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Thesis directed by Prof. Joseph R. Kasprzyk

Deep uncertainty refers to situations in which decision makers or stakeholders do not know, or

cannot fully agree upon, the full suite of risk factors within a planning problem. This phenomenon

is especially important when considering scenarios of future environmental change, since there

exist multiple trajectories of environmental forcings (e.g., streamflow timing and magnitude) and

socioeconomic factors (e.g., population growth). This thesis first reviews frameworks that have been

proposed to plan for systems under deep uncertainty. One recently introduced framework is Many

Objective Robust Decision Making (MORDM). MORDM combines two techniques: evolutionary

algorithm search is used to optimize planning alternatives and robust decision making methods

are used to sample performance over a large range of plausible factors and subsequently choose a

robust solution.

However, MORDM does not incorporate the deeply uncertain scenario information into the

search process itself. In this thesis, we present a methodology for doing so, that focuses on modifying

the suite of uncertain data selected within the search process. Using a case study of water planning

in the Lower Rio Grande Valley (LRGV) in Texas, this research uses several visualization techniques

to assess the performance of optimized alternatives across five different deeply uncertain scenarios

to answer two major questions: (1) How do the deeply uncertain scenarios impact the tradeoffs

and decisions? and (2) What is the impact of experiencing futures unlike the optimized conditions?

Ultimately, the results compare baseline optimization with new solution sets that examine optimal

management strategies under scenarios that mimic possible scenarios of water management under

environmental change.
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Chapter 1

Introduction

The global water resources supply is threatened by uncertainties such as impending extreme

weather events driven by climate change and land use change from population growth and migra-

tion. Uncertainty is defined as limited knowledge about future, past, or current events [Walker et

al., 2013b]. However, these factors extend beyond the concept of uncertainty into deep uncertainty.

Deep uncertainty characterizes components of a planning problem in which decision makers cannot

agree upon the full set of risks to a system or their associated probabilities [Knight, 1921; Langlois

and Cosgel, 1993; Lempert, 2002, 2003; Kasprzyk et al., 2013]. Decision making in the context

of deep uncertainty is necessary to cope with and adapt to environmental change, which broadly

captures both human-induced and natural changes to the physical, biological, chemical, and geolog-

ical environment [Foresight: Migration and Global Environmental Change, 2011]. In fact, a recent

World Bank white paper urges decision makers to develop plans that adapt to and mitigate the

innate uncertainty that surrounds climate change to avoid global consequences [Kalra et al., 2014].

In this thesis, we incorporate deep uncertainties into the development of water resources

management strategies, providing an alternative method to manage resources in the context of

environmental change. Specifically, we adjust the likelihood of hydrological and demand extremes

in the input of a simulation model linked with a multi-objective evolutionary algorithm (MOEA),

allowing the MOEA to search under varying conditions of uncertainty. We present and test our

methodology by generating alternative water supply management strategies that utilize permanent

water rights and market instruments to meet demands of a hypothetical city in the Lower Rio
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Grande Valley (LRGV) of Texas. This research serves as an extension of prior work surrounding

the integration of the LRGV case study with multi-objective optimization [Kasprzyk et al., 2009,

2012, 2013].

There are several questions driving this study. First, how does incorporating deep uncer-

tainty within the search process of an MOEA impact the performance of water supply management

strategy decisions? For the LRGV case study, we measure the performance of water supply man-

agement strategies using objectives of efficiency, risk, and market use. Second, what is the impact

on water supply management strategy decisions? Essentially, we want to explore whether devia-

tions from expected hydrological and demand model input conditions result in a different suite of

alternative management strategies. Lastly, how do water supply management strategies optimized

under particular conditions of uncertainty perform under different conditions of uncertainty? In

answering this question, we illustrate how a water supply management strategy within a specific

optimized solution set performs when the city experiences other unplanned conditions.

Before exploring these questions, Chapter 2 provides further motivation for this work. Within

this section, a review of traditional and modern optimization strategies provides a foundation for the

optimization methodology used in this work. Additionally, decision making frameworks designed

to handle uncertainty are briefly reviewed to identify gaps in the current literature that our work

can close. Chapter 3 discusses the LRGV case study and simulation model. We also lay out

the problem formulation inherited from prior work and the computational experiment contributed

by this thesis. Chapter 4 presents the results in two separate phases to answer the motivational

questions discussed previously. Chapter 5 discusses the results, presents conclusions, and identifies

avenues for future work. This thesis is being adapted into a journal manuscript for Environmental

Modelling & Software.



Chapter 2

Background

2.1 Motivation

Water management systems have been designed, developed, and operated under assumptions

of stationarity [Milly et al., 2008]. Stationarity considers the mean and variance of processes

constant over time, allowing historic data to represent future conditions. However, there is increased

variability of streamflow, precipitation, and evaporation resulting from anthropogenic causes [Milly

et al., 2008; Parry and IPCC, 2007; Solomon and IPCC, 2007; Seager and Vecchi, 2010]. For

example, in the Western United States, there were shifts in precipitation, snowmelt, and streamflow

from 1950 to 1999 in response to increased greenhouse gas concentrations and aerosol use [Barnett

et al., 2008]. This hydrologic variability coupled with uncertain population and land use changes

indicate that future conditions are uncertain. In result, Milly et al. [2008] issue a call to plan

and assess risk of water management systems under these changing hydrological and socioeconomic

conditions. Robust planning is one approach to plan in the presence of uncertainty in which

planning strategies and policies are developed to withstand many plausible trajectories or scenarios

of future conditions [Schindler and Hilborn, 2015].

This thesis presents and tests a framework to plan under uncertainty using the robust plan-

ning approach. The resulting framework has footings in traditional and modern optimization and

decision making methods. This chapter provides a background of these methods and their appli-

cations in water resources literature.
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2.2 Optimization

Optimization refers to the process of searching for the maximum or minimum of one or more

response functions [Wehrens and Buydens, 2006] as a means of finding the most ideal solution. An

optimization problem in its general form follows below [Deb, 2008].

Maximize fm(X), m = 1, 2, . . . ,M ;

Subject to: gj(X) ≤ 0, j = 1, 2, . . . , J ;

hk(X) = 0, h = 1, 2, . . . ,H;

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , I;

(2.1)

Equation (2.1) represents either a single-objective optimization problem where the number of

objective functions, M , is one, or a multi-objective optimization problem, where M is greater than

1. The formulation above presents the optimization problem as a maximization problem, but it is

also acceptable to minimize the objective function. The X vector is composed of decision variables,

quantities that are solved for to optimize the objective function. The remaining components of

the optimization problem are constraints, or equations to be satisfied to ensure a realistic optimal

solution. gj(X) and hk(X) denote inequality and equality constraints, respectively. The final

constraint restricts decision variables between an upper and lower bound, creating a decision space.

A solution is feasible if it satisfies all of the constraints.

It is difficult to define the functions and constraints to find an optimal solution for a real

system that has many stakeholders and complexities [Rosenhead, 1996; Hitch, 1960; Tsoukias,

2008]. This is especially true in water resources planning problems, which could be characterized

as “wicked.” Reed and Kasprzyk [2009] summarize Liebman [1976] and Rittel and Webber [1973] by

describing wicked problems as ill-defined due to their risks and uncertainties. Additionally, water

resources planning problems are wicked because they involve society as a whole; therefore, they are

difficult to solve and are continuously re-solved over time [Reed and Kasprzyk, 2009; Rittel and

Webber, 1973]. Liebman [1976] argues that the optimization process may be used to learn about

wicked problems, where the desired end solution may be initially unknown. To do so, optimization
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should be used to formulate and understand alternative solutions. In this light, optimization is a

tool to find and present alternative solutions to decision makers, thus providing the insights needed

to make an informed decision. It is in this context that we present our work.

In the remainder of this section we expand upon different types of optimization and their

uses in water resources planning. Specifically, we discuss deterministic mathematical programming,

probabilistic mathematical programming, and multi-objective evolutionary algorithms.

2.2.1 Deterministic Programming

Deterministic programming frames optimization problems by assuming all parameters are

known a priori. Linear programming and dynamic programming are examples of classical deter-

ministic optimization methods that have been applied in water resources problems. A key challenge

with classical optimization problems is that the number of variables to solve can grow very large

when an analyst considers multiple factors within the optimization problem. For example, water

resources systems can be composed of physical infrastructure; regulations, rights, and laws; eco-

logical and biological concerns; human demands; and hydrological and climatic inputs. A linear

program may be utilized to solve a water allocation problem where the decision variables would

be set as quantities of water to allocate to different purposes. The constraints would ensure the

preservation of mass balance, and the objective function would maximize some benefit that is a

function of the volumes of water allocated. A linear program follows the generalized formulation

of Equation (2.1); however, the objective function(s) and all constraints are linear, as shown in

Equation (2.2).

Maximize Z = c1x1 + c2x2 + ...+ cmxm

Subject to: a11x1 + a12x2 + ...+ a1mxm ≤ b1

...
...

aj1x1 + aj2x2 + ...+ ajmxm ≤ bj

xh ≥ 0

(2.2)
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Equation (2.2) is an instance of Equation (2.1) and consists of an objective function, Z, and

constraint functions. The c and b vectors are known quantities that are payoffs for the respective

decision variables in the objective function and right hand side limits on the constraints. The a

matrix contains coefficients on the decision variables in the constraints. The final constraint is a

non-negativity constraint for all activities.

This optimization methodology provides an intentionally simplified representation of a prob-

lem [Dreyfus, 1956] due to the linearity requirement. However, linear programming approaches

have been efficiently and adequately employed to solve complex water resources problems in which

non-linear processes were approximated [Loucks et al., 2005]. Drobny [1971] provides a thorough

review of linear programming applications in the field of water resources in the late 1960s, when

this field was growing in popularity. Some notable examples include reservoir operating policy with

conflicting hydropower and irrigation objectives [Thomas and Revelle, 1966] and water allocation

to meet both tangible (e.g., agricultural uses) and intangible (e.g., fish and wildlife preservation)

objectives using economic criteria [Heaney, 1968].

Dynamic programming builds upon linear programming, but offers a framework for breaking

larger optimization problems into smaller sub-problems to be solved. In our discussion of optimiza-

tion, dynamic programming introduces the concept of multi-stage problem solving in which there

are sequential decisions in stages where a decision in one stage impacts the following stage. Often,

multi-stage programming provides the capability for optimization over time; however, multi-stage

decisions may be beneficial in many situations. There are many notable uses of dynamic pro-

gramming in solving water resource problems, such as branching sewer design [Mays and Wenzel,

1976] and maintenance of river dissolved oxygen levels [Chang and Yeh, 1973]. Yakowitz [1982]

provides a comprehensive review of water resources problems analyzed and solved using dynamic

programming.

While linear programming and dynamic programming are efficient and readily employable

with modern computing power, there are many limitations. Linear programming often oversimpli-
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fies problems by linearly approximating all functions.1 The decision variables must be proportional

to their levels of use and the objective function must be equal to the sum of the individual parts.

It is also difficult to include all levels of complexity of a water resources problem with respect

to all stakeholders within a linear or dynamic program. For this reason, linear programming is

frequently used to initially screen a problem or reduce alternatives [Loucks et al., 2005]. Dynamic

programming offers some additional flexibility by readily handling nonlinearity and integer prob-

lems [Buongiorno, 2003], but it requires custom development since the approach is more general

[Labadie, 2004]. These methods are traditionally used for problems that estimate values for the

many uncertainties found in water resource planning problems. Above all, these methods, as they

are defined here, are designed to optimize with respect to a single objective. It should be noted that

this review has only compared two types of deterministic programming; however, there exist other

frameworks such as non-linear programming, integer programming, and quadratic programming

that can be applied in water resources problems. These other existing frameworks and newer opti-

mization methodologies are used in practice and research to overcome the highlighted weaknesses

of linear and dynamic programming.

2.2.2 Probabilistic Programming

Uncertainty is inherent in real-world problems, especially in the field of water resources which

depends on hydrologic and climate variables, such as runoff and precipitation, that may be acknowl-

edged as random phenomena. Stochastic and robust optimization are mathematical programming

frameworks that incorporate uncertainty with probabilistic representations of parameters. These

uncertainties are deemed classical uncertainties.

Stochastic programs follow the general optimization formulation provided by Equation (2.1),

typically optimizing the expected value, allowing some or all of the data incorporated in the ob-

jective function and constraints to be uncertain. Uncertain parameters are assumed as random

variables and characterized by known or estimated probability distributions. A reasonable ap-

1 Both proportionality and additivity must be satisfied in linear programs.
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proach to incorporating uncertainty may be optimizing to find a solution that is feasible across

all possible parameter values [Shapiro and Philpott, 2007]. However, stochastic programs capital-

ize on the likelihood of parameter values despite the inherent uncertainty. Linear and dynamic

programs can adopt stochastic formulations. It is standard to solve stochastic programs across

multiple realizations of uncertainty referred to as scenarios [Shapiro and Philpott, 2007].

Various types of stochastic programs, such as two-stage recourse, multi-stage recourse, and

chance-constrained problems, offer flexibility in how to incorporate uncertainty [Birge, 1997]. Two-

stage recourse linear programs are the most common stochastic programming formulation [Shapiro

and Philpott, 2007], with water resources implementations beginning in the 1960s [Huang and

Loucks, 2000]. Both two-stage and multi-stage recourse models include decisions that are made prior

to and after uncertainty is realized in the problem [Birge, 1997]. Essentially, a decision or action

is taken in the first stage then the system is subjected to a random event consisting of uncertain

parameters. In the recourse stage or stages, the decision maker may make decisions responding to

the possibly negative outcomes resulting from the uninformed prior decision or decisions [Shapiro

and Philpott, 2007] and may allow infeasibilities with a penalty [Sahinidis, 2004]. Huang and

Loucks [2000] take advantage of the power of two-stage linear programs to handle more ambiguous

uncertain parameters that cannot be represented by probability distributions, illustrating one of

the advantages of stochastic programming. The study presents a hypothetical inexact two-stage

stochastic programming problem that optimizes the economic activity in a water supply in which

available water is modeled as a random variable.

In two-stage or multiple-stage recourse models, however, it is difficult to prevent constraint vi-

olations since decisions are made before randomness or uncertainty is realized. Chance-constrained

stochastic programming introduces probabilistic constraints, meaning that optimization constraints

must hold with a certain probability [Birge, 1997; Henrion, n.d.]. In essence, these probabilistic

constraints allow the optimization to meet feasibility under uncertainty [Sahinidis, 2004]. There are

three general methods for implementing chance-constrained programming: maximizing an expected

value function subject to chance constraints; minimizing the variance subject to chance constraints;
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and maximize the likelihood of satisfying the chance constraints [Olson and Wu, 2010; Charnes and

Cooper, 1959]. In the field of water resources, this type of mathematical programming formulation

helps capture the uncertainty in constraints on water quantity and quality parameters, which are

naturally non-deterministic.

Stochastic programming is useful when seeking decisions with average performance across

many possible scenarios [Shapiro and Philpott, 2007]. Satisfactory operations under a range

of hydrologic and demand possibilities is an essential characteristic of water resources systems

[Hashimoto et al., 1982], meaning that it may be deficient to design a system that may operate suc-

cessfully under some plausible scenarios and fail under other plausible scenarios. To overcome this

risk of failure, the Robust Optimization (RO) framework may be applied. RO, developed by Mulvey

et al. [1995], is a mathematical programming framework designed to find robust solutions to water

resources problems by integrating goal programming with scenarios or realizations of uncertainties

[Watkins and McKinney, 1997; Mulvey et al., 1995]. The resulting robust solutions perform well

relative to alternative solutions over a wide range of plausible futures under uncertainty [Lempert,

2003; Morgan, 2009].

