two plates fit together. This two-piece construc—
tion allows the slot to be more accurately cut. The slotted
section is fastened to the ground plane by means of flush-mounted
screws and the step arrangement of Fig. 4.10. The step construc—
tion allows the center piece to be removed from below the ground
plane to simplify the required periodic adjustments and cleaning.

A photograph of the center piece, as viewed from underneath the
ground plane is shown in Fig. 4.11. Referring to this photograph,

the assembly with coaxial cable extending out from it is a tunable
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E-field probe, which, in turn, is mounted to a movable teflon
carriage. The probe carriage is guided by two aluminum tracks,
and it is attached to a rotatable threaded shaft by means of two
teflon blocks with threaded holes. The teflon shaft bearings,
located at both ends of the center piece bottom also hold the two
5" x 24" x 4" aluminum plates together. More details of the probe
mount assembly are shown in Fig. 4.12. The threaded shaft is
turned by means of simple hand crank assembly (see Fig. 4.11),

one shaft revolution resulting in 1.5 mm of probe carriage travel.
Displacements of the probe along the length of the slot are measured
using a pointer in conjunction with a metric scale that allows
distances to be resolved to the nearest 0.2 mm. Thus, the probe
mount and drive make it possible to place the probe precisely at

a desired position along the slot. Referring to Fig. 4.9 once
again, a réference line has been scribed on the top surface of the
center piece perpendicular to the slot axis. When the probe wire
is aligned with the reference line, the indicator scale reading,
denoted by Sref’ must be noted. As is discussed in the next

section, S along with the distance from the reference line to

ref
the open end of the microstrip line must be known in order to

calculate the open end admittance from slot measurements.
4.7. Substrate Preparation

In order to obtain a sufficient amount of admittance data,

a number of different substrate and top conductor combinations were

employed. The most extensive data were obtained using substrates
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of foamed dielectric material which possesses a dielectric constant
close to that of air. Two different foamed dielectric materials
were used: beadboard (foamed polystyrene) and ethylfoam (foamed
polyethylene). Both of these materials have dielectric constants
in the range 1.01 E_Er < 1.03. The foamed substrates were used to
support the copper top conductor 0.02" (0.5 mm) thick. Two
different foamed dielectric support configurations were employed.
The first consisted of a solid 2' x 6' sheet of beadboard 9 mm
thick to support the top conductor. A narrow slot was cut in the
bottom of the beadboard to accommodate the probe. Two small holes
were drilled in the material for the purposes of aligning the

top conducter with respect to the slot and providing visual access
to the reference line on the center piece surface. A photograph
of the éolid beadboard substrate with a 6" wide top conductor is
shown in Fig. 4.13. The second support configuration is shown in
Fig. 4.14 and Fig. 4.15. 1Instead éf using a solid gubstrate, a
bridge-type support arrangement was employed with substrate thick-
nesses of 6.5 mm and 9 mm. Top conductors (0.5 mm thick) with
widths of 3" (76.8 mm), 4.5" (115.2 mm), and 6" (153.6 mm) were
used in the foamed dielectric substrate case. The length of each
of these conductors was 60" (1.54 m).

Another series of measurements was performed on a 2' x 6'
polycarbonate substrate 9.2 mm thick. The electrical character-
istics of polycarbonate are dealt with in the next section; but
for now, it is sufficiegt to note that the dielectric constant of

this material is 2.82 in the 1 GHz frequency range. Polycarbonate
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is a rigid and -tough material, so in order to allow for probe
penetration into this material, a 0.08" (2 mm) x 18' slot, to
permit a 1.5 mm probe penetration, was milled into the bottom of
the substrate material, as is shown in fig. 4.16. The top
conductor consisted of a 4' long section of 2" (52.6 mm) wide
aluminum adhesive tape approximately 0.1 mm thick. Because of

its mechanicai properties, the polycarbonate substrate did not
rest perfectly flat on the ground plane surface, which resulted in
air pockets of roughly 0.1 to 0.3 mm thickness between the dielec-
tric and the ground plane. Being an electrically dense material,
it was found that these air pockets resulted in inconsistent
susceptance (phase) data that did not vary in any definite manner
as a function of frequency. To alleviate this problem, an 8%"
wide portion of the substrate bottom was covered with the same 2"
wide adhesive aluminum tape that was used for the top conductor.
The taped region‘is shown in Fig. 4.16. The tape was applied in
four strips running parallel to the slot, and small gaps were

left between each gf these strips. Cne-half inch wide aluminum
tape, which has a conducting path through its adhesive, was applied
along the entire length of these gaps to form a conducting strip
8%L" wide. Aé will be seen in the next chapter, the taping of the
substrate bottom produces susceptance data that vary fairly
smoothly as a function of.frequencyf A photograph of the taped

polycarbonate substrate is shown in Fig. 4.17.
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4.8. Coax Feed Construction

In order to launch energy into the microstrip line, the

coaxial feed of Fig. 4.18 was used. Basically, the feed consisted

1"

of a coaxial connector, a spacer, and a short section of-Tg

bronze rod. The connector was attached to the ground plane by
means of the spacer and the_associated flush-mounted screws. The
spacer was a 1" x 1" x 1" aluminum block with a gﬁ hole drilled
through its center to accommodate the coaxial connector. Four
smaller holeé were drilled through the spacer in order to accept

the four flush-mounted screws. The center conductor of the coax

feed made contact with the top conductor by means of a short

" 11
section of 16 diameter bronze rod that protrudes through a-%
"
diameter hole in the ground plane and a éi- diameter hole in the

microstrip top conductor. Good contact between the bronze rod and
the top conductor was ensured by means of a piece of conducting

tape, placed as in Fig. 4.18.
4.9. Instrumentation

A photograph of the instrumentation associgted with the
microstrip slotted line system is located in Fig. 4.19. iThe
components associated with the feed system are shown in the block
diagram of Fig. 4.20a. The ﬁF energy was produced by a General
Radio unit oscillator which &tilizes a loop-coupled cavity. The
type 1216A was used in the 0.9-2.1 GHz frequency range, and the

type 1209 was used to cover the 800-900 MHz range. The rated
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outputs of these generators is anywhere from 150 mW to 400 mW,
depending on which frequencyvis selected. For the purpose of
signal detection, the source was modulated by a 1 kHz square wave,
which was produced by an HP-211A square wave generator. The
output frequency of the source was monitored by either an HP-5342A°
frequency counter with a resolution of 1 Hz or an HP-536A
frequency cavity with a 1 MHz resolution. In order to couple
sufficient power into the microstrip 1ine, the signal generator
was connected into a matching network consisting of a variable
length coaxial air line and a shunt connected sliding short. It
was found necessary to adjust the matching network for each source
frequency until a signal of sufficient strength to permit measure-
ments appeared. The output of the matching network, in turn, was
connected to the coaxial feed.

A block diagram of the probing arrangement employed is
illustrated in Fig. 4.20b. The microstrip electric field was
explored by means of a PRD-250 tuned probe which was mounted in
the probe éarriage. It was found necessary to use a tuned probe in
order to provide measurable signal levels. The lowest operating
frequency of the probe was found to be 800 MHz, which prevented
any investigation below this frequency. The PRD-250 probe assembly
contains a type 1N23 crystal detector that demodulates the square-
wave modulated signal picked up by the E-field probe. The detector
output was fed into an HP-415E standing wave meter, which is merely
an audio—frequeﬁcy A.C. voltmeter,(calibrated to read SWR valﬁes.

Assuming that the crystal detector characteristic obeys a square-
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law relation, the HP-415E SWR scéle permits the direct reading of
relative electric field amﬁlitﬁdes.' This, of course, is contingent
on the crystal input power being %t a low enpugh level to ensure
that the crystal does, in fact, operate in the square-law region.

Now the input circuit of the HP-415E SWR indicator contains
a variable gain amplifier that can be controlled in 10 dB steps
from O dB to 60 dB. With the gain switch set at 40 dB and the
gain vernier control adjusted to nearly a maximum, it was found
that the SWR scale permitted a direct readiné of relative electric
field strengths. This range was-selected because the signals
which appeared were still well above the noise; and, as will be
seen, the incident power on the crystal was still low enough to
ensure a square-law characteristic. If a signal appeared that was
too large to be read in this meter range, the probe was detuned
until the signal was reduced to the appropriate level. For all of
the experimehtal measurements, the gain setting of 40 dB was
maintained. |

In order to prove that the crystal was, in fact, operating
in the square-law region on the 40 dB setting, an HP-413b power
meter and a variable coaxial attenuator were added to the feed
network as is shown in Fig. 4.21.. The coaxial attenuator was a
General Radio type GR-74A which allowed the power to the feed to
be varied .continuously over a:lgrge range. The HP;431b power
meter utilizes a thermistor as a sensing element, and it was
attached to the feed network by means of a 20 dB directional

coupler. At frequencies of f = 0.9, 1.1, 1.3, 1.5, 1.7, and
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1.9 GHz, it was found that when the input power to the feed network
was varied over a 2:1 range (according to power meter readings),
the SWR indicator showed very close to a 1.4:1 electric field
amplitude variation. Thus, on the basis of these measurements, it
was concluded that the crystal was exhibiting square-law behavior
in the 40 dB meter range. It should be moted that when a ratio of
powers is measured, all of the errors associated with the power
measurement which are not a function of the power level are

eliminated.
4.10. Measurement Procedure for the Lossless Case

In this section, the method by which the end admittance
was determined by means of the system of Fig. 4.5 with a low loss
substrate is presented. Now the previously discussed probing sys-
tem is capable of measuring relative values of IEzo" so only
information regarding the field magnitude is available. Assuming
that the microstrip iine contains no measurable losses, Eq. (4.8)
indicates that the fundamental mode field in the slotted section
of Fig. 475 possesses a standing wave characteristic. For conven-
ience, Eq..(4.8) is restated here:

1 + Te

) Ce—JkOOLOX( . _]21(an>

N

(o]

«
n -

(o]
|

with

[-x <x < 0]

fL

The magnitude of Eq. (4.8) is plotted in Fig. 4.22 where the
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standing wave behavior is readily apparent. ]E | is periodic
Y zO
in x with a period of 75—, where Kg is the wavelength of the

fundamental mode. In terms of the Chapter II development, Ag is

given by

. : (4.12)

As can be seen in Fig. 4.22, the maximum and minimum values of the

standing wave pattern are !E I and IE ] , respectively.

Zo 'max zo 'min

The standing wave ratio on the microstrip line is given by

IEzo’max
SWR = .

zo'min

Applying Eq. (4.8) to this definition yields

_ SWR - 1
IT| ol (4.13)

Thus, the standing wave ratio, which is readily calculated from
slotted line measurements, determines the magnitude of the open end
reflection coefficient. X in? shown in Fig. 4.22, is the distance
from the first minimum to the open end at x = 0. From Eq. (4.8),

+i2k a (~x , )
A o o “min

a minimum occurs at x = -x |, when ]l + Te

l is
min

minimized. Since [ = IF]eJX, the electric field magnitude is a

minimum when

i
1
=

X~ 21(ooco Xmin
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Rearranging this equation and applying Eq. (4.12) to this result

yields

X =3 -7 . (4.14)

Although the choice of sign associated with 7 makes no difference
in the solution for Y, it is more convenient to use -T. Details
have not yet been given as to how to determine the SWR, xmin’ and
Xg, but Eqs. (4.13) and (4.14) form the basis from which to
calculate [ and, therefore, ; using slotted line measurements.
In order to calculate the SWR, the double minimum technique,
as presented in Ginthn [17], was employed. This approach involved
accurate measurements of thé probe carriage displacement about an
electric field minimum as is shown in Fig. 4.23. The first step
in this procedure, then, was to move the probe carriage along the
slot until a minimum in the electric field was encountered. With
the probe at the minimum, the probe tuning was adjusted until the
SWR meter indicated an SWR of 2. The probe carriage was then
moved a small distance to one side of the minimum until the meter
indicated an SWR of /2. Clearly, an SWR reading of v2 corresponds

I

from the null position, the probe was then moved through the null

to a field magnitude of /2 ]E . Having measured the distance

zo'min

position until the meter indicated an SWR of /2 once again.

