CONCURRENT FUNCTION EVALUATIONS
IN LOCAL AND GLOBAL OPTIMIZATION

Robert B. Schnabel

CU-CS-345-86  October 1986

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309

Research supported by Air Force grant AFOSR-85-0251, ARO contract DAAG 29-84-
K-0140,and NSF cooperative agreement DCR-84220944.



Abstract

This paper discusses some basic opportunities for the use of multiprocessing in the solu-
tion of optimization problems. We consider two fundamental optimization problems, uncon-
strained optimization and global optimization, in the important case when function evaluation
is expensive and gradients are evaluated by finite differences. First we discuss some simple
parallel strategies based upon the use of concurrent function evaluations to evaluate the finite
difference gradient. These include the speculative evaluation of the gradient concurrently with
the evaluation of the funcﬁion, before it is known whether the gradient value at this point will
be required. We present examples that indicate the effectiveness of these parallel strategies for
unconstrained optimization. We also give experimental results that show the effect of using
these strategies to parallelize each of the multiple local minimizations within a recently pro-
posed concurrent global optimization algorithm. We briefly discuss several parallel optimiza-
tion strategies that are related to these approaches but make more fundamental changes to
standard sequential optimization algorithms.



1. Introduction

The recent proliferation of multiprocessor computers presents many opportunities and
challenges for numerical computation. This paper discusses some basic opportunities for the
use of multiprocessing in one area of numerical computation, the solution of optimization prob-
lems. We consider two basic optimization problems, unconstrained optimization and global
optimization, in the important case when function evaluation is expensive. We discuss some
simple but effective parallel methods, and briefly propose several more complex strategies that

appear to merit investigation.

The most basic nonlinear optimization problem is the unconstrained optimization problem,

min f : R"—R

(1.1)
z eR"

where f(z) is at least twice continuously differentiable. Usually it is sufficient to find a local
minimizer of f(z), a point where f(z) attains its lowest value over some open ﬂeighborhood of
the variable space. In this paper we will refer to this problem as the unconstrained local optim-
tzation problem. Sometimes it is necessary to find the lowest among multiple local minimizers
of f(z). This problem is referred to as the global optimization problem. When discussing global
optimization in this paper, we will make the common assumption that a rectangular region S
defined by lower and upper bounds on each variable is given, i.e.

S={z |l <z, <u ,i=1,...,n} (1.2)
and that the global minimizer and all local minimizers (of interest) are known to lie in the inte-

rior of S.

Both local and global optimization problems often are expensive to solve. The main rea-

son is that the objective function, f(z), often is itself a complex computer code, for example a



L]

flight or circuit simulation. It is not unusual for each evaluation of f(z) to require many
seconds, or minutes, on a powerful computer. Since the solution to the optimization problem

usually requires many evaluations of f(z), it becomes an expensive process.

In many instances when f(z) is expensive, the derivatives of f(z) are not available
analytically. We assume throughout this paper that this is the case. In this case, optimization
codes approximate the gradient of f(z) at a point z, by using the finite difference approxima-

tion

Vf(z,); = (1.3)
where k; is a small stepsize and e; denotes the i unit vector. Thus each gradient evaluation
requires n function evaluations in addition to f(z,). No higher derivatives usually are used
when f(z) is expensive. Therefore, the cost of solving optimization problems with expensive
function evaluations and no analytic gradients often is dominated by the function and finite
difference gradient evaluations. If the number of variables is not too large, say n <50, then the
time required by the remainder of the optimization algorithm often is insignificant in com-

parison.

Due to the expensive nature of many optimization problems, there is ample incentive to
devise methods for solving them on parallel computers if they can lead to significantly faster or
more cost effective solution of these problems. For problems with expensive function evalua-
tions as discussed above, there are two obvious types of approaches. One can use standard
sequential optimization methods but apply a parallel algorithm to evaluate f(z), or one can
devise methods that make effective use of evaluating f(z) at multiple points concurrently. In
this paper we discuss the later approach. The former approach, applying a parallel algorithm

to evaluate f(z), is dependent upon the actual objective function f(z) and is not under the



control of the optimization algorithm designer. It should be noted, however, that the two
approaches often are quite compatible. For example, in many cases the evaluation of f(z) vec-
torizes well. In this case, a computer such as the Cray X-MP or Alliant, which consist of mul-
tiple vector processors, would allow multiple evaluations of f(z) to be performed concurrently
with each evaluation performed by a vector processor. In other cases where the computation
of f(z) requires multiple independent processors, it would be possible to divide the processors of
a multiprocessor into groups, with each group of processors used to evaluate f(z) and the mul-

tiple groups used to implement the parallelism discussed in this paper.

The approach we discuss in this paper, the concurrent evaluation of f(z) at multiple
points, is well suited to any computer that can execute multiple, different instruction streams
concurrently. Such machines are known as Multiple Instruction Multiple Data (MIMD) comput-
ers. This class includes both shared memory multiprocessors, and local memory multiproces-
sors such as hypercubes; the algorithms we discuss are well suited to any such computer. Our
approach is not generally suited to Single Instruction Multiple Data (SIMD) computers, such as
processor arrays, whose processors caﬁ execute the same instruction on different data in lock-
step. This is because different evaluations of an expensive function f(z) generally require
different sequences of instructions, due to data dependent branches in the code for f(z), and

thus cannot easily be performed concurrently on an SIMD machine.

In Section 2 we discuss the use of concurrent function evaluations in unconstrained local
optimization. The most obvious idea is to perform the n function evaluations required by the
finite difference gradient (1.3) in parallel. We discuss several variations on this idea, and show
how their effectiveness depends upon the number of processors available and an important
problem characteristic, the ratio of function to gradient evaluations. We then briefly discuss

several more sophisticated strategies.