RO is a hybrid framework, bridging stochastic programming with multi-objective analysis

[Watkins and McKinney, 1997]. The basis of the multi-objective component of RO is goal program-

ming. Goal programming, originally an extension of linear programming, aims to simultaneously

consider and prioritize several objectives, which differs from the deterministic programs discussed

in Section 2.2.1. Generally, goal programming formulations seek to minimize the summation of

undesired deviations between goals, or target values, and achievements [Lee, 1973]. Essentially,

the constraints are reformulated as objectives that are to be met “as closely as possible,” allowing

for constraint violation unlike other programming frameworks [Charnes et al., 1955]. To complete

the RO formulation, scenario-based analysis is coupled with goal programming. Essentially, the

mathematical programming formulation is subjected to a series of scenarios, or combinations of

values for uncertain parameters. Scenario-based analysis is introduced to develop solutions that

are less sensitive to perturbations or uncertainties [Mulvey et al., 1995]; thus, providing the ability
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to both estimate and control the risks of sub-optimality [Watkins and McKinney, 1997].

A robust optimization problem formulation is shown in Equation (2.3) [Mulvey et al., 1995;

Watkins and McKinney, 1997].

Minimize σ(x, y1, ..., ys) + ωρ(z1, ..., zs)

Subject to: Ax = b

Bsx+ Csys + zs = es for all s ∈ Ω

x ≥ 0, ys ≥ 0 for all s ∈ Ω

(2.3)

The x and y vectors consist of decision variables. The x vector contains design decision vari-

ables, which are determined independent of uncertainty realizations, whereas the y vector contains

control decision variables, which are subjected to uncertainty realizations. The first term in the

objective function is itself an aggregate objective function that could be used to compute the mean,

conduct a worst-case analysis, or represent an alternative utility function, depending on the intent

of the optimization. This term determines how “close” the solutions are to optimality. The second

term is the feasibility penalty function, which penalizes constraint violations. This term measures

the feasibility of the solutions, and it is weighted, similar to many goal programming formulations,

to indicate the acceptability of solution infeasibilities. The model is subjected to a set of scenarios,

Ω, each with a different probability of occurance, p. Lastly, the set of z error variables measures the

infeasibility of the control decision vectors. This formulation allows a decision maker to evaluate

and understand the tradeoffs between optimality and feasibility.

With the formulation demonstrated by Equation (2.3), it is evident that this framework is

not simply a reactive sensitivity analysis tool [Bertsimas et al., 2011]. The scenario-based analy-

sis component finds solutions that are less sensitive to perturbations or uncertainties proactively

[Mulvey et al., 1995], which provides the ability to both estimate and control the risks of sub-

optimality [Watkins and McKinney, 1997]. An explicit comparison between traditional stochastic

programming approaches and RO is illustrated by Watkins and McKinney [1997] through two water

resources examples adapted from prior literature – water supply planning under various scenarios of
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water supply and demand events (adapted from Lund and Israel [1995]) and groundwater contam-

inant plume containment under many hydraulic conductivity realizations (adapted from Gorelick

[1987]; Wagner et al. [1992]; Morgan et al. [1993]; Chan [1994]). In both examples, Watkins and

McKinney [1997] demonstrate that RO formulations allow the decision maker to incorporate risk

or robustness along with other objectives in evaluating system tradeoffs.

While the RO framework is flexible, there are disadvantages, one of which being the issue

of “overconservatism,” which refers to the requirement for robustness across all uncertainties de-

spite their individual probabilities [Gabrel et al., 2014]. Alternative RO formulations have been

presented to control the degree of conservatism of resulting solutions, thereby alleviating this lim-

itation. Chung et al. [2009] demonstrate a formulation presented by Bertsimas and Sim [2004]

in a hypothetical water supply management optimization in which uncertainties of future demand

and supply are considered. To minimize system costs of a hypothetical water supply system that

includes groundwater, surface water, and transferred water inputs, Chung et al. [2009] introduce

a set of parameters that control the degree of uncertainty of the system. For the purposes of their

problem, the overall level of system reliability was controlled, resulting in new constraint formula-

tions for uncertain precipitation, availability of water for import, and water demand. Solving this

problem formulation demonstrated that uncertainties in future demands (agricultural and domes-

tic) dominate the system, controlling system costs. These results showed a tradeoff between system

reliability, denoted as probability of constraint violation, total system costs, and amount of water

imported.

To conclude, solutions derived from a deterministic mathematical problem formulation can

often result in sub-optimality or infeasibility when uncertainty impacts the system [Watkins and

McKinney, 1997; Dantzig, 1955; Bertsimas et al., 2011]. Both traditional stochastic programming

and RO frameworks overcome this inability of deterministic programming to consider uncertainty

inherent in real-world problems. Stochastic programming is beneficial when the system uncertain-

ties may be quantified probabilistically; however, in situations when the decision maker desires a

robust system that remains feasible under any value of uncertainty, Robust Optimization is pre-
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ferred.

2.2.3 Multi-Objective Evolutionary Algorithms

The simplifying assumptions required for the deterministic and probabilistic formulations

discussed previously are often unrealistic when trying to solve real-world water resources prob-

lems. These problems are typically characterized by multiple, conflicting objectives such as eco-

nomic goals, water demand obligations, and regulatory requirements. Furthermore, the problems

often encompass large decision spaces, include nonlinearities, or have multimodal behavior. Multi-

objective evolutionary algorithms (MOEAs) are heuristic search algorithms that mimic evolutionary

processes to approximate the optimal set of solutions to optimization problems. MOEAs have the

capability to solve real-world problems whereas deterministic methods may not be suited or even

fail [Nicklow et al., 2010].

A multi-objective evolutionary algorithm may be integrated with a simulation model, as

shown in Figure 2.1, in which the algorithm feeds decisions to the model as inputs and, consequently,

outputs are used to compute objective functions. This process is called simulation optimization.

In the framework of an MOEA, each alternative solution, which may be a different policy, design,

or project [Basdekas, 2014], is represented by a set of decisions, or a decision vector. As stated by

Nicklow et al. [2010], these algorithms are characterized by several elements. There is a random

initial generation of a population of candidate solutions. Objective functions are used to assess the

fitness of each potential solution. When optimizing using an MOEA, objective functions are not

required to share the same units of measure [Deb, 2001]. A selection operator determines which

solutions are deemed “parent” solutions, used to generate “offspring” solutions. A variation opera-

tor alters the selected solutions to ensure diversity and prevent premature convergence. Variation

operators include mating and mutation operators. Mating combines the genetic material of two

parent solutions to generate offspring whereas a mutation operator alters the genetic material of a

single solution to create a new solution or solutions. The process begins with the initial random

candidate set of solutions, which are fed into a simulation model, and repeats with offspring popu-
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lations iteratively until stopping criteria is met, with the final surviving solutions representing the

Pareto approximate set. The reader is encouraged to refer to Deb [2001] and Coello et al. [2002]

for an in-depth review of multi-objective optimization and evolutionary algorithms.

This class of algorithms has grown in popularity, in part, because they are population-based,

determining a population of solutions in a single run of the algorithm [Coello et al., 2002]. The

concept of Pareto optimality is used in MOEAs since there is not a single optimal solution. A

solution within the population is deemed Pareto optimal (non-dominated) if no other solution

within the population exhibits improvement in an objective without sacrificing performance in

another objective. Pareto optimal solutions form the Pareto optimal set and represent tradeoffs

between objectives because it is impossible to simultaneously maximize or minimize conflicting

objectives in multi-objective problems [Van Veldhuizen and Lamont, 2000].

Figure 2.1: Integration of a multi-objective evolutionary algorithm with a generic simulation model

Applications of MOEAs in water resources are growing rapidly. One notable example, Smith

et al. [In Review], linked an MOEA with RiverWare, an object-oriented simulation model used

to model river systems, to determine optimal pumping strategies and reservoir balancing rules for

a water supply utility, Tarrant Regional Water District, in Texas. Basdekas [2014] demonstrates
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practitioner use of MOEAs in a drought policy study for the Colorado Springs Utilities, using

conflicting objectives of demand reliability, demand vulnerability, storage reliability, and storage

resilience. In addition to the previous examples of water resources planning problems, MOEAs

have also been utilized in groundwater applications, such as long-term groundwater monitoring

(LTM) design. In this specific design problem, the placement of sampling wells is optimized to

sample a groundwater contaminant plume. This design problem has been leveraged to further

understanding of how problem size affects MOEA effectiveness as well as issue a comparison between

the performance of different MOEAs [Kollat and Reed, 2007; Kollat et al., 2008].

This thesis extends a series of studies that have utilized MOEAs to optimize water supply

management strategies for the Lower Rio Grande Valley (LRGV) case study. The LRGV case

study is of a hypothetical city in Texas that uses permanent water rights and water marketing

instruments (i.e., spot leases and adaptive options contracts) to ensure adequate water supply for

city demands. A simulation model of the case study has been used in conjunction with MOEAs to

generate alternative water management strategies composed of the three water supply instruments.

The case study and associated simulation model are discussed further in Sections 3.1 and 3.2,

respectively. The first study in this series of studies introduced many (three or more) objective

optimization using the epsilon Nondominated Sorting Genetic Algorithm II (ε-NSGAII) [Kollat

and Reed, 2006] to the case study [Kasprzyk et al., 2009]. Kasprzyk et al. [2009] presents four

different cases to understand how introducing new water supply instruments increases flexibility

in water supply management strategies. Case A represents typical water utility planning in which

permanent water rights are the sole source of water supply. Case B introduces water leasing, Case

C adds both leases and adaptive options contracts, and Case D represents a highly constrained Case

C that ensures a certain level of reliability. By incorporating many objectives using an MOEA, this

study demonstrated that water marketing lowers costs, increases reliability, and improves efficiency

of water supply management strategies. Kasprzyk et al. [2012] contributed the sensitivity-informed

de Novo planning framework that continually updates objectives, decisions, and constraints based

on knowledge gained while solving the problem. This framework is inspired by the de Novo planning
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paradigm developed by M. Zeleny [Zeleny, 1981, 2005]. In this application, a sensitivity analysis is

performed on the initial problem formulation to inform new many-objective problem formulations.

Once the formulations are optimized using an MOEA, the preferred optimized problem formulation

set may be selected to see how deviations from the expected assumptions impact the performance

of alternative management strategies. By incorporating this framework with the LRGV case study,

Kasprzyk et al. [2012] demonstrated that a moderately complex problem formulation is sufficient to

develop efficient, reliable water supply management strategies. Building upon the results from the

de Novo study, Kasprzyk et al. [2013] introduced a new planning framework termed Many Objective

Robust Decision Making that assesses the robustness of alternative management strategies and

studies what conditions of uncertainty impact robustness. This framework is discussed in detail in

Section 2.3.2.

The LRGV case study has also been used in two different diagnostic studies of MOEAs.

Reed et al. [2013] assessed the effectiveness, reliability, controllability, and efficiency of ten different

MOEAs including the Borg MOEA [Hadka and Reed, 2013]. The LRGV case study served as a

reasonable diagnostic test because it is highly constrained, representing the only test case in the

study with explicit constraints within the problem formulation, and non-deterministic, which makes

this case a challenging search test for the MOEAs compared in the study. In result, this case study

proved to be the most difficult test problem to solve, with the Borg MOEA and the OMOPSO

MOEA [Sierra and Coello, 2005] being the top performing algorithms for this problem. Kasprzyk

et al. [In-Press] explored the impact of aggregate objective functions and reduced decision variable

formulations on the search of an MOEA using the LRGV case study. This study investigated

Arrow’s Paradox, a theorem introduced by Arrow [1950] stating that it is impossible to create a

weighting function to simultaneously and fairly consider multiple stakeholder preferences between

three or more alternatives. Using four different problem formulations, Kasprzyk et al. [In-Press]

showed that the solution sets emerge as a result of Arrow’s Paradox, with aggregate formulations

biased towards solutions that primarily utilize permanent water rights rather than water marketing

mechanisms, for example. For the LRGV case study, this study also found that a larger number
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of objectives resulted in a more controllable, reliable, efficient, and effective MOEA search. In

conclusion, these research studies demonstrated the ability for MOEAs to solve the complex LRGV

case study problem that is featured in this thesis.

2.3 Decision Making Under Deep Uncertainty

Recall that frameworks for decision making in the presence of deep uncertainty are contin-

uously emerging. Deep uncertainty refers to components of a planning or management problem

where decision makers cannot agree upon the full set of risks to a system or their associated prob-

abilities [Knight, 1921; Langlois and Cosgel, 1993; Lempert, 2002, 2003; Kasprzyk et al., 2013].

Several of these decision making frameworks for complex systems include Robust Decision Making

[Lempert et al., 2010], Many Objective Robust Decision Making [Kasprzyk et al., 2013], Adap-

tive Robust Design [Hamarat et al., 2013], Adaptive Policymaking [Walker et al., 2001], Info-Gap

Decision Theory [Ben-Haim, 2006], and Dynamic Adaptive Pathways [Haasnoot et al., 2013]. Ul-

timately, these frameworks aim to eliminate failures caused by excluding uncertainty in policy or

strategy development [Lempert, 2003; Hamarat et al., 2013]. Some of these frameworks focus on

developing robust planning strategies or policies, that is strategies that perform well across many

different assumptions regarding the deeply uncertain factors [Lempert, 2002; Hine and Hall, 2010;

Brown et al., 2011]. Other frameworks hone in on adaptivity, the ability to adapt to changing

future conditions [Haasnoot et al., 2011; Walker et al., 2013a].

This section provides a non-comprehensive review of these frameworks, highlighting Robust

Decision Making, Many Objective Robust Decision Making, Adaptive Robust Design, and Multi-

Objective Adaptive Robust Design, to provide an adequate background relevant to the methods

used in this thesis.

2.3.1 Robust Decision Making

Robust Decision Making (RDM), a product of the RAND corporation, is a framework de-

signed to evaluate policy or strategy options in the presence of uncertainty [Lempert et al., 2010].
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RDM is a framework for decision making in which solutions (policy or strategy options) are as-

sessed across a range of plausible futures, similar to the scenario-based approach of RO (discussed

in Section 2.2.2), thereby abandoning the approach of incorporating uncertainty by assuming a

single joint probability distribution applied in stochastic methods [Matrosov et al., 2013]. RDM

improves upon RO, however, with an iterative approach that capitalizes on computing power to

continuously simulate over many deeply uncertain possibilities to finalize an appropriate strategy.

This component of the framework formalizes the natural inclination for humans to test theories

and plans with “what if” scenarios [Lempert et al., 2010]. Additionally, this framework extends

beyond the human capability to pose futures by generating futures that are not simply based on

past trends and intuition [Lempert et al., 2010]. Hall et al. [2012] presents example uses of RDM,

such as using RDM to develop policies adaptive to climate change for the Inland Empire Utilities

Agency in California [Lempert and Groves, 2010].

The first step of RDM is to select a candidate solution or policy. Second, a scenario discovery

process, discussed in more detail in Section 2.3.2, finds combinations of uncertain parameters that

cause the candidate solution to perform poorly. A new candidate solution is then developed from

the original solution to hedge against vulnerabilities found in the scenario discovery step. These

steps are repeated until a seemingly robust strategy is found [Matrosov et al., 2013].

