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Thesis directed by Dr. Ryan P. Starkey

Computer simulations of complex mathematical models are a powerful tool for design, but

they introduce uncertainties which can lead to poor design choices when simulation data is all that

is available. Additionally, computational grid generation can dramatically increases the costs asso-

ciated with initializing numerical simulations. Proper verification can help quantify the uncertainty

in numerical simulations, and a new form of code verification is presented. This is based on the

method of manufactured solutions for integral equations, which allows MMS to be used to verify

shock-capturing codes. A procedure is presented for numerically evaluating the required integrals,

and it is found to completely eliminate numerical error resulting from discontinuous integrand

functions. Integral MMS is demonstrated, and it is found to yield convergence rates that differ

by less than 5% from those obtained using differential MMS, and which match precisely with the

theoretical rates for discontinuous solutions. This indicates that integral MMS can be used for code

verification in place of differential MMS, which cannot be used with discontinuous solutions. Moving

grids can be used to allow computed fluid motion to generate the computational grid automatically.

The unique challenges associated with grid motion are explored, and multiple implementations are

discussed. A software library for fluid-mechanical simulation in unsteady coordinates is also in-

troduced. Preliminary verification of both the method and the library is discussed. The use of

unsteady coordinates affects accuracy and grid convergence rates in complex ways. This work lays

the foundation for future work on the use of moving grids in order to reduce the grid-generation

burden for design-oriented computational fluid dynamics.



Dedication

To my loving wife, for all her patience, support, and countless hours as an editor.



v

Acknowledgements

I want to thank all of those members of the Department of Aerospace Engineering Sciences

who contributed to this work. In particular, the members of my committee for the advice and

insights they provided, Dr. John Evans, who was instrumental in providing me a window into the

applied math world, and the many members of the Busemann Advanced Concepts Lab who were

always willing to listen to me talk about my work, even when I was so far in the weeds I couldn’t

see the sky.

I also want to express my gratitude to my advisor, Dr. Ryan Starkey, for his continued support

throughout this long process. He gave me my independence, worked with me tirelessly, and in every

way enabled the production of this dissertation.

I would be remiss if I didn’t also express my appreciation for my wife, who has kept the

family in groceries and kept me in good spirits, all while acting as an excellent ad-hoc, professional,

scientific editor.

Finally, I am especially grateful to God for all of the little things that didn’t go wrong, for

all the lucky decisions I made when I didn’t know any better, for my good health throughout my

dissertation, and for the circumstances of my life that enabled me to contemplate graduate school

in the first place.



Contents

Chapter

1 Introduction 1

1.1 Integrative, Shock-Capturing, Method of Manufactured Solutions . . . . . . . . . . . 4

1.1.1 Integral Manufactured Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Evaluation of Multidimensional Integrals of Discontinuous Functions . . . . . 5

1.1.3 Implementing Integral Manufactured Solutions . . . . . . . . . . . . . . . . . 6

1.2 Elimination of Mesh Generation Via Hui’s Unified Coordinates . . . . . . . . . . . . 7

2 Multidimensional Integration of Discontinuous Functions 9

2.1 Background on Numerical Integration and Available Tools . . . . . . . . . . . . . . . 11

2.1.1 Monte Carlo Methods vs. Quadrature . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Available Software Tools for Quadrature . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 General Mathematical Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 The Adaptive Genz-Malik Algorithm . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Mathematical Software Environments . . . . . . . . . . . . . . . . . . . . . . 15

2.1.6 Mapping Smooth Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 High-Performance, High-Accuracy Evaluation of Multidimensional Integrals of Dis-

continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Conceptual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



vii

2.2.2 nquad: Adaptive, Iterative, Controllable Integration in Python . . . . . . . . 27

2.2.3 Automatic Evaluation of Multidimensional Integrals of Discontinuous Func-

tions using scipy.integrate.nquad . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Accuracy and Performance of the Integration Procedure . . . . . . . . . . . . . . . . 41

2.3.1 The Integration Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Integration Timing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Verification and the Integrative Method of Manufactured Solutions 53

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Manufacturing Integral Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Choice of Manufactured Solutions . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Computation of Flux and Source Functions . . . . . . . . . . . . . . . . . . . 62

3.3.3 Evaluation of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Computational Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Code-order Verification in the Presence of Discontinuities . . . . . . . . . . . 71

3.5.2 NUMERICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.3 BACL-Streamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.4 Verification Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.5 Measured Convergence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 The Unified Coordinate System 81

4.1 Background on the Unified Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 The Euler Equations in Unified Coordinates . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



viii

4.2.2 The Unified Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3 The Three-dimensional Euler Equations . . . . . . . . . . . . . . . . . . . . . 96

4.3 Unsteady Grids and Grid Motion Control . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Grid-angle Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Jacobian Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.3 Comments on Grid Motion Control . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Solving the UCS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1 Multidimensional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 The Riemann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Transformation to grid components . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.2 Eigensystem of the grid-aligned equations . . . . . . . . . . . . . . . . . . . . 109

4.5.3 Riemann invariants and rarefaction wave relations . . . . . . . . . . . . . . . 112

4.5.4 The Rankine-Hugoniot conditions and shock wave relations . . . . . . . . . . 113

4.5.5 Slip lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.6 The one-dimensional Riemann problem in the unified coordinates . . . . . . . 115

4.5.7 Spatial accuracy and boundary interpolation . . . . . . . . . . . . . . . . . . 115

4.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Dimensional Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.2 Finite Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7.1 Diamond shock train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7.2 Transonic duct flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7.3 Basic boundary-layer effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7.4 Model inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.8 Code Development and Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8.1 Streamer v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8.2 Streamer v2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



ix

4.8.3 Streamer v2.0 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8.4 Streamer v3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8.5 Streamer v3.0 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.9 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.9.1 A first cut at better boundary conditions . . . . . . . . . . . . . . . . . . . . 147

4.9.2 Singular points in UCS flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.9.3 Accurate adherence to boundary surfaces . . . . . . . . . . . . . . . . . . . . 149

4.9.4 Dynamic grid separation into structured blocks . . . . . . . . . . . . . . . . . 150

4.9.5 Verification of Streamer v3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5 Conclusion 152

5.1 Verification of Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Automatic Grid Generation and UCS . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 158

Appendix

A scipy.integrate.nquad 163

B BACL-Manufactured 168

B.1 integration.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.2 base equation.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.3 Equation-specific Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.3.1 heat equation.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.3.2 Euler UCS.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



x

C Streamer Fortran Core 200

C.1 Streamer v3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.1.1 setup.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.1.2 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C.1.3 GeneralUtilities.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.1.4 Riemann.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.1.5 Godunov.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.1.6 GeneralUtilitiesTester.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

C.1.7 Riemann tester.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

C.1.8 Godunov tester.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

C.1.9 test program.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

C.1.10 Godunov driver.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



xi

Tables

Table

2.1 Comparison of Quadrature Libraries and Algorithms . . . . . . . . . . . . . . . . . . 18

2.2 Test Riemann Problem Initial States . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Integration of Discontinuous Functions – Timing . . . . . . . . . . . . . . . . . . . . 50

2.4 nquad Integration Dimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Convergence of NUMERICA for Various Flow Variables and Norms . . . . . . . . . 74

3.2 Choice of Grid Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Measured Convergence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Figures

Figure

1.1 The Project Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Quadtree-based Automatic Grid Refinement . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Iterative Integration of a Three-dimensional Integrand . . . . . . . . . . . . . . . . . 24

2.3 nquad Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Automatic Evaluation of Discontinuous Integrals using nquad . . . . . . . . . . . . . 34

2.5 Discontinuities and their Children . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Discontinuities Object Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Integration Testing Using the Heat Equation . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Integration Testing Using the Euler Equations, pt. 1 . . . . . . . . . . . . . . . . . . 47

2.9 Integration Testing Using the Euler Equations, pt. 2 . . . . . . . . . . . . . . . . . . 49

2.10 nquad Integration Dimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 NUMERICA Grid Convergence of Various Norms . . . . . . . . . . . . . . . . . . . . 74

3.2 1-Dimensional Smooth and Discontinuous Manufactured Solutions . . . . . . . . . . 77

3.3 Smooth MMS Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Discontinuous Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Automatically Generated Grid Around a Complex Body . . . . . . . . . . . . . . . . 86

4.2 Automatically Generated Grid Around an Oscillating Airfoil . . . . . . . . . . . . . 87

4.3 Shock-induced Boundary-layer-separation and Recirculation . . . . . . . . . . . . . . 88



xiii

4.4 General Structure of the 1D, Unsteady Riemann Problem . . . . . . . . . . . . . . . 114

4.5 Computed Mach Number for Under-Expanded Nozzle Flow . . . . . . . . . . . . . . 119

4.6 Time-Lapse Images of Transonic Duct Flow . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Accuracy Comparison Between Moving and Stationary Grids . . . . . . . . . . . . . 121

4.8 Channel Flow With a Turbulent Boundary Layer . . . . . . . . . . . . . . . . . . . . 122

4.9 Diagram of USAF F-14 Tomcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.10 Mach Number in F-14 Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.11 Two-dimensional, Steady-state Riemann Problem . . . . . . . . . . . . . . . . . . . . 128

4.12 Streamer 2.0, 2-D Riemann Problem, Stationary Grid . . . . . . . . . . . . . . . . . 129

4.13 Streamer 2.0, 2-D Riemann Problem, Moving Grid . . . . . . . . . . . . . . . . . . . 130

4.14 Streamer 2.0, 2-D Riemann Problem, Convergence . . . . . . . . . . . . . . . . . . . 132

4.15 Streamer 2.0, L2 Error for an Oblique Shock . . . . . . . . . . . . . . . . . . . . . . 134

4.16 Streamer 2.0, Oblique Shock, Pressure Error . . . . . . . . . . . . . . . . . . . . . . . 135

4.17 Streamer 2.0, Prandtl-Meyer Expansion Wave Convergence . . . . . . . . . . . . . . 136

4.18 Streamer 2.0, Prandtl-Meyer Expansion Wave Streamlines . . . . . . . . . . . . . . . 137

4.19 Two-dimensional, Cell-centered Grid with Ghost Points . . . . . . . . . . . . . . . . 141

4.20 The Flow of Information in the Streamer v3.0 Fortran Core . . . . . . . . . . . . . . 142



Chapter 1

Introduction

The modern world, with all its conveniences and progress, has largely been shaped by succes-

sive attempts to design tools that are more powerful, more efficient, and more specialized. In the

past, many of these designs have come from flashes of insight, mathematical analysis, or trial-and-

error, but all of these sources have become less reliable as we have pushed the bounds of possibility

and the acceptable design space has become more constrained. This can be clearly seen in the

evolution of aircraft design. First, the Wright brothers tested airfoil shapes in order to achieve the

first powered flight [1, 2]. Later designers used specialized wind tunnels and scale models along

with simple mathematical tools in order to design the aircraft that fought both world wars. As

system performance requirements increased, ever more detailed tests and models were required, to

the point where current system design cycles may last for decades, and yet still have serious design

issues that are only discovered in testing of the full, integrated system [3]. A similar trend can be

seen across every field of human endeavor, from business to sports to politics, where increasingly

complex designs are required in order to expand the performance envelope. Since it is unlikely

that performance requirements will ever go down, it is critical that we develop ways to incorporate

quantitative, high-fidelity tests and models early in the design process.

The development and use of numerical simulation tools during the twentieth century repre-

sented a revolution in engineering design [4,5]. Numerical simulations allowed analysts and design-

ers to use physics-based mathematical models to predict the behavior of complex systems directly,

rather than relying on the greatly simplified models that were required in order to obtain analytic
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solutions [6]. These improved models can reduce the uncertainty in predictive analytics, thus al-

lowing users to identify workable design points more quickly in an ever-more-constrained design

space [4,5]. If this can be done early in the project lifecycle, then the information provided can be

used to dramatically reduce the incidence of missed deadlines, cost overruns, and other setbacks

that can lead to project failure in severe cases [7].

The lifecycle of a complex project can be divided into several distinct steps, as shown in

figure 1.1, ranging from initial conception through development and on to logistics and maintenence.

Many of the most critical design decisions are made during the early design phases (Concept

of Operations, System and Sub-system Requirements). These decisions have a tremendous effect

on the overall success of the project, yet they must be made in an extremely information-poor

environment. The development and regular use of powerful predictive tools may allow designers to

somewhat remedy this information deficit, provided the tools are accessible and reliable enough to

incorporate early in the normal development process [6].

Unfortunately, powerful computational tools have historically been unwieldy and have often

required specialized experts to use them [6]; it has not been uncommon for a dedicated team to

spend weeks simply setting up a numerical simulation, much less the time required to obtain a

solution. In the early design stages, one frequently desires to simulate several different designs

simultaneously, and one may need to turnaround the results overnight [6]. Under such constraints,

detailed numerical simulations simply do not make sense for many applications.

Additionally, the codes used to perform numerical simulations are quite feature-rich and

complex, providing functionality for distributed-memory parallelism, data I/O, and pre- and post-

processing, in addition to the numerical solution being implemented. As a result, these codes are

normally too complex for developers to easily and reliably verify–that is, it is difficult to establish

definitively the accuracy with which these codes are solving the underlying mathematical model

upon which they are based [9]. This is extremely important, as it allows project managers to make

critical design decisions based on the results of numerical simulations, with a reasonable knowledge

of the error that these simulations are expected to contain.
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Figure 1.1: The Project Life Cycle [8]. At present, most high-fidelity tools for predictive analysis
are used primarily at the Component Detailed Design level and later, because of the effort that
they require. Unfortunately, many critical decisions are made earlier, during the Conceptual and
Requirements phases. Making numerical simulations more reliable and simpler to use will help them
to be more useful in the very early stages of design.
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In this dissertation, I have investigated and developed solutions that aim to address these

issues. First, I have developed a new method for establishing reliably the accuracy with which a given

numerical simulation tool solves its computational model, even in the presence of discontinuous

solutions. This is a critical capability in many fields, including especially high-speed aerodynamics,

because it allows developers to quickly, easily, and thoroughly test their codes after every algorithm

change or feature addition [6, 9]. Second, I have developed a software package for simulation of

inviscid, compressible fluid flows without the prior generation of a computational grid. Because

grid generation accounts for a large portion of the difficulty of running numerical simulations [6],

it is anticipated that eliminating this step will greatly simplify the use of simulation tools in the

early stages of product design cycles, where they would be the most valuable.

1.1 Integrative, Shock-Capturing, Method of Manufactured Solutions

Establishing the accuracy of numerical simulation tools is an important step in the advance-

ment of numerical methods, and much work has been done in this field over the years. [9, 10] As a

result, the method of manufactured solutions has developed into a widely accepted, general method

for establishing the accuracy with which a given numerical simulation code solves its underlying

equations. Verification using manufactured solutions is now accepted as the gold-standard method

for demonstrating that a code correctly implements the numerical models upon which it based [11],

and this has allowed developers to, for the first time, establish a finite testing regime that provides

rigorous estimates for the error levels one should expect to find in solutions the code provides [9,12].

Unfortunately, the method of manufactured solutions has historically been useable only for verifica-

tion of smooth problems [9,12,13]. As a result, codes which simulated important problems involving

shocks, discontinuous interfaces, or other non-smooth solution behavior were not able to be verified

in this way.

The method of manufactured solutions has historically been inherently unsuited to the ver-

ification of shock-capturing codes because it explicitly requires that the verification solutions be

everywhere differentiable. [9] A code that is intended to simulate discontinuous systems such as
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supersonic, inviscid fluid flows cannot be verified against smooth solutions alone, because smooth

solutions will not exercise the aspects of the code that deal with discontinuities, such as flux limiters.

Several researchers including myself have focused on this problem in recent years, [14–16] with an

emerging consensus that integral methods provide a direct extension of the method of manufactured

solution to the verification of shock-capturing and other discontinuous numerical simulations.

1.1.1 Integral Manufactured Solutions

Integral manufactured solutions result from a straightforward application of the method of

manufactured solutions to the weak, or integral form of systems of differential equations [15–17].

Unfortunately, practical implementation difficulties have precluded their use until recently. Differ-

ential manufactured solutions are implemented by analytically operating a system of differential

equations on a given manufactured solution, in order to obtain analytic source terms that can be

used to drive the code being verified [9, 13, 18]. This naturally causes problems when applied to

discontinuous solutions, such as those encountered in shocked flows, because these solutions are,

by definition, non-differentiable. Operation of an integral system of equations on a discontinuous

solution presents no such difficulty, as there is no explicit requirement that the solution be differ-

entiable in order to integrate it with respect to its arguments. As a result, it is possible to directly

apply the methodology of manufactured solutions to shocked and other discontinuous solutions,

provided that an integral mathematical model is used [15,16].

1.1.2 Evaluation of Multidimensional Integrals of Discontinuous Functions

Unfortunately, integral equations are much less amenable to analytic evaluation than are

differential equations. For complex mathematical models and the complex manufactured solutions

required to verify the codes that solve them, analytic evaluation of the multidimensional integrals

involved is impossible, and one must resort to quadrature techniques for numerical integration

[15,16]. As the results of these integrals are used to prove/disprove the accuracy of other codes, it

is critical that the integrals be evaluated as accurately as possible. As many such integrals must
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be evaluated, computational efficiency is also crucial. Widely available numerical integration tools

are poorly suited to accurate, efficient evaluation of multidimensional integrals of discontinuous

functions when grid faces are not shock-aligned [15]. In chapter 2, I present a new method for

accurately evaluating such integrals, based on a new technique for mapping discontinuities through

one-dimensional integration operators. I also present a verification of this integration method which

demonstrates the extreme accuracy that it obtains. Finally, I present the results of timing tests

which firmly establish the utility of this new method.

1.1.3 Implementing Integral Manufactured Solutions

Once the problem of integration is resolved, implementation of integral manufactured solu-

tions can be addressed. Verification using manufactured solutions has typically relied on symbolic

algebra software and code generation in order to manage the complexity of the symbolic manipu-

lations involved [9,19]. Integral manufactured solutions benefit from the same treatment; symbolic

manipulators and code generation can be used to dramatically reduce the burden of preparing

integrals for numerical evaluation. In chapter 3, I present a software package that I developed

using open-source computational tools in order to automate the generation of both differential and

integral manufactured source terms for general systems of equations. I also show how this package

can be used in the verification of numerical simulation software, by presenting the verification of

an in-house Euler equations solver. Verification is performed using differential and integral manu-

factured solutions, exact solutions, and also an independent, third-party code. The results of these

are compared, and integral manufactured solutions are found to compare favorably with differential

manufactured solutions for smooth problems. For discontinuous problems, integral manufactured

solutions encounter no difficulties, and perform at a level that is on par with exact discontinuous

solutions, where these are available.
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1.2 Elimination of Mesh Generation Via Hui’s Unified Coordinates

Making numerical simulation tools available to early-stage designers is important to the

success of future design projects, but accomplishing this requires a clear understanding of the

underlying problems. Numerical simulation tools have made tremendous strides in model accuracy,

algorithm efficiency, and problem size, yet these have resulted in design improvements only later

the project life cycle. The critical difficulty that must be overcome is no longer the numerical

simulation itself, but rather the time and effort required to set up a simulation in the first place [6].

Experience shows that, for designers who are not expert in numerical simulations, the set-up costs

may be substantially higher than the eventual run-time costs. In the early stages of a project, when

several designs may need to be evaluated each day, this initial startup cost us simply unacceptable,

and so projects must do without the additional information that modeling and simulation could

provide, until after many of the most critical design decisions have been made.

One of most important startup costs inherent in most numerical simulations is the generation

of a computational grid upon which to represent the mathematical model equations [6]. Grid gen-

eration, which essentially represents a particular discretization of space and time (the independent

variables in a simulation), can have unexpectedly large effects on the results of any given simula-

tion. That is, a poor choice of computational grid can dramatically increase error in the results of

the simulation, even if the equations remain unchanged [20, 21]. Therefore, it is critical that the

model equations be discretized onto a grid that is “good”. Unfortunately, “good” essentially means

“yields computational results with the expected level of accuracy”, and is often only recognizable a

posteriori. Many techniques have been proposed to automate the process of generating high quality

grids, yet all of these require some level of end-user involvement in order to obtain satisfactory

results.

One class of techniques for automatic grid generation that shows some promise defines the

grid together with the system being modeled. That is, the spatial discretization is chosen based on

the state of the simulation variables. In the field of fluid mechanics, this can be done by allowing
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the grid to move in some way that is correlated with the motion of the fluid itself. Defining an

unsteady grid in this way allows the bulk of the grid to be automatically generated and tailored

to the particular flow being modeled, which can result in a higher-accuracy simulation overall.

In chapter 4, I present a software package that I developed to numerically model inviscid fluid

flows on moving computational grids. The structured-grid method I used is based on Hui’s unified

coordinate system [21], which uses grid points that move with a velocity vector proportional to

the fluid velocity vector. The software package presented in chapter 4 has been through several

development versions, and I have included a brief discussion of these in order to present the insights

and lessons learned from this development process. I also present several demonstration problems, in

order to showcase how Hui’s unified coordinates may eliminate some of the startup costs associated

with numerical simulations, and thus make fluid simulation tools available much earlier in the

project design process.



Chapter 2

Multidimensional Integration of Discontinuous Functions

As introduced in chapter 1, one of the key requirements for the use of numerical simulations in

early design stages is a means of verifying the accuracy of the computer codes that perform these

simulations. For many important classes of simulations, integral manufactured solutions provide

a natural extension of the differential method of manufactured solutions that has been used to

great success in many fields of numerical simulation, yet they encounter no problems when used

to verify the accuracy of a code in the presence of discontinuous solutions. Unfortunately, integral

manufactured solutions do require the evaluation of multidimensional integrals of complicated,

discontinuous functions to a high degree of accuracy, and this must be done many times. To do

this in general requires the use of a numerical integration routine that can efficiently evaluate

multidimensional integrals of discontinuous functions to a high degree of accuracy.

Software that is used for the verification of computer codes faces special challenges with

respect to overall accuracy, because of the nature of software verification. In effect, verification

software is used to prove the inaccuracy of codes written by others. In such an application, accuracy

is absolutely critical. Any inaccuracy in the verification software undermines the overall trust in the

verification procedure itself, which may lead to false-positive and false-negative verifiaction tests,

which can undermine the entire procedure of software verification, essentially leading researchers

to discount the procedure completely.

To resolve this difficulty, traditional MMS has relied on the inherent differentiability of manu-

factured source terms using symbolic algebra tools. [9,19] MMS libraries may even include arbitrary-
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precision arithmetic in order to further guarantee that the manufactured source terms are computed

as accurately as possible. [19,22] Unfortunately, this is not typically an option for integral manufac-

tured solutions. The complex functions that arise from the operation of many mathematical models

on sufficiently general manufactured solutions simply do not admit analytic integration solutions

to be found. As a result, one must instead rely on numerical integration tools.

The tools used in numerical integration yield, of necessity, approximate solutions to integrals.

As a result, introducing numerical integration into the MMS algorithm must therefore introduce

error into the manufactured source terms. Because this error leads to ambiguity in the reliability of

MMS verification, it must be kept small. Research into integral MMS is still in its early stages [15–

17], and so the exact amount of error that can be tolerated is not yet well-understood. As a result,

I have chosen to require the highest level of accuracy that can be obtained using widely available

tools for smooth functions, and a negligible increase in error for discontinuous functions. Although

this may be computationally inefficient, it will provide a reference against which to compare future

algorithms that take a more balanced approach to compational accuracy and efficiency.

The remainder of this chapter will be structured as follows. First, I will discuss some of the

readily available computational tools for numerical integration using quadrature, as well as some

of the newer algorithms that have particular bearing on the calculation of integral manufactured

solutions. Second, I will discuss a method for handling discontinuous integrand functions in such

a way as to allow standard quadrature tools to integrate them accurately. This will include a

conceptual overview of the method, extensions to the SciPy quadrature package that were required

in order to implement it, and an additional symbolic manipulation package in Sympy that automates

the process of integrating discontinuous functions. Third, I will demonstrate both the accuracy and

the computational performance of this integration procedure using several real-world problems

drawn from the context of integral manufactured solutions.
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2.1 Background on Numerical Integration and Available Tools

2.1.1 Monte Carlo Methods vs. Quadrature

Numerical integration methods can be organized into two broad categories, based on how

they fundamentally approach the evaluation of integrals. The first of these categories contains the

various Monte Carlo methods. These methods, are extremely simple, and they are also incredibly

robust. In addition, they are inherently multidimensional. Monte Carlo methods evaluate integrals

by exploiting the statistical property given in equation (2.1), where xjR are random numbers chosen

from within the integration volume V .

lim
n→∞

1

n

n∑
i=1

f (x0R, x1R, ..., xmR) =

∫
V
f (x0, x1, ..., xm) dx0dx1...dxm (2.1)

In effect, this means that one can evaluate a multidimensional simply by randomly sampling

the integrand function within the integration domain and averaging the results. Additionally, there

is no particular additional cost associated with the integration of higher-dimensional functions,

beyond the generation of additional random numbers. Because of this multidimensionality, as well

as the ease with which integrals can be computed for poorly behaved functions or over compli-

cated integration domains, Monte Carlo methods are widely used throughout applied mathematics.

Unfortunately, these benefits come with a cost. Monte Carlo methods, while robust, are not very

accurate, and the numerical approximation to the integral converges to the exact answer at a rate

proportional to
√
n. For applications where high accuracy is required, such as verification using

manufactured solutions, this rate is simply too slow to be efficient.

The second primary category of numerical integration tools is quadrature methods. Unlike

Monte Carlo methods, quadrature methods generally evaluate integrals by fitting the integrand

function to a polynomial, and then computing the integral analytically. As a result of this different

approach, quadrature schemes are sensitive to the smoothness of the underlying integrand func-

tion, and they are also generally (but not always) defined in terms of one-dimensional integration

operators. As a result, evaluating multidimensional integrals with quadrature methods typically
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requires a number of function evaluations that grows exponentially with the dimensionality of the

integral. Despite these limitations, quadrature methods are extremely useful for many applications,

because they are significantly more accurate for smooth functions. Provided that care is taken with

discontinuities, quadrature methods are sufficient for evaluating the numerical integrals that are

typical in the context of integral manufactured solutions.

2.1.2 Available Software Tools for Quadrature

Development of a new technique for numerical integration is a significant investment, and one

that should not be undertaken lightly. There are many different computational tools for numerical

integration that are both available and well established, including general mathematical libraries,

specific packages for multidimensional integration, and proprietary software environments. These

tools use a variety of algorithms and provide a wide array of capabilities which form a strong

foundation for any project that relies on accurate numerical integration. Unfortunately, none of

them provides the total capability required for accurate integration of multidimensional functions

in the context of integral manufactured solutions. Specifically, for integrand functions containing

arbitrary embedded surfaces where the integrand might jump arbitrarily, there was no tool available

that was capable of evaluating multidimensional integrals of these functions to a high degree of

accuracy and within a reasonable time frame, that was also conveniently incorporated with external

C and Fortran code.

Through the course of scientific and mathematical research, software has been developed

to solve many different mathematical problems under various constraints. Much of this software

never leaves the immediate research environment in which it was created, and this software remains

largely inaccessible to the wider scientific community, especially outside of the specific application

area for which it was developed. Other software may find its way into commonly used libraries,

such as SLATEC (named for Sandia, Los Alamos, Air Force Weapons Laboratory Technical Exchange

Committee) or the GSL (the GNU Scientific Library). Software in these general-purpose libraries

often becomes foundational code upon which more advanced codes and algorithms rely. Occasion-
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ally, research software will be packaged and released independently by the groups responsible for its

creation Many such codes are recorded in the NIST Guide to Available Mathematical Software [23].

Because packaging and maintaining research software for external users imposes a substantial bur-

den on the code developers, such codes are often difficult to use and/or unmaintained. Finally,

commercial providers of scientific computing environments such as Matlab and Mathematica will

compile and maintain packages of useful mathematical and scientific functions in order to add value

to their products. I will discuss each of these, and show how they have been insufficient for the in-

tended application, namely fast, accurate evaluation of multidimensional integrals of discontinuous

integrand functions in an academic research environment.

2.1.3 General Mathematical Libraries

The first category of mathematical software that is available for integration is that found in

large, general-purpose software libraries. Of these, the archetypical example is SLATEC, a publicly

available library which was developed jointly among the U. S. Department of Energy and the

Air Force to provide a set of common mathematical routines. The netlib repository [24] houses

the official reference implementation of SLATEC, including the official reference implementation for

BLAS (Basic Linear Algebra Subprograms). In particular, SLATEC [25] also contains the QUADPACK

[26] subpackage, which provides a variety of routines for numerical integration of one-dimensional

functions.

Because the various SLATEC subpackages have been publicly available for so long, they have

been implemented in a wide variety of languages and for many different environments, and the

basic application program interface (API) forms a de facto standard for mathematical software.

The QUADPACK subpackage exists largely unchanged in the GNU Scientific Library (GSL) [27], and

also within the SciPy library [28]. QUADPACK provides integration routines based largely on adaptive

quadrature. These include special algorithms for infinite intervals, weighted integrals, integrals with

known internal singularities, and others. Many of these are based on Gauss-Kronrod quadrature

and yield highly accurate results for most integrals.
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Unfortunately, the QUADPACK routines require that the integrand be provided as a function

y = f (x), with no provision for additional arguments. This greatly complicates the integration of

multivariate functions. This same difficulty is encountered in many variants of QUADPACK, including

the GSL.

The SciPy Python library provides a mechanism to work around the univariate limitation in

QUADPACK, which it uses QUADPACK as a back-end for the scipy.integrate package. This makes it

much easier to evaluate integrals of multivariate functions in SciPy, rather than using QUADPACK

directly. Unfortunately, the default routines for multidimensional integration in SciPy, dblquad and

tplquad, do not allow for detailed control of the integration, and they are limited to two and three

dimensions, respectively.

Commercial libraries are available that provide much more powerful mathematical tools than

those contained in open-source repositories such as SLATEC and the GSL. Unfortunately, many

of these are too expensive for the typical academic research budget to accommodate, and they

typically come with licensing restrictions that can limit how widely they are used. As a result, high-

end libraries are typically unsuitable for the purposes of academic research development, especially

when there is no clear evidence that they will be better able to solve the specific problems associated

with discontinuous integrand functions.

To summarize, most general-purpose mathematical libraries offer a set of numerical integra-

tion techniques that is similar to or derived from the QUADPACK reference library. As a result, they

are quite capable of evaluating one-dimensional integrals of many different mathematical functions.

Unfortunately, they often face substantial difficulties for multidimensional integrals. Commercial

software libraries are much better in this regard, but they are typically unavailable to most re-

searchers.

2.1.4 The Adaptive Genz-Malik Algorithm

Most deterministic routines for evaluation of multidimensional integrals are based on one-

dimensional integration rules such as those discussed in section 2.1.3. However, the Genz-Malik
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scheme is an important algorithm that attempts to reduce the number of required function evalua-

tions by approaching the multidimensional integration problem directly. The principal innovations

of the Genz-Malik scheme are a reduced number of points at which a function must be evaluated,

and a multidimensional adaptation scheme that progressively refines the integration domain in a

fully multidimensional way. Grid refinement is done by progressively halving the integration do-

main along coordinate axes until the required accuracy is achieved, resulting in a refinement scheme

that is conceptually similar to the quadtree scheme shown in figure 2.1. Unfortunately, this does

not allow Genz-Malik to fit discontinuous integrand with critical surfaces that do not align with

coordinate axes.

The Genz-Malik algorithm has been incorporated into many mathematical libraries, including

the NAG Scientific Library [29] and the Mathematica software environment. [30] It is also publicly

available as part of the Cuba [31] and Cubature [32] libraries. Although extremely effective in many

cases, the Genz-Malik algorithm is not able to precisely subdivide integration regions along general

discontinuous surfaces, because of how it refines the integration by halving along coordinate axes.

2.1.5 Mathematical Software Environments

Perhaps the most widely known methods for numerical integration are those encountered in

dedicated mathematical software environments, such as Matlab, and Mathematica. These environ-

ments are fully self-contained programs that are designed principally to enable rapid development

of powerful mathematical software. Matlab is more principally concerned with numerical compu-

tations, while Mathematica is best known for its symbolic math capabilities, but there is a great

deal of overlap between the various packages. In particular, both environments contain various

algorithms for numerical integration of functions, and the widespread availability of both Matlab

and Mathematica in academic environments makes them attractive use in scientific computing.

The Matlab environment is best known for its linear algebra capabilities, but it includes

many additional features, including the integrate function for one-dimensional numerical inte-

gration. Unfortunately, it is difficult to determine exactly what methods the Matlab integration
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I II

I II

Figure 2.1: Quadtree-based Automatic Grid Refinement. An example multidimensional, discontin-
uous function can be given by two smooth regions I and II, separated by a critical surface where the
function jumps discontinuously. One technique for evaluating such integrals is based on automatic
grid refinement, as shown. The integral is evaluated, and an estimate of the error is obtained. If
the error falls above a given threshold, the integration domain is subdivided along coordinate axes.
This process is repeated until the estimated error falls below the threshold. Although accurate, this
process is computationally expensive, because each subdivision of the integration domain must be
treated as a separate integration problem.
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routines are using. Based on the Matlab product documentation, it is clear that integrate is

some kind of adaptive integrator, with the capacity for user-defined subdivisions much like that

found in QUADPACK. Matlab’s multidimensional routines also apparently include some kind of two-

dimensional integration as an option, as well as the more common iterated integration. However,

these multidimensional routines do not have any provision for user-defined subdivisions as the one-

dimensional routines do, and so it is clear is that Matlab does not have the capability to naturally

handle curvilinear discontinuities in functions. It is roughly comparable to the subset of QUADPACK

routines that does not include weighting functions, except that it is proprietary, and it is more

difficult to integrate with external software.

Wolfram’s Mathematica software is an extremely powerful tool for mathematical computa-

tion. It is best known for its ability to handle complex symbolic mathematics and it also includes

many numerical tools for when symbolic solutions cannot be found. For integration, this is the

NIntegrate function.

Mathematica’s symbolic features make it the most powerful tool available for the purposes

of integrating discontinuous functions. Because the discontinuity is encoded within the function

being evaluated, Mathematica can analyze that integrand directly, and process it accordingly in

order to speed up computation. As is the case with Matlab, the exact mechanisms through which

Mathematica does this are not publicized. A few bullet points of explanation are given in the Wol-

fram Language & System Documentation Center [30]: “NIntegrate uses symbolic preprocessing to

resolve function symmetries, expand piecewise functions into cases, and decompose regions spec-

ified by inequalities into cells.”; and the MultiDimensional integration method use the adaptive

Genz-Malik algorithm. Access to the symbolic form of the integrand function and the ability to

pre-process it to improve integration efficiency is an extremely powerful ability for numerical inte-

gration. Unfortunately, like Matlab, the proprietary nature of Mathematica makes it more difficult

to integrate with external software.
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2.1.6 Mapping Smooth Regions

There is one final method that must be mentioned, particularly within the present context of

software verification. Grier et al. published a paper in August, 2014 [15] that specifically discusses

methods for integration for discontinuous integrand functions. Their method relies on identifying

the shock topology in a given integration domain, and mapping the smooth regions to regular geo-

metric shapes. This method is exciting and promising, as it effectively fits the discontinuities that

must be integrated, which leads to extremely accurate results. Unfortunately, the details of their

approach have only been demonstrated for two-dimensional problems, and complex interactions

among multiple discontinuous surfaces are not yet possible. Therefore, although extremely inter-

esting, their method is not yet well-developed enough for the three- and four-dimensional integrals

that I must consider.

Table 2.1: Comparison of Quadrature Libraries and Algorithms. In order to accurately evaluate
integrals of discontinuous functions, a quadrature function must have several major characteristics:
it must be able to evaluate multidimensional integrals; it must have some provision for handling
points where the integrand may jump discontinuously; it must be freely available to the users
who drive adoption; it must provide detailed access to the integration procedure. Detailed access
means that the user can appropriately provide the integrator with available knowledge about the
integrand function in order to speed evaluation and improve accuracy. Free availability of the library
or algorithm is important because the intended application of this integrator, verification of codes,
needs to be accessible to all potential users. Only Grier’s algorithm provides all of these, but it has
not been proven for 3- and 4-dimensional problems.

Detailed
Multi- Discontinuity Freely Integration

dimensional Handling Available Control

Libraries QUADPACK * * *

GSL * * *

SciPy * * *

Matlab * *

Mathematica * * *

Algorithms Genz-Malik * *

Grier * * * *
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2.1.7 Conclusion

Of the many computational tools available for numerical evaluation of integrals, several offer

significant promise for use with discontinuous integrand functions. One might attempt to build

upon the foundation of basic, one-dimensional rules such as those found it QUADPACK, one might

try to use one of the Genz-Malik implementations, or one could build the capability around the

use of proprietary software such as Mathematica. The correct choice will naturally be application-

dependent. For my purposes, the intended application is to enable fast, accurate evaluation of

multidimensional integrals of discontinuous functions, so that one might implement an integral

form of the method of manufactured solutions for software verification. In order to allow such

verification software to be widely used, the tools required must be available under a permissive

license and in a widely used environment. As a result, I have chosen to build a new integration tool

based on the QUADPACK library which underlies the scipy.integrate package.

2.2 High-Performance, High-Accuracy Evaluation of Multidimensional In-

tegrals of Discontinuous Functions

Despite these challenges, fast, accurate evaluation of multidimensional integrals of discontin-

uous functions is absolutely required in order to apply the method of manufactured solutions to

integral, shock-capturing codes. Therefore, I have designed, developed, implemented, and tested an

n-dimensional integration algorithm that is both fast and highly accurate, even when integrating

discontinuous functions.

2.2.1 Conceptual Overview

It is helpful to understand the concepts behind this n-dimensional integration algorithm, be-

fore discussing the details. The design is actually quite simple, and requires an understanding of only

three important concepts: iterative evaluation of multidimensional integrals with one-dimensional

tools; the one-dimensional integration operator; and the effects the one-dimensional integration

operator has on critical hypersurfaces of discontinuous functions.
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2.2.1.1 Iterative Integration

Iterative integration itself is quite simple. It is simply the concept that, in many circum-

stances, one may evaluate a multiple integral as a series of one-dimensional integrals, as in equa-

tion (2.2). ∫∫
f (x, y)⇒

∫ (∫
f (x, y) dx

)
dy =

∫ (∫
f (x, y) dy

)
dx (2.2)

As discussed in section 2.1.2, there are ways to numerically evaluate multiple integrals without

using iterated integrals, and these can provide better computational performance. In the presence

of discontinuous hypersurfaces, however, iterative integration is advantageous because of the greatly

simplified topological problem that must be solved.

Consider the integral of a one-dimensional, discontinuous function such as that given in

equation (2.3).

∫ b>x0

a<x0

f (x) dx f (x) =

 f1 (x) : x < x0

f2 (x) : else

(2.3)

Such an integral may be evaluated by dividing it into two smooth pieces, as in equation (2.4).∫ b>x0

a<x0

f (x) dx =

∫ x0

a
f (x) dx+

∫ b

x0

f (x) dx (2.4)

That is, the integral in equation (2.3) has a critical point at x = x0, and the integral may be

subdivided at that critical point to yield two smooth integrals. The generalization to more than

one critical point is obvious.

This process is simple enough, but it becomes more complex in higher-dimensional problems.

Consider a similar two-dimensional integral, as in equation (2.5), and shown in figure 2.1.

∫
f (x, y) dA f (x, y) =

 f1 (x, y) : g (x, y) < 0

f2 (x, y) : else

(2.5)

Conceptually, nothing has changed. One need simply integrate the function over the two smooth

regions I and II, and then sum the result. Rather than a critical point, however, the discontinuity

is represented as a critical line. No restrictions are placed on this critical line, so it may bend,
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curve, and self-intersect. This more complex behavior dramatically increases the computational

difficulty associated with subdividing the integral. The presence of additional critical lines only

complicates the matter further. In higher dimensions, the result is a topological nightmare, as has

been demonstrated by the experiences of the CFD community with shock-fitting schemes.

Adaptive integration schemes attempt to resolve these higher-dimensional discontinuities by

progressively subdividing the integration domain until the divisions with large error are small

enough to not substantially affect the overall accuracy of the integral. An example quadtree ap-

proach is shown in figure 2.1, but adaptive schemes require an excessive number of divisions in

order to return the level of accuracy required for use with manufactured solutions, which severely

limits computational performance.

As mentioned, the one-dimensional case is much simpler. A one-dimensional integral is subdi-

vided at one or more zero-dimensional critical points, corresponding to critical hypersurfaces. Pro-

vided with a means to identify these points, integration of discontinuous functions becomes trivial.

Since iterative integration allows one to reduce multiple integrals to a series of one-dimensional prob-

lems in most cases of engineering interest, I use iterative integration to avoid the higher-dimensional

difficulties entirely.

2.2.1.2 The One-dimensional Integration Operator

Having chosen to use iterated, one-dimensional integration as the basis of my algorithm for

multidimensional integration of discontinuous functions, it is important to have an understanding

of the one-dimensional integration operator and its effects on functions.

The one dimensional definite integration operator is a linear operator L§m that maps n-

dimensional functions f of variables x0...xn to (n− 1)-dimensional functions of variables y0...yn−1 by

integrating the function along the variable xm between the bounds xmi and xmf , as in equation (2.6).

Lxm (f, xmi, xmf ) ≡
∫ xmf

xmi

f (x0, ...xn) dxm (2.6)

This mapping is the key to understanding how to quickly and accurately evaluate iterated
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integrals of discontinuous functions. Each application of the one-dimensional integration operator

results in a new function of one less variable. This new function can be considered a separate

function in its own right, connected to the original function only by the mapping of the integration

operator. Specifically, this new function will have its own continuity properties, which may be

considered separately from the original function.

For example, consider the function given by equation (2.7).

F0 (x0, x1, x2) ≡

 1 : x2
0 + x2

1 − x2 < 0

0 : else

(2.7)

Application of the one-dimensional integration operator Lx0 with the integration range [−1, 1]

maps F0 to the new function F1, given in equation (2.8).

F1 (x1, x2) ≡ Lx0 (F0,−1, 1) =

∫ 1

−1
F0 (x0, x1, x2) dx0 (2.8)

Application of a different operator Lx2 with the integration range [0, 2] to this same function results

in a different mapping, given in equation (2.9).

F12 (x, y) ≡ Lx2 (F0, 0, 2) =

2∫
0

F0 (x0, x1, x2) dx2 (2.9)

The results of one mapping can be operated on again to produce further new functions, with one

example given in equation (2.10).

F2 (z) ≡ Lx1 (F1,−1, 1) =

∫ 1

−1
F1 (x1, x2) dx1 (2.10)

Figure 2.2 shows each of these functions graphically, in the integration domain given by

{x0, x1, x2} = {[−1, 1], [−1, 1], [0, 2]}. The three-dimensional function F0 contains one two-dimensional,

discontinuous surface, f00, given by equation (2.11).

f00 : 0 = x2
0 + x2

1 − x2 (2.11)

The two-dimensional function F1 contains two one-dimensional, non-smooth curves, f10 and
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f11, given by equation (2.12).

f10 : 0 = x2
1 − x2 (2.12)

f11 : 0 = x2
1 − x2 + 1

Finally, F2 contains two zero-dimensional, non-smooth points, given by equation (2.13).

f20 : 0 = x2 (2.13)

f21 : 0 = x2 + 1

The two-dimensional function F12, on the other hand, contains no critical curves at all.

The objective of this exercise is to highlight the fact that the integration operator maps n-

dimensional functions to (n− 1)-dimensional output functions. These output functions can them-

selves be analyzed and integrated, and may be discontinuous, non-smooth, or neither, depending

on the form of the input function and the particular choice of the integration operator.

2.2.1.3 Integration and Critical Hypersurfaces

As has been discussed, the key to accurately evaluating integrals of discontinuous functions is

to subdivide the integration domain at the position of the discontinuity. This same procedure can

be applied to multidimensional integrals by making use of iterated integration routines, which apply

several integration operators to the integrand in sequence. Each of these operators maps their input

function to a new, lower-dimensional, output function, with its own properties and discontinuities.

Therefore, one must be able to accurately predict how discontinuities will be affected by the mapping

of an integration operator, and the functional form of any discontinuities in the resulting function.

That is, given a function with a set of critical surfaces and a particular integration operator, one

must be able to accurately predict the critical surfaces of the function that results from apply that

integration operator to the initial function.

If we consider again the example given in figure 2.2, one must be able to derive , given the

initial function F0, the initial discontinuity F00, and the integration volume V , and the sequence of
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Figure 2.2: Iterative Integration of a Three-dimensional Integrand. A graphical representation can
provide insight to the process of iterative integration with a discontinuous integrand function. In
this problem, one must essentially compute the volume of the shape bounded by the function F0,
which consists of the intersection between a cubic integration domain and a paraboloid, which is
shown with lines. Integrating this function crosswise results in the two-dimensional function F1.
Integrating this crosswise again results in the one dimensional function F2. Both F1 and F2 have
critical surfaces where the derivative of the function changes discontinuously, and these are marked
and labeled. Order of integration also matters; a different choice of the initial integration of F0

results in F12, which has no critical surfaces at all.
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integration operators Lxm , the critical surfaces of the intermediate integration functions f10, f11,

f20, and f21.

As has been seen, the function that results from the application of the one-dimensional

integration operator to a discontinuous function may include zero or more critical surfaces. Because

the integration operator has a smoothing effect on functions, these critical surfaces are often non-

smooth, rather than discontinuous, and a careful choice of integration operator may result in an

output that has no critical surfaces at all.

Critical surfaces in the output of a one-dimensional integration operator arise when the

smoothing effect of the integration is insufficient to fully smooth the underlying function. This is

generally caused by one of two mechanisms. First, a discontinuous surface may be normal to the

direction of integration for the particular operator being applied. If a function has critical surfaces

given by the functions f0i (x0, ..., xn), and the integration operator Lxm is applied to this function,

then the resulting function will have one or more critical surfaces corresponding to the zeros of the

the directional derivative. These zeros may then be evaluated in order to yield the values of the

integration variable xm that correspond to these zeros, as shown in equation (2.14).

∂f0i (x0, ...xn)

∂xm
= 0⇒ x∗∗m (2.14)

These values may then be substituted into the initial critical surface in order to yield the new

surfaces for the output function, as in equation (2.15).

f1j (x0, ..., xm−1, xm+1, ..., xn) = f0i (x0, ..., x
∗∗
m , ..., xn) (2.15)

Second, one surface may intersect with the boundary of the integration domain V . In partic-

ular, if an integration operator Lxm has functional integration boundaries xmmin and xmmax, then

these boundaries can themselves be described by functions of the form f (x0, ...xn) = 0, and critical

surfaces in the output of the integration operator may be derived from the intersections between

critical surfaces and these boundaries.

New critical surfaces arising from either of these mechanisms must be accounted for in or-

der to accurately evaluate multidimensional integrals of discontinuous functions. In most cases,
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this this is done by solving the boundary surface equations fij for the integration variable xm

corresponding to a particular integration operator Lxm in order to yield a set of critical values

x∗m (x0, ..., xm−1, xm+1, ..., xn) at which the integration domain should be subdivided. This process

is applied recursively throughout the iterated integration process.

It should be reemphasized that the number and type of critical surfaces generated by an

integration operator is dependent on the particular operator chosen (i.e., the order of integration),

as well as the integration domain. The careful choice of integration order can sometimes even

eliminate critical surfaces entirely from the bulk of the iterated integration levels, which is both

simpler and computationally beneficial.

The ability to map a function’s discontinuous surfaces through a one-dimensional integra-

tion operator is crucial for the accurate evaluation of multidimensional integration of discontinuous

functions. It allows the integration domain to be appropriately subdivided at all levels of iter-

ated integration, effectively fitting the discontinuous surfaces exactly, which effectively reduces the

problem to a collection of smooth integrals. As a result, the accuracy of the overall integration is

equivalent to that obtained for smooth functions.

2.2.1.4 Conceptual Overview–Conclusion

In summary, I have devised a new method for accurate evaluation of multidimensional inte-

grals of discontinuous functions. This method uses iterated one-dimensional integration operators

for multidimensional integration, which greatly simplifies the treatment of discontinuities. These

operators map multidimensional functions to lower-dimensional functions, corresponding to inte-

gration over one of the variables. My key contribution to the state-of-the-art is a method for deter-

mining, based on the information available prior to the integration, what the continuity properties

of the resultant function will be. This allows the entire multidimensional integral to be subdivided

in such a way as to perfectly fit the discontinuous surface, thus allowing accuracy levels that are

equivalent to those that would be expected for continuous integrand functions.

Having explained the concepts behind my new method for accurate evaluation of multidi-
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mensional integrals of discontinuous functions, I will discuss in detail the actual computational

implementation of this method, as used in BACL-IMMS, a software package for code verification,

which will be discussed in greater detail in chapter 3. This can be broken into two major sections.

First, I will discuss the routine I developed for iterative integration of n-dimensional integrals.

Second, I will discuss the high-level interface that automatically transforms an integrand function,

a list of discontinuous surfaces, and an integration domain into the appropriate form for numerical

integration. These tools have proven themselves invaluable in enabling a simple implementation of

my research into methods for scientific software verification.

2.2.2 nquad: Adaptive, Iterative, Controllable Integration in Python

In order to implement a multidimensional integration routine based on the concepts outlined

in section 2.2.1, one must have access to an n-dimensional, iterative integration tool that allows

for user-defined subdivision of the integration domain at all levels of the iteration. Unfortunately,

no such tools were readily available, so I developed nquad, an n-dimensional, recursive integration

routine providing the appropriate level of control.

There are many libraries available for numerical evaluation of integrals. Some of these are

simple left-, right-, and midpoint-rule Riemann sums, while others are much more sophisticated.

Many of the best libraries are proprietary, and many are difficult to incorporate into new software

projects. The SciPy [33] library provided the nearest match to the specific requirements of this

project, wrapping the well-known and well-established QUADPACK [24] library for use in Python

programs. QUADPACK is a Fortran library for numerical evaluation of one-dimensional integrals. It

provides various routines for both fixed-order and adaptive integration of univariate functions, as

well as routines that allow for user-specified critical points and weight functions. The SciPy Python

wrapper enhances these capabilities with a unified interface to most of the routines, as well as

the ability to handle multivariate function signatures. These improvements greatly simplified the

process of evaluating multidimensional integrals using iterative integration, but the library lacked

the level of control required in order to apply the method for accurately integrating discontinuous
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functions described in section 2.2.1.3. The development of nquad was undertaken in order to address

these shortcomings.

Making this tool publicly available was a major focus, and a concerted effort was made to

make it useful in a wide range of applications. nquad was incorporated into the SciPy library in

version 0.13, and further performance optimizations were included in version 0.15.

2.2.2.1 nquad Interface and Algorithm

Nquad was developed as a Python wrapper to scipy.integrate.quad, following the model

of the already extant scipy.integrate.dblquad function. The internal structure is illustrated in

figure 2.3.

nquad has a simple user interface that nonetheless allows for fine control of the integration

processes if desired. It is called as a function of the form:

nquad(f,ranges,args,opts)

where f is the function to be integrated, ranges is a list of the ranges of integration, args

is any additional arguments required by f beyond the integration variables, and opts contains the

integration options corresponding to the underlying levels of integration.

This interface is a simple wrapper to the underlying machinery. It processes the arguments

it receives into the appropriate form, and initializes an NQuad object. This object provides the

integrate method, which is called recursively to evaluate the multidimensional integral.

Using the information contained in the NQuad state, the integrate method determines

whether or not it is a call corresponding to the innermost level of integration. If it is not, then it

defines a temporary integrand function, which is itself a call to the integrate method. If it does

correspond to the innermost integration level, then the temporary integrand function becomes an

alias for the integrand function provided by the initial nquad call and NQuad initialization.