Section 3 discusses the use of concurrent function evaluations in global optimization.
Byrd, Dert, Rinnooy Kan, and Schnabel [1986] have proposed and tested a concurrent global
optimization algorithm in which local minimizations are performed sequentially. First we very
briefly summarize this algorithm and its performance. Then we discuss the incorporation of
the concurrent local optimization techniques of Section 2 into this global optimization algo-

rithm, and present some experimental results.

2. Concurrent Function Evaluation in Unconstrained Local Optimization

A variety of algorithms exist for finding a local minimizer of a continuously differentiable
function without constraints. (See e.g. Fletcher [1980], Gill, Murrary and Wright [1981], or
Dennis and Schnabel [1983].) When function evaluation is expensive, analytic derivatives are
unavailable, and n is not too large (say less than or equal to 100), the most commonly used
method is a quasi-Newton method utilizing finite difference gradients, BFGS updates to approx-

imate the Hessian, and a line search. Such an algorithm is outlined in Algorithm 2.1.

When function evaluation is expensive and n is not too large, the cost of Algorithm 2.1 is
dominated by the function and finite difference gradient evaluations shown in boldface. The
most important point to be noted from Algorithm 2.1 is the order in which these occur: one or
more function evaluations always precede exactly one gradient evaluation. In our practical
experience, there rarely is more than one gradient evaluation per iteration, and the average
number of function evaluations per gradient evaluation, or per iteration, is often quite close to
one, say around 1.25. On very hard problems the number of function evaluations per iteration

might be as high as 2. A typical pattern of function and gradient evaluations might be



Algorithm 2.1. Quasi-Newton Method for Unconstrained Optimization

Given initial 1terate z, , f, =fl(z,) , = finite difference approximation to Vf(z ) ,
H, cR™ p031t;1ve definite (e.g H I)

{ calculate search direction }
solve H d = —g, for d { d is search direction }

{ line search }

Ni=1 { X is steplength }
linesearchdone := false, Amin := 0, Amax =

repeat
calculate f_ = f(z, + \d)
if f_ is sufficiently < f, then
calculate g, = finite dlfference approximation to Vf(z, +\d)
if g+d is sufficiently >g, T4
then linesearchdone := true

else Amin := X\, increase A { new A\ € (old A\ , Amax) }
else { f too large }

Amax := X, reduce A { new X\ € { Amin, old X ) }
until linesearchdone

{ update function and derivative information }
decide whether to stop ; if not :

z, :=z,+N\d , f, =f,9, =4,

T T
Hdd"H,  (9,—9.)(9,—9,)
H :=H, — . + ; { BFGS update }
d"H,d A d (g+——gc)
begin next iteration (go to first line of algorithm)

Hifvefye fye ffife fhefiafiefiefie. (2.1)

The most obvious way to parallelize Algorithm 2.1 when function evaluation is expensive

and the gradient is calculated by finite differences (as we are assuming in this paper) is to per-
form the n function evaluations for the finite difference gradient concurrently. If the number

of processors, p, is greater than or equal to n, this requires one concurrent function evaluation



step, a step where all (or some) processors perform a function evaluation concurrently. If p<n,
this will require [n/p] concurrent function evaluation steps. For example, if n =6 and p = 4,
the beginning of the sequence given in (2.1) would be performed as shown in Example 2.2a
below. Here g; denotes the ¢ * function evaluation for the finite difference gradient calculation,
and a dash indicates that the processor is idle. The letter f denotes an evaluation of f(z) at a
trial point z,+\d; we will refer to this as a trial point function evaluation, to differentiate it

from the n function evaluations performed for each finite difference gradient.

For ease of reference, the first three simple parallel modifications of Algorithm 2.1 that

we discuss in this section are summarized in Table 2.3. The strategy we have just discussed is

Example 2.2a -- Parallel Strategy I Applied to Sequence f,f,q,f,9,f,9

Concurrent Step Number
1 2 3 4 5 6 7 8 9 10

Processor 1 f 5 9 95 f 9. 95 [ 91 95

Processor 2 - - gy 95 - 9y 95 - 9, 9g
Processor 3 - - 9; - - 95 - - 9; -
Processor 4 - - 9, - - 9, - - 9, -

Example 2.2b -- Parallel Strategy II Applied to Sequence f,f,9,f,9,f,9

Concurrent Step Number
1 2 3 4 5 6 7

Processor 1 ff e f 94 F 9
Processor 2 91 917 95 9y 95 91 95
Processor 3 9o 92 95 92 9g 92 s
Processor 4 93 93 - 93 - 93 -




referred to as Parallel Strategy I. Note that Parallel Strategy I does not use multiple proces-

sors during the trial point function evaluations.

If we assume that all the expense in Algorithm 2.1 is in the function and finite difference
gradient calculations, and that each function evaluation takes the same amount of time, then

the effectiveness of Parallel Strategy I (and Parallel Strategies II and III) depends only on three

Table 2.3. Simple Parallel Modifications of Algorithm 2.1
n = number of variables, p = number of processors
Parallel Strategy I -- Parallel Finite Difference Gradients

Each time Vf(z) is required, perform the n function evaluations for the finite difference
gradient concurrently (Ifn/p] concurrent function evaluation steps )

Each trial point function evaluation f(z,+Ad) is performed by one processor with the
remaining processors idle

Parallel Strategy II -- Parallel Finite Difference Gradients with Partial Speculative
Gradient Evaluation

Each time a trial point function value f(z,+\d) is required, perform min{p—1, n} func-
tion evaluations for the finite difference gradient at z,-+M\d concurrently with the
evaluation of f(z,+Ad) (one concurrent function evaluation step)