RDM is advantageous because it overcomes the limitations of traditional optimization meth-

ods that rely on best estimates and probability distributions of parameters input into simulation

models. RDM has the ability to help develop adaptive strategies that evolve over time as new

information becomes available. This framework uses two measures of robustness: (1) sacrifice of

optimality to increase insensitivity over many possible futures and (2) reasonable performance rel-

ative to alternatives over many possible futures [Hall et al., 2012]. These measures circumvent the

conservation strictness of other methodologies such as RO. Additionally, these measures of robust-

ness coupled with RDM’s ability to identify vulnerabilities of potential planning strategies [Hall

et al., 2012] allow the planner greater flexibility relative to RO. While this framework provides

a systematic process for selecting robust alternatives or strategies [Lempert et al., 2006], it lacks
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the ability to help the decision maker generate strategies to test within the framework [Kasprzyk,

2013].

2.3.2 Many Objective Robust Decision Making

The many objective robust decision making framework (MORDM) is a planning framework

for complex environmental systems that integrates MOEA optimization with the RDM framework

to optimize and select planning strategies under conditions of deep uncertainty. This framework

emphasizes the importance of decision maker involvement and feedback with an iterative approach

that leverages interactive visual analytics in several forms to inform problem formulation. MOEAs

are employed to generate alternative planning strategies subject to decision maker-defined system

constraints measured by many (four or more) objectives. To ultimately find a robust planning

strategy that performs well regardless of future external conditions, MORDM capitalizes on several

strengths of RDM: discovering combinations and values of uncertainties that cause system vulner-

abilities and evaluating the robustness of candidate planning strategy alternatives. MORDM was

developed and first demonstrated by Kasprzyk et al. [2013]. The research presented in this thesis

is based on the MORDM framework.

Figure 2.2: Many Objective Robust Decision Making framework [Kasprzyk et al., 2013]
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As shown in Figure 2.2, the following steps compose the MORDM framework: (1) problem

formulation, (2) generating alternatives, (3) uncertainty analysis, and (4) scenario discovery and

tradeoff analysis. The first step is carried out in conjunction with the decision maker and stake-

holders to determine what system elements and decisions are important. The problem formulation

step is divided into four components denoted as X, L, R, and M, inspired by the RDM framework

[Lempert, 2003; Lempert et al., 2006]. Uncertainties (X ), are exogenous (i.e., external) factors rep-

resented by assumed values or probability distributions. These uncertainties are beyond the control

of the decision maker and, therefore, could dramatically impact the system if assumed values and

distributions misrepresent future conditions. Decisions (L) are actions the decision maker can take

to interact with the system. The relationship (R) is a simulation model linked to an MOEA that

maps actions to outcomes. Performance measures (M ) are objectives used to measure the success

of different planning strategies. These individual components are open to re-formulation as more

is learned about the problem through iteration of the MORDM framework [Liebman, 1976; Reed

and Kasprzyk, 2009; Kasprzyk et al., 2013; Herman et al., 2014, 2015].

Planning strategy alternatives composed of the decisions and evaluated by the performance

metrics determined in the problem formulation step are generated using an MOEA. This is un-

precedented in the RDM framework before the introduction of MORDM. The Pareto approximate

solutions representing planning strategies are developed based on assumed best-estimate values

and probability distributions for X, which, for the remainder of this section, are termed baseline

conditions.

Uncertainty analysis is performed to expose the Pareto approximate set of solutions to a

range of plausible values for uncertainties. Latin Hypercube Sampling (LHS) [McKay et al., 1979]2

is used to sample deep uncertainties within set ranges to generate an ensemble of plausible States

of the World (SOWs). The Pareto approximate set is subjected to these SOWs, allowing for a

robust solution to be selected based on performance thresholds chosen by the decision maker. The

2 Latin Hypercube Sampling is a multi-dimensional sampling technique that divides the sampling space into an
evenly-spaced grid then randomly selects one sample for each row and each column.
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implementation of MORDM in Kasprzyk et al. [2013] demonstrates a regret robustness metric, in

which the percent deviation between the performance metric values under the most extreme ten

percent of the SOWs and the baseline performance values is computed, assuming that if a solution

performs “well” in the most extreme SOWs, then it is a robust solution. Herman et al. [2014]

employs the MORDM framework on the Research Triangle, a region in North Carolina that includes

a network of four water utilities threatened by drought and growing demand. In this demonstration,

a different robustness metric is used to find a solution that performs well relative to alternatives

across a wide range of SOWs [Lempert and Collins, 2007; Hall et al., 2012]. Specifically, a robust

solution was found based on the fraction of SOWs in which all performance metric thresholds were

met. These two implementations illustrate the importance of robustness metric selection based

on the purpose of the decision making and present two opposing metrics of regret, defined as the

performance cost of choosing incorrectly [Herman et al., 2015], and satisficing, meeting one or more

performance thresholds at a potential sacrifice of optimality [Simon, 1959; Herman et al., 2015].

MORDM provides the framework for evaluating robustness; however, the modeler in conjunction

with the decision maker are responsible for choosing a sensible robustness metric for the system of

interest.

An RDM scenario discovery process is carried out to determine combinations of uncertainties

that cause the seemingly robust solution to perform poorly or fail. First, it is necessary to set

thresholds on performance metrics considering decision maker needs that characterize acceptable

(i.e., performance metric thresholds are not violated) versus vulnerable (i.e., performance metric

thresholds are violated) performance. The scenario discovery process itself is a statistical clustering

analysis that identifies the acceptable versus vulnerable solutions in which the Patient Rule Induc-

tion Method (PRIM) [Friedman and Fisher, 1999] is applied to find the combinations of exogenous

uncertain factors and their value ranges that cause vulnerability of the robust solution. PRIM

essentially identifies multi-dimensional “boxes” in which layers of uncertainty space are “peeled”

and “pasted” until each box represents the ranges of uncertainties likely to induce failure.

This framework stresses the importance of interactive visualization of decisions, performance
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metrics, and robustness of the solution set. Kasprzyk et al. [2013] utilizes glyph plots, three-

dimensional plots that use point shape, size, color, and transparency to communicate up to seven

dimensions, and parallel coordinate plots, plots that illustrate a pairwise comparison between per-

formance metrics with no limit on the number of dimensions shown [Inselberg, 1985; Wegman,

1990; Fleming et al., 2005; Kasprzyk et al., 2013]. These plotting techniques may be used to learn

about the problem and results of the problem formulation throughout the MORDM steps, allow-

ing the modeler and the decision maker ample opportunity to experiment with different problem

formulations.

As mentioned in Section 2.2.3, Kasprzyk et al. [2013] demonstrated the MORDM framework

using the LRGV case study. Kasprzyk et al. [2013] developed four different problem formulations

termed cases, each composed with a different combination of decision variables (i.e., variables that

represent permanent water rights, adaptive options contracts, and leases which compose water

management strategies). Each case was optimized using the ε-NSGAII [Kollat and Reed, 2006],

and the resulting solution sets were then subjected to 10, 000 SOWs. These SOWs were made up

of different values of uncertain inputs such as inflows and demands. To understand how perfor-

mance across the solution sets changed under uncertainty, the percent deviation from the baseline

performance value and the performance in the 10% most extreme SOWs was taken. Using visual

analytics and the uncertainty analysis results, a robust solution was selected from the simplest

problem formulation. This problem formulation is made up of permanent water rights, a single-

volume non-adaptive options contract, and a variable that determines “when” and “how much”

water to obtain using the options contract. In the scenario discovery step, the robust solution

was found to be vulnerable under values that scale the input probability distributions of inflows,

losses, and demands and parameter values of the initial rights, demand growth, and initial reservoir

volume. Specifically, three scenarios were found that caused high costs, low reliability, and high

market use of the robust solution. This thesis is based on these discovered scenarios. In this thesis,

we demonstrate how optimizing under these discovered conditions of uncertainty impact the water

supply management strategies for the LRGV case study. Our approach is discussed in Chapter 3.
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2.3.3 Adaptive Robust Design

Adaptive Robust Design (ARD) is an iterative and quantitative framework for adaptive pol-

icymaking or decision making, the design of policies or plans that adapt to changing conditions

[Hamarat et al., 2013]. This approach combines Adaptive Policymaking (APM) [Walker et al.,

2001], Exploratory Modeling and Analysis (EMA) [Kwakkel and Pruyt, 2013; Bankes, 1993], and

elements of RDM [Lempert et al., 2010] to move from a conceptual framework of adaptive policy-

making to an operational tool.

Figure 2.3: Adaptive Policymaking Process [Walker et al., 2001]

APM is a conceptual framework aimed toward designing long-term policies under uncertainty

[Walker et al., 2001, 2013a]. There are two major phases of the framework: (1) design or thinking

phase and (2) implementation phase. The first phase involves developing the basic policy, identify-

ing uncertainties, forming future actions to modify the policy, and establishing a monitoring system.

The devised future actions are categorized as mitigating, hedging, defensive, and corrective. Miti-

gating and hedging actions are enacted to prevent certain and possible, respectively, adverse effects

of a policy whereas defensive actions occur after a policy problem occurs. Corrective actions pro-

vide adjustments to the policy over time. The monitoring system consists of signposts and triggers.
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Signposts are specified information that should be tracked throughout the implementation of the

policy to measure success while triggers are critical values of signpost that indicate when additional

policy-modifying actions should be taken. The monitoring system is a key component of APM and

is present in the ARD framework. In the implementation phase, the policy is enacted, signposts

are tracked, and adaptive actions are put in motion when triggers are met. A more in-depth review

of this decision making framework is shown in Figure 2.3.

Figure 2.4: Adaptive Robust Design Process, adapted from Hamarat et al. [2013]

ARD builds upon this APM structure with EMA, model-based support developed by the

RAND Corporation that uses computational experiments to generate plausible scenarios used to

understand the effect of uncertainty on modeled systems [Kwakkel and Pruyt, 2013]. The resulting

ARD framework is composed of nine steps: (1) problem conceptualization; (2) uncertainty and

certainty identification; (3) development of models used to generate scenarios; (4) generation of a

large ensemble of scenarios; (5) scenario discovery on ensemble of scenarios [Bryant and Lempert,

2010]; (6) design of adaptive policies to overcome issues identified by the scenario discovery process;

(7) implementation of candidate policies in models; (8) generation of all plausible scenarios in the

case of the candidate policies; and (9) exploration and analysis of the scenarios generated [Hamarat

et al., 2013, 2014]. This process is illustrated in Figure 2.4.

Similarly to Kasprzyk et al. [2013], PRIM is used in the scenario discovery step. However,

Hamarat et al. [2013] employs PRIM to find both troublesome and promising regions of the
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uncertainty space to find combinations of uncertainties that result in negative as well as positive

effects in the modeled system. This framework is also designed to be an iterative process, like RDM

and MORDM, allowing the decision maker or policy maker to realize the effects of a plan or policy

then alter decisions to improve outcomes. ARD is demonstrated in a case study of the transition

from a fossil fuel driven energy sector to more sustainable energy generation technologies [Hamarat

et al., 2013]. In this application, the transition is dependent on the development and improvement

of sustainable technologies for actionable use and the subsequent adoption by society, both highly

uncertain. Hamarat et al. [2013] used LHS to generate an ensemble of scenarios for this case study,

marking another comparable component between the ARD and MORDM frameworks.

2.3.4 Multi-Objective Adaptive Robust Design

A recently introduced framework by Hamarat et al. [2014] integrates Adaptive Robust De-

sign [Hamarat et al., 2013] with MOEAs to develop adaptable policy strategies that cope with

deep uncertainty. Recall that deep uncertainty is defined as the inability of decision makers and

stakeholders to agree on or enumerate all of the uncertainties within a planning problem. In the

context of this policymaking approach, deep uncertainty also involves decisions that change over

time [Hallegatte et al., 2012; Hamarat et al., 2014]. Within this framework, ARD is used to un-

derstand the problem, develop scenarios, create adaptive policies, and test adaptive policies while

MOEAs are employed to determine robust and optimal values of trigger points to initiate future ac-

tions in the adaptable policies. The ultimate goal of this new approach is to determine and balance

the appropriate timing, represented by trigger points, to adapt policies that meet the objectives of

multiple stakeholders, which is a current gap in existing frameworks [Walker et al., 2010; Hamarat

et al., 2013, 2014].

The steps outlined in Section 2.3.3 are followed in this approach, with several adjustments.

First, to conduct the scenario discovery step, the uncertain input data are pre-processed using Prin-

cipal Component Analysis (PCA) [Dalal et al., 2013], a data transformation procedure that rotates

the coordinate system of the uncertainties to perpendicularly align with the scenario boundaries.
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Second, simulation optimization using an MOEA is used to determine values for triggers, declared

as decision variables, subject to constraints. Hamarat et al. [2014] elect to embed uncertainty

directly within the optimization by using robust objective functions that decrease sensitivity and

simultaneously increase the expected outcomes of the policy or plan. The authors suggest a robust-

ness metric inspired by the signal-to-noise ratio [Brub and Wu, 2000], where the mean is divided

by the standard variation for maximized objectives and the mean is multiplied by the standard

deviation for minimized objectives. This metric maximizes the expected value and minimizes the

standard deviation, or variance, which are indicative of more robust decisions.

The demonstrating case study in Hamarat et al. [2014] best illustrates how this complex

framework unfolds. The European Emissions Trading Scheme (ETS) policy aims to reduce carbon

emissions and increase use of renewable energy technologies to meet European Union targets for

the year 2020 by enforcing a cap-and-trade principle, which places a restriction on greenhouse gas

emissions while allowing trading of allowances for emissions. This policy has been ineffective in

reducing carbon emissions, which makes it an ideal case study. A simulation model of the EU’s

power sector is used to simulate 10,000 plausible futures based on Latin Hypercube Sampling of

46 different uncertainties such as economic growth, battery storage of renewable technologies, and

price-demand elasticity. Scenario discovery is conducted on the simulations to find vulnerabilities

and opportunities of the present ETS policy, which were utilized to determine three future policy

adaptation actions: (1) phasing-out of non-renewable energy technologies; (2) introducing a subsidy

fraction on the marginal costs of investing in renewable energy technologies; and (3) decommis-

sioning of non-renewable energy technologies based on a desired fraction of renewable technologies.

The same model simulations were re-run with these actions included in the policy, and showed

improvement with respect to several objectives of average total cost, carbon emissions reduction

fraction, and fraction of renewable energy technologies.

To find a robust and approximately optimal set of triggers to enact these future actions,

the simulation model was linked with the Nondominated Sorting Genetic Algorithm-II (NSGA-II)

[Deb et al., 2002]. The three objectives used to measure policy performance were transformed into
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the previously discussed robustness metrics (e.g., maximizing the mean of the fraction of carbon

emission reduction divided by the standard division of the fraction of carbon emission reduction).

Each of the three actions are made up of several decisions (e.g., the first action is made up of

two decisions: desired fraction of renewable technologies and additional fraction of non-renewable

technologies to be decommissioned). The robustness metrics are computed across 500 runs of the

simulation optimization where each run is representative of a different plausible future developed

using LHS across the 46 uncertainties again. The resulting solutions, each representing different

values for the the three action triggers, show a tradeoff between the average cost objective and the

fraction of reduced carbon emissions.