Once the integrand function has been defined, it is passed on to the one-dimensional integra-

tion routine, along with the appropriate integration range and options. If the integrand is a call to

NQuad.integrate, then an evaluation of the integrand will result in another call to quad, and so
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Outermost)Integral)

scipy.integrate.nquad)
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Figure 2.3: nquad Flow Diagram. nquad, the SciPy routine for multidimensional quadrature works
by recursively applying the one-dimensional quadrature rules available in scipy.integrate.quad.
In order to make this process as simple as possible for the user, it is presented as a single function:
scipy.integrate.nquad. This interface function creates an NQuad object, which is initialized
with the integrand function, integration ranges, and any extra arguments or integration options.
Integration ranges and options are distributed to the appropriate level of integration, which allows
scipy.integrate.quad to be called with different integration options at each level, a capability
that was missing from previous SciPy multidimensional integrators.
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on until the innermost level of integration is reached.

scipy.integrate.quad is used as the one-dimensional integration routine. It is a flexible

interface to the QUADPACK library and contains many different algorithms, the choice among which

is determined by the options it receives. The two most important algorithms for the purposes of

the present discussion are the default adaptive Gauss-Kronrod quadrature method, and the variant

that allows for externally supplied information on internal discontinuities, singularities, and other

difficulties of the integrand function [24].

As described in the QUADPACK documentation and code [24], the default integration method

for scipy.integrate.quad is based on a 22-point integration rule. The results of applying this

rule are then compared with those of a 15-point rule whose points are co-located with those of the

22-point rule, and the difference between them is evaluated. If this error is below a given (user-

specified) tolerance, then the result is returned. If not, then the integration domain is bisected, and

the integral is reevaluated for each segment. This process continues until the required tolerance is

reached.

When the user provides the locations of known critical points to scipy.integrate.quad

through the points argument, the integration domain is automatically subdivided at those critical

points before any adaptive subdivision takes place, thus controlling the difficulties associated with

singularities and removing the effects of discontinuities.

It is important to note that both integration ranges and options are defined as functions in

the nquad interface. That is, the integration ranges and critical points corresponding the the inner

loops may be functions of any outer integration variables. Specifically, if nquad is used to inte-

grate a function f (x0, ..., xn, t0, ..., tm) over some integration domain in x0, ..., xn, with additional

parameters t0, ..., tm provided via the args argument, then both the ranges argument and the

opts argument may contain a list of functions f0 (x1, ..., xn, t0, ..., tm) , f1 (x2, ..., xn, t0, ..., tm) , ...

that return the appropriately formed range and opts structures for a given level of integration.

This is a critical feature, as it allows integration of domains that are not hyper-cubic, and it also

allows points to be specified such that they lie on some curved hypersurface.
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2.2.2.2 Optimizing the innermost integration level

The nature of nquad is such that the integrand function must be evaluated many times by

the underlying Fortran library. In their simplest form, nquad and quad provide these integrands as

Python functions with the signature f(x0,...,xn,t0,...,tm), where x0,...,xn are the integra-

tion variables, and t0,...,tm are any additional arguments which the function requires. This form

is preferred in most circumstances, as it interfaces very well with the overall Python environment.

However, defining the integrand as a Python function entails performance sacrifices, both due to

the relatively slow evaluation of complex Python functions and the repeated callbacks to Python

that must be made from within the QUADPACK integration library. Since these performance sacrifices

can be severe for some problems, it is beneficial to provide the user with options for performance

optimization.

The most straight-forward way to improve performance of the overall nquad integration is by

using a compiled C function for the integrand. Such a function can be optimized for performance

at compile-time, and also accessed natively by the QUADPACK library, thus avoiding callbacks. This

would affect function calls at the innermost level of integration, where the bulk of the function

evaluations are made.

The principal difficulty with this approach is the structure of the QUADPACK library, which is

written for univariate functions only. The SciPy library worked around this limitation for Python

functions, but provided no interface for doing the same with C functions. Brian Newsom, a student

funded through the Discovery Learning Apprenticeship program at CU-Boulder, rewrote the in-

terface code connecting scipy.integrate.quad with QUADPACK during the 2013-2014 school year,

to support this functionality. As a result of his work, it is now possible to improve computational

performance by defining f as a C function with the signature f(n+m,[x0,...,xn,t0,...,tm]).

This function is then compiled, loaded into Python using the ctypes module from the Python

standard library, and the resulting object can be passed to quad or any of the functions that wrap

it, including nquad. The performance improvements from this optimization are dependent on the
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complexity of the integrand function. For simple integrands, 2x speedups are common. For complex

integrands that benefit from aggressive compile-time optimization, 10x speedups are more typical.

2.2.3 Automatic Evaluation of Multidimensional Integrals of Discontinuous Func-

tions using scipy.integrate.nquad

An iterative integration tool that offers fine-level control such as nquad is an important

enabling technology for high-performance, highly accurate evaluation of multidimensional integrals

of discontinuous functions, but the process of preparing an integral for evaluation in nquad can be

complex in practice. One must prepare the functional integrand, derive all of the necessary critical

surfaces, and convert these to the appropriate computational forms. A mistake in any one of these

steps can result in inefficient, inaccurate, or even erroneous results. Therefore, I have developed a

software tool to automate the process of preparing discontinuous integrals for evaluation by nquad.

Automating this process requires three separate steps: mapping critical surfaces through

integration operators; organizing the resulting surfaces as required for iterative integration; and

generating integrand and option functions for use in nquad. As a result, the tool I developed must

include capabilities for symbolic mathematics, general computer programming, and code generation.

The Python programming language is an excellent environment in which to develop this kind of

software, and I have used the Sympy package to provide both symbolic math and code generation

capabilities.

The usage of this software tool is as follows:

(1) Define the integrand function symbolically, as a Sympy expression. Theoretically, discontin-

uous functions should be definable using sympy.Piecewise objects, but I have found greater

success using Heaviside step functions from sympy.special.delta functions.Heaviside

in current versions of Sympy (0.7.6).

(2) Record the critical surface. If an integrand function has critical surfaces defined by ex-

pressions of the form f (x0, ..., xn) = 0, then one must provide a list of Sympy expressions
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f (x0, ..., xn).

(3) Provide the integration domain in a symbolic form. Currently, only hypercubic integra-

tion domains are supported, and these must be given as a list of structures in the form:

[[var,varmin,varmax],...] where var is the Sympy Symbol object used as the inte-

gration variable in the integrand function, and varmin and varmax are the bounds of

integration.

Given these three pieces of input data, the software computes all of the necessary critical surfaces,

arranges them in the appropriate order for iterated integration, and puts them into a computa-

tional form suitable for use by general Python functions such as nquad. It does this through the

action of three different Python objects, as shown in figure 2.4: Discontinuity objects, which map

the critical surfaces and generate code, Discontinuities objects, which aggregate collections of

Discontinuity objects into the form required for iterated integration, and IntegrableFunction

objects, which provide a convenient user-interface to the integration process.

2.2.3.1 Discontinuity Objects

Discontinuity objects are primarily responsible for two things: converting symbolic rep-

resentations of critical surfaces into functions that can be used by nquad; and mapping critical

surfaces through integration. Discontinuity objects are initialized with the Sympy expression

for a critical surface, along with the integration bounds. Once initialized, they provide a call

method, which returns a list of critical points for use by nquad.

It is important to recall at this time that critical surfaces S are typically defined by functions

of several variables, as in equation (2.16):

S : f (x0, ...xn) = 0 (2.16)

If one wishes to know xm values for this critical surface, then one may solve equation (2.16) for

these critical values, as in equation (2.17).

x∗m (x0, ..., xm−1, xm+1, ..., xn) ≡ sympy.Solve (f (x0, ..., xn) , xm) (2.17)
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These critical points will, of necessity, depend on the remaining n − 1 variables. As a result, the

call method for a given Discontinuity object must use these as arguments in order to return

the list of critical points x∗m.

The call function is actually itself an abstraction. Sympy provides several methods for

evaluating symbolic expressions, and these form the various back-ends available to the call

function. The simplest approach is to use the subs method available to Sympy objects, which

substitutes numerical values for the sympy.Symbol objects in an expression. This approach is the

simplest and the most flexible, because it maintains the underlying structure of a Sympy expression.

Unfortunately, this also means that using subs is computationally expensive. For any function that

must be evaluated many times, the cost of evaluating symbolic expressions using subs is too high

to be practical.

A better approach is to take advantage of the various code-generation capabilities Sympy

includes. There are two main options for this. One can use sympy.utilities.lambdify.lambdify

to generate Python functions from Sympy expressions, or else one can use the code-generation rou-

tines in sympy.utilities.codegen.codegen to generate actual C code from those same expres-

sions. Each approach has advantages and disadvantages. Python functions generated by lambdify

are inherently somewhat slower to execute, but C code generated by codegen must be compiled

and linked, which generally leads to higher initialization costs and a more fragile build environ-

ment. I will discuss the use of codegen more thoroughly in the context of integrand functions in

section 2.2.3.3, but lambdify is the preferred method for use with Discontinuity objects.

Once initialization of the call method is complete for a given critical surface, that surface

must be mapped through the integration operators. Discontinuity objects, like nquad itself, use

the convention that the order of integration can be read from the specification of the integration

domain in order from first to last. That is, if the integration domain is specified as

[[x0,x0min,x0max],[x1,x1min,x1max],...,[xn,xnmin,xnmax]],
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then the iterated integration will be carried out as in equation (2.18).

Lxn ...Lx1Lx0f (x0, ..., xn) (2.18)

Therefore, initialization of the Discontinuity object with full integration domain and the initial

critical surface generates a call function corresponding to the Lx0 operator, which takes the

values for x1,...,xn as arguments. This critical surface is then mapped through the Lx0 operator

to create some number of new Discontinuity objects corresponding to the Lx1 operator. This is

done by creating and storing additional Discontinuity objects as Discontinuity.children.

Discontinuity.children are generated as discussed in section 2.2.1.3. First, the symbolic

discontinuity is differentiated with respect to the integration variable (x0, as discussed here), and

the zeros of the resulting expression are computed, yielding some number of solutions defined by

sets of arguments (x0...xn). The various x0 values from these solutions are then substituted into

the initial critical surface function f (x0, ...xn), and the resulting functions are themselves used to

initialize new Discontinuity objects.

Second, the intersections between the the x0 integration bounds and the initial critical surface

are computed by substituting x0min and x0max into f (x0, ..., xn) and using these to initialize any

additional Discontinuity objects.

The resulting list of Discontinuity objects contains all of the critical surfaces that result

from mapping the initial critical surface through the Lx0 operator. Each of these will likewise have

children objects, resulting in a linked list structure where each critical surface in the integrand

function contains pointers to each critical surface that derives from it, as shown in figure 2.5.

2.2.3.2 The Discontinuities Object

As discussed in section 2.2.3.1 and shown in figure 2.5, critical surfaces that arise from the

action of integration operators are organized based on the root critical surface from which they

are derived. This organizational scheme is quite natural and well-suited for deriving these surfaces,

but it is inappropriate for numerical integration using nquad. As discussed in section 2.2.2.1, nquad
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f(x0, ..., xn) = 0

f(x1, ..., xn) = 0 f(x1, ..., xn) = 0 f(x1, ..., xn) = 0

f(xn) = 0 f(xn) = 0 f(xn) = 0

Figure 2.5: Discontinuities and their Children. When a one-dimensional integration operator is
applied to a function containing a critical surface such as a discontinuity, that surface may map
to one or more new critical surfaces in the resulting function. Therefore, when a Discontinuity

object is created, it must likewise account for any new critical surfaces it may create by spawning
additional children Discontinuity objects. This results in a simple tree-like structure, with the
initial Discontinuity at the root, and derived Discontinuity objects branching out from it.
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expects to receive the locations of critical surfaces as a list of functions f0 (x1, ..., xn, t0, ..., tm),

f1 (x2, ..., xn, t0, ..., tm) , ... that return the appropriate critical values for each integration operator.

Essentially, one must step through all of the Discontinuity objects and their children, and then

one must sort these according to the specific integration operator to which they pertain, and provide

an nquad-compatible interface. This is the task of the Discontinuities object, shown in figure 2.6.

Discontinuities objects are initialized in much the same way as Discontinuity objects.

The principal difference between the two is that a Discontinuities object is initialized with a list

of several critical surfaces.

Each element of this list of surfaces is used to initialize a root Discontinuity object, with

all of the corresponding children. The resulting tree structure is sorted by integration level using

a breadth-first tree traversal, and the resulting data structure is then purged of duplicate critical

surfaces.

Finally, a Python functional interface is generated for each level of integration. This interface

provides access to a function with the appropriate function signature, that returns a list of critical

points for a given level of integration.

In summary, a Discontinuities object accepts a list of several symbolic critical surfaces

defined by f (x0, ..., xn) = 0 and given as Sympy expressions f , and it converts these into a list of

n functions x∗0 (x1, ..., xn) , ..., xn () that each returns a list of critical points at which the integrand

function being mapped by the appropriate integration operator may be ill-behaved. This list of

functions is essential for accurate, fast evaluation of multidimensional integrals of discontinuous

functions, but one further step is required in order to make this information available to the nquad

integration routine.

2.2.3.3 IntegrableFunction Objects

The discussion in section 2.2.3.1 and in section 2.2.3.2 has explained the mechanisms by

which symbolic critical surface functions may be converted into lists of critical points for use in

scipy.integrate.nquad. The final step is to define a method for numerically integrating a discon-
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Inputs:
- discontinuities
- ranges

Discontinuities

  For each discontinuity

Discontinuity

Child Discontinuities

  For each integration level

Inner level Discontinuity objects

Outer level Discontinuity objects

Output:
- opts for nquad

Figure 2.6: Discontinuities Object Flow Diagram. A single integral may involve many
Discontinuity objects. Unfortunately, the tree structure in which these naturally occur is not
amenable to integration using nquad. As a result, the various Discontinuity objects must be cre-
ated, and then they must be organized into levels, corresponding to the various levels of iterative
integration. This process is handled by a Discontinuities object.
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tinuous function quickly and accurately, using the tools developed here. The IntegrableFunction

object does exactly that.

Although Discontinuity and Discontinuities objects are fairly well-developed and can

be used independently, the average user is concerned only with the results and performance of the

integration. Additionally, hiding the intricacies of integration in this way is important, because it

greatly reduces the incidence of mistakes in preparation of the integrals. The IntegrableFunction

object is designed to take the symbolic representations of the integrand function, the integration

domain, and the discontinuous surfaces, and process this information such that the integral can be

computed quickly and accurately with a single function call.

The first step is to convert the symbolic integrand function to a form that can be evaluated

efficiently by nquad. This is a very similar problem to that encountered for critical surfaces in

section 2.2.3.1. The symbolic integrand is used to initialize an Integrand object, which uses Sympy’s

lambdify and codegen tools to generate Python and C functions that evaluate the integrand. The

efficiency tradeoffs can be different for the integrand function, as the number of function evaluations

scales as On, where n is the dimensionality of the integral. In contrast, the number of evaluations

of Discontinuity functions scales only as On−1. Therefore, in some instances, it can be preferable

to use the C functions here, especially with complicated integrand functions.

The second step is to create a Discontinuities object from the symbolic representations of

the critical surfaces, as discussed in section 2.2.3.2.

The third, and final step is to use the Discontinuities object to create a list of callable opts

structures for nquad that provides the appropriate critical values of the integration. This is done

using an OptionsDict object, which is essentially a wrapper for the Discontinuities function

that returns critical values. Additional options can be easily included in the future as they are

needed.

To summarize, it may be helpful to show an example. Consider the critical surface defined

by equation (2.19).

f (x0, x1) ≡ x2
0 + x2

1 − 1 (2.19)
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One may define a simple, discontinuous integrand function based on this surface, as in equa-

tion (2.20).

F (x0, x1) ≡ H (f (x0, x1)) (2.20)

The integrable of this function over the computational volume [−0.25, 1.25]× [−0.25, 1.25] may be

defined, as in equation (2.21). ∫ 1.25

−0.25

∫ 1.25

−0.25
F (x0, x1) dx0dx1 (2.21)

The integral defined in equation (2.21) may be initialized computationally as follows:

x0, x1 = [sympy.Symbol(var,real=True) for var in [’x0, x1’]]

ranges = [[x0, -0.25, 1.25], [x1, -0.25, 1.25]]

disc = [x ** 2 + y ** 2 - 1]

H = sympy.special.delta_functions.Heaviside

integral = IntegrableFunction(H(disc[0]),ranges,disc)

The integral may then be evaluated using nquad:

integral.integrate()

2.3 Accuracy and Performance of the Integration Procedure

As with any other kind of scientific software, it is critical to verify the accuracy of the

integration scheme against the kinds of problems it may be expected to encounter during real-world

usage. As discussed in section 1.1, the primary motivation for developing this integration routine

was to enable evaluation of integrals arising from weak formulations of mathematical conservation

laws. Therefore, I have chosen to demonstrate the accuracy and computational performance of this

integration procedure using problems that arise from two such laws: the linear heat equation; and

the Euler equations of inviscid, compressible fluid dynamics.

The linear heat equation with constant material properties is given in equation (2.22).

0 =
∂

∂t
cPρu− k∇2u⇒ (2.22)

0 =

∫
∂V

[
cPρudx1dx2dx3 − k

∂u

∂x1
dx0dx2dx3 − k

∂u

∂x2
dx0dx1dx3 − k

∂u

∂x3
dx0dx1dx2

]



42

In equation (2.22), cP is defined as the specific heat at constant pressure, ρ as mass density,

k as thermal conductivity, and u as heat energy. Some exact solutions to the linear heat equation

are given by Polyanin [34], and reproduced in equation (2.23) through equation (2.28).

u = Aξ +B (2.23)

u = A
(
ξ2 + 2at

)
+B (2.24)

u = A
(
ξ3 + 6at

)
+B (2.25)

u = A
(
ξ4 + 12atξ2 + 12a2t2

)
+B (2.26)

u = A exp
(
−aµ2t

)
cos (µξ +B) + C (2.27)

u = A (−µξ) cos
(
µξ − 2aµ2t+B

)
+ C (2.28)

In these solutions, A, B, C, and µ are arbitrary constants, n is a positive integer, a is the thermal

diffusivity given by a ≡ k
cP ρ

, and ξ is a three-dimensional, spatial rotation of the coordinate x

defined by ξ ≡ cos (θ)x0 + sin (θ) cos (φ)x1 + sin (θ) sin (φ)x2. Given a suitable choice of solution

parameters, these solutions can then be used to generate verification tests based on the linear heat

equation.

The linear heat equation provides a good first test of BACL-MMS integration, but the system

is too simple to adequately exercise many important features of an integration routine for use in

software verification. In particular, the linear heat equation does not allow for discontinuities, and

discontinuous solutions are a key part of the verification of BACL-MMS. The Euler equations of fluid

dynamics, however, are both more complex and allow discontinuous solutions, making them an

attractive system for more strenuous testing. If ρ is defined as mass density, ui are the Cartesian

velocity components, e is the specific internal energy, p is static pressure, and δij is the Kronecker
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delta, then the Euler equations are given in equation (2.29).

0 =
∂

∂x0
F 0 +

3∑
j=1

∂

∂xj
F j =

∂

∂x0


ρ

ρui

ρe

+
3∑
j=1

∂

∂xj


ρuj

ρuiuj + δijp

uj (ρe+ p)

 (2.29)

0 =

∮
[F 0dx1dx2dx3 + F 1dx0dx2dx3 + F 2dx0dx1dx3 + F 3dx0dx1dx2]

The pressure and internal energy are related by the ideal gas equation of state. Defining γ ≡ 7
5 ,

this can be written as in equation (2.30).

e =
1

2

√√√√ 3∑
j=1

uiuj +
p

(γ − 1) ρ
(2.30)

Exact solutions to the Euler equations are more difficult to find than solutions to the linear

heat equation, particularly when they must involve discontinuous flow features. Unsteady Riemann

problems are one important class of such solutions that can be used to form a suite of problems to

test the accuracy of integration routines.

An unsteady Riemann problem is a one-dimensional problem given by an initial condition of

two constant states W ≡ (p, ρ, u1, u2, u3) such that:

W |t=t0 =

W L ; ξ ≤ ξ0

WR ; ξ > ξ0

(2.31)

At time t0, the two states begin to interact, generating three nonlinear waves, one of which

is a linearly degenerate slip line while the other two may be either shocks or rarefaction waves. The

choice of initial states determines the final character of the Riemann problem.

Four such problems are given by Toro [35], and shown in table 2.2. The problems are rotated

into three-dimensional space as with the heat equation, with ξ representing a three-dimensional

rotation of the x coordinate axis. Since each of these rotated Riemann problems contains between

3 and 5 critical surfaces, they form an excellent suite of verification tests for the integration routine

for the Euler equations.
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2.3.1 The Integration Testing Procedure

I have tested the accuracy and performance of the various integration techniques for both the

linear heat equation and the Euler equations. by computing the flux functions F µ using randomized

sets of parameters and evaluating the integral conservation laws defined in equation (2.22) and

equation (2.29). Due to the inaccuracies inherent in numerical integration, the sum of the flux

integrals will not be exactly zero, and the value of this residual R can be used as a metric for the

accuracy of a particular numerical integration routine.

2.3.1.1 Linear Heat Equation

Integration of solutions of the heat equation is straightforward, because the solutions are

smooth. Specific solutions were chosen for the heat equation by selecting random values for the

solution parameters used in equation (2.23) through equation (2.28). The random values were

selected from parameter ranges that were chosen to avoid integrand functions that span many

orders of magnitude across the integration domain, because accurate integration of such functions

requires special care.

A given set of random parameters defines a specific solution, and this solution is substituted

into equation (2.22). The flux integrals are evaluated and summed, and the resulting residual R is

recorded. This process is repeated many times, and visualization of such high-dimensional data can

be difficult. Parallel coordinates plots are one useful way to visualize such high-dimensional data

sets.

In parallel coordinates plots, each line represents a specific test case. Discrete locations on

the x-axis represent the various parameters of the data, along with the units in which these are

expressed. Each line will connect a series of points whose x-coordinate corresponds to a given

parameter and whose y-coordinate corresponds to the value of that parameter for that test case.

For the heat equation, each test case contains eight separate parameters. These correspond to the

parameters of the heat equation solutions in equation (2.23) through equation (2.28) and the angles
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θ and φ by which the solution is rotated to make it three-dimensional.

The results of 1000 separate tests are shown in figure 2.7. As discussed, each line represents

a single test case, with the specific solution parameters and the resulting residual represented by

the y-coordinate values through which the line passes. As figure 2.7 shows, the residual R was less

than O
(
10−20

)
for all cases. From this result, it is clear that the routines for computing integral

manufactured source terms are working as expected for smooth problems.

2.3.1.2 The Euler Equations

For the Euler equations, specific solutions were chosen by applying a rotation to one of the four

available Riemann problems from table 2.2. Integration without specifying any critical points was

impractically slow for any discontinuous, multidimensional problem, but it was possible to obtain

useful results when specifying the critical points for only the innermost level of integration. This

is akin to using the initial discontinuity functions, without mapping them through the integration

operator. This allowed useful evaluation of up to three-dimensional integrals.

For innermost-only tests, 100 specific solutions were chosen by subjecting each of the Rie-

mann problems to rotation around the z-axis in increments of 5◦. Results and performance were

much improved compared to integration without critical point specification, and two-dimensional

unsteady problems almost always yielded residuals for the quantities of mass m, x-momentum px,

y-momentum py, and energy e that were less than 10−5, as seen in figure 2.8. Although encourag-

ing, this accuracy broke down for three-dimensional, unsteady problems, for which full mapping of

critical surfaces was required.

By specifying the full complement of critical points at all levels of integration, accuracy is

improved to near machine precision, and four-dimensional space-time integrations are possible. The

results from 100 such tests are shown in figure 2.9. When three-dimensional, unsteady Riemann

problems with the included z-momentum pz were rotated by two randomly chosen angles θ and φ,

the computed residuals were of order O−20, or essentially machine-precision. Without intelligently

mapping critical surfaces, the presence of discontinuous surfaces in the integrand introduces signif-
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Table 2.2: Test Riemann Problem Initial States. Riemann problems are composed of two flow
states, separated by an initial interface. The exact flow states chosen determine the character of
the resulting solution. These four Riemann problems are used to provide test problems for evaluation
of the integration procedure.

Left State Right State

Problem p ρ u p ρ u

1 1.0 1.0 0.0 0.1 0.125 0.0
2 0.4 1.0 -2.0 0.4 1.0 2.0
3 1000.0 1.0 0.0 0.01 1.0 0.0
4 0.1 1.0 0.0 100.0 1.0 0.0

Problem # log(A) log(B) C mu log(a) log(R)
−60

−40

−20

0

20

40

60

80

100

θo φo

Figure 2.7: Integration Testing Using the Heat Equation. Computing manufactured source terms
based on exact solutions results in complex integrals that must evaluate to zero. Because the
resulting data is nine-dimensional, it is most easily represented using parallel-coordinates. In this
representation, each line represents a single test case, the discrete locations on the x-axis represent
specific parameters, as defined in equation (2.23) through equation (2.28), and the numerical values
on the y-axis represent the values taken by those parameters. The most important thing to note
here, is that the integral test evaluated exactly, with residuals of O(10−20), for all 1,000 of the
random combinations of parameters tested.
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Problem # log(Rm) log(Rpx) log(Rpy) log(Re)

−20

−10

0
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θo

Figure 2.8: Integration Testing Using the Euler Equations, pt. 1. As with the heat equation, comput-
ing manufactured source terms for the Euler equations based on exact solutions results in complex
integrals that must evaluate to zero. For this test, where critical points were specified only at the
innermost level of integration, only two solution parameters were used: a specific Riemann problem
from table 2.2; and an angle by which this problem was rotated into two dimensions. However, the
vector nature of the equations results in four residual terms which must be evaluated separately,
for a total of six dimensions of data. This is again shown in a parallel coordinates representation.
In this instance, residuals were much higher, including some as high as 10−3 for density. This is
poor performance for quadrature, and completely unacceptable for verification of codes.
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icant errors that can undermine the credibility of the integration, especially in accuracy-dependent

applications such as the method of manufactured solutions. Intelligently mapping critical surfaces

through integration operators not only makes such accuracy achievable, but it also greatly reduces

the computational cost of obtaining these results.

2.3.2 Integration Timing Tests

For many applications, the number of calls to scipy.integrate.nquad may be quite large.

Therefore, it is important to understand the various performance optimizations that are available

for evaluating these integrals. I have compared the performance effects of critical surface mapping

on the evaluation of a single multidimensional integral, given in equation (2.32).

∫ 1

−1

∫ 1

−1

∫ 1

−1
f (ξ) dx1dx2dx3 (2.32)

f (ξ) ≡



1 ; ξ < −1.18

(0.833− 0.0334x1 − 0.0496x2 − 0.128x3)5 ; ξ < −0.0703

0.426 ; ξ < 0.927

0.266 ; ξ < 1.75

0.125 ; ξ ≥ 1.75

ξ = cos (θ)x1 + sin (θ) cos (φ)x2 + sin (θ) sin (φ)x3

θ = 1.33 φ = 1.20

Integration using the IntegrableFunction object consists of two primary step, initialization

of the object, which processes the symbolic expressions into the form required for SciPy, and the

resulting call to nquad. I averaged the timing results over 100 nquad evaluations of this integral on

a 2012 MacBook Pro with a 2.5 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 RAM.

The results are given in table 2.3. From these values, it is clear that intelligent specification of

critical points in the integration has a dramatic effect on computational performance, resulting in a

speedup of more than 60x. Optimizing the innermost integration loop into C code yielded a further
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Problem # log(Rm) log(Rpx) log(Rpy) log(Rpz) log(Re)
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Figure 2.9: Integration Testing Using the Euler Equations, pt. 2. In this test, an additional rotation
angle φ is introduced in order to allow for testing of three-dimensional integrals, and critical surfaces
are both specified and mapped through integration operators to yield of full complement of critical
surfaces at all levels of integration. As a result of this mapping, the error resulting from integration
of discontinuous functions is completely eliminated, with residuals remaining below 10−20 for all
tests.
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Table 2.3: Integration of Discontinuous Functions – Timing. Integration with nquad is subject to
many different performance optimizations, including the specification of critical points, as well as
optimization of the integrand function. Of these, critical points specification resulted in a 60X
speedup, while optimizing the integrand resulted in only 2X improvement.

Time (seconds)

Python function, no points specified 40

Python function, innermost points specified 12

Python function, all points specified 0.63

Compiled C function, all points specified 0.33

speedup of approximately 2x. The increased speed arises because the adaptive integrator no longer

attempts to fully resolve the discontinuities as smooth polynomials, and it is able to concentrate

solely on resolving the integrand in its smooth regions. If the critical points were not specified, then

the adaptive algorithm used bisection to steadily refine the integral around the critical point. In

these tests, this frequently resulting in warnings about integration failing to achieve the required

accuracy within the designated maximum number of bisections.

It is also of interest to know how the integration algorithm used by nquad scales with increas-

ing dimensionality. nquad was therefore tested with the integral of the hyperspheroid step funciton,

given by equation (2.33).

F0 (n) =

∫
V


1 ;

n∑
i=1

(
x2
i

)
− 1 < 0

0 ; else

dx1...dxn (2.33)

This function was integrated over the computational volume V = [0, 1.25]n, and the time to

compute the integral was measured in seconds. The results of these tests are shown in table 2.4 and

in figure 2.10. From these results, it can be clearly seen that the nquad algorithm suffers from the

“curse of dimensionality”, and rapidly becomes unwieldy at very high dimensionalities. In order to

evaluate higher-dimensional integrals of discontinuous functions, it will be necessary to replace the

simple nquad integration routine with a more efficient, sparse integration.

The results given in table 2.3 and table 2.4 are extremely promising, but they cover only

the computational costs associated with actually evaluating the numerical integral. The costs of
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Table 2.4: nquad Integration Dimensional Scaling. nquad was used to integrate the volume of an
n-dimensional hypersphere, with critical points specified at all integration levels. The integration
process was timed at each level, up to five dimensions. Values were extrapolated to six and seven
dimensions.

# dimensions Time (s)

1 3× 10−5

2 8× 10−3

3 1× 10−1

4 3× 10+1

5 6× 10+2

6 (1× 103)

7 (5× 103)

10
0

10
1

10
−5

10
0

10
5

# dimensions

tim
e 

(s
)

Figure 2.10: nquad Integration Dimensional Scaling. nquad was used to integrate the volume of an
n-dimensional hypersphere, with critical points specified at all integration levels. The integration
process was timed at each level, up to five dimensions.



52

initializing the IntegrableFunction object are also significant. Because of the symbolic manipu-

lation and code generation that initialization entails, these costs can actually be quite high. It is

therefore advantageous to maximize the utility of IntegrableFunction objects as much as possi-

ble. In principle, it is possible to use a single IntegrableFunction object to represent any integral

of a given integrand function, however, this is complicated for discontinuous integrands. For dis-

continuous integrands, the results of mapping critical surfaces through integration are dependent

on a specific integration domain. Therefore, using a single IntegrableFunction object in this way

requires a more general specification of integration domains. If the bounds of integration can be

specified symbolically, then one can use these to define an IntegrableFunction object that works

over multiple integration domains. Work in this area is ongoing.

2.4 Conclusion

In order to enable reliable verification of numerical simulation codes that may encounter

discontinuous solutions, it was necessary to develop fast, accurate tools for accurately evaluating

multidimensional integrals of discontinuous functions. In this chapter, I have presented the devel-

opment of one such tool, and demonstrated how it can be used in the context of verification. I have

shown both the accuracy levels that can be expected from the use of this integration tool, as well

as the performance increases that can be achieved compared with basic quadrature methods. Both

the accuracy and the performance levels achieved are extremely high for multidimensional integrals

of discontinuous functions, suggesting that this method will be suitable for use in verification of

codes by integral manufactured solutions. Implementation and evaluation of integral manufactured

solutions themselves will be discussed in detail in chapter 3.



Chapter 3

Verification and the Integrative Method of Manufactured Solutions

One of the most important challenges facing early-stage designers is that tremendous amount

of uncertainty with which they must operate. New projects of any level of complexity require numer-

ous design decisions to be made based on predictions, historical precedents, and educated guesses.

Although these uncertainties are an unavoidable characteristic of design, they can be understood,

bounded, and reduced using past experience, analytic models, and numerical simulation. The use

of these tools allows designers to better predict the behavior and performance of a system, but

the decisions made on the basis of the knowledge these tools provide can have far-reaching conse-

quences. As a result, the precise definition of “better predict” can be extremely important; that is,

designers must have a quantitative understanding of the level of uncertainty that can be expected

from their tools, so that they can make informed design decisions based on a clear understanding

of the limitations of their knowledge.

In order to provide a means for better understanding of the uncertainties inherent in numerical

simulations, the National Research Council [11] called for improved methods for quantifying the

error and uncertainty in the results of a numerical simulation with respect to the mathematical

model it implements. The process of quantifying the error in a simulation with respect to the

underlying mathematical model is known as verification, and the NRC specifically identified the

method of manufactured solutions (MMS) as a key tool in this process. Unfortunately, existing

implementations of MMS for engineering software verification are insufficient for the verification of

codes that may encounter discontinuous solutions.
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Having developed an accurate, efficient means of numerical integration in chapter 2, it is

now possible to discuss in detail the integral extensions to MMS that I have developed in order

to enable the reliable, robust verification of codes that may encounter discontinuous solutions.

The remainder of this chapter will be structured as follows. First, I will introduce the important

background concepts that are required in order to discuss code verification in general, and MMS

in particular. Second, I will present the theoretical foundations of integral MMS and show how its

implementation differs from traditional MMS. Third, I will discuss the use of MMS for verification.

Fourth, I will give a brief overview of the BACL-manufactured software package, which provides

a general-purpose implementation of both differential and integral MMS with a very simple user-

interface for a variety of equation sets. Finally, I will demonstrate the use of BACL-manufactured

in the verification of a compressible, inviscid fluid dynamics solver. I will show that integral MMS

yields convergence rates that are equivalent to those obtained using both differential MMS and

verification using exact solutions. This will show that integral MMS is ready and able to perform

the same rigorous code verification duties for discontinuous solutions that discontinuous MMS has

performed for smooth solutions, and finally enable the rigorous, one-step verification of codes in

the presence of discontinuities.

3.1 Background

The uncertainties inherent in numerical simulation arise naturally out of the physical and

numerical approximations that are used, and so it is important to both understand and quantify

the errors introduced by these approximations. Roache [9] classified simulation errors as:

(1) Errors that are a result of modeling approximations, such as fluid incompressibility, etc.

(2) Errors that are ordered by some measure of the problem discretization.

(3) Errors that are the result of some other non-physical approximation, e.g. far-field boundary

conditions.

(4) Errors in programming (mistakes, or bugs).
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(5) Errors that result from the representation of numbers on a computer.

The study and quantification of modeling errors for a given application is known as model

validation, while the study of the remaining mathematical, numerical, and programming errors

is known as verification [9]. Verification is further subdivided into code verification and solution

verification, where code verification is used to show that the code or software solves a given math-

ematical model correctly within some domain of inputs, while solution verification estimates the

expected numerical error in a solution to a specific problem or application.

The most powerful, accurate, and reliable method of code verification is known as code order

verification [18]. For a code that is working as intended, error is expected to be dominated by

discretization errors, which scale as ∆xn, where n is determined by the algorithms in use by the

code. In code order verification, the code is used to compute a solution to a problem with a known

exact solution under successive refinements of the code discretization. The actual rate at which the

code converges to the correct solution is computed based on the error between the computational

results and the exact solution, and this is compared to the nominal expected value. If the observed

convergence rate matches the theoretical convergence rate, then the code is considered verified.

One of the most powerful features of code verification is the ability to analyze the errors

resulting from programming mistakes directly. Software debugging is the most difficult and time-

consuming part of scientific code development, and modern scientific computing codes are so com-

plex that it is impossible to reliably eliminate all coding mistakes. Thorough code verification

allows scientists to at least eliminate any mistakes that introduce error in the computed solution.

Unfortunately, thorough verification, or verification that exercises all aspects of a code, can be

difficult.

Code order verification, while clearly defined and very reliable, has traditionally suffered

from the scarcity of exact solutions for systems of interest. The method of manufactured solutions

(MMS) was developed to resolve this problem, by allowing the simple, direct generation of complex

solutions for the purpose of code verification [9,10,13,18,19,36]. MMS works by operating a system
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of differential equations on some user-defined, “manufactured” solution to derive source terms that

may be used to drive a code return that same manufactured solution. By doing this, one is able to

verify codes with solutions containing any complex behavior the user may desire.

The measurement of convergence rates to complex, manufactured solutions is the best tech-

nique currently available [9, 10, 13, 18, 36], but it is limited in scope, and many important physical

systems are simply unsuitable for verification with manufactured solutions as currently available.

One of the principal limitations of MMS is that it cannot be applied directly to problems that admit

discontinuous solutions [18, 36]. Because it works by operating differential equations on manufac-

tured solutions, the manufactured solutions themselves must necessarily be differentiable in order

for MMS to be used, and discontinuous solutions clearly are not differentiable. This is a known

limitation of MMS, and researchers have commented on it periodically for many years [18, 19, 36].

Various work-arounds are available, such as using rapidly varying, but smooth, solutions, or split-

ting verification into parts that separately verify smooth solutions and the treatment of shocks, but

a comprehensive approach to the problem of discontinuous solutions has not been found.

Discontinuous solutions are important because they arise in many branches of physics and

engineering, and they are an important aspect of many scientific models. These discontinuities

can be part of the problem specification, such as material interfaces, or they can arise naturally

from the mathematical model, such as aerodynamic shock waves. Regardless of the source of the

discontinuities, they render problems unverifiable by differential MMS [9,10,13,18,36]. In order to

establish trust in the codes used to study these phenomena, it is absolutely essential to develop

verification tools and techniques that can be directly applied to simulations that contain them.

The root of the problem is that discontinuous solutions to systems of differential equations

are not, in fact, solutions to differential equations. Rather, they are solutions to related systems of

integral equations, and many computational frameworks for solving systems of this kind are them-

selves integral in nature. Therefore, in order to correctly verify codes that solve integral equations,

one must necessarily use formulation of MMS that is designed for use with integral equations and

integral solvers, which will automatically accept discontinuous manufactured solutions.
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3.2 Theoretical Framework

As discussed, discontinuous, or weak, solutions are not actually solutions to systems of differ-

ential equations. Rather, they are solutions to the integral, or weak, form of those same equations.

By approaching the issue of applying MMS to discontinuous solutions as an integral problem, rather

than a differential one, many of the difficulties that have traditionally been encountered are resolved

automatically. Roy et al. [17] took this approach in their application of MMS to finite-volume codes,

though they considered only smooth solutions, and Grier et al [15] also used an integral form of

MMS, although their integration procedure is specific to two-dimensional problems.

Traditional MMS expects a code to have governing equations that may be expressed in strong

form as a system of differential equations. Such a system may be written as:

∑
µ

∂Fµ (U)

∂xµ
+ S (U) = 0 (3.1)

The system in equation (3.1) is defined in terms of conservative flux functions Fµ, a non-conservative

source function S, dependent variables U , and independent variables xµ. The index µ sums over

the dimensionality of the problem. Greek letters are used when the summation may include the 0

index to represent time. Latin letters are used to index summations starting from 1.

The relationship in equation (3.1) describes what is known as a differential balance law, and

is general enough to be applied in many different contexts. For instance, one common application is

to fluid dynamical problems in four-dimensional space-time, where the dependent variables U are

the primitive flow quantities of mass, velocity, and pressure, and the independent variables xµ are

time and the three dimensions of space. In such an application, the temporal independent variable

is represented as x0. Other applications may include both lower- and higher-dimensional problems,

perhaps by taking advantage of symmetries, or operating in phase space. For instance, spherically

symmetric inviscid fluid problems will satisfy the Euler equations written in polar coordinates [35]:

∂F0 (U)

∂x0
+
∂F1 (U)

∂x1
+ S (U) = 0 (3.2)

In equation (3.2), x0 represents time, and x1 represents the radial distance from the origin. The
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vectors of primitive variables, fluxes, and sources are given in equation (3.3).

U ≡


ρ

u

p

 ; F0 (U) ≡


ρ

ρu

E

 ; F1 (U) ≡


ρu

ρu2 + p

u (E + p)

 ; S ≡ 2

x1


ρu

ρu2

u (E + p)

 (3.3)

For any system of strong balance laws, one may choose an arbitrary solution Um and substi-

tute it into equation (3.1). Such an arbitrary solutions will not generally satisfy the balance law,

and this will result in a residual term. In the context of manufactured solutions, this residual is

typically referred to as a manufactured source term Sm, as in equation (3.4).

∑
µ

∂Fµ (U)

∂xµ
+ S (U) = 0⇒

∑
µ

∂Fµ (Um)

∂xµ
+ S (Um) = Sm (3.4)

Once computed, this manufactured source term can be used to drive the code being verified so

that it returns the manufactured solution. The error in this manufactured solution is then analyzed

as part of the verification process.

In contrast, the weak, or integral formulation of MMS expects a code to have governing

equations that are expressed as a system of integral equations, rather than a system of differential

equations. The weak form of an n-dimensional system of equations of the form given in equa-

tion (3.1) can be obtained by integration over some suitable computational volume and application

of Stokes theorem, which is the n-dimensional generalization of the three-dimensional divergence

theorem. By integrating equation (3.1) over the n-dimensional volume V and applying Stokes’ the-

orem to convert the flux derivatives into integrals over the volume boundary ∂V , one can obtain

an integral form of this same law as in equation (3.5). Equations of this form can be used to model

many different types of problems. Of particular interest for the purposes of verification, this weak

form does not explicitly require that the integrand functions be differentiable.

∑
µ

(∮
∂V
Fµ (U)

)
+

∫
V
S (U) = 0 (3.5)

In many instances, one of the independent variables can be positively identified as a “march-

ing” coordinate, along which information propagates only in one direction. Examples include the
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downstream coordinate in space-marching schemes for supersonic fluid flows, and the time coordi-

nate in unsteady problems. For such marching problems, it is often possible to derive an alternative

weak formulation, where integration is carried out over a computational volume V ′ composed only

of the non-marching coordinates, and the marching coordinate is left in differential form. If x0 is

taken to be the marching coordinate, then this can be written as in equation (3.6).∫
V ′

∂F0 (U)

∂x0
+
∑
i

(∮
∂V ′

Fi (U)

)
+

∫
V ′
S (U) = 0 (3.6)

If the boundaries ∂V ′ of the integration domain are constant with respect to the marching

variable, then the marching derivative may be moved outside of the integral, and the resulting term

may be discretized using finite differences. In the case of the unsteady Euler equations in polar

coordinates given in equation (3.2), this formulation can be written as in equation (3.7).

d

dx0

∫ x1R

x1L

F0 (U) dx1 + F1

(
U
(
x1
R

))
− F1

(
U
(
x1
L

))
+

∫ x1R

x1L

S (U) dx1 = 0 (3.7)

For problems where it is appropriate, this second formulation is beneficial because it reduces

the dimensionality of the integrals that must be evaluated when computing source terms. As a result,

it is widely used. However, it can be problematic if
∫
V ′ F0 (U) is not everywhere differentiable with

respect to the marching coordinate, or if the integration volume is not constant with respect to

the marching coordinate. Such difficulties are quite common, even for smooth problems. They can

arise from any simulation involving a spatial discretization that varies with respect to time, or with

respect to space in a space-marching scheme. As a result, I have focused my attention on the more

general formulation in equation (3.5).

Integral manufactured source terms are computed in the same manner as for the differential

formulation, by substituting a manufactured solution Um into the weak system, though the source

terms must be computed with respect to a specific computational volume, as seen in equation (3.8).

The introduction of this computational volume V does create new difficulties. In practice, source

terms are computed based on computational cells, thus making a particular collection of manufac-
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tured source terms dependent on a given computational mesh.∑
µ

(∮
∂V
Fµ (U)

)
+

∫
V
S (U) = 0⇒

∑
µ

(∮
∂V
Fµ (Um)

)
+

∫
V
S (Um) =

∫
V
Sm (3.8)

With this new formulation of MMS, it is now possible to more naturally verify scientific codes

based on integral equations, especially those involving discontinuous solutions. Such codes are very

common, since both finite-volume and finite-element codes are inherently based on weak governing

equations, so the weak form of MMS is more naturally applicable to these codes than the strong

form [17]. The absence of derivatives in the weak form of MMS makes it inherently permissive of

discontinuous solutions, because there is no requirement that the solution Um be differentiable for

the computation of source terms. As a result, equation (3.8) is perfectly applicable to the piecewise-

continuous solutions that are common when dealing with high-speed aerodynamic shocks and other

discontinuous solutions. From here, it is a simple matter to adapt the traditional MMS procedure

for use with integral equations.

3.3 Manufacturing Integral Solutions

The method of manufactured solutions has been in use for some time and the basic method-

ology is well-established, but its integral form requires a few minor changes. The basic algorithm

for finding integral manufactured source terms is as follows:

(1) Choose an appropriate manufactured solution.

(2) Compute flux and source functions.

(3) Integrate to find source terms.

3.3.1 Choice of Manufactured Solutions

As with traditional manufactured solutions, the test solution may be chosen more-or-less

arbitrarily, with the added freedom to choose a solution that is only piecewise continuous. Discon-

tinuous solutions may be defined either as piecewise functions or as step functions, but regardless

the functional form of the discontinuity is known at this point.
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In order to be reliable, code verification must use solutions that fully exercise all important

aspects of the code. Knupp [18] gives the following guidelines for constructing traditional manufac-

tured solutions:

(1) Manufactured solutions should be sufficiently smooth on the problem domain that the

theoretical order-of-accuracy can be matched by the observed order-of-accuracy obtained

from the test.

(2) The solutions should be general enough that they exercise every term in the governing

equations.

(3) The solutions should have a sufficient number of nontrivial derivatives.

(4) Solution derivatives should be bounded by a small constant.

(5) The manufactured solutions should not prevent the code from running successfully to com-

pletion during testing, since code robustness is not considered part of code verification.

(6) Manufactured solutions should be composed of simple analytic functions.

(7) The solution should be constructed in such a manner that any operators in the governing

equations make sense.

(8) Solutions should not grow exponentially in time.

Because the integral form of MMS explicitly allows for discontinuous solutions, items 1 and 4 may

be relaxed such that the solution is smooth and the derivatives are bounded, except along certain

critical hypersurfaces where the solution may be jump-discontinuous.

For the most part, these guidelines are concerned with the equation set being solved, not

with the specific code to be verified. The Center for Predictive Engineering and Computational

Sciences (PECOS), part of the Institute for Computational Engineering and Sciences (ICES) at

the University of Texas at Austin developed a centralized repository for MMS code that has since

been made publicly available as the Manufactured Analytical Solution Abstraction (MASA) library
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[19,22]. The MASA project provides “an openly available, application-independent software package

that provides generated MMS source terms, solutions, etc.”

In particular, MASA provides sample manufactured solutions for a variety of equation sets,

including the heat equation, Laplace’s equation, the Euler equations (with or without thermal

equilibrium chemistry), the Navier-Stokes equations, and the Reynolds-Averaged Navier-Stokes

equations with various turbulence models [22]. For the Euler equations, the authors follow the

recommendation of Roy et al. [37], and recommend a manufactured solution composed of sines and

cosines, as given in equation (3.9), reproduced from the MASA documentation [22].

φ(x, y, z) = φ0 + φx fs

(aφxπx
L

)
+ φy fs

(aφyπy
L

)
+ φz fs

(aφzπz
L

)
, (3.9)

where φ represents the primitive flow variables ρ, u, v, w or p, fs(·) functions denote either sine or

cosine functions, and the remaining variables are user-defined constants.

A manufactured solution such as that in equation (3.9) provides a good test for the steady-

state Euler equations under conditions which lead to smooth solutions. In order to define a manu-

factured solution that also test the shock-capturing capabilities of Euler solvers, I propose to use

a solution of the kind shown in equation (3.10), where H is the Heaviside step function defined in

equation (3.11), and φH is the strength of the discontinuity.

φ (t, x, y, z) = φ0 +
∑

µ=t,x,y,z

φµfs

(
aµπxµ
Lµ

)
+ φHH (f (t, x, y, z)) (3.10)

H (f (x0, ..., xn)) ≡


0 ; f (x0, ..., xn) < 0

1
2 ; f (x0, ..., xn) = 0

1 ; f (x0, ..., xn) > 0

(3.11)

3.3.2 Computation of Flux and Source Functions

Once the manufactured solution is defined, the system of integral equations is then operated

on it to obtain the various flux and source integrand functions. This may be a very complex task
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if the manufactured solution is sufficiently general, especially for nonlinear differential equations.

The use of computer algebra systems to aid in this task is usually advisable.

An example from the MASA project [19] will serve to illustrate the complexity of source

terms for general manufactured solutions. For the steady-state, one-dimensional Euler equations,

they choose the specific manufactured solution given by equation (3.12).

ρ (x) = ρ0 + ρx sin
(aρxπx

L

)
u (x) = u0 + ux sin

(auxπx
L

)
p (x) = p0 + px cos

(apxπx
L

) (3.12)

They computed the manufactured source terms by applying the Euler equations from equa-

tion (2.29) to this solution. This was done using the Maple software package [38]. Defining a number

of auxiliary variables helps improve the readability of the final solution.

R1 = ρ0 + ρx sin
(aρxπx

L

)
U1 = u0 + ux sin

(auxπx
L

)
P1 = p0 + px cos

(apxπx
L

)
The analytic source terms for the equations governing conservation of mass, momentum and

energy are given in equation (3.13). Clearly, additional dimensionality will only complicate the

problem further.

Qρ =
aρxπρxU1

L
cos
(aρxπx

L

)
+
auxπuxR1

L
cos
(auxπx

L

)
Qu =

aρxπρxU
2
1

L
cos
(aρxπx

L

)
− apxπpx

L
sin
(apxπx

L

)
+

2auxπuxR1U1

L
cos
(auxπx

L

)
(3.13)

Qet =
aρxπρxU

3
1

2L
cos
(aρxπx

L

)
− γ

γ − 1

apxπpxU1

L
sin
(apxπx

L

)
+

γ

γ − 1

auxπuxP1

L
cos
(auxπx

L

)
+

3auxπuxR1U
2
1

2L
cos
(auxπx

L

)
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Generating flux and source functions for integral manufactured solutions is somewhat simpler,

as derivatives do not need to be taken. However, these functions must still be integrated. It is quite

difficult to find manufactured solutions that generate flux and source functions that are analytically

integrable for systems of interest, and so one must typically rely on approximate methods for

numerical integration.

3.3.3 Evaluation of Integrals

Numerical integration methods are a reliable way to evaluate integrals of functions that do

not have an analytic antiderivative, but they do introduce challenges of their own. First, like any

other numerical approximation technique, numerical integration algorithms introduce some amount

of error. This is crucial for code verification, which relies on the analysis of simulation errors

to establish code correctness. Any additional error introduced by the verification technique can

dramatically complicate this process. Therefore, in order to trust the results of numerical integration

in verification, 1) the order of accuracy of the numerical integration routine must be much higher

than that of the integral equation solver, and 2) the error introduced by the discontinuities must

be small.

Second, because numerical integration techniques do not compute an antiderivative explicitly,

a new integral must be evaluated for each and every change in integration boundaries. For verifi-

cation applications, one must typically evaluate numerical integrals for a large number of different

boundaries, and so computational performance becomes critical.

Once the manufactured solution has been chosen, flux and source integrands have been deter-

mined, and these integrands have been put into an appropriate form for numerical integration, one

must evaluate the integrals. As discussed in section 3.2, a given set integral manufactured source

terms is dependent on a specific computational volume. As a result, the number of numerical in-

tegrations that must be carried out may be quite large. For a mathematical model of q quantities

and dimensionality d, and a regular structured grid with nxi cells in each dimension, the number
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of flux integrals of dimensionality d− 1 scales as in equation (3.14).

q

d∏
j=1

∏
j 6=j

(nxi + 1)nxj (3.14)

The number of d-dimensional volume integrals scales as in equation (3.15).

d∏
i=1

nxi (3.15)

For example, a simulation of the Euler equations (q = 5) that is unsteady in three dimensions (d = 4)

on a grid that consists of 100 × 100 × 100 cells for 100 time steps would require the evaluation of

5 · 1003 · 101 · 4 = 2.02 · 109 three-dimensional hypersurface integrals and 5 · 1004 = 5 · 108 four-

dimensional hypervolume integrals. The sheer scale of this problem means that the performance of

the numerical integration routine is critical.

Third, most computational tools for numerical integration require the integrand function to

be available to the tool in a specific functional form, which is usually not the same as required by

computer algebra systems. Therefore, one must either write a function based on the symbolic form

of the integrand, or else rely on code generation tools to do so automatically. The availability of

such code generation tools can play a significant role in the success of verification by the method

of manufactured solutions, as a result.