If p<n+1 , then each time Vf(z,+Md) is required, calculate the n+1—p remaining
function evaluations for the finite difference gradient concurrently
( [(n+1—p)/p| concurrent function evaluation steps)

Parallel Strategy III -- Parallel Finite Difference Gradients with Full Speculative Gra-
dient Evaluation

Each time a trial point function value f(z,4+\d) is required, perform the n function
evaluations for the finite difference gradient at z_ +Ad concurrently with the
evaluation of f(z,+\d) ( [(n-l-l)/ﬂ concurrent function evaluation steps)




problem and algorithm characteristics. These are the number of variables, n, the number of
processors, p, and the ratio of the number of trial point function evaluations to the number of
finite difference gradient calculations. If Algorithm 2.1 uses f trial function evaluations and g
gradient evaluations, then a sequential implementation requires f-+ng function evaluations,
while the parallel finite difference gradient approach requires f-+( In / p])g concurrent function

evaluations steps. Thus the speedup, defined in general by

time required by sequential algorithm
speedup = ,
time required by parallel algorithm

is given for Parallel Strategy I by

(f/g9) +n
(f/g) + In/p]

Table 2.4a gives an indication of the effectiveness of the parallel finite difference gradient

speedup, = (2.2)

strategy. For a moderate problem size, n = 25, it shows the efficiency for five values of f /g, 1,
1.25, 1.5, 2, 3, and for various numbers of processors. Recall that the values 1.25 or perhaps
1.5 are typical f /g ratios, 2 is unusual and 3 extremely rare. Table 2.4 uses powers of two for
the number of processors because on some computers, such as hypercubes, these are the only
possibilities. In parentheses we indicate the smallest number of processors which would give
the same speedup; this number is applicable to computers when any subset of the processors

may be used.

Several important, general points are illustrated by Table 2.4a. First, when p is consid-
erably less than n, even the very simple parallel finite difference gradient strategy achieves
almost optimal performance. This is because each gradient evaluation requires [n/p] con-
current function evaluation steps, which parallelize almost perfectly, and this cost dominates

the f trial point evaluation steps which each use only one processor.



Table 2.4a. Speedup of Parallel Strategy I in Comparison to Sequential
Algorithm 2.1 when n =25

Function Evaluations (not counting finite difference gradients)/
Gradient Evaluations

1 1.25 1.5 2 3
# Processors
4(4) 3.25 3.18 3.12 3.00 2.80
8(7) 5.20 5.00 4.82 4.50 4.00
16 (13) 8.67 8.08 7.57 6.75 5.60
32 (25) 13.00 11.67 10.60 9.00 7.00

Table 2.4b. Speedup of Parallel Strategy II in Comparison to Sequential
Algorithm 2.1 when n =25

" Function Evaluations (not counting finite difference gradients)/
Gradient Evaluations

1 1.25 1.5 2 3
# Processors
4 (4) 3.71 3.62 3.53 3.38 3.11
8 (7) 6.50 6.18 5.89 5.40 4.67
16 (13) 13.00 11.67 10.60 9.00 7.00
32 (26) 26.00 21.00 17.67 13.50 9.33

Table 2.4c. Speedup of Parallel Strategy III in Comparison to Sequential
Algorithm 2.1 when n =25

Function Evaluations (not counting finite difference gradients)/
Gradient Evaluations

1 1.25 1.5 2 3
# Processors
4 (4) 3.71 3.00 2.52 1.93 1.33
8 (7) 6.50 5.25 4.42 3.38 2.33
16 (13) 13.00 10.50 8.83 6.75 4.67
32 (26) 26.00 21.00 17.67 13.50 9.33




10

Secondly, when p = n, the maximum speedup that can be attained using the simple
parallel finite difference gradient strategy is (p+1)/2, about half of the optimal. This speedup
will occur if f=g¢; if f>g, the speedup is lower. The problem is that the trial point function
evaluations are performed sequentially, with n—1 processors idle, and only the finite difference
gradient evaluations are performed concurrently requiring one concurrent function evaluation
step per gradient value. Thus n—1 processors are idle at least half of the time. The strategies

discussed in the remainder of this section address this problem.

The parallel finite difference gradient strategy never utilizes more than n processors. If
p>n, p—n processors are unused. This deficiency is shared by the next few parallel strategies
we discuss which use a maximum of n—+1 processors; at the end of this section we discuss ways

to use more than n—-+1 processors.

Now we consider ways to make use of multiple function evaluations during the evaluation
of f(z,+)\d) in Algorithm 2.1. One way is to evaluate f(z) at multiple points on the line in the
direction d from z,, and perhaps in additional search directions, concurrently with the evalua-
tion of f(z,+\d), and take the best of these points as the next iterate. This possibility has
been considered by Dixon [1981], Patel [1982], and Lootsma [1984]. Note that this strategy
alters the optimization algorithm, as opposed to Parallel Strategy I which just reorders the cal-
culations of Algorithm 2.1. As one might expect, given the fact that the first trial point in the
line search usually is acceptable, the speedup from utilizing p —1 additional points in the line
search is not nearly proportional to p, in fact usually it is quite small. Therefore we are

interested in considering other strategies.