Through this case study, it is evident that this methodology may be used to develop adaptive

policies with specified triggers for actionable use. The incorporation of uncertainty into the actual

optimization using a robustness metric based on mean and standard deviation ensures that resulting

decisions perform well across a number of plausible scenarios.

2.3.5 Benefits and Limitations of Decision Making Under Uncertainty Frameworks

The frameworks discussed here provide a sample of decision making tools used to develop wa-

ter resources planning strategies. Two of these frameworks, MORDM and Multi-Objective Adaptive

Robust Design, incorporate optimization techniques, specifically MOEAs, within their frameworks.

MORDM integrates multi-objective optimization into the RDM framework, capitalizing on the

scenario discovery process of RDM, whereas the Multi-Objective Adaptive Robust Design frame-

work appends ARD and APM. However, MORDM and Multi-Objective Adaptive Robust Design

utilize MOEAs for different purposes. Within MORDM, a many objective problem formulation

is determined where the planning strategy composed of decision variables is optimized according

to many objectives of importance to the decision maker. In the Multi-Objective Adaptive Robust

Design framework, an MOEA is used to optimize trigger points, which enact future adjustments

to a planning strategy or policy when appropriate to adapt to changing conditions.

The varying uses of MOEAs within these two frameworks highlights another important dif-
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ference - the robustness measure. Within MORDM, robustness is measured after the planning

strategy is optimized. Thus, the alternative solutions, each representing a different set of values

for decision variables, are optimized under baseline conditions, ignoring any future deeply uncer-

tain trajectories. The robustness measure determines how susceptible each solution is to the deep

uncertainties, allowing the decision maker to select an approximately optimal solution according

to present baseline conditions that holds up against various futures. This methodology is useful

because deeply uncertain trajectories are unknown, thus it is sensible to optimize under expected

baseline conditions based on historical data. Essentially, MORDM guarantees a solution that is

“optimal” with respect to these conditions. However, if one of the extreme futures were to occur,

the robust solution may sacrifice an acceptable (as determined by the decision maker) amount of

performance in one or several objectives.

Within the Multi-Objective Adaptive Robust Design framework, the robustness of triggers

is optimized using an evolutionary algorithm. With this methodology, the strategy or policy is

optimized to adapt in a robust way, ensuring that the future actions are robust across a wide

range of futures. The robustness metrics between the two frameworks differ as well. MORDM uses

a percent deviation metric that deems solutions that perform well in extreme futures as robust.

Contrary to MORDM, Multi-Objective Adaptive Robust Design measures robustness as the ratio

of the expected value to the standard deviation of three particular performance measures, using

optimization across many different futures to increase the expected value and decrease the spread

of values. While Hamarat et al. [2014] includes deep uncertainty within the optimization search

by optimizing across many futures, the framework as it stands does not allow the decision maker

to consider other objectives of importance to design an adaptable planning strategy.

Both of these frameworks seek to overcome the static limitations of traditional approaches

[van Drunen et al., 2009; Walker et al., 2013a]. The Multi-Objective Adaptive Robust Design builds

in the ability to adapt to future changes with future actions and triggers. MORDM’s coping and

adapting flexibility is implicit in the iterative nature of the framework. When a planning strategy

becomes unsuitable, the problem may be reformulated and the framework may be applied to develop
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a fitting strategy. Additionally, both of these frameworks realize robust planning strategies or

policies across many different plausible futures, contrary to a select few futures.

To conclude, both of these recently introduced frameworks aid in the design of sustainable

plans, which must both be robust and adaptable [Walker et al., 2013a]. These frameworks also

demonstrate the use of optimization in decision making for water resources applications. Ultimately,

however, these frameworks do not ensure that a planning strategy or policy will perform successfully

(without loss of performance) under any one particular extreme future. This gap motivates the

point of departure of this thesis. In this thesis, we extend the MORDM framework to consider

deeply uncertain factors directly within the MOEA search itself. In doing so, we explore two

research questions: (1) how optimizing under conditions of deep uncertainty, specifically conditions

that may cause poor performance of a seemingly robust solution, impacts the design of a planning

strategy? and (2) how does this design of a planning strategy cope with futures unlike the conditions

of the optimization?



Chapter 3

Case Study and Methods

This thesis builds upon the optimization techniques and frameworks presented in Chapter 2

using a case study of the Lower Rio Grande Valley water market to demonstrate how to optimize

while incorporating deep uncertainty within the search process of an MOEA. Section 3.1 discusses

the case study, including general information about the region and the water supply tools. Section

3.2 discusses the simulation model representation of the case study used in conjunction with an

MOEA for this research. This simulation model is inherited from prior work [Kasprzyk et al., 2009,

2012, 2013]. The problem formulation from Kasprzyk et al. [2013] is presented in Section 3.3. The

computational experiment contributed by this thesis is outlined in Section 3.4.

3.1 Case Study

This thesis explores the impact of deep uncertainty on water management planning decisions

for a hypothetical city located in the Lower Rio Grande Valley (LRGV) region of Texas. The case

study is adapted from and expands upon prior work of Characklis et al. [2006], Kirsch et al. [2009],

and Kasprzyk et al. [2013]. This chapter provides a brief background of the LRGV region and

accompanying water market.

The LRGV basin is at the southernmost tip of Texas. The primary water source, shared by

the United States and Mexico, is the lower portion of Rio Grande River. Its shared use is governed

by the 1944 International Water Treaty between the United States and Mexico [Schoolmaster, 1991].

Diversions are stored in the Amistad and Falcon reservoirs, with a combined storage volume of 7.2
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billion cubic meters (bcm), excluding a flood storage volume of 2.6 bcm [Characklis et al., 2006].

Diversions and consequent storage from the Rio Grande River provide 99% of water for all uses as

groundwater reserves lack adequate water quantity and quality [Schoolmaster, 1991]. In general,

water management in Texas must prepare for likely extended drought conditions [Wurbs, 2014],

while providing for municipal, industrial, and agricultural demands. Economically, the LRGV is

an agricultural community, producing cotton and citrus fruits [Levine, 2007]. As of 1999, irrigation

accounted for 85% of regional water use [Characklis et al., 1999]. However, the recent growth in

the urban sector has lead to changes in water use distribution.

The water scarcity issues and constrained water use in this region are illustrative examples of

issues and uses in the western United States. However, the water rights and water market structure

found in the LRGV are unique to the region. Historically, water ownership was dictated exclusively

by riparian water rights3 until a “dual system” was adopted in the late 1800s to ensure water

resource sustainability in more arid regions of the LRGV [Stubbs et al., 2003]. This dual system

mandated that land acquired after 1895 would no longer retain riparian water rights, instead the

rights were appropriated according to a set of new Texas state procedures [Stubbs et al., 2003].

Water was overallocated through this dual system since prior riparian rights were still observed

while new landowners were also appropriated water. The water appropriation system in the LRGV

continued to evolve in 1967 to a system of State licensing of water rights, removing all prior riparian

rights [Stubbs et al., 2003; Wurbs, 2014]. In Texas, these licensed water rights are akin to property

rights, in which they may be sold, transferred, or leased under a specific set of rules Schoolmaster,

1991; Kaiser, 1987]. Furthermore, there are two surface water State licensing systems, one applying

to the the Lower and Middle Rio Grande below the Amistad Dam, which includes the LRGV [Stubbs

et al., 2003; Wurbs, 2014]. The remaining portion of Texas above the Amistad Dam abides by a

different State licensing system [Stubbs et al., 2003].

Presently, in the LRGV region, the majority of permanent water rights are held by irriga-

3 Riparian rights govern water as common property, where users may decide when and how to use water under
ownership [Dellapenna, 2011], contrary to the “first in time, first in right” basis of a prior appropriation system.
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tors. A rapidly growing population, fueled by immigration [Leidner et al., 2011], in the region is

diversifying and further stressing water use [Levine, 2007; Wurbs, 2014], resulting in complex use

of the water market among and between willing sellers in “marginal value” agriculture sectors and

“willing buyers” in municipal sectors in the region 4 [Schoolmaster, 1991]. The water market use is

in part a result of the growing demand, providing ample economic motive for irrigators to sell their

rights to municipal buyers [Characklis et al., 2006]. This increased competition for water between

agricultural and municipal users has lead to active water market use in the LRGV region of Texas

[Levine, 2007; Schoolmaster, 1991].

While this case study is modeled after the LRGV, the water supply management strategies

developed are widely applicable to other cities and countries that utilize water market structures

to control and distribute water. The relevance of this study is likely to increase as the prevalence of

water marketing also increases, where water scarce regions across the globe may turn to markets as

an adaptation mechanism [Wheeler et al., 2014]. One important constraint on adaptation capability

in these systems is the regulatory environment. In the western United States, water is distributed

according to prior appropriation doctrine, which serves as the basis for water markets that allow

the sale or transfer of rights within and out of basins [Donohew, 2009; Wheeler et al., 2014].

Specifically, the South Platte Basin in Colorado is one of the most active markets in the United

States, developed to support irrigation needs [Libecap et al., 2009]. Internationally, many countries

use private water markets, with Australia as a prominent example. In general, Australia’s water

marketing structure includes eight main water trading mechanisms [Tisdell, 2011], which is more

expansive than the number of water instruments in this study. In particular, the water market in

the southern Murray-Darling Basin is one of the most active markets in the world based on number

of transactions [Grafton et al., 2010; Wheeler et al., 2014]. Due to the prevalence of these active

water markets throughout the world, there is an audience that justifies the development of water

supply management strategies based on multi-objective tradeoffs.

4 Within the simulation model implementation of this case study, the city is not guaranteed water rights as stated
here. Within the model, there is a pro rata allocation of water rights, described in Section 3.2
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3.2 Lower Rio Grande Valley Simulation Model

In this thesis, we use an existing simulation model of the LRGV, which models a hypothetical

city with usage based on Brownsville, Texas. This model is a hydrologic-market supply simulation

model, developed by Kasprzyk et al. [2009, 2013] as an adaptation from Kirsch et al. [2009], used

to develop water management planning portfolios, which are water supply management strategies

consisting of both non-market and market tools.5 The LRGV model explores hypothetical forms

of water policy instruments, similar to a screening-level analysis as discussed in the policy literature

(e.g., Walker and Veen [1987]). Although the form of the supply instruments is not exactly the

same as in the real LRGV system, the model can potentially help planners discover new forms of

instruments and risk assessment under uncertainty, especially in the context of drought planning

[Kasprzyk et al., 2009].

The model obeys a reservoir mass balance and requires input parameters characterized by

both single scalar value and random values sampled from probability distributions. Specifically,

the model exploits historical hydrological (e.g., inflows, reservoir losses, and variation in reservoir

volume) and socio-economic (e.g., population projections, water supply demands, and spot lease

pricing) data from the region of interest. A 10-year simulation and single-year severe drought

simulation are performed at a monthly time step.

There are three distinct water supply instruments represented in the model: permanent rights,

adaptive options contracts, and spot leases. Permanent water rights may be held by a person,

corporation, or city [Schoolmaster, 1991]. In the LRGV model, the permanent rights belong to

the hypothetical city. In the LRGV system, permanent rights are given priority; however, in the

LRGV model, permanent water rights are allocated as a function of reservoir inflows [Characklis

et al., 1999]. The permanent rights decision variable is represented by the volume NR. These

rights grant allocations by a pro rata basis in the form of a percentage of water inflow to the rights

5 Although the model does not directly describe real water management in the LRGV, its development was
designed to help researchers explore alternative water marketing mechanisms, such as having a market augment
permanent rights, which are based on reservoir inflow only.
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holder each month. Essentially, if the city owns 5% of total regional water rights, determined by

the ratio of NR to total rights water volume, then the city is allocated 5% of inflows each month.

Water from permanent rights allocations may be used in any subsequent month. Permanent rights

are considered constant annually because transfer of rights is a time-consuming regulatory action

[Characklis et al., 2006]. The annualized cost, denoted by pR, is $22.50 per af [Kirsch et al., 2009].

The spot market lease is a temporary flexible water supply instrument that has formed in

response to changes in the water market with respect to increased demand and seasonal influences,

such as drought [Characklis et al., 2006]. Spot market leasing allows for “wet” water to be trans-

ferred from the agricultural sector to the municipal sector within a few days, which makes it an

attractive alternative to transfers of permanent water rights. Similarly to permanent rights, spot

market leasing transactions occur at the end of the month, allowing the holder to use the water in

any subsequent month. For the modeled city, lease water volume, represented by Nl, purchase cost

is sampled from historical pricing distributions. There are two pricing distributions dependent on

reservoir level where decreased reservoir levels correspond to increased purchase prices [Characklis

et al., 2006]. Purchase cost as a price per cubic foot is expressed as p̂l.

Options contracts enable a user to purchase lease rights to a volume of water, NO, at the

beginning of the year and may be “exercised” during a specified month, reminiscent of a European

call stock option [Characklis et al., 2006]. During the exercise month, the user may purchase a

portion of or all of the agreed upon volume of water at a fixed price. In this study, adaptive options

contracts with June as the exercise month are available. The adaptive options contract provides

greater flexibility to the city than a traditional options contract by allowing the city to choose

between a high and low options contract volume at time of purchase based on the city’s present

and anticipated water supply volume. The adaptive options contract cost at the beginning of the

year is $5.30 per ac-ft multiplied by NO, where NO is determined at the beginning of the year

based on the ratio of the city‘s volume of current water supply, Nro , to volume of permanent rights.

Equation 3.1 shows that the value of this ratio relative to a threshold of ξ allows the city to choose

the high-volume (NOhigh
) or low-volume (NOlow

) options contract volume.
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NO =


NOlow

if Nro
NR
≥ ξ

NOhigh
if Nro

NR
< ξ

(3.1)

Figure 3.1: Logic behind α and β strate-

gic decision variables

The initial water supply volume for each model sim-

ulation is equal to a fraction of permanent rights. The ini-

tial water volume is an adjustable parameter, allowing for

assessment of water portfolio performance across an array

of initial conditions. The demand is represented as a set

of 12 monthly normal distributions developed by parame-

ter estimation from historical data [Kasprzyk et al., 2013].

The demand growth rate over multiple years of simulation

is initially set at 2.3% per year based on expected popula-

tion growth determined by [Characklis et al., 1999]. The

αk and βk decision variables are thresholds that deter-

mine “when” and “how much” water should be acquired,

respectively, in time period k using adaptive options con-

tracts and spot leases. As shown in Figure 3.1, if the αk

threshold is greater than the ratio of the expected supply

to the expected demand for a given month, then water must be purchased. The model includes

two sets of these variables, a set for both the January through April period and the May through

December period. The lease prices are compared to the adaptive option prices during the options

month to determine which supply instrument is more cost-effective. There is no restriction of using

both options and leases during the exercise month to obtain sufficient supply. The model tracks

lease pricing and municipal demand for each simulation month. As stated previously, a reservoir

mass balance, shown in Figure 3.2, is satisfied at the end of each simulation month and depends on
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the total reservoir volume in the previous month, monthly inflow, and reservoir variation. Reservoir

variation represents evaporative losses and other users’ outflows and diversions.

Figure 3.2: Model mass balance

A Monte Carlo simulation samples the historical

input data to develop distributions of random variables.

The LRGV simulation model assumes all variables are in-

dependent, and a set of analyses in prior work showed that

this assumption was valid. Specifically, Characklis et al.