The fast, accurate evaluation of flux and source integrals is the most difficult aspect of integral

manufactured solutions. This is especially true when the integrand functions may contain disconti-

nuities, because the degree to which an integration technique tolerates discontinuous integrands is

usually inversely proportional to the computational efficiency of that routine.

Monte Carlo methods provide the simplest approach to integration of multidimensional func-

tions, and they are typically the most efficient when the dimensionality of the problem is high.

Monte Carlo methods work by simply sampling the value of the function at pseudo-random points

throughout the integration domain, and averaging the results. Because no assumptions are made

about the underlying form of the integrand, Monte Carlo schemes work equally well for smooth

and discontinuous integrand functions. Unfortunately, accuracy for these methods scales as the
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square-root of the number of function evaluations, and high-accuracy results are often difficult to

obtain [39]. Despite their amenability to discontinuous integrand functions, this lack of accuracy

means that Monte Carlo methods are unsuitable for MMS applications.

Quadrature methods are somewhat more complex than Monte Carlo, but they have much

higher rates of convergence for smooth problems. One-dimensional quadrature methods work by

sampling the function at a series of points and using these to fit a polynomial, which can then be

integrated analytically. This results in an integration technique that is much more accurate than

Monte Carlo, for a given number of sample points, provided that the integrand function is well-

approximated by polynomials. While this is typically the case for smooth functions, discontinuities

in the integrand can lead to greatly reduced accuracy around the jump.

The most common way to accurately integrate discontinuous functions using quadrature is

to take advantage of the linearity of the integration operator to subdivide the integration domain

into smooth regions, apply quadrature to these parts separately, and sum the results. Subdividing

the domain in this way effectively eliminates the effects of the discontinuity from the resulting

integration, and is a highly effective method for problems where the functional form of the integrand

is known a priori. Failure to account for the discontinuities can result in either error levels that are

unacceptable, or computational costs that are too high, or both.

The details of applying quadrature methods to discontinuous integrand functions are dis-

cussed in greater detail in chapter 2, but a brief summary of the approach I have chosen will be

provided here.

Evaluating multidimensional integrals of discontinuous functions is a challenging problem.

Although Monte Carlo methods continue to work, mostly without modification, they remain in-

accurate and unsuitable for use in code verification applications. Quadrature methods can also

be readily extended to multiple dimensions, but they still require special care when the integrand

functions involved may be discontinuous. These difficulties can be addressed by subdividing the in-

tegration domain, as in the one-dimensional case, but doing so becomes more complicated because

of the more complex topology inherent in multidimensional spaces.
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Multidimensional subdivision of integration domains can be entirely avoided by mapping

the discontinuous critical surfaces of the integrand function through the various one-dimensional

integration operators as these are applied. Doing so gives up any efficiency gains that can be achieved

by using inherently multidimensional integration routines, but these are more than compensated by

the performance benefits of accurately subdividing the integration domain along critical surfaces.

Therefore, this is the scheme that I have used in my investigations into the behavior of integral

manufactured solutions.

3.4 Computational Implementation

MMS is an invaluable tool for computational researchers, but it is not without its limitations.

It requires the generation of additional source terms, which can be quite complex, and these terms

must then be converted into a form that the original code can access and use. I have used the

Sympy and SciPy software packages to simplify and automate this process, and I have packaged

this as the BACL-manufactured software package.

In order to design software to automate the implementation of integral manufactured source

terms, it is important to define the expected behavior of this software. This software must accept as

inputs a manufactured solution, a specific integral balance law, and a set of computational volumes.

Using these, it must return as outputs a set of numbers representing the integral manufactured

source terms. Because it is a relatively simple addition, this software will also provide access to

differential source terms based on these same inputs.

BACL-manufactured is a Python package consisting of three interdependent parts that act

together to compute manufactured source terms: a module for numerical integration; a generic

equation class that defines how to process fluxes and sources into manufactured source terms; and

specific equation classes that define the flux and source terms for specific balance laws, as well

as example manufactured solutions. The numerical integration module in BACL-manufactured is

discussed in section 2.2.3, but the other two sections will be discussed here.

BACL-manufactured defines a SympyEquation base class to describe the behavior of both
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integral and differential balance laws. This is an abstract class, and SympyEquation objects cannot

be directly instantiated. Rather, SympyEquation forms the base class from which equation-specific

subclasses are derived. It provides common methods that are required for the computation of

manufactured source terms for general balance laws. Some of these are:

• balance integrate - Returns integral form of manufactured source terms, integrated over

a specified computational volume. Includes options for shared-memory parallelism.

• flux integrate - Evaluates flux integrals over the surface of the computational volume.

• source integrate - Evaluates volume integral of any source terms inherent in the balance

law.

• balance diff - Returns symbolic representation of differential manufactured source terms.

• balance lambda init - Convert symbolic, differential manufactured source terms to native

Python “lambda” for improved computational performance.

• vector diff - Differentiates a list of symbolic expressions and returns the result as a Sympy

Matrix.

A related function, scheduled for incorporation into the SympyEquation class in the future, is

list integral, which evaluates a list of integrals. This is intended to provide functionality that is

similar to what the SympyEquation.vector diff method does for derivatives.

A SympyEquation subclass-object is instantiated with a Python dict containing Sympy rep-

resentations of the integration variables, the manufactured solution to be used in computing the

source terms, and symbolic representations of any discontinuities the solution contains. These are

saved as object data, and then the subclass setup method is called on the inputdict to gener-

ate symbolic flux and source terms from the manufactured solution and the specific balance law

implemented in the subclass.

Once the object is instantiated, source terms may be computed as needed. For use in code

verification, there are two principal methods that are of interest. balance lambda init uses Sympy
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code generation tools to generate native Python functions that return the differential manufactured

source terms for a given set of computational coordinates. This allows the use of traditional, strong-

form MMS for code verification.

balance integrate is called with a specific integration domain and an optional symbolic

representation of discontinuities, and it evaluates the integral manufactured source terms over that

integration domain. It does this by processing the symbolic integrand, ranges, and discontinuities

into a set of IntegrableFunction objects (described in section 2.2.3), and then evaluating these

individually.

Overall, the SympyEquation abstract class greatly simplifies the incorporation of MMS veri-

fication into scientific and engineering codes. Using the highly capable Sympy library for symbolic

mathematics, it provides all the tools necessary to generate either differential or integral manu-

factured source terms, given only a manufactured solution, a set of balance law equations, and a

list of any discontinuities in the manufactured solution. All of these are made available to the user

with just two functions, thus hiding all of the complexities of computing these source terms and

providing a simple, capable interface.

The SympyEquation class is an abstract class, and is not intended for direct use. Instead,

subclasses are used to define specific balance laws to be used in generating source terms. These

subclasses are responsible for providing the setup method, which defines how to convert a manu-

factured solution into flux and source terms for differentiation or integration. Implementations are

available for the linear heat equation and for the UCS Euler equations described in chapter 4. The

files in which these subclasses are defined are also a convenient location for sample manufactured

solutions to be stored, as a given manufactured solution is often applicable to many different codes

without modification, and only needs to be considered in the context of a single set of balance law

equations. This organization allows for easy expansion of the method to different balance laws.

Because so much critical functionality is available in the SympyEquation class, the subclasses

can be very simple. For the linear heat equation, the entire subclass can be reproduced simply and

easily:
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class HeatEquation(SympyEquation):

def setup(self, **kwargs):

self.rho = kwargs[’rho’]

self.cp = kwargs[’cp’]

self.k = kwargs[’k’]

self.fluxes = [sympy.Matrix([self.rho * self.cp * self.sol[0]]),

sympy.Matrix(

[-self.k * sympy.diff(self.sol[0], self.vars_[1])]),

sympy.Matrix(

[-self.k * sympy.diff(self.sol[0], self.vars_[2])]),

sympy.Matrix(

[-self.k * sympy.diff(self.sol[0], self.vars_[3])])]

self.source = sympy.Matrix([Zero])

The design of these subclasses is intended to allow the greatest possible freedom to developers to

implement subclasses in whatever way is best-suited to a specific equation set. The interface is

as simplified as possible, and the entirety of the Python solution dict with which the object is

instantiated is available to the subclass as self.sol. This has disadvantages, as it is difficult to

tell from the interface alone what specific arguments are needed for a given subclass, but it allows

experimentation among developers and reduces the friction of adoption for new systems of balance

laws.

The only critical aspects of a subclass are that it define the setup method with the given

function signature (setup(self, **kwargs)), and that it define the two objects self.fluxes

and self.source. self.fluxes must be a Python list of Sympy Matrix objects of length one or

more, each containing a symbolic description of one of the flux terms for the balance law being

implemented. self.source is similar, except that it is a single Sympy Matrix object, rather than

a list.

Given a symbolic representation of the flux and source vectors, as well as a particular manu-

factured solution, it is a simple matter to compute symbolic representations of the functions which

must be integrated. The integration package uses Sympy tools to convert these symbolic inte-

grands to more computationally efficient Python functions, with an additional option to generate

C functions.
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3.5 Demonstration

With the tools and methods developed in this chapter, it is possible to use integral MMS to

verify the accuracy of scientific and engineering codes. I have demonstrated the use and utility of

integral MMS, by performing a demonstration verification of the BACL-Streamer package, which is a

code developed in the Busemann Advanced Concepts Lab for compressible, inviscid fluid dynamics.

BACL-Streamer will be discussed in greater detail in section 3.5.3 and in chapter 4.

3.5.1 Code-order Verification in the Presence of Discontinuities

Code-order verification remains the best available technique for establishing the mathematical

accuracy of engineering codes, yet there are some special difficulties that arise when performing

code-order verification in the presence of discontinuous solutions. Code-order verification works by

measuring the observed rate at which a code converges to a known solution, one can make reliable

assertions about the mathematical accuracy of that code. Specifically, if the observed convergence

rate matches the nominal order of accuracy of the algorithms the code implements, then it can be

asserted that the code does, in fact, implement those algorithms correctly. Discontinuities present

a special difficulty for this process, because they can affect the expected rate of convergence of the

code. Even more challenging, different types of discontinuities can affect overall convergence rates

in different ways.

In fluid dynamical simulations modeled by the Euler equations, there are two primary types

of discontinuities that can arise. These are classified based on the properties of the various char-

acteristic fields that cause them. [40] If these fields are genuinely nonlinear (that is, the matrix

product of the eigenvector with the gradient of the corresponding eigenvalue is nonzero for all

space), then the characteristic field gives rise to a nonlinear wave, such as a shock or a rarefaction

wave. If the field is linearly degenerate (the matrix product of the eigenvector with the gradient

of the eigenvalue is zero for all space), then the field gives rise to a linearly degenerate slip line

(contact discontinuity). These two types of waves have been shown to affect overall convergence
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rates differently.

This is a problem, because it can be difficult to distinguish the effects of discontinuities from

the effects of simple programming mistakes. Banks et al. [41] have shown that convergence rates

may decrease to one-half order due to the effects of linearly degenerate waves, while Sabac [42]

showed that it was possible to construct initial data for which monotone schemes converge at a rate

no better than one-half. Popov [43] showed a similar effect in higher-order schemes based on the

minmod limiter. This is problematic for verification, because it can be unclear what the expected

rate of convergence for a given problem should be.

3.5.2 NUMERICA

In order to provide some form of computational baseline against which to compare verifica-

tion results using integral MMS, I have first performed a sample verification of an independent,

established CFD code.

NUMERICA is a library of source codes developed by Euletorio Toro and based on the contents

of his book on Riemann solvers and numerical simulation of compressible fluid dynamic problems

[40]. It contains a fully functional fluid mechanical solver for the unsteady, one-dimensional Euler

equations, based on a first-order Godunov method. As the NUMERICA code does not allow for the

direct solution of problems including source terms, it is unsuitable for verification using MMS.

Therefore, I have used the NUMERICA solver to model a known, exact solution. I have used the

well-known Sod’s test, given by the initial data in equation (3.16). The solution to this problem

consists of a rarefaction wave, a slip line, and a shock, and therefore it helps to establish the sort of

convergence one might expect from a first-order Godunov method in the presence of discontinuous

solutions.

Sod’s problem is solved over a range of grid resolutions, and convergence rates are computed

based on the L1, L2, and L∞ norms. These are shown in table 3.1, and plots for pressure are shown

in figure 3.1.
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(ρ, p, u) |t=t0 =

 (1.0, 1.0, 0.0) ; x ≤ 0

(0.1, 0.125, 0.0) ; x > 0

(3.16)

From these results, it is clear that the slip line contained in Sod’s test does indeed result

in half-order convergence. The L1 norm yielded the highest overall convergence rates, although

these are somewhat inconsistent among flow variables. The L2 and L∞ norms yielded consistent

convergence rates for different flow quantities, but they were also lower than those obtained using

the L1 norm. The L1 norm is the most widely reported in the literature on verification of codes,

and so I have followed suit in the discussion that follows.

3.5.3 BACL-Streamer

In my time at the Busemann Advanced Concepts Lab, I have developed a code for solving the

Euler equations as part of my research into the unified coordinate system [44,45]. BACL-Streamer

is a finite-volume code that uses the same first-order, exact Godunov method used by NUMERICA

to solve the conservative Euler equations. The code uses the alternative finite-volume formulation

discussed in equation (3.6), where the time derivative is left in strong form. This derivative is

advanced using a simple forward-Euler scheme. Arbitrary source terms are included through the

use of partial time steps as described in Toro [40]. For integral MMS, source terms are computed

using the four-dimensional space-time cell associated with the evolution of a spatial volume over one

time step, as described in equation (3.5), and then incorporated directly with the numerical fluxes

as in equation (3.17). For differential MMS, source terms are handled using the SciPy differential

equation solvers.

∫
∂V

F0|x0=x0−+∆x0dx1dx2dx3 =∫
∂V

F0|x0=x0−dx1dx2dx3 +

∮
∂V

FidAi (x0, x1, x2, x3) +

∫
V

Smdx0dx1dx2dx3 (3.17)
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Table 3.1: Convergence of NUMERICA for Various Flow Variables and Norms. For a given code,
and a given verification solution, convergence rates may depend on what variable is being tested, as
well as what norm is being used to represent the error. Convergence rates were computed for density,
velocity, and pressure using various norms for solutions obtained using the NUMERICA [35, 40]
software. The L1 norm was the least consistent among flow variables, but most theoretical work on
convergence is based on this norm, which is also widely used in the literature.

L1 error L2 error L3 error

Density 0.52 0.48 0.13

Velocity 0.71 0.48 0.13

Pressure 0.58 0.48 0.13

Grid Spacing
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Figure 3.1: NUMERICA Grid Convergence of Various Norms. The NUMERICA code was tested
against a Riemann problem for a variety of grid resolutions. The resulting error was computed using
the L1, L2, and L∞ norms. These resulted in different convergence rates. L1 is the most widely
used in the literature.
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3.5.4 Verification Solutions

I performed a sample verification of BACL-Streamer using exact solutions, differential MMS,

and integral MMS. I measured convergence rates using both differential and integral MMS for

smooth problems and using integral MMS and exact solutions for discontinuous problems. The exact

solution chosen was Sod’s test (equation (3.16)), as was done for NUMERICA. I did this in order to

establish two distinct aspects of integral manufactured solutions. First, one must demonstrate that

the measured convergence to smooth manufactured solutions is equivalent whether a differential

or integral algorithm is used. Second, one must demonstrate that the measured convergence to

discontinuous solutions is the same for both manufactured and exact solutions. The two cases were

considered separately.

3.5.4.1 Smooth Solutions

Following the example of the MASA library [19], I chose a smooth solution given by a scaled

cosine function, in equation (3.18).

p = ρ = u = v = w = 1.1 + 0.5 cos

(
2πx

Nx

)
(3.18)

This solution is a simple, powerful choice for use with MMS. It is completely non-physical,

and it therefore provides a non-trivial test of the accuracy of the fluid mechanical solver with

included source terms.

3.5.4.2 Discontinuous Solutions

In order to test the shock-capturing capabilities of BACL-Streamer, while maintaining the

ability to compare results with smooth problems, I chose a discontinuous manufactured solution

based on a modification of equation (3.18). This is shown in equation (3.19). No effort was made

to ensure that the discontinuity satisfied any form of the Rankine-Hugoniot jump conditions. Both

the smooth and discontinuous manufactured solutions are shown in figure 3.2.
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Table 3.2: Choice of Grid Refinement

Grid spacing Grid sizes x ranges

Manufactured Solutions ∆x = 1, 2, 5 nx = 101, 51, 21 {0, 100}
Sod’s problem ∆x = 0.01, 0.02, 0.05 nx = 100, 50, 20 {0, 1}

p = ρ = u = v = w = 1.1 + 0.5 cos

(
2πx

Nx

)
+

0 1 x ≤ Nx/2

1 ; x > Nx/2

(3.19)

3.5.5 Measured Convergence Rates

Measurement of a code’s order of convergence requires the use of multiple grids at different

levels of refinement. For structured grids, such as those used in BACL-Streamer, it is a simple

matter to begin with a fine grid, and obtain coarser grids by neglecting multiples of two, three,

etc., or else to obtain a finer grid by simply doubling the number of points, as shown in table 3.2.

For the manufactured cases, we began with a 101-point cell-edge grid and progressively defined 51-

and 21-point grids using ∆x = 1, 2, 5. For the Riemann problems, we began with a 100-point cell-

center grid and used ∆x = 0.01, 0.02, 0.05. For all of these, the time step was chosen for stability

and scaled along with the grid spacing so that halving the resolution of the computational grid

corresponded to doubling the time step used.

Having defined the grids to be used, I computed the numerical solutions, and the L1 norm of

the pointwise-error between the numerical solutions and the known, exact solutions. I then fit the

results to the function f(∆x) = A∆xn. The results and their fits are shown in figure 3.3, figure 3.4,

and table 3.3.

It can be seen from the function fits given in table 3.3 that BACL-Streamer did, in fact,

converge at the expected first-order for smooth manufactured solutions, regardless of whether dif-

ferential or integral solutions were used. This is excellent, as it shows that integral MMS performs

as well as the current gold-standard traditional MMS for smooth problems. Discontinuous man-

ufactured solutions also resulted in first-order convergence. First-order results are excellent for a
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Figure 3.2: 1-Dimensional Smooth and Discontinuous Manufactured Solutions. These two manu-
factured solutions are used to verify the performance of BACL-Streamer for one-dimensional flows.
The discontinuous solution is equal to the smooth solution plus a unit step function.

Table 3.3: Measured Convergence Rates. Convergence rates were computed using NUMERICA and
BACL-Streamer, with both manufactured and exact solutions. Rates were computed using the L1

norm based on error in pressure. For the smooth solutions, first-order convergence was expected.
For Sod’s test, one-half-order convergence was expected. Discontinuous MMS was expected to lie
somewhere between these two.

Function fit Convergence rate

Smooth, differential, manufactured solution y = 3× 10−4∆x1.0 1.0

Smooth, integral, manufactured solution y = 2× 10−3∆x0.96 0.96

Discontinuous, integral, manufactured solution y = 5× 10−3∆x0.95 0.95

NUMERICA, Sod’s test y = 2× 10−1∆x0.58 0.58

BACL-Streamer, Sod’s test y = 4× 10−1∆x0.64 0.64
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Figure 3.3: Smooth MMS Convergence. When BACL-Streamer was verified using a smooth manu-
factured solution, both differential and integral methods returned nearly identical first-order con-
vergence rates. The error coefficient was slightly different, but this is not typically used in code
verification.
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Figure 3.4: Discontinuous Convergence. Because there is no way to use differential MMS to com-
pute convergence rates for discontinuous solutions, the results of integral MMS were compared to
convergence rates for exact, discontinuous solutions. These rates are complicated by the fact that
some types of discontinuities can lower convergence rates below first-order, as seen in the exact
solutions, which converge at only one-half order. The arbitrarily chosen discontinuity used in the
MMS solution has no such difficulty, converging at the same first order as was shown for smooth
solutions.
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manufactured solution that largely ignores the physics of the underlying system of equations, as

this one ignores the Rankine-Hugoniot jump conditions, although it remains unclear exactly what

convergence rates one should expect for other problems of this kind. Finally, the Riemann solution

also yielded the expected convergence rate of one-half, demonstrating close agreement with both

NUMERICA and the expected convergence rate for linearly degenerate problems.

3.6 Conclusion

The accurate verification of computer codes based on numerical methods is critical to the

advance of computational science and engineering. Although MMS has done much to improve

verification for codes solving differential equations, it is insufficient for the verification of codes

based on integral equations. This is true even when these are simply weak forms of differential

equations, if those equations and the codes solving them may be reasonably expected to encounter

discontinuous solutions. In order to verify such codes, it is necessary to use an integral form of

MMS, as I and Grier [15] have both shown. This method must be numerically accurate, to far

greater precision than would be expected from the codes it is intended to verify.

I have demonstrated one form of MMS for use with integral equations with discontinuities. I

have developed a technique for mapping critical surfaces through integration operators, and I have

used this technique to develop a discontinuous integration algorithm that is both fast and accurate.

I have also shown the results of a sample verification carried out on a compressible fluid mechanical

code. In that verification, no significant difference can be seen in the convergence rates of codes

verified with integral manufactured solutions and codes verified with exact solutions or differential

manufactured solutions. As a result, I recommend the use of integral manufactured solutions for

the verification of scientific codes based on integral equations, especially if they may be expected

to encounter discontinuous solutions.

Future work in this area should include optimizations to the integration algorithms and

code to further improve computational efficiency, and further research into the propagation of

discontinuities through nested levels of integration.



Chapter 4

The Unified Coordinate System

As discussed in chapter 1, powerful tools for numerical simulation have historically been

unwieldy and difficult to use for non-experts. It has not been uncommon for a complex simulation

to require weeks of time from a dedicated, specialized team, just to set the simulation up. In early

stages of project design, where resources are limited and rapid turnarounds essential, the use of

numerical simulations has therefore been highly constrained. This has certainly been the case in

the field of fluid dynamics.

Computational fluid dynamics, or CFD, dramatically altered the field of aerodynamics during

the twentieth century, and continues to be an essential part of aerodynamic analysis around the

world, both as a supplement to wind-tunnel testing and as a replacement when circumstances

require. Unfortunately, CFD is not without its costs, especially for design work. To quote Jameson,

“CFD is still not being exploited as effectively as one would like in the design process. This is

partially because of the long set-up times and high costs, both human and computational, of

complex flow simulations.” [6]

Automatic grid generation for complex problems would greatly reduce the set-up time and

human costs, and good progress has been made on this front using unstructured grids. However,

as illustrated in the AIAA Drag Prediction Workshop series, the exact form of the computational

grid can have a dramatic effect on overall simulation accuracy. In their summary on grid quality

issues from the DPW, Mavriplis et al. pointed out that the most reliable way to gauge the effects of

design changes on aerodynamic quantities was to apply mesh deformation techniques to an existing
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computational grid with identical geometric topology. [46] This unfortunately requires the prior

availability of a high-quality grid which can be deformed.

In addition to these challenges, it can also be desirable to avoid the use of unstructured

grids in favor of structured grids, which offer significant advantages in terms of memory use, grid

adaptation, and algorithm maturity (see [47] [48] [49] and [50]), have so far resisted automation.

Additionally, quadrilateral and hexahedral cells such as those used in structured grids are “widely

acknowledged to be superior to unstructured meshes (tet cells).” [51]. This is especially true near

flow boundaries, because of the greater ability of hexahedral cells to capture strong gradients, align

with flow geometries, and define grid normal vectors [51], and many codes use structured grids near

boundaries for just this reason [52].

W.H Hui et al. developed and demonstrated the unified coordinate system (UCS) as a coor-

dinate framework that would unify the strengths of Lagrangian and Eulerian coordinates, namely,

sharp resolution of contact discontinuities and a robust, non-deforming grid. UCS was developed

as a fully conservative system of conservation laws that contained both Lagrangian and Eulerian

coordinates as special cases, and that also allowed for intelligent control of grid motion in order to

obtain desired grid properties [21, 53–55]. A fortuitous result of Hui’s work was the development

of a methodology for computational fluid dynamics that provided automatic, structured, grid gen-

eration as part of the solution of the flow. Computational grid points could be generated at the

upstream boundary and allowed to flow through the simulation region in order to fill the area of

interest. This eliminated the need for non-trivial grid generation entirely, and allowed complex,

body-fitted grids to arise naturally out of the flow solution.

Hui’s methodology provided other benefits, as well. In particular, it was able to simulate

flow around supersonic bodies extremely efficiently. Using the UCS automatic grid generation, as

well as the use of space-marching schemes for steady-state supersonic flows, Hui demonstrated a

solution for flow around a diamond airfoil, from start to finish, in 1.8 seconds [55]. Steady-state

schemes could not be used the comparable simulations in Eulerian coordinates, because the flow

velocity in the direction of marching became subsonic. As a result, obtaining the solution to this
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problem using Eulerian coordinates required the use of a time-marching method (2393 s), as well

as generation of a body-fitted mesh (2180 s), and the result was substantial smearing of both the

shocks and the expansion waves. [55]

The actual grid motion is completely specified by requiring the grid velocity to preserve some

quantity of interest, such as skewness or jacobian. This eliminates the major problems of skew-

ness and arbitrarily small jacobian [56] associated with grid-point-movement methods of solution-

adaptive grid refinement, while simultaneously yielding the excellent resolution of slip lines that is

characteristic of a streamline-oriented grid.

In this chapter, I will show the theoretical underpinnings of the unified coordinate system, I

will discuss various means of implementing the system, and I will present example problems that

demonstrate the power and utility of the UCS method. First, I will discuss the UCS transforma-

tion itself. Second, I will show how the transformation can be applied to the Euler equations of

compressible, inviscid, fluid dynamics. Third, I will discuss several ways in which UCS grid motion

can be controlled, and provide some comments based on my experiences with UCS over the years.

Fourth, I will discuss the Godunov method for solving the fluid equations. Fifth, I will show how

the Euler equations in unified coordinates may be solved using the Godunov method by deriving a

solution to the Riemann problem in the unified coordinates. Sixth, I will present two versions of a

complete computational algorithm for simulation of flows using UCS. Seventh, I will demonstrate

several example applications which showcase the ability of UCS to bypass traditional grid genera-

tion processes. Eighth, I will discuss briefly the various versions of UCS code that I have developed,

with their strengths and weaknesses. And ninth, I will discuss some of the more interesting options

that are available for improving the accuracy and reliability of UCS for general fluid flows.

This work lays the theoretical and computational foundation for future projects, and estab-

lishes preliminary confidence in Hui’s method for design-oriented fluid simulations.
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4.1 Background on the Unified Coordinates

The unified coordinate system arose from a series of studies that used Lagrangian coordinates

to clearly resolve slip lines in supersonic flows, and it is best understood in that context. Traditional

computational fluid dynamics (CFD) is a field theory, in that it models the behavior of a continuous

fluid at discrete locations in space and time. The fundamental quantities in this system are scalar

and vector fields representing some complete set of flow quantities such as the set of pressure,

temperature, and velocity, or the set of mass, momentum and energy. This arrangement is known

as an Eulerian coordinate system. In contrast, a Lagrangian coordinate system is a particle theory,

in that it models the behavior of discrete blobs (particles) of fluid as they move, distort, and interact

with each other. In a Lagrangian coordinate system, flow quantities are a function of specific fluid

particles, rather than of space and time.

In many ways, Lagrangian coordinates result in a simpler form of physics. Newton’s laws

of motion, for instance, describe the motion of particles under the influence of forces, whereas

the advective terms in the fluid equations vanish in Lagrangian coordinates. Unfortunately, the

distortion that affects fluid particles of finite size makes it very difficult to compute approximate

numerical solutions for the fluid equations in Lagrangian coordinates. As a result, Eulerian fluid

dynamics has become the industry standard. The Unified Coordinate System (UCS) is one attempt

to capture the most important benefits of Lagrangian coordinates, while still maintaining the ability

to solve the equations computationally, as with Eulerian coordinates.

This is done by beginning with the fluid equations in Eulerian coordinates, and then intro-

ducing a generic, time-dependent coordinate transformation, which results in an Eulerian compu-

tational grid in computational space, that moves freely in physical space. At its most basic, the

computational grid moves in the same direction as the fluid, but the speed of the grid is con-

strained in order to control grid distortion. This additional freedom introduced by allowing the

speed of the grid points to vary allows the simulation to capture many useful properties of the

Lagrangian coordinate system, such as automatic grid generation and excellent slip line resolution,
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while also maintaining a structured, regular (orthogonal, if the flow permits) grid. In particular,

the grid follows fluid pathlines, automatically conforms to solid boundaries, and resolves slip lines

nearly perfectly. It does this at the cost of requiring the dynamic creation and destruction of nodes

at in- and out-flow simulation boundaries, and the computational costs associated with solving a

linear, first order, ordinary differential equation in space at each time step.

Because of their roots in lagrangian fluid dynamics, these lagrangian-esque moving meshes

invite comparison with Arbitrary-Lagrangian-Eulerian (ALE) schemes common in fluid-structure

interaction research, but the two are in fact quite distinct. Although the present work does involve

a grid that is, in a sense, a combination of Lagrangian and Eulerian grids, the implementation

of ALE schemes is typically done very differently. In most ALE schemes, a fully Lagrangian grid

is advanced in time for some arbitrary number of time steps before being interpolated onto an

Eulerian grid to control distortion. This methodology is unsuitable for grid generation, because it

requires an initial grid itself, and the interpolation routine is a source of diffusion that can eliminate

many of the accuracy advantages Lagrangian coordinates provide [21].

The unified coordinates were first used to solve time-dependent flows in 1999 [53], where they

were applied to the two-dimensional, inviscid, Euler equations for an ideal gas. In that paper, a

Godunov scheme with a flux-limited MUSCL extension to second order was used to solve a variety

of problems, including a steady Riemann problem, flow through a transonic duct, Mach reflection

of a traveling shock wave, and an implosion/explosion problem. In 2001 [54], a similar scheme was

applied in three dimensions to the steady Riemann problem and to supersonic corner flow. Two-

dimensional, inviscid, external flows around both steady and oscillating airfoils were presented

later [57]. During its original development by Hui et al., it was found that uniform Cartesian

grids could be generated at the upstream simulation boundary, and allowed to “flow” through the

simulation region, automatically conforming to simulation boundaries and fitting itself to body

surfaces, as shown in Fig. 4.1. Unsteady boundary conditions were also easily modeled with UCS,

as in Fig. 4.2.

Hui and his team also successfully applied the unified coordinate system to the Navier-Stokes
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Figure 4.1: Automatically Generated Grid Around a Complex Body [58]. One of the primary chal-
lenges of CFD, especially in early design, is the tedious process of grid generation, especially for a
complicated geometric body. [55] Hui demonstrated how the unified coordinates could be used to
compute flow around a multi-element airfoil, demonstrating how UCS could automatically generate
body-fitted computational grids for complex geometric bodies.
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Figure 4.2: Automatically Generated Grid Around an Oscillating Airfoil [21]. The unsteady nature
of the UCS grid is also particularly amenable to modeling unsteady geometries, such as those that
arise from unsteady boundary conditions. Hui demonstrated this capability by modeling the flow
around an oscillating diamond airfoil.
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Figure 4.3: Shock-induced Boundary-layer-separation and Recirculation [59]. One of the major
concerns about a Lagrangian-based grid such as UCS is that it will be unable to deal effectively
with recirculating flows. Hui showed this was not necessarily a problem by computing the flow
through a recirculating boundary-layer-separation bubble.
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equations in two dimensions. Their principal applications were to boundary-layer flows. The first

was a shock-boundary-layer interaction problem, composed of an incoming oblique shock impinging

on a boundary layer to induce separation. They found that the unified coordinate system was quite

capable of reproducing recirculating flow fields, despite its Lagrangian origins, as shown in figure 4.3.

The second problem was a shock-shock-interaction problem in a dual-ramp channel. They found

that the unified coordinates produced results that were more accurate than a simulation using

stationary, Eulerian coordinates, and did so with fewer grid points. Finally, they tested the Blasius

solution, in order to obtain a verification problem with which to quantify the accuracy of their

method.

UCS has been applied to more than just fluid mechanics. Additional models to which UCS

has been applied include multi-material flows [60], magneto-hydrodynamics [61], and gas-kinetic

BGK simulations of a freely falling plate [62] [63] . UCS provides several advantages over traditional

CFD, such as better slip line resolution and streamline-oriented grids, but our interest in the system

arises primarily from its automatic generation of a computational grid. Design optimization codes

will produce many different design options (thousands), and there is a need for a low-level CFD

program that is reasonably fast, reliably accurate, and requires little interaction on the part of the

user to validate these designs. The automatically generated, streamline-aligned coordinate system

UCS provides has the potential to satisfy these requirements, if it can be shown to work reliably

and in an intuitive way for a wide range of simulations.

In summary, the unified coordinate system has been used and applied in a wide variety

of fields. It possesses two primary advantages: first, automatic generation of a structured, body-

fitted grid; second, streamline-alignment of the grid. Streamline-alignment leads to many useful

properties, including excellent resolution of contact discontinuities.

4.2 The Euler Equations in Unified Coordinates

The unified coordinate system (UCS) represents a specific class of unsteady, curvilinear,

coordinate transformations. As such, one must be able to verify that the transformation itself is
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well-behaved, and results in a conservation set of equations, as one would expect. We here present

the method for deriving the Unified Coordinate System (UCS) transformation, and we also show

how to transform the conservation form of the Euler equations from Cartesian to UCS coordinates.

The application of the UCS transformation to the Euler equations has been previously shown

in the various published works by Hui et al., e. g. [21,53,54]. However, because the transformation

can be quite involved, it was not discussed in sufficient detail, except in the masters and doctoral

theses of Hui’s various students [64, 65]. Comparison of the original UCS papers [53, 54] with the

later review article [21] and monograph [55] clearly demonstrates an evolution in the understanding

of the mathematics behind the UCS method over the course of the intervening years.

The original UCS publications, including the theses where the UCS derivation is described

in detail, are based upon the idea that grid-point velocity should differ from fluid velocity only by

a scalar factor h. For steady-state problems, this results in a formulation that varies constantly

between Eulerian and Lagrangian coordinates [53]. For unsteady problems, the form of the grid is

less clear. This difficulty can be avoided through the more recent formulation of UCS in terms of

grid velocity components U , V , and W , as presented in later publications [21,55].

When the motion of the computational grid is handled using grid velocity components, it

is possible to define the computational coordinates η and ζ to be material coordinates [21]. This

effectively creates a grid where fluid particles travel exclusively down streamtubes bounded by

constant values of η and ζ, independent of the steadiness of the flow. This formulation also simplifies

the schemes that are used to control grid motion. Whereas grid distortion can be controlled using

both h and ~U schemes, this requires the solution of an additional partial differential equation for

h [53, 54], while it requires only an ordinary differential equation for ~U [21].

I have chosen to derive these equations under the more recent formalism, as done in [21,55].

This provides a unified, coherent description of the UCS transformation, that is consistent with the

ideas and notation of more recent works in the subject, while also giving a higher level of detail

that has been available in previously published works in this formalism.
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4.2.1 Mathematical Background

Although simple coordinate transformations are ubiquitous in the mathematical sciences and

engineering, the unsteady UCS coordinate transformation is far from simple. In order to discuss

the UCS transformation, as well as its weak and strong forms, it is important to have a basic

understanding of Einstein summation notation, the Levi-Civita tensor and Kronecker delta, n-

dimensional Euclidean space, embedded manifolds with boundaries, and Stokes’s theorem. As many

of these concepts are unfamiliar to most engineers, it is important to review them briefly before

presenting the UCS transformation in detail. The following discussion will draw heavily from books

by Weintraub, Flanders, and Preston. [66–68]

4.2.1.1 Einstein summation (index) notation

The Einstein system of summation notation is a powerful form of shorthand for vector cal-

culus. It is commonly taught in graduate courses in the mathematical sciences, but there are a few

conventions that are less well-known, and a brief overview is helpful.

At its most basic, summation notation is a shorthand form of representing sums. It is es-

pecially common in the mathematics of tensors, where it replaces the usual matrix products, dot

products, and so on, as in equation (4.1). This has the effect of dramatically reducing the complexity

of tensor calculations.


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·

b11 b12 b13

b21 b22 b23

b31 b32 b33

⇒
3∑

k=1

aikbkj (4.1)

In practice, many fields where summation notation is used are concerned principally with

sums over the dimensionality of the problem. As a result, one can often neglect to explicitly write

the summation symbol, and allow the reader to assume the appropriate upper and lower indices, as

in equation (4.2). In problems which consider both three-dimensional space and four-dimensional

space-time, a common convention is to use latin indices such as i, j, k to represent sums over
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three-dimensional space (i = 1, 2, 3), while using greek indices such as µ, ν to represent sums over

space-time, where the zero index represents the time dimension (µ = 0, 1, 2, 3). As UCS occasionally

requires both three- and four-dimensional sums, this is the convention that will be used here.

n∑
i=1

aibi ⇒ aibi (4.2)

There are two additional symbols commonly used in calculations which rely on summation

notation. The first is the Kronecker delta δij , which is equal to one when its two indices i, j are equal,

and zero otherwise. This makes the Kronecker delta an index representation of the identity matrix.

The second is the Levi-Civita tensor εijk, which is a three-dimensional, antisymmetric tensor that

is commonly used to represent vector cross-products. The Levi-Civita tensor has a value of one

whenever its indices are an even permutation of 1, 2, 3, a value of negative one whenever they are

an odd permutation, and a value of zero everywhere else. This means that, for instance, εijk =

−εjik = εkij . As a result, the cross product of two vectors can be expressed as in equation (4.3).

~a×~b = εijkajbk (4.3)

4.2.1.2 Four-dimensional, Euclidean Spaces

The concept of three-dimensional space underlies nearly everything that is done in science

and engineering. Unfortunately, this means that most researchers will avoid any forays into higher-

dimensional spaces, because the mathematical environment is foreign to them. As the UCS trans-

formation is inherently four-dimensional, it is necessary to briefly describe this environment, as well

as the notation used to describe these spaces.

Four-dimensional, Euclidean space-time consists of the R4 vector space defined by all sets of

real numbers (t, x, y, z), or equivalently (x0, x1, x2, x3). Defining the space in this way also suggests

a global coordinate system for the space, with the origin at (x0, x1, x2, x3) = (0, 0, 0, 0), and the

usual unit vectors ~x0, ~x1, ~x2, ~x3. In the language of differential geometry, vectors are written differ-

ently in order to simplify the notation. These basis vectors are written in this form as derivatives:
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∂
∂x0

, ∂
∂x1

, ∂
∂x2

, ∂
∂x3

. This notation arises from the definition of vectors on manifolds, and it is also a

helpful visual mnemonic for coordinate transforms.

Coordinate transformations are conceptually quite simple, when considered in this way, as the

rules for a coordinate transformation are equivalent to an application of the derivative chain rule.

That is, given an additional coordinate system which maps points in R4 to coordinates (ξ0, ξ1, ξ2, ξ3),

then one can transform from one to the other using only the partial derivatives, as in equation (4.4).

dxµ =
∂xµ
∂ξν

dξν (4.4)

The transformation for basis vectors is perfectly analogous:

∂

∂xµ
=
∂ξν
∂xµ

∂

∂ξν
(4.5)

Here, it is possible to see the power of the visual mnemonic. In traditional matrix notation,

the transformations are rather more complicated:



dx0

dx1

dx2

dx3


= A



dξ0

dξ1

dξ2

dξ3


⇒



∂
∂x0

∂
∂x1

∂
∂x2

∂
∂x3


=
(

(A)−1
)>


∂
∂ξ0

∂
∂ξ1

∂
∂ξ2

∂
∂ξ3


(4.6)

In order to consider weak balance laws in four-dimensional space, it is important to un-

derstand the concepts of computational volumes and their integrals. A four-volume, as generally

considered in the context of integration, consists of some subset of R4 that is bounded by a closed,

oriented, three-dimensional manifold. In three dimensions, a volume might be a sphere, bounded

by a two-dimensional surface manifold, or it might be a cube, bounded by the two-dimensional

manifold composed of the six faces. The same concept applies in four dimensions, except that the

boundary manifold is three-dimensional. As an example, one might consider the boundary surface

defined by the four-dimensional integral boundaries in equation (4.7).
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∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

1−
3∑

µ=0

xµ ∗ ∗2

 dx0dx1dx2dx3 (4.7)

The definition of surfaces in four-space is important, because there is an analogue to the

three-dimensional divergence theorem that is used to derive weak form balance laws. The details of

Stokes’s theorem require an understanding of differential forms, and are beyond the scope of this

overview, but the basic concept, that the integral of a vector field over some computational volume

is equal to the flux of that field through the hypersurface that bounds that volume. This can be

written explicitly for a conservation law integrated over the unit hypercube, as in equation (4.8).

∫
V

 3∑
µ=0

∂Fµ
∂xµ

 =

∮
∂V

3∑
µ=0

Fµdxµ =

∫ 1

0

∫ 1

0

∫ 1

0
F0|10dx1dx2dx3 +

∫ 1

0

∫ 1

0

∫ 1

0
F1|10dx0dx2dx3

+

∫ 1

0

∫ 1

0

∫ 1

0
F2|10dx0dx1dx3 +

∫ 1

0

∫ 1

0

∫ 1

0
F3|10dx0dx1dx2 (4.8)

For more complete information about any of these topics, the reader is referred to the excellent

works by [66–68].

4.2.2 The Unified Coordinate System

UCS is defined by the coordinate transformation:

dt

dx

dy

dz


=



1 0 0 0

U A L P

V B M Q

W C N R


·



dλ

dξ

dη

dζ


(4.9)

Equation (4.9) may be written more succinctly as dxα = ∂xα
∂ξβ

dξβ, which naturally leads to the

corresponding transformation for vectors and derivatives which can be written as ∂
∂xα =

∂ξβ
∂xα

∂
∂ξβ

,
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or in expanded form as:

∂
∂t

∂
∂x

∂
∂y

∂
∂z


=



1 −Uξ −Uη −Uζ

0 MR−NQ
J

CQ−BR
J

BN−CM
J

0 NP−LR
J

AR−CP
J

CL−AN
J

0 LQ−MP
J

BP−AQ
J

AM−BL
J


·



∂
∂λ

∂
∂ξ

∂
∂η

∂
∂ζ


(4.10)

In Eq. 4.10, the following relations are defined:

Uξi ≡ (U, V,W ) · ∇~xξi

∇~xξ ≡ 1
J (MR−NQ,NP − LR,LQ−MP )

∇~xη ≡ 1
J (CQ−BR,AR− CP,BP −AQ)

∇~xζ ≡ 1
J (BN − CM,CL−AN,AM −BL)

(4.11)

J ≡

∣∣∣∣∣∣∣∣∣∣∣
A L P

B M Q

C N R

∣∣∣∣∣∣∣∣∣∣∣
= εijkAiLjPk

~U ≡ (U, V,W ) ; ~A ≡ (A,B,C) ; L ≡ (L,M,N) ; ~P ≡ (P,Q,R)

In particular, the above definitions provide the formulas for projection of a vector in global

Cartesian coordinates onto the computational coordinate vectors, as well as providing a useful

shorthand for later derivations, as discussed in section 4.2.1.

The UCS transformation in Eq. 4.9 is not complete as written, however. In order for the trans-

formation to be well-behaved, it is necessary to impose additional conditions on the components of

the transformation. In particular, it is necessary that partial derivatives commute:

∂

∂ξγ

(
∂xα
∂ξβ

)
=

∂

∂ξβ

(
∂xα
∂ξγ

)
(4.12)

Upon expansion, and using the notation of Eq. 4.9, this constraint is equivalent to the fol-

lowing compatibility conditions:
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∂A
∂λ = ∂U

∂ξ
∂L
∂λ = ∂U

∂η
∂P
∂λ = ∂U

∂ζ

∂B
∂λ = ∂V

∂ξ
∂M
∂λ = ∂V

∂η
∂Q
∂λ = ∂V

∂ζ

∂C
∂λ = ∂W

∂ξ
∂N
∂λ = ∂W

∂η
∂R
∂λ = ∂W

∂ζ

∂A
∂η = ∂L

∂ξ
∂A
∂ζ = ∂P

∂ξ
∂L
∂ζ = ∂P

∂η

∂B
∂η = ∂M

∂ξ
∂B
∂ζ = ∂Q

∂ξ
∂M
∂ζ = ∂Q

∂η

∂C
∂η = ∂N

∂ξ
∂C
∂ζ = ∂R

∂ξ
∂N
∂ζ = ∂R

∂η

(4.13)

The conditions of Eq. 4.13 are not independent. In particular, if the nine purely spatial

conditions are satisfied at some initial time λ, then it follows that the 9 conditions involving the

temporal derivative ∂
∂λ are sufficient to ensure that the full compatibility conditions will be met

at all other times. If these are compatibility conditions are not met, then the resulting coordinate

transformation will not be single-valued. [21]

Furthermore, the parameters related to grid motion, U, V,W , remain unspecified. As a result,

these may be chosen freely by the user, provided that they do not cause the coordinate transfor-

mation to become singular.

4.2.3 The Three-dimensional Euler Equations

The three-dimensional, unsteady, Euler equations are a system of five nonlinear equations

defined on four-dimensional space-time (R4) by the fluxes:

F0 ≡



ρ

ρu

ρv

ρw

ρe


; F1 ≡



ρu

ρu2 + p

ρuv

ρuw

ρu (e+ p/ρ)


; F2 ≡



ρv

ρuv

ρv2 + p

ρvw

ρv (e+ p/ρ)


; F3 ≡



ρw

ρuw

ρvw

ρw2 + p

ρw (e+ p/ρ)


(4.14)

where ρ represents mass density, u,v, and w are the Cartesian velocity components, p is static

pressure, e is the specific energy given by the ideal gas equation of state e = 1
2

(
u2 + v2 + w2

)
+
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p
(γ−1)ρ , and γ is the ratio of specific heats of the fluid, which for calorically perfect, dry air can be

considered to be 7
5 .

If time t is grouped with the spatial coordinates as x0 ≡ t, then the Euler equations themselves

can be written in weak conservation form as:

∮
∂V
Fµ = 0 (4.15)

where ∂V signifies integration over the oriented boundary of the 4-volume V , just as in a three-

dimensional flux integral.

If the fluxes are differentiable with respect to the coordinate directions, then it is possible to

use Stokes’ theorem to express this in strong conservation form as:

∂

∂xµ
Fµ = 0 (4.16)

Under the UCS transformation defined in Eqs. 4.9 and 4.10, Eq. 4.16 becomes:

(
∂

∂λ
− Ui

∂ξj
∂xi

∂

∂ξj

)
F0 +

∂ξj
∂xi

∂

∂ξj
Fi = 0 (4.17)

Multiplying this by the jacobian and applying the differential product rule yields the following

identities:

J ∂F0
∂λ = ∂(J F0)

∂λ − F0
∂J
∂λ

JUi
∂ξj
∂xi

∂
∂ξj
F0 = ∂

∂ξj

(
J Ui

∂ξj
∂xi
F0

)
− F0

(
J Ui

∂ξj
∂xj

)
J
∂ξj
∂xi

∂
∂ξj
Fi = ∂

∂ξj

(
J
∂ξj
∂xi
Fi

)
− Fi ∂

∂ξj

(
J
∂ξj
∂xi

) (4.18)

Using these identities, it is possible to show:

∂ (J F0)

∂λ
−F0

∂J

∂λ
− ∂

∂ξj

(
J Ui

∂ξj
∂xi

F0

)
+F0

∂

∂ξj

(
J Ui

∂ξj
∂xi

)
+
∂

∂ξi

(
J
∂ξi
∂xj

Fj

)
−Fj

∂

∂ξi

(
J
∂ξi
∂xj

)
(4.19)

Upon collecting terms, this becomes:
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∂ (J F0)

∂λ
+

∂

∂ξj

(
J
∂ξj
∂xi

(Fi − UiF0)

)
− F0

(
∂J

∂λ
− ∂

∂ξj

(
J Ui

∂ξj
∂xi

))
− Fi

∂

∂ξj

(
J
∂ξj
∂xi

)
(4.20)

The next step is to eliminate the remaining non-conservative terms. ∂J
∂λ −

∂
∂ξj

(
J Ui

∂ξj
∂xi

)
rep-

resents conservation of volume, and is therefore identically zero, as shown by Thomas [69]. This

leaves only the Fi
∂
∂ξj

(
J
∂ξj
∂xi

)
term to eliminate. This term also vanishes; the general idea is to use

the compatibility conditions to show that the term is identically zero. The details are as follows:

It is possible to write the inverse of a 3x3 matrix such as
∂ξj
∂xi

in terms of vector cross products:

A =

[
∂xi
∂ξ1

,
∂xi
∂ξ2

,
∂xi
∂ξ3

]
⇒ A−1 =

1

|A|


(
∂xi
∂ξ2
× ∂xi

∂ξ3

)T
(
∂xi
∂ξ3
× ∂xi

∂ξ1

)T
(
∂xi
∂ξ1
× ∂xi

∂ξ2

)T

 (4.21)

This becomes:

∂ξ1

∂xi
=

1

J
εijk

∂xj
∂ξ2

∂xk
∂ξ3

;
∂ξ2

∂xi
=

1

J
εijk

∂xj
∂ξ3

∂xk
∂ξ1

;
∂ξ3

∂xi
=

1

J
εijk

∂xj
∂ξ1

∂xk
∂ξ2

(4.22)

It is then possible to rewrite:

∂
∂ξj

(
J
∂ξj
∂xi

)
= ∂

∂ξ1

(
εijk

∂xj
∂ξ2

∂xk
∂ξ3

)
+ ∂

∂ξ2

(
εijk

∂xj
∂ξ3

∂xk
∂ξ1

)
+ ∂

∂ξ3

(
εijk

∂xj
∂ξ1

∂xk
∂ξ2

)
= εijk

(
∂2xj
∂ξ1∂ξ2

∂xk
∂ξ3

+
∂xj
∂ξ2

∂2xk
∂ξ1∂ξ3

)
+ εijk

(
∂2xj
∂ξ2∂ξ3

∂xk
∂ξ1

+
∂xj
∂ξ3

∂2xk
∂ξ2∂ξ1

)
+ εijk

(
∂2xj
∂ξ3∂ξ1

∂xk
∂ξ2

+
∂xj
∂ξ1

∂2xk
∂ξ3∂ξ2

)
(4.23)

By exploiting the anti-symmetry of the Levi-Civita tensor εijk, this term vanishes identically.

The strong conservation form of the Euler equations in unified coordinates is therefore:

∂ (J F0)

∂λ
+

∂

∂ξj

(
J
∂ξj
∂xi

(Fi − UiF0)

)
= 0 (4.24)

The corresponding weak form may be derived similarly.

∫
∂V J F0dξ1dξ2dξ3 +

∫
∂V J

∂ξ1
∂xi

(Fi − UiF0) dλdξ2dξ3

+
∫
∂V J

∂ξ2
∂xi

(Fi − UiF0) dλdξ1dξ3 +
∫
∂V J

∂ξ3
∂xi

(Fi − UiF0) dλdξ1dξ2 = 0

(4.25)
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Eq. 4.24 describes the behavior of the physical flow quantities under the UCS transformation.

It is known from Eq. 4.13 that evolution equations also exist for the grid metric components. These

may be handled by appending the time-dependent compatibility conditions to Eq. 4.24 to yield an

expanded equation set.

