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Measurement-Induced Phases of Matter Require Feedback
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We explore universality and phases of matter in hybrid quantum dynamics combining chaotic time
evolution and projective measurements. We develop a unitary representation of measurements based on
the Stinespring theorem, which we crucially identify with the time evolution of the system and measure-
ment apparatus, affording significant technical advantages and conceptual insight into hybrid dynamics.
We diagnose spectral properties in the presence of measurements for the first time, along with standard,
experimentally tractable probes of phase structure, finding no nontrivial effects due to measurements in the
absence of feedback. We also establish that nonlinearity in the density matrix is neither sufficient nor nec-
essary to see a transition, and instead identify utilization of the measurement outcomes (i.e., “feedback”)
as the crucial ingredient. After reviewing the definition of a phase of matter, we identify nontrivial orders
in adaptive hybrid dynamics—in which measurement outcomes determine future unitary gates—finding
a genuine measurement-induced absorbing-state phase transition in an adaptive quantum East model. In
general, we find that only deterministic and constrained Haar-random dynamics with active feedback and

without continuous symmetries can realize genuine, measurement-induced phases of matter.
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I. INTRODUCTION

Understanding the possible phases of nonequilibrium
quantum matter is a key frontier in quantum science.
While most work has focused on well-isolated systems
undergoing unitary time evolution [1—13], the most gen-
eral quantum dynamics also includes measurements. It was
recently observed that increasing the frequency of mea-
surements can drive an entanglement transition [14—19]
between area- and volume-law scaling of the entangle-
ment entropy of the system’s state. Interest in the landscape
of quantum dynamics—and transitions in various physi-
cals quantities—that depend on the rate y of projective
measurements has since exploded (see Ref. [20] for a
review).

Here we investigate whether the transitions induced
by projective measurements on top of chaotic local time
evolution [14—19] amount to transitions between dis-
tinct phases of matter in any reasonable understanding
of the term. Disappointingly, we find that none of the
measurement-induced transitions reported in the literature
[14-28] correspond to a transition between distinct phases
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of matter in any physically meaningful or historically con-
sistent sense. We also analyze spectral properties in the
presence of measurements for the first time, finding that
the measurement-induced entanglement transition (MIET)
is distinct from thermalization transitions [1-5].

We further establish that nonlinearity in the density
matrix is neither necessary nor sufficient for a quan-
tity to detect a measurement-induced transition. Instead,
we establish utilization of the measurement outcomes as
the crucial ingredient to realizing measurement-induced
phenomena. We then identify absorbing-state transitions
[29-31] in nonsymmetric adaptive circuits—in which
measurement outcomes determine subsequent unitary
gates—as the only presently viable route to genuine
measurement-induced phases of matter. In particular, we
numerically simulate an adaptive one-dimensional (1D)
quantum East model [32] in which the combination of
measurements and outcome-dependent feedback realize an
absorbing-state phase transition in the directed percolation
universality class [31].

Key to our analysis of hybrid dynamics is the uni-
tary representation of projective measurements that we
develop via the Stinespring dilation theorem [33] (see also
Refs. [34-36]). The unitary measurement channel acts on
a dilated Hilbert space that includes the state of the mea-
surement apparatus, and is unique up to the identification
of a “default” outcome, corresponding to the initial state
of the apparatus [35]. While unitary descriptions of mea-
surements as a bookkeeping tool have been known [18],
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the utility of our formalism follows from the identification
of that unitary with the physical time evolution of the sys-
tem and measurement apparatus during the measurement
process [35]. As a result, though formally equivalent to
the Kraus representation [37], our unitary representation
[33-37] has significant technical and conceptual advan-
tages. In Sec. Il we provide a “textbook” exposition of our
unitary Stinespring measurement formalism.

The remainder of this work considers whether and when
projective measurements can give rise to new phases of
matter or universal dynamics, compared to chaotic time
evolution alone. We consider standard diagnostics of phase
structure and universality in “generic” hybrid quantum cir-
cuits [6-9], as well as those “enriched” by conservation
laws [10—13,25-27] and/or kinetic constraints [13,32,38—
42]. In Sec. Il we detail the hybrid circuits of interest
using the Stinespring representation, focusing on canoni-
cal models [14-28] in which the protocol at time 7 is not
conditioned on prior measurement outcomes.

In Sec. IV we consider generic, experimentally
tractable probes common to condensed matter and atomic,
molecular, and optical (AMO) physics, corresponding to
expectation values, correlation functions, and response
functions. We show that none of these probes see a tran-
sition due to projective measurements, distinguishing the
MIET from all historical examples of genuine phase tran-
sitions, including thermalization transitions [1-5], which
also manifests in the scaling of the system’s entanglement
entropy.