[2006] conducted the Pearson test for serial independence

for the inflow input variable and showed weak autocorre-

lation. The authors contribute this weak autocorrelation

to the large time step (monthly) and the dry climate of the region. A series of additional tests

showed the weak correlation between input variables [Characklis et al., 2006]. In result, random

independent samples from each monthly distribution are reasonable. The Monte Carlo simulation

is the consideration of uncertainty within the simulation model. The inclusion of deep uncertainty

occurs when the framework contributed by this thesis is employed.

To conclude, the LRGV model is subject to assumptions made by Characklis et al. [2006]

and Kirsch et al. [2009]. The number of permanent rights owned by and options contracts acquired

by the city are established before each year begins. Water from permanent rights is expressed as a

percentage of reservoir inflows. It is assumed that there is always water available for spot market

leases and options contracts. Lease pricing distributions and demand growth rate are assumed

constant throughout the simulation period. In the real system, water transfers are limited to occur

between similar user types; however, it is likely that transfers between sectors will be legal in the

future. Therefore, the lease pricing in this simulation is derived from the agricultural market and

represents lease pricing between agricultural and municipal users. The reader is encouraged to

explore Characklis et al. [2006], Kirsch et al. [2009], and Kasprzyk et al. [2009] for a more in-depth

review of this model and underlying assumptions.
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3.3 Problem Formulation

The problem formulation in this thesis is from Kasprzyk et al. [2013] and consists of uncer-

tainties (X ), decision levers (L), relationships (R), and measures (M ). Section 3.3.1 discusses the

treatment of uncertainties in the MORDM study and this thesis. Sections 3.3.2 and 3.3.3 describe

the remaining components of the problem formulation

3.3.1 Uncertainties

Classical and deep uncertainty are included within this exploration. As discussed previously,

classical uncertainty is considered within the simulation model through a Monte Carlo simulation

with a sample size 5, 000 that samples historical hydrology (inflow, losses, and reservoir variation),

demand, and lease pricing. Inflows and losses are modeled as empirical monthly distributions based

on historical data. The difference between the sampled inflow and loss for each month represents

the volume of water available for allocation. The demand is sampled from a set of 12 monthly

distributions. These distributions are based on historical data and are normally distributed with

estimated mean and standard deviation parameters. The demand distribution is subject to a

demand growth rate, which is treated as a fixed value. From analysis of a prior study, Characklis et

al. [2006], the lease pricing is partitioned into two empirical monthly distributions based on reservoir

volume. There are distributions corresponding to reservoir volumes greater and less than 1.76 bcm,

respectively. The reservoir variation distribution is based on historical data and represents the

change in volume of the stored water in the reservoir from external forcings such as precipitation

and evaporation.

Recall that this thesis focuses on understanding how optimizing under conditions of un-

certainty impact water supply planning; therefore, we are interested in deep uncertainties in the

computational experiment. Specifically, this study is interested in the values of the deeply uncertain

parameters that caused a promising robust solution to perform poorly in the prior MORDM study

presented by Kasprzyk et al. [2013].6 The prior study investigated two types of deep uncertainties

6 Kasprzyk et al. [2013] uses the percentage deviation between the performance metric values under the most
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as discussed below and summarized in Table 3.1 [Kasprzyk et al., 2013].

(1) Parameters represented by baseline probability distributions sampled in the Monte Carlo

simulation

To understand how deviations from baseline conditions impacted the performance of the

highlighted robust solution, the prior study scaled the deeply uncertain parameters based

on a methodology presented in Dixon et al. [2008]. The parameters defined by probability

distributions were renormalized to emphasize the extremes in the distributions. To increase

the likelihood of either the lowest or highest 25% of the distribution, an integer scaling

factor between 1 and 10 was sampled to reweight the tails, thus forcing the extremes to

be between 1 and 10 times more likely. The resulting distributions represent low inflow,

high loss, high demand, high lease price, and loss in reservoir storage cases. Low inflows

and high losses, for example, correspond to renormalization of the lowest 25% and highest

25% of the respective probability distributions. The losses in reservoir storage refers to

the renormalization of the lowest 25% of the reservoir variation distribution. The reader is

encouraged to refer to Kasprzyk [2013] and Kasprzyk et al. [2013] for an in-depth reasoning

behind the chosen renormalized extremes.

(2) Parameters treated as fixed scalar values in the Monte Carlo simulation

These parameter values represent the baseline conditions for the initial permanent water

rights (i.e., initial condition designating the amount of water available to the city in the first

month of the simulation), demand growth rate, and the initial reservoir volume. To re-define

parameters set as fixed values in the Monte Carlo simulation, a lower and upper bound for

sampling each parameter value was determined. For the initial rights parameter, a lower

bound of 0 corresponds to zero water availability and a higher bound of 0.4 corresponded

to a volume that is 40% of the city’s total water rights volume. The demand growth rate

extreme ten percent of the SOWs and the baseline performance values to determine the robust solution. The
assumption is that if a solution performs well in the most extreme SOWs, then it is a robust solution. While the
selected solution is “robust,” there are specific combinations of uncertainties that will cause this solution to perform
poorly, which is determined in the scenario discovery process.
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parameter was bounded 1.1% and 2.3%, and the initial reservoir volume was bounded

between 987 million cubic meters and 2, 714 million cubic meters. LHS was applied to

generate 10, 000 SOWs by sampling the scaling weights and values for the fixed single-

valued parameters between the upper and lower bounds.

Table 3.1: Deep uncertainties

Lower 
Bound

Upper 
Bound

Inflows empirical monthly distribution 1 10 Lowest 25%

Losses empirical monthly distribution 1 10 Highest 25%

Demands
normal distribution with 
parameters estimated using 
historic data

1 10 Highest 25%

Lease pricing two empirical monthly 
distributions 1 10 Highest 25%

Reservoir variation empirical monthly distribution 1 10
Lowest 25% of the 
reservoir variation 
distribution

Lower 
Bound

Upper 
Bound

Initial rights
initial condition representing 
amount of water available in 
first month of simulation

0 0.4 0 to 40% of permanent 
rights volume

Demand growth rate 
[%]

projected growth of demand in 
LRGV region 1.1 2.3 1.1% to 2.3% growth 

rate

Initial reservoir level 
[106 m3]

initial volume of reservoir; 
impacts lease pricing 987 2,714 987x106 m3 to 

2,714x106 m3
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Uncertainty Input 
Variable

Description
Scaling factor

Parameter value
Sampling

Reweighting

DescriptionUncertainty Input 
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The robust solution was subjected to the 10, 000 SOWs and the scenario discovery process

(discussed in Section 2.3.2) to determine ranges of the deeply uncertain parameter scaling factors

and fixed values that cause that specific solution to perform poorly with respect to previously

defined thresholds of performance. These ranges define the starting point of the computational

experiment and are detailed in Section 3.4.
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3.3.2 Decision Levers, Relationships, and Measures

The decision levers, relationship, and measures for the LRGV case study are from Kasprzyk

et al. [2013]. A full description and equations of these components of the problem formulation

is found in Kasprzyk et al. [2013] and Kasprzyk et al. [2012]. The decision levers compose the

water supply portfolio instruments discussed in Section 3.2. The three water supply portfolio

instruments include permanent rights, spot leases, and adaptive options contracts. The decision

levers are tabulated below.

Table 3.2: Decision levers

Units Description

Permanent Rights Volume NR [m3]
Non-market instrument allocating an annual 
percentage of inflows to the city

NOlow

NOhigh

Adaptive Options Contract 
Threshold

ξ [-]

α [-]
Market variable issuing “when” water should be 
acquired through adaptive options contracts and 
spot leases

β [-]
Market variable issuing “how much” water should 
be acquired through adaptive options contracts and 
spot leases

[m3]
Market instrument used to purchase lease rights to 
either a low or high volume of water at the 
beginning of the year at a fixed price as determined 
by an anticipatory threshold

Decision Lever

Transfer Thresholds

Adaptive Options Contracts 
Volume

The LRGV Simulation Model described in Section 3.2 defines the “relationship” for the

problem formulation. The simulation model employs a 10-year expected performance Monte Carlo

simulation and single year drought simulation. There are three groups of metrics to measure the

performance of the decision levers in the simulation model. Efficiency metrics measure costs and

volumes of water throughout the simulation. Risk indicator metrics assess success, failure, and

recovery of water supply planning portfolio decisions. Market use metrics evaluate the dependence

on water marketing instruments.

The performance measures include both objectives and constraints. The general notation
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for these measures includes i for planning year, j for month within planning year, and T for total

simulation time period, which is 10 years for the long-term planning simulation and 1 year for the

drought simulation. The expected value across M Monte Carlo samples is represented by E[ ]i.

The vector of decision levers is denoted by x .

3.3.2.1 Efficiency Metrics

Cost: The cost objective is calculated as an expected value of the sum of annual costs from

permanent rights, initial purchasing cost of the adaptive options contract, subsequent exercise cost

of options, and purchased leases. Total cost is minimized in the optimization.

fannual cost(x)i = E

[
NRpR +NOipO +Nxipx +

12∑
j=1

(
Nli,j p̂li,j

)]
i

(3.2)

fcost(x) =

T∑
i=1

fannual costi (3.3)

Equation (3.2) shows the summation of individual expenses in a given year and Equation (3.3)

computes the total cost in the simulation, with all variables defined previously. As shown here, the

permanent rights volume is constant across all years in the simulation. Leases may be purchased

at any month within each planning year at an associated sampled price.

Surplus Water: Conceptually, the surplus water objective is the volume of water held by the

city at the end of each planning year. Shown in Equation (3.4), surplus water is computed as the

average across the simulation duration of the expected value of surplus water volumes, measured

in the last month (12) of each planning year.

fsurplus(x) =

T∑
i=1

1

T

(
E[Sj ]i

)
, j = 12 (3.4)

The Sj variable denotes the water supply of the city, composed of volumes from permanent rights,

the options contract, and leases. This objective is minimized in the optimization because minimiz-
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ing the single city’s surplus water could ostensibly free water for other regional users (not modeled

in this case study) to use.

Dropped Transfers: The dropped transfers objective quantifies unused water from options con-

tracts and leases. The variable a represents the “age” in months of water in the city’s supply

account. Since leases and exercised options expire after one year of non-use, dropped transfer vol-

ume accumulates when a > 12. Equation (3.5) calculates this metric as the summation over the

simulation duration of the expected value of total transfer volume when the age is greater than 12

months.

fdropped(x) =
T∑
i=1

(
E

[
{Nxi : a > 12}+

12∑
j=1

{Nli,j : a > 12}
])

(3.5)

It is noteworthy to mention that the simulation allows fractional use of lease acquisitions. Thus,

if a portion of a lease is utilized, and the remaining portion expires, then that expired portion of

water will count as a “dropped transfer.” This objective is minimized.

Cost Variability: The cost variability metric is based on the concept of the contingent value at

risk (CVAR), which measures the risks of incurring high costs. This metric quantifies the variance

in the cost distribution that results from the Monte Carlo sampling of options and leases. CVAR

is computed as the ratio of the mean of the costs falling above the 95th percentile, and the cost

variability is computed as the CVAR value corresponding to the year with the maximum CVAR

divided by the expected average annual cost (Equation (3.6)).

fcostvar(x) =
maxi∈[1,T ] CVARi

fannual costi

(3.6)

This computation ensures that the greatest variability throughout the simulation duration is cap-

tured. Previous work [Characklis et al., 2006] showed that the cost variability metric adds greater

value as a constraint to limit low probability high costs in the LRGV case study.
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Drought Transfers Cost: The drought transfers cost is calculated as the sum of the cost of

exercising of leases and options and excludes the one-time costs of permanent rights and upfront

adaptive options contracts.

fdr trans cost(x)i = Nxipx +
12∑
j=1

(
Nli,j p̂li,j

)
(3.7)

These costs are incurred during a single year of drought conditions. Drought scenario conditions

include: (1) monthly demand set as the maximum demand of the normal distribution from the 10

year long term planning simulation and (2) monthly inflows and water available for allocation from

the driest calendar year of the historical hydrologic data. This objective is minimized.

3.3.2.2 Risk Indicator Metrics

Reliability: Reliability measures the probability of successfully meeting the city’s water demands

using both non-market and market supply instruments. Equation (3.8) [Characklis et al., 2006]

illustrates how reliability in a year i is calculated in the simulation model.

ri = 1− E[nfail]i
12

(3.8)

Reliability considers the expected number of monthly failures in each planning year, where failure

occurs when the city supply (S) is less than demand (d) in a month, defined by Equation (3.9).

Sj < dj (3.9)

The overall reliability metric is calculated as the minimum yearly reliability in the simulation

duration to ensure that the reliability represents the lowest reliability of the planning strategy.

frel(x) = min
i∈[1,T ]

(ri) (3.10)
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Reliability is included as a constraint in the optimization to encourage successful planning portfolio

performance.

Critical Reliability: Critical reliability also measures the probability of successfully meeting

the city’s water demands. Contrary to the reliability metric, however, critical reliability quantifies

failure as supply unable to meet 60% of the demand [Characklis et al., 2006]. Equations (3.8) and

(3.10) are applied in the calculation of critical reliability with the new definition of failure. Critical

reliability is included in the optimization as both an objective and a constraint.

3.3.2.3 Market Use Metrics

Number of Leases: This objective captures the number of leases to be purchased by the city in

all months of the simulation. Since this metric sums number of leases rather than lease volume,

this metric serves as a proxy for transactions costs. Number of leases is calculated as the sum of

the expected number of leases in a planning year over the simulation duration.

fnum. leases(xk) =
T∑
i=1

(
E

[ 12∑
j=1

φi,j

])
(3.11)

The variable φ accounts for whether a lease is required based on a non-zero lease volume, Nl.

φi,j =

 1 if Nli,j > 0

0 otherwise

(3.12)

The number of leases is minimized in the optimization.

3.3.3 Many Objective Problem Formulation

The complete many objective problem formulation from Kasprzyk et al. [2013] is shown

below. The subscripts on the objectives identify whether the objective is computed for the 10 year

long term planning simulation or the drought simulation. All objectives are minimized with the
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exception of f10 yr crit rel, which is maximized.

F(x) = (f10 yr cost, f10 yr surplus, f10 yr crit rel,

f10 yr dropped, f10 yr num leases, fdr trans cost) (3.13)

∀x ∈ Ω (3.14)

x = (NR, NOlow
, NOhigh

, ξ,

αJan−Apr, βJan−Apr, αMay−Dec, βMay−Dec)

Subject to : crel : frel ≥ 0.98 (3.15)

ccrit rel : fcrit rel ≥ 0.99 (3.16)

ccostvar : fcostvar ≤ 1.2 (3.17)

cdr vuln : fdr vuln = 0

(3.18)

The inclusion of constraints in the problem formulation reduces the number of solutions and

restricts solutions to meet realistic needs of a decision maker. The reliability (crel) and critical relia-

bility (ccrit rel) constraints, however, ensure surviving solutions have a high reliability in comparison

to real water utility planning [Kasprzyk et al., 2013]. The cost variability (ccostvar) constraint guar-

antees that unlikely high costs are not significantly greater than the average cost in a planning

year of the 10 year simulation. The drought vulnerability (cdr vuln) constraint assures that there

are no failures in any month during the drought simulation, where failure occurs when the monthly

demand exceeds the monthly supply in the city’s account.