Using Eq. 4.10, it is possible to define:

Dξi
Dt
≡
(
∂

∂t
+ uj

∂

∂xj

)
ξi = (uj − Uj)

∂

∂xj
ξi (4.26)

This allows one to define new flux vectors for the Euler equations in the unified coordinate

system:

F0 ≡



ρJ

ρJu

ρJv

ρJw

ρJe

A

B

C

L

M

N

P

Q

R



; F1 ≡



ρJ DξDt

ρJ DξDtu+ J ∂ξ∂xp

ρJ DξDt v + J ∂ξ∂yp

ρJ DξDtw + J ∂ξ∂zp

ρJ DξDt e+ Juj
∂ξ
∂xj

p

−U

−V

−W

0

0

0

0

0

0



; F2 ≡



ρJ DηDt

ρJ DηDt u+ J ∂η∂xp

ρJ DηDt v + J ∂η∂yp

ρJ DηDtw + J ∂η∂z p

ρJ DηDt e+ Juj
∂η
∂xj

p

0

0

0

−U

−V

−W

0

0

0



; F3 ≡



ρJ DζDt

ρJ DζDtu+ J ∂ζ∂xp

ρJ DζDt v + J ∂ζ∂yp

ρJ DζDtw + J ∂ζ∂zp

ρJ DζDt e+ Juj
∂ζ
∂xj

p

0

0

0

0

0

0

−U

−V

−W



(4.27)

Using these redefined flux vectors, along with the spatial compatibility conditions of Eq. 4.13,

the strong and weak forms of the transformed Euler equations are given exactly as before:

∂

∂ξµ
Fµ = 0 (4.28)∮

∂V
Fµ = 0 (4.29)
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4.3 Unsteady Grids and Grid Motion Control

The equations defined by the UCS flux vectors in Eq. 4.27 describe the evolution through

time of fourteen quantities:

• The five physical quantities: mass; three components of momentum; energy.

• The nine spatial derivatives of the UCS transformation.

Eq. 4.27 contains additional variables beyond these, however. The grid velocity components

U , V , and W are unspecified at this point, which allows the user to choose them in such a way as

to yield a grid that has desirable properties, such as an orthogonal grid or one that conforms to

fluid streamlines. The major constraint on such choices is only that the UCS transformation does

not become singular, or that J remains positive for all time.

Some very useful grid properties can be obtained through judicious choice of grid velocity.

One useful approach is to require that η and ζ shall be material coordinates:

Dη

Dt
=
Dζ

Dt
= 0 (4.30)

Using Eq. 4.10, this may be written:

(ui − Ui)
∂η

∂xi
= (ui − Ui)

∂ζ

∂xi
= 0 (4.31)

This requirement is equivalent to requiring that material particles moving with the fluid velocity u

shall not cross lines of constant η and ζ.

Having thus constrained V and W , the grid will be forced to move along the same path as

the computed motion of the fluid particles. This provides many of the most important advantages

of the unified coordinate system, while leaving U unspecified to allow further control of the grid.

The simplest way to specify U is to set it equal to hu where h is some value between 0 and

1. The choice h = 1 is equivalent to requiring that ξ also be a material coordinate, returning the

traditional Lagrangian coordinate system, but this choice has the unfortunate effect of rendering
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the system of equations weakly hyperbolic, lacking a complete set of eigenvectors. As a result, if

Lagrangian behavior is desired, it is preferable to set h to some constant value less than 1 instead.

h = 0.999 works well for most purposes.

4.3.1 Grid-angle Preservation

For two-dimensional flows, it is possible to choose U such that the angle of intersection

between lines of constant ξ and lines of constant η is preserved. That is:

∂

∂λ
(∇~xξ · ∇~xη) = 0 (4.32)

For two dimensional flow, C = N = P = Q = 0 and R = 1, so Eq. 4.32 becomes:

∂

∂λ

(
AL+BM√

A2 +B2
√
L2 +M2

)
= 0 (4.33)

By defining S ≡
√
L2 +M2 and T ≡

√
A2 +B2, one can write Ṡ = LL̇+MṀ

S and Ṫ = AȦ+BḂ
T ,

which lead to ∂
∂λ (ST ) =

(
LL̇+MṀ

)
T
S +

(
AȦ+BḂ

)
S
T

Eq. 4.33 can then be rewritten:

0 =
(
ȦL+AL̇+ ḂM +BṀ

)
S2T 2 − (AL+BM)

[(
LL̇+MṀ

)
T 2 +

(
AȦ+BḂ

)
S2
]

⇓

0 = ȦS2
[
T 2L−A (AL+BM)

]
+ ḂS2

[
T 2M −B (AL+BM)

]
+L̇T 2

[
S2A− L (AL+BM)

]
+ ṀT 2

[
S2B −M (AL+BM)

]
(4.34)

which leads to:

0 = S2
(
BȦ−AḂ

)
+ T 2

(
LṀ −ML̇

)
(4.35)

At this point, the compatibility conditions of Eq. 4.13 can be applied:

Ȧ = ∂U
∂ξ Ḃ = ∂V

∂ξ

L̇ = ∂U
∂η Ṁ = ∂V

∂η
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which leads to:

0 = S2

(
B
∂U

∂ξ
−A∂V

∂ξ

)
+ T 2

(
L
∂V

∂η
−M∂U

∂η

)
(4.36)

At this point, one might choose to solve Eq. 4.36 for U in terms of grid velocity magnitude

and flow velocity angle θ, defining:

U = exp (g) cos θ; V = exp (g) sin θ

⇓

∂U
∂ξ = exp (g) ∂g∂ξ cos (θ)− exp (g) sin (θ) ∂θ∂ξ

∂V
∂ξ = exp (g) ∂g∂ξ sin (θ) + exp (g) cos (θ) ∂θ∂ξ

(4.37)

This allows one to write Eq. 4.36 as:

0 = S2 (A sin (θ)−B cos (θ)) ∂g∂ξ + T 2 (M cos (θ)− L sin (θ)) ∂g∂η

+S2 (A cos (θ) +B sin (θ)) ∂θ∂ξ − T
2 (M sin (θ) + L cos (θ)) ∂θ∂η

(4.38)

Eq. 4.38 may then be solved using a variety of techniques.

Alternatively, one may return to Eq. 4.36, and derive instead an equation for U . Based on

Eqs. 4.31 and 4.13, one can write:

V = v − B
A (u− U)

⇓

Vξi = vξi +
BξiA+BAξi

A2 (U − u) + B
A

(
Uξi − uξi

) (4.39)

Substituting this into Eq. 4.36 yields:

0 = −S2BUξ + S2A
(
vξ +

BξA+BAξ
A2 (U − u) + B

A (Uξ − uξ)
)

+T 2MUη − T 2L
(
vη +

BηA+BAη
A2 (U − u) + B

A (Uη − uη)
) (4.40)

This equation is simplified by collecting terms of U , Uξ and Uη, whereupon the Uξ terms vanish,

leaving:

0 = T 2
(
M − BL

A

)
Uη +

(
S2BξA+BAξ

A − T 2L
BηA+BAη

A2

)
(U − u)

+S2A
(
vξ − B

Auξ
)
− T 2L

(
vη − B

Auη
) (4.41)
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This can finally be written:

0 = Uη + S2A
T 2J

(Avξ −Buξ)− L
J (Avη −Buη)

+
(
S2

T 2J
(BξA+BAξ)− L

AJ (BηA+BAη)
)

(U − u)

(4.42)

In some situations, this form may be more advantageous. In particular, equation (4.42) is an

ordinary differential equation in the cross-stream direction η, rather than a partial differential

equation in ξ and η, which makes it simpler to solve numerically.

4.3.2 Jacobian Preservation

For general three-dimensional flows, no orthogonal grid exists, and so grid-angle preservation

is no longer preferred [21]. One alternative approach is to preserve the jacobian of the transforma-

tion:

∂J

∂λ
= 0 (4.43)

It is helpful to define a few useful variables:
~J1

~J2

~J3

 ≡ J

∇~xξ

∇~xη

∇~xζ

⇒

J1i

J2i

J3i

 = εijk


LjPk

PjAk

AjLk

 (4.44)

and

~A ≡ (A,B,C) ; ~L ≡ (L,M,N) ; ~P ≡ (P,Q,R)

⇓

J = ~A · ~J1 = ~L · ~J2 = ~P · ~J3

(4.45)

Rewriting the material coordinates from Eq. 4.31:

J DηDt = εijk (ui − Ui)PjAk = 0

J DζDt = εijk (ui − Ui)AjLk = 0

(4.46)

and using the compatibility conditions from Eq. 4.13, the equation for preservation of the jacobian

can be written as:

∂

∂λ
(εijkAiLjPk) = 0 (4.47)
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which leads to

∂Ui
∂ξ

(εijkLjPk) +
∂Ui
∂η

(εijkAkPj) +
∂Ui
∂ζ

(εijkAjLk) (4.48)

Differentiating Eq. 4.46 results in

∂ui
∂η εijkPjAk + (ui − Ui) ∂

∂η (εijkPjAk) = 0

∂ui
∂ζ εijkAjLk + (ui − Ui) ∂

∂ζ (εijkAjLk) = 0

(4.49)

Combining all of these results in an equation for the jacobian:

∂Ui
∂ξ

J1i +
∂ui
∂η

J2i +
∂ui
∂ζ

J3i + (ui − Ui)
(
∂

∂η
J2i +

∂

∂ζ
J3i

)
(4.50)

Jacobian-preserving grid motion also results in an ODE. In contrast with equation (4.42), however,

the jacobian-preserving equation is an ODE in the streamwise direction, ξ.

4.3.3 Comments on Grid Motion Control

Both of these forms of grid motion control have their uses, and they all provide an acceptable

answer to the problem of how to control the grid distortion inherent in Lagrangian coordinate

systems, but they also suffer from one glaring limitation. They do not have any knowledge of the

physical location of boundaries, and are completely defined by their action on the components of

the flow velocity and grid metric. It will be seen later (Sec. 4.8.3) that this can cause unphysical

behavior of the grid near boundaries. A better approach would control this behavior, perhaps by

incorporating a “grid pressure” term that tended to equalize grid-point distribution over time.

4.4 Solving the UCS Equations

The equations defined by Eqs. 4.25 and 4.27 are complex, perhaps hopelessly so when the

equations of grid motion control in Eqs. 4.26 are included. It is necessary to make simplifying

approximations in order to compute practical solutions. The first and most essential approximation

is to treat grid velocity as a parameter that is set at each time step, rather than an integral part of

the evolution. The second is to decouple the equations that control the evolution of the grid metric
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from those that govern the fluid flow. The net result of these two approximations is three sets of

equations:

(1) Five fluid evolution equations, equivalent to the standard Euler equations in curvilinear

coordinates, except for use of relative velocity components.

(2) Nine simple geometric evolution equations.

(3) One spatial differential equation to solve for U , and formulas for computing V and W .

Each of these sets of equations is solved independently, taking the results of the other sets as

constant parameters. This technique was dubbed the time-step-Eulerian (TSE) approximation by

Hui [53]. By solving the equations in this way, the problem is reduced to that of solving the Euler

equations in curvilinear coordinates, along with a simple grid update step.

One of the principal challenges and benefits in the use of UCS to model physical systems, is

that the computational grid upon which the equations are solved is steadily moving through the

physical space. Therefore, in order to use UCS to simulate fluid flow in a physical system, a form of

computational “window” must be defined. The grid is allowed to move forward from the upstream

edge of this window, and then it is no longer used after it has moved beyond the downstream edge.

The most common way to accomplish this is by creating Cartesian grid points at the upstream

boundary whenever the upstream edge of the grid has moved a downstream distance of ∆x, and

then removing points as they pass out of the region. This approach is extremely beneficial, because

it allows the user to forego the normally tedious grid-generation process. It also provides unique

computational challenges for UCS codes, which must make some provision for efficiently handling

the unsteadiness in flow data structures.

In this work, an exact Godunov method is used to solve the fluid evolution equations. Go-

dunov methods work by treating nodes as computational volumes of constant state, and the bound-

aries between nodes as Riemann problems which can be solved exactly. This exact solution is then

used to compute the fluid state at the boundary interface, which is then used to compute the
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boundary flux. Applying the Godunov method to multidimensional problems is straightforward,

but does require some special considerations.

4.4.1 Multidimensional Considerations

There are many algorithms available for solving the Euler equations that can be equally

applied to the UCS system, but many of these are inherently one-dimensional. It is therefore

necessary to extend these algorithms to handle multidimensional flows. The two simplest methods

are dimensional splitting approximations and finite-volume methods. Finite-element methods are

also widely used, but will not be discussed here.

The simplest form of dimensional splitting approximation consists of breaking the various

fluxes apart, and solving the resulting one-dimensional equations in sequential steps, as:

Qξ
0
0+∆ξ0 = L∆ξ0Qξ

0
0 ≈

n∏
i=1

L∆ξ0

ξi
Qξ

0
0 (4.51)

for some set of variables Q and some linear operator L∆ξ0 that advances the variables in ξ0 from

ξ0
0 by ∆ξ0, and Lξi is derived from L by ignoring all fluxes except those corresponding to the ξ0

and ξi dimensions. The Godunov splitting described above is first-order accurate. Other splitting

algorithms are possible, which improve accuracy through the use of fractional time steps, but these

will not be considered here.

The finite-volume approach is more easily expressed in terms of integral flux equations. In

this approach, for a given computational volume, the flux through each boundary face is computed

independently, and these fluxes are combined to advance the state within the volume.

4.5 The Riemann Problem

The Godunov method for solving partial differential equations is a nonlinear, monotonic

method that has proved very successful in the solution of compressible fluid dynamic flows. It

represents a flow field as a collection of adjacent cells, each with a state approximated by its
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average over the whole cell. That is, for a cell of volume V , the flow state W would be given by

W =
1

V

∫
V

W (ξ, η, ζ) dV (4.52)

The boundaries between cells are naturally regions where the approximated flow state is discon-

tinuous, and the Godunov method treats these discontinuities as actual flow features which can be

solved exactly to find the intercellular fluxes. For more information about the Godunov method

and compressible, computational fluid dynamics in general, the reader is referred to the excellent

book by Toro [35].

4.5.1 Transformation to grid components

Godunov’s method requires the solution of various one-dimensional Riemann problems, where

the initial condition is given by the discontinuous interface between two adjoining cells. Therefore,

in order to apply the Godunov method to solve the equations defined by the UCS fluxes in Eq. 4.27,

it is necessary to express the velocity vector in terms of components that are normal and tangential

to the cell interface. If we define the vectors ê1, ê2, ê3 as an orthonormal basis where ê1 is normal

to the cell interface, then we may write

ui =
∂xi
∂êj

ωj

Under this transformation, the tangential derivatives vanish at cell interfaces, and the re-

maining unsteady, one-dimensional equations become [21]:
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∂F ′0
∂λ + ∂F ′1

∂ξ = S0

F ′0 =



ρJ

ρJω

ρJτ1

ρJτ2

ρJe

A

B

C



; F ′1 =



ρS (ω − Ω)

ρS (ω − Ω)ω + p

ρS (ω − Ω) τ1

ρS (ω − Ω) τ2

ρS (ω − Ω) e+ ωp

−U

−V

−W



; S0 =



0

s11

s12

s13

0

0

0

0


⇀
s1i = (f1, f2, f3) · ∂êi∂ξ

fi = ρJ (ω − Ω)ui + pJ ∂ξ
∂xi

(4.53)

For the sake of brevity, we examine only the first dimensional case, though the rest are

similar. The non-conservative source terms are a result of the non-inertial velocity components,

and are analogous to the centrifugal and Coriolis force terms encountered in the physics of rotating

coordinate systems. These source terms are non-zero only at the cell boundaries.

There is no general solution to Eq. 4.53 unless ∂ξ
∂xi

is constant across the cell boundary. It is

therefore necessary to choose some suitable average to be applied at the cell boundary:

∂ê1

∂xi
=

((
∂ξ
∂xi

)
L

+
(
∂ξ
∂xi

)
R

)
∥∥∥( ∂ξ

∂xi

)
L

+
(
∂ξ
∂xi

)
R

∥∥∥ (4.54)

Both flow and grid velocity components are transformed using Eq. 4.54. Once transformed,

the normal grid velocity component must also be averaged: Ω = 1
2 (ΩL + ΩR). This averaged value

is used both in the solution of the Riemann problem and in the computation of intercellular fluxes.
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4.5.2 Eigensystem of the grid-aligned equations

In order to compute the solution to the one-dimensional Riemann problem defined by Eq. 4.53

subject to the initial conditions:

W =

 WL; ξ < 0

WR; ξ ≥ 0

; Wi =



p

ρ

ω

τ1

τ2

A

B

C

L

M

N

P

Q

R


one must first compute the eigenvalues and eigenvectors of the system. The first step is to compute

the derivative matrices (under the time-step-Eulerian approximation, where grid derivatives are
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assumed to be constant):

∂F ′o
∂W

=



J 0 0 0 0 ρJ ∂ξ∂x ρJ ∂ξ∂y ρJ ∂ξ∂z

Jω 0 ρJ 0 0 ρJ ∂ξ∂xω ρJ ∂ξ∂yω ρJ ∂ξ∂zω

Jτ1 0 0 ρJ 0 ρJ ∂ξ∂xτ1 ρJ ∂ξ∂y τ1 ρJ ∂ξ∂z τ1

Jτ2 0 0 0 ρJ ρJ ∂ξ∂xτ2 ρJ ∂ξ∂y τ2 ρJ ∂ξ∂z τ2

J
(
e+ p

(γ−1)ρ

)
J
γ−1 ρJω ρJτ1 ρJτ2 ρ ∂ξ∂xe ρ ∂ξ∂ye ρ∂ξ∂z e

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(4.55)

∂F ′1
∂W =



S (ω − Ω) 0 Sρ 0 0 0 0 0

Sω (ω − Ω) S Sρ (2ω − Ω) 0 0 0 0 0

Sτ1 (ω − Ω) 0 Sρτ1 Sρ (ω − Ω) 0 0 0 0

Sτ2 (ω − Ω) 0 Sρτ2 0 Sρ (ω − Ω) 0 0 0

S (ω − Ω)
(
e− p

(γ−1)ρ

)
S(γω−Ω)
γ−1 S (p+ ρ (e+ ω (ω − Ω))) Sρ (ω − Ω) τ1 Sρ (ω − Ω) τ2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(4.56)

where S ≡ δij ∂ξ∂xi
∂ξ
∂xj

The eigenvalues can be computed as solutions of the equation: [21](
σ ∂F

′
0

∂W − ∂F ′1
∂W

)
= 0

⇓
ρ3σ3σ̂3

(
S2 γp

ρ
−σ̂2

)
γ−1

where σ̂ ≡ Jσ − S (ω − Ω)

⇓

σ1 = 0(multiplicity of 3)

σ2 = S
J (ω − Ω) (multiplicity of 3)

σ± = S
J

(
ω − Ω±

√
γp
ρ

)

(4.57)
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The corresponding eigenvectors are:

r1 =



0

0

0

0

0

1

0

0



; r2 =



0

0

0

0

0

0

1

0



; r3 =



0

0

0

0

0

0

0

1



r4 =



0

1

0

0

0

0

0

0



; r5 =



0

0

0

1

0

0

0

0



; r6 =



0

0

0

0

1

0

0

0



r+ =



1

1
a2

− 1
aρ

0

0

0

0

0



; r− =



1

1
a2

1
aρ

0

0

0

0

0



(4.58)

From these, it is possible to compute both the Riemann invariants, which govern flow across

smooth waves, and the Rankine-Hugoniot relations, which govern flow across shocks.
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4.5.3 Riemann invariants and rarefaction wave relations

The generalized Riemann invariants are relations that hold true across smooth waves, and

are given by the relations [35]:

dw1
ri1

= dw2
ri2

= · · · = dwm
rim

⇓

∂ρ
∂p = 1

a2
; ∂ω
∂p = ±1

ρa ; ∂τ1
∂p = 0; ∂τ2

∂p = 0;

(4.59)

Relations for flow quantities may be derived based on an upstream state given by p0, ρ0, ω0, τ10,

τ20. Beginning with ρ, it can be shown:

∂ρ
∂p = ρ

γp ⇒
∂ρ/∂p
ρ = 1

γp ⇒ ln (ρ) = ln(p)
γ + C1 ⇒ ρ = C1p

1/γ ⇒ ρ = ρ0α
1
γ

α ≡ p
p0

(4.60)

Normal velocity may then be similarly derived:

∂ω
∂p = ± 1

ρa = ±
(
a0ρ0p0α

γ+1
2γ

)−1
⇒ ∂ω

∂α = ±a0
γ α

−(γ+1)
2γ ⇒ ω = ± 2γ

γ−1
a0
γ α

γ−1
2γ + C1

⇓

ω = ω0 ± 2a0
γ−1

(
α
γ−1
2γ − 1

) (4.61)

The tangential velocities are simple:

∂τ1

∂p
=
∂τ2

∂p
= 0 (4.62)

If the state downstream of the rarefaction wave is denoted by p∗, ρ∗, ω∗, τ1∗, τ2∗, then the rarefaction

head and tail speeds are also known, given by the eigenvalues from Eq. 4.57:

SH =
S

J

(
ω0 − Ω̄± a0

)
(4.63)

ST =
S

J

(
ω∗ − Ω̄± a∗

)
(4.64)

It is finally necessary to compute pressures for points within the rarefaction wave. The slope of a

characteristic for a rarefaction wave is:

ξ

λ
=
S

J
[(ω − Ω)± a]⇒ ω =

J

S

(
ξ

λ

)
∓ a+ Ω (4.65)
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Eqs. 4.61 and 4.65 can be combined to solve for the pressure ratio α ≡ p
p0

:

J
S

(
ξ
λ

)
∓ a+ Ω = ω0 ± 2a0

γ−1

(
α
γ−1
2γ − 1

)
⇒ (ω0 − Ω)± γ+1

γ−1 ∓
2a0
γ−1 −

J
S
ξ
λ = 0

⇓

±
(
ω0 − Ω− J

S
ξ
λ

)
+ γ+1

γ−1a−
2a0
γ−1 = 0⇒ 2

γ+1 ∓
γ−1

a0(γ+1)

(
ω0 − Ω− J

S
ξ
λ

)
= α

γ−1
2γ

⇓

α =
[

2
γ+1 ∓

γ−1
a0(γ+1)

(
ω0 − Ω− J

S
ξ
λ

)] 2γ
γ−1

(4.66)

4.5.4 The Rankine-Hugoniot conditions and shock wave relations

The Riemann invariants do not hold across discontinuous waves such as shocks. For such

waves, the Rankine-Hugoniot conditions must be used [35]:

F1R − F1L = S (F0R − F0L)

The derivation is somewhat tedious, but straightforward. The general idea is to use a Galilean

velocity transformation to a frame where the shock speed is zero, and then solve the left-hand-side

to find the relations between flow variables and the shock speed. This yields the relations:

ρ = ρ0
α(γ+1)+(γ−1)
α(γ−1)+(γ+1)

ω = ω0 ± (α−1)a0√
1
2
γ[(γ+1)α+(γ−1)]

τ1 = τ10

τ2 = τ20

S = S
J0

[
ω0 − Ω± a0

√
γ+1
2γ (α− 1) + 1

]
(4.67)

4.5.5 Slip lines

The third type of wave is the linearly degenerate slip line. This discontinuous wave moves at

the normal speed of the fluid, and pressure and normal velocity are constant across the wave while

density and tangential velocity may jump discontinuously.
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Figure 4.4: General Structure of the 1D, Unsteady Riemann Problem. The unsteady, one-
dimensional Riemann problem for the Euler equations is given by two discontinuous states, sep-
arated from one another at an initial time t0, and allowed to interact. For the Euler Equations,
this interaction results in three non-linear waves which propagate outward from the initial point
of discontinuity. The middle wave is always a slip line, a linearly degenerate wave across which
pressure and velocity normal to the wave are constant, but across which density and tangential
velocity components may jump discontinuously. The two outer waves are true nonlinear waves, and
may be either shocks or expansion waves, depending on the specific character of the problem. [35]
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4.5.6 The one-dimensional Riemann problem in the unified coordinates

The boundary between two adjacent cells can be represented as a one-dimensional Riemann

problem, as in figure 4.4. The Riemann problem consists of 3 waves: a central, linearly degenerate,

slip line, across which pressure and normal velocity are constant while density and tangential

velocity may jump discontinuously, and two nonlinear waves which may be either rarefaction waves

or shocks, and across which Using Eqs. 4.60, 4.61, and 4.67, it is possible to define a function of

pressure representing the jump in normal velocity across the central slip line:

f (p∗) ≡ ω (WR)− ω (WL) = 0 (4.68)

where ω (Wi) represents the normal velocity computed across the ith wave given a central pressure

p∗. This yields a nonlinear equation that can be solved for the pressure between the two nonlinear

waves. From this, the rest of the flow variables can be computed directly. The solution of this

nonlinear equation for pressure can be computed by iteration, and is the most computationally

expensive step in the traditional Godunov method. The present work uses a Newton-Rhapson

solver for this purpose. Approximate Riemann solvers, which do not depend on iterative solution

schemes, offer substantial performance gains, but they are not discussed here.

4.5.7 Spatial accuracy and boundary interpolation

The Godunov method is inherently first-order accurate, but it is possible to boost the order of

spatial accuracy using MUSCL interpolation [21,35,53] to reconstruct the left and right boundary

states used in the Riemann problem. In particular, for the boundary between the cells i and i+ 1,

and for flow variable w, we have:

wR = wi+1 − 1
2 (wi+2 − wi+1)φ

(
wi+1−wi
wi+2−wi+1

)
wL = wi + 1

2 (wi − wi−1)φ
(
wi+1−wi
wi−wi−1

)
where φ is the minmod limiter given by :

φ (w) = max (0,min (1, w))

(4.69)
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4.6 Algorithms

Hui [53] uses a dimensional splitting technique to solve the Euler equations, as follows:

4.6.1 Dimensional Splitting

• For each coordinate direction n:

∗ For each cell i, j, k:

– For each interface +, −:

· Apply MUSCL reconstruction using Eq. 4.69.

· Transform flow and grid velocity to normal and tangential components:

∂ê+i

∂xj
=

(
∂xi
∂ξj

)−1
+
(
∂xi+1

∂ξj

)−1∥∥∥∥(∂xi∂ξj

)−1
+
(
∂xi+1

∂ξj

)−1
∥∥∥∥ ;

∂ê−i
∂xj

=

(
∂xi−1

∂ξj

)−1
+
(
∂xi
∂ξj

)−1∥∥∥∥(∂xi−1

∂ξj

)−1
+
(
∂xi
∂ξj

)−1
∥∥∥∥

· Solve the Riemann problems as described in section 4.5 to find
the flow variables at each interface:

p±, ρ±, ω±, τ1±, τ2±

· Transform interface velocity back to Cartesian components:

∂x+i

∂êj
=

(
∂ê+i

∂xj

)−1

– Update coordinate-appropriate grid metric components:(
∂xl
∂ξn

)
i

=

(
∂xl
∂ξn

)
i

+

∫ (
Ωl

ωl

)
i

(u+ − u−) dt

– Compute interface fluxes using interface flow variables and central metric
variables, e.g.: F1ρ+ = ρ+

√
Li

2 +Mi
2 (ω+ − Ωi)

– Compute new conserved quantities F0 using Eqs. 4.16 or 4.15, and updated
metric components.

– Update conserved variables using (e.g.):∫
F0

t0+∆tdxdydz−
∫
F0

t0dxdydz +
∮
Fn∂Vn

⇓
F0

t0+∆t = F0
t0 − ∆t

∆ξn
Fn

– Convert updated conserved variables to updated primitive variables.
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The dimensionally split algorithm in section 4.6 suffers from two major drawbacks. First, it

is difficult to choose adaptive time steps accurately. In the Godunov method, the temporal stability

condition is dependent on the maximum wave speed present in the problem. This is known only

after the solution of all the Riemann problems at all cell interfaces, so it is impossible to compute

directly for dimensional splitting algorithms.

Second, and more importantly, the manner in which fluxes are computed using cell-specific

metric components makes it impossible to enforce strong conservation in the algorithm. A better

approach would be to rather implement a finite-volume algorithm, as follows:

4.6.2 Finite Volume

• Compute all cell interface fluxes

∗ For each interface

– Perform MUSCL interpolation if applicable.

– Transform velocity vectors to normal and tangential components.

– Solve Riemann problem to find interface variables.

– Transform interface velocity back to Cartesian components.

– Compute interface flux vector using Riemann interface variables, average
metric components, and average grid velocity.

• Use maximum Riemann wave speed to determine maximum time step as:

∆t = CFL
min (∆ξ,∆η,∆ζ)

wavespeedmax

• Compute conserved variables.

• Update conserved variables using computed flux vectors.

• Compute updated primitive variables.

• Compute updated grid metric components.

• Compute updated grid velocity components.
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4.7 Example Applications

A few examples are useful to showcase the potential benefits of UCS, particularly the auto-

matic generation of curvilinear grids appropriate to specific problems.

4.7.1 Diamond shock train

The unified coordinate system is especially useful for problems where the physical boundaries

themselves are unknown, such as occurs with pressure boundary conditions. Consider the nozzle

plume flow in Fig. 4.5, which was generated with constant pressure boundary conditions. An ef-

ficient, flow-fitted grid has been automatically generated, without any user input other than the

pressure at the boundaries. The grid has simply flowed to fill the streamtube defined by the nozzle,

freeing the user from defining where those boundaries might lie. Using traditional methods, the

simulation would have had to be sized such that it was larger than some estimated size of the

streamtube. Such an approach requires simulation of additional nodes beyond those required for

an understanding of the problem.

4.7.2 Transonic duct flow

UCS can also be used to generate a grid that conforms to some solid body, as in the case

of the transonic duct shown in Fig. 4.6. This problem is identical to the one given by Hui [53],

and is characterized by the formation of a mach stem and the resulting subsonic region and slip

line. The grid simply flows through the duct, following the fluid as it conforms to the solid wall

boundaries. Inflow conditions are given by equation (4.70), and the lower boundary has a 15◦ ramp

from x = 0.5 to x = 1.0.

(p, ρ,M, θ) |x=0 = (1, 1, 1.8, 0) (4.70)

It can also be seen in Fig. 4.7 that using a stationary grid with the same code fails to capture

the formation of the slip line at low grid resolutions, and also shows slightly less accurate prediction

of shock locations when compared with a much higher resolution solution. UCS, on the other hand,
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Figure 4.5: Computed Mach Number for Under-Expanded Nozzle Flow. UCS provides a powerful
means of computing flows with poorly defined boundaries. Constant pressure boundary conditions
are perfectly acceptable for the Euler equations, but they can be difficult to implement computa-
tionally, because the location of the boundary is not known a priori. This is no problem in UCS,
as the grid will naturally move to the appropriate position as it follows the flow of the fluid, as
shown in this example of constant pressure flow in a diamond shock train resulting from an under
expanded nozzle.
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does resolve the slip line, and makes slightly more accurate predictions of shock locations, at the

cost of a less-well-resolved expansion corner.

4.7.3 Basic boundary-layer effects

Many complex flow phenomena are a result of the interaction of the viscous boundary layer

with the inviscid flow. As a result, some method of accounting for viscous effects is almost a

requirement for hypersonic flows, and boundary- layer methods provide this at minimal cost. A

crude, prototypical implementation uses the turbulent, flat-plate, constant pressure formula given

in Schlichting [70]:

δu∞
ν

= 0.14
Rex

log Rex
G (log Rex)

where G is taken to be the limiting value of 1. This serves as a useful proof-of-concept for the

method, and is a valuable step toward future incorporation of a boundary-layer solver. In the

inviscid simulation, boundary-layer effects are included by enforcing a solid wall condition that

aligns with the boundary-layer displacement thickness.

Results from one such proof-of-concept test are shown in Fig. 4.8. The presence of the bound-

ary layer deflects the flow away from the channel walls, causing the channel to constrict. This causes

the formation of an oblique shock train, much as that seen in figure 4.5 with the under-expanded

nozzle.

4.7.4 Model inlet

One of the principal attractions of the unified coordinates method is the potential to represent

complex flow geometries in a simple, intuitive way and without grid generation. To better illustrate

this feature, a more complex inlet model was chosen, based off of publicly available sketches [71] of

the inlet of the now retired USAF F-14. This inlet is approximately two-dimensional and is designed

to provide subsonic flow to the engine at freestream Mach number in the range 0 < M < 2.3. This

is accomplished through the use of internal, variable ramps, as shown in Fig. 4.9.
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Figure 4.6: Time-Lapse Images of Transonic Duct Flow. The unsteady nature of UCS is such that
it is most easily understood in a time-dependent context. The grid is generated at the upstream
boundary and allowed to flow downstream to fill the channel boundaries. An oblique shock is formed
as the grid encounters the ramp in the lower duct boundary. Where this shock impacts the upper
wall, a Mach stem is formed, with a subsonic region directly behind the stem, bounded between
the wall and a slip line. The reflected shock, as well as the expansion fan created by the end of the
ramp, form a shock train that propagates down the channel. The subsonic region, with its elliptic
character, takes some time to converge to a steady-state solution. This necessitates the periodic
removal of grid points as they flow out of the simulation region.
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(a) h = 0, nominal grid size: 72× 20
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(b) h = 0.25, nominal grid size: 72× 20
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(c) h = 0, nominal grid size: 360× 100

Figure 4.7: Accuracy Comparison Between Moving and Stationary Grids. One of the advantages
of the Lagrangian-style unsteady coordinate system used by UCS is that slip line resolution is
dramatically improved. This can be seen in a grid resolution comparison of the transonic duct
problem. The same simulation is run three times, with both stationary and moving grids and with
high and low resolutions. At low resolutions, the slip line is completely smeared for the stationary
grid case, but it is clearly visible in unified coordinates and in stationary coodrinates at higher
resolution. The UCS simulation (b) has grid motion specified by (U , V ) = (0.25u, 0.25v).
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Figure 4.8: Channel Flow With a Turbulent Boundary Layer. UCS can also be used to simulate
more complex flows, with some additional approximations. It is possible to model a boundary-layer
driven shock train in an otherwise parallel channel, by using the turbulent-boundary momentum
thickness to create an artificial “wall”, and using UCS to model the inviscid core flow. This suggests
many future applications, including integration of UCS with boundary-layer solvers, full Navier-
Stokes/RANS codes, and others.
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This is exactly the kind of problem the unified coordinates can excel at. Defining an ap-

proximate flow geometry is simple, and the automatic grid generation allows for quick solutions

at different freestream conditions, and the correspondingly different inlet geometries. An example

based on the F-14 inlet is shown in Fig. 4.10, but the results are only prototypical. Bleed flows,

in particular, require special code features to effectively handle downstream boundaries as the grid

reaches them. Further investigation into these types of problems is needed.

4.8 Code Development and Versions

Much work remains to be done with the unified coordinate system, but many of the desired

new features are already under development in the latest iteration of the BACL-Streamer code.

4.8.1 Streamer v1.0

Initial development of BACL-Streamer began in 2009 with simple one-dimensional tests and

demonstrations in Matlab, before moving to fully two-dimensional flows in the latter half of that

year. Development continued until the Fall of 2010, when development began on v2.0.

Version 1.0 stored simulation variables, including conserved quantities, geometric coefficients,

and grid motion parameters, as multidimensional arrays. To date, v1.0 has primarily served as a

lessons-learned version, and informed many of the design choices in versions 2.0 and 3.0.

4.8.2 Streamer v2.0

Development of BACL-Streamer v2.0 began in 2010, and continued until moving to v3.0 in

December 2011. It is most notable for its heavy use of Fortran object-oriented programming and

for its implementation of the primary data structure as a linked list, rather than as an array. These

design changes were made primarily as a means to improve on the performance of v1.0, which

required extensive reallocation and copying of simulation data whenever grid points had to be

added or removed. Unfortunately, many of these design changes also had a direct negative effect

of simulation performance, and this, along with the need for a three-dimensional code and better
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Figure 4.9: Diagram of the USAF F-14 Tomcat [71]. The ability of UCS to rapidly simulate flows in
different physical geometries makes a problem such as this variable-geometry inlet a very attractive
demonstration. Ideally, UCS can rapidly simulate the flow conditions in this inlet under a variety
of configurations, as well as the transition modes from one state to the next.
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Figure 4.10: Mach number in F-14 Inlet. As a preliminary demonstration problem for UCS, flow
through a geometry roughly approximating that in figure 4.9 was simulated. In this case, the flow
conditions were chosen such that the inlet flow remained supersonic throughout, and bleed flows
were neglected. This greatly simplified the problem, as it was unnecessary to devise a method for
handling multiple fluid streams. These preliminary results are promising, and future iterations of
this problem with representative inlet conditions, compression angles, and bleed flows may prove
extremely valuable.
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verification options, led directly to the development of v3.0.

BACL-Streamer v2.0 is structured as a group of interacting Fortran modules. It makes heavy

use of object-oriented features introduced in Fortran 2003, including objects (Fortran derived types

with bound methods), private variables, and the linked-list structure that replaces the multidimen-

sional arrays used to store simulation variables in v1.0.

4.8.2.1 Node objects

There are two fundamental objects used in v2.0: node objects, which are containers for the

simulation variables p, ρ, u, v, A, B, L, M , x, y, and so on, and the node array, which is a linked

list joining many nodes together into a two-dimensional grid. These two objects are fundamen-

tal to understanding the workings of v2.0, and their definitions are contained in types.f90, and

node array, respectively.

In addition to containing simulation variables, nodes also provide a variety of functions and

routines for working with node objects directly, including arithmetic operators, and equivalence

functions, and velocity component transformations. Additionally, each node contains pointers to

each directly neighboring node, which are used to implement the linked list.

The linked list itself requires more explanation. In this implementation, the list is built from

a single head node pointer, corresponding to the grid coordinates i = 1, j = 1. Specific nodes

are accessed using the get node function, which begins at the head and steps through the list to

the appropriate node. set node works in a similar fashion. The node array module also contains a

variety of functions that simplify the process of working adding and removing nodes, and populating

them based on boundary conditions.

Once the particulars of communicating with the linked-list structure are understood, the

rest of v2.0 is a relatively straightforward implementation of the basic UCS algorithm. The driver

program is the aptly named main.f90, which reads a single input filename as a command line

argument, initializes the simulation from this file using the read boundary subroutine, located

in the boundary conditions init module, and then calls the various modules of the code as
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necessary, until the desired output time has been reached.

The read boundary routine defines four boundary master objects, defined in types.f90,

describing the left, right, bottom, and top boundary conditions, along with specifications for the

computational region of interest, the dimensionality of the initial array, and the length of the

computational differentials dxi and deta, as well as a variety of flags that are used to control

various parts of the simulation.

4.8.3 Streamer v2.0 Verification

Verification is a critical piece in the development of any scientific code, and BACL-Streamer

v2.0 is no exception. As the code has no provision for the computation of source terms, as would

be required for the method of manufactured solutions, verification is restricted to order-of-accuracy

convergence using exact solutions to the Euler equations: a steady, supersonic Riemann problem,

a wall-induced oblique shock, and a wall-induced Prandtl-Meyer expansion fan.

4.8.3.1 Two-dimensional Riemann problem

The two-dimensional, steady, Riemann problem is a direct analogue to the one-dimensional,

unsteady, Riemann problems that are discussed in Sec. 4.5, and is especially useful as a verification

test because of the stress it places on solvers. The particular problem used here is given by Hui [53],

and consists of an expansion fan, a slip line, and a shock. These waves converge to a singularity

located at the upstream boundary. The upstream conditions are given by:

(p, ρ,M, θ) =

 (0.25, 0.5, 7, 0) : y > 0

(1, 1, 2.4, 0) : y < 0

(4.71)

where M is the flow Mach number and θ is the flow angle, measured from horizontal. This problem

admits a similarity solution, much as the one-dimensional problem does, and the results from

plotting this solution are shown in Figs. 4.12 and 4.13. In particular, it should be noted that the

slip line is fully resolved in the moving grid case. This is a well known effect of Lagrangian-esque

simulations [21,53,54], and one of the beneficial features of UCS.
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FIG. 3. Sketch of a steady Riemann problem.

problem is available, it is an excellent benchmark problem for the verification of numer-
ical methods. In the computation, the steady flow is achieved with time marching until
the flow structure and the variables do not change with time. A grid of 60× 100 with
!ξ =!η= 0.01 is employed in the computation. Initially, a grid with !x =!y= 0.01 in
the physical plane is laid over a domain of {0≤ x ≤ 0.6, −0.5≤ y≤ 0.5}. The initial data
are given at each cell according to its position in y> 0 or y< 0, representing cell-average
values. The physical domain will change with time according to the pseudo-particle’s ve-
locity hq if h is not zero. If we follow the computational cells (pseudo-particles), they
will move out of the initial physical domain, and it would be difficult to have a steady
state of flow in the original physical domain. To avoid this, a special technique called the
“motionless viewing window” is applied as in the classical Lagrangian method. Accord-
ingly, the column of cells which have moved out of the original physical domain to the
right is deleted, while a new column of cells is added at the input flow boundary on the
left.
For this problem, we first compute the flow by the well-known solver CLAW developed

by R. J. LeVeque based on Eulerian coordinates. Figure 4 shows its density distribution
compared with the exact solution. It is seen that the slip line is badly smeared and the
computed density has a dip near the slip line.
In Figs. 5a to 5d we show computed density using our unified code for h= 0, h= 0.25,

h= 0.5, and h= 0.999, again compared with the exact solution. We see that the result for
h= 0 (Eulerian coordinates) is similar to those of LeVeque (Fig. 4), except the dip is now
somewhat less severe. This could be attributed to the fact that we use the exact Riemann
solution, whereas LeVeque uses Roe’s approximate Riemann solution. However, the very
poor resolution of the slip line is a common feature of any method based on Eulerian
coordinates as a result of Godunov averaging across slip lines which, in general, do not
coincide with (Eulerian) coordinate lines. A comparison of Figs. 5a to 5d also shows that
the slip line resolution improves with increasing h from h= 0 to h= 0.999, as expected.
It is worth noting that even when h is small, the slip line resolution is much better than

Figure 4.11: Two-dimensional, Steady-state Riemann Problem. For steady-state, supersonic flows,
the two-dimensional Euler Equations reduce to a one-dimensional system which admits the defini-
tion of a Riemann problem with an exact, similarity solution, just as with the unsteady case. In
this case, two supersonic streams come into contact at x0, and three nonlinear waves are formed.
The central wave is a slip line, while the character of the outer two waves is determined by the
specific problem. This particular problem is used by Hui [53] in order to demonstrate the utility of
the UCS method.
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Figure 4.12: The 2-D Riemann problem with corresponding numerical error, stationary grid. One
important characteristic of Riemann problems is that they can be solved with a similarity solution.
For this two-dimensional problem, a change of variables to y

x results in a one-dimensional solu-
tion which can be represented exactly. When this problem is solved numerically, each grid point
corresponds to a particular y

x value, and the value of the solution at that point can be visualized
with a scatter plot. Comparing the computed solutions with the exact solution yields a scatter plot
of error, as well. These results are here shown for density, as solved on a traditional, stationary,
Eulerian grid. The smoothing effect of the Godunov solver has smeared out the corners on the
expansion fan, as well as the shock, and a large oscilation is also visible at the central slip line.
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Figure 4.13: The 2-D Riemann problem with corresponding numerical error, moving grid. The
same plot can be created for a simulation using the UCS grid, instead. Grid motion is given by
(U, V ) = (0.999u, 0.999v). When compared with figure 4.12, the smearing oscillation of the slip line
has almost entirely vanished, and the shock smearing appears to be somewhat reduced, as well.
These improvements come at the cost of a slightly increased smearing of the expansion fan. Further
analysis is required in order to determine the actual benefits of UCS, but improved shock and slip
line resolution is very promising.
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The two-dimensional Riemann problem can be solved exactly [72], and so convergence rates

can be measured for this problem. Convergence is tested for both moving and stationary grids,

with and without the 2nd-order MUSCL update. These convergence rates are shown in Fig. 4.14.

It is clear that the algorithm converges for at least three different test configurations, however

this highlights one of the difficulties associated with convergence testing with shock-capturing

codes, in that the presence of discontinuities generally reduces the observed order of convergence

dramatically. [42] [43]

Unfortunately, these tests also expose drawbacks of the unified coordinates. While the moving

grid simulation provides much higher accuracy at the slip line, overall accuracy actually decreases,

and the rate of convergence drops measurably, as well. This may be due to the unsteady repre-

sentation of the singularity at the upstream boundary. As the grid moves downstream, any point

with an x value that places it upstream of the boundary will have a state defined by the boundary

conditions, while any with an x value that places it downstream will be evolving in time. This effec-

tively creates unsteadiness in the application of the singularity as the first grid points are located

varying distances downstream of the boundary. The two-dimensional Riemann problem is defined

entirely by that singularity, and unsteadiness could easily cause this increased error throughout the

simulation.

4.8.3.2 Wall-induced shock wave

The next test was designed to provide better coverage of the different boundary conditions.

Supersonic flow past a corner is well-defined, both for induced shocks and expansions, and provides

a convenient test of solid wall boundary conditions. The upstream condition is given by:

(p, ρ,M, θ) = (1, 1, 1.8, 0) (4.72)

The wall angle is chosen to yield a downstream flow angle of 45o. The grid is generated automatically,

with grid velocity being set to 99.9% of flow velocity (h = 0.999). Grid convergence rates are

computed and convergence is shown in figure 4.15 again fall short of expectations. Like the Riemann
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h = 0.999, MUSCL update

Convergence rate : 0.333148
 y−intercept :  −0.008410

h = 0, MUSCL update

Convergence rate : 0.458247
 y−intercept :  −0.007470

h = 0, no MUSCL update

Convergence rate : 0.259366
 y−intercept :  −0.007470

Figure 4.14: Streamer 2.0, 2-D Riemann Problem, Convergence. A grid refinement study was per-
formed using Streamer v2.0, with the two-dimensional Riemann problem given in equation (4.71).
Convergence rates were measured for both stationary and moving grids, based on the behavior of
the simulation L2 norm for density. These were tested using both the first-order Godunov solver,
as well as the second-order MUSCL update scheme. Convergence for the UCS grid was found to be
somewhat lower than for the stationary grid. It is unknown if this is an artifact of the incomplete
Streamer v2.0, if it is caused by the use of the L2 norm, or if it is an inherent result of the UCS
method, when applied as has been done here.
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problem, wall-induced shock flow is defined by the location of the critical point in the wall boundary

condition, and it is unsurprising that an unsteady apparent location for this critical point would

negatively affect error and convergence. Additionally, unsteady oscillations arise at higher grid

resolutions, though preliminary investigations suggest that these may be due to inappropriately

large time steps.

4.8.3.3 Wall-induced expansion

Wall-induced expansion fans, in contrast, offer a smooth solution, though one that is also

dependent on a single critical point. Convergence rates were measured as with the shock, and

with similar results, as seen in Fig. 4.17. A study was also done on flow behavior under varying

expansion angles, which yielded important insights: in the presence of strong expansion waves, the

computational grid tends to pull away from the wall, as seen in Fig. 4.18. It is important to note

that this behavior was not observed in Hui’s work on complex bodies, such as the multi-element

airfoil shown in figure 4.1.

4.8.3.4 Conclusion

Overall, this type of verification has highlighted the difficulties that must be overcome by any

UCS program. The very simple implementation of moving grids that was used here appears to be

insufficient, leading to errors in grid motion and lower rates of convergence, but Hui’s later work

suggests that a more sophisticated treatment of grid motion can overcome at least some of these.

Even without further refinements of the method, the increase in error is seen to be quite small, and

the simplicity of the grid generation process in UCS may well be worth sacrifices in accuracy.

Unfortunately, it was impossible to conclusively establish verification for BACL-Streamer

v2.0. The available verification solutions simply incorporated too many difficult features, and it was

impossible to separate errors due to the solution algorithm from errors due to the implementation

of boundary conditions or errors in the coding itself. To solve this problem, it was necessary to turn

to the method of manufactured solutions. This, along with the performance issues encountered in



134

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

∆ y (nominal)

A
b
s
o
lu

te
 e

rr
o
r 

(R
M

S
)

 

 

Oblique shock convergence tests

Fit to coarse, stable data, n = 0.331622

Fit to fine, oscillatory data, n = 0.371757

Figure 4.15: Streamer 2.0, L2 Error for an Oblique Shock. A grid refinement study was performed
using Streamer v2.0, with a simple, wall-induced, oblique shock wave. This problem was chosen in
order to more fully test the implementation of boundary conditions in Streamer v2.0, especially
those corresponding to flows around solid bodies. For this problem, refinement beyond a certain
point caused the solution to become unstable, with strong oscillations that propagated downstream
from the shock wave. The appearance of these strong oscillations caused the grid convergence study
to split into two distinct curves. Although it is possible that this is a direct result of the unsteadiness
of UCS, some evidence exists to indicate that it is actually a result of an incorrect CFD condition.
Work is now being done using Streamer v3.0 in order to comfirm this hypothesis.
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Figure 4.16: Streamer 2.0, Oblique Shock, Pressure Error. For computational grids with a grid
spacing ∆ξ that is equal to 0.01 or smaller, unsteady oscillations appear in the solution of the wall-
induced oblique shock wave. These oscilations, although small, can be clearly seen in plots of the
error in the pressure field. The appear to originate in the shock wave and propagate downstream,
rather than dissipating as one would expect. The appearance of these oscillations corresponds to
an overall change in the rate of convergence of Streamer v2.0. Preliminary investigations suggest
that this may be simply the result of an innappropriate CFL condition, which hypothesis is to be
confirmed in Streamer v3.0.
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Expansion fan convergence tests
Exponential fit to data, n = 0.331428

Figure 4.17: Streamer 2.0, Prandtl-Meyer Expansion Wave Convergence. A grid-refinement study
was conducted using a wall-induced Prandtl-Meyer expansion fan as an exact solution. This problem
did not appear to suffer from oscillatory behavior as was found in the oblique shock, though overall
convergence rates were somewhat lower than expected.
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Figure 4.18: Streamer 2.0, Prandtl-Meyer Expansion Wave Streamlines. A troubling feature of UCS
is the inability of the coordinate system to apply boundary conditions based on the physical location
of the boundary. Because the relative positions of grid points and boundaries are never used, it is
possible to encounter situations where the simulated flow field pulls away from the boundary, as is
seen in this study of UCS flow over an expansion corner of increasingly sharp angle. It is unclear
exactly how important this behavior is, as realistic flows over corners of this kind would most likely
involve boundary-layer separation and recirculation, anyway. Additionally, Hui has demonstrated
that these particular difficulties can be overcome, as seen in figure 4.1. Angles are given in degrees.
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v2.0 and the need for a three-dimensional solver, led directly to the development of v3.0.

4.8.4 Streamer v3.0

BACL-Streamerv3.0 was developed to remedy many of the difficulties encountered during

development of version 2.0. It abandoned the object-oriented style, and reverted to the use of

multidimensional arrays to track flow states. It is also the first version to attempt to handle the

increasingly difficult problem of boundary condition specification and implementation, while also

building a fully three-dimensional framework for later expansion. Finally, v3.0 is the first version

to include modern software quality controls, including an expansive suite of unit tests and built-in

order-of-accuracy convergence testing. Development was begun in late 2011, and has continued to

the present time.

BACL-Streamerv3.0 can be roughly divided into two parts: a high-performance core, and

developer-friendly scripts. The interface between these divisions is roughly equivalent to a division

between the time-marching step, which is handled in script, and the space-marching computations,

which are handled in core. Within a given time step, core functionality may be used extensively,

but everything else is handled at the scripting level. The decision was made early in development

to implement these as a hybrid Fortran/Python code, with the core being developed in Fortran 90,

and the scripts developed in Python 2.x. The interface between the core and the scripts is provided

by the f2py package [73], which is included as part of the SciPy Python library.

4.8.4.1 Software prerequisites

BACL-Streamer v3.0 has made a concerted effort to leverage available software tools, while

minimizing the number of special software packages that are required. Unfortunately, as of this

writing, several of these packages provide required functionality only in the development branch,

and so it is necessary to compile them from the git repositories. This is noted, when applicable.

• Build tools
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∗ Fortran90 compiler, such as GNU Fortran 4.2.3 (OS X).

∗ C compiler, such as Apple LLVM version 5.1.

∗ LAPACK library (required for test routines)

∗ standard GNU build tools e.g. make, ar, etc.

• Python environment

∗ Python 2.7.x

∗ SciPy library, for numerical integration. This functionality is currently available only

on the master branch, currently slated for v0.15, so SciPy must be built from source.

∗ NumPy package for array-based computation in Python. Version must be sufficiently

new to build SciPy master, such as v1.8.1.

∗ Cython package, required to build NumPy and SciPy.

∗ Sympy package for use with manufactured solutions. Must also be built from the git

development branch, currently v0.7.5.

∗ Nose testing package, useful for ensuring proper build of SciPy and Sympy.

The build process will also compile several files from the MINPACK library, which are used for

some tests. These are distributed with the package, and so are not considered prerequisites.