In Sec. V we consider the spectral form factor (SFF)
[9,12,13,43-51]. Though not experimentally measurable,
the SFF is a standard diagnostic for quantum dynamics that
is sensitive to thermalization transitions [1-5]. As with the
standard probes of Sec. IV, we find no effect due to mea-
surements in most hybrid protocols, establishing that the
MIET [14—19] is not a thermalization transition. The blind-
ness of the SFF persists even when defined to be quadratic
in the density matrix p(#) and postselected, establishing
that nonlinearity of a quantity in p(#) is not sufficient to
observe a transition. Additionally, in Sec. VII we find that
adaptive hybrid circuits can realize transitions captured
by standard expectation values, establishing that nonlin-
earity of a quantity in p(#) is not necessary to observe a
transition. Thus, the intuition in the literature [14,25] that
measurement-induced transitions are associated with (or
generally require) nonlinear functions of the density matrix
p (%) is incorrect.

Instead, we find that measurement-induced transitions
in any quantity are only possible when the measurement
outcomes are utilized. In Sec. VI, we compare the find-
ings of Secs. IV and V with the MIET literature [14-28]
to argue that (i) it is the utilization of outcomes—rather
than nonlinearity in p(#)—that is sine qua non for a
measurement-induced transition and (i7) the measurement-
induced entanglement transition is not a transition between

distinct phases of matter in any physically meaningful or
historically consistent sense of the term.

As we discuss in Sec. VI, one means by which
to “use” the measurement outcomes—at least on
paper—corresponds to postselection. Generally, postse-
lected probes can be grouped into two categories: measures
of entanglement [14—19,21-28,52] and the disconnected
parts of n-point functions [25-27,53]. Such quantities have
been reported to show a transition as a function of mea-
surement rate y. However, we do not consider such probes
herein, and instead refer the reader to the foregoing refer-
ences for further details. Rather, in Sec. VI A, we review
the standard, historical criteria that phases of matter must
fulfill.

In Sec. VI B, we discuss the well-known practical issue
with postselection [20], along with a conceptual issue
that does not appear to have been widely recognized and
cannot be sidestepped by any protocol (as far as we are
aware). The practical issue is that postselection is expo-
nentially costly in spacetime volume—while [14] refers to
postselection as a “severe statistical challenge,” it is fully
impossible in the thermodynamic limit—the only limit in
which phases of matter are defined. The conceptual issue
is that postselected probes are incompatible with the very
idea of a phase of matter—they are either not robust,
experimentally impossible, or require infinite resources
to evaluate in the limit where phases are defined. Most
importantly, knowledge of a sample’s phase must afford
quantitative predictions about that sample. Yet Sec. IV
establishes that the experimentally observable properties
of a hybrid protocol are unrelated to the MIET.

In the remainder of Sec. VI, we explore alternatives to
postselected probes of measurement-induced transitions.
In Sec. VIB we consider various attempts in the litera-
ture to ameliorate the postselection problem(s), finding that
none succeed. In Sec. VIC, we further preclude the use
of neural networks, classifiers, and similar methods from
diagnosing phase structure. Essentially, these methods do
not probe the system itself, but instead “guess” the phase
with high probability. Finally, in Sec. VID, we argue that
only circuits with feedback—i.e., classical decoding [54,
55] or adaptive dynamics [34,56—61]—can realize gen-
uine, measurement-induced phases of matter. However, it
is unclear whether, in practice, classical postprocessing can
be scaled to detect the MIET [54,55].

This leaves adaptive hybrid protocols [55—61]—in
which the composition of the circuit at time ¢ may be
conditioned on the outcomes of prior measurements—as
the most promising route toward realizing genuine,
measurement-induced phases of matter. We consider such
protocols in Sec. VII, ruling out large swaths of adaptive
hybrid circuits as being incompatible with measurement-
induced phase transitions (MIPTs), which separate phys-
ically distinct phases of matter, while also identifying
which classes of models can realize MIPTs. Importantly,
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we note that the adaptive MIPT is unrelated to the
MIET [61].

We consider maximally chaotic adaptive hybrid pro-
tocols both with and without block structure. We first
observe that Haar-random time evolution without struc-
ture is incompatible with a genuine phase: Because no
operators survive even a single layer of time evolution,
a robust order parameter (whether local or nonlocal) is
impossible. We then consider models with discrete sym-
metries—because only a handful of system-spanning oper-
ators are robust to time evolution, robust order remains
impossible. We consider the example of a Z,-symmetric
Ising circuit acting on a system of qubits to illustrate this
result.