Denoting the distance between the V2 IEzolmin as Ax, the SWR

was calculated from the relation
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SWR +1 (4.15)

H
e

~ cos B
o

where

Thus, in order to obtain a value for the standing wave ratio, the
displacement Ax and the microstrip iine wavelength kg are the
values which need to be measured. According to Ginzton [17], the
only assumption in Eq. (4.15) is a square-law response in the
crystal detegtor. The square-law response was verified using the
previously discussed calibration procedure.

Because an accurately calibrated coaxial attenuator was
not available, the use of the double minimum technique was
necessary because the ratio of power between the maxima and minima -
was found to be greater than 36:1. Over such a large range of
power levels, the crystal detector does not maintain a square-law
characteristic, which ruled out a direct reading on the SWR meter.
Since ;he measurements are performed around a minimum in the
standing wave pattern, the double minimum approach possésses the
advantages of ensuring a constant crystal detector characteristic
as well as reducing the standing wave pattern distortion due to
power being coupled into the probe. The loading effects of the
probe are not dealt with here, but they are discussed in detail
in Ginzton [17] and Montgomery‘[lB].

Since rapid field variations occur about the minima in

the standing wave pattern, the knowledge of the location of these



120

points is appropriate in the measurement of A . Referring to Fig.
g

4.23, a minimum location was calculated from the positions of the

V2 |E_ |

X points as follows:
zo min

_sl+sz
min 2
In this expression, S denotes a scale reading on the slotted
section of Fig. 4.11. In order to measure Ag’ it is apparent
from Fig. 4.22 that at least two minima must be located. In the
case of the préviously discussed air substrate cases, imperfecticns
were introduced into the measurement process by variations in the
substrate thickness; uncertainties in the distance measurements;
the alignment of the top conductor with respect to the slot; the
loading effects of the slot and the probe; and errors in instru-
ment readings. In order to reduce the chance of making mistakes
due to one or more of these imperfections, Ax and Ag were cal-
culated on the basis of three minima as illustrated in Fig. 4.24.
Thus, in termS'of this figure, the values of Ax and Kg that

were used in the calculation of |T| are given by

Axl + sz + Ax3

Ax =

The fact that three minima were used as a basis for computing [T
and Ag explains why the length of the slot was designed to be

1.5 AO at the lowest frequency of operation.
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It is apparent from Eq. (4.14) that once A  and x |
g min
are known, the phase Y of the reflection boefficient can be
calculated. Because the slot was located at least a full wave-
length away from the open end of the microstrip line, the position
of the first minimum could not be measured directly. At this
point, let S denote a position indication on the élotted section
scale of Fig. 4.11. Once the distance Xref from the open end
to the reference line in the slotted section (see Fig. 4.9) was
known, the distance Xmin was calculated from slotted section
measurements. Assuming that a minipum is located at a position
S . , the electrical distapce D from the minimum to the open

min

end was determined by the following equation:

. S X
D = min ief ref . (4.16)

In Eq. (4.16), S denotes the indicator scale reading (see
T

ef
Fig. 4.11) when_the probe was aligned with reference line of the
center piece. As has already been mentioned, the standing wave
pattern possesses minima at intervals of Kg/Z. Thus, if the
nearest integer multiple of % which is still smaller than D is

subtracted from D, the resulting value is the electrical distance

from the first minimum to the open end. Mathematically,

X .
min
A

g

= D - (nearest multiple of ¥ < D) . (4.17)

Applying Eq. (4.17) to Eq. (4.14) permits the calculation of the



123

phase X from the slotted section measurements. Referring to
Fig. 4.22 once again, the value of xmin/)\g used to compute the
phase of 1§ was obtained by averégiﬁg the three values of
xmin/kg that resulted from the application of sminl’ Smin2’

and S | to Eq. (4.17). Once |T| and ¥ were found, the
min3 '

end admittance was calculated from Eq. (2.33). .
4.11. Measurement Procedure for the Lossy Case

In addition to the series of measurements that were
performed with low loss foamed dielectric substrate, an additional
set of measurements were taken using a lossy>polycarbonate (Lexan)
substrate. This section deals with the procedure by which f and,
therefore, y was computed from élotted section measurements on a
lossy microstrip line.

Having used a sample of the polycarbonate material in a
cavity measurement system developed by Durvasula [12], the relative
dielectric constant of this material was found to be 2.82 with a

loss tangent of 0.015 at the frequency of 3.015 GHz. Clarke [23]

€,

lists values of € = 2.76 and —* ~0.011 at f = 1.0 GHz (vithin
r

r

the accuracy of reading his curves). Because of the loss tangent
of the Lexan substrate, the propagation constant of the fundamental

made can be expressed as the complex quantity

ka=ka -ijka. . (4.18)
(o} o r o 1

M

Assuming that kod << 1 and —1L << 1 in Eq. (2.36), the following
r

u]

relations result:
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a_ = |a (4.19)

ko =-2L [ -2} (4.20)

Since ai is roughly 1% of ar in the frequency range of this
experiment, Eq. (4.20) indicates that the loss tangent of 0.015
results in a noticable decay in the magnitude of the fundamental
mode as it propagates down the misrostrip line. Also, with

o, = |a], the line wavelength Ag is not affected by the substrate

loss to a first order of approximation. The actual change in

A is
g

which is too small to be measured on this system. Assuming once
again that the open end position of the system of Fig. 4.5 is
located at x = 0, the electric field variation along the length

of the line at y = 0 is

y=0 ~

-jk @ x -k a.x A 2k 0.x, §2k @ X
zo! Ce or e 01 1+ <Fe )e or (4.21)

This equation indicates, unlike the lossless case, that the
magnitude of the reflection coefficient ié an exponential function
of the position along the microstrip line.

A sketch of the magnitude of Eq. (4.21), analogous to that

depicted in Fig. 4.22, is given in Fig. 4.25. The curve for ]E ]
zo
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is quite different in form from that of the.lossless_éase. The
dielectric loss of the material produces a reduction in inter-
ference betwgen the forward and backward traveling waves as the
distance from the load increases. Although no minimum }Ezol

exists in the lossy case, the pattern of Fig. 4.24 can be viewed
as having local minima that are spaced Ag/Z apart. The values

l

magnitudes at these points differ from point to point.

of these local minima are designated ]E , and the field

zo'min

Because of the different character of the standing wave

pattern on a lossy microstrip line, the procedure for calculating

~

' and, therefore, § of the open end, from slotted line measure-

ments, had to be modified somewhat. In order to illustrate how

A~

' can be calculated from measurements on a lossy line, two

successive local minima positions are located at x inl and
m

X in2 in Fig. 4.25. The electric field magnitudes at these

Iminl

at which ]E ] =2 IE
Z0

points are ']E and IE respectively. The points

Zo zo’minZ’

| are labeled x, and x,; and the
zo 'minl 1 2
points where ]Ezol = V2 |E are denoted by x. and x

zo’min2 3 4°

Assuming that the /2 IE points are close together, the

zo]min

positions of the local minima are given by

. ) Xl + x2
minl 2

+
. _3 TR
min2 2

The distances between the /E_IE l . points are
zo 'min
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Ax. = x_ - x

sz =x, - X .

Although abstanding wave ratio cannot be defined in a strict sense
for a lossy line, there is no reason why a local standing wave
ratio that is a function of x (or S) camnnot be defined. Once
the local standing wave ratio has been defined, the relationship
between the-standing wave ratio and the reflection coefficient

can be written

2k o .x

[Fle o i _ SWR(x) -1

= SWR(x) T 1 IT(x)| . (4.22)

The functional dependence has been included in the SWR term in
order to emphasize that it no longer has a constant value. Making
the assumption of gradual decay and a high local SWR (small Ax),

the /2 |E points can be assumed to be symmetrically

zolmin
displaced with respect to a local minimum. Once the assumption

of éymmetrical displacement is made, the double-minimum formula

of Ginzton can be once again invoked to give

2
= 4 — 4.23
SWR (%) W/l . eo + 1 ( )

where

Inspection of Eq. (4.23) does not reveal an explicit dependence
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on x. However, on a lossy line, Ax changes from one local minimum
to the next. In fact, as one travels away from the load position
in the negative x direction, the width Ax of each successive
minimum increases monotonically. The variation in Ax, then,
accounts for the x dependence in Eq. (4.23).

In order to evaiuate [F| (x = 0), one must first determine
the decay constant k o.. k g, can, in principle, be determined

, 1 o'l 2k o x

from slotted line measurements by evaluating |[T|e © 17 at two

different minima positions. _Utilizing the two successive minima

of Fig. 4.24 in conjunction with Eq. (4.22) yields

2k a,(x_,

e O mlnl_xminZ) [SWR(Xminl) - 1][SWR(xmin2) + 1]

- [SWR(xminl) + 1][SWR(xmin2) - 1]

Solving for 'koai and simplifying by means of Eq. (4.22) yields

ITGx . )]
ko = 5 1 ) san[]ﬁ( mml)] . (4.24)
o *nin2 *ninl ' *min2 ’
It should be noted that k a_, does not have to be determined from
o i
two successive minima. Any two distinct minima should suffice.

Once k a. is known, |I(x=0)| at the open end position can be
: oi

determined from either |T'(x . )| or |I(x . .)|. Thus,
minl min2
-2k a.x |, 1
Tl = |G, e © 1 ™0 (4.25)
—ZkoaixminZ
- “‘(XminZ)'e
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X . and x can be found from the slotted section scale
minl min2

readings as

= - +
Xminl 'Sminl Sref Xref (4.26)

= § ) -+ o
Xmin2 min2 ref %ref

Equations (4.24), (4.25), and (4.26) provide the basis from which
to calculafe' [F] of the open end using slotted line measurements.
As will be discussed in Chapter V, problems occurred in the
measurement system that prevented the reliable measurement of

IT| in the dielectric case.

On account of the periodic occurrences of local minima at
intervals of Ag/Z, the phase ¥ was determined in exactly the
samé fashion as in the low loss case. The equations developed for
the lossless case were also employed in the calculation of X in

the lossy case.



CHAPTER V

A COMPARISON OF EXPERIMENTAL

AND THEORETICAL RESULTS
5.1. Introduction

Having presented an experimental approach to determine the
open end admittance of a microstrip linme, result; obtained by means
of the slotted ground plane system are given in this chapter.

The normalized end conductance values along with the associated
susceptance values are presented for several air substrate cases
and one dielectric substrate case. A comparison of experimentally
obtained admittance values with those calculated from the
theoretical models of Chapters II and III is also made. For the
dielectric substrate, the measured dispersion is compared with the
predictions from the transverse resonance condition. Both
numerical and approximate solutions to the transverse resonance

condition are employed.
5.2. Air Substrate Admittance Results

Upon utilizing the foamed dielectric materials with
electrical properties very close to those of air, measurements
were performed on four different microstrip line geometries. A

9 mm thick substrate was used in conjunction with top conductors
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of widths 3" (76.8 mm), 4.5" (135.2 mm), and 6" (153.6 mm). The
final air case consisted of a 4.5" wide copper strip (0.5 mm

thick) supported by a 6.5 mm substrate. Open end admittance values
were obtained in the 0.8 to 2.1 GHz frequency range, providing more
than a 2 to 1 variation in kod.

In Fig. 5.1, the normalized conductance values obtained
from the experiment are plotted as a function of kod. The
experimental points are marked according to the microstrip line
geometry, from which they were obtained. As a comparison, theoret-
ical conductance values, calculated from Egqs. (2.19) and (2.32),
are plotted as a function of kod. Eq. (2.19) is the approximate
reflection coefficient obtained in Appendix A. It was found
necessary to use the approximate solution since the computer
program of Appendix B éxperiences numerical difficulties.when €.
is set too close to 1. As a check of the approximate formula,

Eq. (2.9) was compared with the computer program with er = 1.1
and o = 0. Agreement to three decimal places in both magnitude
and phase was obtained for kod as high as 0.5.