A simpler way to utilize additional processors during the trial point function evaluations

is to always perform p—1 function evaluations that would be required for the finite difference



11

value of Vf(z,+Nd) concurrently with the evaluation of f(z,+Ad). We refer to this as a
speculative partial gradient evaluation. If f(z,+\d) is acceptable so that the gradient at z, +N\d
is required, as is the case most of the time, then only n+1—p function evaluations remain for
the finite difference gradient calculation (none if p>n+1 ). This means that one concurrent
function evaluation step is saved per gradient evaluation in comparison to Parallel Strategy I,
unless n is a multiple of p in which case the costs of the two algorithms are the same. If
f(z,4+X7d) is too high and the gradient at z,4+Ad is not required, the p—1 speculative com-
ponents of Vf(z 4+\d) that have been computed are wasted in the context of Algorithm 2.1,

but the cost is the same as if the p—1 processors had been left idle.

We refer to the strategy of using the remaining p—1 processors to make a speculative
partial gradient evaluation in conjunction with each trial point function evaluation as Parallel
Strategy II. It is always at least as efficient as the simple parallel finite difference strategy,
Parallel Strategy I. As an illustration, Example 2.2b shows the performance of Parallel Stra-
tegy II on the same example as was used for Parallel Strategy I in Example 2.2a. Parallel
Strategy II requires three fewer concurrent function evaluation steps than Parallel Strategy I
in this case. The only unnecessary speculative function evaluations are the evaluations of g,,
gy and g, at the first step. Towards the end of this section we discuss ways to use these

"wasted" speculative gradient values.

The cost of Parallel Strategy II, using the notation introduced above, is
f + (I(n+1)/p1-1) g concurrent function evaluation steps. Thus the speedup of Parallel Stra-

tegy Il in comparisoh/ to the sequential Algorithm 2.1 is

(f/9) +n

(f/9) + [(n+1)/p11
Table 2.4b illustrates the speedup of Parallel Strategy II in the same cases used in Table 2.4a.

speedup,; = (2.3)



12

Table 2.4b shows that the simple strategy of using paralle]l finite difference gradients
including speculative partial gradient evaluation is very effective when p<n. When
p =(n-+1)/2, the efficiency is 80-90% of optimal for the usual f /g ratios, and for p = n+1 it
is still 70-80% of optimal. Most users of parallel computers would be quite satisfied with such
utilization, and it is not clear how much more parallelism can be gained when p<n+1 |,
although we suggest some possibilities shortly. The most important limitation of Parallel Stra-

tegy Il is that it can not utilize more than n + 1 processors.

Another parallel variant of Algorithm 2.1 would be to evaluate the entire gradient when-
ever a trial point function evaluation is made. That is, whenever f(z,+\d) is evaluated, p—1
function evaluations for the finite difference Vf(z,+\d) are performed concurrently and then,
if p<n,-the remaining n-+1—p function -evaluations for. Vf(z ,+\d) are performed using
f(n-i—l)/p]—l additional concurrent function evaluation steps. We refer to this strategy as
speculative full gradient evaluation, and the strategy that uses it is called Parallel Strategy III.
It should be clear that Parallel Strategies II and III are identical when p>n-+1 , but that
Parallel Strategy III is less efficient than Parallel Strategy II whenever p<<n+1 because it
takes extra steps to calculate the remainder of the finite difference gradient whether it will be
needed or not. There are several reasons why we still mention this strategy. They include
that it is more practical than Parallel Strategy II in the context of global optimization, and
that it may be worthy of consideration in conjunction with the more complex strategies dis-

cussed shortly.

Because Parallel Strategy III makes a complete gradient evaluation at every trial point,
its cost is simply (f(n-H)/p])f concurrent function evaluation steps. Its speedup in com-

parison to the sequential Algorithm 2.1 is



13

speedup;;; = Ultn . (2.4)

[(n—l—l) /o]

Table 2.4c illustrates the speedup of this approach. Note that the speedups in Table 2.4c are
the same as those for Parallel Strategy II in Table 2.4b when p>n+1 or f/g =1, and are
smaller otherwise. In fact, comparison with Table 2.4a shows that speculative full gradient
evaluation is inferior to the simple parallel finite difference gradient strategy for small enough
p or large enough f/g; comparison of Equations 2.2 and 2.4 shows that Parallel Strategy I is
superior if and only if

fla+Tn/p1<(f /9) (I(n+1)/p]) . (2.5)
For example, if f /g = 1.25, and n 3 0 mod p, Parallel Strategy [ is superior if p <n /5.

From the point of view of the optimization algorithm, the three parallel strategies dis-
cussed so far in this section do not make any real change to Algorithm 2.1. Parallel Strategy I
is identical to Algorithm 2.1 except that the finite difference gradient is computed concurrently.
In Parayllel Strategies II and III, the speculative gradient evaluations result in the calculation of
some gradient values that are not calculated by the sequential algorithm (at the unsuccessful

trial points) but no use is made of this information. For any particular problem, all three

parallel algorithms will produce the same sequence of iterates as the sequential algorithm.

It would be more interesting, and possibly more beneficial, to consider strategies that
actually solve the optimization problem differently due to the use of multiple processors and
concurrent function evaluations. In the remainder of this section we indicate several such pos-
sibilities, of two general types. The first group of parallel algorithms we discuss are applicable

when there are n+1 (or fewer) processors, the second when they are more than n-+1 processors.

When the number of processors is less than or equal to n+1, Parallel Strategy II makes

almost optimal use of multiple processors as along as f/g is not much greater than 1. Since



14

this is generally the case, it seems reasonable to apply this basic strategy and see whether any
additional advantage can be gained through it. The main opportunity is to try to make use of
the (partial) gradient values at the unsuccessful trial points, which are available in the parallel
algorithm but not in the sequential version. We now consider several uses that can be made of
this information. For simplicity we consider only the case p = n-+1, meaning that the full gra-

dient is available at each trial point.