We then investigate adaptive dynamics in the presence
of continuous Abelian symmetries; while such models can
realize robust order, they cannot realize phase transitions.
Chaotic dynamics with continuous symmetries conserve
an extensive number of local “charge” operators, which
are thereby robust to chaotic time evolution. Hence, it is
always possible to devise adaptive protocols that “steer”
the system toward an absorbing state [29,30] with a par-
ticular expectation value of the charge operators, which
acts as a local order parameter. We illustrate this result via
numerical simulation of qubits on a 1D chain, where the
chaotic dynamics conserve a U(1) symmetry correspond-
ing to Z; Z;. We randomly intersperse these dynamics
with measurements of Z; (at rate ), followed by the oper-
ation X; if the outcome is 1. The unitary dynamics lead to
a symmetric simple exclusion process (SSEP) [62] of the
charge operators, while the adaptive measurements con-
vert Z; to 1. As a result, for any y > 0, one always finds
(Z; (1)) = O (1) for sufficiently late times ¢ = poly(V). In
other words, for any initial state, this protocol steers the
system into the state |0) (all spins up) up to a vanish-
ing density of defects |1). However, because the charge
operators Z; are conserved under time evolution, there is
no competition between the chaotic dynamics and adap-
tive gates, precluding a sharp transition as a function of
measurement rate y.

Finally, we consider adaptive dynamics in models with
kinetic constraints, which admit robust transitions between
distinct phases of matter. It is crucial that the underly-
ing unitary evolution competes with the adaptive mea-
surements. The latter generically removes the measured
operators in the Heisenberg picture, so that measuring
operators of the form of the local order parameter leads to
nonzero expectation values in generic initial states. How-
ever, for a phase transition to exist, the unitary dynamics
must compete with the adaptive measurements by spawn-
ing the measured operators. We note that this is generically
the case in nonconserving deterministic models (including
Hamiltonian models), but in the context of Haar-random
circuits requires kinetic constraints without continuous
symmetries.

We explore this MIPT via numerical simulation of a
1D quantum East model [32] on L qubits. The unitary
dynamics apply a Haar-random gate to qubit; if the “East”
neighbor is in the state |1), and does nothing otherwise.
The adaptive part of the protocol steers the system toward
the dynamically stationary absorbing state |0) [29—31] by
measuring Z; and applying X; if the outcome is 1. We find
a critical measurement rate y, =~ 0.038 and identify uni-
versal exponents consistent with directed percolation [31]
via high-quality scaling collapse. For y > y., the system
reaches the absorbing state |0) in time # = O (L), while for
y < Y., the absorbing state requires time ¢ = exp(L), or the
absorbing state is not reached. These results are consistent
with concurrent works on adaptive dynamics [55,58—61],
and generalize to arbitrary adaptive hybrid protocols. At
the time of this writing, the absorbing-state transitions real-
ized in these models are the only physically meaningful
examples of measurement-induced phase transitions.

II. THE STINESPRING FORMALISM

The Stinespring dilation theorem [33] provides an alter-
native representation of measurement channels that is tech-
nically better suited to the scrutiny of hybrid circuits and
conceptually more revealing. The crucial insight herein is
that the resulting unitary representation is not merely a
bookkeeping tool, but reflects the time evolution of the sys-
tem and measurement apparatus [35]. This allows for, e.g.,
the evolution of operators in the Heisenberg picture in the
presence of projective measurements.

A. Stinespring dilation and isometric measurement

The Stinespring dilation theorem [33] states that all
quantum operations (or “quantum channels”) can be rep-
resented via isometries and [partial] traces acting on the
density matrix. By Choi’s theorem [37], Stinespring’s iso-
metric channels are equivalent to both the Kraus and
completely positive trace-preserving (CPTP) map formu-
lations of quantum channels. However, we find that the
Stinespring formalism is more convenient and intuitive in
the context of measurements.

An isometry is a norm-preserving map from a given
Hilbert space H, to a “dilated” Hilbert space Hp. The
dimensions D4z = dim(H ) give the number of many-
body states in each space, and must obey Dg > D,. The
isometry V : H, — Hp satisfies | V]u)|| = |||u)]| for all
vectors |u) € Dy; equivalently, we have that ViV =1,
while VVT projects onto the subspace H, C Hz. When
D, = Dg, V is then unitary (i.e., VVT = 1). Hence, uni-
tary channels—e.g., corresponding to time evolution—are
a proper subset of isometric channels.

The rationale for dilating the Hilbert space in the context
of measurement is that the act of measurement entangles
the state of the physical system with that of the apparatus or
observer (which reflects the outcome), as depicted in Fig. 1.
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FIG. 1. Sketch of a measurement of 4 (2) in the Stinespring
formulation. The wave function only appears to collapse upon
measurement—in reality, the observer and system become entan-
gled, and the postmeasurement state is a superposition of states
where outcome m obtains and the observer records outcome .
The dilated Hilbert space encodes this entanglement using an
“outcome register.”