As can be seen from Fig. 5.1, the functional dependence
of the experimentél conductance points is different from the
Wiener-Hopf conductance. The worst disagreement between theory
and experiment occurs in the case of the 3" wide conductor sup-
ported by a 9 mm substrate with an aspect ratio of &/d = 4.27.

For this configuration, the relative errors vary from 2937 at
kod = 0.157 to 38% at kod = 0.38. The error is seen to decrease

with increasing frequency (k d). Of course, as the source
o
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frequency increases, the electrical width kol increases linearly
with kod. Since the Wiener-Hopf solution is, in principle, exact
for an infinitely wide microstrip, one would expect the agreement
between theory and experiment to improve with increasing koi.
This phenomenon is, indeed, observed. For a 4.5" wide conductor
and a 9 mm substrate (%/d = 6.40), the relative error at kod =
0.157 is 91%, and the relative error at kod = 0.38 is 3.8%. For
the same kod vélue, the corresponding koﬂ is 1.5 times greater
in the 4.5" case than in the 3" case. The improvement in agreement
between theory and experiment is obvious. A 6" wide conductor
supported by a 9 mm substrate results in an even greater aspect
ratio of %/d = 8.53, which means that kol is now 1.33 times as
great as that of the 4.5" strip for the same kod. The relative
error between theory and éxperiment is 50% at kod = 0,159 and
3.3% at kod = 0.319, The trend of better agreement between theory
and experiment with inecreasing k02 seems even more evident. One
more microstrip line structure was investigated in the air case.
The line consisted of a 4.5" wide strip supported by a 6.5 mm
substrate with the aspect ratio L/d = 8.86. This aspect ratio is
quite close to that of the previously mentioned 6" line. The
effect of similar aspect ratios is clearly evident in Fig. 4.1 in
which the experimentally obtained conductance values agree very
closely. Thus, as a function of kod’ the conductance character-
istic appears to be determined by the aspect ratio 2/d; and as
the aspect ratio increases, the agreement between theory and

exprriment improves,
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More knowledge about the nature of the normalized conduc-
tance can be gained if the experimental results are examined in
greater detail. Plotting the conductance data on log-log paper
indicates that the various conductance curves have the form of a
power function in the range 0.1 f_kod < 0.38. Performing a power
curve fit By the method of least squares results in the following

conductance variations:

7 = 3" (76.8 mm); d = 9 mm (5.1)

[1.2]
2}
N
o
|

1.8
0.937 (k _d)

1.16(k0d)1'81 2%

4.5" (115.2 mm); d = 9 mm (5.2)

1]
it

l.lS(kod)l'67 2%

6" (153.6 mm); d = 9 mm (5.3)

[ =3
12

1.27(kod)l'72 2%

-]
1

4.5" (115.2 mm); & = 6.5 mm . (5.4)

For the range 0.1 f_kod < 0.38, the Wiener-Hopf values were also

power curve fitted, yielding

g = 0,633 M 5.5)
Eqs. (5.1) through (5.5) are plotted in Fig. 5.2 along with the
experimental data. The power curves are seen to fit the experi-
mental and theoretical points clesely. Although these equations
are valid for the range of data to which they have been fitted,
an interesting trend is apparent. Inspection of the powers of

Fgs. (5.1) through (5.4) indicates that as the aspect ratio %/d
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of the microstrip line increases, the exponent of the power
function appears to be decreasing. This fact is consistent with
the results of Derneryd's analysis (Chapter II) in which a square
law conductance va;iation is found for £/d << 1 (Eq. 3.16) and
a linear variation for &/d >> 1 (Egs. 3.15 and 3.18). TFor the
smallest aspect ratio, the exponent of the power function is close
to 1.9 whicﬁ'is, in fact, approaching a square law variation. In
the case of the two largest aspect ratios, the conductance expres-—
sion has a power that is roughly 1.7. One would expect the
conductance function to agree more closely with the Wiener-Hopf
model as thé ratio 2/d increases. .
Making.use of Egs. (5.2) through (5.5), the kOR values
at which the egperimental curves agree with the theoretical ones

to within 10% have been computed and are tabulated below.

Table 5.1
d (mm) £ (mm) kod kOR
9 57.6 0.37 2.37
9 76.8 0.28 2.48
6.5 57.6 0.29 | 2.47

Table 5.1 indicates that the experimental results agree
to within 10% of the theory at roughly the same koi value. The

kOQ value corresponds to a total conductor width of 28 = 3%0/4,
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where Ao denotes the free space wavelength, Thus,bfor the
Wiener-Hopf theory to predict a reasonable conductance, the
electrical‘width of the top conductor must be roughly halfway
between a haif and a full wavelength. |

In ‘addition to normalized conductance values shown in
Fig. 5.2, the'experimenfal susceptances obtained for the same
foamed dielectric substrates are plotted in Figs. 5.3 and 5.4.
One of the solid curves in these figures is generated from the
approximate Wiener-Hopf reflection coefficient solution (Eq. 2.19)
in conjunction with Eq. (2.32). The straight lines in these
figures correspond to susceptances calculated from the static
reéults of Silvester and Benedek (Chapter III). Egs. (3.26) and
(2.38) have been used to produce the static susceptaﬁce curves.
In Fig. 5.3, only the static characteristic for the 6” wide.top
conductor and a 9 mm suﬁstrate has been included. The curves
corresponding to the other two cases with a 9 mm substrate were
not included since these lie close to and slightly below (< 1%)
the 6" chatacteristic. It is of.interest to note that if one
computes the normalized susceptance from Eq. (3.27) (instead of
Eq. (3.26)) and from Eq. (2.38) the resulting susceptance curve
falls approximately 7% below that predicted by Eq. (2.26).

As is readily seen in these graphs, the experimental data
agree well with the prediétions of the Wiener-Hopf theory. For
almost all of the points, the agreement between theory and
experiment is 107 or better. Comsidering the position of the

static susceptance lines, the measured results decisively favor
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the Wiener-Hopf theory. At kod = 0.11, Fhe relative error
between the Wiener-Hopf susceptance gnd the static susceptance is
90%; and at kod = 0.376, the relati;e is 36Z. With errors as
large as these, the static approach provides a very inaccurate
prediction of the end susceptance. The pPoor accuracy of the
static épproach is probably due to the fact that high frequency
effects cannot be properly accounted for by this method.
Considering the conductance results, it is interesting to see that
the susceptance values agree consistently with the Wiener-Hopf
predictions for all of the kod ;alues. The reason for this

phenomenon is not clear.
5.3. The Occurrence of the First Even Leaky Mode

As is apparent from the susceptance and conductance curves,
no experimental data were taken above kod = 0.319 (f = 1.695 GHz)
in the case of a 6" wide top conductor supported by 2 9 mm
substrate. At f = 1.71 GHz, the Ez field in the slotted section
no longer exhibited a periodic standing wave characteristic. The
]Ezl pattern exhibited properties of an interference pattern
between two modes. As the frequency increased, this effect became
even more pronounced. Bgcause of the symmetrically displaced
coaxial feed, it appears that the first even leaky mode was
excited. Now the corresponding electrical width of the top
conductor at f = 1.71 GHz for the 6" strip is k £ = 2.75. From

o
Eq. (2.21), the modes omn a microstrip are given by
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21(,52/=/nrn-h'7—.’-—L m=0,l,2,-.
o 2
n -4

m

In the case of an air substrate (n = 1), the first even leaky
mode corre;pqﬂds to the solution of Eq. (2.21) with m = 2.
Assuming that the first even leaky mode can be detected when
a, = 0, Eq. (2ﬂ21) yields the following condition:

R
'From Eq. (2.19), the phase of I at kd = 0.3223 (£ = 1.71 GHz)
is X = -0.6962. Applying this to the above equation yields \
k02 = 2.79. The fact that Eq. (2.21) predicts the appearance of
the first leaky mode to within 2% certainly indicates the validity
of the transverse resonance formulation. It is interesting to note
that Marin [24] (to within the accuracy of reading his curves)
predicts the appearance of the.first leaky mode at kol = 2.7.
This comes-as no surprise since Marin also utilizes a Wiener-Hopf‘

solution for the leaky modes.
5.4. The Polycarbonate Substrate Admittance Values

In addition to the various air substrate cases, measure-
ments were also performed on the previously described polycarbonate

substrate (d = 9.2 mm; € = 2.82). The width of the top in this
r .

case was 2% = 2" (51.2 mm) with an associated aspect ratio of

2/d = 2.78. Although the measurement approach outlined in Chapter

IV was used to obtain the phase of the reflection coefficient of
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the open end, difficulties were encountered in trying to measure
the sfanding wave ratio at each of the local minima by means of
the double-minimum technique. With no reliable information
regarding the local SWR, [T']  values for the open end could not
be computed.” However, in spite of the nature‘of the difficulties
encountered, reliable reflection coeffiéient phase values were
calculated from the slot measurements. It is clear that, in an
exact sense, both the magnitude and phase of the reflection
coefficient must be known in order to calculate the normalized end
susceptance of the open end. As is discussed in Chapter 1T,
however, the susceptance can be calculated from the phase of the
reflection coefficient under the assumption of ]FI Eeing close
to unity. Thus, Eq. (2.34) was used as the basis for calculating
the susceptance from thg reflection coefficient information. For

convenience, Eq. (2.34) is stated here:

Further justification of the use of Eq. (2.34) is given later in
this section.

The difficulties that preveunted the calculation of the
magnitude of the open reflection coefficient are now discussed.
By means of metal weights and beadboard blocks, pressure was
applied to the top of the microstrip line as is shown in Fig.
5.5. The purpose of the beadboard blocks is to provide sufficient

separation between the metal weights and the transmission structure,
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thereby preventing measurable field disturbances. Basically, the
local SWR measurement problem arose when the pressure on the sub-
strate was varied. It was observed that the distance between the
/a.Emin points along with the value of Emin changed with the
applied pressure. The effects of this problem are illustrated at a
source frequency of 928 MHz. At this frequency, four local minima
were encountered in the slotted section. With no applied pressure,
the widths Ax of these local minima were found to be 0.64 cm,

0.55 cm, 0.43 cm, and 0.41 cm, respectively (proceeding towards the
load). When heavy pressure was applied to the substrate, the widths
became 0.49 cm, 0.44 cm, 0.37 cm, and 0.31 cm. It is of interest to
note that although the widths Ax changed significantly, the
computed phases for these cases are -22.6° and -21.3°, which are in
very good agreement. As is mentioned in Chapter IV, the widths Ax
of the local minima should decrease monotonically as the load is
approached. 1In fact, for the pglycarbonate substrate, the widths
should decrease roughly in equal increments. This appears to be

the case with the 928 MHz data; it waé not so for a number of data
points, with and without applied pressure. For instance, at

f = 1.224 GHz with heavy applied pressure, the widths of the minima
were 0.61 cm, 0.50 cm, 0.51 cm, and 0.39 cm. The inconsistencies in
the minima widths, then, call into question the validity of a
reflection coefficient magnitude calculated from slotted section
measurements. On the basis of Eq. (2.34), the end conductance
cannot be calculated unless the reflection coefficient magnitude

is known. Thus, no reliable conductance data could be obtained in
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the dielectric substrate case.