The simplest way to utilize the gradient value at an unsuccessful trial point would be to
continue the line search in the direction d as usual, and use the gradient value to help calcu-
late the next value for the step length parameter A\. Indeed, line search algorithms that utilize
gradient values from all trial points are well known (see Gill, Murray, and Wright [1981] p. 104
for several references). In our experience they do not greatly improve the optimization
algorithm’s efficiency. In any case, only the directional derivative, Vf(zc—{-)\d)Td, is needed
and this can be calculated using just one extra function evaluation as opposed to the n func-
tion evaluations required for the full gradient. So this strategy requires only two processors,

not n-+1.

A second approach would be to again continue the line search in the direction d after the
function and gradient at the unsuccessful trial point have been evaluated. After the line
search is completed, the algorithm would have least three function and three gradient values
along the line from the old to the new iterate. This is enough information to form a more com-
plex model than the standard quadratic model around the new iterate. The following iterate
would then be based upon minimizing this model. The hope is that this would lead to a better
next iterate than would be obtained from the standard quadratic model, and that the total
number of iterations required to solve the optimization problem would be reduced. One type of

model that could be used is a tensor model, introduced by Schnabel and Frank [1984]. A line



15

search with even one unsuccessful trial point and the gradient value at each point enables the
formation of a fourth order tensor model that interpolates three gradient and two function

values, and the minimum of a such a model can be calculated efficiently.

A third approach would be to use the gradient value at the unsuccessful trial point
z,+Nd to immediately alter the Hessian approximation H, at z, and the search direction d
from z,. In a quasi-Newton algorithm, it is possible that the objective function f (z) is nearly
quadratic, but that the trial point z,+\d still is bad because H, is inaccurate. Indeed, if f(z)
is a positive definite quadratic, the function and gradient values at z, and any z +\d are
sufficient to determine the minimum z_ of f(z) along the line in the direction d from z,, and
the new BFGS Hessian approximation H_ at z_, without calculating f(z,) or Vf(z,). This is
because any three pieces of function and gradient information along a line determine the
minimizer of a quadratic along that line, and any two gradient values along a line determine
the unique secant equation of the quadratic along that line, and hence the BFGS update which
is the same at all points on that line. Furthermore, since the secant equation
H (¢ ,~z,) =g, — g, implies that (z, — H;1g+) = (¢, — H;lgc), it is not necessary to know
the next iterate z_ to calculate the trial value of the succeeding iterate; it is equivalent to
update H, to H_ using the gradient information from the unsuccessful trial point, calculate

-1 . . .
H_ g, , and continue iterating from z_.

For quadratic f(z), this strategy would allow a BFGS algorithm where the gradient
value is available at every trial point to always use only one trial point per iteration. Thus it
may save function evaluations in comparison to Algorithm 2.1. We are now investigating ways
to adapt such techniques to general f(z). It is clear that one would not always want to use

the above strategy; one would need to determine when f(z) is sufficiently close to quadratic



16

that this approach is likely to be beneficial. One possibility would be to tentatively update H,
to H_ at z, using the secant equation from Vjf(z,+ d) and Vf(z,), and then see whether the
new quadratic model predicts f(z,+\d) reasonably well. If so, the new line search direction
H:l Vf(z,) would be used from z,, otherwise the update would be rescinded and the line
search continued in the old direction d. A more complex strategy would be needed if multiple

iterations of the type described above were allowed.

The three approaches we have just discussed can utilize at most n+1 processors. There
are many expensive optimization problems where the number of variables is not very large, say
n<25. Thus it is likely that for many expensive optimization problems, the number of proces-

sors available on many multiprocessors, p, will exceed n+1.

If pZ(n2 + 3n + 2)/2, then it is possible to evaluate the function, the finite difference
gradient, and a finite different Hessian approximation simultaneously. A very likely situation,
however, is that p&( (n+1), (n® +3n +2)/2) ), so that there are more than enough processors
to evaluate the finite difference gradient but not enough to calculate the full finite difference
Hessian as well. For example, if p = 64 , any problem with n€ [10, 63] falls in this class. In the

remainder of this section we briefly discuss some approaches for this case.

An obvious extension of the techniques discussed above to the case where there are more
than n+1 processors would be to evaluate the function at the trial point z,+\d, the finite
difference gradient at z,+\d , and some part of the finite difference Hessian simultaneously.
Two important issues are whether the finite difference Hessian information should be evaluated
at z,+Nd or at z, , and how to form the new Hessian approximation using this partial finite

difference Hessian information.



17

Calculating a partial finite difference Hessian approximation at z,+)d while evaluating
the function and gradient at z,+Ad would provide the most useful information if z,+\d is
accepted as the next iterate. If z,+Ad is not accepted, however, it might not be possible to
make good use of this Hessian information. An alternative would be to calculate some partial
finite difference Hessian information at z, while calculating the function and gradient at
z,+Md. If z,+\d is accepted, then the Hessian information could be used to improve the Hes-
sian approximation at z, before applying the BFGS update to obtain the new Hessian approxi-
mation at z,+N\d. If z,+\d is not accepted, the Hessian approximation at z, still could be
updated and the line search direction d revised in a manner similar to the final n+1 processor

strategy discussed above.