The dilated Hilbert space,
Hait = Hon @ Hss, (1)

includes an “outcome” (or “Stinespring”) register that
records the measurement outcome quantumly.
An observable A4 has the spectral decomposition

M
A = Z am ]P(m)’ (2)

where {a,,} are the M unique eigenvalues of A (which are
also the possible measurement outcomes), and P™ is a
projector onto the eigenstate (or set of eigenstates) of A4
with eigenvalue a,,. That is, 4 P™ = 4,,P; when the
spectrum of A4 is nondegenerate, P" = |m)(m| projects
onto a single eigenstate of 4. The projectors are self adjoint
and idempotent,

()’

Pm — — (Ip(m))2 i A3)

as well as orthogonal and complete,

PP =5,,P" and Y P™ =1. 4)

m

The isometry corresponding to measurement of 4 (2) is
captured pictorially in Fig. 1. The initial state of the sys-
tem is |v), while the initial state of the observer is trivial
(i.e., prior to measurement, the observer’s state is one
dimensional). Measuring 4 (2) leads to

S

) = =Y P™Y)@Imy, (3

m=1

where the “ss” subscript labels the M-dimensional “Stine-
spring” or “outcome” register, where M is the number of
unique eigenvalues of A (2). The Stinespring states are
orthonormal and complete,

<m|n>ss = 8m,n 1 <m,n < M, (6)

and the Stinespring state |m),, encodes the fact that out-
come a,, was observed upon measurement.

The isometry corresponding to the channel (5) is

Z IP ® |m s$2 (7)

which maps the physical state |/) € Hp, to the dilated
state [¢') € HY! = HP* ® H upon measuring 4 (2).

Importantly, unlike the Kraus representation of measure-
ment channels, the isometry captured by Eq. (5) is unique,
up to the choice of the precise state of the Stinespring
register (“ss”) that reflects the measurement outcome m.
The Stinespring states need only obey Eq. (6).

The standard axioms of quantum mechanics dictate that
the postmeasurement state (for a given outcome m) is sim-
ply P |4 up to normalization. The dilation theorem [33]
then implies that the “full” postmeasurement state |/} is
generically a superposition of dilated states wherein the
“collapsed” physical wave function for the system IP ;) |/)
is entangled with a bookkeeping (or “Stinespring”) regis-
ter that reflects the observation of outcome m—reflected in
the Stinespring register in Eq. (5) and Fig. 1.

Because Eq. (5) is isometric, there is no further need to
normalize the wave function. Explicitly, we have

M

(W)=Y WP"P"y)®

myn=1

(m|n)

M
=Y WPPly)=(ly) =1, ()
m=1

where we used completeness of the projectors to resolve
the identity. Note that the explicit renormalization of the
wave function required in the Copenhagen description of
measurement is cancelled by normalization of the Stine-
spring part of Eq. (5).

B. Unitary measurement

We now move beyond the isometric representation (5)
to a more powerful formulation. Note that the isometric
channel V defined in Eq. (7) corresponding to the mea-
surement of A4 (2) is unique [up to the choice of basis
(6) for the Stinespring register], and the Stinespring dila-
tion theorem [33] guarantees that it accurately captures the
measurement of 4 (2). Choi’s theorem [37] guarantees that
the isometric map (5) is equivalent to the Kraus representa-
tion of measurements. We stress that, like Kraus operators,
the isometric channel V : |¢¥) — |¢’) (7) is merely a
bookkeeping tool for representing measurements.

However, the key advantage to our Stinespring formal-
ism is not the isometric representation (7) but the unitary
formalism that it implies. Importantly, any isometry that
maps between Hilbert spaces of the same dimension is
unitary by definition. This also means that isometries can
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always be embedded in unitaries. Regarding Eq. (5), this is
accomplished by including the Stinespring (outcome) reg-
isters from the outset. Doing so requires that we identify
a “default” Stinespring state; without loss of generality,
we choose this to be |0), so that the unitary measurement
channel V maps

M
Vig : W) ® 100 = Y (P™y),, ®Im), (9)
m=1

which is uniquely satisfied by the dilated unitary operator
Vg = Z IP(m) ® Xy, (10)

where X acts on the Stinespring register as the M;-state
Weyl X operator (Al13a). The Weyl operators X and Z
are defined in Appendix A, and unitarily extend the Pauli
X and Z operators to allow for M > 2 unique measure-
ment outcomes. Specifically, X shifts the state of the
Stinespring register by m modulo M, taking the default
Stinespring state |0) to the state |m) in Eq. (5). One can
easily check that the operator V (10) is unitary by using
the orthogonality of the projectors (4).