On the other hand, it was observed that the measured micro-
strip line wavelength Ag and the calculated phase of the opén end
reflection coefficient were virtually independent of the applied
Pressure. Now KO/Ag is easily calculated from the experimental
data; and in terms of the Chapter II notation, ko/Ag is the quantity
@. Recalling the previous discussion in Chapter II, o can be
determined from the transverse resonance condition (Eq. 2.21) for
nkol 2 0.5. Since the smallest value of nkol in the experiment was
0.77, a comparison of the measured & with that prediétéd by the
transverse resonance condition should provide a good indication as
to how effectively the experimental system performed. A comparison
of the experimentally obtained o values with those generated from
the tfansverée resonance condition (Er = 2.82; £ = 25.6 mm; d =
9.2 mm) is iocated in Table 5.2. Along with computer generated o
values, o has also been calculated from the approximate expressions
(Eqs. 2.25 and 2.26). It should be noted that the effects of the
loss on o has not been included since this is tco small to be
measured. The computer—generaéed values are numerically exact, so
these should provide the basis for comparison. The agreement between
the computer values and the measured o 1s certainly encouraging.
Errors no larger than 0.7% occur between the theoretically predicted
values (computer) and the experimental results. This fact indicates
that the taping of the substrate has defeated the problems produced
by air pockets between the substrate and the ground plane. The

approximate formula (Eq. 2.25) appears to predict the value of g



Table 5.2.
Frequency Experimental Computer Eq. Eq.

GHz Value Value (2.25 (2.26)
0.842 1.575 1.578 1.580 1.545
0.885 1.572 - 1.582 1.548
0.929 1.576 - 1.584 1.551
0.933 1.578 - 1.584 1.551
1.032 1.580 1.582 1.588 1.557
1.035 1.581 - 1.588 1.557
1.084 1.581 - _— -—
1.167 1.582 - 1.593 1.565
1.224 1.586 - 1.595 1.568
1.318 1.584 1.593 1.598 1.572
1.405 1.587 - 1.600 1.576
1.525 1.591 1.599 1.603 | 1.581

146




147

accurately, but the simplified version qf Eq. (2.25) (Eq. 2.26) does
not. This is attributable to the fact that the aspect ratio £/d

is not large enough for Eq. (2.26) to be accurate. It should
finally be noted that if the value of €. in the computer program
is varied by *27%, the resulting o values will vary roughly *17.
This is of importance in assessing errors that might be produced by
uncertainties in measuring the substrate dielectric constant.

Since the measured standing wave ratios, although inconsistent,
appear to be high along with tkose predicted by the computer program
of Appendix B, the use of Eq. (2.34) to calculate the susceptance
from the measured phase seems to be a valid procedure. The suscep-
tance values calculated in this fashion are plotted in Fig. 5.6 as a
function of the electrical substrate thickness kod. Along with the
experimental results, five susceptance curves, produced by the
computer program of Appendix B, were drawn. Each curve, correspon-
ding to a single o value, was generated by setting ar = 2.82 and
varying kod for a=1.57, 1.58, 1.59, 1.60, or 1.68. 1In addition
to the Wiener-Hopf susceptances, the static susceptance was plotted
by means of Egqs. (3.27) and (2.38). As is the case with the air
substrate, the Wiener-Hopf susceptance agrees well with the measured
results. In fact, the rélative error'between the gxperimental
values and the four susceptance curves, in the range 1.57 < a < 1.60,
is less than 10%. Since the measured and calculated o values lie
within the same range, the results are particularly satisfying. The
good agreement means that the Wiener—Hopf susceptance properly

accounts for the dispersion of the microstrip line. This fact is
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more readily apparent when one compares the experimental results and
the four curves.in the range 1.57 < a < 1.60 with the curve for

o = 1.68, which corresponds to the grazing incidence case (0 = n =
v2.82). 1In Fig. 5.6, the static susceptance once again does poorly
in predicting the end susceptance. The relative error between the
experimental values and static susceptance ranges from 33% to 38%.
It seems apparent that the static theory does not adequately.account

for the high-frequency effects.
5.5. ‘Conclusions

All in all, the reéults of this experiment are cuite encour-
aging. The dielectric and air substrate data demonstrate that the
Wiener~Hopf theory properly incorporates the high~frequency effects
into the modeling of the open end suscéptancé. On the other hand,
the static approach has proved to be totally inadequate. An
especially interesting result in the dielectric case is the fact that
the incorporation of the angle of incidence in the Wiener~Hopf
reflection coefficient produces a susceptance that is in excellent
agreement with rhe experimental results. Another discovery concerns
the functional dependence of the end conductance being completely
different from the predictions of the Wiener—Hopf-theory. Although
the measured conductance chgracteristics are quite different from
the Wiener-Hopf model,vgood agreement occurs when 2kOQ i_%~XO
(air case). It is unfortunate that no reliable conductance data

could be obtained in the dielectric substrate case. But based on

the air substrate results, one might be able to generalize the above



150

AO. This generalization is, of course, a matter

~lw

result to anOZ >
of speculation.

It should be remembered that the Wiener-Hopf canonical
problembwas originally solved so it could be used to develop the
theory of an unloaded rectangular patch anténna [2]. In determining
the dimensions of the microstrip antenna, the critical factor is the
phase of the Wiener-Hopf reflection coefficient. The magnitude of
the reflectidﬁ coefficient does not affect the dimensions. Since
.the susceptance data along with the dispersion measurements agreed
ﬁell with the'Wiener—Hopf theory for all values of kod and aspect
ratios £/d, it appears that the Wiener-Hopf theory should accurately
predict the patch dimensions over a fairly broad range of kOQ and
kod. Althoﬁgh the conductance does not ha&e an effect on the patch
antenna dimensions, it aoes govérn the radiation characteristics.
Now typical rectangular microstrip antennas have alectrical widths
in the range Ag/z_i 2k02 < kg where Kg = Xo/n. On the basis of
the experimental resultg, the Wiener-Hopf technique should yield
precise antenna dimensions; and if the patch is operated in the
- middle to upper portion of this range, the radiation characteristics,
tqo, should be accurately modeled. Insofar as microstrip antenna
design isiconcerned, the Wiene%—Hopf technique should provide the-
basis for more accurate designs.

As the experimental results indicate, the Wiener-Hopf approach
does not accurgtely model thé open-end conductance for kOQ < 2 (air
case). Thus, for the design of narrower microstrip antennas, the

radiation characteristics would not be accurately modeled by the
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Wiener-Hopf approach. This might be a critical factor, particularly
if it is desired to design the microstrip antenna to operate over a
specified frequency band. Clearly, thke results point out the need

~ to pursue further theoretical.investigation of the open end conduc-
tance in the cése of narrower micfostrip configurations. Thus, the
additional theoretical work should attempt to incorporate the effects
of the fini;e width k02 along with the ratio ¢/d iq order to

provide a more accurate conductance model.
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APPENDIX



APPENDIX A

APPROXIMATE EXPRESSIONS FOR

THE WIENER-HOPF REFLECTION COEFFICIENT
A.1. The Normal Incidence Case

In this appendix, approximate expressions for lf‘, and Yy
are derived. The first .secti’on deals with the normal incidence
~case in which ¢ = o = 0. A more general formula, valid for values
of 0 not too close to 1 or n, is derived in the final section.

From Chapter II,

T = ot3X (A.1)
‘where
S(\(OL) = 2 t.:«m.-l %&b—[k + £ (- z_ oLZ) (A.2)
v e
a -1
A 2 2 -
£(- n2 - 0L2) = —tan_l e )y 2 n2 - oc2
- 0L2 -1 T

](00 . [(1 + er)ucz) tanh unkod ]
x fn (A.3)
un(e:ruo + u tanh unkod }\ _ (n _ OLZ)

o uon un + uo tanh u k d .
A= -@J tn 5 (A.4)
™o .

o nuo+untanhukd
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In more compact form, (A.3) is written as

A 5>
73 - -
£ (-/n® - ) = ~tan! oo +% W - 62 (A.5)
} o =1

It is now assumed that o = O and (nkod)z << 1. With

u = Xz - n2 and u, = JXZ - 1, the integral in (A.5) becomes

nzu2 tanh u k d
0 n o.

® dA
U = f fn . -
0 /gz - 1lkdu (nzu + u_ tanh u k d) AZ - n2
0 n fo) n n o
(A.6)
. : 2 2 ' . .
Assuming that Ao >>n” and A" = Akod, Eq. (A.6) is split as
follows:
o0 u ‘ S nzu
6 = } In| —p= o+ j in > 5
0 /; -1JA" -n nu + unkod AT - n
® | o tann A" A’
+kd j 2n == 5 (A.7)
o Uy AT(n” + tanh A") ] A'° -
’" o0 S
The identity j ° = J» - J is applied to the second integral of
0 0 A

o

Eq. (A.7) which yields

} Qn.{ o ]- dA
0 VA (nzuo + uikod) A2 - n2
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Qn[ n® tanh 2’ ]d)\'
o La@® + cann Ay ] 202

Ty _ »
(¢4 nu
A n uo +n kod A

(o}

cg |
A

. 2 ' :
Since Ao >> n2, u and u ~are replaced by X in the third term
of Eq. (A.8), and the substitution \' = kodk is made. Combining

the second term of (A.8) with the modified third term yields

2 2

' n u
B = FZH[ [o] ] d)\
0 ;nz - l(nzuo + uikod) lz - n2

ad 2 1 4 1
K d,][ o0 [tanhz)\‘(n 4+ A )J d)\z 4.9)
A; A'(n" + tanh A"\ :

Inspection of the second term of Eq. (A.9) reveals that a small
A' results in a term that is O((kod)z). This fact allows the
lower limit Aé of the intergal to be replaced by zero. Thus, the

modified expression is given by

0 n2u2
Uz}[“' i > 3 ]zdkz
0 /A -1 0% + ik )32 -
o] _nO

o y N
+kd](£n [ta“xhx(‘zn + A )]1)‘2— (A.10)
° 0 n <+ tanh ) A
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where
oo 02y’
I =][52,n - - :J da (A.11)
1 0 [/gz -1 (nzu + uzk d) KZ - n2
o n o
® tanh A n2 + A dA .
12 = } n 3 ( 3 ) = (A.12)
0 n + tanh A A

At this point, the evaluation of I is considered. Fig.

1
in which the line

with the x's denotes the square root branch cut of u = Az - 1.

‘A.la shows the contour of integration of Il’
The zig-zag line in the figure is a logarithmic branch cut produced

1+ The utility

by the nzuo + uikod term inside the logarithm of I
of defining branch cuts in such a fashion is discussed later in
this section. As a first step in the evaluation, tﬁe contour of

Il is deformed to that of Fig. A.1b. Clearly, this deformation
ignores the contribution between the branch points at A = 1 and
A= Ae’ which is equivalent to ignoring the surface wave effects

of the dielectric slab. For a small kod, the surface wave
contribution to Il is quite small. In order to assess the order
of magnitude of the surface wave contribution, consider the portion
of the contour that is ignored after the deformation. The integral

contribution of the surface waves is shown in Fig. A.2. From Eq.