4.8.4.2 Fortran core

The Fortran Core itself consists of three main sections. There are the underlying library

functions which solve Riemann problems, implement the Godunov method, and so on. There are

the interface driver functions, which are linked using f2py [73] and provide the primary access to

the library. Finally, there are the test functions, which implement everything from individual unit

tests to full time-dependent convergence testing of the UCS system. These three components are

all built through the Makefile included in the Streamer source directory.
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The most important unit of data in the Fortran Core is the main data array. This is a four-

dimensional array of double-precision floating point numbers, and contains all of the most important

information needed for solution of the Euler equations in unified coordinates. Each computational

node stores a flow state, Wijk, represented by 21 distinct numbers (the innermost array dimension),

corresponding to the variables p, ρ, u, v, w, A, B, C, L, M , N , P , Q, R, U , V , W , x, y, z, J . This

is very nearly the minimum set of numbers required to define the system; J can be computed from

the metric components, but it is used so frequently that it is useful to maintain a copy.

main data is also sized to be larger than is needed for holding array data. Boundary condi-

tions in BACL-Streamer are implemented using ghost points, as shown in figure 4.19. Implementing

boundary conditions in this way greatly simplifies the Core, and allows the difficult task of imple-

menting boundary conditions to be handled in Python.

The primary task of the library functions in the Fortran Core is to time-advance the flow

quantities in the main data object from time step n to time step n + 1, as shown in figure 4.20.

Although the f2py software is mature and well-established, the Python-Fortran interface is most

simple when the surface of the Fortran library is tightly constrained. As a result, access to the

Core is restricted to interface functions in order to reduce that surface. The Python script calls

these driver functions with the main data array, a preliminary time step ∆t, and an integer array

of options that can be used to control the action of the Core library. This limits the interaction

between Python and Fortran to three inputs: a four-dimensional array of double-precision numbers;

a double-precision preliminary time step; and a one-dimensional array of integers. The Godunov

library computes an actual time step based on the preliminary one and the values in the options

array. This actual time step is returned, along with a main data array in which the variables

except for the grid velocity components U , V , and W have been advanced by the actual time step.

These are used as inputs to the grid motion driver, which updates the grid velocity components,

completing the update to the time-step-evolved flow state Wn+1
ijk .

Core library

libStreamer is built using make all, and provides everything from basic matrix operations,
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Figure 4.19: Two-dimensional, Cell-centered Grid with Ghost Points. Ghost points are one method
for implementing boundary conditions in finite-volume fluid mechanical solvers that allows for a
very simple flow solver. In this system, the solver has no specific knowledge of the simulation
boundaries. Rather, “ghost” points are populated such that the action of the flow solver on the
interior of the grid enforces the boundary conditions implicitly. For inviscid fluid simulations with
a solid wall condition, for instance, the flow state of the ghost points is a mirrored reflection of the
interior points, while a supersonic upstream condition is simply a specified Dirichlet condition.
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Figure 4.20: The Flow of Information in the Streamer v3.0 Fortran Core. The Fortran Core of
Streamer v3.0 contains the code that implements the Godunov method for the Euler equations in
the unified coordinates. This Fortran library is primarily used to accelerate the Godunov method
relative to a pure Python implementation, and many of its design decisions are motivated by this
mixed-language architecture. The main data array Wn

ijk is passed from the driving Python script
to the library interface functions, along with simulation options and a preliminary time step, and
an actual time step is returned, along with a time-evolved main data array.
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to special utilities for working with the UCS flow state vectors, to solving Riemann problems, to

using the Godunov method to advance a UCS state from one time step to the next. The files which

are compiled into libStreamer are:

• GeneralUtilities.f90 - Useful utilities for working with UCS flow states.

• Riemann.f90 - The function riemann solve, which solves one-dimensional UCS Riemann

problems.

• TimeAdvancementStuff.f90 - Utilities for managing the unsteady nature of UCS grids, as

well as an I/O routine for interfacing with Matlab.

• Godunov.f90 - The function prim update, which advances a UCS flow state from one time

step to the next.

• FortranNormalVectors.f90 - Routines for use in applying solid wall boundary conditions.

Experimental.

• grid motion.f90 - Routines for solving the grid control equations. At present, only Eq. 4.38

is implemented.

Library interface

Though the f2py tool greatly simplifies the process of communicating data between Python

and Fortran codes, it is nonetheless advantageous to restrict and simplify the interface between

the two divisions as much as possible. Driver modules for the Godunov and grid motion modules

provide this kind of interface, and all calls to the underlying library functions pass through these

drivers. As this interface project is ongoing, no such drivers exist for the other library modules at

present.

Control of the underlying library routines is provided by the integer options array. The values

of different elements of this array determine behaviors such as the particular Godunov algorithm to

use, or the number of ghost points needed to specify boundary conditions. While the library remains
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under active development, the exact behavior of these options remains in flux, but a snapshot of

various option values and their meanings may still be helpful.

Options meanings

[1-2]: controls which prim update algorithm to use

[3-5]: sets values for dxi, deta, dzeta (0=>1., 1=>0.5, 2=>0.25)

[6-7]: controls grid motion.

[6 ]: 0=>Eulerian, 1=>Lagrangian-esque, 2=>Constant, 3=>Angle-preserving

[7 ]: h0 = (1=>.25, 2=>.5, 3=>.999)

[101]: reports how many boundary ghost points are present

[102]: controls spatial order of accuracy

[104]: Controls type of time step (constant or CFL)

[301]: Controls type of grid motion

This form of algorithm control is crude, but highly extensible. It is assumed that a more

user-friendly interface will eventually be implemented.

Unit testing and library verification

The most difficult part of any code development project is ensuring the correctness of the

code. To this end, tests have been developed that provide extensive coverage of the libStreamer

functionality. As much as possible, these tests rely on mathematics to evaluate functionality directly.

For instance, if a function computes the inverse of a matrix, then the matrix product of a random

initial matrix and the result of that function should be the identity matrix. Where necessary, the

tests may be written based on sample problems where the results are known. Finally, the testing

library provides routines for testing the overall convergence of the Godunov solver to exact solutions

to the Euler equations, and comparing the measured rate of convergence with that returned by other

codes.

The test suite is composed of additional Fortran modules, one for each module being tested.

These contain both a battery of tests and a routine for interpreting the error messages that might

result. A test suite driver program is also available. Compilation and execution of the full testing
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executable is done by executing make check in the Streamer source directory.

The coverage of the test suite has been made as broad as possible, but there are known areas

where testing has not yet been possible. As of this writing, testing of the Euler equations, where

the grid transformation is the identity, has been implemented and achieved up to order-of-accuracy

convergence for one-dimensional problems. Visual checks show agreement for two-dimensional prob-

lems, as well. Testing of code behavior with moving, curvilinear grids (full UCS) remains incomplete.

4.8.4.3 Python scripts

While the Fortran Core provides most of the basic functionality required for a working UCS

code, Python scripting handles many of the more complex tasks. It consists primarily of two files.

main.py covers initialization of the overall simulation, and it also handles time-advancement of the

solution, application of source terms, data output, and computation of simulation error for verifica-

tion problems. BoundaryConditions.py is an experimental boundary conditions implementation.

main.py

Execution of a simulation program from Python is done by running python main.py <input

file>. The script reads data from the input file, and then initializes Stream objects based on that

data. This object defines the simulation boundary conditions, as well as options that allow for

control of how the object behaves. This design is chosen to allow for future expansion, including

multiple streams that interact through boundary conditions, specification of different flow solvers,

incorporation of non-conservative source terms, and so on. Each Stream object also includes the

required tools to advance its state from one time step to another.

Once any streams have been initialized with appropriate boundary conditions, initial condi-

tions, and options, a time-stepping simulation is run to advance these streams forward.

Input files

Input files for BACL-Streamer are Python files. They must contain an importable init func-

tion returning three objects:

• bounds init - Used by BoundaryCondtions.py to initialize Bounds objects.
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• initial conds - An array to initialize main data. If empty, then boundary conditions are

used for initialization.

• stream options - A Python dict, containing options, additional information, and other

directives required by the Stream. For instance, source functions for the method of man-

ufactured solutions are included here. Also includes the solver options array, which is

passed to the Fortran Core.

For more information on the effects of these objects, consult the source code for the main.py

and BoundaryConditions.py files.

BoundaryConditions.py

BoundaryConditions.py is an experimental method for implementing boundary conditions

in an extensible way. The module organizes boundary condition data into Patch objects, which are

themselves organized into Face and Bounds objects.

Each Patch represents a single, distinct, boundary condition, such as a planar wall with a

specific normal vector, or a constant pressure boundary. These patches are organized into Face

objects, representing the six logical boundaries of the main data array, and everything is brought

together in the Bounds object, one of which corresponds to a Stream.

BoundaryCondtions.py and BoundaryConditionsStuff.f90 work together with the code-

generated FortranNormalVectors.f90 to implement various types of boundary conditions, with

varying degrees of success. The most difficult problems are a direct result of the unsteady nature of

the UCS grid, which makes it difficult to determine how to best assign grid points to the appropriate

boundary patches. Research in this area is ongoing.

4.8.4.4 BACL-Manufactured and the Method of Manufactured Solutions

BACL-Streamer v3.0 is also integrated with BACL-manufactured, a verification package avail-

able in Python. BACL-manufactured is an add-on tool that greatly simplifies the process of com-

puting source terms for use in the method of manufactured solutions using either differential or
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integral methods.

4.8.5 Streamer v3.0 Verification

Verification of BACL-Streamer v3.0 is ongoing, and has been done only in preliminary cases

for the basic Euler equations, as was described in chapter 3. This preliminary verification has

demonstrated the accuracy of the underlying solvers for stationary, Cartesian grids, but more work

is needed in order to extend this confidence to the full UCS equations.

4.9 Future Developments

UCS has shown promise for reducing the costs of CFD while raising accuracy around shocks

and slip lines [21,53,54,59], but more work needs to be done before it can be considered a mature

methodology. The preliminary results have been encouraging, but a mature code base is badly

needed for both verification tests and demonstration problems. The most difficult aspects of this are

the implementation of boundary conditions. Connecting the unsteady, computational coordinates

in the which the UCS equations are solved with the steady, physical coordinates in which the

boundary conditions are defined has proven quite challenging.

4.9.1 A first cut at better boundary conditions

Consider a two-dimensional duct flow containing a ramp, as in Fig. 4.6. How would one

apply boundary conditions for this problem? The inflow, outflow, and top wall conditions are

simple enough, and can be easily implemented as array operations:

W (0, j) = Win (1, j) (4.73)

W (ni+ 1, j) = W (ni, j) (4.74)

W (nj + 1, i) = refl (W (nj, i) , θ = 0) (4.75)

where refl indicates vector reflection across the wall boundary, imposing a symmetry condition at

the top wall at zero degrees from horizontal.
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Things become more difficult at the bottom wall. For example, one might try:

do i = 1, ni

if(cell(i)%x < start ramp .or. &

cell(i)%x > end ramp)then

W (ni+ 1, j) = W (ni, j) ; W (nj + 1, i) = refl (W (nj, i) , θ = 0)

else

W (ni+ 1, j) = W (ni, j) ; W (nj + 1, i) = refl (W (nj, i) , θ = θramp)

end if

end do

This is functional for simple geometries, but it quickly becomes unmanageable for complex

geometries containing many different surfaces with varying reflection angles, and it is also compu-

tationally expensive, requiring conditional evaluation of each and every cell that lies on a boundary.

These problems can be managed simultaneously, by exploiting some useful features of the

unified coordinate system, which does not specify anything in particular about the spatial step size

in computational coordinates. In particular, it is possible to require

∆ξ = ∆η = ∆ζ = 1 (4.76)

It is of course possible to use any other constant as well, but a value of one is particularly convenient,

because it provides a direct mapping from array indices to computational coordinates. For example,

given an array of defined shape and starting coordinates Wijk; (ξ111, η111, ζ111) = (ξ0, η0, ζ0) it

is possible to write a relation allowing the computational coordinates of a cell to be determined

solely from the array indices:

(ξ, η, ζ)ijk = (i+ ξ0, j + η0, k + ζ0) (4.77)

Using this approach, the code needs only to convert the physical coordinate representation of the

boundary conditions to unsteady computational coordinates by extrapolating the grid metric from
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the nearest cells. This results in a loop over boundary conditions to compute updated computational

coordinates, rather than a loop over cells to evaluate complex conditional statements. Once the

computational coordinates of the boundary conditions are determined, they may be applied directly

to the appropriate cells using the computational coordinates as defined in Eq. 4.77. This may be

done as a simple array slice operation, with no conditional evaluation required. The principal

difficulty here lies in accurately estimating the computational coordinates of boundary condition

elements, and in appropriately assigning elements to grid cells. Some preliminary work in this

direction has been attempted, but it remains highly experimental.

4.9.2 Singular points in UCS flows

An additional difficulty is introduced to simulations as a result of the unsteady grid used by

the unified coordinate system. Considering again the ramp problem, it is quickly apparent that the

location of the leading edge of the ramp has a great effect on the entire downstream flow. The same

situation occurs with the two-dimensional Riemann problem in figure 4.11. Unfortunately, with the

grid moving at an unpredictable rate, these singular points never align exactly with grid points,

which automatically introduces error O (∆ξ) in the flow. Various techniques are possible to reduce

this error. One is to choose time step values and grid velocities such that the singular point always

coincides with a grid point. Another is to introduce an intermediate grid point that remains at the

singular point. A third is to manipulate grid velocity so that the grid point at the singular point

becomes stationary after the grid has been generated, similar to what Hui does with the viscous

boundary layer [59]

4.9.3 Accurate adherence to boundary surfaces

A final difficulty with the unified coordinates is that there is no guarantee that grid points

will remain close to simulation boundaries. Since grid points are mobile, and the evolution of the

grid metric depends only on the grid velocity, it is very possible for the physical coordinates of the

grid to move quite far away from the actual physical boundaries, as will be discussed further in
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Section 4.8.3. The remedy is to apply grid motion controls that take account of the actual position

of the boundary conditions. It should be possible, for instance, to include a small forcing term that

applies pressure to the grid to fill out boundary conditions. If it is important that grid cells be

exactly coincident with boundary surfaces, then grid points can be constrained to move along the

boundary surface itself, or the metric components can be adjusted to fit.

4.9.4 Dynamic grid separation into structured blocks

The UCS transformation itself is highly specific to structured grids, which provides many

advantages, however it does complicate matters when dealing with irregular geometries. Because of

the inherent flow-oriented nature of the grid, UCS is principally suited to H-type grids rather than

C- or O- type. This means that the use of block-structured grids is inevitable for many kinds of

flows, including flow around an embedded surface such as a wing, or flow through a round channel.

In particular, flow around embedded surfaces requires the dynamic detection of the leading edge

geometry and the division of the grid into separate blocks on the fly. This is made more difficult

by the fact that the advancing flow at the advancing edge of the grid is typically unsteady, and it

is not always apparent which grid cells should pass on which side of the embedded surface.

4.9.5 Verification of Streamer v3.0

Preliminary results from verification of BACL-Streamer v3.0 have been very encouraging, and

provide confidence in the accuracy of the code within the coverage of the tests. The principal next

steps for this work are a more complete code verification of BACL-Streamer v3.0, followed by an

in-depth investigation into the effects of using the UCS method to find solutions to fluid dynamical

systems. The accuracy of the underlying time-step-eulerian approximation, the suitability of differ-

ent boundary condition implementations, and the effects of different grid motion schemes, all need

to be studied and understood, independently of the underlying flow solvers. This knowledge of how

UCS affects simulation accuracy will guide the development of new solution algorithms, and it will

provide designers with enough confidence in the method to use it on new projects.
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4.10 Conclusion

UCS continues to show promise for enabling fast, accurate, design-oriented CFD computa-

tions, by eliminating the need for explicit grid generation and by improving the resolution of flow

discontinuities. UCS also introduces several unique challenges for CFD codes, as a result of the

moving computational grid. Overcoming these implementation challenges is critical to the eventual

success of UCS for design CFD, and requires further investigation. The research and development

of BACL-Streamer demonstrates several different approaches to this problem, as well as a steady

investigation of the effects of using unsteady coordinates to model physical problems.



Chapter 5

Conclusion

Thousands of years of successive design successes have given us the modern world we live in

today. These designs, arising from bursts of inspiration, mathematical analysis, or trial-and-error,

have allowed humanity to achieve ever-greater things, from cell-phones to the United Nations to

the International Space Station. However, as the demands we place on our devices, systems, and

organizations continue to become more stringent, we are discovering that we need better and better

design tools in order to develop workable solutions in an increasingly constrained design space. This

is simply the result of the millennia we have spent pushing outward against the limits of possibility.

Fortunately, better design tools continue to become available.

The development of numerical simulation tools during the twentieth century allowed complex

mathematical models to be applied to design problems for the first time, and has led to a dramatic

increase in the use of physics-based modeling to directly predict the behavior of complex systems.

The reduction in uncertainty that these tools have provided has allowed us to identify workable

design points in constrained design spaces in the fields of physics, engineering, economics, business

analytics, politics, and many more. In turn, this has allowed us to accomplish things that would

have never been possible before. Unfortunately, these tools are not currently being used early in

project design cycles where they could be extremely useful.

Numerical simulation tools have traditionally suffered from two challenges that have pre-

vented them from being used in early-stage design work. First, they are typically unwieldy, requiring

the attention of dedicated experts in order to use them effectively. These large startup costs make
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the use of numerical simulations difficult when design requirements are fluid and turnaround times

are critical. Second, numerical simulation tools are only able to reduce uncertainty, not eliminate it,

and it can be very difficult to know exactly how much uncertainty remains. This makes it difficult

to rely on the results of simulations in order to make design decisions that can directly lead to

project success or failure. In this work, I have sought to address both of these issues directly, by

developing tools for the direct measurement of error in numerical simulation tools and by develop-

ing a method for computational fluid dynamics that dispenses with the otherwise arduous process

of grid generation.

5.1 Verification of Numerical Simulations

Since the initial forays into numerical simulation of mathematical models nearly a century

ago, researchers have been working steadily to increase both the resolution and the fidelity of the

results. Unfortunately, the related work on verification of numerical simulations (evaluating their

accuracy) has lagged somewhat behind these advances. It is only recently that techniques have been

developed to directly measure the accuracy with which a given simulation code obtains solutions to

the underlying mathematical model. In particular, the method of manufactured solutions (MMS)

has been especially influential, allowing the general-purpose verification of a broad class of numerical

simulation codes.

Unfortunately, MMS was unable to provide verification of codes in the presence of discon-

tinuous solutions, such as those that are encountered in compressible fluid flows. The work done

by Grier [15] and the separate project done by me (see chapter 3) represent the first successful

extensions of MMS to include discontinuous solutions, and they therefore provide the first complete,

general-purpose verification technique for shock-capturing fluid codes. Both of these projects rely

on an integral formulation of MMS, and they therefore require the use of fast, accurate, numerical

quadrature routines.

My work differs from that of Grier primarily in the means by which the MMS integral fluxes

are evaluated. Multidimensional integrals of discontinuous functions are difficult to evaluate ac-
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curately, and we have both devised ways to alleviate this difficulty. Grier et al demonstrate their

technique for two-dimensional problems by subdividing an integration domain within which the

integrand is discontinuous into subdomains that can be mapped to quadrilateral and triangular

elements, upon which the smooth portions of the integral can be evaluated. In contrast, I use it-

erated one-dimensional integration operators for multidimensional integration, which allows me to

leverage the properties of one-dimensional space to simplify the problem of of subdividing inte-

gration domains. Both schemes have the intended effect of fitting the discontinuities exactly, but

it is unclear how Grier’s approach will generalize to higher-dimensional integrals. In contrast, my

integration approach has already been demonstrated with integrals up to five dimensions, and is

limited in higher dimensions only by available computational power.

I have also demonstrated the use of integral manufactured solutions in the verification of the

BACL-Streamer code, comparing computed convergence rates with those obtained by traditional

MMS and those obtained using discontinuous, exact solutions. I have demonstrated that integral

MMS is equivalent to traditional MMS for smooth problems, and I have shown that it performs

equally well for discontinuous problems. Additional testing is needed to further prove the utility of

integral MMS, but I am confident in recommending the technique for verification of codes where

traditional MMS is not sufficient to represent the underlying mathematical model, as is the case

with discontinuous solutions.

There are two issues with my implementation of integral MMS that need to be addressed in

future work. First, my current implementation of discontinuous integration, described in chapter 2,

is inefficient. This causes problems when attempting to compute integral manufactured solutions

over a large computational grid, and these inefficiencies should be resolved in order to boost the

speed of integral MMS for large verification problems. Second, the integral form of manufactured

solutions needs to be made publicly available for developers. The best way to accomplish this is

to incorporate integral MMS into the established MASA [19] library for MMS verification. These

projects are connected, as integral optimizations will likely ease the process of adapting my code

to fit more naturally into the MASA library.
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5.2 Automatic Grid Generation and UCS

If verification procedures for numerical simulations have lagged behind increases in resolution

and fidelity, the same is no less true of procedures for simplifying the process of setting up numerical

simulations for computation, especially the process of grid generation. Unfortunately, this has been

a much more difficult problem to solve, and the solutions that have been developed so far must

make many compromises. As a result, numerical simulation tools continue to require dedicated,

hands-on work from specialists in order to set up a simulation that will yield accurate results. In

contrast to verification, however, there is no clear path forward on this issue, which means that we

must continue to experiment with various possible strategies in order to find a solution. My work

with the unified coordinates (UCS) provides one such experiment, in the context of computational

fluid dynamics.

UCS works by using an unsteady, structured-grid transformation in order to avoid the need

for grid generation entirely. By tying grid motion to the motion of the fluid itself, a trivial grid at

the upstream boundary will eventually flow to fill the entire simulation region, without any input on

the part of the user. UCS has the beneficial side effect of providing a grid that is aligned with fluid

streamlines, which can lead to dramatic increases in solution accuracy for some flows, particularly

those dominated by slip lines.

Unfortunately, the primary developer behind UCS retired shortly after publishing his initial

findings, and much of the institutional knowledge contained in that group has been lost. As a

result, much of my research has consisted of rediscovering the characteristics, techniques, and

experience required in order to use UCS effectively for fluid simulations. I have also developed

several implementations of UCS in order to resolve to unique difficulties that arise when dealing with

computation on unsteady grids. I have demonstrated the ability of UCS to forego grid generation

with several example problems, and I have also presented the first preliminary verification of UCS

code using code order verification.

Future work with UCS should be based around three principal ideas. First, the simple method
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of controlling grid motion first presented by Hui [53] encounters difficulties when used to simulate

flows around expansion corners, and a more robust grid motion scheme is needed. Second, boundary

conditions can be problematic in general, multidimensional simulations with unsteady grids. There

is a definite need for preprocessing techniques that simplify the specification of simulation boundary

conditions. Finally, the actual convergence properties of simulations based on UCS are unknown in

general. UCS badly needs rigorous verification in order to quantify the error that is introduced into

simulations through the use of unified coordinates. As before, these needs are linked, as changes in

grid motion will necessarily affect both code verification and boundary condition specification.

5.3 Conclusion

In summary, my contributions to the state-of-the-art for design-oriented simulations are:

(1) I designed a new algorithm for fast, accurate evaluation of multidimensional integrals of

discontinuous functions.

(2) I designed, developed, and published an extension to the SciPy integration library that

enables the recursive evaluation of n-dimensional integrals with full user control at all

levels of integration.

(3) I designed and developed code that automates the entire process of computing manufac-

tured source terms for both differential and integral MMS.

(4) I used the code I developed to verify the stationary-grid functionality of the BACL-Streamer

software package using both differential and integral manufactured solutions.

(5) I compared the results of MMS verification to verification of BACL-Streamer with exact

solutions, and also with verification of an independent, third-party flow solver.

(6) I have established the theoretical fundamentals of UCS for solving the inviscid fluid equa-

tions by presenting, in detail, the derivations that are hinted at in previous, published

work.
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(7) I have explored various ways to implement working code that handles the unique require-

ments of unsteady grids such as those used in UCS.

(8) I have demonstrated the ways in which UCS can be used to eliminate the need for explicit

grid generation in computational fluid dynamics.

(9) I have identified the unique challenges faced by any UCS code, and laid a solid foundation

for future work in this area.

The future of the world, like the past, will be built on the work of designers who create ever-

more-efficient tools to magnify the efforts of ordinary people. As the march of progress continues

to push the boundaries of possibility, the design environment in which these men and women

work will continue to become progressively more constrained, and the risks of failure will continue

to increase. In order to mitigate these risks, designers will come to depend more and more on

sophisticated tools for predicting system behavior, and these tools will need to be both seamless

to use and computationally reliable. Through the work I present here, I have contributed to this

goal in my own small way. The future of the world may be built on designers, but the designers

themselves will build on the tools we create to help them do their work.
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Appendix A

scipy.integrate.nquad

This is the source code for the nquad function, as documented in chapter 2 and included in

SciPy as of version 0.15, and available at https://github.com/scipy/scipy.

def nquad(func, ranges, args=None, opts=None):

"""

Integration over multiple variables.

Wraps ‘quad‘ to enable integration over multiple variables.

Various options allow improved integration of discontinuous functions, as

well as the use of weighted integration, and generally finer control of the

integration process.

Parameters

----------

func : callable

The function to be integrated. Has arguments of ‘‘x0, ... xn‘‘,

‘‘t0, tm‘‘, where integration is carried out over ‘‘x0, ... xn‘‘, which

must be floats. Function signature should be

‘‘func(x0, x1, ..., xn, t0, t1, ..., tm)‘‘. Integration is carried out

in order. That is, integration over ‘‘x0‘‘ is the innermost integral,

and ‘‘xn‘‘ is the outermost.

If performance is a concern, this function may be a ctypes function of

the form::

f(int n, double args[n])

where ‘‘n‘‘ is the number of extra parameters and args is an array

of doubles of the additional parameters. This function may then

be compiled to a dynamic/shared library then imported through

‘‘ctypes‘‘, setting the function’s argtypes to ‘‘(c_int, c_double)‘‘,

and the function’s restype to ‘‘(c_double)‘‘. Its pointer may then be

passed into ‘nquad‘ normally.
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This allows the underlying Fortran library to evaluate the function in

the innermost integration calls without callbacks to Python, and also

speeds up the evaluation of the function itself.

ranges : iterable object

Each element of ranges may be either a sequence of 2 numbers, or else

a callable that returns such a sequence. ‘‘ranges[0]‘‘ corresponds to

integration over x0, and so on. If an element of ranges is a callable,

then it will be called with all of the integration arguments available.

e.g. if ‘‘func = f(x0, x1, x2)‘‘, then ‘‘ranges[0]‘‘ may be defined as

either ‘‘(a, b)‘‘ or else as ‘‘(a, b) = range0(x1, x2)‘‘.

args : iterable object, optional

Additional arguments ‘‘t0, ..., tn‘‘, required by ‘func‘.

opts : iterable object or dict, optional

Options to be passed to ‘quad‘. May be empty, a dict, or

a sequence of dicts or functions that return a dict. If empty, the

default options from scipy.integrate.quadare used. If a dict, the same

options are used for all levels of integraion. If a sequence, then each

element of the sequence corresponds to a particular integration. e.g.

opts[0] corresponds to integration over x0, and so on. The available

options together with their default values are:

- epsabs = 1.49e-08

- epsrel = 1.49e-08

- limit = 50

- points = None

- weight = None

- wvar = None

- wopts = None

The ‘‘full_output‘‘ option from ‘quad‘ is unavailable, due to the

complexity of handling the large amount of data such an option would

return for this kind of nested integration. For more information on

these options, see ‘quad‘ and ‘quad_explain‘.

Returns

-------

result : float

The result of the integration.

abserr : float

The maximum of the estimates of the absolute error in the various

integration results.

See Also

--------

quad : 1-dimensional numerical integration

dblquad, tplquad : double and triple integrals

fixed_quad : fixed-order Gaussian quadrature
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quadrature : adaptive Gaussian quadrature

Examples

--------

>>> from scipy import integrate

>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (

... 1 if (x0-.2*x3-.5-.25*x1>0) else 0)

>>> points = [[lambda (x1,x2,x3) : 0.2*x3 + 0.5 + 0.25*x1], [], [], []]

>>> def opts0(*args, **kwargs):

... return {’points’:[0.2*args[2] + 0.5 + 0.25*args[0]]}

>>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],

... opts=[opts0,{},{},{}])

(1.5267454070738633, 2.9437360001402324e-14)

>>> scale = .1

>>> def func2(x0, x1, x2, x3, t0, t1):

... return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+t1*x1-t0>0 else 0)

>>> def lim0(x1, x2, x3, t0, t1):

... return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,

... scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]

>>> def lim1(x2, x3, t0, t1):

... return [scale * (t0*x2 + t1*x3) - 1,

... scale * (t0*x2 + t1*x3) + 1]

>>> def lim2(x3, t0, t1):

... return [scale * (x3 + t0**2*t1**3) - 1,

... scale * (x3 + t0**2*t1**3) + 1]

>>> def lim3(t0, t1):

... return [scale * (t0+t1) - 1, scale * (t0+t1) + 1]

>>> def opts0(x1, x2, x3, t0, t1):

... return {’points’ : [t0 - t1*x1]}

>>> def opts1(x2, x3, t0, t1):

... return {}

>>> def opts2(x3, t0, t1):

... return {}

>>> def opts3(t0, t1):

... return {}

>>> integrate.nquad(func2, [lim0, lim1, lim2, lim3], args=(0,0),

opts=[opts0, opts1, opts2, opts3])

(25.066666666666666, 2.7829590483937256e-13)

"""

depth = len(ranges)

ranges = [rng if callable(rng) else _RangeFunc(rng) for rng in ranges]

if args is None:

args = ()

if opts is None:

opts = [dict([])] * depth
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if isinstance(opts, dict):

opts = [opts] * depth

else:

opts = [opt if callable(opt) else _OptFunc(opt) for opt in opts]

return _NQuad(func, ranges, opts).integrate(*args)

class _RangeFunc(object):

def __init__(self, range_):

self.range_ = range_

def __call__(self, *args):

"""Return stored value.

*args needed because range_ can be float or func, and is called with

variable number of parameters.

"""

return self.range_

class _OptFunc(object):

def __init__(self, opt):

self.opt = opt

def __call__(self, *args):

"""Return stored dict."""

return self.opt

class _NQuad(object):

def __init__(self, func, ranges, opts):

self.abserr = 0

self.func = func

self.ranges = ranges

self.opts = opts

self.maxdepth = len(ranges)

def integrate(self, *args, **kwargs):

depth = kwargs.pop(’depth’, 0)

if kwargs:

raise ValueError(’unexpected kwargs’)

# Get the integration range and options for this depth.

ind = -(depth + 1)

fn_range = self.ranges[ind]
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low, high = fn_range(*args)

fn_opt = self.opts[ind]

opt = dict(fn_opt(*args))

if ’points’ in opt:

opt[’points’] = [x for x in opt[’points’] if low <= x <= high]

if depth + 1 == self.maxdepth:

f = self.func

else:

f = partial(self.integrate, depth=depth+1)

value, abserr = quad(f, low, high, args=args, **opt)

self.abserr = max(self.abserr, abserr)

if depth > 0:

return value

else:

# Final result of n-D integration with error

return value, self.abserr



Appendix B

BACL-Manufactured

I have developed a software package that greatly simplifies the computation of both inte-

gral and differential manufactured source terms for conservation and balance laws, as discussed

in chapter 2 and chapter 3. The code is organized into separate modules that handle numerical

integration, general balance laws, and specific balance laws. The most current code for these is

available on https://github.com/woodscn/BACL-MMS, but a snapshot has been reproduced here.

B.1 integration.py

The integration.py module is responsible for quickly and accurately evaluating the mul-

tidimensional integral of a potentially discontinuous Sympy function using the numerical methods

available in the SciPy library. It handles symbolic critical surface processing, which is used to

generate function calls for scipy.integrate.nquad.

import os

import subprocess

import ctypes

import random

import sympy

import numpy

from sympy.utilities.lambdify import lambdify

from sympy.utilities.codegen import codegen

from sympy.core.cache import clear_cache

from scipy.integrate import nquad

H = sympy.special.delta_functions.Heaviside

from functools import partial
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def list_integral(integrands, **kwargs):

"""

Map numeric integration to a list of symbolic integrands.

Numerically integrate a list of symbolic integrands over a single range and

with a single set of integration options.

This is a good spot to implement multiprocessing using Python’s

multiprocessing module.

Parameters

----------

integrands : iterable of sympy expressions

List of integrand expressions

sympy_ranges : iterable

List of ranges and Symbols e.g. ((t,tmin,tmax),(x,xmin,xmax))

sympy_discontinuities : iterable of sympy expressions, optional

List of symbolic discontinuities e.g. (x/t-0.75). The discontinuity is

assumed to be at disc == 0, where disc is the sympy expression.

args : dict

Substitution dict for any additional arguments required for evaluation of

integrands beyond integration variables given in sympy_ranges.

integrator : not yet implemented

--

opts : not yet implemented

--

Returns

-------

iterable of floats

Results of the integration of integrands over sympy_ranges.

"""

multi_list_integral = partial(_func_integral, **kwargs)

out = map(multi_list_integral, integrands)

# # You have to choose where you will apply multiprocessing, either here or

# # else in the computation of flux and source integrals. At present, this

# # is done at the flux/source level.

# pool = Pool()

# out = pool.map(multi_list_integral,integrands)

# pool.close()

# pool.join()

return out

def _func_integral(integrand, **kwargs):

"""

Necessary wrapper function to enable use of multiprocessing module.

"""



170

out = IntegrableFunction(integrand, **kwargs).integrate()[0]

return out

class IntegrableFunction(object):

"""

Short Summary: (delete this heading)

Extended Summary: (delete this heading)

Does not allow much in the way of integration options, only providing ’points’.

Parameters

----------

’sympy_function’ : Sympy expression

Sympy expression for a possibly vector-valued function.

’sympy_ranges’ : iterable

List of Sympy variable ranges in order e.g. ((x,0,1),(y,0,1)).

’sympy_discontinuities’ : Sympy expression, optional

Sympy expressions for various discontinuities.

’args’ : iterable, optional

Any additional arguments required by sympy_function.

’integrator’ : optional

Specify an integration method. Unused at present.

’opts’ : optional

Specify function options. Unused at present.

Attributes

----------

’int_variables’ : iterable

List of Sympy Symbols representing the variables of integration.

’ranges’ : iterable

List of ranges, of the form ((xmin,xmax),(ymin,ymax),...).

’function’ : lambda or ctypes function

Function with signature f(*int_variables,*args).

’integrate’ : callable

Abstracted integration function, currently quadrature.

’symbolic_discontinuities’ : iterable

List of symbolic expressions for discontinuities.

"""

def __init__(self, sympy_function, sympy_ranges, sympy_discontinuities=(),

args={}, integrator=None, opts=None):

self.sympy_ranges = sympy_ranges

self.int_variables, self.min_ranges, self.max_ranges = zip(

*sympy_ranges)

self.int_variables = list(self.int_variables)
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self.ranges = zip(self.min_ranges, self.max_ranges)

self.args = args

self.sympy_variables = self.int_variables

self.integrand = Integrand(

sympy_function, self.sympy_variables, args=self.args)

self.function = self.integrand.lambdified # ctypesified

self.integrate = self.quad_integrate

# Unpack sympy_discontinuities into a list of points for nquad.

# In order to be used by nquad, discontinuities must be put into a

# form of functions of the integration variables. One-dimensional

# integration effectively smooths a discontinuity, provided the path

# of integration crosses the discontinuity. Effectively, this means

# that any discontinuity will be smoothed by integration over a

# particular variable, provided that the function describing the

# discontinuity is dependent on that variable. An example may help.

# Assume three discontinuities: [x = 0, x*y = 1, y-1 = 0]. The form of

# these discontiuities will depend on the order of integration given

# to nquad. If the integration is done as int(int(f(x,y),dx),dy), then

# nquad will need the discontinuities in the form:

# [[lambda y : 0, lambda y : 1/y],[lambda : 1]].

# Conversely, if the order of integration is reversed to

# int(int(f(x,y),dy),dx), then the discontinuities must be

# [[lambda x : 1/x, lambda x : 1],[lambda : 0]].

# This segment of code unpacks the list of discontinuities into the

# correct form based on the order of integration given by ranges.

discs = Discontinuities(

sympy_discontinuities, self.sympy_ranges, self.args)

self.opts = []

for ind, level in enumerate(self.ranges):

if discs.nquad_disc_functions:

self.opts.append(OptionsDict(

points=discs.nquad_disc_functions[ind]))

else:

self.opts.append({})

return None

def quad_integrate(self):

’’’

Integration using scipy.integrate

’’’

out = nquad(self.function, self.ranges, opts=self.opts)

# except:

# print "Some kind of error in the call to nquad!"
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# import pdb;pdb.set_trace()

return out

def mc_integrate(self):

"""

Integration using Monte Carlo

Monte Carlo integration is a robust, though inaccurate, method of integration.

mc_integrate evaluates function f ncalls number of times at random points, and

uses the sum of these evaluations to compute the integral of function f over

the rectangular volume specified by ranges. The error of the integral scales

as 1/sqrt(ncalls)

"""

f_sum = 0

for n in xrange(ncalls):

coords_lst = []

for rng in ranges:

coords_lst.append(rng[0] + rng[1] * numpy.random.random())

f_sum += self.function(coords_lst)

vol = numpy.prod([float(rng[1]) - float(rng[0]) for rng in ranges])

return vol / calls * f_sum

class Integrand(object):

def __init__(self, sympy_function, sympy_variables, args={}):

self.sympy_function = sympy_function.subs(args)

self.sympy_variables = sympy_variables

self.lambdified = lambdify(self.sympy_variables, self.sympy_function)

clear_cache()

# I need a unique way to identify the integrand libraries I will be

# generating. id(self) works sort of, but it may or may not be unique

# I think. I’m going to try a hash of the underlying sympy function,

# but I can’t allow negative numbers (C gets confused), so I have to

# generate a positive integer instead. Stackoverflow had this idea:

self.unique_id = ctypes.c_size_t(hash(self.sympy_function)).value

# stackoverflow.com/questions/18766535/...

# positive-integer-from-python-hash-function

filename_prefix = os.path.join(

’integrand_libs’, ’integrand’ + str(self.unique_id))

libname_prefix = os.path.join(

’integrand_libs’, ’’ + str(self.unique_id))

# Enable the use of ctypes objects in nquad, once multivariate ctypes objects

# are appropriate arguments for the QUADPACK library functions.

# try:

# self.generated_code = codegen(

# (’integrand’,self.sympy_function),’C’,filename_prefix,

# argument_sequence=self.sympy_variables,to_files=True)
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# except IOError:

# import pdb;pdb.set_trace()

# args_str = ",".join(["args["+str(ind)+"]"

# for ind in range(len(self.sympy_variables))])

# extra_c_code="".join([r"""

# double integrand_wrapper(int n, double args[n])

# {

# return integrand(""",args_str,""");

#

# }

# """])

# extra_h_code="""

#

# double integrand_wrapper(int n, double args[n]);

#

# """

#

# f = open(filename_prefix+".c",’a’)

# f.write(extra_c_code)

# f.close()

# f = open(filename_prefix+".h",’a’)

# f.write(extra_h_code)

# f.close()

# cmd = ("gcc -dynamiclib -O3 -I. "+filename_prefix+".c -o "

# +filename_prefix+".dylib")

# subprocess.call(cmd,shell=True)

# self.ctypeslib = ctypes.CDLL(filename_prefix+’.dylib’)

# self.ctypesified = self.ctypeslib.integrand_wrapper

# self.ctypesified.restype = ctypes.c_double

# # Test the reliability of ctypesified function. This should be

# # disabled eventually.

# self.ctypesified.argtypes = (ctypes.c_int,

# len(self.sympy_variables)*ctypes.c_double)

#

# test = []

# for indx in range(0):

# randargs = [random.random() for item in self.sympy_variables]

# temp = (self.lambdified(*randargs)-

# self.ctypesified(

# ctypes.c_int(len(self.sympy_variables)),

# (len(self.sympy_variables)*ctypes.c_double)(*randargs)))

# if temp**2 >.00000001:

# test.append(temp)

# if test:

# raise IntegrationError("Ctypesified and lambdified do not match!")

# self.ctypesified.argtypes = ctypes.c_int, ctypes.c_double

# return None
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def __call__(self, *args):

if len(args) != len(self.sympy_variables):

print ’args = ’, args

print ’sympy_vars = ’, self.sympy_variables

raise Error(’invalid argument list given in call to Integrand!’)

import pdb; pdb.set_trace()

out = self.lambdified(*args)

out1 = self.ctypesified(len(args), tuple(args))

print out - out1

import pdb; pdb.set_trace()

# print (out-out2)**2

# exit()

clear_cache()

return out

class IntegrationError(Exception):

pass

class OptionsDict(object):

def __init__(self, points):

self.points = points

def __call__(self, *args):

if self.points:

out = {"points": self.points(*args)}

else:

out = {}

return out

class DiscontinuityError(Exception):

pass

class EmptyDiscontinuity(UserWarning):

pass

class Discontinuity(object):

def __init__(self, disc, ranges, args={}, opts={}):

self._disc = disc.subs(args)

self._ranges = ranges

self._args = args

self._opts = opts
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# Eventually set self.method from opts

self._method = "lambdified"

self.sym_sols = self._solve_points()

if not self.sym_sols:

raise EmptyDiscontinuity()

self.call_args, self._lambda_list = self._lambdify()

self.children = self._spawn()

def __call__(self, *args):

’Return list of points of discontinuity for given arguments.\n\n’

if self._method == "lambdified":

return self._lambdified(*args)

else:

raise DiscontinuityError("Undefined call method!")

def __eq__(self, other):

try:

out = self._key() == other._key()

except(AttributeError):

out = False

return out

def __ne__(self, other):

return not self.__eq__(other)

def _key(self):

return(type(self).__name__, self._disc, self._ranges,

self._args, self._opts)

def __hash__(self):

return hash(self._key())

def _solve_points(self):

try:

sols = sympy.solve(self._disc, self._ranges[0][0])

except(KeyError):

# No solutions.

sols = []

return sols

def _lambdify(self):

lambda_list = []

vars = [range_[0] for range_ in self._ranges[1:]]

for sym_sol in self.sym_sols:

lambda_list.append(lambdify(vars, sym_sol))

self.__call__.__func__.__doc__ += (

’Function signature is f(’ + ’,’.join([str(var) for var in vars])
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+ ’) \n’)

clear_cache()

return vars, lambda_list

def _lambdified(self, *args):

return [lambda_(*args) for lambda_ in self._lambda_list]

def _spawn_local_extrema(self):

sols = sympy.solve(

sympy.diff(self._disc, self._ranges[0][0]), self._ranges[0][0])

new_discs = [self._disc.subs({self._ranges[0][0]:sol}) for sol in sols]

out = []

for disc in new_discs:

try:

out.append(Discontinuity(disc, self._ranges[1:]))

except(EmptyDiscontinuity):

continue

return out

def _spawn_boundary_intersections(self):

new_discs = [self._disc.subs({self._ranges[0][0]: lim})

for lim in self._ranges[0][1:]]

out = []

for disc in new_discs:

try:

out.append(Discontinuity(disc, self._ranges[1:]))

except(EmptyDiscontinuity):

continue

return out

def _spawn(self):

if len(self._ranges) > 1:

out = (self._spawn_local_extrema() +

self._spawn_boundary_intersections())

else:

out = []

return out

class Discontinuities(object):

def __init__(self, discs, ranges, args={}, opts={}):

self.ranges = ranges

self.discs = []

for disc in discs:

try:

self.discs.append(Discontinuity(disc, self.ranges, args, opts))

except(EmptyDiscontinuity):
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continue

self.leveled_discs = self._level_discs()

self.nquad_disc_functions = self.nquad_discs_f()

def _level_discs(self):

# Organize the discontinuities according to their level of

# integration.

this_level = list(self.discs)

out = []

while not empty(this_level):

out.append(this_level)

next_level = []

for disc in this_level:

next_level.extend(disc.children)

this_level = next_level

# Need to eliminate duplicates

for level in out:

new_level = list(level)

for item in level:

if new_level.count(item) > 1:

new_level.remove(item)

level[:] = new_level

return out

class NQuadDiscFunction(object):

def __init__(self, level):

self.level = level

def __call__(self, *args):

out = []

for disc in self.level:

try:

out.extend(disc(*args))

except(ValueError):

out.extend([])

return out

def nquad_discs_f(self):

out = [self.NQuadDiscFunction(level) for level in self.leveled_discs]

return out

def empty(seq): # Thanks StackOverflow!

# See: http://stackoverflow.com/questions/1593564/

# python-how-to-check-if-a-nested-list-is-essentially-empty

# Accessed 6 Jun 2014

try:
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return all(map(empty, seq))

except TypeError:

return False

if __name__ == "__main__":

import random

# Test handling of symbolic discontinuities

x, y, z = [sympy.Symbol(var, real=True) for var in [’x’, ’y’, ’z’]]

ranges = [[x, -.25, 1.25], [y, -.25, 1.25], [z, -.25, 1.25]]

sym_disc = x ** 2 + y ** 2 + z ** 2 - 1

disc = Discontinuity(sym_disc, ranges)

eqns = [- sympy.sqrt(1 - y ** 2 - z ** 2), sympy.sqrt(1 - y ** 2 - z ** 2)]

for eqn in eqns:

for sym_sol in disc.sym_sols:

if sympy.Equivalent(eqn - sym_sol, 0):

break

else:

raise DiscontinuityError(

"Discontinuity test returned incorrect symbolic solutions!")

yrand, zrand = [.5 * random.random() - .25 for ind in [0, 1]]

lambda_sol = disc._lambdified(yrand, zrand)

subs_sol = [

sym_sol.subs({y: yrand, z: zrand}) for sym_sol in disc.sym_sols]

err = [((lambda_sol[ind] - subs_sol[ind]) ** 2) ** .5

for ind in range(len(subs_sol))]

if max(err) > 1 * 10 ** - 13:

raise DiscontinuityError(

"Lambdified solution does not match symbolic solution!")

test_children = [y ** 2 + z ** 2 - 1, y ** 2 + z ** 2 - 15. / 16]

for test in test_children:

for child in disc.children:

if sympy.Equivalent(test, child._disc):

break

else:

raise DiscontinuityError(

"Direct children do not match!")

test_discs = [[disc._disc for disc in level] for level in

Discontinuities([sym_disc], ranges).leveled_discs]

sol_discs = [[x ** 2 + y ** 2 + z ** 2 - 1],

[y ** 2 + z ** 2 - 1, y ** 2 + z ** 2 - 15. / 16],

[z ** 2 - 1, z ** 2 - 15. / 16, z ** 2 - 7. / 8]]

for inda in range(len(test_discs)):

if not set(test_discs[ind]) == set(sol_discs[ind]):

raise DiscontinuityError("Levelled discontinuities do not match!")

test = Discontinuities([sym_disc], ranges)

test2 = test.nquad_disc_functions
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args_list = [[.5 * random.random() - .25 for ind in range(inds)]

for inds in [2, 1, 0]]

vars_list = [[y, z], [z], []]

for ind, level in enumerate(test.leveled_discs):

subs_points = [sym_sol.subs(dict(zip(vars_list[ind], args_list[ind])))

for disc in level for sym_sol in disc.sym_sols]

subs_points.sort()

lambda_points = test2[ind](*args_list[ind])

lambda_points.sort()

err = [((subs_points[ind] - lambda_points[ind]) ** 2) ** .5

< 10 ** (- 13) for ind in range(len(subs_points))]

if [item for item in err if not item]:

raise DiscontinuityError(

"Lambdified functions do not match symbolic functions!")

# Test integration of functions

test_discs = [x ** 2 + y ** 2 - 1]

# This takes too long at present. Only integrate over x, y.

test4 = IntegrableFunction(H(test_discs[0]),

ranges[:-1], test_discs)

# Check against evaluation in Mathematica.

if ((test4.integrate()[0] - 0.907360054182972) ** 2) ** .5 > 10 ** (- 7):

raise IntegrationError(

"Incorrect integration result for 2-D integration!")

import pdb; pdb.set_trace()

B.2 base equation.py

base equation.py provides the basic functionality required to compute manufactured source

terms for conservation and balance laws. This is principally done through the use of the abstract

SympyEquation class, as described in section 3.4.

"""

Base equation class, intended to be subclassed for specific systems of

equations, such as the linear heat equation, the Euler equations, and so on.

"""

import sympy

from sympy.utilities.lambdify import lambdify

import numpy as np

from integration import list_integral

from functools import partial

from multiprocessing import Pool
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class SympyEquation(object):

"""

Base equation class providing for computation of manufactured source terms.

SympyEquation is an abstract superclass that provides the general routines

used to compute manufactured source terms given symbolic flux and source terms.

Parameters

----------

sol : dict

Dictionary containing the entries:

’vars’ - list of sympy Symbols corresponding to integration variables.

’sol’ - sympy Matrix of integrand expressions.

’discontinuities’ - list of sympy expressions corresponding to known

solution discontinuities e.g. (x/t-0.75). The discontinuity is

assumed to be at disc == 0, where disc is the sympy expression.

’eqn_kwargs’ - dict containing any keyword arguments required by the

specific equation subclass.

’vars’, ’sol’, and ’discontinuities’ are copied as object attributes.

’eqn_kwargs’ are used as arguments to the setup routine provided by the

specific equation subclass.

Attributes

----------

vars : iterable

List of Sympy Symbols corresponding to integration variables.

sol : sympy.Matrix

Matrix containing the symbolic expression of the solution to be used. May

be a manufactured solution, but may also be an exact solution.

discontinuities : iterable

List of Sympy expressions corresponding to known solution discontinuities

e.g. (x/t-0.75). The discontinuity is assumed to be at disc == 0, where

disc is the sympy expression.

fluxes : list

List of len(’vars’) of sympy Matrix objects. Each Matrix is composed of

sympy expressions derived from the given solution ’sol’ and the flux

functions defined by the specific equation subclass and ’eqn_kwargs’.

source : sympy.Matrix

Sympy Matrix composed of sympy expressions derived from the given solution

’sol’ and the source functions defined by the specific equation subclass

and ’eqn_kwargs’.

source_diff_symbolic : sympy.Matrix

symbolic differential source terms, computed by ’balance_diff’

Methods
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-------

balance_diff()

Return symbolic form of strong (differential) manufactured source terms.

balance_lambda_init()

Return lambdified form of balance_diff.

balance_integrate(ranges,discs=())

Return weak-form manufactured source terms, numerically integrated over

given ranges, with optional discontinuities.

setup(**sol[’eqn_kwargs’])

Subclass-defined initialization routine which computes symbolic

expressions of flux and source terms given the solution provided in ’sol’.

Must set:

self.fluxes : list of sympy Matrix objects containing sympy

expressions.

self.source : sympy Matrix object containing sympy expressions.

"""

def __init__(self,sol):

self.vars_ = sol[’vars’]

self.sol = sol[’sol’]

self.discontinuities = sol[’discontinuities’]

self.setup(**sol[’eqn_kwargs’])

def __call__(self):

return self.fluxes+[self.source]

def setup(self):

pass

def dot_product(self,a,b):

return sum(map(lambda x,y:x*y,a,b))

def vector_diff(self,expr,var_in):

vars_ = list(expr)

for n in range(len(vars_)):

vars_[n] = var_in

# return sympy.Matrix(map(lambda u,x:sympy.diff(u,x),expr,vars_))

return sympy.Matrix(map(lambda u,x=var_in:sympy.diff(u,x),expr,vars_))

def balance_diff(self):

"""

Return symbolic form of strong (differential) manufactured source terms.

Compute strong manufactured source terms based on a differentiable solution,

flux functions, and source functions. The flux functions must be

differentiable, because symbolic derivatives are taken.

Returns

-------

sympy.Matrix

Sympy Matrix object containing symbolic manufactured source terms.

"""

terms = [self.vector_diff(flux,var)
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for (flux, var) in zip(self.fluxes,self.vars_)]+[self.source]

self.source_diff_symbolic = reduce(sympy.Matrix.__add__,terms)

return self.source_diff_symbolic

def balance_lambda_init(self):

"""

Lambdify strong symbolic manufactured source terms.

Define python lambda function f(*vars) to evaluate manufactured source terms at

a given point.

Returns

-------

callable

Python lambda function that evaluates symbolic manufactured source terms at

a given point (set of ’vars’).