Advantages of the unitary representation (10) include
(i) not “spawning” new Stinespring registers and (i)
not needing to renormalize the density matrix with each
measurement. However, a far greater advantage results
from recognizing that the Stinespring register (labeled

ss”) physically corresponds to the state of the measure-

ment apparatus [35]. In this sense, the unitary V (10)
is not merely a formal bookkeeping tool, but represents
the actual time evolution of the combined system and
measurement apparatus during the projective measure-
ment. A key achievement of our formalism is that V
(10) can be used to evolve operators under a projective
measurement.

For example, one measures Z on an atomic qubit (where
|0) denotes the atom’s ground state and |1) corresponds to
an excited states) using fluorescent measurement [34,35].
The apparatus is a photon detector, which is initialized
in the state |0)y, and transitions to the state |1),, upon
detecting a photon (i.e., a “click” outcome in which, e.g.,
a photon excites an electron in a nickel atom in the detec-
tor). Fluorescent light is shone on the qubit atom, and if the
atom is in the ground state |0), no photons are absorbed
are emitted, while if the atom is in the excited state |1),
a photon is absorbed and another emitted and detected
by the apparatus. This is precisely what is represented
by Eq. (10) in the ¢ = 2 limit, and generalizes to other
projective measurements [35].

For generality, consider a dilated (and possibly adap-
tive) hybrid protocol W consisting of both unitary time
evolution and projective measurements, where the choice

and location of gates of both types may depend on the
outcomes of prior measurements. Because the protocol
W is known, the set of all observables that might be
measured while applying W is also known (where the
specific sequence of measurements may be adaptively con-
ditioned on the “trajectory” of outcomes). We define the
set { 4; | 1 <i <N } containing the N “protocol observ-
ables” that may be measured in the application of W.
Correspondingly, we create A Stinespring (or “outcome”)
registers, where the ith Stinespring register has M; states
corresponding to the M; unique eigenstates of the measured
observable 4;. These registers reflect the states of the A/
distinct measurement apparati used [63].

We now work in the “dilated Hilbert space” (1) cor-
responding to all physical and Stinespring registers. By
convention, we initialize all Stinespring registers in the
“default” state |0);; the initial dilated density matrix is

N
0 =m0 ® [@ 10)(01 s, } : (11)

i=1

where p,n(0) is the initial density matrix for the physical
degrees of freedom at r = 0.

For convenience, we define the shorthand “vector” nota-
tion for the states of all Stinespring registers,

n)(n|y, = ® i) (il (12)

where the vector n contains the A/ outcomes {#;}.
With A/ > 1 measurements, the unitary measurement of
the observable 4; (2) is denoted by

M;—1
V=V =Y PV X, (13)
m=0

where X, .; is a M;-state Weyl shift operator (A13a) that
acts only on the Stinespring register i with M; unique states,
and IP]()h is defined in Eq. (2).

The key insight, which furnishes numerous results in
the remainder, is that the unitary V' (9) is not merely a
bookkeeping tool, but reflects the actual, physical time
evolution of the system of interest and measurement appa-
ratus [35]. The identification of the measurement unitary
with time evolution allows for evolution of operators in the
Heisenberg picture and the analysis of spectral properties
in the presence of measurements. This holds for measure-
ments of qubit systems, and appears to hold even for the
measurement of unbounded observables (i.e., in photonic
systems), and other systems [35].

C. Measurement outcomes

The Stinespring formulation simplifies the recovery of
various quantities involving the outcomes of one or more
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projective measurements. For example, consider the Stine-
spring description of the measurement of a single observ-
able 4 (2), where the state of the physical system is initially
given by the density matrix p,p, as in Eq. (11).

Independent of the formalism used to describe mea-
surement, considering only the physical Hilbert space, the
expectation value of O is given by

M
(), =tc[Ap]=" anpm (14)

m=1

where the probability to obtain outcome m depends on the
density matrix pp, according to

Pm :tr[IPm pph]: (15)

and the normalized postmeasurement wave function after
obtaining outcome m is given by

_ P™y)
|Ym) = W, (16)

with the corresponding density matrix given by

P p P

= 1
P w [P pon | (17)

which is also correctly normalized, with p,, = |V, (V..
In the dilated Hilbert space (1) using the notation (12),
the dilated density matrix o is given by

© = Pph 02 |O><0|ss5 (11)

and we define expectation values in the dilated Hilbert
space Hgj) according to

(Aph @ Ay ), =tr[ (A ®@ Ay ) 0] (18)

For example, the probability p,, to obtain outcome m is
given in terms of a dilated expectation value (18) as

Pn = ( ]lph b |n><n|ss )g
=tr[ (L ® In)(nlss ) 0 ], (19)

and the expectation value for a Stinespring-measured
observable 4 (2) can similarly be written as

M M
(A)y = (Lon® D> an Im)ml)y =D dupm
m=1

m=1
M
:tr|: (]lph®z Am |m><m|ss) Qi| > (20)
m=1

and we note that all information about the measurement
outcome is stored in the Stinespring register.