(A.11), the surface wave contribution is estimated to be

T« g {P dA _ (A.13)
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where

-OLP is determined by apprdximati'ng the transcendental equation,
(2.7). The evaluation of Eq. (A.13) indicates that

(k) |
I =0 |—-—- . , (A.14)

sw 2n3
In the case of a thin substrate, Eq. (A.14) indicates that the
effects of surface waves are indeed small. Thus, the deformation
of the contour in Fig. A.1 appears to be a good approximation for
small k d.
Having determined the effects of surface wave propagation,

expressing .I1 along the contour of Fig. Alb yields

dA

2

- n

i ) (n2 - Kz)k d + jnz;/l - )\2
f £n’ 2 5
A

0 (% - Az)kod - 02/ - )2

di

1
y3 5 (A.15)

- n

0 [@®-2Ykd+ a2/ - )2
f n o 5
oo A

% - Az)kod - in2/A -2

Since »tan-lx =2l 5&1 (-l—m> » Eq. (A.15) becomes

o (a? - Az)kbd A2 - o2

Io= Jl -1 234 - )2 A
l .
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—l ny/l*-)\ dA

0
+JJ ta
—joo @2 -5 /a2 - 2

(A.16)

Making the subsltitutioil A = -jt in the second term of Eq. (A.16)

and replacing the arctangent in the first term by its large

argument expansion (-—— >> 1> gives
2 2
I=jjl‘1_(n—>\)kd ar
1 0\? WAL -aZ )22
-1 n2,/i + t2 dt
+ tan 2 2 2 2
0 (n” +t )kod t  +n
1 - ' kod
= j J + d\ + kd 1, . (A.17)
0\202 - a?1 -2 o 3

The evaluation of the first term in Eq. (A.17) results in the

following expression

.  kd
P I e n+1 o
I, =3 > | 7 2n<n_l>'+ 2> +kod .1'3

Applying this equation to Eq. (A.10) yields

n

1) 1 n+1 kod
=3+ == ‘ + . A.18
0 =3 > {Zn Q,n(n_1> + 2:} +kod(12 13) ( )

2 2 // 2 //2 2
-1 n_-a 1 -a +/n -
t = . (A.19)
- <;OL2 -1 > </l — o - -
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Substituting Eqs. (A.18) and (A.19) into (A.2) results in the

reflection coefficient for the case of normal incidence,

o kdy 20k d |
I'(c=0) = exp( no )exp {J( 1ro (I2 + 13) - —g)} (A.20)

In order to evaluate 13 of Eq. (A.17), the integral,

1 [ can=l n? dt
k d M \ea)Tz2, 2
-0 0 [}

t +n

is added to and sub#racted from 13, which gives

Lol Jm Y AT eao-l [0 dt
3 kod 0 (t2 + nz)kod tkod t2 + n2
1 jw 1 [ o2 dt
+ tan ~ . (A.21)
kod 0 tkod t2 + n2

Replacing the arctangent terms of the first integral in Eq. (A.21)
by corresponding large argument expansions, and performing and
integrating by parts on the second integral of this equa‘tidn,

results in the following equation:

e 2, 2. =
I3 = j i e IR R J tan”" (ﬁ) S
0 \n n;/t +1/t° +n 0 (kodt) +n
(A.22)

The direct evaluation of the first integral in Eq. (A.22) yields
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o]

I3 = % n 2n + n J tan_l (£> gt
n 0 (kodt) +n

4

- Adding and subtracting a large argument term in this expression

results in the following:

T
o - t
I3=_—]2'Q,n2n+-1—3j tan—l<-§>——2ﬁ
n n 0 t + —
- m
+R}J g 2. & 8.23)
40 (t +?) (kodt) +n

Expanding the second integral in Eq. (A.23) by the method of partial

fractions yields

2 2n 4
o (kd)” = t+n ,
+ —%J [ o "2 ~ - (%})—1-2— dt . (A.24)
2n” ‘0 (kodt) + n t + Tn

From an integration by parts,

£ y Lt (2, 2
J tan (£> = t tan (—O> -n fn | —2— (A.25)
n o n n
0 .
Also,
% tadt 2 2n
IT_ ° ~——=Et —nQn(t +—n>+nﬁln<—-'~> . (A.26)
7 2n 2 "o i o il kil
0 £t + —
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Combining Eqs. (A.25) and (A.26) vields

to I t | t
J [:tannl <£—> - —2—25} dt = ¢t tan_l <—£>
0 e+ 2 © n
kil
t° + nz - 2 : 9
- n in —o———-—-t -n,Q,n(t +—n>+n2n —B)
_ n 2 o o T T

(A.27)

In a similar. fashion, the second term of Eq. (A.24) is given by

(kod)2t2 + o T 42ln

t 2 (20 4
J ° [(kod) <—Tl‘—> t+no 2n 1 :] n2 -1 (kod to
—_— dt = —_—
0

22 (kde)-2Rgne g (n)+332n<32>
ki3 o] O s [o] ¥il it it

(A.28)

Applying Egs. (A.27) and (A.28) to Egs. (A.24) and taking the limit

as to - © vyields

™ 1 1 kod
L e 2t~ - (4.29)
o n n 2n

In order to complete the approximate expression for r,

12 must be evaluated. From Eq. (A.12),

® tanh A nz + A dA
Iy=/tn X 7 N3
0 n + tanh A A

Intecrating this equation by parts gives
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: -2\
o =2X 28 e

12=J e =7 | % (4.30)
O n + A 1 -e ™ 1+ Se e .

where

s = n2 -1

2
n +1

ax
A. ’

and applying a binomial expansion to the last term in the inte-

Eq. (4.30) is now modified by adding and subtracting J

grand. Writing the resulting equation in limiting form yields

co -2x -2ak ! 0
I = lim j[l‘%’r e —szediJ'j >
a>»0 0 1 -e Oln (A +1n")

.m 2ai
+2 ¥ (-5e)m(1 - e‘m)} S——Ad—k ) (A.31)
m=1

From a table of integrals [25], the first integral in Eq. (A.31)

is given by

o =27 ~2a) ’
2 1 - 1 __2 e dd _ 2I'(a) - 2(a - %)%n a - n 27
0 A 1 - e-2k A _

(A.32)

where [ denotes the gamma function. For small a, the right

side of Eq. (A.32) becomes
-2n(a) - n(2m)

From the same integral tables,
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Ei(—2an2) . (A.34)

In Eq. (A.34), Ei denotes the exponential integral function. The

small agrument expansion is

€%-[y + %0 2an%]  where y = 0.57721 . . . . (A.35)
n .

Finally,
A

9 z (_Ge)m j (e—ZaX N e—Z(a+m)l) dA
m=1 0 ' '

fn a . (A.36)

Applying Egs. (A.33), (A.35), and (A.36) to Eq. (A.31) yields

- 1y, 1 2
I2 = gn <2W> + nz (n 2n” +v) + ZQO (A.37)
where
m
Qo = Z (—Se) fn m
m=1

Substituting Egs. (A.37) and (A.29) into Eq. (A.20) results in

the following reflection coefficient for the normal incidence case:

~ ¢
I'=|r le ° (A.38)

where
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—kod
) = e ()

2nk d -

1
[2Qo - &0 2w + ;2-(2n kod + v - 1)]

o il

in.agreement_with‘Eq. (2.19).

A.2. The General Case

~

This section deals with the evaluation of [' in the range
0 <o < n, in which o is not too close to a =1 or & =n. The

first integral to be evaluated is A. From Eq. (A.4),

00 un u +u tanhu k d
J o n o d\
n
0

5

n \nu 4+ u_ tanhu kd Az + a“
o n n o

Adding and subtracting the integral,

dx

© u (1 + nz)tanh u k d
g_J 0 n o
)

0 AZ + az

yields

uz(n2 + )tanh u k d
J on | =2 n o
0 u (n2u +u tanhu k d
n fo) n n o
2w+ hu kd
n un -1 tan un o di

+ 4n 5 ° : 2 5
Ua(@” + 1)tanh u k. d AT Fa
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= Ae + Am (A.39)
where
o % uz(nz + 1) tanhv u k d) )
Aez—fj tn {2 n_o S (A.40)
<0 u (nu +u_ tanhu k d/ A" +q
s} 0 n n o
o nz(u + .u tanh u_ k d)
8= %-j fn —o—— B0 de 5 (A.41)
0 uo(n + 1) tanh un kod AT+ o

Splitting the integral (A.41) into parts, with )\CZ) >> OLZ and

(nkod)_2 << 1 vyields

A 2
. ngozn(n (l+uokod_)> dr
p
0

(n2+liukd )\2+oc
. oo

2

oo n2(1 + tanh A k d) ax
J fn | °— )% (A.42)
) A

o
T 2 2
(n” + 1)tanh X k d/ A
o o

0 (¢ o] (e o]

Applying the identity J = J - J to the first term of Eq.
0 0 A
o

(A.42) and replacing the lower limit - Xo by zero results in the

following:
Am = Aml + AmZ A (A.43)
where
/el u k@)
s _aJ’wln " 00 dXx (A.44)
l - — . Il
Tl uokod(_n2 + 1) )\2 + aZ
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1 + tanh A k d A kd
o o) dix

s, =2 ) %0
"Tm2 T tanh A k 4 I1+Akd 2 "
0 o o A

(A.45)

Consider now the integral of Eq. (A.44). Utilizing the symmetry

properties of. the integrand, the range of integration of Aml can

be doubled to yield

2
n (1 + uokod) a

00
AL = ——-j £n
—0 uokbd(n2 + 1) XZ + a2

(A.46)

In order to evaluate Eq. (A.46), the contour of integration is
deformed to that of Fig. A.3. The branch cut, which has a branch
poin; at A = —j/uz - 1, is represented as a square root branch
cut. A pole is located at A-= -jo, and it contributes to the
integral in the form of two half residues. When the identity,

j2 t:am._1 X = Q,n(l—i—:.]z),
1 - 3x

and the substitution A = jT' are applied to the deformed version

of Eq. (A.46), the following integral results:

_a [T LA A S dr'
Aml =3 f 5 \[2 tan (kod 1 o+ T )] > =
. Ya-1

a® - T
— T —
T P - RPN G C il 0 Ty . S Ay S I %
T : 2 2 ol
o | (@ - 1')

(A.47)

The limit in the above equation is a result of the residue
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contribution pf tﬁe pole at X-= -jo. When the substitution
T =¥l - a2'+ 1'2 is employed in Eq.- (A.47), the expréssion for
Aml becomgs
o [ -1 d
Aml—;r-][o [E— tan (kodr)} (1 - T;)/:2+0L2 -1

+ %.[g._ kod] . (A.48)

The two terms of the integral in Eq. (A.48) must now be evaluated.

For the first term,

at+tva -1 "0‘2—1 (A.49)
a - vo =1

[se}

R

](oo- T dT =:__an
0 (1 - Tz)/éz - a2 -1 4

The second term has the following equivalent representation:

T

(o]
-1
= 1im ][ (tan ~(k dT)
(1—T2)|/'r +a2—l T O 0 °

™

tan_l(k d1)T dT
a][m o
0

dTt .
- k d71)
a - 12)/4? + a2 -1
TO
1 dt
-kd)( (1- ) ' (4.50)
° o 1 -2/ 2 o? o

In the first integral on the right side of Eq. (A.50), tan-l(kodr)
- kOdT =~ 0 when kOdT << 1. Thus, the first integral of Eq.