"""

self.balance_diff()

self.balance_diff_lambda=lambdify(self.vars_,self.source_diff_symbolic)

return self.balance_diff_lambda

def flux_integrate(self,flux,area_ranges,point_range,discs=()):

out = (np.array(list_integral(

flux,sympy_ranges=area_ranges,sympy_discontinuities=discs,

args={point_range[0]:point_range[2]}))-

np.array(list_integral(

flux,sympy_ranges=area_ranges,sympy_discontinuities=discs,

args={point_range[0]:point_range[1]})))

return out

def source_integrate(self,source,ranges,discs):

out = np.array(list_integral(

source,sympy_ranges=ranges,sympy_discontinuities=discs))

return out

def balance_integrate(self,ranges,discs=()):

"""

Evaluate weak (integral) manufactured source terms over a given volume.

Call flux_integrate and source_integrate with the appropriate ranges to

evaluate the weak (integral) manufactured source terms based on the potentially

discontinuous ’sol’ and the flux and source functions. Source terms are

integrated over the computational volume described by ’ranges’.

Parameters

----------

ranges : iterable

List of ranges defining the computational volume over which the balance

integral is to be evaluated e.g. ((t,0,1),(x,-0.5,0.5)) where t,x are sympy

Symbols.

discs : iterable
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List of symbolic expressions that describe the location of any known

discontinuities in the integrand. The discontinuity is assumed to be

located where the expressions are equal to zero.

Returns

-------

numpy.array

Array of floats containing the integrated source terms over ’ranges’.

Notes

-----

This is a promising opportunity for implementing multiprocessing, as the flux-

and source-integrals take some time to compute and are independent of one

another.

"""

# Since we’re multiprocessing at the list level, we can’t

# also multiprocess here. Pool workers can’t spawn their

# own pools.

out = np.zeros(len(self.sol))

wrapper = partial(flux_integrate_wrapper,obj=self,ranges=ranges,

discs=self.discontinuities)

# pool = Pool()

# out_list = []

# out_list = pool.map(wrapper,range(len(ranges)))

# pool.close()

# pool.join()

out_list = map(wrapper,range(len(ranges)))

# print "done with flux integrals"

out = out_list + [self.source_integrate(self.source,ranges,discs)]

# print "done with source integral"

out = sum(out)

return out

def flux_integrate_wrapper(ind,obj,ranges,discs):

"""

Wrapper for flux_integrate for use in multiprocessing.

"""

return obj.flux_integrate(

obj.fluxes[ind],

area_ranges=[item for item in ranges if item is not ranges[ind]],

point_range=ranges[ind],discs=discs)

if __name__=="__main__":

pass
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B.3 Equation-specific Modules

The general-purpose machinery in base equation.py is incomplete, and it is necessary to

define subclasses based on SympyEquation in order to specify the specific flux and source terms

that define a specific equation set. These subclasses are distributed in equation specific modules,

which are also convenient locations to include useful manufactured solutions. At present, BACL-MMS

contains two such modules, for the linear heat equation and for the Euler equations in the unified

coordinate system, as described in chapter 4.

B.3.1 heat equation.py

"""

The linear heat equation, including several solutions

"""

from itertools import product

import random

import sympy

from sympy.utilities.lambdify import lambdify

from sympy import sin, cos

import numpy

import numpy.random

from base_equation import SympyEquation

from recursive_derivative import recursive_derivative

Zero = sympy.singleton.S.Zero

t = sympy.Symbol(’t’)

x = sympy.Symbol(’x’)

y = sympy.Symbol(’y’)

z = sympy.Symbol(’z’)

xi= sympy.Symbol(’xi’)

class HeatEquation(SympyEquation):

def setup(self,**kwargs):

self.rho = kwargs[’rho’]

self.cp = kwargs[’cp’]

self.k = kwargs[’k’]

self.fluxes = [sympy.Matrix([self.rho*self.cp*self.sol[0]]),

sympy.Matrix(
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[-self.k*sympy.diff(self.sol[0],self.vars_[1])]),

sympy.Matrix(

[-self.k*sympy.diff(self.sol[0],self.vars_[2])]),

sympy.Matrix(

[-self.k*sympy.diff(self.sol[0],self.vars_[3])])]

self.source = sympy.Matrix([Zero])

def MASA_solution(Ax,At,By,Bt,Cz,Ct,Dt,rho,cp,k):

"""

Manufactured solution as given in MASA documentation.

"""

return {’vars’:[t,x,y,z],’eqn_kwargs’:{’rho’:rho,’cp’:cp,’k’:k},

’sol’:[sympy.cos(Ax*x+At*t)*sympy.cos(By*y+Bt*t)*

sympy.cos(Cz*z+Ct*t)*sympy.cos(Dt*t)],

’discontinuities’:[]}

def MASA_source(Ax,At,By,Bt,Cz,Ct,Dt,rho,cp,k):

"""

Analytic manufactured source term as given in MASA documentation.

"""

out = (

-(sin(Ax*x+At*t)*cos(By*y+Bt*t)*cos(Cz*z+Ct*t)*cos(Dt*t)*At+

cos(Ax*x+At*t)*sin(By*y+Bt*t)*cos(Cz*z+Ct*t)*cos(Dt*t)*Bt+

cos(Ax*x+At*t)*cos(By*y+Bt*t)*sin(Cz*z+Ct*t)*cos(Dt*t)*Ct+

cos(Ax*x+At*t)*cos(By*y+Bt*t)*cos(Cz*z+Ct*t)*sin(Dt*t)*Dt)*rho*cp+

(Ax**2+By**2+Cz**2)*cos(Ax*x+At*t)*cos(By*y+Bt*t)*cos(Cz*z+Ct*t)*

cos(Dt*t)*k

)

return out

def MASA_source_lambda(**kwargs):

"""

Functional form of ’MASA_source’.

Parameters

----------

(all parameters are keyword arguments)

Ax, At, By, Bt, Cz, Ct, Dt : float

Parameters used in the computation of ’MASA_source’

rho : float

mass density of medium.

cp : float

specific heat at constant pressure of medium.

k : float

heat conductivity of medium.

Returns
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-------

callable

Returns Python lambda function f(t,x,y,z) to evaluate ’MASA_source’ at the

given point in space and time.

"""

return lambdify((t,x,y,z),MASA_source(**kwargs))

def heat_exact_sol(**kwargs):

"""

Collection of exact solutions to the heat equation.

These exact solutions are inherently one-dimensional, and are rotated by two

angles in order to obtain solutions that three-dimensional (not aligned with

any three-dimensional coordinate direction).

Parameters

----------

(all parameters are keyword arguments)

n : int in range(8)

Identifies specific desired exact solution.

theta : float

Polar angle of solution rotation, measured from x-axis, in radians.

phi : float

Aximuthal angle of solution rotation, measured from y-axis, in radians.

A, B, C, mu : float

Exact solution parameters. Can be arbitrary constants.

a : float

Thermal diffusivity, given by k/(cp*rho)

Returns

-------

dict, containing the fields:

sol : sympy.Matrix

Matrix containing symbolic representation of one exact solution.

discontinuities : list

Empty list; the linear heat equation does not admit discontinuities.

vars : list

List of sympy Symbols: t,x,y,z.

eqn_kwargs : dict

kwargs dict that sets ’rho’, ’cp’, ’k’, such that the thermal

diffusivity ’a’ is obtained.

"""

n, theta, phi, A, B, C, mu, a = (

kwargs[’n’], kwargs[’theta’], kwargs[’phi’], kwargs[’A’], kwargs[’B’],

kwargs[’C’], kwargs[’mu’], kwargs[’a’] )

# theta, phi = 0.*sympy.pi, 0.*sympy.pi

space = (sympy.cos(theta)*x
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+sympy.sin(theta)*sympy.cos(phi)*y

+sympy.sin(theta)*sympy.sin(phi)*z

)

# These solutions taken from:

# http://eqworld.ipmnet.ru/en/solutions/lpde/lpde101.pdf

# A, B, C, mu = 1,1,1,1

# a = 1

sols = [A*space+B,

A*(space**2+2*a*t)+B,

A*(space**3+6*a*t*space)+B,

A*(space**4+12*a*t*space**2+12*a**2*t**2)+B,

A*sympy.exp(a*mu**2*t+mu*space)+B,

A*sympy.exp(a*mu**2*t-mu*space)+B,

A*sympy.exp(-a*mu**2*t)*sympy.cos(mu*space+C)+B,

A*sympy.exp(-mu*space)*sympy.cos(mu*space-2*a*mu**2*t+C)+B]

out = {’sol’:sympy.Matrix([sols[n]]),’discontinuities’:[],

’vars’:[t,x,y,z],’eqn_kwargs’:{’rho’:1.,’cp’:1.,’k’:a}}

return out

#def heat_exact_tests(ranges,nx):

# """

#

#"""

# angle_list = [range_*(.5*sympy.pi/(nx-1)) for range_ in range(nx)]

# spaces = [sympy.cos(theta)*x

# +sympy.sin(theta)*sympy.cos(phi)*y

# +sympy.sin(theta)*sympy.sin(phi)*z for angle in angle_list]

# return [[heat_exact_sol(xi,n),angle_list,

# heat_exact_array(spaces,n,ranges)]

# for n in range(8)]

def test_exact(ntests):

"""

Test the accuracy of numerical integration of the linear heat equation

Compute the weak manufactured source terms from exact solutions for the linear

heat equation, given randomized combinations of the various solution

parameters. Write the combinations of parameters and the resulting source term

to the file ’random_heat_exact.dat’.

Parameters

----------

ntests : int

Number of random trials to compute.

Returns



188

-------

random_heat_exact.dat : ASCII file

Contains solution parameters and corresponding source term values.

"""

f = open(’random_heat_exact.dat’,’w’)

f.write(’%problem #, theta(deg), phi(deg), A, B, C, mu, a, source’)

ranges = ((t,0.,1.),(x,-.5,.5),(y,-.5,.5),(z,-.5,.5))

random.seed(100)

S_prime_list = []

for indn in range(ntests):

n_choices = [0,1,2,3,4,5,6,7]

theta_min, theta_max = 0, numpy.pi*.5

phi_min, phi_max = 0, numpy.pi*.5

A_min, A_max = 0.001, 1000

B_min, B_max = 0.001, 1000

C_min, C_max = 0, 1

mu_min, mu_max = 0, 3

a_min, a_max = 0.001, 10

n,theta,phi,A,B,C,mu,a = [random.choice(n_choices),

random.random()*(theta_max-theta_min),

random.random()*(phi_max-phi_min),

10**(random.random()*(numpy.log10(A_max)

-numpy.log10(A_min))

+numpy.log10(A_min)),

10**(random.random()*(numpy.log10(B_max)

-numpy.log10(B_min))

+numpy.log10(A_min)),

random.random()*(C_max-C_min),

random.random()*(mu_max-mu_min),

10**(random.random()*(numpy.log10(a_max)

-numpy.log10(a_min))

+numpy.log10(a_min))

]

sol = heat_exact_sol(n=n,theta=theta,phi=phi,A=A,B=B,C=C,mu=mu,a=a)

try:

S_prime = HeatEquation(sol).balance_integrate(ranges)

S_prime_list.append(S_prime)

f.write(’\n’+’, ’.join([str(item) for item in

(n,theta/numpy.pi*180,phi/numpy.pi*180,

A,B,C,mu,a,S_prime[0])]))

except(OverflowError):

print "Overflow Error!"

print (’n = ’,n,’theta = ’,theta,’phi = ’,phi,

’A = ’,A,’B = ’,B,’C = ’,C,’mu = ’,mu,’a = ’,a)

f.close()

return S_prime_list
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class HeatEquationError(Exception):

pass

if __name__=="__main__":

S_prime_list = test_exact(100)

S_prime_log = [numpy.log10(numpy.abs(S)) for S in S_prime_list]

high_error_ratio = (len([S for S in S_prime_log if S > -10])

/float(len(S_prime_log)))

if high_error_ratio > 0.01:

raise HeatEquationError(’Unexpectedly high error in heat equation!’)

# You can load random_heat_exact.dat in Matlab to create a parallel

# coordinates plot of the error.

# If you run enough tests, you do find some odd explosions of error for

# some cases. These are few (0.33% for 1000 cases with given seed).

print "All Heat Equation tests passed!"

B.3.2 Euler UCS.py

"""

Tools for computing manufactured solutions for Euler equations expressed in

Hui’s Unified Coordinate System.

"""

import random

import numpy

import sympy

from sympy.utilities.lambdify import lambdify

H = sympy.special.delta_functions.Heaviside

from sympy import sin, cos

from functools import partial

from base_equation import SympyEquation

Zero = sympy.singleton.S.Zero

t = sympy.Symbol(’t’)

xi = sympy.Symbol(’xi’)

eta = sympy.Symbol(’eta’)

zeta = sympy.Symbol(’zeta’)

gamma = sympy.Rational(7,5)

#def H(S):

# if S>0:

# out = 1.

# else:

# if S<0:

# out = 0.
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# else:

# out = .5

# return out

class Euler_UCS(SympyEquation):

def setup(self,**kwargs):

(self.pressure,self.density, #

self.vels_x,self.vels_y,self.vels_z, # u, v, w

self.dx_dxi,self.dy_dxi,self.dz_dxi, # A, B, C

self.dx_deta,self.dy_deta,self.dz_deta, # L, M, N

self.dx_dzeta,self.dy_dzeta,self.dz_dzeta, # P, Q, R

self.dx_dt,self.dy_dt,self.dz_dt, # U, V, W

self.x,self.y,self.z) = self.sol

self.gamma = gamma

self.jacobian = (

self.dx_dxi*

(self.dy_deta*self.dz_dzeta-self.dz_deta*self.dy_dzeta) +

self.dy_dxi*

(self.dz_deta*self.dx_dzeta-self.dx_deta*self.dz_dzeta) +

self.dz_dxi*

(self.dx_deta*self.dy_dzeta-self.dy_deta*self.dx_dzeta) )

self.dxi_dx = (self.dy_deta*self.dz_dzeta-self.dz_deta*self.dy_dzeta

)/self.jacobian

self.dxi_dy = (self.dz_deta*self.dx_dzeta-self.dx_deta*self.dz_dzeta

)/self.jacobian

self.dxi_dz = (self.dx_deta*self.dy_dzeta-self.dy_deta*self.dx_dzeta

)/self.jacobian

self.deta_dx = (self.dz_dxi*self.dy_dzeta-self.dy_dxi*self.dz_dzeta

)/self.jacobian

self.deta_dy = (self.dx_dxi*self.dz_dzeta-self.dz_dxi*self.dx_dzeta

)/self.jacobian

self.deta_dz = (self.dy_dxi*self.dx_dzeta-self.dx_dxi*self.dy_dzeta

)/self.jacobian

self.dzeta_dx = (self.dy_dxi*self.dz_deta-self.dz_dxi*self.dy_deta

)/self.jacobian

self.dzeta_dy = (self.dz_dxi*self.dx_deta-self.dx_dxi*self.dz_deta

)/self.jacobian

self.dzeta_dz = (self.dx_dxi*self.dy_deta-self.dy_dxi*self.dx_deta

)/self.jacobian

self.Dxi_Dt_vec = (

self.dot_product((self.vels_x-self.dx_dt,self.vels_y-self.dy_dt,

self.vels_z-self.dz_dt),

(self.dxi_dx,self.dxi_dy,self.dxi_dz)),

self.dot_product((self.vels_x-self.dx_dt,self.vels_y-self.dy_dt,

self.vels_z-self.dz_dt),

(self.deta_dx,self.deta_dy,self.deta_dz)),

self.dot_product((self.vels_x-self.dx_dt,self.vels_y-self.dy_dt,
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self.vels_z-self.dz_dt),

(self.dzeta_dx,self.dzeta_dy,self.dzeta_dz)))

self.vels_xi_vec = (

self.dot_product((self.vels_x,self.vels_y,self.vels_z),

(self.dxi_dx,self.dxi_dy,self.dxi_dz)),

self.dot_product((self.vels_x,self.vels_y,self.vels_z),

(self.deta_dx,self.deta_dy,self.deta_dz)),

self.dot_product((self.vels_x,self.vels_y,self.vels_z),

(self.dzeta_dx,self.dzeta_dy,self.dzeta_dz)))

self.energy = (sympy.Rational(1,2)*

(self.vels_x**2+self.vels_y**2+self.vels_z**2) +

self.pressure/((self.gamma-1)*self.density))

self.grad_xi_vec = ((self.dxi_dx,self.dxi_dy,self.dxi_dz),

(self.deta_dx,self.deta_dy,self.deta_dz),

(self.dzeta_dx,self.dzeta_dy,self.dzeta_dz))

self.fluxes = [self.cons()]+[self.flux(n) for n in range(3)]

self.source = self.source_func()

def cons(self):

return sympy.Matrix([

self.density*self.jacobian,

self.density*self.jacobian*self.vels_x,

self.density*self.jacobian*self.vels_y,

self.density*self.jacobian*self.vels_z,

self.density*self.jacobian*self.energy,

self.dx_dxi,self.dy_dxi,self.dz_dxi,

self.dx_deta,self.dy_deta,self.dz_deta,

self.dx_dzeta,self.dy_dzeta,self.dz_dzeta,

self.dx_dt,self.dy_dt,self.dz_dt,

self.x,self.y,self.z])

def flux(self,n):

out = [self.jacobian*(self.density*self.Dxi_Dt_vec[n]),

self.jacobian*(self.density*self.Dxi_Dt_vec[n]*self.vels_x+

self.grad_xi_vec[n][0]*self.pressure),

self.jacobian*(self.density*self.Dxi_Dt_vec[n]*self.vels_y+

self.grad_xi_vec[n][1]*self.pressure),

self.jacobian*(self.density*self.Dxi_Dt_vec[n]*self.vels_z+

self.grad_xi_vec[n][2]*self.pressure),

self.jacobian*(self.density*self.Dxi_Dt_vec[n]*self.energy+

self.vels_xi_vec[n]*self.pressure),

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

out[5:8] = [item*sympy.Integer(-1*(1-n)*(1-n/2)) for item in

(self.dx_dt,self.dy_dt,self.dz_dt)]

out[8:11] = [item*sympy.Integer(-1*(n)*(2-n)) for item in

(self.dx_dt,self.dy_dt,self.dz_dt)]

out[11:14] = [item*sympy.Integer(-1*(n-1)*(n/2)) for item in

(self.dx_dt,self.dy_dt,self.dz_dt)]
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return sympy.Matrix(out)

def source_func(self):

return sympy.Matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

self.dx_dt,self.dy_dt,self.dz_dt])

def exact_Euler_sols(case,opts={}):

"""

Various exact solutions for the Euler equations in Cartesian coordinates.

Returns solution objects for various exact solutions of the unsteady, Euler

equations. Includes both normal shocks and riemann problems.

Parameters

----------

case : string

Key to cases dict. Can be ’normal’ or ’riemann_problem’.

opts : dict, optional

Additional solution options. Currently only chooses among riemann problems,

and solution rotations. The riemann problem is set by the ’set_riemann’

key, and the rotation angles are set by ’phi’ and ’theta’. Rotation angles

are used only by ’riemann_problem’.

Returns

-------

dict

"""

cases = {’simple’:simple_case,

# ’two_shock’:two_shock_case,

’normal’:normal_case,

’riemann_problem’:partial(riemann_problem_case,

opts[’set_riemann’],opts[’theta’],

opts[’phi’])}

out = {’vars’:[t,xi,eta,zeta],’eqn_kwargs’:{}}

out.update(cases[case]())

return out

def simple_case():

return {’sol’:sympy.Matrix([1,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0]),

’discontinuities’:[]}

def normal_case():

theta = sympy.pi*.25

S = (sympy.cos(theta)*xi+sympy.sin(theta)*eta)/t

shock_speed = .78931

p1 = 460.894

d1 = 5.99924



193

umag1 = 19.5975

M1rel = (umag1-shock_speed)/(gamma*p1/d1)**(.5)

p2 = ((2.*gamma*M1rel**2-(gamma-1))/(gamma+1))*p1

d2 = ((gamma+1.)*M1rel**2/((gamma-1.)*M1rel**2+2.))*d1

umag2 = (1-d1/d2)*shock_speed+umag1*d1/d2

print "p2,d2,u2 = ",p2,d2,umag2

u1 = umag1*sympy.cos(theta)

v1 = umag1*sympy.sin(theta)

u2 = umag2*sympy.cos(theta)

v2 = umag2*sympy.sin(theta)

speeds = [shock_speed]

states = [sympy.Matrix([p1,d1,u1,v1]),sympy.Matrix([p2,d2,u2,v2])]

base_state = [0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0]

out = {’sol’:sympy.Matrix(list(states[0]+

H(S-speeds[0])*(states[1]-states[0]))+

base_state),

’discontinuities’:[S-speed for speed in speeds]}

return out

#def two_shock_case():

# speeds = [0.78959391926443701,8.6897744116323814,12.250778123084338]

# phi, theta = 0.,sympy.pi*.1#sympy.pi*.5, sympy.pi*.25

# S = (sympy.cos(theta)*xi+

# sympy.sin(theta)*sympy.cos(phi)*eta+

# sympy.sin(theta)*sympy.sin(phi)*zeta)/t

# yz_rotation_matrix = sympy.Matrix(

# [[sympy.cos(theta),0,0],

# [sympy.sin(theta)*sympy.cos(phi),0,0],

# [sympy.sin(theta)*sympy.sin(phi),0,0]])

#

## S = yz_rotation_matrix.dot(sympy.Matrix([xi,eta,zeta]))[0]/t

# states = [sympy.Matrix([460.89400000000001,5.99924000000000000004,

# 19.597500000000000,0.,0.]),

# sympy.Matrix([1691.6469553991260,14.282349951978405,

# 8.6897744116323814,0.,0.]),

# sympy.Matrix([1691.6469553991260,31.042601641619882,

# 8.6897744116323814,0.,0.]),

# sympy.Matrix([46.09499999999999,5.99242000000000001,

# -6.19632999999997,0.,0.])]

# for state in states:

# vel = sympy.Matrix([state[2],state[3],state[4]])

# new_vel = yz_rotation_matrix.dot(vel)

# state[2],state[3],state[4] = new_vel

# base_state = [1.,0.,0.,0.,1.,0.,0.,0.,1.,0.,0.,0.,0.,0.,0.]

# out = {’sol’:sympy.Matrix(

# list(

## (1-H(S-speeds[0]))*states[0]+
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## H(S-speeds[0])*states[1])+base_state),

# (1-H(S-speeds[0]))*states[0]+

# H(S-speeds[0])*(1-H(S-speeds[1]))*states[1]+

# H(S-speeds[1])*(1-H(S-speeds[2]))*states[2]+

# H(S-speeds[2])*states[3])+base_state),

# ’discontinuities’:[S-speed for speed in speeds]}

# return out

def riemann_problem_case(n,theta,phi):

# n = 4

# theta, phi = sympy.pi*.5, 0.

tests = riemann_problem_init()

states,speeds = ([sympy.Matrix(state) for state in tests[n][’states’]],

tests[n][’speeds’])

S = (sympy.cos(theta)*xi+

sympy.sin(theta)*sympy.cos(phi)*eta+

sympy.sin(theta)*sympy.sin(phi)*zeta)/t

fan_state_L = inside_fan_state(states[0],speeds[1],speeds[0],S)

fan_state_R = inside_fan_state(states[3],speeds[3],speeds[4],S)

states.insert(1,fan_state_L)

states.insert(-1, fan_state_R)

yz_rotation_matrix = sympy.Matrix(

[[sympy.cos(theta),0,0],

[sympy.sin(theta)*sympy.cos(phi),0,0],

[sympy.sin(theta)*sympy.sin(phi),0,0]])

for state in states:

vel = sympy.Matrix([state[2],state[3],state[4]])

new_vel = yz_rotation_matrix.dot(vel)

state[2],state[3],state[4] = new_vel

base_state = [1.,0.,0.,0.,1.,0.,0.,0.,1.,0.,0.,0.,0.,0.,0.]

prims = map(list,zip(*states))

sol_list = []

for i, prim in enumerate(prims):

piecewise_args = []

piecewise_args.append((prim[0],S<speeds[0]))

if speeds[1] != speeds[0]:

piecewise_args.append((prim[1],S<speeds[1]))

piecewise_args.append((prim[2],S<speeds[2]))

piecewise_args.append((prim[3],S<speeds[3]))

if speeds[4] != speeds[3]:

piecewise_args.append((prim[4],S<speeds[4]))

piecewise_args.append((prim[5],True))

sol_list.append(sympy.Piecewise(*piecewise_args))

solution_state = sol_list+base_state

import pdb;pdb.set_trace()

out = {’sol’:sympy.Matrix(solution_state),
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’discontinuities’:[S-speed for speed in speeds]}

# import matplotlib.pyplot as plt

# from mpl_toolkits.mplot3d import Axes3D

# fig = plt.figure()

# ax = fig.add_subplot(111,projection=’3d’)

# Axes3D.plot_surface(X,Y,Z)

return out

def inside_fan_state(upwind,head,tail,S):

if head > tail:

plusminus = -1

else:

if head < tail:

plusminus = 1

else:

return upwind

p = upwind[0]*(2/(gamma+1)-plusminus*(gamma-1)/(

(gamma+1)*sympy.sqrt(gamma*upwind[0]/upwind[1]))*(

upwind[2]-S))**((2*gamma)/(gamma-1))

d = upwind[1]*(2./(gamma+1)-plusminus*(gamma-1.)/(

(gamma+1)*sympy.sqrt(gamma*upwind[0]/upwind[1]))*(upwind[2]-S)

)**(2./(gamma-1.))

u = 2/(gamma+1)*((gamma-1)*.5*upwind[2]+S

-plusminus*sympy.sqrt(gamma*upwind[0]/upwind[1]))

return sympy.Matrix([p,d,u,upwind[3],upwind[4]])

def riemann_problem_init():

tests = []

tests.append({})

tests[0][’states’] = [

[1., 1., 0., 0., 0.],

[0.30313017805064679, 0.42631942817849516, 0.92745262004894879, 0., 0.],

[0.30313017805064679, 0.26557371170530708, 0.92745262004894879, 0., 0.],

[.1, .125, 0., 0., 0.]]

tests[0][’speeds’] = [-1.1832159566199232, -7.02728125611844501E-002,

0.92745262004894879, 1.7521557320301779,

1.7521557320301779]

tests.append({})

tests[1][’states’] = [

[.4, 1., -2., 0., 0.],

[1.89387342005476107E-003, 2.18521182068128102E-002, 0., 0., 0.],

[1.89387342005476107E-003, 2.18521182068128102E-002, 0., 0., 0.],

[.4, 1., 2., 0., 0.]]

tests[1][’speeds’] = [-2.7483314773547880, -0.34833147735478825,

0., 0.34833147735478825, 2.7483314773547880]

tests.append({})
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tests[2] = {}

tests[2][’states’] = [

[1000., 1., 0., 0., 0.],

[460.89378749138365, 0.57506229847655554, 19.597451388723059, 0., 0.],

[460.89378749138365, 5.9992407047962342, 19.597451388723059, 0., 0.],

[.01, 1., 0., 0., 0.]]

tests[2][’speeds’] = [-37.416573867739416, -13.899632201271743,

19.597451388723059, 23.517536966903236,

23.517536966903236]

tests.append({})

tests[3][’states’] = [

[.01, 1., 0., 0., 0.],

[46.095044248867971, 5.9924168635152260, -6.1963282497870367, 0., 0.],

[46.095044248867971, 0.57511278978241231, -6.1963282497870367, 0., 0.],

[100., 1., 0., 0., 0.]]

tests[3][’speeds’] = [-7.4374762586943133, -7.4374762586943133,

-6.1963282497870367, 4.3965656664547872,

11.832159566199232]

tests.append({})

tests[4][’states’] = [

[460.894, 5.99924, 19.5975, 0., 0.],

[1691.6469553991260, 14.282349951978405, 8.6897744116323814, 0., 0.],

[1691.6469553991260, 31.042601641619882, 8.6897744116323814, 0., 0.],

[46.0950, 5.99242, -6.19633, 0., 0.]]

tests[4][’speeds’] = [0.78959391926443701, 0.78959391926443701,

8.6897744116323814, 12.250778123084338,

12.250778123084338]

return tests

def MASA_with_pinned_bounds(ranges,nxes=(100,1,1),

dxis=(1.,1.,1.),x_origin=(0.,0.,0.)):

((x0,xn),(y0,yn),(z0,zn)) = ranges

out = MASA_solution_full(ranges,nxes,dxis,x0=x_origin)

out_vars = list(out[’vars’])

out_vars.remove(t)

valmax = 2.

pinning_eqn = (4.*valmax/(xn-x0)**2*

(-out_vars[0]**2+(xn+x0)*out_vars[0]-x0*xn))

out[’sol’] = sympy.Matrix(

[sol*pinning_eqn + .01 for sol in out[’sol’][0:5]]+out[’sol’][5:])

return out

def MASA_solution_full(ranges,nxes=(100,1,1),dxis=(1.,1.,1.),x0=(0.,0.,0.),

disc=False):

"""

Manufactured solution as given in MASA documentation for Euler equations.

"""
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kwargs={’x0’:1.1, # = -(xt,xx,xy,xz)+pinned_value

’xx’:.5,’ax’:2.,’fx’:sympy.cos,’Lx’:100.,

’xy’:0,’ay’:2.,’fy’:sympy.cos,’Ly’:100.,

’xz’:0,’az’:2.,’fz’:sympy.cos,’Lz’:100.,

’xt’:0,’at’:2.,’ft’:sympy.cos,’Lt’:100.,

’shock_strength’:0.,’shock_position’:sympy.Float(50.)}

if disc:

kwargs[’shock_strength’]=1.

dxes = [1,1,1]

for ind in range(3):

try:

dxes[ind] = float(ranges[ind][1]-ranges[ind][0])/(nxes[ind]-1)

except(ZeroDivisionError):

dxes[ind] = float(ranges[ind][1]-ranges[ind][0])/nxes[ind]

# dxes = [float((range_[1]-range_[0]))/(nx-1)

# for (range_,nx) in zip(ranges,nxes)]

prims = [MASA_full_var(**kwargs) for var in range(5)]

grid_vels = [0.*.25*vel for vel in prims[2:]]

dx_dxi = dx_dxi_f(dx_dlambda=grid_vels,

dx_dxi_0=[dxes[0]/dxis[0],0.,0.,

0.,dxes[1]/dxis[1],0.,

0.,0.,dxes[2]/dxis[2]],t0=0.)

xes = x_f(dx_dxi,grid_vels,x0,dxis)

return {’vars’:[t,xi,eta,zeta],

’sol’:sympy.Matrix(prims+dx_dxi+grid_vels+xes),

’discontinuities’:[kwargs[’shock_position’]],’eqn_kwargs’:{}}

def dx_dxi_f(dx_dlambda,dx_dxi_0,t0):

change = [0 for ind in range(9)]

out = list(change)

for inda in range(3):

for indb in range(3):

change[inda*3+indb] = sympy.integrate(sympy.diff(

dx_dlambda[indb],[xi,eta,zeta][inda]),t)

out[inda*3+indb] = ( change[inda*3+indb] + dx_dxi_0[inda*3+indb] -

change[inda*3+indb].subs({t:t0}) )

return out

def x_f(dx_dxi,dx_dlambda,x0,dxis):

# Assumes a simple initial grid, where dx~dxi, dy~deta, dz~dzeta

initial_xes = [dx_dxi[0]*xi+x0[0],dx_dxi[4]*eta*0+x0[1],

dx_dxi[8]*zeta*0+x0[2]]

initial_xes = [x.subs({t:0}) for x in initial_xes]

out = [initial_xes[ind] +

sympy.integrate(dx_dlambda[ind],t) for ind in range(3)]

return out
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def MASA_full_var(x0,xx,ax,fx,Lx,xy,ay,fy,Ly,xz,az,fz,Lz,xt,at,ft,Lt,

shock_strength,shock_position):

out = (x0+

xt*ft(at*sympy.pi*t/Lt)+

xx*fx(ax*sympy.pi*xi/Lx)+

xy*fy(ay*sympy.pi*eta/Ly)+

xz*fz(az*sympy.pi*zeta/Lz))

if shock_strength != 0.:

out += shock_strength*H(xi-shock_position)

return out

def test_riemann(ntests):

"""

Test the accuracy of numerical integration of the Euler equations.

Compute weak manufactured source terms from exact, discontinuous, solutions

for the Euler equations. In particular, use a collection of exact,

one-dimensional Riemann problems, rotated so as to be three-dimensional.

Parameters

----------

ntests : int

Number of random trials to compute.

Returns

-------

random_euler_riemann.dat : ASCII file

Contains solution parameters and corresponding source term values.

"""

f = open(’random_euler_riemann.dat’,’w’)

# f.write(’\n’)

f.write(’%problem #, theta(deg), phi(deg), ’

+’source_rho, source_p, source_u, source_v, source_w’)

ranges = [[t,0.1,1],[xi,-1,1],[eta,-1,1],[zeta,-1,1]]

random.seed(100)

S_prime_list = []

for indn in range(ntests):

print "Test case #"+str(indn)

n_choices = [0,1,2,3]#,4]

theta_min, theta_max = 0, numpy.pi*0.5

phi_min, phi_max = 0, numpy.pi*0.5

n,theta,phi = [random.choice(n_choices),

random.random()*(theta_max-theta_min),

random.random()*(phi_max-phi_min)]

opts = {’set_riemann’:n,’theta’:theta,’phi’:phi}

sol = exact_Euler_sols(’riemann_problem’,opts)
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S_prime = Euler_UCS(sol).balance_integrate(ranges)

S_prime_list.append(S_prime)

f.write(’\n’+’, ’.join([str(item) for item in (

n,theta/numpy.pi*180,phi/numpy.pi*180,

S_prime[0],S_prime[1],S_prime[2],

S_prime[3],S_prime[4])]))

f.close()

return S_prime_list

if __name__ == "__main__":

S_prime_list = test_riemann(10)

# eqn = Euler_UCS(MASA_with_pinned_bounds([[0,1],[0,1],[0,1]],nxes=(100,1,1)))

# print eqn.balance_diff()[0]

# out = eqn.balance_lambda_init()

# import pdb;pdb.set_trace()



Appendix C

Streamer Fortran Core

Included here is the most critical code for the Fortran Core library included in Streamer

v3.0, along with the associated Makefile and Python setup function. For all other code related to

Streamer development, see the Github repository at tt https://github.com/woodscn.

C.1 Streamer v3.0

C.1.1 setup.py

This uses the Numpy distutils package to make the Fortran Core library importable into

Python. It is run with the usual command, python setup.py install, after the library has been

compiled.

addl_source_dir = "./f90src/"

def configuration(parent_package=’’,top_path=None,compile_type=’debug’):

from numpy.distutils.misc_util import Configuration

from os import getcwd

opts={’debug’:’--debug --noopt --noarch’,’run’:’--opt=-O3’}

config = Configuration(’Streamer’,parent_package,top_path)

config.add_extension(’Godunov_driver’,’Godunov_driver.f90’,

extra_compile_args=[’-J./bindings’],

include_dirs=[’/usr/local/include’,

’/usr/include’,’./bindings’],

# libraries=[’lapack’,’recipes_f90’,’minpack’,’cgns’,

# ’Streamer’],

libraries = [’Streamer’],

library_dirs=[’/usr/local/lib’,’/usr/lib’,’.’]

)
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config.add_extension("Source_functions",

addl_source_dir+’Source_functions.f90’,

extra_compile_args=[’-J./bindings’],

include_dirs=[’/usr/local/include’,

’/usr/include’,’./bindings’],

# libraries=[’lapack’,’recipes_f90’,’minpack’,’cgns’,

# ’Streamer’],

libraries=[’Streamer’],

library_dirs=[’/usr/local/lib’,’/usr/lib’,’.’]

)

config.add_extension(’grid_motion_driver’,’grid_motion_driver.f90’,

extra_compile_args=[’-J./bindings’],

include_dirs=[’/usr/local/include’,

’/usr/include’,’./bindings’],

libraries = [’Streamer’],

library_dirs=[’/usr/local/lib’,’/usr/lib’,’.’]

)

config.add_extension(’BoundaryConditionsStuff’,

addl_source_dir+’BoundaryConditionsStuff.f90’,

extra_compile_args=["-fbounds-check",’-J./bindings’],

include_dirs=[’/usr/local/include’,

’/usr/include’,’./bindings’],

libraries=[’lapack’,’Streamer’],

library_dirs=[’/usr/local/lib’,’/usr/lib’,’.’]

)

config.add_extension(’TimeAdvancementStuff’,

addl_source_dir+’TimeAdvancementStuff.f90’,

extra_compile_args=["-fbounds-check",’-J./bindings’],

include_dirs=[’/usr/local/include’,

’/usr/include’,’./bindings’],

libraries=[’lapack’],

library_dirs=[’/usr/local/lib’,’/usr/lib’,’.’]

)

# config.add_extension(’STLA_IO’,addl_source_dir+’stla_io.f90’,

# extra_compile_args=["-fbounds-check"],

# include_dirs=[’/usr/local/include’,’/usr/include’],

# libraries=[’lapack’],

# library_dirs=[’/usr/local/lib’,’/usr/lib’]

# )

# config.add_extension(’CGNS_Interface’,addl_source_dir+’cgns_interface.f90’,

# include_dirs=[’/usr/local/include’,’/usr/include’],

# libraries=[’cgns’,’lapack’],

# library_dirs=[’/usr/local/lib’,’/usr/lib’],
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# extra_compile_args=["-fbounds-check"]

# )

return config

def prepend_GU(fin):

fout_name = addl_source_dir+fin.split(’.’)[0]+’GU.f90’

fout = open(fout_name,’w’)

fout.write(’’’! This file is automatically generated from

! ’’’+fin.split(’x’)[0]+’’’ and from GeneralUtilities.f90

’’’)

f=open(addl_source_dir+’GeneralUtilities.f90’)

for line in f:

fout.write(line)

f.close()

f=open(addl_source_dir+fin)

for line in f:

fout.write(line)

f.close()

fout.close()

return(fout_name)

if __name__ == "__main__":

from numpy.distutils.core import setup

setup(**configuration(top_path=’’).todict())

C.1.2 Makefile

The Fortran Core library itself is built using Make. The library can be compiled using make

all, and it can also be tested using make check. The unit tests require access to some of the

MINPACK files, available on netlib [24].

OS = $(shell uname)

RM = rm -f

AR = ar

ARFLAGS = rv

FC = gfortran

# Debug options for gfortran

FFLAGS = -I$(MODDIR) -I/usr/local/include -J$(MODDIR) \

-fbounds-check -O0 -g3 -p -fPIC -arch x86_64 -ff2c \

-framework Accelerate #-fopenmp

# # Release options for gfortran
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# FFLAGS = -I$(MODDIR) -I/usr/local/include -J$(MODDIR) -O3

# # Profiling options for gfortran

# FFLAGS = -I$(MODDIR) -I/usr/local/include -J$(MODDIR) -O3 -p

# # Debug options for ifort

# FFLAGS = -I/usr/local/include -module $(MODDIR) -O0 -g3 -p -check bounds

# # Release options for ifort

# FFLAGS = -I/usr/local/include -module $(MODDIR) -fast #-fast-transcendentals

# # Profiling options for ifort

# FFLAGS = -I/usr/local/include -module $(MODDIR) -fast -p

LDFLAGS = -L./ -llapack -lStreamer -lStreamerTest \

-lStreamer -lminpack -llapack#-lcgns

MODDIR = ./bindings

LIBSRCDIR = ./f90src

LIBTESTSRCDIR = ./f90src/test

MINPACKSRCDIR = ./minpack

DATDIR = ./dat

EXEDIR = ./exe

DRVDIR = .

LIBSOURCES = GeneralUtilities.f90 \

Riemann.f90 \

TimeAdvancementStuff.f90 \

Godunov.f90 \

ODE_Solvers.f90 \

BoundaryConditionsStuff.f90 \

FortranNormalVectors.f90 \

cgns_interface.f90

all: lib

.POSIX:

lib: libStreamer.a

# $(RM) $(LIBSRCDIR)/*.o

# @echo Free object files have been removed. \

object files can be found in libStreamer.a

#drivers = $(

libStreamer.a: $(LIBSRCDIR)/GeneralUtilities.o \

$(LIBSRCDIR)/Riemann.o \

$(LIBSRCDIR)/TimeAdvancementStuff.o \

$(LIBSRCDIR)/Godunov.o \

$(LIBSRCDIR)/BoundaryConditionsStuff.o \

$(LIBSRCDIR)/FortranNormalVectors.o \

$(LIBSRCDIR)/grid_motion.o

# $(LIBSRCDIR)/cgns_interface.o

# End dependencies

$(AR) $(ARFLAGS) $@ $?

$(LIBSRCDIR)/Godunov.o: $(LIBSRCDIR)/GeneralUtilities.o \
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$(LIBSRCDIR)/Riemann.o

$(LIBSRCDIR)/ODE_Solvers.o: $(LIBSRCDIR)/Source_functions.o

$(LIBSRCDIR)/Source_functions.o: $(LIBSRCDIR)/GeneralUtilities.o

$(LIBSRCDIR)/BoundaryConditionsStuff.o: $(LIBSRCDIR)/GeneralUtilities.o

check: lib libStreamerTest.a libminpack.a \

$(LIBTESTSRCDIR)/test_program.f90 \

$(DRVDIR)/Godunov_driver.o \

$(DRVDIR)/grid_motion_driver.o

# End dependencies

$(FC) $(FFLAGS) $(LIBTESTSRCDIR)/test_program.f90 \

$(DRVDIR)/Godunov_driver.o \

$(DRVDIR)/grid_motion_driver.o -o $(LIBTESTSRCDIR)/f90tests $(LDFLAGS)

$(LIBTESTSRCDIR)/f90tests $(DATDIR)

libStreamerTest.a: $(LIBTESTSRCDIR)/GeneralUtilities_tester.o \

$(LIBTESTSRCDIR)/Godunov_tester.o \

$(LIBTESTSRCDIR)/Riemann_tester.o \

$(LIBTESTSRCDIR)/grid_motion_tester.o \

$(LIBTESTSRCDIR)/UCS_tester.o

# $(LIBTESTSRCDIR)/ODE_Solvers_tester.o

$(AR) $(ARFLAGS) $@ $?

libminpack.a: $(MINPACKSRCDIR)/lmder1.o \

$(MINPACKSRCDIR)/dpmpar.o \

$(MINPACKSRCDIR)/lmder.o \

$(MINPACKSRCDIR)/lmpar.o \

$(MINPACKSRCDIR)/qrsolv.o \

$(MINPACKSRCDIR)/enorm.o \

$(MINPACKSRCDIR)/qrfac.o

$(AR) $(ARFLAGS) $@ $?

$(LIBTESTSRCDIR)/Godunov_tester.o: $(DRVDIR)/Godunov_driver.o

$(LIBTESTSRCDIR)/grid_motion_tester.o: $(DRVDIR)/grid_motion_driver.o

$(LIBTESTSRCDIR)/UCS_tester.o: $(DRVDIR)/Godunov_driver.o \

$(DRVDIR)/grid_motion_driver.o

#$(EXEDIR)/test_program: $(SRCDIR)/test_program.f90 lib

# $(FC) $(FFLAGS) $(LDFLAGS) $< -o $@

%.o: %.f90

$(FC) -c $(FFLAGS) $< -o $@

clean:

$(RM) $(LIBSRCDIR)/*.o $(LIBTESTSRCDIR)/*.o $(DRVDIR)/Godunov_driver.o \

$(MODDIR)/*.mod libStreamer.a libStreamerTest.a *.so *.a *.mod *.o \

minpack/*.o

C.1.3 GeneralUtilities.f90

This module contains routines that are commonly used in UCS.
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module GeneralUtilities

real(8), parameter :: PI = 3.141592653589793

real(8), parameter :: EPS = 5.d-15

real(8), parameter :: EPSs = 1d-4

real(8), parameter :: gamma_const = 1.4d0

real(8), parameter :: gamma1 = 1.d0/(gamma_const-1.d0)

real(8), parameter :: gamma2 = (gamma_const-1.d0)

real(8), parameter :: gamma3 = (gamma_const - 1.d0)/(2.d0*gamma_const)

real(8), parameter :: gamma4 = 1.d0/gamma3

real(8), parameter :: gamma5 = (gamma_const-1.d0)/(gamma_const+1.d0)

real(8), parameter :: gamma6 = 1.d0/(gamma_const+1.d0)

real(8), parameter :: gamma7 = 1.d0/gamma3

real(8), dimension(7), parameter :: dxi_a = [1., .5, .25, .2, 2., 4., 5.]

real(8), dimension(7), parameter :: deta_a = [1., .5, .25, .2, 2., 4., 5.]

real(8), dimension(7), parameter :: dzeta_a = [1., .5, .25, .2, 2., 4., 5.]

contains

pure function MetricInverse(Metric)

implicit none

! Given a list of metric variables:

! dx/dxi, dy/dxi, dz/dxi, dx/deta, dy/deta, dz/deta,

! dx/dzeta, dy/dzeta, dz/dzeta

! ( A, B, C, L, M, N, P, Q, R )

! Return the inverse of this list:

! dxi/dx, deta/dx, dzeta/dx, dxi/dy, deta/dy, dzeta/dy,

! dxi/dz, deta/dz, dzeta/dz.

real(8), dimension(9), intent(in) :: Metric

real(8), dimension(9) :: MetricInverse

real(8) :: J

J = Jacobian(Metric)

MetricInverse = [&

Metric(5)*Metric(9) - Metric(6)*Metric(8), &

Metric(3)*Metric(8) - Metric(2)*Metric(9), &

Metric(2)*Metric(6) - Metric(3)*Metric(5), &

Metric(6)*Metric(7) - Metric(4)*Metric(9), &

Metric(1)*Metric(9) - Metric(3)*Metric(7), &

Metric(3)*Metric(4) - Metric(1)*Metric(6), &

Metric(4)*Metric(8) - Metric(5)*Metric(7), &

Metric(2)*Metric(7) - Metric(1)*Metric(8), &

Metric(1)*Metric(5) - Metric(2)*Metric(4) ]/J

end function MetricInverse

function MetrictoMatrix(Metric)

implicit none

! Given a 9-element, rank-1 array, convert it to a 3x3 matrix,

! such that the elements are ordered column-wise:

! [ A, B, C, L, M, N, P, Q, R ]
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!

! | |

! \ /

! \ /

!

! A, L, P

! B, M, Q

! C, N, R

!

! This is consistent with the statement:

! dx = matmul(MetrictoMatrix(Metric),dxi)

real(8), dimension(9), intent(in) :: Metric

real(8), dimension(3,3) :: MetrictoMatrix

MetrictoMatrix = reshape(Metric,[3,3])

end function MetrictoMatrix

!!$ function NormalizedMetric(in)

!!$ implicit none

!!$ real(8), dimension(9), intent(in) :: in

!!$ real(8), dimension(9) :: NormalizedMetric

!!$ integer :: n

!!$ do n = 1, 3

!!$ NormalizedMetric(n:9:3) = in(n:9:3)/sqrt(sum(in(n:9:3)**2))

!!$ end do

!!$ end function NormalizedMetric

subroutine ComputationalGrads(metric,jac,grad_xi,grad_eta,grad_zeta)

implicit none

! Metric has the form:

! 1 2 3 4 5 6 7 8 9

! [ A, B, C, L, M, N, P, Q, R ]

! dx/dxi, dy/dxi, dz/dxi, dx/deta, dy/deta,

! dz/deta, dx/dzeta, dy/dzeta, dz/dzeta

!

! ComputationalGrads returns:

! grad_xi = [ dxi/dx, dxi/dy, dxi/dz ]

! grad_eta = [ deta/dx, deta/dy, deta/dz ]

! grad_zeta = [ dzeta/dx, dzeta/dy, dzeta/dz ]

real(8), intent(in), dimension(9) :: metric

real(8), intent(in) :: jac

real(8), intent(out), dimension(3) :: grad_xi

real(8), intent(out), dimension(3) :: grad_eta

real(8), intent(out), dimension(3) :: grad_zeta

real(8), dimension(9) :: inv_metric

inv_metric = MetricInverse(metric)
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grad_xi = inv_metric(1:9:3)

grad_eta = inv_metric(2:9:3)

grad_zeta = inv_metric(3:9:3)

end subroutine ComputationalGrads

real(8) pure function Jacobian(in)

implicit none

! Computes the determinant of a 3 x 3 matrix using a brute-force method:

! | A L P |

! J = | B M Q |

! | C N R |

! Assumes the structure of in(:) is :

! 1 2 3 4 5 6 7 8 9

! [ A, B, C, L, M, N, P, Q, R ]

real(8), dimension(9), intent(in) :: in

Jacobian = &

in(1)*in(5)*in(9) - in(1)*in(6)*in(8) + & ! A*M*R - A*N*Q

in(2)*in(6)*in(7) - in(2)*in(4)*in(9) + & ! B*N*P - B*L*R

in(3)*in(4)*in(8) - in(3)*in(5)*in(7) ! C*L*Q - C*M*P

end function Jacobian

!!$ function GradstoMatrix(Grad1,Grad2,Grad3)

!!$ !

!!$ ! matmul(GradstoMatrix,vector) ==

!!$ ! [ sum(GradstoMatrix(1,:)*vector),

!!$ ! sum(GradstoMatrix(2,:)*vector),

!!$ ! sum(GradstoMatrix(3,:)*vector) ]

!!$ implicit none

!!$ real(8), dimension(3), intent(in) :: Grad1, Grad2, Grad3

!!$ real(8), dimension(3,3) :: GradstoMatrix

!!$ GradstoMatrix = transpose(reshape([Grad1,Grad2,Grad3],[3,3]))

!!$ end function GradstoMatrix

subroutine TwoDGradient(in,dx,dy,nx,ny,gradx,grady)

implicit none

! Compute the 2-dimensional gradient of a matrix using central

! differencing wherever possible. Returns gradient matrices

! the same size and shape as the input matrix. If the input matrix

! has length 1 in either dimension, then it is assumed that the

! gradient in that dimension is 0.

real(8), intent(in), dimension(nx,ny) :: in

real(8), intent(in) :: dx, dy

integer, intent(in) :: nx, ny

real(8), intent(out), dimension(nx,ny) :: gradx, grady

integer :: i, j

if(nx>1)then
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! Central differencing where possible

gradx(2:nx-1,:) = .5d0*(in(3:nx,:)-in(1:nx-2,:))/dx

! Forward & backward differencing elsewhere

gradx(1,:) = (in( 2,:)-in( 1,:))/dx

gradx(nx,:) = (in(nx,:)-in(nx-1,:))/dx

else

gradx(:,:) = 0.d0

end if

if(ny>1)then

! Central differencing where possible

grady(:,2:ny-1) = .5d0*(in(:,3:ny)-in(:,1:ny-2))/dy

! Forward & backward differencing elsewhere

grady(:,1) = (in(:, 2)-in(:, 1))/dy

grady(:,ny) = (in(:,ny)-in(:,ny-1))/dy

else

grady(:,:) = 0.d0

end if

end subroutine TwoDGradient

function MatrixInverse(in)

! Compute the inverse of a 3x3 matrix

implicit none

real(8), dimension(3,3), intent(in) :: in

real(8), dimension(3,3) :: MatrixInverse

real(8) :: J

J = ( &

in(1,1)*in(2,2)*in(3,3) + &

in(1,2)*in(2,3)*in(3,1) + &

in(1,3)*in(2,1)*in(3,2) - &

in(1,1)*in(2,3)*in(3,2) - &

in(1,2)*in(2,1)*in(3,3) - &

in(1,3)*in(2,2)*in(3,1) )

MatrixInverse = transpose(reshape( [ &

in(3,3)*in(2,2)-in(3,2)*in(2,3) , &

in(3,2)*in(1,3)-in(3,3)*in(1,2) , &

in(2,3)*in(1,2)-in(2,2)*in(1,3) , &

in(3,1)*in(2,3)-in(3,3)*in(2,1) , &

in(3,3)*in(1,1)-in(3,1)*in(1,3) , &

in(2,1)*in(1,3)-in(2,3)*in(1,1) , &

in(3,2)*in(2,1)-in(3,1)*in(2,2) , &

in(3,1)*in(1,2)-in(3,2)*in(1,1) , &

in(2,2)*in(1,1)-in(2,1)*in(1,2) ] &

,[3,3])/J)

!!$ if(.true. .and. maxval(matmul(in,MatrixInverse)&

!!$ -reshape([1,0,0,0,1,0,0,0,1],[3,3]))**2>1.d-15)then
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!!$ write(*,*) "MatrixInverse failed!!"