The preceding formulae for p, (19) and (4), (20) gen-
eralize straightforwardly to the case of multiple measure-
ments by including multiple Stinespring registers. The N
outcomes of measuring the observables { 4; } are stored in
the outcome vector n = {ny,...,nx} (12). After any num-
ber of measurements, the dilated density matrix o is a sum
over terms of the form |n)(m|, which maps the outcome
states { m; } to the outcome states { »; }. In the foregoing
formulae, one simply replaces |n)(n| with |n)(n| (12). For
concreteness, the joint probability to obtain outcomes n is
given by

Pn = (1pn ® [m)(nlg ),
=tr[ (Lpn ® In)(nls ) 0 ], €2y

and all other joint and conditional expectation values fol-
low straightforwardly from the various definitions above.

With multiple rounds of measurements, it may be useful
to restrict various quantities to particular outcome trajec-
tories (or alternatively, average over all outcomes) of a
subset 2 of Stinespring registers, while leaving the rest
of the density matrix (or some operator) intact. The den-
sity matrix (or any operator) is projected onto a particular
outcome trajectory n by the operator

P E]lph ® |n)<n|555 (22)

which may correspond to a subset Q2 of outcomes. The
normalized density matrix following Eq. (22) is then

r[ o) In)(n] ]

=t 23
“ 7 ulo® Imn] 29

where the denominator is simply p, (21). The trace in
the numerator runs over Q (where the corresponding mea-
surements have already occurred), while the trace in the
denominator is over all of Hg; (1). Note that Eq. (23)
reproduces Eq. (17) for a single measurement, and gives
the postmeasurement density matrix following a particular
sequence of outcomes, more generally.

We can also compute the probability-weighted aver-
age over all outcomes. This involves summing Eq. (23)
over all n, weighted by p,, which cancels the denomi-
nator in Eq. (23). Summing the numerator over n leads
to ), Im)(n| = 1 by completeness. The average over the
subset of outcomes €2 is then

0o =Ele®lg =3 pici=tle®], (4

where the “arrow” vector symbol indicates that the set
7 C n is a subset of all the Stinespring registers. In gen-
eral (24) gives the reduced density matrix for the physical
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degrees of freedom and any remaining Stinespring regis-
ters over whose outcomes we do not [yet] wish to average.
If @ includes all outcome registers, then oo — pph is the
density matrix for the physical system averaged over all
measurement outcomes.

D. Comment on particular trajectories

Considering calculations involving monitored quantum
systems in the Stinespring formalism, the two options pre-
sented so far for treating the Stinespring (outcome) degrees
of freedom are to (i) project this object onto a particu-
lar outcome trajectory, via Eq. (22), or (ii) average over
all possible outcomes via Eq. (24). We now motivate our
restriction to the latter case in the remainder.

Importantly, because the recorded outcome of generic
quantum measurements performed in some state |W) are
always random (as seen in Fig. 1), models of quantum
systems are generally unable to make deterministic pre-
dictions about the outcome of any particular experimental
“shot.” However, the probability p,, to obtain the mth out-
come (15) can be determined from the initial state |W);
accordingly, one can make predictions about expectation
values of measurements, and statistics associated with
higher moments (or cumulants).

These statistics depend on the particular details of
the many-body wave function |¥), which cannot be
determined in a single experiment. Recovering statistics
for measurement outcomes therefore generically requires
many experimental “shots” to synthesize. Importantly, for
the statistics to be meaningful, each shot should use the
same many-body state |V). However, measuring the state
to extract statistics inherently disturbs (i.e., changes) it.
Since the wave function cannot be accessed in its entirety
(nor could that information be stored classically in the ther-
modynamic limit), and because the no-cloning theorem
precludes copying the many-body state prior to a measure-
ment, the same state ) must be prepared from scratch in
each experimental shot.

Additionally, in performing the experiment, one has no
control over the outcome of a given measurement. Thus,
realizing a particular measurement trajectory m multiple
times requires a number of experimental shots that scales
as O (¢¥ V' T), where y is the measurement rate, N ~ LP
is the number of sites (in D spatial dimensions with lin-
ear size L), and N T is the total spacetime volume of the
circuit, which becomes infinite in the thermodynamic limit
of interest. This is also known as the “postselection prob-
lem” [20], which we discuss in Sec. VI when we discuss
the salient features of genuine phases of matter.