Perhaps the most challenging issue in developing an unconstrained optimization algo-
rithm that makes use of more than n+1, but fewer than (n2 + 3n + 2)/2, function evaluations
at each iteration is how best to use these function evaluations to form the .Hessian approxima-
tion at a point z. One possibility would be to use the p—(n-+1) processors that are available
(after allocating n+1 for the function and finite difference gradient) to calculate k& =
L(p—(n +1))/n] finite difference gradient values at points that are close to z and in mutually
orthogonal (or conjugate) directions s; from it. This information would give k secant equations
H s, =y, 1=1,...,k. The Hessian approximation could then be updated using the multi-
ple secant update techniques of Schnabel [1983]; probably only the equations consistent with
positive definiteness should be used. If the directions s; are properly chosen, then it appears
that such an approach would lead to a fn/k] step locally g-quadratically convergent method.
By incorporating the standard secant equation as well, one step g-superlinear convergence
might also be retained. An alternative approach would be to use the additional function

evaluations to calculate some components of the Hessian directly using second order finite



18

differences. This would be more efficient if (n2+3n+2)/2 processors are available, but if fewer
processors were available it might be difficult to update the Hessian element by element while

still retaining positive definiteness.

It should be clear from the above discussion that there are many interesting challenges in
utilizing multiple processors for unconstrained local optimization. While all the techniques
mentioned above are inspired by the consideration of parallel processing, it is possible that

some of them could lead to improved sequential algorithms as well.

3. Concurrent Function Evaluation in Global Optimization

Several types of sequential methods have been proposed for finding the global minimum of
a function f(z) within the rectangular region S defined by (1.2). These include deterministic
methods, stochastic methods, and methods that utilize interval arithmetic. It is beyond the
scope of this paper to review these methods; papers describing several leading modern methods,
including the tunneling method (Levy and Gomez [1985)), several stochastic methods (Rinnooy
Kan and Timmer [1985]), and an interval arithmetic method (Walster, Hansen, and Sengupta
[1985]) can be found in Boggs, Byrd, and Schnabel [1985]. We are not aware of any computa-
tional studies that have established whether any of these methods are superior to any of the

others in general.

One of the promising approaches to global optimization appears to be the multi level sin-
gle linkage algorithm of Rinnooy Kan and Timmer [1984]. Byrd, Dert, Rinnooy Kan, and
Schnabel [1986] have proposed a concurrent variant of this method. The algorithm is outlined

in Algorithm 3.1 below.



19

Algorithm 3.1 -- A Concurrent Multi-Level Single Linkage Method
for Global Optimization

Given f : R" —R, feasible region S and p processors

0. Partition S
Subdivide S into p equal size, regular shaped subregions §,, ¢ = 1,...p, and assign su-
bregion S, to processor ¢ for ¢ = 1,...,p.

At iteration number k:

1. Generate sample points and function values
For 1 =1,...,p
Add n/p points, drawn from a uniform distribution over subregion ¢, to the (in-
itially empty) set of sample points, and evaluate f(z) at each new sample
point. '

2. Select start points for local searches
" Fori=1,..,p T
Determine a (possible empty) set of start points in subregion ¢, disregarding
sample information from all other subregions. '
Resolve start points near borders between subregions (some start points select-
ed above may be eliminated).

3. Perform local minimizations from all start points
Collect all start points and distribute one to each processor, which performs a minimi-
zation from that point. Issue a new start point to a processor as soon as it terminates
its current local search, until local searches from all start points have been completed.

4. Decide whether to stop
If stopping rule is satisfied, regard the lowest local minimizer found as the global
minimizer, otherwise go to step 1.

Algorithm 3.1 is intended to make efficient use of multiple processors whether or not the
evaluation of the objective function f(z) is expensive. If f(z) is expensive, as we assume
throughout this paper, then only the costs of Steps 1 and 3 are important since all the function
and derivative evaluations occur in these steps. The cost of Step 2 is important for problems

where f(z) is inexpensive but becomes inconsequential as function evaluation becomes



20

expensive.

It is typical to evaluate f(z) at between 100 and 1,000 points in Step 1 at each iteration.
Thus, as long as each function evaluation takes the same amount of time, Step 1 can make

optimal use of at least 100 processors.

It is not as easy to make efficient use a large number of processors in Step 3. For many
global optimization problems, the number of local minimizations at each ite;'ation can be
expected to be small, sometimes 10 or fewer. If each of these local minimizations is solved by a
sequential algorithm, then the number of processors that can be utilized is at most equal to the
number of minimizations. Furthermore, the local minimizations tend to be of differing lengths,
so that not even this number of processors can be fully utilized. For example, in one of our
runs of the Hartman 3 test problem, for which n=3, using 1000 sample points per iteration, 4
local minimizations were performed at the first iteration with the following pattern of function

and gradient evaluations:

foffffegfogfagfaogfy
foffaoffoffffofaofogfafafy (8.1)
foffffofofeofaogfaofafofafagily
fofffofagfaogfagfy

These minimizations require a total of 46 function and 33 gradient evaluations, or 145 function
evaluations if the gradients are calculated by finite differences. If the 4 minimizations are per-
formed concurrently, each using one of 4 processors, then since the longest search requires 47
function evaluations, a speedup of 3.1 is obtained. It is not possible to use more processors as
long as each minimization is performed sequentially. We return to this example later in this

section.



21

Byrd, Dert, Rinnooy Kan, and Schnabel [1986] have tested Algorithm 3.1 on a standard
set of seven global optimization problems. These problems all are small, with n between 2 and
6, and the number of local minimizers between 3 and 10. From their results they can simulate
the speedup that would be obtained on these problems using any number of processors, when
only the cost of function evaluations is being considered. Of course, the speedup depends upon
the sample size in Step 1. A sample size of 1000 points per iteration may be indicative of prac-
tical sample sizes for harder problems. With this sample size, the speedup with 8 processors
was between 6.0 and 7.1 for the seven test problems; with 16 processors, between 8.9 and 11.2;
with 32 processors, between 12.0 and 15.9; and with 1000 processors, between 17.9 and 27.0. If
a sample size of 206 is used, the Llécra;l minimization step consumes a proportionally greater
amount of time and the speedups aré iower because the minimization step doesn’t parallelize
as well as the sampling step. The speedups are between 3.5 and 6.1 with 8 processors, between
4.1 and 8.6 with 16 processors, between 4.4 and 9.6 with 32 processors, and between 4.8 and

10.0 with 200 (or 1000) processors.