3.4 Computational Experiment

The prior study [Kasprzyk et al., 2013] followed the MORDM procedure. As a brief review,

first, optimization was performed under the baseline scenario, and each resulting tradeoff solution

was subjected to a large ensemble of possible values for the deeply uncertain factors. The solutions



45

deviation from baseline performance was used to choose a single robust solution. This robust

solution was subjected to a scenario discovery procedure that revealed values of the uncertain

factors that caused that solution to perform poorly. In summary, the exploration of the deeply

uncertain scenarios was done after all MOEA optimization runs were completed.

The point of departure of this study is that the discovered scenarios of MORDM are used

directly within the MOEA search. This approach builds on recent work that includes robustness

objectives in the search itself [Hamarat et al., 2014], but it differs because multiple scenarios are

determined that are based on a full MORDM procedure that preceded the analysis.

There are two phases of the computational experiment. The methods for each phase are

described in the following sections. In Phase I we aim to understand how optimizing under different

conditions impacts the optimized alternatives and their tradeoffs. Consequently, in Phase II we

evaluate each scenario’s optimized decision levers under the other four scenarios to analyze the

loss or gain in performance. Both phases of the computational experiment were completed on the

University of Colorado - Boulder Janus supercomputer.7

3.4.1 Phase I: How do the scenarios impact the tradeoffs?

The prior study determined ranges of uncertainty scaling factors and uncertain parameters

that resulted in vulnerable performance8 of a robust solution. In this phase, we identified five

scenarios based on these ranges of vulnerability, shown in Table 3.3. For simplicity, we chose to

focus on the parameters represented by probability distributions. Scenario 1, also termed as the

baseline scenario, does not alter the uncertain inputs into the LRGV model. Scenario 2 represents

a moderate scenario in which all uncertain distributions are scaled by a factor of two. Scenarios 3,

4, and 5 were derived directly from the minimum values of the scaling factor ranges identified in the

MORDM study. Each of these three scenarios represent violations of different sets of performance

7 Janus is composed of 1368 compute nodes, each with 12 cores. Each node contains two hex-core 2.8Ghz Intel
Westmere processors. There is 32TB total system RAM and roughly 800TB of high performance storage accessible
through the Lustre filesystem.

8 Vulnerable performance indicates violation of performance measure thresholds set according to reasonable deci-
sion maker preferences.
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metrics.

Table 3.3: Uncertain scenarios

Scenario Uncertainty Scaling Factor Description

1: Baseline
Baseline probability distributions and model 
parameter value estimates for uncertainties

Low Inflows 2
High Losses 2
Losses in Reservoir Storage 2
High Lease Prices 2
High Demands 2
Low Inflows 4
High Losses 2
High Demands 4
Low Inflows 7
High Losses 2
High Demands 6
Low Inflows 8
High Losses 4
High Demands 7

5: Market

2: Moderate

3: Cost

4: Reliability

No scaling factor adjustment

Extremes twice as likely

Scaled uncertainty combination that incurred 
high cost and cost variability for the robust 
solution
Scaled uncertainty combination that resulted in 
low reliability, critical reliability, and drought 
reliability for the robust solution
Scaled uncertainty combination that caused the 
city to use a high number of leases for the 
robust solution

Table 3.4: Decision lever bounds

Borg Transformed Borg Transformed
NR 0 37,004,455 m3 1 74,008,910 m3

NOlow 0 0 m3 1 24,669,637 m3

NOhigh 0 NOlow 1 2NOlow

ξ 0.1 0.1 0.4 0.4
αMay-Dec 0 0 3 3
βMay-Dec 0 αMay-Dec 1 3
αJan-Apr 0 0 3 3
βJan-Apr 0 αJan-Apr 1 3

Lower Bound Upper BoundDecision 
Lever

The MORDM study optimized the LRGV case study problem under Scenario 1 (baseline) con-

ditions. To incorporate uncertainty into the generation of water supply planning portfolio options,

we optimized under all five scenarios separately, meaning that the the extremes of the uncertain pa-

rameters are more likely (as determined by the scaling factors) in the Monte Carlo simulation. This
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Table 3.5: ε resolution used with the Borg MOEA for each objective

Objective Value
Cost $300,000
Surplus water 1233 m3

Dropped transfers 2467 m3

Drought transactions cost $10,000
Critical reliability 0.002
Number of leases 0.3

scenario analysis was inspired by the Robust Optimization programming framework [Mulvey et al.,

1995; Watkins and McKinney, 1997], which subjects a problem formulation to a series of scenarios

to develop solutions that are insensitive to uncertain parameters. To generate solutions under the

severity of extremes in this research, the the upper limit of the cost variability (ccostvar) constraint

was increased to 1.2 in this research from the prior MORDM problem formulation (ccostvar ≤ 1.1) .

We employ the Borg MOEA to generate alternatives in this study [Hadka and Reed, 2013].

This state-of-the-art algorithm includes features such as ε-dominance, adaptive population sizing,

and adaptive operator selection. The first feature, ε-dominance, relies on the concept of dominance.

A solution is said to “dominate” another solution if it is no worse in any objective and strictly

better in at least one objective [Deb, 2001]. ε-dominance [Laumanns, 2002] issues a user-defined

tolerance (ε) that sets an acceptable improvement in performance needed for a solution to dominate

another solution. This feature ensures both diversity and convergence of the solution set. The

concept of ε-dominance is extended to another feature called ε-progress that ensures solutions

improve by ε throughout the search process, otherwise a restart or termination of the algorithm is

issued. ε-progress avoids preconvergence to a local optima. Adaptive population sizing adapts the

search population size to be proportional to the archive size. Borg uses a variety of evolutionary

operators including simulated binary crossover (SBX), differential evolution (DE), parent-centric

recombination (PCX), unimodal normal distribution crossover (UNDX), simplex crossover (SPX),

polynomial mutation (PM) and uniform mutation (UM) operators. The adaptive operator selection
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increases the number of offspring an operator can produce based on the success of previous offspring

generated by that operator, which allows Borg to auto-adapt to the problem it is solving. In a

series of diagnostic tests across a range of problem formulations, Reed et al. [2013] demonstrates the

superior, consistent performance of Borg relative to other state-of-the-art MOEAs. Additionally,

the Borg MOEA successfully has been implemented to optimize this particular case study problem

in parallel [Reed and Hadka, 2014].

Based on the consistent performance of Borg shown by Reed et al. [2013], the default Borg

parametrization (Appendix A) is used in this research. The algorithm was run for 75, 000 function

evaluations. We leveraged the AeroVis software package to visualize the evolution of the Pareto

front throughout the 75, 000 function evaluations to ensure convergence. Additionally, the algorithm

was run for ten random optimization trials to guarantee that the final approximately optimal

solution sets were not a product of artifacts of random seed generation (i.e., the initial random

population of solutions and the search operators). The upper and lower bounds of each of the

decision levers are provided in Table 3.4. The Borg values are algorithm variables that must fall

between 0 and 1. The transformed values are transformed values of the algorithm variables for

input into the simulation model. The transformation between these two variable types allows the

interface between the MOEA and the simulation model. Table 3.5 shows the ε resolution values

for each objective used in both the search process of the MOEA and the sorting process to develop

the final Pareto front.

3.4.2 Phase II: What is the impact of experiencing futures unlike the optimized

conditions?

The first phase resulted in a set of optimized decisions for each of the five scenarios. In Phase

II, the optimized decisions levers for each scenario are evaluated under the other four scenarios.

This analysis was completed by feeding each set of the the optimized decisions into the LRGV

simulation model for each evaluation scenario (referring to the scenarios unlike that of the optimized

decisions). In each iteration of this process, the Monte Carlo sampling with a sample size of 5, 000
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within the LRGV simulation model samples the scaled uncertain parameter sets that correspond

to the scenario the decisions are being evaluated under. This phase resulted in 25 sets of objectives

corresponding to 5 sets of decision levers, which also includes an evaluation of each scenario under

its optimized conditions.

Similarly to the prior MORDM study, visual analytics play a major role in the analysis of

the multi-objective decisions and tradeoffs of this research. In this study, we take advantage of

several different plotting techniques to understand the implications of experiencing futures unlike

that of the optimized conditions. We use the AeroVis software to generate three-dimensional glyph

plots to understand the tradeoffs and differences between objectives and decisions, respectively,

across scenarios and evaluations. Recall from Section 2.3.2 that these plots can display up to seven

dimensions. We generate parallel plots [Inselberg, 1985] to visually connect the decisions to the

resulting objectives to encourage a better understanding of how trends in decisions vary across

scenarios and their resulting objectives across evaluations. Lastly, we demonstrate relationships

between two variables using two-dimensional plots that are intuitive to readers.



Chapter 4

Results

4.1 Phase I

The LRGV case study problem was optimized under five different combinations of uncertainty

scaling factors. Each combination of values of uncertainty factors is termed a scenario, as discussed

in Section 3. Scenario 1 optimized under the baseline conditions, consistent with the prior MORDM

study, in which all uncertain inputs are sampled according to their defined probability distributions.

Scenario 2 is the moderate scenario, with extremes of uncertain parameters set as twice as likely in

the Monte Carlo simulation relative to the baseline scenario. Scenarios 3, 4, and 5 are more severe

scenarios that increase the probability of particular uncertainties.

The multi-objective tradeoffs optimized using Borg for each of the five scenarios are shown

in Figure 4.1. In this glyph plot, each cone is a water portfolio solution. A solution consists of

eight decision lever values with six associated objective values that measure the performance of the

decisions. The color of the cone indicates the scenario the solution was optimized and evaluated

under (i.e., the blue cones are solutions optimized under Scenario 1 conditions then evaluated

under Scenario 1 conditions). To understand how the scenarios impact the tradeoffs, the spatial

coordinates show the cost in the 10-year simulation (f10 yr cost), number of leases (f10 yr num leases),

and surplus water (f10 yr surplus) of each solution. The orientation of the cone corresponds to

dropped transfers (f10 yr dropped), and the size of the cone corresponds to transfer costs in the

drought simulation (fdr trans cost). The arrows along the axes and shown in the legend indicate the

direction of increasing preference, depending on whether the objective was minimized or maximized.
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Figure 4.1: Non-dominated tradeoffs optimized under each of the five scenarios. Each cone rep-
resents a water portfolio solution. The spatial position indicates each solution’s performance with
respect to 10-year cost, number of leases, and surplus water.

Across the scenarios, the baseline scenario resulted in the fewest number of alternatives at

241 solutions. The Scenario 5 optimization produced the largest number of alternatives at 446

solutions. This result demonstrates that the severity of the scenario does not necessarily limit the

number of alternatives generated in the multi-objective optimization.

From Figure 4.1, there is a distinctive divide between the optimized set under each scenario.

The baseline (Scenario 1) and moderate (Scenario 2) scenarios outperform the other three scenarios

in the cost objective, with relatively low volumes of dropped transfers. Essentially, these solution

sets have a lower expected value of total costs of rights, options contracts, and leases with lower

volumes of dropped transfers. As a general trend, the expected number of leases decreases as ex-
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pected surplus volume and cost increase. The second group contains the more severe scenarios:

Scenario 3, Scenario 4, and Scenario 5. This group exhibits a similar trend in tradeoffs between

the three objectives plotted on the spatial axes, with a smaller average expected value of surplus

water. As a reminder, the surplus water objective measures the expected volume of water retained

by the city at the end of each planning year. In this problem formulation, this objective is mini-

mized (meaning that a lower volume is preferred) since the city is the only represented user in the

simulation; therefore, this objective serves as a proxy for other users. Scenario 3 exhibits higher

drought transfers costs, which is the cost of exercising options and purchasing leases in the single-

year drought simulation. Broadly, this scenario comprises solutions that result in a higher volume

of dropped transfers, suggesting inefficient use of the water market instruments under these condi-

tions. The most severe scenarios, Scenarios 4 and 5, yielded solutions that use a higher number of

leases relative to the other scenarios, characterizing higher market use. This finding corresponds

to the prior study, in which the robust solution acquired more leases when experiencing Scenario 5

conditions. Generally, there are higher costs seen in this group of scenarios, which aligns with high

cost felt by the robust solution under Scenario 3 conditions.

These results indicate that the different combinations of scaled uncertainties within the sce-

narios impact the performance of the optimized water portfolios. In other words, even when the

severe scenario information is exposed to the Borg MOEA during the search process, the best possi-

ble objective function values are sometimes lower due to the severe conditions. A notable indicator

is the difference between the two groups of scenarios in surplus water performance. Scenarios 3,

4, and 5 outperform the baseline and moderate scenarios with respect to the surplus water objec-

tive, meaning that the city has less water in its supply account at the end of each planning year.

However, this improvement in this objective across the severe scenarios may not be considered

favorable by some water managers because it indicates stressed conditions. These severe scenarios

also caused these portfolios to acquire a higher number of leases, another indicator of less water

within the city’s supply account. Overall, it is clear that the scenarios have an impact on the

tradeoffs between the conflicting objectives in this case study.
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The impact of the scenarios on the objectives poses a secondary question: how do the sce-

narios impact the decision levers? To explore this question, a parallel coordinate plot in Figure 4.2

presents the trends in decision levers values across the scenarios. Each colored line represents a

water portfolio alternative, composed of the eight decision levers discussed in Section 3. To refresh,

the permanent water rights (NR) decision is a non-market instrument. The low and high adaptive

options exercise volume (NOlow
and NOhigh

) decisions are determined according to a decision thresh-

old of ξ. The anticipatory α and β strategy rule decisions are used to establish market use (i.e.,

exercise options and acquire leases) at the beginning and end of the year. This figure also visually

connects these decision levers with the corresponding objective performance, illustrating how the

decisions perform in that scenario’s conditions. This is an advantage over the glyph plot shown in

Legend
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Figure 4.2: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios.
Each line represents a water portfolio solution. The vertical position on each axis represents the
value of that decision lever or objective.
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Figure 4.1. Similarly to the glyph plot, the arrow points in the direction of increasing preference for

the objectives, which are shown on the last six vertical axes. Since there is no designated preference

of decision lever values, the ideal water portfolio would result in a flat line across the bottom axis

along the objectives.

There is a difference in use of water marketing, which includes exercising adaptive options

and purchasing water leases, between the two groups of solutions defined previously (i.e., group

1: Scenarios 1 and 2; and group 2: Scenarios 3, 4, and 5). The second group of scenarios with

more probable extremes require greater market use to meet the city’s needs. This is in part evident

by the larger volumes of both low and high options contracts seen in Figure 4.2 for these three

scenarios. Interestingly, it is clear that in these scenarios, particularly Scenarios 4 and 5, large

volumes of permanent rights do not indicate low volumes of options. Scenarios 1 and 2 provide

solutions that utilize a large volume of rights or a large volume of options. Accordingly, these three

severe scenarios have trends of higher α and β variables, which indicates a higher use of the market

through both exercising options and purchasing leases to meet demands. Despite this similar trend

between the three severe scenarios, the combination of uncertainty scaling factors used in Scenario 3

lead to alternative portfolios that have a significantly higher expected volume of dropped transfers.

In the drought simulation, the Scenario 3 alternatives are the most costly as well. Ultimately,

more severe scenarios require the market and may incur higher costs to meet the city demands.

Please refer to Figures A.1, A.2, A.3, and A.4 in Appendix A to view the parallel coordinates with

Scenarios 1, 2, 3, and 4 as the prominent scenario, like Scenario 5 is shown in Figure 4.2.