However, more familiar phases of matter (e.g., in the
context of condensed matter or AMO systems) do not
seem to require preparing multiple identical versions of
the same state across a divergent number of experimental
shots. This is due in part to the fact that, in a stable

phase of matter, while measuring the system disturbs its
state, it does not take the state out of the phase. Hence,
one can still extract universal features—which are by
definition insensitive to microscopic variations in particu-
lar samples and derive from a coarse-grained description
of any sample in the phase—without reconstructing the
state from scratch. Importantly, the universal probes have
low variance from sample-to-sample, providing a notion
of typicality, which allows one to extract statistics without
performing infinitely many shots.

The quantities we consider in Sec. IV (and later in
Sec. VII) have this property. One can quickly check that the
variances of generic observables under Haar-random evo-
lution is exponentially small in the system size. Thus, the
observables measured in the application of the circuit—as
well as the probe observables used to diagnose phase struc-
ture—enjoy a notion of typicality. Hence, the statistics
for some quantity averaged over the Haar ensemble and
measurement outcomes is well approximated by the statis-
tics of a finite number of independent shots spanning a
vanishing fraction of all possible realizations.

However, the same is not possible along a particular
trajectory m, where even two shots may require infinite
time, and typicality cannot be invoked. After all, there is
no notion of “approximate” postselection. For example,
low-temperature equilibrium states are well captured by
ground-state properties, as the low-temperature state has an
exponentially large probability of sampling ground-state
properties. In contrast, the probability that a random shot
successfully produces the desired trajectory n is exponen-
tially small. We conclude that quantities evaluated with
respect to Eq. (22) are not experimentally viable, while
quantities evaluated with respect to Eq. (24) are.

ITI. HYBRID CIRCUIT MODELS

We now detail the treatment of random quantum cir-
cuit protocols including measurements in the Stinespring
formalism, both with and without symmetries. In keeping
with the spirit of standard quantum circuits, we restrict our
measurements to local observables—i.e. measurements
should act on finitely many neighboring sites.

A. The spacetime lattice

We begin by constructing the “spacetime lattice,” which
defines the dilated Hilbert space Hg; (1) for a given hybrid
circuit. We consider systems with N total g-state qudits
(with on-site Hilbert space H; = C9), so that

(25)

where, in D spatial dimensions, N ~ LP.
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We now consider the Stinespring degrees of freedom.
For the isometric representation of measurement dis-
cussed in Sec. Il A, the additional Stinespring registers are
“spawned” in real time as needed, and there is no need to
codify the spacetime lattice. However, the unitary imple-
mentation of measurement discussed in Sec. II B requires
that all outcome registers be specified from the outset, and
prepared in the initial state |0)(0], (11). The prescription
below for forming the spacetime lattice in some cases gen-
erates more Stinespring sites than are actually “used” by
the circuit, to allow for the possibility that the choice of
measurements at a given time depend on prior measure-
ment outcomes. However, we note that tracing over any
unused outcome registers (still in the state |0){0|) gives the
same result as not having included the register to begin
with. Thus, the spacetime lattice contains all the degrees
of freedom that one might need for a particular calculation
involving measurements, providing a convenient means
of labeling outcome registers and implementing unitary
measurement.

We first suppose that the hybrid protocol involves T total
time steps, where we may take 7'— co. We next require
that each time step contain at most S “rounds” of measure-
ments, labeled o, where a “round” corresponds to a layer
of nonoverlapping measurement gates. The number S, of
measurement rounds may vary between time steps, and the
total number of rounds is

T
Stot = Z St/,

/=1

(26)

where S, is the number of layers in time step 7.

The measurement layer ¢, of the circuit involves the
measurement of some set €2,, of observables labeled 4,5 .,
which may have different numbers of unique eigenvalues
(M, ), and act nontrivially on clusters » containing any
finite number of neighboring sites. In general, the space-
time lattice is compatible with adaptive protocols, in which
the composition of the circuit at time # may be conditioned
on the outcomes of prior measurements.

The definition of the layers in terms of nonoverlapping
measurements implies that each physical site j encoun-
ters at most one measurement per round (i.e., at most N
observables per round). If a protocol naively requires two
or more consecutive measurements involving site j, one
simply splits these measurements into two separate rounds,
without loss of generality. Consequently, it is possible to
label the observables 4, , ; unambiguously by, e.g., the left-
most site on which 4, , acts [7,10,11]); however, we also
use the label » when convenient.

We further assume that the observables 4;,; have at
most ¢ unique eigenvalues. This assumption holds for
all stringlike observables that can be measured directly
in experiment—in general, operators that have more
than ¢ unique outcomes correspond to superpositions of

observables that can be measured directly (e.g., a local
Hamiltonian term in a spin chain). Such expectation values
are formed by making numerous individual measurements,
each with at most ¢ unique eigenvalues a piece. However,
such a procedure is not possible midway through a hybrid
circuit protocol. Thus, the assumption that M, , < ¢q is
fully compatible with the allowed circuit observables.