These results illustrate that is rather easy to make good use of a relatively small number
of processors for global optimization problems where function evaluation is expensive, but that
the speedup for larger numbers of processors may be limited due to the small number of local
minimizations in Step 3. In fact if Step 2, the start point selection step, performs ideally, then
the number of local minimizations will equal the number of local minimizers. Thus it may not
be possible to utilize more than this number of processors in Step 3 if the local minimizations

are performed sequentially.

From the above discussion, it is clear that the parallel local minimization strategies dis-
cussed in Section 2 are of interest within the context of global optimization as long as the gra-

dient evaluations are performed by finite differences. This usually is the case on problems with



22

expensive function evaluations. In this case, the strategies of Section 2 present the opportunity
of using n+1 times as many processors in the local minimization step of the global optimiza-

tion algorithm, and thus obtaining up to n+1 times greater speedup in this step.

We have investigated the effects of applying the simple concurrent strategies discussed in
the beginning of Section 2 to the local minimizations in Step 3 of our concurrent global optimi-
zation algorithm. The best strategy, Parallel Strategy II, is difficult to apply in the context of
global optimization because it is not evident how many processors to allocate for a particular
partial gradient evaluation when other local minimizations are being performed concurrently.
Therefore we have tested Parallel Strategy I, which performs the trial point function evalua-
tions sequentially and the finite difference gradients in parallel, and Parallel Strategy III; which
performs a full speculative finite difference gradient evaluation along with each trial point

function evaluation.

We calculated the speedups in the local minimization phase (step 3) tha£ result from
applying Parallel Strategies I and III to step 3 of the first iteration of Algorithm 3.1. This was
done for each of the seven test problems, each run with four different sample sizes. (Different
sample sizes lead to different numbers and lengths of local minimizations.) Thus there are 28
test cases, each a set of local minimizations like (3.1). For each test case, we calculated the
speedups with the number of processors, p, equal to nm /4, nm /2, nm, and 2nm, where m is
the number of local minimizations at the first iteration of Algorithm 3.1. When p = 2nm,
there are more than enough processors to conduct a parallel finite difference gradient evalua-
tion for each search simultaneously, if required. In the other cases, there are not, so a queue of
function evaluation requests is maintained, and if the number of function evaluation requests
exceeds the number of processors at any particular time, then the function evaluations are pro-

cessed in the order they are received.



23

Table 3.2 summarizes the average utilization of processors in only the local minimization
phase of iteration 1 of Algorithm 3.1, for the sequential and two parallel local minimization
strategies. For each local minimization strategy and each number of processors, we give the
average effictency in the local minimization phase over the 28 test sets, where the efficiency is

defined by

. time required by sequential algorithm speedup
efficiency = =

p X( time required by parallel algorithm ) ?

It is necessary to use this measure rather than speedup because the number of processors
represented by a particular line of Table 3.2 may differ from problem to problem since the

number of local minimizations may be different for each test case.

It makes less sense to calculate the average gain in the speedup of the entire concurrent
global optimization algorithm from parallelizing the individual local minimizations, because
this depends crucially upon the relative number of function evaluations in the sampling and

minimization steps. Instead, we consider as an example the run of the Hartman 3 test problem

Table 3.2. Average Efficiency of Local Minimization Step of Concurrent
Global Optimization Algorithm

n = number of variables, m = number of local minimizations

Each Local Minimization Performed by:

Sequential Parallel Strategy I  Parallel Strategy III
Number of Processors

nm/4 .76 .93 .76
nm/2 48 .76 73
nm .26 .48 .63

2nm 13 .24 41




24

with a 1000 sample points, whose minimization step is shown in (3.1). The overall speedups for
this problem with 6, 12, 24, and 1000 processors, and with the individual local minimizations
performed sequentially or by Parallel Strategies I or III, are given in Table 3.3. We note that
if only 200 sample points are used, then there are more local searches, 7, and the effects are
more dramatic. For example for p=20 and 200 sample points, the speedups with local minimi-
zations performed sequentially, by Parallel Strategy I, and by Parallel Strategy III are 7.4,

11.3, and 14.1, respectively.

The results in Tables 3.2 and 3.3 illustrate that considerable additional speedups can be
obtained by applying the simple parallel strategies of Section 2 to each local minimization sub-
problem in a concurrent global optimization algorithm that conducts multiple local minimiza-
tions simultaneously. Table 3.2 shows that Parallel Strategy I achieves very good utilization of
the processors when the number of processors are small in comparison to the problem size. As
demonstrated by Table 2.4a, however, it can not make effective use of more than (n+1)/2 pro-
cessors per minimization, or a total of (n+1)m /2 processors in the current context. Thus when

p=nm, its efficiency is about 0.5. As demonstrated by Equation 2.5 and Tables 2.4a and 2.4c,

Table 3.3. Speedups for Algorithm 3.1 on Hartman 3 Test Problem

Each Local Minimization Performed by:

Sequential  Parallel Strategy I = Parallel Strategy III
Number of Processors

6 5.4 5.8 5.8
12 8.7 10.5 11.3
24 12.9 17.1 20.5

1000 23.9 44.0 76.3




25

Parallel Strategy III is worse than Parallel Strategy I when the number of processors is small,
because some of the speculative gradient evaluations that it makes, at the unsuccessful trial
points, are unnecessary and delay other, useful, function evaluations. For larger numbers of
processors, however, it is the better strategy because the speculative gradient evaluations use
otherwise idle processors and most of them are useful. Parallel Strategy III still makes consid-
erably less than optimal use of nm or 2nm processors, however, due to the wasted speculative
gradient evaluations and the differing lengths of the local minimizations, which reduces the
number of processors utilized towards the end of the local minimization phase. None of these

strategies can utilize more than (n+1)m processors.