!!$ write(*,*) matmul(in,MatrixInverse)

!!$ stop

!!$ end if

end function MatrixInverse

function vectorProjection(in,normal)

implicit none

real(8), intent(in), dimension(3) :: in

real(8), intent(in), dimension(3) :: normal

real(8), dimension(3) :: vectorProjection

vectorProjection = normal*&

(dot_product(in,normal)/dot_product(normal,normal))

end function vectorProjection

real(8) function SoundSpeed(point)

implicit none

real(8), intent(in), dimension(21) :: point

SoundSpeed = sqrt(1.4d0*point(1)/point(2))

end function SoundSpeed

end module GeneralUtilities

C.1.4 Riemann.f90

This module provides the machinery required in order to solve Riemann problems for the

Euler Equations in the unified coordinates.

module Riemann

use GeneralUtilities

logical :: verbose = .false.

logical :: riemann_test_flag

logical :: test_flag = .false.

real(8), dimension(4) :: test_sol

real(8), dimension(:,:), allocatable :: exact_sol

contains

!!$ function fan_Jacobian(J0,psi,u0,u_grid,a0,EV,S,n)

!!$ real(8), intent(in) :: J0, psi, u0, u_grid, a0, EV, S

!!$ integer, intent(in) :: n ! 1 for left fan, 2 for right fan

!!$

!!$ real(8) :: bn, exp

!!$ integer :: pm

!!$
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!!$ pm = (-1)**n

!!$ bn = -pm*(gamma_const+1d0)/((gamma_const-1d0)*(u0-ugrid)-pm*2d0*a0)

!!$ exp = (1d0-gamma_const)/(2d0*gamma_const)

!!$

!!$ fan_Jacobian = J0*((psi**exp-bn)/(psi**exp*(1d0-bn)))**(&

!!$ (4d0*a0*EV)/(S*(gamma_const+1d0)))

!!$ end function fan_Jacobian

subroutine riemann_solve(left, right, dir, nx, x, out, max_wave_speed,&

riemann_middle_states, riemann_wave_speeds,ierr_out)

! Riemann_solve accepts two physical flow states of the form:

! [ pressure, mass density, velocity_normal, velocity_tangential_1,

! velocity_tangential_2 ]

! as well as an average geometric state of the form:

! [ pressure, density, v_norm, v_tan1, v_tan2, A, B, C, L, M, N,

! P, Q, R, U, V, W, x, y, z, J ]

! Riemann_solve solves the 1-dimensional riemann problem given by

! the left and right states, as well as the grid motion U, V, W.

! It returns the state value [ p, rho, v_norm, v_tan1, v_tan2 ]

! at x/t = 0. It also updates the maximum wavespeed encountered,

! for use in computing an optimal time step.

implicit none

real(8), dimension(21), intent(in) :: left, right

integer, intent(in) :: dir, nx

real(8), dimension(nx), intent(in) :: x

real(8), dimension(5,nx), intent(out) :: out

real(8), intent(out) :: max_wave_speed

real(8), dimension(4), intent(out), optional :: riemann_middle_states

real(8), dimension(5), intent(out), optional :: riemann_wave_speeds

integer, intent(out), optional :: ierr_out

real(8) :: DL, PL, UL, VL, WL, AL

real(8) :: DR, PR, UR, VR, WR, AR

real(8) :: Uavg

real(8), dimension(9) :: met_inv

real(8) :: J, S

real(8) :: Pstar, Ustar, DstarL, DstarR

real(8), dimension(4) :: riemann_middle_states_temp

real(8), dimension(5) :: riemann_wave_speeds_temp

real(8), parameter :: tol = 1.d-10

real(8) :: PsiL, PsiR, temp, fL, fR, dfL, dfR

integer :: n, ierror

ierror = 0

temp = 1d0

DL = left(2); PL = left(1);

DR = right(2); PR = right(1);
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!!$ select case(dir)

!!$ case(1)

UL = left(3); VL = left(4); WL = left(5)

UR = right(3); VR = right(4); WR = right(5)

Uavg = .5d0*(left(15)+right(15))

!!$ case(2)

!!$ UL = left(4); VL = left(5); WL = left(3)

!!$ UR = right(4); VR = right(5); WR = right(3)

!!$ Uavg = .5d0*(left(16)+right(16))

!!$ case(3)

!!$ UL = left(5); VL = left(3); WL = left(4)

!!$ UR = right(5); VR = right(3); WR = right(4)

!!$ Uavg = .5d0*(left(17)+right(17))

!!$ end select

AL = sqrt(gamma_const*PL/DL); AR = sqrt(gamma_const*PR/DR)

met_inv = MetricInverse(.5d0*(left(6:14)+right(6:14)));

J = Jacobian(.5d0*(left(6:14)+right(6:14)))

!!$ if(abs(J-1d-6)>1d-7)then

!!$ write(*,*) "J = ",J," Metric = ",.5d0*(left(6:14)+right(6:14))

!!$ read(*,*)

!!$ end if

S = sqrt(sum((J*met_inv(dir:9:3))**2))

! write(*,*) "S/J = ", S/J

Pstar = guessp(left,right)

!!$ if(verbose)write(*,*) "Initial guess P = " , Pstar

temp = 1.d0 ; n = 0

do while(abs(temp) .gt. tol)

!!$ if(verbose)write(*,*) "Step ",n , "Pstar = " , Pstar;

n = n + 1

if(n .gt. 10)then

ierror = 1

exit

end if

PsiL = Pstar/PL

call u_fun( left,Pstar,fL,dfL)

PsiR = Pstar/PR

call u_fun(right,Pstar,fR,dfR)

temp = ( UR - UL + fR + fL )/( dfL + dfR )

Pstar = max( Pstar - temp , tol )

!!$ if(verbose)write(*,*) "fL , fR , Pstar = " , fL , fR , Pstar

end do

Ustar = .5*(UR+fR+UL-fL)

DstarL = beta(Pstar/PL)*DL

DstarR = beta(Pstar/PR)*DR

riemann_middle_states_temp = [Pstar,Ustar,DstarL,DstarR]

riemann_wave_speeds_temp = wave_speeds(&
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left,right,dir,riemann_middle_states_temp,Uavg,J,S)

max_wave_speed = maxval(abs(riemann_wave_speeds_temp))

!!$ if(verbose)write(*,*) Ustar , DstarL , DstarR

do n = 1, nx

call sample(x(n),left,right,riemann_middle_states_temp,&

riemann_wave_speeds_temp,Uavg,J,S,out(:,n))

end do

if(present(riemann_middle_states))&

riemann_middle_states = riemann_middle_states_temp

if(present(riemann_wave_speeds))&

riemann_wave_speeds = riemann_wave_speeds_temp

if(present(ierr_out)) ierr_out = ierror

!!$ if(verbose)write(*,*)"RiemannSolve = ", out

end subroutine riemann_solve

function wave_speeds(left,right,dir,riemann_middle_states,Uavg,J,S)

implicit none

real(8), dimension(21), intent(in) :: left, right

integer, intent(in) :: dir

real(8), dimension(4), intent(in) :: riemann_middle_states

real(8), intent(in) :: Uavg

real(8), intent(in) :: J, S

real(8), dimension(5) :: wave_speeds

real(8), dimension(9) :: met_inv

real(8) :: Pstar, Ustar, DstarL, DstarR

wave_speeds = 0d0

Pstar = riemann_middle_states(1)

Ustar = riemann_middle_states(2)

DstarL = riemann_middle_states(3)

DstarR = riemann_middle_states(4)

if(Pstar/left(1)>1d0)then

wave_speeds(1) = S/J*(left(3)-Uavg-sqrt(left(1)*gamma_const/left(2))&

*sqrt((gamma_const+1d0)/(2d0*gamma_const)*(Pstar/left(1)-1d0)+1d0))

else

wave_speeds(1) = S/J*(left(3)-Uavg-sqrt(left(1)*gamma_const/left(2)))

wave_speeds(2) = S/J*(Ustar-Uavg-sqrt(Pstar*gamma_const/DstarL))

end if

wave_speeds(3) = S/J*(Ustar-Uavg)

if(Pstar/right(1)>1d0)then

wave_speeds(5) = S/J*(right(3)-Uavg+sqrt(right(1)*gamma_const/right(2))&

*sqrt(&

(gamma_const+1d0)/(2d0*gamma_const)*(Pstar/right(1)-1d0)+1d0))

else

wave_speeds(4) = S/J*(Ustar-Uavg+sqrt(Pstar*gamma_const/DstarR))

wave_speeds(5) = S/J*(right(3)-Uavg+sqrt(right(1)*gamma_const/right(2)))
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end if

end function wave_speeds

real(8) pure function guessp(left,right)

implicit none

real(8), dimension(:), intent(in) :: left, right

real(8) :: aL, aR, gL, gR, tol

aL = sqrt(gamma_const* left(1)/ left(2))

aR = sqrt(gamma_const*right(1)/right(2))

tol = 1d-8

! Linearised guess

guessp = .5*(left(1)+right(1))&

-.125*(right(3)-left(3))*(left(2)+right(2))*(aL+aR)

if(.not.( guessp .gt. min(left(1),right(1)) .and. &

guessp .lt. max(left(1),right(1)) &

.and. max(left(1),right(1))/min(left(1),right(1)) .le. 2.0))then

if(guessp .lt. min(left(1),right(1)))then

! Two-rarefaction solution

guessp = (&

(aL+aR-.5*(gamma_const-1.)*(right(3)-left(3)))&

/(aL/left(1)**((gamma_const-1.)/(2.*gamma_const))&

+aR/right(1)**((gamma_const-1.)/(2.*gamma_const)))&

)**(2.*gamma_const/(gamma_const-1.))

else

! Two-shock solution

gL=sqrt( 2./((gamma_const+1.)* left(2))/(guessp+ left(1)&

*(gamma_const-1.)/(gamma_const+1.)))

gR=sqrt( 2./((gamma_const+1.)*right(2))/(guessp+right(1)&

*(gamma_const-1.)/(gamma_const+1.)))

guessp = max(tol,(gL*left(1)+gR*right(1)-(right(3)-left(3)))/(gL+gR))

end if

end if

! guessp = .5*( PL + PR )

end function guessp

pure subroutine u_fun(in,pstar,f,df)

real(8), dimension(:), intent(in) :: in

real(8), intent(in) :: pstar

real(8) , intent(out) :: f , df

real(8) :: A, B, psi, a0

psi = pstar/in(1)

a0 = sqrt(gamma_const*in(1)/in(2))

if( psi .gt. 1. )then

A = 2.d0/((gamma_const+1.d0)*in(2))

B = (gamma_const-1.d0)/(gamma_const+1.d0)*in(1)

f = in(1)*(psi-1.d0)*sqrt(A/(in(1)*psi+B))

df= sqrt(A/(B+in(1)*psi))*(1.d0-in(1)*(psi-1.d0)/(2.*(B+psi*in(1))))
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else

f = 2.d0*a0/(gamma_const-1.d0)*(psi**((gamma_const-1.d0)/&

(2.d0*gamma_const))-1.d0)

df= 1.d0/(in(2)*a0)*psi**((gamma_const+1.d0)/(-2.d0*gamma_const))

end if

end subroutine u_fun

pure function beta(psi)

implicit none

real(8), intent(in) :: psi

real(8) :: beta

if( psi .gt. 1 )then

beta = ((gamma_const+1.)*psi+gamma_const-1.)/&

(gamma_const+1.+(gamma_const-1.)*psi)

else

beta = psi**(1.d0/gamma_const)

end if

end function beta

pure subroutine sample(x,left,right,riemann_middle_states,&

riemann_wave_speeds,Uavg,J,S,out)

implicit none

real(8), dimension(:), intent(in) :: left, right, riemann_middle_states

real(8), dimension(:), intent(in) :: riemann_wave_speeds

real(8), intent(in) :: x, J, S, Uavg

real(8), dimension(:) , intent(out) :: out

real(8) :: PsiL , Pstar, Ustar, DstarL, DstarR

real(8) :: PsiR , aL , aR , betaL , betaR

real(8) :: cL , cR , cLT , cLH , cRT , cRH , h

logical :: test_flag

!!$ test_flag = .false.

!!$ if(verbose) test_flag = .true.

Pstar = riemann_middle_states(1); Ustar = riemann_middle_states(2)

DstarL = riemann_middle_states(3); DstarR = riemann_middle_states(4)

PsiL = Pstar/left(1)

PsiR = Pstar/right(1)

aL = sqrt(gamma_const* left(1)/ left(2))

aR = sqrt(gamma_const*right(1)/right(2))

betaL= DstarL/ left(2)

betaR= DstarR/right(2)

if( riemann_wave_speeds(3) .gt. x )then

!!$ write(*,*) "The boundary lies to the left of the contact wave"

out(4) = left(4) ; out(5) = left(5)

if( PsiL .gt. 1.d0 )then

!!$ if(test_flag) write(*,*) " Left shock"

cL = riemann_wave_speeds(1)

!!$ if(test_flag) write(*,*) "Left shock speed = " , cL
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if( cL .gt. x )then

!!$ write(*,*) " The boundary lies to the left of the shock"

out(1) = left(1)

out(3) = left(3)

out(2) = left(2)

else

!!$ write(*,*) " The boundary lies in the left central region"

out(1) = Pstar

out(3) = Ustar

out(2) = DstarL

end if

else

!!$ if(test_flag) write(*,*) "Left rarefaction wave"

cLT = riemann_wave_speeds(1)

!!$ if(test_flag) write(*,*) "Left rarefaction tail speed = " , cLT

cLH = riemann_wave_speeds(2)

!!$ if(test_flag) write(*,*) "Left rarefaction head speed = " , cLH

if( cLT .gt. x )then

!!$ write(*,*) " The boundary lies to the left of the wave"

out(1) = left(1)

out(3) = left(3)

out(2) = left(2)

elseif( cLH .lt. x )then

!!$ write(*,*) "The boundary lies in the left central region"

out(1) = Pstar

out(3) = Ustar

out(2) = DstarL

else

!!$ write(*,*) "The boundary lies within the left expansion wave"

out(1) = left(1)*(2d0*gamma6+gamma5/aL*&

(left(3)-Uavg-J/S*x))**gamma7

out(3) = left(3) - 2.d0*aL/(gamma_const-1.d0)*((out(1)/left(1))&

**((gamma_const-1.d0)/(2.d0*gamma_const))-1.d0)

out(2) = left(2)*(out(1)/left(1))**(1.d0/gamma_const)

end if

end if

else

!!$ write(*,*) " The boundary lies to the right of the contact wave"

out(4) = right(4); out(5) = right(5)

if( PsiR .gt. 1.d0 )then

!!$ if(test_flag) write(*,*) " Right shock"

cR = riemann_wave_speeds(5)

!!$ if(test_flag) write(*,*) " Right shock speed = " , cR

if( cR .lt. x )then

!!$ write(*,*) " The boundary lies to the right of the shock"

out(1) = right(1)

out(3) = right(3)
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out(2) = right(2)

else

!!$ write(*,*) " The boundary lies in the right central region"

out(1) = Pstar

out(3) = Ustar

out(2) = DstarR

end if

else

!!$ if(test_flag) write(*,*) " Right rarefaction wave"

cRT = riemann_wave_speeds(5)

!!$ if(test_flag) write(*,*) "Right rarefaction tail speed = " , cRT

cRH = riemann_wave_speeds(4)

!!$ if(test_flag) write(*,*) "Right rarefaction head speed = " , cRH

if( cRT .lt. x )then

!!$ write(*,*) " The boundary lies to the right of the wave"

out(1) = right(1)

out(3) = right(3)

out(2) = right(2)

elseif( cRH .gt. x )then

!!$ write(*,*) "The boundary lies in the right central region"

out(1) = Pstar

out(3) = Ustar

out(2) = DstarR

else

!!$ write(*,*) " The boundary lies within the right expansion wave"

out(1) = right(1)*(2d0*gamma6-gamma5/&

aR*(right(3)-Uavg-J/S*x))**gamma7

out(3) = right(3) + 2.d0*aR/(gamma_const-1.d0)*((out(1)/right(1))&

**((gamma_const-1.d0)/(2.d0*gamma_const))-1.d0)

out(2) = right(2)*(out(1)/right(1))**(1.d0/gamma_const)

end if

end if

end if

end subroutine sample

end module Riemann

C.1.5 Godunov.f90

This module provides routines for advancing a UCS simulation forward one time step.

module Godunov

use GeneralUtilities

use Riemann

implicit none

real(8), parameter :: max_dt = 1.d0



217

! real(8), dimension(7), parameter :: dxi_a = [1.d0, .5d0, .25d0, .2d0, &

! 2.d0, 4.d0, 5.d0]

! real(8), dimension(7), parameter :: deta_a = [1.d0, .5d0, .25d0, .2d0, &

! 2.d0, 4.d0, 5.d0]

! real(8), dimension(7), parameter :: dzeta_a = [1.d0, .5d0, .25d0, .2d0, &

! 2.d0, 4.d0, 5.d0]

real(8) :: dxi, deta, dzeta, dxi_inv, deta_inv, dzeta_inv, dV_inv

! real(8), parameter :: dxi = 1.d0

! real(8), parameter :: deta = 1.d0

! real(8), parameter :: dzeta = 1.d0

! real(8), parameter :: dxi_inv = 1.d0/dxi

! real(8), parameter :: deta_inv = 1.d0/deta

! real(8), parameter :: dzeta_inv = 1.d0/dzeta

! real(8), parameter :: dV_inv = dxi_inv*deta_inv*dzeta_inv

! integer :: update_type = 1 ! 1 = FV, 2 = HUI3D

interface primtocons

module procedure primtoconsarray

module procedure primtoconspoint

end interface primtocons

interface constoprim

module procedure constoprimarray

module procedure constoprimpoint

end interface constoprim

contains

! integer elemental function gt0(x)

! implicit none

! real(8), intent(in) :: x

! gt0 = ishft( int(sign(1.d0,x) + 1) , -1 )

! end function gt0

! Computes specific energy, given the array [ p, rho, u, v, w ]

real(8) function energy_func(in)

implicit none

real(8), dimension(:), intent(in) :: in

energy_func = 0.5d0*(in(3)**2+in(4)**2+in(5)**2) + in(1)/(in(2)*gamma2)

end function energy_func

subroutine primtoconsarray(main)

! Assumes the structure of prim(:) is :

! 1 2 3 4 5

! [ p, rho, u, v, w ]-pressure, mass density, cartesian velocity components

! J is the Jacobian

! Returns the structure of cons(:) :

! 1 2 3 4 5
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! [ rho J, rho J u , rho J v , rho J w , J e ]

! e is energy, defined for the ideal gas law by :

! .5*rho*(u^2+v^2+w^2) + p/(gamma-1)

real(8), dimension(:,:,:,:), intent(inout) :: main

integer, dimension(4) :: en_shape

real(8), allocatable, dimension(:,:,:) :: energy

en_shape = shape(main)

allocate(energy(en_shape(2), en_shape(3), en_shape(4)))

energy = main(21,:,:,:)*( main(1,:,:,:)*gamma1 + 0.5d0*main(2,:,:,:)&

*( main(3,:,:,:)**2 + main(4,:,:,:)**2 + main(5,:,:,:)**2 ) )

main(1,:,:,:) = main(2,:,:,:)*main(21,:,:,:)

main(2,:,:,:) = main(1,:,:,:)*main(3,:,:,:)

main(3,:,:,:) = main(1,:,:,:)*main(4,:,:,:)

main(4,:,:,:) = main(1,:,:,:)*main(5,:,:,:)

main(5,:,:,:) = energy

deallocate(energy)

end subroutine primtoconsarray

subroutine primtoconspoint(main)

! Assumes the structure of prim(:) is :

! 1 2 3 4 5

! [ p, rho, u, v, w ] - pressure, mass density, cartesian velocity components

! J is the Jacobian

! Returns the structure of cons(:) :

! 1 2 3 4 5

! [ rho J, rho J u , rho J v , rho J w , J e ]

! e is energy, defined for the ideal gas law by :

! .5*rho*(u^2+v^2+w^2) + p/(gamma-1)

real(8), dimension(:), intent(inout) :: main

real(8) :: energy, J

J = Jacobian(main(6:14))

energy = J*( main(1)*gamma1 + 0.5d0*main(2)&

*( main(3)**2 + main(4)**2 + main(5)**2 ) )

main(1) = main(2)*J

main(2) = main(1)*main(3)

main(3) = main(1)*main(4)

main(4) = main(1)*main(5)

main(5) = energy

end subroutine primtoconspoint

subroutine constoprimarray(main)

! Returns the structure of prim(:) :

! 1 2 3 4 5

! [ p, rho, u, v, w ]-pressure, mass density, cartesian velocity components

! J is the Jacobian

! Assume the structure of cons(:) is :

! 1 2 3 4 5
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! [ rho J, rho J u , rho J v , rho J w , J e ]

! e is energy, defined for the ideal gas law by :

! .5*rho*(u^2+v^2+w^2) + p/(gamma-1)

real(8), dimension(:,:,:,:), intent(inout) :: main

integer, dimension(4) :: p_shape

real(8), allocatable, dimension(:,:,:) :: temp1, temp2, p

p_shape = [size(main,1),size(main,2),size(main,3),size(main,4)]

allocate( temp1(p_shape(2), p_shape(3), p_shape(4)) )

allocate( temp2(p_shape(2), p_shape(3), p_shape(4)) )

allocate( p(p_shape(2), p_shape(3), p_shape(4)) )

temp1 = 1.d0/main(21,:,:,:)

temp2 = 1.d0/main(1,:,:,:)

p = gamma2*temp1*( main(5,:,:,:) - .5d0*temp2&

*( main(2,:,:,:)**2 + main(3,:,:,:)**2 + main(4,:,:,:)**2 )&

)

main(5,:,:,:) = main(4,:,:,:)*temp2

main(4,:,:,:) = main(3,:,:,:)*temp2

main(3,:,:,:) = main(2,:,:,:)*temp2

main(2,:,:,:) = main(1,:,:,:)*temp1

main(1,:,:,:) = p

deallocate( temp1, temp2, p )

end subroutine constoprimarray

subroutine constoprimpoint(main)

! Returns the structure of prim(:) :

! 1 2 3 4 5

! [ p, rho, u, v, w ]-pressure, mass density, cartesian velocity components

! J is the Jacobian

! Assume the structure of cons(:) is :

! 1 2 3 4 5

! [ rho J, rho J u , rho J v , rho J w , J e ]

! e is energy, defined for the ideal gas law by :

! .5*rho*(u^2+v^2+w^2) + p/(gamma-1)

real(8), dimension(:), intent(inout) :: main

real(8) :: temp1, temp2, p, J

J = Jacobian(main(6:14))

temp1 = 1.d0/J

temp2 = 1.d0/main(1)

p = gamma2*temp1*( main(5) - .5d0*temp2&

*( main(2)**2 + main(3)**2 + main(4)**2 )&

)

main(5) = main(4)*temp2

main(4) = main(3)*temp2

main(3) = main(2)*temp2

main(2) = main(1)*temp1

main(1) = p

end subroutine constoprimpoint
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function invnorm3(in)

real(8), dimension(3), intent(in) :: in

real(8) :: invnorm3

invnorm3 = 1.d0/sqrt( in(1)**2 + in(2)**2 + in(3)**2 )

end function invnorm3

subroutine grid_coords(grad, normal, tangential1, tangential2)

! Compute an orthonormal coordinate system given an initial,

! unnormalized vector.

real(8), dimension(:), intent(in) :: grad

real(8), dimension(3), intent(out) :: normal, tangential1, tangential2

real(8) :: temp1, temp3

real(8), dimension(3) :: temp2, temp4

temp1 = invnorm3(grad)

normal = grad*temp1

if( grad(2)**2 + grad(3)**2 < EPS )then

tangential1 = (/ 0.d0, 1.d0, 0.d0 /)

tangential2 = (/ 0.d0, 0.d0, 1.d0 /)

else

temp2 = (/ 0.d0, -grad(3), grad(2) /)

temp3 = invnorm3(temp2)

temp4 = (/ grad(2)**2 + grad(3)**2, -grad(1)*grad(2), -grad(1)*grad(3) /)

tangential1 = temp2*temp3

tangential2 = temp1*temp3*temp4

end if

end subroutine grid_coords

subroutine prim_update_HUI3D(main,dt_out,dt_in,CFL,nx,ny,nz,opts)

implicit none

integer, dimension(:), intent(in) :: opts

real(8), dimension(21,-1*opts(101):nx+opts(101)-1,&

-1*opts(101):ny+opts(101)-1,-1*opts(101):nz+opts(101)-1),&

intent(inout) :: main

!f2py intent(in,out) :: main

real(8), dimension(21,0:nx-1,0:ny-1,0:nz-1) :: main_temp

real(8), intent(out) :: dt_out

real(8), intent(in), optional :: dt_in

real(8), intent(in), optional :: CFL

integer, intent(in) :: nx,ny,nz

! Options values are used to activate specific routine options.

! - Options(202) controls the spatial order of accuracy.

! - Options(203) controls grid motion.

! - Options(204) controls the boundary conditions

integer :: i, j, k, m, n, im, jm, km, ip, jp, kp, case_no

real(8) :: area, dv_inv, max_wave_speed_temp
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real(8), dimension(5) :: cons, prim

real(8), dimension(5) :: left_interface, right_interface

real(8), dimension(5) :: left_flux, right_flux

real(8), dimension(3) :: grid_vel, grid_pos

real(8), dimension(3,3) :: row_ops_mat, vels_transform

real(8), dimension(9) :: metric, metric_inverse

real(8), dimension(21) :: temp, center, left, right, geom_avg

integer, parameter :: splitting_type = 1

real(8) :: dt, junk

real(8), dimension(4) :: riemann_middle_states

real(8), dimension(5) :: riemann_wave_speeds

integer :: spatial_order

integer :: grid_motion

integer :: time_step_scheme

real(8), dimension(3) :: normal, tan1, tan2

real(8), parameter :: h=.999d0

n = opts(2)

spatial_order = opts(102)

grid_motion = opts(103)

time_step_scheme = opts(104)

!!$ select case(time_step_scheme)

!!$ case(1)

!!$ dt_out = dt_in

!!$ case default

!!$ write(*,*) "Invalid time_step_scheme!"

!!$ stop

!!$ end select

dxi = dxi_a(opts(3))

deta = deta_a(opts(4))

dzeta = dzeta_a(opts(5))

dxi_inv = 1d0/dxi;deta_inv=1d0/deta;dzeta_inv=1d0/dzeta

dV_inv = dxi_inv*deta_inv*dzeta_inv

dt = dt_in

dt_out = dt_in

! do n = 1, 3

if( n .eq. 1 )then

case_no = 1

area = deta*dzeta

im =-1; ip = 1; jm = 0; jp = 0; km = 0; kp = 0

elseif( n .eq. 2 )then

case_no = 2

area = dxi*dzeta

jm =-1; jp = 1; im = 0; ip = 0; km = 0; kp = 0

elseif( n .eq. 3 )then

case_no = 3

area = dxi*deta
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km =-1; kp = 1; im = 0; ip = 0; jm = 0; jp = 0

else

write(*,*) "Error in prim_update, invalid value for n"

stop

end if

!!$ if(.not.opts(101)==1)stop

!!$ main(:,nx,:,:) = main(:,nx-1,:,:)

!!$ main(:,:,-1,:) = main(:,:,0,:)

!!$ main(:,:,ny,:) = main(:,:,ny-1,:)

!!$ main(:,:,:,-1) = main(:,:,:,0)

!!$ main(:,:,:,nz) = main(:,:,:,nz-1)

!!$ main(15:17,:,:,:) = h*main(3:5,:,:,:)

do k = 0, nz-1

do j = 0, ny-1

do i = 0, nx-1

center = main(:,i,j,k)

left = main(:,i+im,j+jm,k+km)

if(spatial_order .eq. 2.and.(&

(n==1.and.i>0.and.i<nx-1).or.&

(n==2.and.j>0.and.j<ny-1).or.&

(n==3.and.k>0.and.k<nz-1)))&

call MUSCL_HUI(main(1:5,i+2*im,j+2*jm,k+2*km),&

main(1:5,i+im,j+jm,k+km),main(1:5,i,j,k),&

main(1:5,i+ip,j+jp,k+kp),left(1:5),center(1:5))

metric_inverse = .5d0*(MetricInverse(left(6:14))+&

MetricInverse(center(6:14)))

grid_vel = .5d0*(left(15:17)+center(15:17))

select case(case_no)

case(1)

normal = metric_inverse(1:9:3)

tan1 = metric_inverse(2:9:3)

tan2 = metric_inverse(3:9:3)

case(2)

normal = metric_inverse(2:9:3)

tan1 = metric_inverse(3:9:3)

tan2 = metric_inverse(1:9:3)

case(3)

normal = metric_inverse(3:9:3)

tan1 = metric_inverse(1:9:3)

tan2 = metric_inverse(2:9:3)

end select

vels_transform(1,:) = normal/sqrt(sum(normal**2))
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vels_transform(2,:) = tan1/sqrt(sum(tan1**2))

vels_transform(3,:) = tan2/sqrt(sum(tan2**2))

left(3:5) = matmul(vels_transform,left(3:5))

center(3:5) = matmul(vels_transform,center(3:5))

grid_vel = matmul(vels_transform,grid_vel)

geom_avg = 0d0

geom_avg(6:14) = center(6:14)

geom_avg(15:17) = grid_vel

left(6:21) = geom_avg(6:21); center(6:21) = geom_avg(6:21)

call riemann_solve(left,center,n,1,[0d0],left_interface,&

max_wave_speed_temp)

vels_transform = MatrixInverse(vels_transform)

left_interface(3:5) = matmul(&

vels_transform,left_interface(3:5))

center = main(:,i,j,k)

right = main(:,i+ip,j+jp,k+kp)

if(spatial_order .eq. 2.and.(&

(n==1.and.i>0.and.i<nx-1).or.&

(n==2.and.j>0.and.j<ny-1).or.&

(n==3.and.k>0.and.k<nz-1)))&

call MUSCL_HUI(main(1:5,i+im,j+jm,k+km),&

main(1:5,i,j,k),main(1:5,i+ip,j+jp,k+kp),&

main(1:5,i+2*ip,j+2*jp,k+2*kp),center(1:5),right(1:5))

metric = .5d0*(center(6:14)+right(6:14))

metric_inverse = .5d0*(MetricInverse(center(6:14))+&

MetricInverse(right(6:14)))

grid_vel = .5d0*(center(15:17)+right(15:17))

select case(case_no)

case(1)

normal = metric_inverse(1:9:3)

tan1 = metric_inverse(2:9:3)

tan2 = metric_inverse(3:9:3)

case(2)

normal = metric_inverse(2:9:3)

tan1 = metric_inverse(3:9:3)

tan2 = metric_inverse(1:9:3)

case(3)

normal = metric_inverse(3:9:3)

tan1 = metric_inverse(1:9:3)

tan2 = metric_inverse(2:9:3)

end select
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vels_transform(1,:) = normal/sqrt(sum(normal**2))

vels_transform(2,:) = tan1/sqrt(sum(tan1**2))

vels_transform(3,:) = tan2/sqrt(sum(tan2**2))

right(3:5) = matmul(vels_transform,right(3:5))

center(3:5) = matmul(vels_transform,center(3:5))

grid_vel = matmul(vels_transform,grid_vel)

geom_avg = 0d0

geom_avg(6:14) = center(6:14)

geom_avg(15:17) = grid_vel

right(6:21) = geom_avg(6:21); center(6:21) = geom_avg(6:21)

call riemann_solve(center,right,n,1,[0d0],right_interface,&

max_wave_speed_temp)

vels_transform = MatrixInverse(vels_transform)

right_interface(3:5)=matmul(&

vels_transform,right_interface(3:5))

left = main(:,i+im,j+jm,k+km)

center = main(:,i,j,k)

right = main(:,i+ip,j+jp,k+kp)

if(grid_motion .eq. 1)then

if(n==1)then

center(6:8) = center(6:8) + h*dt*area*dv_inv*&

(right_interface(3:5)-left_interface(3:5))

else if(n==2)then

center(9:11) = center(9:11) + h*dt*area*dv_inv*&

(right_interface(3:5)-left_interface(3:5))

else if(n==3)then

center(12:14) = center(12:14) + h*dt*area*dv_inv*&

(right_interface(3:5)-left_interface(3:5))

end if

end if

left_flux = flux( left_interface,center,n)

right_flux = flux(right_interface,center,n)

call primtocons(center)

center(1:5) = center(1:5) - dt*area*dv_inv*&

(right_flux-left_flux)

call constoprim(center)

center(21) = Jacobian(center(6:14))

main_temp(:,i,j,k) = center

end do
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end do

end do

main(:,0:nx-1,0:ny-1,0:nz-1) = main_temp

if(n==3)&

main(18:20,:,:,:) = main(18:20,:,:,:) + dt*main(15:17,:,:,:)

! main(15:17,0:nx-1,0:ny-1,0:nz-1) = main(3:5,0:nx-1,0:ny-1,0:nz-1)*.0d0

! main(18:20,0:nx-1,0:ny-1,0:nz-1) = main(18:20,0:nx-1,0:ny-1,0:nz-1)&

! *dt*area*dv_inv*main(15:17,0:nx-1,0:ny-1,0:nz-1)

! end do

end subroutine prim_update_HUI3D

subroutine prim_update_FV(main,dt_out,dt_in,CFL,nx,ny,nz,opts)

! Advance the solution using the integral form of the equations

! This subroutine assumes that main is the full array of primitive variables.

! main must also include the boundary cell values. That is, main contains a

! 0-index and an n + 1 index containing the contents prescribed by the

! boundary conditions.

implicit none

integer, dimension(:), intent(in) :: opts

!!$ type(prim_update_FV_options), intent(in) :: opts

!!$ real(8), dimension(21,&

!!$ -1*opts%ghost_pts:nx+opts%ghost_pts-1,&

!!$ -1*opts%ghost_pts:ny+opts%ghost_pts-1,&

!!$ -1*opts%ghost_pts:nz+opts%ghost_pts-1),intent(inout) :: main

real(8), dimension(21,-1*opts(101):nx+opts(101)-1,&

-1*opts(101):ny+opts(101)-1,-1*opts(101):nz+opts(101)-1),&

intent(inout) :: main

!f2py intent(in,out) :: main

real(8), intent(out) :: dt_out

real(8), intent(in), optional :: dt_in

real(8), intent(in), optional :: CFL

integer, intent(in) :: nx,ny,nz

integer :: spatial_order

integer :: grid_motion

integer :: time_step_scheme

integer, dimension(2) :: splitting

integer :: i, j, k

! real(8), dimension(14,3,nx+1,ny+1,nz+1) :: fluxes

real(8), dimension(14,0:nx,0:ny-1,0:nz-1) :: fluxx

real(8), dimension(14,0:nx-1,0:ny,0:nz-1) :: fluxy

real(8), dimension(14,0:nx-1,0:ny-1,0:nz) :: fluxz

real(8), dimension(14,nx,ny,nz) :: temp

real(8) :: max_wave_speed, dt, max_dt_grid

real(8), dimension(3) :: gradXi, gradEta, gradZeta

real(8), dimension(3) :: GradX, GradY, GradZ

real(8), dimension(9) :: geom_avg
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real(8), dimension(3,3) :: dXidX, dXdXi

real(8), dimension(5) :: interface_vars

real(8), dimension(21) :: StateL, StateR

real(8), dimension(14) :: junk

splitting = opts(1:2)

spatial_order = opts(102)

grid_motion = opts(103)

time_step_scheme = opts(104)

! Set module values for dxi, deta, dzeta, based on opts.

dxi = dxi_a(opts(3))

deta = deta_a(opts(4))

dzeta = dzeta_a(opts(5))

dxi_inv = 1.d0/dxi; deta_inv = 1.d0/deta; dzeta_inv = 1.d0/dzeta

dV_inv = dxi_inv*deta_inv*dzeta_inv

! Riemann_solve expects the left and right states to express velocities in

! grid-oriented components: normal, tangential, tangential.

fluxx = 0d0; fluxy = 0d0; fluxz = 0d0

!! Grid motion has been moved to grid_motion_driver.f90

! select case(grid_motion)

! case(0)

! main(15:17,:,:,:) = 0d0

! case(1)

! main(15:17,:,:,:) = .999d0*main(3:5,:,:,:)

! case(2)

! main(15:17,:,:,:) = .5

! case default

! write(*,*) "Invalid grid motion specification!"

! stop

! end select

if(splitting(1).eq. 1 .or.(splitting(1).eq. 2 .and.splitting(2).eq. 2 ))&

then

do k = 0, nz-1

do j = 0, ny-1

do i = 0, nx

StateL = main(:,i-1,j,k)

StateR = main(:,i,j,k)

if(spatial_order .eq. 2 .and. i > 0 .and. i < nx)&

call MUSCL_HUI(main(1:5,i-2,j,k),main(1:5,i-1,j,k),&

main(1:5,i,j,k),main(1:5,i+1,j,k),StateL(1:5),StateR(1:5))

call compute_fluxes_FV(StateL,StateR,fluxx(:,i,j,k),1,&

max_wave_speed,dt=dt,dV_in=[dxi,deta,dzeta])

end do

end do

end do

end if

if(splitting(1).eq. 1 .or.(splitting(1).eq. 2 .and.splitting(2).eq. 2 ))&
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then

do k = 0, nz-1

do j = 0, ny

do i = 0, nx-1

StateL = main(:,i,j-1,k)

StateR = main(:,i,j,k)

if(spatial_order .eq. 2 .and. j > 0 .and. j < ny)&

call MUSCL_HUI(main(1:5,i,j-2,k),main(1:5,i,j-1,k),&

main(1:5,i,j,k),main(1:5,i,j+1,k),StateL(1:5),StateR(1:5))

call compute_fluxes_FV(StateL,StateR,fluxy(:,i,j,k),2,&

max_wave_speed,dt=dt,dV_in=[dxi,deta,dzeta])

end do

end do

end do

end if

if(splitting(1).eq. 1 .or.(splitting(1).eq. 2 .and.splitting(2).eq. 3))then

do k = 0, nz

do j = 0, ny-1

do i = 0, nx-1

StateL = main(:,i,j,k-1)

StateR = main(:,i,j,k)

if(spatial_order .eq. 2 .and. k > 0 .and. k < nz)&

call MUSCL_HUI(main(:,i,j,k-2),main(:,i,j,k-1),&

main(:,i,j,k),main(:,i,j,k+1),StateL,StateR)

call compute_fluxes_FV(StateL,StateR,fluxz(:,i,j,k),3,&

max_wave_speed,dt=dt,dV_in=[dxi,deta,dzeta])

end do

end do

end do

end if

max_wave_speed = max(max_wave_speed,EPS)

select case(time_step_scheme)

case(0)

write(*,*) "Using given timestep", time_step_scheme

dt = dt_in

case(1)

! dt = min(CFL/max_wave_speed,dt_in)

dt = minval([dxi,deta,dzeta])/max_wave_speed*CFL

case default

write(*,*) "Error in Godunov prim_update, invalid time step flag!"

stop

end select

dt_out = dt

! write(*,*) "Got here -- prim_update"

call primtocons(main(:,0:nx-1,0:ny-1,0:nz-1))

main(1:14,0:nx-1,0:ny-1,0:nz-1) = main(1:14,0:nx-1,0:ny-1,0:nz-1) - (&

(fluxx(:,1:nx,:,:)-fluxx(:,0:nx-1,:,:))*deta*dzeta + &
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(fluxy(:,:,1:ny,:)-fluxy(:,:,0:ny-1,:))*dxi*dzeta + &

(fluxz(:,:,:,1:nz)-fluxz(:,:,:,0:nz-1))*dxi*deta &

)*dt*dV_inv

! Update extra variables

do k = 0, nz-1

do j = 0, ny-1

do i = 0, nx-1

main(21,i,j,k) = Jacobian(main(6:14,i,j,k))

end do

end do

end do

call constoprim(main(:,0:nx-1,0:ny-1,0:nz-1))

! Update grid position

main(18:20,0:nx-1,0:ny-1,0:nz-1) = main(18:20,0:nx-1,0:ny-1,0:nz-1) + &

main(15:17,0:nx-1,0:ny-1,0:nz-1)*dt

!!$! Update extra variables

!!$ do k = 0, nz-1

!!$ do j = 0, ny-1

!!$ do i = 0, nx-1

!!$ main(21,i,j,k) = Jacobian(main(6:14,i,j,k))

!!$ end do

!!$ end do

!!$ end do

end subroutine prim_update_FV

subroutine compute_fluxes_FV(inL, inR, flux_vec, case_no,&

max_wave_speed,dt,dV_in,debug_flag)

implicit none

real(8), dimension(21), intent(in) :: inL, inR

real(8), dimension(:), intent(out) :: flux_vec

integer, intent(in) :: case_no

real(8), intent(inout) :: max_wave_speed

real(8), intent(in) :: dt

real(8), dimension(3),intent(in) :: dV_in

logical, intent(in), optional :: debug_flag

real(8), dimension(21) :: StateL, StateR

real(8), dimension(21) :: geom_avg

real(8) :: dA, dV_inv

real(8), dimension(5) :: interface_vars

real(8), dimension(3) :: GradXi, GradEta, GradZeta

real(8), dimension(3) :: GradX, GradY, GradZ

real(8), dimension(3,3) :: dX_dXi_u, dXi_dX_u

real(8) :: temp_wave_speed

integer, dimension(3,3) :: row_ops_mat

real(8), dimension(9) :: metric, metric_inverse

real(8), dimension(3,3) :: vels_transform
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real(8), dimension(3) :: grid_vel

integer :: m

real(8), dimension(9) :: metric_inv_l, metric_inv_r

real(8), dimension(3) :: normal, tan1, tan2

StateL = inL

StateR = inR

geom_avg = .5d0*(inL+inR)

flux_vec = 0.d0

dV_inv = 1.d0/(product(dV_in))

! row_ops_mat = row_ops_mat_func(case_no)

metric_inverse = MetricInverse(inL(6:14))+MetricInverse(inR(6:14))

select case(case_no)

case(1)

normal = metric_inverse(1:9:3)

tan1 = metric_inverse(2:9:3)

tan2 = metric_inverse(3:9:3)

case(2)

normal = metric_inverse(2:9:3)

tan1 = metric_inverse(3:9:3)

tan2 = metric_inverse(1:9:3)

case(3)

normal = metric_inverse(3:9:3)

tan1 = metric_inverse(1:9:3)

tan2 = metric_inverse(2:9:3)

end select

vels_transform(1,:) = normal/sqrt(sum(normal**2))

vels_transform(2,:) = tan1/sqrt(sum(tan1**2))

vels_transform(3,:) = tan2/sqrt(sum(tan2**2))

! vels_transform = transpose(vels_transform)

StateL(3:5) = matmul(vels_transform,inL(3:5))

StateR(3:5) = matmul(vels_transform,inR(3:5))

StateL(15:17) = matmul(vels_transform,inL(15:17))

StateR(15:17) = matmul(vels_transform,inR(15:17))

call riemann_solve(StateL,StateR,case_no,1,[0d0],interface_vars,&

temp_wave_speed)

vels_transform = MatrixInverse(vels_transform)

!!$ do m = 1, 3

!!$ vels_transform(m,:) = vels_transform(m,:)&

!!$ /sqrt(sum(vels_transform(m,:)**2))

!!$ end do

interface_vars(3:5) = matmul(vels_transform, interface_vars(3:5))

! geom_avg(15:17) = .999d0*interface_vars(3:5)

flux_vec(1:5) = flux(interface_vars,geom_avg,case_no)
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select case(case_no)

case(1)

flux_vec(6:8) = -geom_avg(15:17)

dA = dV_in(2)*dV_in(3)

case(2)

flux_vec(9:11) = -geom_avg(15:17)

dA = dV_in(1)*dV_in(3)

case(3)

flux_vec(12:14) = -geom_avg(15:17)

dA = dV_in(1)*dV_in(2)

case default

write(*,*) "Invalid case_no in compute_fluxes -- case_no = ",case_no

stop

end select

! flux_vec(6:14)=0d0

max_wave_speed = max(max_wave_speed,temp_wave_speed)

end subroutine compute_fluxes_FV

function row_ops_mat_func(case_no)

implicit none

integer, dimension(3,3) :: row_ops_mat_func, row_ops_mat

integer, intent(in) :: case_no

select case(case_no)

case(1)

row_ops_mat = reshape([1,0,0,0,1,0,0,0,1],[3,3])

case(2)

row_ops_mat = reshape([0,1,0,1,0,0,0,0,1],[3,3])

case(3)

row_ops_mat = reshape([0,0,1,0,1,0,1,0,0],[3,3])

case default

write(*,*) "Invalid case_no in compute_fluxes -- case_no = ",case_no

stop

end select

row_ops_mat_func = row_ops_mat

end function row_ops_mat_func

function flux(in,geom_avg,case_no)

implicit none

real(8), dimension(:), intent(in) :: in, geom_avg

integer, intent(in) :: case_no

real(8), dimension(5) :: flux

real(8) :: D, grads(3,3), grad(3), J, Jinv

J = Jacobian(geom_avg(6:14))

Jinv = 1.d0/J

! call ComputationalGrads(geom_avg(6:14),J,grads(:,1),grads(:,2),grads(:,3))

grads = MetrictoMatrix(MetricInverse(geom_avg(6:14)))

grad = grads(case_no,:)



231

D = dot_product(in(3:5)-geom_avg(15:17),grad)

!sum(([ in(3), in(4), in(5) ] - &

! [ geom_avg(15), geom_avg(16), geom_avg(17) ])*grad)

flux = [&

in(2)*J*D, &

in(2)*J*D*in(3) + J*grad(1)*in(1), &

in(2)*J*D*in(4) + J*grad(2)*in(1), &

in(2)*J*D*in(5) + J*grad(3)*in(1), &

in(2)*J*D*energy_func(in(1:5)) + J*sum(grad*in(3:5))*in(1) ]

end function flux

subroutine MUSCL_HUI(leftleft, left, right, rightright, outleft, outright)

implicit none

real(8), dimension(5), intent(in) :: leftleft, left, right, rightright

real(8), dimension(5), intent(out) :: outleft, outright

integer :: n

do n = 1, 5

outleft(n) = left(n) + 5d-1*( left(n) - leftleft(n))*minmod(&

(right(n)-left(n))/( left(n) - leftleft(n)))

outright(n) = right(n) - 5d-1*(rightright(n)-right(n))*minmod(&

(right(n)-left(n))/(rightright(n)-right(n)))

end do

outleft = left + 5d-1*( left - leftleft)*&

minmod((right-left)/( left - leftleft))

outright = right - 5d-1*(rightright-right)*&

minmod((right-left)/(rightright-right))

contains

elemental function minmod(in)

implicit none

real(8), intent(in) :: in

real(8) :: minmod

minmod = max(0d0,min(1d0,in))

end function minmod

end subroutine MUSCL_HUI

subroutine FreeExitConditions(main,nx,ny,nz)

implicit none

real(8), dimension(21,nx,ny,nz) :: main

integer, intent(in) :: nx, ny, nz

!!$ nx = size(main,2)

!!$ ny = size(main,3)

!!$ nz = size(main,4)

main(:, 1,:,:) = main(:, 2,:,:)

main(:,nx,:,:) = main(:,nx-1,:,:)
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main(:,:, 1,:) = main(:,:, 2,:)

main(:,:,ny,:) = main(:,:,ny-1,:)

main(:,:,:, 1) = main(:,:,:, 2)

main(:,:,:,nz) = main(:,:,:,nz-1)

end subroutine FreeExitConditions

end module Godunov

C.1.6 GeneralUtilitiesTester.f90

This module contains test routines for the GeneralUtilities module.

module GeneralUtilitiesTester

use GeneralUtilities

real(8), dimension(:), allocatable :: lstsqx, lstsqy

contains

integer function GUErrorReader(in)

implicit none

integer, intent(in) :: in

write(*,*) " GeneralUtilities.f90 diagnostic:"

select case(in)

case(0)

write(*,*) " All tests passed"

case(1)

write(*,*) " Combined test of metrictomatrix and metricinverse failed"

case(2)

write(*,*) " TwoDGradient does not converge at the expected rate"

case(3)

write(*,*) " MetrictoMatrix does not transform correctly"

case(4)

write(*,*) " MatrixInverse does not work properly"

case default

write(*,*) " Unexpected error code"

end select

GUErrorReader = 0

end function GUErrorReader

integer function GUTest()

! Test the following routines:

! function MetricInverse(Metric)

! function MetrictoMatrix(Metric)

! subroutine ComputationalGrads(metric,jac,grad_xi,grad_eta,grad_zeta)

! function Jacobian(in)

! function GradstoMatrix(Grad1,Grad2,Grad3)



233

! subroutine TwoDGradient(in,dx,dy,nx,ny,gradx,grady)

! Returns an integer error code.

! 0: All tests passed

! 1: Combined test of metrictomatrix and metricinverse failed

! 2: TwoDGradient does not converge at the expected rate

! 3: metrictomatrix does not transform correctly.

! 4: NormalizedMetric does not work properly

implicit none

real(8), dimension(9) :: metric

real(8), dimension(3,3) :: matrix

real(8), dimension(0:3) :: p1, p2, p3

integer :: out, i, j, k, n, nx, ny

real(8), dimension(400,400) :: test, grad_test_x, grad_test_y

real(8), dimension( 50, 50) :: num_test_1x, num_test_1y

real(8), dimension(100,100) :: num_test_2x, num_test_2y

real(8), dimension(200,200) :: num_test_3x, num_test_3y

real(8), dimension(400,400) :: num_test_4x, num_test_4y

real(8), dimension(4) :: dxes, rmserrors

real(8), dimension(2) :: fitted_poly

real(8) :: dx, dy

real(8) :: x, y

out = 0

! Try variable ranges on these random numbers to check to handle

! ill-conditioned matrices

call random_number(metric)

call random_number(p1)

call random_number(p2)

call random_number(p3)

matrix=matmul(metrictomatrix(metric),metrictomatrix(metricinverse(metric)))

if(maxval((matrix-reshape([1.,0.,0.,0.,1.,0.,0.,0.,1.],[3,3]))**2)>1.d-14)&

out = 1

if(sqrt(sum((matmul(metrictomatrix(&

[1d0,2d0,3d0,4d0,5d0,6d0,7d0,8d0,9d0])&

,[1.,2.,3.])-[30.,36.,42.])**2))>1d-13)out = 3

if(sqrt(sum((matmul(metrictomatrix(metric),&

matrixinverse(metrictomatrix(metric)))-&

reshape([1,0,0,0,1,0,0,0,1],[3,3]))**2))>1d-14)out = 4

nx = size(test,1)

ny = size(test,2)

dx = 12./nx

dy = 13./ny

do j = 1, ny

do i = 1, nx

x = i*dx
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y = j*dy

test(i,j) = 0.d0

grad_test_x(i,j) = 0.d0

grad_test_y(i,j) = 0.d0

do n = 0, size(p1) - 1

test(i,j) = test(i,j) + p1(n)*x**n + p2(n)*y**n

grad_test_x(i,j) = grad_test_x(i,j) + n*p1(n)*x**(n-1)

grad_test_y(i,j) = grad_test_y(i,j) + n*p2(n)*y**(n-1)

end do

end do

end do

call TwoDGradient(test(1:nx:8,1:ny:8),dx*8,dy*8,nx/8,ny/8,&

num_test_1x,num_test_1y)

call TwoDGradient(test(1:nx:4,1:ny:4),dx*4,dy*4,nx/4,ny/4,&

num_test_2x,num_test_2y)

call TwoDGradient(test(1:nx:2,1:ny:2),dx*2,dy*2,nx/2,ny/2,&

num_test_3x,num_test_3y)

call TwoDGradient(test,dx,dy,nx,ny,num_test_4x,num_test_4y)

dxes = [dx*8,dx*4,dx*2,dx]

rmserrors = [sqrt(sum((num_test_1x-grad_test_x(1:nx:8,1:ny:8))**2)&

/size(num_test_1x)),&

sqrt(sum((num_test_2x-grad_test_x(1:nx:4,1:ny:4))**2)&

/size(num_test_2x)),&

sqrt(sum((num_test_3x-grad_test_x(1:nx:2,1:ny:2))**2)&

/size(num_test_3x)),&

sqrt(sum((num_test_4x-grad_test_x)**2)/size(num_test_4x))]

fitted_poly = polyfit(log(dxes),log(rmserrors),1)

if(fitted_poly(2) < 1.) out = 2

GUTest = out

end function GUTest

integer function lstsq_init(x,y)

implicit none

real(8), dimension(:), intent(in) :: x,y

integer :: nx

nx = size(x,1)

allocate(lstsqx(nx), lstsqy(nx))

lstsqx = x ; lstsqy = y

lstsq_init = 0

end function lstsq_init

integer function lstsq_close()

leastsq_close = 0

deallocate(lstsqx,lstsqy)
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end function lstsq_close

subroutine minpack_function_fitting(xdat,ydat,fcn,x,fvec,fjac,tol,info)

implicit none

real(8), dimension(:), intent(in) :: xdat,ydat

external fcn

real(8), dimension(:), intent(inout) :: x

! integer, intent(in) :: m, n, ldfjac

real(8), dimension(:), intent(out) :: fvec

real(8), dimension(:,:), intent(out) :: fjac

real(8), intent(in) :: tol

integer, intent(out) :: info

integer, dimension(:), allocatable :: wa, ipvt

integer :: out, m, n, ldfjac, lwa,iflag

iflag = 2

m = size(xdat,1)

n = size(x,1)

ldfjac = m

allocate(wa(2*(5*n+m)),ipvt(n))

lwa = size(wa)

out = lstsq_init(xdat,ydat)

call exponential_with_y_offset(m,n,x,fvec,fjac,ldfjac,iflag)

call lmder1(fcn,m,n,x,fvec,fjac,ldfjac,tol,info,ipvt,wa,lwa)

out = lstsq_close()

deallocate(wa,ipvt)

end subroutine minpack_function_fitting

subroutine exponential_with_y_offset(m,n,x,fvec,fjac,ldfjac,iflag)

integer, intent(in) :: m

integer, intent(in) :: n

integer, intent(in) :: ldfjac

real(8), dimension(n), intent(in) :: x

real(8), dimension(m), intent(out) :: fvec

real(8), dimension(ldfjac,n), intent(out) :: fjac

integer, intent(inout) :: iflag

integer i

! If iflag = 1 calculate the functions at x and return

! this vector in fvec. Do not alter fjac.