From this analysis, the baseline conditions result in a general trend of decisions; however, the

values of the decision levers from the tradeoff set change when planning for extremes of uncertain

inputs. To provide better insight on the different trends of decisions across the scenarios, several

solutions have been highlighted. The robust solution identified in the prior study has also been

selected. Figure 4.3 and Table 4.1 highlight these solutions across the suite of scenarios to bridge

the gap between decisions and objectives. For spatial context, Figure 4.4 identifies the solutions on

the same glyph plot as Figure 4.1. In this plot, the double-headed arrows in dark brown point to
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the solutions.
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Figure 4.3: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
with a solution per scenario highlighted. The color of the highlighted solution refers to the color of
its optimization scenario set. The black solution is the robust solution from the prior study.

The decisions and objectives of each of the six solutions are explained below. As mentioned

previously, the robust solution was optimized under baseline conditions. This solution is termed

Solution 0 and is highlighted in black in Figure 4.3. Solution 0 requires the expected supply to be

1.69 times greater than the expected demand in the city in all months of the 10-year simulation,

based on the strategy variable values in Table 4.1. The volume of permanent rights is less than the

other other highlighted solutions. This robust water supply portfolio ensures adequate water supply

by using both options and leases. Solution 1 is the blue solution, selected from the Scenario 1 set

because it exhibits the lowest cost of all of the Scenario 1 solutions. The volume of permanent rights

acquired for this solution is comparable to the robust solution. However, the remaining decisions
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Table 4.1: Decision levers of highlighted solutions 9

NR NOlow NOhigh ξ αMay-Dec βMay-Dec αJan-Apr βJan-Apr
[106 m3] [106 m3] [106 m3] [-] [-] [-] [-] [-]

0
Robust solution from prior study 
marked by a low volume of 
permanent rights and market use

38.48 19.84 19.84 - 1.69 1.69 1.69 1.69

1
Low volume of permanent rights 
and low use of market in late year 
planning period

41.87 10.84 11.11 0.36 1.08 1.50 1.15 1.50

2
High volume of permanent rights 
and high options threshold (i.e., 
current supply equal to 40% of 
permanent rights)

74.01 11.00 21.94 0.40 1.76 2.11 1.67 2.15

3
Greatest market use marked by 
highest for α and β for both 
planning periods

64.74 18.46 32.60 0.39 2.18 2.52 1.81 2.22

4
Mid-ranged permanent rights 
volume and low options threshold 
(i.e., current supply equal to 24% 
of permanent rights)

59.77 9.40 12.70 0.24 1.18 1.56 1.76 1.97

5
Low volume of permanent rights, 
using the market to supplement 
water supply

37.00 19.11 24.76 0.32 1.46 1.99 1.59 1.59

Exhibits 
low 10-year 
cost under 
Scenario 1

Exhibits 
high 
volume of 
surplus 
water under 
Scenario 2

Exhibits 
high 
volume of 
dropped 
transfers 
under 
Scenario 3

Solution Description
Decisions

differ, resulting in the low cost. Both sets of strategy planning variables, α and β are lower,

meaning that less expected supply relative to expected demand is required so market instruments

are not triggered as easily. Contrary to the two highlighted solutions under baseline conditions,

Solution 2 obtains a substantially larger volume of permanent rights. This solution also exhibits

high market use based on the options volumes and α and β values. Solution 2 also has a high

threshold values for options contracts, meaning that if the current supply is equal to 40% or more

of the permanent rights volume, then a low volume options contract is exercised, else a high volume

options contract is exercised. Although Solution 2 performs poorly in the surplus water objective,

evident by Figure 4.3 and Figure 4.4, it performs well relative to alternative solutions across all

sets in critical reliability, dropped transfers, number of leases, and drought transfers costs.

9 Please note that the robust solution was optimized under a simplified problem formulation made up of three
decision levers: permanent rights, a single-volume non-adaptive options contract, and a single strategy variable to
determine both “when” and “how much” water to acquire using market instruments. A more detailed description of
this problem formulation may be found in Kasprzyk et al. [2013].
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Figure 4.4: Non-dominated tradeoffs optimized under each of the five scenarios. The robust solution
as well as five additional solutions are selected for further exploration in Phase II.

Solution 3 corresponds to Scenario 3, which is subjected to higher probability low inflows, high

losses, and high demands. In response, this portfolio has more conservative strategies that indicate

it would use the market more than highlighted Solutions 4 and 5. The high α variables in both

time periods require the city to maintain a higher expected supply relative to expected demand,

and the β variables require the city to purchase a greater amount of water relative to the expected

demand. Interestingly, Solution 3 has the highest cost of the selected solutions, corresponding

to the expected result as this scenario’s conditions caused the robust solution to have high costs.

Solutions 4 and 5 correspond to Scenarios 4 and 5, respectively. In general, Solution 4 relies more

on permanent rights than Solution 5. Based on the α and β variable values, Solution 4 requires the

market more in the early planning period whereas Solution 5 requires the market more in the late
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planning period. Solution 3 water portfolio was highlighted because of the high volume of dropped

transfers. Solution 4 marks a “compromise” solution between objectives of cost, surplus water, and

dropped transfers. The decision levers in Solution 5 lead to a lower cost relative to the majority of

the Scenario 5 solution set, apparent on Figure 4.4.

In summary, we demonstrated the effect of optimizing under varying conditions of uncertainty.

Generally, the decisions and objectives correspond to the severity of the scenario, with less extreme

scenarios incurring lower costs and lower market use and more extreme scenarios exhibiting lower

volumes of surplus water and higher market use. The highlighted solutions map decisions to

objectives and illustrate the variety of decisions that emerge from optimizing under these different

scenarios. These highlighted solutions will serve as bases for comparison in Phase II. These results

uncover a weakness in the MORDM framework that this study is built upon. Ultimately, we

demonstrate that optimizing under extreme scenarios provides a different suite of decisions for

the city to consider, providing opportunities outside of the portfolio alternatives that arise from

optimizing under baseline conditions only. The prior study searches for a robust solution within

the baseline optimized set, Scenario 1, however, there may exist a potentially more robust solution

within a set optimized under different conditions of uncertainty. This point is explored in Phase II

of this study.

4.2 Phase II

In Phase II, each optimized solution set was evaluated under the opposing scenarios to de-

termine how the decision levers perform under different plausible future conditions. For example,

solutions that resulted from optimizing under Scenario 1 were then evaluated under Scenarios 2,

3, 4, and 5. Essentially, this phase served as a series of “stress” tests to understand how the city

responds to conditions other than those planned for in the optimization. We imposed the constraint

set (frel ≥ 0.98, fcrit rel ≥ 0.99, fcostvar ≤ 1.2, and fdr vuln = 0) a posteriori to retain and present

solutions that comply with decision maker requirements.

For a general overview, Figures 4.5 and 4.6 show how the optimized sets perform under each
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scenario. The individual plots on the figures refer to the optimized sets, and the point colors

correspond to the scenario the set was evaluated under. Each point represents a solution consisting

of decision lever values and objective values. Consequently, each individual plot contains one

or more solution points marked by same decision lever values, depending on the feasibility of

each optimized solution in the evaluation scenarios. Each solution point, however, has a different

objective function performance based on the evaluation. On these plots, a decision variable is

plotted on the y-axis and an objective is plotted on the x-axis. In doing so, the range of values for

the decision lever of interest for each optimized set is visible, and the change in horizontal position

of each solution point between the colored sets quantifies the change in performance.
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Figure 4.5: The effect of optimized scenario on 10-year cost when evaluated under each scenario.
Each plot contains the optimized set of a single scenario, with the permanent rights decision lever
shown. Solution point color refers to the scenario the solutions were evaluated under.

Figure 4.5 displays permanent rights on the y-axis and 10-year cost on the x-axis. This

visualization shows the relative volume of the non-market water supply between the optimizations.

Through observation of the cluster of dark blue solutions in the first plot, the permanent rights

for Scenario 1 all lie in the mid-range of the permanent rights values. Conversely, the other four

optimized scenarios consist of solutions that lie along the entire range of the permanent rights

decision lever values. Thus, the baseline solutions typically rely on similar volumes of permanent



60

rights, leveraging the market for supplemental water. However, the other solution sets include

portfolios that depend on lower volumes of permanent rights and high market use or higher volumes

of permanent rights with supplemental market use. This visualization brings attention to the variety

of solutions that exist outside of the set optimized under conservative baseline conditions.

While the decision lever values remain constant, there is a change in performance of the

objectives across the evaluation scenarios shown by the shift of solution clusters in each plot. The

solutions optimized under Scenario 1 invariably cost the city more when evaluated under Scenario

2 conditions. In other words, if the city selects a seemingly favorable solution from the Scenario

1 set, but experiences extremes (of the model inputs) twice as often, the costs will be higher than

the estimated performance under Scenario 1.

Figure 4.5 also shows the influence of the constraints in this analysis. Evident by the red and

yellow solution points in first plot, there is only one solution within the entire set of 241 solutions

that remains feasible under Scenario 4 and Scenario 5 conditions, and there are no solutions that

remain feasible under Scenario 3 conditions. The same limitation appears in the set optimized under

Scenario 2 conditions. There are substantially fewer solutions that survive under Scenarios 4 and 5

relative to those that survive under baseline conditions. The solutions optimized under Scenarios 4

and 5 conditions are generally more robust because most of the solutions survive under all scenarios

with the exception of Scenario 3. This analysis also demonstrates that selecting a solution optimized

under these severe conditions may benefit the city in the 10-year cost objective. When increasingly

amenable conditions are experienced, the cost of these solutions decrease. Ultimately, this figure

exposes the difficulty of the city to cope with Scenario 3 conditions. Very few solutions optimized

under the other scenarios survive under Scenario 3 conditions. Thus, it may be advantageous to

plan for these conditions since there are Scenario 3 solutions that are feasible under the other four

scenarios.

Figure 4.6 shows the same set of solutions as Figure 4.5 against the dropped transfers objective

shown on the x-axis. Transfers from options and leases expire after 12 months of non-use, so the

dropped transfers objective calculates the volume of un-used transfers. Decreasing volumes of
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dropped transfers demonstrates improvement in the performance of portfolio solutions. Unlike

Figure 4.5 the objective performance of the decisions under less severe scenarios does not show a

clear trend of improvement. This is very clear in the set of solutions optimized under Scenario

3 conditions. When the Scenario 3 solutions are evaluated under Scenarios 4 and 5, there is

improvement in the dropped transfers objective. This outcome highlights the stressed hydrologic

conditions experienced under Scenario 4 and 5 conditions, showing that more of the water obtained

through the market may be used rather than dropped. However, the most successful portfolio

performance occurs under Scenario 1 conditions, where several solutions have no dropped transfer

volume. Within the set optimized under Scenario 3 conditions, the city suffers in this objective

when experiencing Scenario 2 conditions. For another perspective of these solutions, Appendix A

contains Figures A.5 and A.6 that show the αMay−Dec decision lever.
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Figure 4.6: The effect of optimized scenario on dropped transfers when evaluated under each
scenario. Each plot contains the optimized set of a single scenario, with the permanent rights
decision lever shown. Solution point color refers to the scenario the solutions were evaluated under.

From Figures 4.5 and 4.6, we gained insight on how the city fares under conditions unlike

that of the optimized conditions. To explore further, the performance of the highlighted solutions

from Phase I has been tracked across all evaluation scenarios, shown in Table 4.2. Recall that

Solution 0 and Solution 1 were optimized under baseline conditions. Solutions 2, 3, 4, and 5 were
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optimized under Scenarios 2, 3, 4, and 5, respectively.

Table 4.2: Performance of highlighted solutions

Drought 
Simulation

Cost Critical 
Reliability

Surplus 
Water

Dropped 
Transfers

Number of 
Leases

Transfers 
Cost

[106 USD] [-] [106 m3] [106 m3] [-] [106 USD]
1 9.65 1.00 18.82 69.54 4.32 0.26
2 9.90 1.00 16.30 52.79 6.27 0.26
3
4 10.38 1.00 11.41 15.68 13.48 0.26
5 10.45 1.00 10.95 13.07 14.52 0.26
1 9.36 1.00 16.50 32.95 5.97 0.23
2
3
4
5
1 14.05 1.00 97.05 0.00 0.00 0.00
2 14.10 1.00 66.76 0.72 0.02 0.00
3
4 15.40 1.00 22.19 31.08 1.35 0.00
5 15.54 1.00 20.34 31.46 1.53 0.00
1 12.71 1.00 68.05 1.99 0.05 0.15
2
3 15.57 1.00 25.74 109.40 3.20 0.26
4 15.41 1.00 25.01 98.34 2.55 0.15
5 15.53 1.00 24.09 97.01 2.49 0.15
1
2
3
4 13.02 1.00 11.15 8.37 9.55 0.08
5
1 10.38 1.00 23.42 114.25 7.52 0.48
2 10.71 1.00 21.15 95.85 8.09 0.48
3
4 10.80 1.00 16.43 45.80 8.41 0.48
5 10.80 1.00 15.96 40.48 8.58 0.48

5 Exhibits low 10-year 
cost under Scenario 5 Constraint Violation: frel=0.97

Constraint Violation: frel=0.97

4

Compromise between 
10-year cost, surplus 
water, and dropped 
transfers objectives 
under Scenario 4

Constraint Violation: fcostvar=1.33
Constraint Violation: frel=0.96, fdr vuln>0

Constraint Violation: frel=0.97

2
Exhibits high volume 
of surplus water under 
Scenario 2

Constraint Violation: frel=0.97

3
Exhibits high volume 
of dropped transfers 
under Scenario 3

Constraint Violation: fcostvar=1.33

1 Exhibits low 10-year 
cost under Scenario 1

Constraint Violation:  frel=0.97
Constraint Violation:  frel=0.90, fcrit rel=0.98, fcostvar=1.21
Constraint Violation:  frel=0.91, fcrit rel=0.98, fcostvar=1.21
Constraint Violation:  frel=0.90, fcrit rel=0.98, fcostvar=1.21

Solution Description Evaluation
Scenario

Performance Measures

10-Yr Simulation

0 Robust solution from 
prior study Constraint Violation: frel=0.97

According to Table 4.2, the robust solution from the prior study is feasible in all scenarios

with the exception of Scenario 3. From the table, we see that the changes in this solution across

evaluation scenarios follow those identified in both Phase I and Phase II of this study. As discussed
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in Phase I, the surplus water objective decreases in harsher conditions. While we strictly looked at

the optimized sets in Phase I, this trend highlights the claim that this objective is in part a relic of

the conditions.10 The portfolio results in higher costs in more severe scenarios while the dropped

transfers decrease, showing improved efficiency, in more severe scenarios. Based on the findings from

Figures 4.5 and 4.6, it is not surprising that Solution 1 does not survive in any of the evaluations

other than Scenario 1. Solution 1 violates the reliability constraint across all evaluations other

than under Scenario 1. When evaluated under the more severe scenarios, the critical reliability

and cost variability constraints are also violated, with even lower levels of reliability. Note that we

consider a constraint violation of any magnitude to cause a solution to be infeasible in the evaluated

scenario. Similarly to Solution 1, Solution 4 does not remain feasible across the other scenarios.

Within the set of highlighted solutions, Solution 4 is the only solution that violates the drought

vulnerability constraint, which indicates that failure (supply < demand) occurs in the drought year

simulation. The selection of Solution 4 illustrates the importance of decision maker consideration

of other plausible futures before selecting an optimized set of decision levers.

To visualize the change in performance of the highlighted solutions, Figures 4.7 and 4.8

present the tradeoffs and decisions of the highlighted solutions, all evaluated under Scenario 1. The

colors in both figures represent the scenario the solutions were optimized under.