(A.50) can be written as
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° -1 dt

- fo (tan (kodT) - kodr) . - : : (A.51)
T

Making the substitution T = /az - 1 sinh t in the second integral

of Eq. (A.50), and substituting (A.51) yields

oo}

. tan_l(kodr)'f dr = o
}.f 5 5 5 = lim -J (tan “(k dT)
0 A -t +a? -1 >0 0 °

d J(#)( ]

- k dt) at _
2
° T 0 (a2+l)-(u2—l)cosh 2t
(A.52)
‘ . 2 2
From Gradshteyn [25] with b“ < a°“,
Jm . dx - 1 ___nfatb+ /a? — 12 (4.53)
o 2 + b-cosh X ~%§ ;f;; a+b - /%2 ~ b2'

Integrating the first integral on the right side of Eq. (A.52) by
parts and applying Eq. (A.53) to the second integral yields the

following result:

(o]

jw tan-l(kodT)T dt

ale

O
<

kd/ocz—l>
= -kd+ (kdyfn| -2
0 - tHh% +a% -1 ° °

k d :
[¢] 1+
+ > 2n<1—o¢> . (A.54)
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Substituting Egs. (A.54) and (A.49) into (A.48) yields

AL =) (ot voo© =1 . 2
ol - 1) % n{——s=== |+ kod + kod in
a-va -1 kod;u -1

‘kod 1+a jfnm
Al 2n <l - a) + 2'(-2— - kod> . _ (A.55)
Now consider Ae ‘as given in Eq. (A.40). Splitting the

integral as before gives

2

-

A ggjogn u ‘n +l)kod] i
"lo La%w +u’kd

. [s) n o

NITO N

}\2+OL2

0 _(nz + 1)tanh()\k0d) ar
+ J fn 5 = (A.56)
>\o L n + tanh()\kod) A
Modifying Eq. (A.56) in the same manner as Eq. (A.7) yields
Ae = Ael + Ae2 (A.57)
where
2,2 \
0 u (n”+ Dk d :
Ael=%j m[; 7 J 2dA > (4.58)
0 nu +ukd AT + o
o n o
0 (nz + k d)tanh Ak d
a |- o - o dA
L\ez = T n 5 — (A.59)
0 (n” + tanh Akod) kod A

The contour of Eq. (A.58) is now deformed to that of Fig. A.3.
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Following»the same steps that have already been used to derive

Eq. (A.47), Eq. (A.58) becomes

” -1 nz/.l—oc2+T2 < S I A d
2 2 2 o/’

S
(n2 - az + r“)kod T -a

Adding and subtracting a term in the above equation yields

® R Y R -1 o? dt

ber = 5 ][ tan 2 2. .2 Tt ka2 2
/oez—l .(n -~a +71 )kod o -
® | -1/ o® dt ifnm .
+.J . tan (Tk d) 5 7~ 5 (5-- kod> . (A.60)
2 o T -a

Replacing. the arctangent terms in the first integral o‘f» Eq. (A.60)

by large argument expansions produces the following result:

el ”/Tz_ A -af+1 2 -2
o =1
o -1 -nz dt ifm
T ][m tan (Tk d) 7 272 (3 - kod> - (a.61)
2 o T -

Upon iﬂtegfating the second integral by parts, Eq. (A.61) becomes

: l. - o + Vaz - 1. -1 n2
e Vs el B s
€ ' o -va -1 a--lkod

' ./
-5( I A.62
+k d(I, + I) - ] ( 5 kod) ( )
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where

a -1
(A.63)
I, :“—)f pn (F0 T (4.64)
32 - T -l 922 4 o
o -1 (o}

Integrating the first and third terms in Eq. (A.63) directly and
making the change of variable T = /az - 1 cosh t in the second

term produces the following equation:

14=%£n(]‘r2-a2]) ' —2n(1+¢12+1-u2) ’ -
/az—l , , /ocz—l.

0

dt

2]( _
-n (A.65)
0 @ - 1)G + % cosh 2t) - o
From Gradshteyn [25],
0 (@ =1)cosh t - (@° - 1) -

Upon making the substitution t' = 2¢, the third term of Eq. (A.65)

is evaluated by means of Eq. (A.66). After terms are combined,

2

2
_n a+1 ( o - l>
I, =55 ((x — l>+_ 2n B . (A.67)
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In order to evaluate IS" a term is added and subtracted

in Eq. (A.64) to give

I __."_nir [hl(T-Fa)__gg_J‘A dt
5 2 /T-— T*OLI- T (kodT)2+n4

4 ) .
-n L v  (A.68)
Since kod << 1,
-+
L i !E_m) :“12%<If§) (A.69)
(kod‘l') +n n
Also,
n4 . (kod)z'r2
= 1 -~ 4 . (A'7o)

T ((F:odr)z + na) (kod)zrzb + n

Applying Egs. (A.69) and (A.70) to (A.68) yields

-1 (7 T+a 2 (7 T dt
I, =35- Lo dt + (k_d)
5 20 } (IT - a]) o’ J 2.2 4
/ocz—l /ocz-l (kod) T +n

(A.71)

Integrating the first term of Eq. (A.71) by parts and integrating
the second term directly results in the following expression for

.ISZ
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I
> a-voa -1 Z

n

/72 -\ - kd
= -1 +2—1a/a2—12n<°‘—’-'—°‘——1)+ n = . (A.72)

Substituting'Eqs.(A.72) and (A.67) into (A.62) yields

2
. i

LT} + fn 7

2n
2
+ 1 :
Za a—l:] [——-—kd] . : (A.73)

Adding Eqs. (A.55) and (A.73) produces the following result:

=]
Q

b * 0y = (1) (10 (—f—) - & @]
€ o T n- kbd a -1 n

(A.74)

The final step in deriving the approximate involves the

evaluation pf the sum AmZ + AeZ' Adding Eqs. (A.59) and (A.45)

yields
A, +A -akdj gn[()\*'nz)'( 2 >( 1 ﬂ@
m2 e2 T 0 O+ 1) n2 1 1+5e 2A KZ
(A.75)
where
2 1
§ =2 =1L
¢ n2 -1

Integrating Eq; (A.75) by parts, applying the binomial theorem,

and expressing the resulting integral in the form of a limit obtains
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1
ok d o 2
R 1 n
+ A =—2 1in ( -
m2 e2 T a0 | o A+1 A+n
© =2mA ’ :
-2 § (8" (e——l——1—> e 22 4y (A.76)
m=1

Utilizing the integral tables [25], each term of Eq; (A.76) is
evaluated., After combining terms and taking the limit, the

resulting expression is

akd [~ 1 2 g
Am2+A_e2= p Y(lv——z)—(l-?)2n2+-—2—2n,n+2‘Q?J

n n

(A.77)
The formula for A is now obtained by adding Eqs. (A.77) and (A.74):

ak-d
o

1 1
A = (1--) 1—Y+2.n< +2q] . (A.78)
m n® [ kod;az - 1> 2

Having derived the approximate expression for A, an
approximate formula for the U integral is now derived. As a
first step, the integral (A.6) in split into two parts in precisely

the same manner as before, Therefore,

=21 +kdI
o

6 (A.79)

2

where

% nzu2
Ig = J[ ol 7% ] > gx 2 (4.80)
0 /; - l(n’uO + unkod AT = (n® - o)

and
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2

Iz=kd]2n<tan§1)\><2n + A >% )
° Jo n” + tanh A/ A

I2 has already been evaluated, and it is given by Eq. (A.37).

In order to evaluate the integral I6’ the range of integration isv
changed to -w < ) ; ©, and the contour is then deformed to that.of
Fig. A.4. In‘this figure, the only singularity that is shown is

a Equare root‘branch cut with a branch point at A = -j/o° - 1.

Substituting an arctangent function for the logarithmic integrand

and.making the substitution 'T = jA  yields

o 2/ T2
-Is=j -1 2v/T° 41 - a dt ;. (a.81)

tan 3
kod(12.+ n“ - az) T2 + n2 - a

Adding and subtracting a term in Eq. (A.81) obtains the modified

integral
. o)
ro [tan_l w2/l 41 - % — tan L < n” ):] dt
2 k d(T2 + n2 - az) Tkod 12 +n -a
a -1 )
2
-1/ n 4T
+ J“ tan (Tk d) 5 5 7 - (A.82)
2 o T +n -aqa
o -1
Making use of the integral identity
[l
a24l 0] 0
. -1 T 1 .
and the large argument expansion tan x=5-7 in Eq. (A.82)

produces the result
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,}Imk

Re X

arg Ug =

Fig. A.4.
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I, = kbd in az -1 - T tan_1 —Eéi:;l—- + I
6 n2 2/%2 - a§ 2¢47 —‘&2- yn~ - q T

In Eq. (A.83),

_ o j‘” -1 ( T ) dt
- tan . (A.84)
;n- -a 0 /gz - az (kod)z'f2 + nZ )

Eq. (A.84) is modified by adding and subtracting a term which is
similar to the one above, except that the arctangent in the

integrand is replaced by a two term large argument expansion. Thus,

) kil
nkd =T
1= i [ [ () - — g
7 /n® - ai 0 ~/€2 -a T+ %-/;2 - aZ

) ) E-T dt
dT + J 2
w2 ot o 4 % VA az)((kod’r)z + Y

+

3 o

T +

(A.85)

The first integral in Eq. (A.85) has already been evaluated, and
it is given by Eq. (A.27). The second integral on the right side"
of Eq. (A.85) can be expanded by the method of partial fractions

to give
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2/ 7
Ero T dt - (kyd) Vo™ - a
Plo e 2 47 0*) ((k_an)? + o* ot
w Yoo}
XJ 55 '4+gj )
0 G +nt 0 2oy’ +

/o - o2 ﬂ (A.86)

2 2 2k d
=L (-TL> 24 ;/nz - Otz ln( °
n4 kod . n2

2
T

Applying Eqs. (A.86) and (A.27) to (A.85) yields

2
k d (k /o’ - az) kd (ﬂ>
° -2 ) 4

+ . (A.87)
2 nZ AZ _ O!,2

n n

From Eqs. (A.87) and (A.83), I6 is given by

2 ;n—OL‘

2n

/2
B kod koda -1 T 4 /OtZ_ 1
I —ln{——] -1 - tan
. 2/n" -«

2
Ll

+—m— (A.88)
4yn” - o

A

The approximate formula for 5 is obtained by substituting Egs.

(A.88) and (A.37) into Eq. (A.79). Hence,

8 = k_dl-tn 2m + L (n ko’ -1 +y - 1)+ 2Q]

n

(A.89)
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Inserting Egs. (A.89) and (A.78) into Eq. (A.2) yields

o C!

R “ {(-_ ’“‘(W)

2K -d
+ v ;1]+ on} 1ro 1/n2 - oc2 [—Qn 2m

n

+ iz (zn(kod/az -1 +y - 1> + ZQ‘;} (1 <o <mn) (4.90)

Since n kod << 1, the arctangent function in Eq. (A.9.0) can be

replaced by its small argument expansion. Thus, Q simplifies to

~ 2kod n2 ]: 1 1
(-3 ()
LI WA n? k a/o” - 1

W) 2
+ ZQO] -vYn - [l -y + &n (Wﬂ (A.91)

for 1 < o < n.

It should be noted that the use of the small argument
expansion is contingent on & not being too close to n. 1In
practical situations whep o is close to n, normally has a

2
: (kod)oa
value which results in a ratio T:Z- << 1. This fact allows

the small argument expansion of the arctangent term.
Eqs. (A.78) and (A.89) are derived in a manner which
makes them valid in the range 1 < a < n. A question arises,

however, when the equations are to be applied in the range
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0 f;a < 1. Clearly, if one has knowledge about which branch of
/0” -1 must be selected in this range, then Eqs. (A.78) and
(A.89) can be extended into the range 0 < a < 1 by the principle
of analytic continuation. The solution for I when o = o,

as is given by Eq. (A.38), provides the essential informatiﬁn.

A comparison of Eqs. (A.38) and (A.91) indicates that the proper

choice of branch is given by

wl -1 = +H/l - o . (A.92)

Having selected the proper branch, the solution of Eqs. (A.78) and
(A.89) can be extended into the range 0 <a < 1as long as «

is not too close to 1 or n. As a check, the solution for

agrees with that given by Kuester [5], who uses a more general
approach to generate an expression for i that is valid in the

range 0 < a < n.



APPENDIX B

COMPUTER PROGRAM THAT EVALUATES

THE WIENER-HOPF REFLECTION COEFFICIENT
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PROGRAM JOHNK (INPUT, TAPES=INPUT, SUTPUT, TAPES=GUTPUT)
MAIN PRGGRAM '

THIS PROGRAM EVALUATES THE WIENER-HOPF REFLECTIGN COEFFICIENT
OF EQ. 2-9 BY MEANS OF NUMERICAL INTEGRATION OF EQS. 2-10 AND 2-11.
THE VARIABLES USED IN THIS PROGRAM HAVE THE FOLLOWING MEANINGS:
ALPHA CORRESPONDS 7O THE VARIABLE ALPHA.IT 'IS DECLARED AS A COMPLEX
QUANTITY,BUT CGNLY THE REAL PART IS USED.

FREQ [S THE FREQUENCY OF OPERATIGN,

N IS THE INDEX OF REFRACTION.

EPSR IS THE RELATIVE PERMITTIVITY.

UREL 1S THE RELATIVE PERMEABILITY.

KO 1S THE FREE SPACE WAVE NUMBER.

KD 1S THE ELECTRICAL SUBSTRATE THICKNESS.