! If iflag = 2 calculate the jacobian at x and return

! this matrix in fjac. Do not alter fvec.

! The value of iflag should not be changed unless the

! user wants to terminate execution of the least-

! squares fit. In this case, set iflag < 0.

if(.not.m==size(lstsqx,1))then

write(*,*) "Error in least-squares fit!!"

write(*,*) " Incompatible dimensions passed to fcn!"
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stop

end if

select case(iflag)

case(1)

forall (i = 1: m)

fvec(i) = x(1)*lstsqx(i)**x(2)+x(3)-lstsqy(i)

end forall

case(2)

forall (i = 1: m)

fjac(i,:) = [lstsqx(i)**x(2),x(1)*lstsqx(i)**x(2)*log(lstsqx(i)),1d0]

end forall

end select

end subroutine exponential_with_y_offset

!!$interface ConvergenceFit

!!$ subroutine 4DConvergenceFit(numerical,exact,nmax,out)

!!$ implicit none

!!$ type(4d_array_pointer), dimension(:), intent(in) :: numerical

!!$ real(8), dimension(:,:,:,:), intent(in) :: exact

!!$ real(8), dimension(:,:,:,:), intent(out) :: out

!!$ end subroutine 4DConvergenceFit

!!$ subroutine 2DConvergenceFit(numerical,exact,nmax,out)

!!$ type(4d_array_pointer), dimension(:), intent(in) :: numerical

!!$ real(8), dimension(:,:,:,:), intent(in) :: exact

!!$ real(8), dimension(:,:), intent(out) :: out

!!$ end subroutine 2DConvergenceFit

!!$ subroutine 1DConvergenceFit(numerical,exact,nmax,out)

!!$ type(4d_array_pointer), dimension(:), intent(in) :: numerical

!!$ real(8), dimension(:,:,:,:), intent(in) :: exact

!!$ real(8), dimension(:), intent(out) :: out

!!$end interface ConvergenceFit

!!$

!!$subroutine 4DConvergenceFit(numerical,exact,nmax,out)

!!$ implicit none

!!$ type(4d_array_pointer), dimension(:), intent(in) :: numerical

!!$ real(8), dimension(:,:,:,:), intent(in) :: numerical, exact

!!$ integer, intent(in) :: nmax

!!$ real(8), dimension(:,:,:,:), intent(out) :: out

!!$ integer :: n

!!$ real(8), dimension(nmax) :: dxes

!!$

!!$

!!$ do n = 1, nmax

!!$

!!$

!!$

!!$end subroutine 4DConvergenceFit
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! From Rosetta Code: rosettacode.org/wiki/PolynomialRegression#Fortran

! Requires LAPACK library

! Verified for single-case linear fit against Mathematica, 27 Aug 2012.

function polyfit(vx, vy, d)

implicit none

integer, intent(in) :: d

integer, parameter :: dp = selected_real_kind(15, 307)

real(dp), dimension(d+1) :: polyfit

real(dp), dimension(:), intent(in) :: vx, vy

real(dp), dimension(:,:), allocatable :: X

real(dp), dimension(:,:), allocatable :: XT

real(dp), dimension(:,:), allocatable :: XTX

integer :: i, j

integer :: n, lda, lwork

integer :: info

integer, dimension(:), allocatable :: ipiv

real(dp), dimension(:), allocatable :: work

n = d+1

lda = n

lwork = n

allocate(ipiv(n))

allocate(work(lwork))

allocate(XT(n, size(vx)))

allocate(X(size(vx), n))

allocate(XTX(n, n))

! prepare the matrix

do i = 0, d

do j = 1, size(vx)

X(j, i+1) = vx(j)**i

end do

end do

XT = transpose(X)

XTX = matmul(XT, X)

! calls to LAPACK subs DGETRF and DGETRI

call DGETRF(n, n, XTX, lda, ipiv, info)

if ( info /= 0 ) then

print *, "problem"

return

end if
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call DGETRI(n, XTX, lda, ipiv, work, lwork, info)

if ( info /= 0 ) then

print *, "problem"

return

end if

polyfit = matmul( matmul(XTX, XT), vy)

deallocate(ipiv)

deallocate(work)

deallocate(X)

deallocate(XT)

deallocate(XTX)

end function

end module GeneralUtilitiesTester

C.1.7 Riemann tester.f90

This module contains a test suite for verifying the performance of Riemann.f90.

module Riemann_tester

use Riemann

real(8), dimension(5) :: riemann_sol

real(8), dimension(21):: test_geom

real(8) :: mws_test

! Though it’s possible to do specific tests of the guessp algorithm,

! it seems less-effective to do so, since a bad guess will still converge.

contains

integer function RieErrorReader(in)

implicit none

integer, intent(in) :: in

select case(in)

case(0)

write(*,*) " All tests passed"

case(1)

write(*,*) " Failure in one of the Riemann Star state checks"

case default

write(*,*) " Unexpected error code"

end select

end function RieErrorReader

integer function RieTester(output_dir)

implicit none
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character(len=*), intent(in) :: output_dir

real(8) :: U, V, W

real(8), dimension(21) :: test_base

real(8), dimension(21) :: test_1_left

real(8), dimension(21) :: test_1_right

real(8), dimension(21) :: test_2_left

real(8), dimension(21) :: test_2_right

real(8), dimension(21) :: test_3_left

real(8), dimension(21) :: test_3_right

real(8), dimension(21) :: test_4_left

real(8), dimension(21) :: test_4_right

real(8), dimension(21) :: test_5_left

real(8), dimension(21) :: test_5_right

real(8), dimension(4) :: test_1_sol

real(8), dimension(4) :: test_2_sol

real(8), dimension(4) :: test_3_sol

real(8), dimension(4) :: test_4_sol

real(8), dimension(4) :: test_5_sol

real(8), dimension(5) :: test_1_speeds

real(8), dimension(5) :: test_2_speeds

real(8), dimension(5) :: test_3_speeds

real(8), dimension(5) :: test_4_speeds

real(8), dimension(5) :: test_5_speeds

real(8), dimension(21) :: moving_test_1_left

real(8), dimension(21) :: moving_test_1_right

real(8), dimension(21) :: complicated_grid_left

real(8), dimension(21) :: complicated_grid_right

real(8), dimension(4) :: moving_test_1_sol

real(8), dimension(5) :: moving_test_1_speeds

integer, parameter :: nx = 1

real(8), dimension(nx) :: x

real(8), dimension(5,nx) :: out

real(8) :: max_wave_speed

real(8), dimension(4) :: riemann_middle_states

real(8), dimension(5) :: riemann_wave_speeds

integer, parameter :: nxfull = 101

real(8), dimension(nxfull) :: xfull

real(8), dimension(5,nxfull) :: outfull

integer :: n, dir

RieTester = 0

test_base = [0d0,0d0,0d0,0d0,0d0,&

1d0,0d0,0d0,0d0,1d0,0d0,0d0,0d0,1d0,&

U,V,W,0d0,0d0,0d0,0d0]

test_1_left = test_base; test_1_right = test_base

test_2_left = test_base; test_2_right = test_base

test_3_left = test_base; test_3_right = test_base
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test_4_left = test_base; test_4_right = test_base

test_5_left = test_base; test_5_right = test_base

test_1_left(1:5) = [1.d0, 1.d0, 0.d0, 0.d0, 0.d0]

test_1_right(1:5) = [.1d0, .125d0, 0.d0, 0.d0, 0.d0]

test_2_left(1:5) = [.4d0, 1.d0, -2.d0, 0.d0, 0.d0]

test_2_right(1:5) = [.4d0, 1.d0, 2.d0, 0.d0, 0.d0]

test_3_left(1:5) = [1.d3, 1.d0, 0.d0, 0.d0, 0.d0]

test_3_right(1:5) = [.01d0, 1.d0, 0.d0, 0.d0, 0.d0]

test_4_left(1:5) = [.01d0, 1.d0, 0.d0, 0.d0, 0.d0]

test_4_right(1:5) = [1.d2, 1.d0, 0.d0, 0.d0, 0.d0]

test_5_left(1:5) = [460.894d0, 5.99924d0, 19.5975d0, 0d0, 0d0]

test_5_right(1:5) = [46.095d0, 5.99242d0, -6.19633d0, 0d0, 0d0]

test_1_sol = [.30313d0, .92745d0, .42632d0, .26557d0]

test_1_speeds = [-1.18322d0,-0.0702745d0,0.92745d0,0d0,1.75216d0]

test_2_sol = [.00189d0, .00000d0, .02185d0, .02185d0]

test_2_speeds = [-2.74833d0,-0.347992d0,0d0,0.347992d0,2.74833d0]

test_3_sol = [460.894d0, 19.5975d0, .57506d0, 5.99924d0]

test_3_speeds = [-37.4166d0,-13.8997d0,19.5975d0,0d0,23.5175d0]

test_4_sol = [46.095d0, -6.19633d0, 5.99242d0, .57511d0]

test_4_speeds = [-7.43747d0,0d0,-6.19633d0,4.39658d0,11.8322d0]

test_5_sol = [1691.64d0, 8.68975d0, 14.2823d0, 31.0426d0]

test_5_speeds = [0.789631d0,0d0,8.68975d0,0d0,12.2507d0]

! Test riemann_solve against the test problems from Toro. This only tests

! whether Pstar, Ustar, DstarL and DstarR are correct, and whether the

! computed wave speeds match as computed in Mathematica, and visually

! compared (eyeballed) with Toro’s plots. This leaves the solutions within

! the expansion fan untested.

test_flag = .true.

! test_sol = test_1_sol

! subroutine riemann_solve(left, right, dir, nx, x, out, max_wave_speed,&

! riemann_middle_states, riemann_wave_speeds)

do dir = 1, 3

call riemann_solve(test_1_left,test_1_right,dir,1,[0d0],out,&

max_wave_speed,riemann_middle_states,riemann_wave_speeds)

if(.not.(maxval(abs(riemann_middle_states-test_1_sol))<5d-6))&

RieTester = 1

if(.not.(maxval(&

abs((riemann_wave_speeds-test_1_speeds)/test_1_speeds))<5d-5))&

RieTester = 1

call riemann_solve(test_2_left,test_2_right,dir,1,[0d0],out,&

max_wave_speed,riemann_middle_states,riemann_wave_speeds)

if(.not.(maxval(&

abs(riemann_middle_states-test_2_sol)/test_2_sol)<5d-3))&

RieTester = 1

if(.not.(maxval(abs(riemann_wave_speeds-test_2_speeds))<5d-4))&

RieTester = 1
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call riemann_solve(test_3_left,test_3_right,dir,1,[0d0],out,&

max_wave_speed,riemann_middle_states,riemann_wave_speeds)

if(.not.(maxval(&

abs(riemann_middle_states-test_3_sol)/test_3_sol)<5d-6))&

RieTester = 1

if(.not.(maxval(abs(riemann_wave_speeds-test_3_speeds))<7d-5))&

RieTester = 1

call riemann_solve(test_4_left,test_4_right,dir,1,[0d0],out,&

max_wave_speed,riemann_middle_states,riemann_wave_speeds)

if(.not.(maxval(&

abs(riemann_middle_states-test_4_sol)/test_4_sol)<5d-6))&

RieTester = 1

if(.not.(maxval(abs(riemann_wave_speeds-test_4_speeds))<5d-5))&

RieTester = 1

call riemann_solve(test_5_left,test_5_right,dir,1,[0d0],out,&

max_wave_speed,riemann_middle_states,riemann_wave_speeds)

if(.not.(maxval(&

abs(riemann_middle_states-test_5_sol)/test_5_sol)<5d-6))&

RieTester = 1

if(.not.(maxval(abs(riemann_wave_speeds-test_5_speeds))<8d-5))&

RieTester = 1

end do

! Visual tests are possible to check that the solution within the fan is

!correct. This writes the density to a file that can then be plotted.

do n = 1, nxfull

xfull(n) = 0d0+1d0/(nxfull-1d0)*(n-1)

end do

call riemann_solve(test_1_left,test_1_right,1,nxfull,(xfull-.5d0)/.15d0,&

outfull,max_wave_speed,riemann_middle_states,riemann_wave_speeds)

open(unit=9492, file=trim(output_dir)//’riemann_test.dat’)

write(9492,*) outfull(2,:)

write(9492,*) xfull

close(9492)

! I need to test this with more complex geometric variables

test_geom = [0d0,0d0,0d0,0d0,0d0,&

1d0,0d0,0d0,0d0,1d0,0d0,0d0,0d0,1d0,&

0d0,0d0,0d0,0d0,0d0,0d0,1d0]

complicated_grid_left = test_1_left

complicated_grid_left(6:21) = test_geom(6:21)

complicated_grid_right = test_1_right

complicated_grid_right(6:21) = test_geom(6:21)

do n = 1, nxfull

xfull(n) = 0d0+1d0/(nxfull-1)*(n-1)

end do

call riemann_solve(complicated_grid_left,complicated_grid_right,1,nxfull,&
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(xfull-.5d0)/.15d0,outfull,max_wave_speed,riemann_middle_states,&

riemann_wave_speeds)

open(unit=9493,file=trim(output_dir)//’complicated_riemann_test.dat’)

write(9493,*)outfull(2,:)

write(9493,*)xfull

close(9493)

end function RieTester

end module Riemann_tester

C.1.8 Godunov tester.f90

This module provides a test suite for evaluating the accuracy of Godunov.f90. In particu-

lar, this runs full one-dimensional convergence testing on the Godunov method and evaluates the

convergence.

module Godunov_tester

! Test the following routines:

! function riemann_solve(left, right, geom_avg,

! max_wave_speed, verbose_flag, t_out)

! function energy_func(in)

! subroutine primtocons(main,nx,ny,nz)

! subroutine constoprim(main,nx,ny,nz)

! function invnorm3(in)

! subroutine grid_coords(grad, normal, tangential1, tangential2)

! subroutine prim_update(main,bcextent,dt_in,CFL,nx,ny,nz)

! subroutine compute_fluxes(inL, inR, geom_avg, flux_vec, case_no,&

! max_wave_speed,dt,dV_in,debug_flag)

! function flux(in,geom_avg,case_no)

use Godunov

use GeneralUtilitiesTester

use GodunovDriver

use TimeAdvancementStuff

contains

real(8) function norm2(in)

implicit none

real(8), dimension(:), intent(in) :: in

norm2 = sqrt(sum(in**2))

end function norm2

integer function GodErrorReader(in)

integer, intent(in) :: in

write(*,*)
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select case(in)

case(0)

write(*,*) " All tests passed"

case(1)

write(*,*) " Primitive-Conservative mutual inverse test failed"

case(2)

write(*,*) " Grid_coords failed to return an orthonormal system"

case(3)

write(*,*) " Flux fails provided test problem"

case(4)

write(*,*) " GodConvergenceTester1D returned unexpectedly

low convergence rate"

case default

write(*,*) " Unexpected error code"

end select

GodErrorReader = 0

end function GodErrorReader

integer function GodConvergenceTester1D(left,right,x0,t_out,dt,nmax,&

prim_update_options,base_filename)

implicit none

real(8), dimension(5), intent(in) :: left, right

real(8), dimension(5) :: left_init, right_init

real(8), intent(in) :: x0, t_out, dt

integer, intent(in) :: nmax

integer, dimension(:), intent(in) :: prim_update_options

character(len=*), intent(in), optional :: base_filename

integer, parameter :: nx = 100

real(8), dimension(0:10) :: dxes, rmserrors, fvec

real(8), dimension(0:10,3) :: fjac

integer :: nxmax

real(8), dimension(:,:,:,:), allocatable :: Rie_1D_dir

real(8), dimension(:,:), allocatable :: Rie_1D

real(8), dimension(:,:), allocatable :: Rie_1D_exact

integer :: filenum

integer :: dir, m, n, i, j, k

real(8), dimension(4) :: riemann_middle_states

real(8), dimension(5) :: riemann_wave_speeds

real(8) :: max_wave_speed, t

real(8), dimension(3) :: fitted_poly, fitted_poly2

integer :: info

logical, parameter :: verbose = .true.

real(8) :: maxvalue

real(8), dimension(:), allocatable :: exact_x

real(8), dimension(21) :: left_full, right_full

integer, dimension(3) :: nxes

real(8), dimension(3,3) :: row_ops_mat
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real(8) :: dt_out

GodConvergenceTester1D = 0

if(nmax>10)then

write(*,*) "Error in GodConvergenceTester1D: Too many refinements!"

stop

end if

maxvalue = 0d0

do dir = 1, 1

row_ops_mat = row_ops_mat_func(dir)

left_init = left; left_init(3:5) = matmul(row_ops_mat,left(3:5))

right_init = right; right_init(3:5) = matmul(row_ops_mat,right(3:5))

do n = 0, nmax

nxmax = nx*2**n

allocate(Rie_1D_exact(5,0:nxmax-1),exact_x(0:nxmax-1),&

Rie_1D(21,-1:nxmax))

select case(dir)

case(1)

allocate(Rie_1D_dir(21,-1:nxmax,-1:1,-1:1))

nxes = [nx*2**n,1,1]

case(2)

allocate(Rie_1D_dir(21,-1:1,-1:nxmax,-1:1))

nxes = [1,nx*2**n,1]

case(3)

allocate(Rie_1D_dir(21,-1:1,-1:1,-1:nxmax))

nxes = [1,1,nx*2**n]

end select

call RieInit1D(left_init,right_init,x0,nxmax,dir,[0d0,1d0],Rie_1D_dir)

t = 0d0

select case(dir)

case(1)

exact_x = (Rie_1D_dir(18,0:nxmax-1,0,0)-x0)&

/Rie_1D_dir(6,0:nxmax-1,0,0)/t_out

case(2)

exact_x = (Rie_1D_dir(19,0,0:nxmax-1,0)-x0)&

/Rie_1D_dir(10,0,0:nxmax-1,0)/t_out

case(3)

exact_x = (Rie_1D_dir(20,0,0,0:nxmax-1)-x0)&

/Rie_1D_dir(14,0,0,0:nxmax-1)/t_out

end select

!!$ call write_files_matlab(Rie_1D_dir,t,nxes(1),nxes(2),.true.)

do

call FreeExitConditions(Rie_1D_dir,size(Rie_1D_dir,2),&

size(Rie_1D_dir,3),size(Rie_1D_dir,4))

call prim_update(Rie_1D_dir,dt_out,dt,&

.7d0,nxes(1),nxes(2),nxes(3),prim_update_options)

t = t + dt_out
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!!$ call write_files_matlab(Rie_1D_dir(:,:,:,1),&

!!$ t,nxes(1),nxes(2),.false.)

if(t .ge. t_out - 1d-13) exit

end do

select case(dir)

case(1)

Rie_1D = Rie_1D_dir(:,:,0,0)

dxes(n) = Rie_1D(18,2) - Rie_1D(18,1)

exact_x = ((Rie_1D(18,0:nxmax-1)-x0)/t_out&

-.5d0*(Rie_1D(15,0)+Rie_1D(15,nxmax-1)))&

/(.5d0*(Rie_1D(6,0)+Rie_1D(6,nxmax-1)))

case(2)

Rie_1D(:,:) = Rie_1D_dir(:,0,:,0)

Rie_1D(3,:) = Rie_1D(4,:); Rie_1D(4,:) = 0d0;

dxes(n) = Rie_1D(19,2) - Rie_1D(19,1)

exact_x = ((Rie_1D(19,0:nxmax-1)-x0)/t_out&

-.5d0*(Rie_1D(16,0)+Rie_1D(16,nxmax-1)))/Rie_1D(10,0:nxmax-1)

case(3)

Rie_1D(:,:) = Rie_1D_dir(:,0,0,:)

Rie_1D(3,:) = Rie_1D(5,:); Rie_1D(5,:) = 0d0;

dxes(n) = Rie_1D(20,2) - Rie_1D(20,1)

exact_x = ((Rie_1D(20,0:nxmax-1)-x0)/t_out&

-.5d0*(Rie_1D(17,0)+Rie_1D(17,nxmax-1)))/Rie_1D(14,0:nxmax-1)

end select

left_full = Rie_1D(:,-1)

right_full = Rie_1D(:,nxmax)

Rie_1D_exact = 0d0

!!$ write(*,*) " Left_full = ",left_full

!!$ write(*,*) "Right_full = ",right_full

call riemann_solve(left_full,right_full,dir,nxmax,exact_x,&

Rie_1D_exact,max_wave_speed,&

riemann_middle_states,riemann_wave_speeds)

!!$ write(*,*) left_full(1:3)

!!$ write(*,*) right_full(1:3)

!!$ write(*,*) riemann_middle_states

!!$ write(*,*) riemann_wave_speeds

!!$ read(*,*)

rmserrors(n) = sqrt(sum(((Rie_1D(2,0:nxmax-1)-Rie_1D_exact(2,:))/&

maxval(abs(Rie_1D_exact(2,:))))**2)/nxmax)

maxvalue = max(maxvalue,maxval(abs(Rie_1D(2,:))))

if(present(base_filename))then

filenum = 92920 + n

open(unit=filenum,file=base_filename//achar(48+n)&

//"_"//achar(87+dir)//".dat")

do m = 1, 20

write(filenum,*) Rie_1D(m,0:nxmax-1)

end do
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close(filenum)

open(unit=92919,file=base_filename//achar(48+n)&

//"_"//achar(87+dir)//"_exact.dat")

do m = 1, 5

write(92919,*) Rie_1D_exact(m,:)

end do

close(92919)

end if

deallocate(Rie_1D,Rie_1D_exact,exact_x,Rie_1D_dir)

end do

fitted_poly(1:2) = polyfit(log(dxes(0:nmax)),log(rmserrors(0:nmax)),1)

fitted_poly(3) = 0d0

!!$ call minpack_function_fitting(dxes(0:nmax),rmserrors(0:nmax),&

!!$ exponential_with_y_offset,fitted_poly,&

fvec(0:nmax),fjac(0:nmax,:),1d-3,info)

call ToroRiemannConvergence(fitted_poly2)

info = 1

if(info .eq. 1 .or. info .eq. 2 .or. info .eq. 3)then

if(verbose)then

write(*,*) "Simulation converges with order = ",fitted_poly(2)

write(*,*) "Simulation converges to within ",&

fitted_poly(3)/maxvalue*100,&

"% of exact solution."

write(*,*) "As a comparison, Numerica’s hyper_eul converges with ",&

"order = ", fitted_poly2(2)

write(*,*) "CLAWPACK converges with order = 0.608111"

write(*,*) "CLAWPACK converges to within 0.49% of exact solution"

end if

else

write(*,*) "Function fitting returned unexpected value"

write(*,*) "info = ", info

write(*,*) "The meanings of various info values are found in lmder1.f"

stop

end if

if(fitted_poly(2) < .5d0 .or. &

fitted_poly(3)/maxvalue > .5d0)&

GodConvergenceTester1D = 4

end do

end function GodConvergenceTester1D

function RotateCoords(in,phi,theta)

implicit none

real(8), dimension(3), intent(in) :: in

real(8), intent(in) :: phi, theta

optional theta

real(8), dimension(3) :: RotateCoords
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RotateCoords = matmul(reshape(&

[cos(phi),sin(phi),0d0,&

-sin(phi),cos(phi),0d0,&

0d0,0d0,1d0],[3,3]),in)

if(present(theta))then

write(*,*) "Error in RotateCoords, 3-D rotations not yet supported!!!"

stop

end if

end function RotateCoords

!!$ integer function GodConvergenceTester2D(&

!!$ left,right,t_out,dt,nmax,base_filename)

!!$ use GeneralUtilities, only : PI

!!$ use TimeAdvancementStuff

!!$ implicit none

!!$ real(8), dimension(5), intent(in) :: left, right

!!$ real(8), intent(in) :: t_out, dt

!!$ integer, intent(in) :: nmax

!!$ character(len=*), intent(in), optional :: base_filename

!!$ integer, parameter :: nx = 50

!!$ real(8), dimension(0:10) :: dxes, rmserrors, fvec

!!$ real(8), dimension(0:10,3) :: fjac

!!$ integer :: nxmax

!!$ real(8), dimension(:,:,:,:), allocatable :: Rie_2D

!!$ real(8), dimension(:,:,:), allocatable :: Rie_2D_exact

!!$ real(8), parameter :: phi = 0d0!PI*.5d0!25d0/180d0

!!$ real(8), dimension(2) :: xy

!!$ integer :: filenum

!!$ integer :: m, n, i, j, k

!!$ real(8), dimension(4) :: riemann_middle_states

!!$ real(8), dimension(5) :: riemann_wave_speeds

!!$ real(8) :: max_wave_speed, t

!!$ real(8), dimension(3) :: fitted_poly

!!$ integer :: info

!!$ real(8), dimension(3) :: rotated_coords, coords_shift

!!$ real(8) :: dt_out

!!$

!!$ GodConvergenceTester2D = 0

!!$ if(nmax>10)then

!!$ write(*,*) "Error in GodConvergenceTester2D: Too many refinements!"

!!$ stop

!!$ end if

!!$ do n = 0, nmax

!!$ nxmax = nx*2**n

!!$ allocate(Rie_2D(21,-1:nxmax,-1:nxmax,-1:1),&

!!$ Rie_2D_exact(5,0:nxmax-1,0:nxmax-1))

!!$ call RieInit2D(left,right,phi,nxmax,[0d0,1d0],Rie_2D)
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!!$ t = 0d0

!!$! call write_files_matlab(Rie_2D(:,0:nx-1,0:nx-1,0),t,nx,nx,.true.)

!!$ do

!!$ call prim_update(Rie_2D,dt_out,FreeExitConditions,&

!!$ 1,dt,.7d0,nxmax,nxmax,1,[2,0])

!!$ t = t + dt

!!$ write(*,*) "t = ",t

!!$ if(t .ge. t_out) exit

!!$ end do

!!$ Rie_2D_exact = 0d0

!!$ do i = 0, nxmax-1

!!$ do j = 0, nxmax-1

!!$ coords_shift = .5d0*(maxval(maxval(Rie_2D(18:20,:,:,0),3),2)-&

!!$ minval(minval(Rie_2D(18:20,:,:,0),3),2))

!!$ rotated_coords = RotateCoords((Rie_2D(18:20,i,j,0)-coords_shift)&

!!$ /Rie_2D(6:14:4,i,j,0),phi)/t_out

!!$ call riemann_solve(Rie_2D(:,-1,-1,-1),&

!!$ Rie_2D(:,nxmax,nxmax,-1),1,1,&

!!$ rotated_coords,Rie_2D_exact(:,i,j),max_wave_speed)

!!$ end do

!!$ end do

!!$ dxes(n) = Rie_2D(18,1,0,0)-Rie_2D(18,0,0,0)

!!$ rmserrors(n) = sqrt(sum(((Rie_2D(2,0:nxmax-1,0:nxmax-1,0)&

!!$ -Rie_2D_exact(2,:,:))/&

!!$ maxval(abs(Rie_2D_exact(2,:,:))))**2)/nxmax**2)

!!$ if(present(base_filename))then

!!$ filenum = 93020 + n

!!$ open(unit=filenum,file=base_filename//achar(48+n)//".dat")

!!$ do m = 1, 20

!!$ write(filenum,*) Rie_2D(m,:,:,0)

!!$ end do

!!$ close(filenum)

!!$ if(n .eq. nmax)then

!!$ open(unit=93019,file=base_filename//achar(48+n)//"_exact.dat")

!!$ do m = 1, 5

!!$ write(93019,*) Rie_2D_exact(m,:,:)

!!$ end do

!!$ close(93019)

!!$ end if

!!$ end if

!!$ deallocate(Rie_2D,Rie_2D_exact)

!!$ end do

!!$ write(*,*) "dxes = ",dxes(0:nmax)

!!$ write(*,*) "rmserrors = ",rmserrors(0:nmax)

!!$ fitted_poly(1:2) = polyfit(log(dxes(0:nmax)),log(rmserrors(0:nmax)),1)

!!$ fitted_poly(3) = 0d0

!!$ call minpack_function_fitting(dxes(0:nmax),rmserrors(0:nmax),&
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!!$ exponential_with_y_offset,fitted_poly,fvec(0:nmax),&

!!$ fjac(0:nmax,:),1d-3,info)

!!$ write(*,*) "2-D data"

!!$ if(info .eq. 1)then

!!$ write(*,*) "Simulation converges with order = ",fitted_poly(2)

!!$ write(*,*) "Simulation converges to within ",fitted_poly(3)*100,&

!!$ "% of exact solution."

!!$ write(*,*) "CLAWPACK converges with order = 0.608111"

!!$ write(*,*) "CLAWPACK converges to within 0.49% of exact solution"

!!$ stop

!!$ else

!!$ write(*,*) "Function fitting returned unexpected value"

!!$ write(*,*) "info = ", info

!!$ write(*,*) "The meanings of various info values are found in lmder1.f"

!!$ stop

!!$ end if

!!$ if(fitted_poly(2) < 1d0) GodConvergenceTester2D = 3

!!$

!!$ end function GodConvergenceTester2D

integer function GodTester(output_dir)

use TimeAdvancementStuff

implicit none

character(len=*), intent(in) :: output_dir

real(8), dimension(21,3,4,3) :: main

integer :: i, j, nx, ny

real(8), dimension(5) :: riemann_test

real(8), dimension(21) :: geom_test

real(8), dimension(21,3,3,3) :: constoprimtest1, constoprimtest2

real(8), dimension(21) :: constoprimtest3

real(8), dimension(5) :: left_test, right_test

real(8) :: max_wave_speed

real(8), dimension(3) :: grad, norm, tan1, tan2

integer, dimension(1000) :: prim_update_options

real(8) :: test1, test2, test3, dt

real(8), dimension(21), parameter :: flux_seed = [0.270991,0.0613936,&

0.748627,0.24336,0.374409,-0.423353,0.323678,-0.333788,-0.53982,&

-0.991525,0.75888,-0.921888,-0.631486,0.801117,0.634729,-0.750043,&

0.412858,-0.0734701,-0.0563167,0.97121,1.]

real(8), dimension(5), parameter :: flux_test_x = [-0.0171431,-0.0982248,&

-0.0765652,-0.161747,-0.335386]

real(8), dimension(5), parameter :: flux_test_y = [-0.0384556,-0.0419378,&

-0.184655,-0.167707,-0.548871]

real(8), dimension(5), parameter :: flux_test_z = [0.0285833,-0.00172451,&

0.142847,0.171804,0.402354]

real(8), dimension(21,62,102,3) :: riemann_test_array

real(8), dimension(21,102,3,3) :: riemann_test_array_1d
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real(8), dimension(5) :: left, right

integer :: n

GodTester = 0

! Check that primtocons and constoprim are mutual inverses

! Are there invertibility problems from non-physical variables,

! such as negative pressures, etc? Random_number only returns

! positive numbers, I suppose.

call random_number(constoprimtest1)

constoprimtest2 = constoprimtest1

call constoprim(constoprimtest1)

call primtocons(constoprimtest1)

if(sqrt(sum((constoprimtest1-constoprimtest2)**2)&

/size(constoprimtest1))>EPS) GodTester = 1

! Also check against a Matlab solution.

constoprimtest3 = [&

0.081125768865785,0.929385970968730,0.775712678608402,&

0.486791632403172,0.435858588580919,0.446783749429806,&

0.306349472016557,0.508508655381127,0.510771564172110,&

0.817627708322262,0.794831416883453,0.644318130193692,&

0.378609382660268,0.811580458282477,0.532825588799455,&

0.350727103576883,0.939001561999887,0.875942811492984,&

0.550156342898422,0.622475086001227,0.022367194643555]

call primtocons(constoprimtest3)

constoprimtest3=[&

0.020787756911647,0.016125326596194,0.010119306121021,&

0.009060522387274,0.015228249823238,0.446783749429806,&

0.306349472016557,0.508508655381127,0.510771564172110,&

0.817627708322262,0.794831416883453,0.644318130193692,&

0.378609382660268,0.811580458282477,0.532825588799455,&

0.350727103576883,0.939001561999887,0.875942811492984,&

0.550156342898422,0.622475086001227,0.022367194643555]&

-constoprimtest3

if(any(constoprimtest3**2>1d-15)) GodTester = 1

! Ensure that the coordinate system returned from grid_coords

! is orthonormal, and that norm is parallel to grad.

call random_number(grad)

grad = grad - .5d0

call grid_coords(grad, norm, tan1, tan2)

if(maxval(abs([norm2(norm), norm2(tan1), norm2(tan2)]-1.d0))>EPS)then

GodTester = 2

end if

if(dot_product(grad/norm2(grad),norm)-1.d0>EPS) GodTester = 2

if(abs(dot_product(norm,tan1))>EPS) GodTester = 2

if(abs(dot_product(norm,tan2))>EPS) GodTester = 2

if(abs(dot_product(tan1,tan2))>EPS) GodTester = 2



251

! Test flux routine against Mathematica-generated test problem & solution

! Mathematica only returns to a set precision.

if(sqrt(sum((flux(flux_seed(1:5),flux_seed,1)&

- flux_test_x)**2)/5.)>EPSs)then

GodTester = 3

end if

if(sqrt(sum((flux(flux_seed(1:5),flux_seed,2)&

- flux_test_y)**2)/5.)>EPSs)then

GodTester = 3

end if

if(sqrt(sum((flux(flux_seed(1:5),flux_seed,3)&

- flux_test_z)**2)/5.)>EPSs)then

GodTester = 3

end if

! It is important to also test prim_update, though the only known way

! to do this is via specific convergence testing. For now, that testing

! must be approved manually.

! subroutine prim_update(main,bcextent,dt_in,CFL,nx,ny,nz)

prim_update_options = 0

prim_update_options(1) = 1

prim_update_options(3:5) = [1,1,1]

prim_update_options(101) = 1

prim_update_options(102) = 1

prim_update_options(103) = 0

prim_update_options(104) = 1

left(1:5) = [1d0, 1d0, .75d0, 0d0, 0d0]

right(1:5) = [.1d0, .125d0, 0d0, 0d0, 0d0]

GodTester = GodConvergenceTester1D(&

left,right,.3d0,.18d0,1d-4,3,&

prim_update_options,&

base_filename=trim(output_dir)//"1D_Rie_Test_1")

!!$ left(1:5) = [.4d0, 1d0,-2d0, 0d0, 0d0]

!!$ right(1:5) = [.4d0, 1d0, 2d0, 0d0, 0d0]

!!$ GodTester = GodConvergenceTester1D(

!!$ left,right,.5d0,.12d0,1d-4,3,&

!!$ prim_update_options,&

!!$ base_filename=trim(output_dir)//"1D_Rie_Test_2")

!!$ left(1:5) = [1000d0, 1d0, 0d0, 0d0, 0d0]

!!$ right(1:5) = [.01d0, 1d0, 0d0, 0d0, 0d0]

!!$ GodTester = GodConvergenceTester1D(&

!!$ left,right,.5d0,.01d0,1d-4,3,&

!!$ prim_update_options,&

!!$ base_filename=trim(output_dir)//"1D_Rie_Test_3")

!!$ left(1:5) = [460.894d0, 5.99924d0, 19.5975d0, 0d0, 0d0]
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!!$ right(1:5) = [46.095d0, 5.99242d0,-6.19633d0, 0d0, 0d0]

!!$ GodTester = GodConvergenceTester1D(&

!!$ left,right,.4d0,.03d0,1d-4,3,&

!!$ prim_update_options,&

!!$ base_filename=trim(output_dir)//"1D_Rie_Test_4")

!!$ left(1:5) = [1000d0, 1d0,-19.59745d0, 0d0, 0d0]

!!$ right(1:5) = [.01d0, 1d0,-19.59745d0, 0d0, 0d0]

!!$ GodTester = GodConvergenceTester1D(&

!!$ left,right,.8d0,.01d0,1d-4,3,&

!!$ prim_update_options,&

!!$ base_filename=trim(output_dir)//"1D_Rie_Test_5")

end function GodTester

subroutine NormShockInit(nx,main)

implicit none

integer, intent(in) :: nx

real(8), dimension(21,-1:nx,-1:1,-1:1), intent(out) :: main

real(8), dimension(3) :: upstream, downstream

real(8), dimension(2) :: xrange

integer :: half_nx, i,j,k

xrange = [main(18,0,0,0),main(18,nx-1,0,0)]

upstream = [1d0,1d0,2d0*sqrt(1.4d0)]

call NormalShockRelations(upstream,1.4d0,downstream)

if(mod(nx,2).eq.0)then

half_nx = nx/2

else

write(*,*) "Warning: NormShockInit called with an odd value for nx."

write(*,*) " Press any key to continue, but the normal shock"

write(*,*) " will be slightly offset from center."

read(*,*)

half_nx = nx/2

write(*,*) " The true halfway point is ",&

.5*(xrange(2)-xrange(1))

write(*,*) " The initial shock location is ",&

.5*(xrange(2)-xrange(1))-.5*(xrange(2)-xrange(1))/(nx-1)

end if

main = 0d0

forall (i=-1:half_nx-1, j=-1:1, k=-1:1)

main(1:3,i,j,k) = upstream

end forall

forall (i=half_nx:nx, j=-1:1, k=-1:1)

main(1:3,i,j,k) = downstream

end forall

main(6,:,:,:) = 1d0

main(10,:,:,:) = main(6,:,:,:)
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main(14,:,:,:) = main(6,:,:,:)

forall (i=-1:nx,j=-1:1,k=-1:1)

main(18,i,j,k) = real(i,8)

main(21,i,j,k) = Jacobian(main(6:14,i,j,k))

end forall

main(18,:,:,:) = main(18,:,:,:) - .5d0*maxval(main(18,:,:,:))

end subroutine NormShockInit

subroutine NormalShockRelations(in,gamma,out)

implicit none

real(8), dimension(3), intent(in) :: in

real(8), intent(in) :: gamma

real(8), dimension(3), intent(out) :: out

real(8) :: a1, M1, p, d, u, a2, M2

p = in(1); d = in(2); u = in(3)

a1 = sqrt(gamma*p/d); M1 = u/a1

M2 = sqrt((1+((gamma-1d0)*.5d0)*M1**2)/(gamma*M1**2-.5d0*(gamma-1d0)))

out(1) = p*(1d0 + 2d0*gamma/(gamma-1d0)*(M1**2-1d0))

out(2) = d*((gamma+1d0)*M1**2)/(2d0 + (gamma-1d0)*M1**2)

a2 = sqrt(gamma*out(1)/out(2))

out(3) = M2*a2

end subroutine NormalShockRelations

subroutine RieInit1D(left,right,x0,nx,dir,xrange,main)

implicit none

real(8), dimension(5), intent(in) :: left, right

real(8), intent(in) :: x0

integer, intent(in) :: nx, dir

real(8), dimension(2), intent(in) :: xrange

real(8), dimension(:,:,:,:), intent(out) :: main

real(8), dimension(21,-1:nx,-1:1,-1:1) :: main_temp

integer :: i,j,k,half_nx

real(8) :: dx

if(mod(nx*x0,1d0).eq.0)then

half_nx = int(floor(nx*x0))

else

write(*,*) "Warning: RieInit1D called with an odd value for nx."

write(*,*) " Press any key to continue, but the Riemann"

write(*,*) " problem will be slightly offset."

read(*,*)

half_nx = int(nx*x0)

!!$ write(*,*) " The true halfway point is "&

!!$ ,.5*(xrange(2)-xrange(1))

!!$ write(*,*) " The Riemann problem is centered at ",&

!!$ .5*(xrange(2)-xrange(1))-.5*(xrange(2)-xrange(1))/(nx-1)

end if
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main = 0d0

main_temp = 0d0

forall (i=-1:half_nx-1, j=-1:1, k=-1:1)

main_temp(1:5,i,j,k) = left

end forall

forall (i=half_nx:nx, j=-1:1, k=-1:1)

main_temp(1:5,i,j,k) = right

end forall

dx = (xrange(2)-xrange(1))/(nx)

main_temp(6,:,:,:) = dx

main_temp(10,:,:,:) = dx

main_temp(14,:,:,:) = dx

!!$ main_temp(6:14:4,:,:,:) = 1d0

forall (i=-1:nx, j=-1:1, k=-1:1)

main_temp(18,i,j,k) = dx*(i+.5) + xrange(1)

main_temp(21,i,j,k) = Jacobian(main_temp(6:14,i,j,k))

end forall

select case(dir)

case(1)

main = main_temp

case(2)

forall (i=-1:nx,j=-1:1,k=-1:1)

main(:,k+2,i+2,j+2) = main_temp(:,i,j,k)

end forall

main(19,:,:,:) = main(18,:,:,:)

main(18,:,:,:) = 0d0

case(3)

forall (i=-1:nx,j=-1:1,k=-1:1)

main(:,j+2,k+2,i+2) = main_temp(:,i,j,k)

end forall

main(20,:,:,:) = main(18,:,:,:)

main(18,:,:,:) = 0d0

case default

write(*,*) "Error in RieInit1D, invalid dir value!!!"

stop

end select

end subroutine RieInit1D

subroutine RieInit2D(left,right,phi,nx,xrange,main)

use GeneralUtilities, only : PI

implicit none

real(8), dimension(5) :: left, right

real(8), intent(in) :: phi

integer, intent(in) :: nx

real(8), dimension(2), intent(in) :: xrange

real(8), dimension(21,-1:nx,-1:nx,-1:1), intent(out) :: main

integer :: i,j,k,half_nx



255

real(8) :: dx

real(8), dimension(3,3) :: vels_transform

vels_transform = reshape(&

[cos(phi),-sin(phi),0d0,sin(phi),cos(phi),0d0,0d0,0d0,1d0],[3,3])

main = 0d0

dx = (xrange(2)-xrange(1))/(nx-1)

main(6,:,:,:) = dx

main(10,:,:,:) = dx

main(14,:,:,:) = main(6,:,:,:)

left(3:5) = matmul(vels_transform,left(3:5))

right(3:5) = matmul(vels_transform,right(3:5))

do i = -1, nx

do j = -1, nx

do k = -1, 1

main(18,i,j,k) = dx*i + xrange(1)

main(19,i,j,k) = dx*j + xrange(1)

main(21,i,j,k) = Jacobian(main(6:14,i,j,k))

if( (main(19,i,j,k)-.5d0*(xrange(2)-xrange(1)))&

- tan(phi-PI*.5d0)*( main(18,i,j,k)-.5d0&

*(xrange(2)-xrange(1))) < 0d0)then

main(1:5,i,j,k) = left

else

main(1:5,i,j,k) = right

end if

end do

end do

end do

end subroutine RieInit2D

subroutine GodRieInit(main)

implicit none

real(8), dimension(21,62,102,3), intent(inout) :: main

integer :: i, j

main( 1,:,:,:) = 1.d0

main( 2,:,:,:) = 1.d0

main( 3,:,:,:) = 2.4d0*sqrt(1.4d0*main(1,:,:,:)/main(2,:,:,:))

main( 4,:,:,:) = 0.d0

main( 5,:,:,:) = 0.d0

main( 6,:,:,:) = 1.d0/99.d0

main( 7,:,:,:) = 0.d0

main( 8,:,:,:) = 0.d0

main( 9,:,:,:) = 0.d0

main(10,:,:,:) = 1.d0/99.d0

main(11,:,:,:) = 0.d0
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main(12,:,:,:) = 0.d0

main(13,:,:,:) = 0.d0

main(14,:,:,:) = 1.d0

main(15,:,:,:) = .25d0*main(3,:,:,:)

main(16,:,:,:) = 0.d0

main(17,:,:,:) = 0.d0

main(18,:,:,:) = 0.d0

do j = 2, size(main,3)-1

do i = 2, size(main,2)-1

main(19,i,j,2) = 1.d0/100.d0*(i-1.5d0)

main(20,i,j,2) = 0.d0

main(21,i,j,2) = Jacobian(main(6:14,i,j,2))

end do

end do

main(1,:,size(main,3)/2+1:size(main,3),:) = .25d0

main(2,:,size(main,3)/2+1:size(main,3),:) = .5d0

main(3,:,size(main,3)/2+1:size(main,3),:) = 7.d0*&

sqrt(1.4d0*.25d0/.5d0)

main(15,:,:,:) = .25d0*main(3,:,:,:)

end subroutine GodRieInit

subroutine ToroRiemannConvergence(out)

implicit none

real(8), dimension(3), intent(out) :: out

real(8), dimension(:,:), allocatable :: num

real(8), dimension(:,:), allocatable :: exact

real(8), dimension(:), allocatable :: x

real(8), dimension(21) :: left, right

real(8) :: max_wave_speed

real(8), dimension(4) :: riemann_middle_states

real(8), dimension(5) :: riemann_wave_speeds

integer :: n, nx, ierr

real(8), dimension(0:4) :: rmserrors, dxes, x0, t_out

real(8), dimension(3) :: fitted_poly

real(8) :: max_value

max_value = 0d0

x0 = [.3d0,.5d0,.5d0,.4d0,.8d0]

t_out = [.18d0,.12d0,.01d0,.03d0,.01d0]

x0 = .3d0

t_out = .2d0

do n = 0, 4

nx = 100*2**n

allocate(exact(5,0:nx-1),x(0:nx-1),num(3,0:nx-1))

num = 0d0

call ReadToroDat("datToro/1D_Rie_Test_1"//char(48+n)//".dat",num,x,ierr)

left = 0d0 ; right = 0d0

left(1:3) = num(:,0) ; right(1:3) = num(:,nx-1)

left(6) = (x(2)-x(1)) ; right(6) = left(6)
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left(10) = left(6) ; right(10) = left(10)

left(14) = left(6) ; right(14) = left(14)

left(21) = left(6)*left(10)*left(14) ; right(21) = left(21)

call riemann_solve(left,right,1,nx,(x-x0(n))/left(6)/t_out(n),&

exact,max_wave_speed,&

riemann_middle_states,riemann_wave_speeds)

open(file="datToro/exact"//char(n+48)//".dat",unit=100)

write(100,*) exact(2,:)

close(100)

!!$ write(*,*) exact(2,:) - num(2,:)

!!$ read(*,*)

rmserrors(n) = sqrt(sum(&

((num(2,:)-exact(2,:))/maxval(abs(exact(2,:))))**2)/nx)

max_value = max(max_value,maxval(abs(num(2,:))))

dxes(n) = x(2)-x(1)

deallocate(exact,x,num)

end do

fitted_poly(1:2) = polyfit(log(dxes),log(rmserrors),1)

fitted_poly(3) = 0d0

!!$ call minpack_function_fitting(dxes,rmserrors,exponential_with_y_offset,&

!!$ fitted_poly,fvec,fjac,1d-3,info)

out = fitted_poly

end subroutine ToroRiemannConvergence

subroutine ReadToroDat(file,out,x,ierr)

implicit none

integer, parameter :: maxnx = 10000

character(len=*), intent(in) :: file

real(8), intent(out), dimension(:,:) :: out

real(8), intent(out), dimension(:) :: x

integer, intent(out) :: ierr

real(8), dimension(5) :: read_buffer

integer :: iostatus, n

open(unit=837347,file=file,status="old")

do n = 1, maxnx

read(837347,*,IOSTAT=iostatus) read_buffer

if(iostatus.eq.0)then

out(1,n) = read_buffer(4)

out(2,n) = read_buffer(2)

out(3,n) = read_buffer(3)

x(n) = read_buffer(1)

else if(iostatus<0)then

exit

else

write(*,*) "Error reading ",trim(file)," in ReadToroDat!!"

write(*,*) "n = ", n, "iostatus = ", iostatus

stop

end if
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end do

end subroutine ReadToroDat

end module Godunov_tester

C.1.9 test program.f90

Running make check compiles the * tester.f90 modules and links them into this program in

order to actually run the tests.

program test_program

use generalutilitiestester

use godunov_tester

use riemann_tester

use grid_motion_tester

use UCS_tester

! use ode_solvers_tester

implicit none

integer :: result, junk

character(len=32) :: output_dir

call get_command_argument(1,value=output_dir)

write(*,*) "General Utilities test:"

result = GUTest()

junk = GUErrorReader(result)

write(*,*) "Riemann tester:"

result = RieTester(output_dir)

junk = RieErrorReader(result)

!!$ write(*,*) "Grid Motion Tester:"

!!$ result = grid_motion_test()

!!$ junk = grid_motion_reader(result)

write(*,*) "Godunov tester:"

result = GodTester(output_dir)

junk = GodErrorReader(result)

write(*,*) "UCS_tester:"

result = UCS_test_main()

!!$ write(*,*) "ODE_Solvers tester:"

!!$ result = ODEtester()

!!$ junk = ODEErrorReader(result)

write(*,*) "Done"

end program test_program
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C.1.10 Godunov driver.f90

This is the driver routine for Godunov.f90.

module Godunovdriver

use Godunov

interface

subroutine bc_func(main,nx,ny,nz)

implicit none

real(8), dimension(21,nx,ny,nz),intent(inout) :: main

integer, intent(in) :: nx, ny, nz

end subroutine bc_func

end interface

contains

subroutine prim_update(main,dt_out,dt_in,CFL,nx,ny,nz,options)

implicit none

real(8), dimension(:,:,:,:) :: main

!f2py intent(in,out) :: main

integer, intent(in) :: nx, ny, nz

integer, dimension(:), intent(in) :: options

real(8) :: dt_in, CFL, dt_out

!f2py intent(out) :: dt_out

! Options is an array of integers that controls the behavior of prim_update

! and its various subroutines. It is organized as follows.

! Elements 1-100 (Fortran numbering) control prim_update itself

! Elements 101-200 control prim_update_FV

! Elements 201-300 control prim_update_HUI3D

! Elements greater than 300 are reserved for future expansion

select case(options(1))

case(1)

call prim_update_FV(main,dt_out,dt_in,CFL,nx,ny,nz,options)

case(2)

!!$ write(*,*) "Error in prim_update: "

!!$ write(*,*) "-Dimensionally split algorithms not yet implemented!"

!!$ stop

call prim_update_HUI3D(main,dt_out,dt_in,CFL,nx,ny,nz,options)

case default

write(*,*) "Bad update_type value!!!"

stop

end select

end subroutine prim_update

end module Godunovdriver