In Figure 4.7, all of the surviving solutions converge along a single front. Due to the tightness

of the front, the general location of two of the highlighted solutions, Solution 0 and Solution 3, are

shown by the dark circles. The robust solution, Solution 0, optimized under the baseline conditions,

costs less and has a lower expected value of surplus water relative to Solution 3. However, Solution 3

outperforms Solution 0 in dropped transfers, number of leases, and drought transfer costs objectives.

Despite the finding from Phase I that the Scenario 3 solutions generally exhibit higher volumes of

dropped transfers and higher drought transfers costs, we see that by evaluating under the baseline

10 Recall that the city aims to minimize the surplus water objective to free water for other uses, so a smaller objective
value is preferable. In Phase I, the surplus water objective decreased under the severe scenario optimizations, revealing
that the surplus water objective value reflects the reduced water input into the city. Therefore, it is important to
consider the conditions of optimization and evaluation before claiming improvement or degradation in this objective.
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Figure 4.7: Non-dominated tradeoffs optimized under each of the five scenarios and evaluated under
Scenario 1. The highlighted solutions correspond to the solutions discussed in Section 4.1. The
dark circles show the general location of the highlighted solutions within the solution cluster.

conditions, these solutions actually perform better than select solutions optimized under baseline

conditions.

Figure 4.8 provides a view of the tradeoffs of all of the highlighted solutions across all objec-

tives when evaluated under Scenario 1. Although the solutions optimized under baseline conditions,

Solutions 0 and 1, are better than the other highlighted solutions in objectives of 10-year cost and

surplus water, it is evident that solutions from other optimized sets are viable and preferable with

respect to some objectives.

Similarly to the previous two plots, Figures 4.9 and 4.10 show the highlighted solutions in

a spatial setting using a glyph plot and as side-by-side comparisons using a parallel plot. These
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Figure 4.8: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
all evaluated under Scenario 1. Highlighted solutions correspond to the solutions identified in Phase
I. The color of the highlighted solution refers to the color of its scenario set. The black solution is
the robust solution from the prior study.

figures show the evaluation of the highlighted solutions under Scenario 5.

The shape and composition of the converged front in Figure 4.9 is different compared to the

evaluation under Scenario 1 shown in Figure 4.7. Overall, there are smaller volumes of surplus

water in the surviving solutions, and there is greater spread along the number of leases and 10-

year cost objectives. The surviving solutions are primarily from the Scenario 3, Scenario 4, and

Scenario 5 solution sets. The two highlighted solutions, Solutions 0 and 3, have similar relative

performance when evaluated under Scenario 5 compared to the Scenario 1 evaluation. The robust

solution, Solution 0, experiences lower 10-year costs and surplus water, similar to the previous

analysis. However, Solution 0 outperforms Solution 3 in the dropped transfers objective, aligning



66

Surplus Water 

[106 m3]

Number of Leases

10-Yr Cost 

[106 USD]0.0

6.5

13.0

19.5

26.0
16.1

14.3

12.6

10.8

9.1

8.3

30.7

53.1

75.5

98.0

Dropped 

Transfers 

[106 m3]

Drought 

Transfers 

Cost 

[106 USD]

97.01

3.62

0.55

0

Arrows indicate direction of increasing preference

Legend

Robust Solution 
(optimized under Scenario 1)

Optimized under Scenario 1

Optimized under Scenario 2

Optimized under Scenario 3

Optimized under Scenario 4

Optimized under Scenario 5

[Sol. 0] Robust
[Sol. 3] 

Figure 4.9: Non-dominated tradeoffs optimized under each of the five scenarios and evaluated under
Scenario 5. The highlighted solutions correspond to the solutions discussed in Section 4.1.

with the characterization of higher dropped transfer volumes in the Scenario 3 optimization. The

city obtains fewer leases and lower drought transfer costs under the decisions of Solution 3 when

experiencing these harsher conditions.

Figure 4.10 displays the highlighted solutions that remain feasible under Scenario 5 conditions.

Comparing this figure to Figure 4.8, the success of the Scenario 5 solution, Solution 5, under its

own conditions is evident in the dropped transfers and surplus water objectives. However, while

this solution was optimized under these evaluation conditions, Solution 5 is not the best performing

solution in all objectives. To view the success of the highlighted solutions under Scenarios 2, 3, and

4, please refer to Figures A.7, A.8, and A.9 in Appendix A.
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Figure 4.10: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
all evaluated under Scenario 5. Highlighted solutions correspond to the solutions identified in Phase
I. The color of the highlighted solution refers to the color of its scenario set. The black solution is
the robust solution from the prior study.

To conclude, this analysis demonstrated portfolio limitations due to the constraint set and

impacts of evaluating under varying conditions. First, by enforcing the constraints in the evaluations

of each optimized set, the number of viable solutions decreased when experiencing conditions unlike

the optimized conditions. This was clear in Figures 4.5 and 4.6 which showed that the baseline

(Scenario 1) solutions are the most limited when evaluated under the other four scenarios. Second,

the performance of the decisions does change under different conditions. The shape and location

of the fronts in Figures 4.7 and 4.9 highlight this finding by showing that the same solutions (with

the same decision lever values) have very different objective values under different conditions. The

analysis also revealed that solutions optimized under the evaluation conditions are not necessarily



68

the top performing solutions in that evaluation. Overall, these results suggest that optimizing

under different conditions of uncertainty can lead to finding a solution that is robust across may

plausible futures.



Chapter 5

Discussion, Conclusion, and Future Work

5.1 Discussion and Conclusion

The results of this study shed light on all of the questions that motivated this thesis. First,

we show that preparing for plausible extreme futures that may result from a multitude of causes,

namely climate change, land use changes, and population growth, by optimizing under those con-

ditions generates new sets of tradeoffs and decisions. This is evident in Phase I of the study. Each

optimized set was clustered differently in the glyph plots and the parallel plots. We learned that

despite preparing for extremes (i.e., Scenarios 3, 4, and 5), the city still experiences higher “costs”

across the objectives. However, in doing so, the city knows about the performance of the decisions

and can prepare accordingly. For example, Scenario 3 conditions cause the city to spend more in

a drought year and drop larger volumes of leased water relative to solutions optimized under the

other scenario conditions. We also learned that the decisions prepare for the uncertain conditions

differently across the scenarios. Under the severe scenarios, higher α and β decision lever values

indicate greater use of the market.

Second, in Phase II, we demonstrate the importance of evaluating the optimized decisions

under different conditions of uncertainty. From this analysis, we found that the number of viable

solutions is significantly decreased due to constraint violations. This was very clear in the eval-

uation of Scenario 1 solutions across the other scenarios. Additionally, the performance of the

decisions changes under different conditions of hydrology and demand. The more severe scenar-

ios, for example, incurred lower costs when evaluated under the baseline conditions. These results
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provide a starting point to select a robust solution that is viable and successful (i.e., meets desired

level of performance) across the scenarios.

For the LRGV case study, these results can be used to select robust decision values for a

variety of planning purposes. First, the city may select robust decision values from the severe

optimization sets that adequately meet needs for both short-term and long-term forecasting of

streamflow, precipitation, and evapotranspiration. Since forecasting is uncertain in nature, the

selection of robust values leverages forecasting predictability without a dependence on accuracy. In

this case study, for example, robust values for market decisions, such as the α and β variables, would

ensure that the market could provide adequate water supply if flows were lower than forecasted.

While it may seem contradictory to develop robust plans for short-term forecasting, many decisions

cannot be changed quickly enough to respond to evolving forecasts. For the LRGV region, the

purchase and sale of permanent water rights is a timely process; therefore, it is beneficial to ensure

that the value of this decision variable is appropriate for short-term and long-term planning. Second,

this study illustrates a shift to a market-based water supply system in the LRGV under more severe

conditions. In the event the city would like to plan for severe conditions resulting from future

population growth (as projected for the region) and climate change, our results provide a suite of

alternative market-based water supply portfolios. The advantage of our results and methodology is

that the city may select several of these market-based portfolios planning for harsh conditions and

evaluate their performances under expected conditions, ensuring that the final selected portfolio is

not overly conservative in the likely conditions.

In addition to the specific results found in our work, we offered a new methodology to manage

deep uncertainty that provides insight on robust decision making that cannot be uncovered in

existing frameworks. Contrary to traditional optimization, we allowed the MOEA to design how

to use the water supply instruments to respond to different hydrological and demand conditions.

Traditional methods optimize under a single set of hydrological and demand conditions subject to a

likely prediction. By conducting multiple optimizations under different conditions, our methodology

generates new and robust ways to use water supply instruments to meet changing needs. In addition
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to generating robust decisions, our framework promotes the selection of appropriate robust decisions

by evaluating under multiple future conditions. In doing so, this framework reduces some the

decision making obstacles that result from disagreement among predictions.

The treatment of deep uncertainty in this thesis also differs from modern frameworks. MORDM,

the framework we expanded upon, presents an application of traditional methods by optimizing

under baseline conditions, but then subjects the alternatives to an exhaustive number of alternative

states of the world to find a robust solution. While the MORDM framework can aid a decision

maker in the actual selection of a solution, there are many solutions that are not even considered

because solutions are generated under one set of expected conditions. The framework introduced

by Hamarat et al. [2014], Multi-Objective Adaptive Robust Design, also uses MOEAs to design

solutions that respond to uncertainty. The Multi-Objective Adaptive Robust Design framework

incorporates robustness into the search process of the MOEA using objective functions that reduce

the variance in the performance of decisions across many plausible futures. While the method

developed by Hamarat et al. [2014] ensures robustness, the results could be overly conservative.

We allow for exploration of decisions that could arise from considering uncertainty in the develop-

ment of solutions, which could lead to solutions that are robust in addition to other benefits (i.e.,

successful performance across multiple objectives unrelated to robustness).

To conclude, this research demonstrates that the optimization process can be leveraged in new

ways to develop solutions for water planning that currently exist outside of the scope of traditional

planning. We provide a methodology that overcomes some weaknesses of other recently introduced

frameworks by incorporating uncertainty into the search process of an MOEA. We also show the

importance of exploring how solutions perform under different conditions because many solutions

may become infeasible or result in poor performance. This thesis lays the groundwork for a whole

new perspective on water resources planning under uncertainty.
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5.2 Future Work

There are several avenues to expand upon the research presented in this thesis. First, it would

be beneficial to apply our methodology to a different planning problem or several planning problems

to compare results. While we showed that optimizing under varying conditions of uncertainty

resulted new sets of decisions and objectives for the LRGV case study, we do not know if this

methodology will shed light on possibly opportune decisions for different planning problems. For

example, applying our methodology to a water stressed basin in the western United States to

optimize water marketing instruments under scenarios of increasing demand, continued drought,

and variable conservation would be a relevant planning problem that could be fairly compared

to this study. Similarly, a problem that establishes conditions to enact new policies, such as

conservation measures, could leverage our methodology. The use of transfer mechanisms could be

optimized at a monthly scale under various scenarios to reveal combinations of uncertainties that

cause the system to utilize all allowable transfers and require conservation procedures. In this type

of optimization, it would be necessary to set constraints on annual transfer volumes and seasonal

use of transfer volumes.

Another potential opportunity to build upon this work lies in the actually optimization pro-

cess of the MOEA. Specifically, characterizing and quantifying the difficulty of solving increasingly

more severe problems using MOEAs would allow for intelligent development of problem formula-

tions and scenarios. In this study, the cost variability constraint was loosened to generate solutions

across all scenarios. The resulting optimizations under the newly defined constraint set produced

fewer solutions in the baseline scenario relative to the other four scenarios that we anticipated would

be more difficult to solve. Overall, it would be very helpful to know the impact of increasing the

probability of extremes in the inputs on the MOEA search process to understand when to loosen

constraints or adjust the problem formulation to guarantee solution generation.

Lastly, we see great potential for developing a quantitative framework to formally compare

solutions optimized under different scenarios and, consequently, aid a decision maker in selecting a
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robust solution. While the second phase of this study demonstrated how the optimized solutions un-

der each scenario performed across the suite of scenarios, there is a need for a step-by-step approach

to compare solutions based on their change in performance across evaluations. This framework is

especially important for understanding when “improvement” in certain objectives corresponds to

the stressed conditions so that a decision maker does not select a solution based purely on objective

performance without understanding this caveat. Ultimately, with a formal framework, a solution

that withstands many other plausible futures may be selected. This framework could combine

concepts from both the prior MORDM study and work we have contributed in this thesis.
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Appendix A

Supporting Figures and Tables

Table A.1: Default Borg parametrization (includes simulated binary crossover (SBX), differential
evolution (DE), parent centric mating (PCX), simplex crossover (SPX), uniform normally dis-
tributed crossover (UNDX), uniform mutation (UM), and polynomial mutation (PM) operators)
[Woodruff et al., 2013; Zeff et al., 2014]

Parameter Value
Initial population size 100
Tournament selection size 2
SBX rate 1.0
SBX distribution index 15.0
DE crossover rate 1.0
DE step size 0.5
PCX parents 3
PCX offspring 2
PCX eta 0.1
PCX zeta 0.1
SPX parents 3
SPX offspring 2
SPX epsilon 2
UNDX parents 3
UNDX offspring 2
UNDX eta 0.5
UNDX zeta 0.5

UM rate

PM rate

PM distribution index 20

1
27 =

1
number!of!DV 

1
27 =

1
number!of!DV 
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Figure A.1: Decision levers and non-dominated tradeoffs optimized under each of the five scenar-
ios, with the Scenario 1 (baseline) solutions highlighted atop the four other scenarios. Each line
represents a water portfolio solution. The vertical position on each axis represents the value of that
decision lever or objective.
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Figure A.2: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
with the Scenario 2 (moderate) solutions highlighted atop the four other scenarios. Each line
represents a water portfolio solution. The vertical position on each axis represents the value of that
decision lever or objective.
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Figure A.3: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
with the Scenario 3 (cost) solutions highlighted atop the four other scenarios. Each line represents
a water portfolio solution. The vertical position on each axis represents the value of that decision
lever or objective.
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Figure A.4: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
with the Scenario 4 (reliability) solutions highlighted atop the four other scenarios. Each line
represents a water portfolio solution. The vertical position on each axis represents the value of that
decision lever or objective.
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Figure A.5: The effect of optimized scenario on dropped transfers when evaluated under each
scenario. Each plot contains the optimized set of a single scenario, with the αMay−Dec decision
lever shown. Solution point color refers to the scenario the solutions were evaluated under.
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Figure A.6: The effect of optimized scenario on 10-year cost when evaluated under each scenario.
Each plot contains the optimized set of a single scenario, with the αMay−Dec decision lever shown.
Solution point color refers to the scenario the solutions were evaluated under.
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Figure A.7: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
all evaluated under Scenario 2. Highlighted solutions correspond to the solutions identified in Phase
I. The color of the highlighted solution refers to the color of its scenario set. The black solution is
the “robust” solution from the prior study.
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Figure A.8: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
all evaluated under Scenario 3. Highlighted solutions correspond to the solutions identified in Phase
I. The color of the highlighted solution refers to the color of its scenario set. The black solution is
the “robust” solution from the prior study.
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Figure A.9: Decision levers and non-dominated tradeoffs optimized under each of the five scenarios,
all evaluated under Scenario 4. Highlighted solutions correspond to the solutions identified in Phase
I. The color of the highlighted solution refers to the color of its scenario set. The black solution is
the “robust” solution from the prior study.