LAMDA CORRESPONDS TO THE GREEK LETTER LAMBDA, AND IT IS THE

VARIABLE OF INTEGRATION.
DIMENSION AFRE(7)
COMPLEX CADM,FEIA,U6,U7,FEIMD, SM1_ XXX
COMPLEX KUE1,KUEZ2, SUMFM, SUMFMC, S30, S31,RFC
COMPLEX R1P,R1PP,TO01,T02,FA1,FA1D, THR, SHR
COMPLEX U01,U02,821,XAPH1,XAPH, U1,U2,U3,uU4,US
COMPLEX RFE,RF1,RF2,RF3,ANS,CX1,CX2,SUM, VAL
COMPLEX FEI,DELTA,VALD, SUMD, ANSD, ALPHA,RD, RF
REAL L,KO,LO0,L1,L2,L3,L4,L5,LAMS, LM
REAL L6,L7,L8,L9,L10,L11,MAGR
REAL. LAMDA, KD, EPSR,UREL,N,PI
REAL L1P,L2P,LCOR
EXTERNAL FEIM
EXTERNAL FEI
EXTERNAL DELTA .
COMMON/PRMTRS /KD, EPSR, UREL, N, P1, ALPHA

100 FORMAT(2F15.8)
10S FORMAT(2F 15. 8)
110 FORMAT(6F15.8,1F15.8,1F15.8,1F15.8)
111 FORMAT(8F15.8)
Xp=0. .
EPSR=2.9
UREL=1.0

N=SQRT (UREL*EPSR)
Pl=4.0xATAN(1.0)

106 FORMAT(1F15.8)
107 FORMAT(3F15.8)
108 =~ FORMAT(SF15.8)
109 FORMAT(1F15.8,1F15.8,1F15.8,1F15.8,2F15.8)

I=1
AFRE(1)=842.5E+06
AFRE(2)=928.8E+06
AFRE(3)=1.032E+09
AFRE(4)=1.167E+08
AFRE(S)=1.224E+09
AFRE(6)=1.318E+09
AFRE(7)=1.405E+09
FREQ=AFRE(1)
ALPHA=(.508685,0.)
L=25.6E-03
D=8.2E-03
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UEPS=1.0/(3.0E+08)
K0=2. 0xP] xUEPSxFREQ
KD=KOxD

2L2=0.

SUM=(0.,0.)

ZL1=0.

2L2=0.

X=0,

C THIS SECTIGN OF THE PREGRAM DETERMINES THE SINGULARITY LOCATIONS.

EPS=1.0E-08 .
LAMS=1. 0+(KD*KD/2 O) X (NXN-T1.0)x (NxN-1, 0)x(1.0/EPSR)*(1.0/EPSR)
TAUO=1.0/KD

LM=AMAX1(5.0x%N, 5. O*TAUO)

CX1=(0.,-1. 0) xCSQRT (ALPHAXALPHA-1.0)
CX2=(0.,-1.0) xCSQRT(ALPHAXALPHA - ~LAMSxLAMS)
RCX1= REAL(CXI)

RCX2=REAL(CX2)

IF(RCX1.6T.0.)606 TU 3

GG TG 4

S1=RCX1

GG TO S

S1=0.

CONTINUE

IF(RCX2.6T.0.)68 Tg 7

GG TO 8

S2=RCX2

GO TOo 9.

S2=0.

CONTINUE

S3=CSQRT(NxN-ALPHAXALPHA )

WRITE(6,107)S1,S2,53

C IN THIS SECTION THE INTEGRATIGN LIMITS ARE CALCULATED.

10

LO=0.

L1=.9x%S1
L2=8S1%(1.0-1.0F-05)
L3=S1%x(1.0+1.0E-05)
L4=82x(7.0-1.0E-~05)
LS=82x(1.0+1.0E-05)

Le=82x1.1
L7=.8x83
L8=.99xS3
L9=1.01xS3
L10=1.2x383
L11=2.0xs3

WRITE(S,108)L0,L1,L2, L3,L4,L5
WRITE(6,108)L6,L7,L8, L9, L10
WRITE(S, 108)L11
IF(RCX1.6T.0.)66 T6 10
IF(RCX2.6T7.0.)60 T6 20

GO TO 26
C THIS SECTION DEALS WITH THE INTEGRATION OF EQ. 2-15.
ZL.2=11
IF(RCX1.LT.1.0E-05)G8 Tg 20
Ft=0.

CALL lNTER(ZL1,ZL2,EPS,1024,FEI,VAL,XX,G)
X=X+XX



n

20

25

260
26

27

29

290

SUM=SUM+VAL

NRITE(S,IOQ)FL,ZL1,2L2,XX,VAL
CONT I NUE

Z2L1=Lt

2L2=L2

FL=1.0

CALL INTER(ZL1,ZL2,EPS,1024,FEI,VAL,XX,G)

X=X+XX

SUM=SUM+VAL

WRITE(G,109)FL,ZL1,ZL2,XX,VAL
CONTINUE

IF(L3.GT.L4)60 To 25

ZL1=L3 :

Zl2=L4
[F(RCX1.LT.1.0E-05)2ZL1=1.0E-05
FL=2.0

CALL lNTER(ZLI,ZLZ,EPS,1024,FE1,VAL,XX,G)
X=X+XX

SUM=SUM+VAL
WRITE(6, 108)FL, ZL1, ZL2, XX, VAL
Z2L1=LS i
IF(LS.6T.L8)GO TO 29
IF(L3.6T.L6)GO TO 28

FL=3.0

ZL2=L6

CALL lNTER(ZLI,ZL2,EPS,1024,FE1,VAL,XX,G)
WRITE(6, 109)FL, 211, ZL2, XX, VAL
X=X+XX

SUM=SUM+VAL

CONTINUE

2L1=Ls6
[F(L3.6T.L7.0R.L6.GT.L7)G8 Tg 27
FL=4.0

ZlL2=L7

“CALL lNTER(ZLI,ZLZ,EPS,1024,FEI,VAL,XX,G)

WRITE(G,109)FL,ZL1,ZL2,XX,VAL
X=X+XX
SUM=SUM+VAL

ZL1=L7

IF(L3.6GT.L8)GO T8 29

ZL2=1_8

FL=5.0 .
CALL INTER(ZL1,2L2,EPS, 1024,FEl, VAL, XX, G)
WRITE(6,109)FL, ZL.1, ZL2, XX, VAL

X=X+XX :

SUM=SUM+VAL

CONTINUE

ZL1=L9

ZL2=L10

FL=6.0

CALL INTER(ZL1,2L2,EPS, 1024,FE[, VAL, XX, G)
WRITE(6, 109)FL, ZL1, ZL2, XX, VAL

X=X+XX k

SUM=SUM+VAL

"CONT I NUE

ZL1=L10

189
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FL=7.Q
Z2L2=111
CALL INTER(ZLI,ZLZ,EPS,lOZd,FEI,VAL,Xx,G)
WRITE(S,IOQ)FL.ZLI,ZLZ,XX,VAL
SUM=SUM+VAL

c ADAPTIVE INTEGRATIGN.

30 2L1=2Z1L2
ZL2=ZL1+TAUC
FL=8.0

CALL INTER(ZL],ZLZ,EPS,1024,FEI.VAL,XX,G)

SUM=SUM+VAL

X=X+XX

WRITE(G,109)FL,ZL1,ZL2,XX,VAL

IF(ZL2.6E.LM)GEG TE 40

G0 TO 30
40 CONT I NUE

WRITE(S, 100)SUM
C HERE, THE CORRECTISN TERM FOR EQ. 2-15 1S CALCULATED AND ADDED TO
C THE FINITE RANGE INTEGRAL. i

CRFEI1=((2.+EPSR)*(EPSR-1.0))/(2.0*(1.0+EPSR))

CRFEI=CRFEI1/(3.0%x2L2%x2L2%x2L2)

WRITE(6, 100)CRFEI

A10=ALGG(KD*(1.0+EPSR)*SORT(N*N-1.0)/EPSR)

A11=(.5/S$)*ALOG((ZL2~SS)/(ZL2+S3))

A12=A11xA10

WRITE(6,100)A12

SI1=1.0/(2.0x(NxN-1.0))

S12=1.0-(2.0xKDxSQRT(NXxN-1.0))

SI=(L9-1.8)xS[1xSI2

WRITE(S6, 100)S1

CRFEI =A12+S1 +CRFE]

WRITE(6, 100)CRFE]

SUM=SUM+CRFE!

WRITE (6, 100)SUM

RF1=CSQRT(ALPHAXALPHA-1.0)

RF2=(0.,1.0)XCSQRT(N*N-ALPHA*ALPHA)

RF3=CSQRT(NxN-1.0)

RFE= (0., -1.0)*xCLOG( (RF1+RF2) /RF3)

C ANS IS FE OF EQ. 2-12.
ANS=RFE-(2./Fl)XSUM*CSQRT(N*N-ALPHA*ALPHA)
WRITE(S6, 100)RFE
WRITE(6, 100)ANS
iIF(ALPHA.EQ.0.)60 To 700

C THIS SECTION PERFORMS THE INTEGRATIOGN OF EQ. 2-14.

Cc S1 AND S2 ARE THE SAME AS BEFGRE.

XX KK X X X
2ZL1=0.
2L2=0.
SUMD=(0.,0.)
VALD=(0.,0.)

SP3=(1.0/(UREL*KD))*(I.0/(UREL*KD))
S3=CSART(SP3-ALPHAXALPHA+1.0)

Cc RECALCULATE THE LIMITS ARGUND. S3.
L7=.8xS83
L8=.99%xs3

L9=1.01xS3
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54

55

56

L10=1.2xs3
L11=2. 0xs83

NRITE(6,108)L7,

L1P=ALPHA
L2P=5. 0xALPHA

L8,L9,L10,L11

IF(RCX1.6T.0.)65 TO 60
IF(RCX2.6T.0.)68 To 70

GO To 80
CONT I NUE

IF(RCX1.LT.1.0E-05)GO T0 70
IF(L1IP.GT.L1)GE TO 55

ZL.1=L0
2L2=L1pP

CALL INTER(ZL1,

SUMD=SUMD+VALD
XD=X0+XXD
FL=10.0
WRITE(6, 109)FL,

ZL2,EPS,1024,DELTA,VALD,XXD,G)

ZL1,2L2,XXD, VALD

IF{L2P.GT.L1)66 TG 54

ZL1=L1P
ZL2=L2P

CALL INTER(ZL1,
SUMD=SUMD+VALD
XD=XD+XXD
FL=11.0
WRITE(6, 109)FL,
Z2l.1=L2pP

ZL.2=L1

CALL INTER(ZL1,
SUMD=SUMD+VALD
XD=XD+XXD
FL=12.0
WRITE(6, 109)FL,
GO TO 56
CONTINUE
Z2L1=L1P

ZL2=L1

CALL INTER(ZL1,
SUMD=SUMD+VALD
XD=XD+XXD
FL=13.0
WRITE(S, 109)FL,
GO TO S8
CONTINUE
2L1=L0

ZL2=L1

CALL INTER(ZL1,
SUMD=SUMD+VALD
XD=XD+XXD
FL=14.0
WRITE(6,109)FL,
CONTINUE
ZL1=L1

ZL2=L2

CALL INTER(ZL1,
SUMD=SUMD+VALD

ZL2,EPS,1024,DELTA,VALD,XXD,G)

ZL1,ZL2,XXD, VALD

ZL2,EP$,1024,DELTA,VALD,XXD,G)

2L1,2L2,XXD, VALD

ZLZ,EPS,1024,DELTA,VALD,XXD,G)

ZL1,2L2, XXD, VALD

ZLZ,EPS,1024,DELTA,VALD.XXD,G)‘

ZL1,2ZL2, XXD, VALD

ZL2,EPS,]024,DELTA,VALD,XXD,G)