One way to further improve the efficiency of the concurrent global optimization algo-
rithm might be to-apply the parallel-local minimization strategies discussed towards the end of
Section 2, including those that utilize more than n-+1 processors, to each of the local minimiza-
tions in‘Algorithm 3.1. Another way would be to change the concurrent global optimization
algorithm itself. Assuming that the global optimization algorithm includes some sampling of
the variable space and some local minimizations, it might be desirable to overlap these phases.
This might allow the sampling, which parallelizes perfectly, to use more of the processors, and
the local minimizations, which are harder to parallelize, to use fewer, while giving a more
efficient utilization of the processors overall. It might also reduce the effect of the varying
lengths of the local minimizations. We currently are investigating an algorithm that takes this

approach.



26

Acknowledgements

My thanks to Matt Rosing for performing the computations that are summarized in Table 3.2,
to Matt and Betty Eskow for their helpful discussions about the material in Section 3, and to

Richard Byrd and Jerry Shultz for helpful discussions about Section 2.



27

4. References

P. T. Boggs, R. H. Byrd, and R. B. Schnabel (eds.) [1985], Numerical Optimization 1984, SIAM,
Philadelphia.

R. H. Byrd, C. Dert, A. H. G. Rinnooy Kan, and R. B. Schnabel [1986], "Concurrent stochastic
methods for global optimization", Technical Report CU-CS-338-86, Department of Computer
Science, University of Colorado at Boulder.

J. E. Dennis Jr. and R. B. Schnabel [1983], Numerical Methods for Nonlinear Equations and
Unconstrained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

L. C. W. Dixon [1981], "The place of parallel computation in numerical optimization I, the local
problem”, Technical Report No. 118, Numerical Optimisation Centre, The Hatfield Polytechnic.

R. Fletcher [1980], Practical Method of Optimization, Vol 1, Unconstrained Optimization, John
Wiley and Sons, New York.

P. E. Gill, W. Murray, and M. H. Wright [1981], Practical Optimization, Academic Press, Lon-
don.

A.V. Levy and S. Gomez [1985], "The tunneling method applied to global optimization", in
Numerical Optimization 1984, P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds., SIAM, Philadel-
phia, pp. 213-244,

F. A. Lootsma [1984], "Parallel unconstrained optimization methods,” Report No. 84-30,
Department of Mathematics and Informatics, Technische Hogeschool Delft.

K. D. Patel [1982], "Implementation of a parallel (SIMD) modified Newton method on the ICL
DAP", Technical Report No. 131, Numerical Optimisation Centre, The Hatfield Polytechnic.

A.H.G. Rinnooy Kan and G.T. Timmer [1984], "Stochastic methods for global optimization", to
appear in the American Journal of Mathematical and Management Sciences.

A.H.G. Rinnooy Kan and G.T. Timmer [1985], "A stochastic approach to global optimization,”
in Numerical Optimization 1984, P. Boggs, R. Byrd and R.B. Schnabel, eds., STAM, Philadelphia,
pPp. 245-262.

R. B. Schnabel [1983], "Quasi-Newton methods using multiple secant equations,” Technical
Report CU-CS-247-83, Department of Computer Science, University of Colorado at Boulder.

R. B. Schnabel and P. Frank [1984], "Tensor methods for nonlinear equations", SIAM Journal
on Numerical Analysis 21, pp. 815-843.



28

G.W. Walster, ER. Hansen and S. Sengupta [1985], "Test Results for a global optimization
algorithm", in Numerical Optimization 1984, P. Boggs, R.H. Byrd and R.B. Schnabel, eds.,
SIAM, Philadelphia, pp. 272-287.



ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDA-
TIONS EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE

AUTHOR AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.



UNCLASSIFIED

SECUKRITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

DISTRIBUTION STATEMENT (of this Report)

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
CU-CS-345-86 N/A N/A
4. TITLE (and Subtitie) 5 YTYPE OF REPORT & PERIOD COVERED
Concurrent Function Evaluations in Local and
Global Optimization 6 PERFORMING ORG. REPORT NUMRER
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(®)
Robert B. Schnabel DAAG-29-84~-K-0140
3. PERFORMING ORGANIZATION NAME AND ADDRESS 0 FROGRAM ELEMENT, PROJECT, TASK
. AREA & WORK UNIT NUMBERS
1Y, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research DOffice October 1986 ;
Post Office Box 12211 13, NUMBER OF PAGES
Research Triangle Park, NC 27709 28
T4, MONITORING AGENCY NAME & ADDRESS(!! ditferent trom Controlling Ollice) 15. SECURITY CLASS. (of this report)
Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
Te.

Approved for public release; distribution unlimited.

A

DISTRIBUTION STATEMENT fof the abstract entered in Block 20, {{ different trom Report)

NA

SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
autﬁor(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

1%, KEY WORDS (Continue on reverse aide {f necessary and faentity Oy diock nurno.-r)

unconstrained optimization, global optimization, multiprocessor,

concurrent function evaluation

Attached

208 ABSTRACT (Coo(lamsy e roverss stdn $t necvesary aod identity &y block numnber)

FOrtd
DD , 50", 1473  EDITION OF ) OV 65 1S OBSOLETE

UNCLASSI=IED

SECURITY CLASSIFICATION OF THIS PAGE

(®When Data Entered)