191
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XD=XD+XXD
FL=15.0
WRITE(6,109)FL, ZL1, ZL2, XXD, VALD
IF(L3.6T.L4)60 TO 75 :
ZL1=L3
70 ZL2=tL4
IF(RCX1.LT.1.0E-05)ZL1=1.0E-05
CALL INTER(ZLI,ZLZ,EPS,1024,DELTA,VALD,XXD,G)
SUMD=SUMD+VALD
XD=XD+XXD
FL=16.0
WRITE(6,109)FL,ZL1,ZL2, XXD, VALD
75 CONTI NUE
Z2L1=L5
Z2L2=L56
CALL [NTER(ZL!,ZLZ,EPS,1024,DELTA,VALD,XXD,G)
SUMD=SUMD+VALD
XD=XD+XXD
FL=17.0
WRITE(S6, 109)FL, ZL1, 2L2, XXD, VALD
ZL1=L6
GO TO 80
76 CONTINUE
IF(L3.6GT.L7.0R.L6.GT.L7)GO TG 77
ZL2=L7 :
CALL INTER(ZL1,ZL2,EPS,IOZd,DELTA,VALD;XXD,G)
SUMD=SUMD+VALD
XD=XD+XXD
FL=18.0
WRITE(G,109)FL,ZL1,ZL2,XXD,VALD
ZL1=L7
77 CONTINUE
IF(L3.G6T.L8)GO TG 79
2L2=L8
CALL INTER(ZL],ZLZ,EPS.1024,DELTA,VALD,XXD,G)
SUMD=SUMD+VALD
XD=XD+XXD
FL=19.0
WRITE(6, 108)FL, ZL1, ZL2,XXD, VALD
78 CONTINUE .
Z2L1=L9
2L2=L10
CALL INTER(ZL]PZLZ,EPS,1024,DELTA,VALD,XXD,G)
SUMD=SUMD+VALD
XD=XD+XXD
FL=20.0
WRITE(6, 109)FL, ZL1, ZL2, XXD, VALD
ZL1=L10
ZL2=L11
CALL lNTER(ZLl,ZLZ,EPS,1024,DELTA,VALD,XXD,G)
SUMD=SUMD+VALD
FL=21.0
WRITE(S, 109)FL, ZLL1, ZL2, XXD, VALD
C ADAPTIVE INTEGRATION FOR DELTA.
80 CONTINUE
Z2L1=21.2
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ZL2=ZL1+TAUO
CALL INTER(ZL1,2L2,EPS, 1024, DELTA, VALD, XXD, G)
SUMD=SUMD+VALD
XD=XD+XXD
FL=22.0
WRITE(6, 109)FL, ZL.1, ZL2, XXD, VALD
IF(ZL2.GE.LM)GE TE 90
GS TG 80
90 CONT I NUE

S HERE THE CORRECTION TERM FOR EQ2-14 IS ADDED TS THE FINITE

C RANGE INTEGRATION.
CR1=(EPSR-1.0)*EPSR/ (1.0+EPSR)
CR2=.5%x(3.0+EPSR) / (1.0+EPSR)
CRDEL | =CR1xCR2 _
CRDEL=CRDEL1/(3.0%xZL2x2ZL2xZL2)
CRDEL2=EPSRx(UREL+1.0)/(1.0+EPSR)
CRDEL2=(1.0/ZL2) xALOG (CRDEL2)
CRDEL =CRDEL +CRDEL2

C SUMD IS THE INTEGRAL OF EQ.2-14
SUMD=SUMD + CRDEL :
WRITE (6, 100) SUMD
ANSD= (ALPHA/PI ) xSUMD

GJ TG 800

700 ANSD=0.

800 CONTINUE
WRITE(6, 100)ANSD
Ul=¢0.,-1.0)

U2=(0.,1.0) -
U3=U1*CSlN(U2*ANSD)/CCOS(U2*ANSD)

U4=CSQRT (NxN-ALPHAXALPHA)
U5?(U4+U2*ALPHA*U3)/CSORT(ALPHA*UGXALPHA*U3+N*N—ALPHA*ALPHA)
XAPH=U1x2. 0xCLOG (US) ~ANS

C XAPH1 IS THE RIGHT SIDE OF EQ. 2-21 WITH M=0.
XAPH]=XAPH/C$QRT(N*N-ALPHA*ALPHA)

C RFC 1S THE WIENER-HOPF REFLECTION COEFFICIENT OoF EQ. 2-9.
RFC=CEXP ( XAPHxU2)

C MAGR IS THE MAGNITUDE OF THE WIENER~HOPF REFLECTION COEFFICIENT.
MAGR=SQRT(AIMAG(RFC)*AIMAG(RFC)+REAL(RFC)*REAL(RFC))

C PHASE 1S THE PHASE O6F THE W-H REFLECTISGN COEFFICIENT.

PHASE=ATAN2(AIMAG(RFC), REAL (RFC) )
C PTR IS THE NORMALIZED TRANSMITTED POWER.
PTR=1. ~MAGRXMAGR :
WRITE(6, 100)KD
WRITE(6, 110)ALPHA, XAPH1, XAPH, MAGR, PHASE, PTR
CADM=(1-RFC)/(1+RFC) )
WRITE (6, 100) CADM
GO TO® 500 :
THIS SECTION OF PROGRAM IS NOT NECESSARY TG COMPUTE THE W-H
REFLECTION COEFFICIENT,BUT IT IS USED T& GBTAIN A MGRE EXACT
PROPAGATION COGNSTANT, :
FOR MORE DETAILS, CONSULT REFERENCE 5
ALPR=REAL (ALPHA)
KK XK XK XK XK X XK
EL=34.707209E-03
BESF=2. 0xKOXELXSQRT (ALPR*ALPR-1.0)
-BES1=BESSKO(BESF)

[t XeNeXe)
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KUE1=XAPH/(2.,O.)-KO*L*CSORT(N*N-ALPHA*ALPHA)
KUET=CSIN(KUE1)

UG=CCOS (U2xANSD)

us=usxus

Us=(1.0,0.)/Us
KUEZ=(-KD/PI)*UREL*CSQRT(ALPHA*ALPHA—I.0)
KUE2=KUEZ*(CSQRT(ALPHA*ALPHA-1.0)-ALPHAXU3)
KUE2=KUE2*BES1
KUE2=KUE2/CSQRT(N*N-ALPHA*ALPHA*UG)
WRITE(S,111)L

WRITE(6, 111)EL

WRITE(6, 111)KUE], KUE2

CONTINUE

SToP

END
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COMPLEX FUNCTIGN DELTA(X)

C COMPUTE THE INTEGRAND OF EQ.2-14,

COMPLEX 21,22, 23, 24, 25, 26, 27
COMPLEX UO, UN
COMPLEX ALPHA
REAL KD, EPSR, UREL, N, PI, |LAMDA
COMMON/PRMTRS/KD, EPSR, UREL, N, P1 , ALPHA
LAMDA=X '
UO=CSQRT (LAMDAXLAMDA +ALPHAXALPHA-1.0)
UN=CSQRT (LAMDAXLAMDA +ALPHAXALPHA - NXN)
Z1=UNXKD
22z(0.,-1.0)
28z(0.,1.0)
Z4=(22xCSIN(Z3%xZ1))/CCOS(23%x21)
25=1. 0+URELx (UO/UN) xZ24
Z6=EPSRxUQ+UNxZ24
27=1.0/ (ALPHAXALPHA +LAMDAXLAMDA )
DELTA=Z7% (CLOG(UDXEPSR) +CLOG(Z5) - CLOG(26) )
RETURN
END
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COMPLEX FUNCTIGN FEI (X)
C COMPUTE THE INTEGRAND OF EQ.2-15.
COMPLEX ALPHA, UN, UG
COMPLEX Y1,Y2,Y3,Y4,Y5,Y5,Y7
REAL KD, EPSR, UREL, N, PI1,AMDA
COMMGN/PRMTRS/KD,EPSR,UREL,N,PI,ALPHA
LAMDA=X
U0=CSQRT(LAMDA*LAMDA+ALPHA*ALPHA—1.0)
UN=C$QRT(LANDA*LAMDA+ALPHA*ALPHA-N*N)
Y1=UNxKD
Y2=(0.,-1.Q)
¥3=(0.,1.0)
Y4=(Y2*CSIN(Y3XY1))/CCGS(Y3*Y1)
Y5=(EPSR/(KD*SQRT(N*N-1.0)))*(Y4/UN)
Y6=EPSRxUQ+UNxY4
Y7=1.0/(LAMDA*LAMDA-(N*N-ALPHA*ALPHA))
FE]=Y7*(2.0*CLUG(U0)+CLOG(Y5)-CLGG(YS))
RETURN
END



SUBROUTINE INTER(A,B,EPS,NSTEP,FCN,VALUE,X,G).

C THIS SUBROUTINE PERFORMS A ROMBERSG INTEGRATION OF A CEMPLEX
C FUNCTIGN ALGNG THE REAL AXIS. ’

COMPLEX FcN,FCNA,FCNB,FCNXI,T,SUM, QX1,QX2,VALUE ,Q(16)
LOGICAL 6
H=B-A
FCNA=FCN(A)
FCNB=FCN(BR)
T=Hx (FCNA+FCNB) /2.
NX=1
N=1
K=2xxN
H=H/2.
SUM=(0.0,0.0)
DO 2 1=1,NX
X1=2. xFLOAT(1)-1.
FCNXI=FCN(A+X1 xH) :
SUM=SUM+FCNX |
T=T/2.+HxSUM
Q(N) = (T+HxSUM)x2.0/3.
IF ‘{N-2) 10,3,3
F=4.
D3 4 J=2,N
I=N+1-J
F=Fx4q4,
Q(I)=Q(l+1)+(Q(I+1)-Q(l))/(F-1.)
IF (N-3) 9,5,5
XREAL=ABS(REAL(Q(1)—Qx2))+ABS(REAL(Qx2-Qx1))
XIMAG=ABS(AIMAG(Q(1)-QXZ))+ABS(AIMAG(QX2-QX1))
X=AMAX1 (XREAL , XIMAG)
COMP=X-3. xEPS
IF (comMpP) 11,1
IF (NSTEP-K) 1
AxX1=Qx2
AX2=Q(1)
NX=NXx2
N=N+1
GO TO 1
VALUE=Q(1)
G=NSTEP.LT.K
RETURN
END

1,8
1,11,9
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FUNCTIOGN BESSKE(X) )
C THIS SUBPRGGRAM COMPUTES THE MODIFIED BESSEL FUNCTIGN oF A
C REAL ARGUEMENT. .
C THIsS SUBPROGRAM 1S NGT NECESSARY,BUT IT waAs USED TO OBTAIN A
C MOGRE ACCURATE PROPAGATIGN CONSTANT.
o] CONSULT REFERENCE 5 FOR MORE DETAILS
REAL 10,KMo
10=0.
KMO=0.
Z=X
IF(2Z.6E.2.)686 To 20
2=2/3.75 :
l0=1.0+3.5156229*Z*Z+3.0899424*(2**4)
10=10+1.2067492x(zxx8)
10=10+.2659732x (zxx8)
10=10+.0360468x%x(Zxx10)
10=10+.0045813x%(Zxx12)
222%x3.75
KMO=-IO*ALGG(2/2.0)-.57721566
KMO=KMO+.42278420*(2/2.)**2
KMO=KMO+.23069756¥(2/2.)**4
KMO=KMO+.O3488590*(2/2.)**6
KMO=KMO+.00262698*(Z/2.)**8
KMO=KMO+.00010750*(2/2.)**10
KMO=KMO+.00000740*(2/2.)*x12
GC TO 30
20 CONTINUE
KMO=1.25331414-.07832358*(2./2)
KMO=KMO+.02189568*(2./2)**2
KMO=KMO-:01062446*(2./2)**3
KMO=KMO+.00587872*(2./Z)**4
KMO=KMO'.00251540*(2./Z)**S
KMO=KMO+.00053208*(2./2)**6
: KMO=(KMO/SORT(Z))*EXP(-Z)
30 CONTINUE
BESSKO=KMO
RETURN
END
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