Hence, because there are at most ¢ outcomes per mea-
sured observable, at most N observables per round, and at
most S rounds per time step, we can store the outcomes
of measuring the circuit observables 4,,; using a total
of N -§ - T Stinespring sites with ¢ internal states each.
If A;s; has M, ; < g unique outcomes, we use only the
lowest M, ; levels of the Stinespring register.

The composition of the spacetime lattice follows from
the discrete-time nature of the circuit along with the fore-
going considerations. The result is a D 4 1-dimensional
lattice with LP x (Si¢ + 1) vertices labeled *j, T,” where
j runs over physical sites. The last axis of the lattice cor-
respond to time: the temporal “slices” T contain N g-state
qudits. The D-dimensional slice T = 0 corresponds to the
g-state physical degrees of freedom in Hp,. The slice ©
corresponds to measurement layer o of time step #:

t—1

(t,0) = Z Sy +o,

=1

27)

and contains N qudits to encode all possible measurement
outcomes. The Stinespring site j, T stores the outcome of
measuring {4, ;} in layer o of time step #, and requires
M, ; internal states (the number of unique eigenvalues
of 4, ;). In principle, the result is recorded either in the
first M. ; states 0,1,...,M.; — 1 of an g-state qudit, or
equivalently, in an M ;-state qudit at ¢,; . In practice, this
distinction is unimportant.

The Stinespring Hilbert space is given in terms of the
T > 0 slices of the spacetime lattice as

Hss = ® ® CMI'U’[a

=1 o=1 j=I

St
(28)

where M, ; is the number of unique eigenvalues of the cor-
responding observable (J; . (and defaults to unity if no
measurement is performed—i.e., a trivial outcome regis-
ter). For convenience, we embed Eq. (28) in

Hgg) — (Cq)®N (Stot+1) : (29)

so that all degrees of freedom in Hg; are g-state qudits.

B. Measurement gates

Hybrid circuits evolve a quantum system using a combi-
nation of time-evolution and projective measurements. The
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former are generated by local unitary gates acting on the
physical degrees of freedom (25); the latter are represented
via unitary (or isometric) gates according to the Stinespring
formulation outlined in Sec. II. The measurement gates in
layer o of time step ¢ act on—and most importantly, entan-
gle—the physical qudits in the slice T = 0 (25), and the
Stinespring qudits in the slice T = #,0 (29), of the space-
time lattice (discussed in Sec. IIT A). Their Hilbert space is
given by Eq. (28), and may be embedded in the simplified
spacetime lattice (29) for convenience.

Following the literature [14—19], we first consider non-
adaptive circuits, where the outcomes of measurements do
not affect the selection of future gates (we survey the land-
scape of adaptive hybrid circuits in Sec. VII). The primary
effect of projective measurements in nonadaptive hybrid
circuits is to purify the state, destroying entanglement gen-
erated via unitary time evolution. Accordingly, the hybrid
circuits of interest [14—19] typically alternate between
time-evolution gates and single- and two-site measure-
ments. The measurements are generally probabilistic: an
observable 4, ; is measured on site j in layer o of time
step ¢ with probability y, while no measurement is made
with probability 1 — y, independent of all other sites and
prior time steps. One then looks for a sharp feature in the
expectation value of some quantity as the parameter y is
tuned from zero to unity.

In this work we consider more generic hybrid proto-
cols, which may have multiple rounds of measurement per
time step, with observables of various bases, ranges, and
degeneracies in each round. We require that each physical
site j be measured at most once per round, reflecting the
constraints of actual experiments. We restrict the circuit
observables A to those that can be measured in a single
shot (e.g., precluding the measurement of sums of opera-
tors). We also assume that the number of unique outcomes
M, for each observable is at most q.

We now consider projective measurements in the con-
text of the circuit. The measurement of 4, ,- on cluster » in
layer o of time step ¢ is represented by the unitary,

M—1
Vier=Y_ P ® X, (30)
m=0

where the “¢,0,7” indices on M have been omitted for
visual convenience and IP%) projects the physical cluster
r,0 onto the mth eigenspace of 4;,, (2). The shift oper-
ator X, , (Al13a) acts on the first M, , < g states of the
outcome register at t, o, r.

The measurement layer ¢, o of the circuit is given by

VZ,G = ®Vt,0,ra (3 1)

rle’q

where 2;, is the set of sites that participate in mea-
surement layer o of time step . The measurement layers

FIG. 2. Depiction of a 1D brickwork quantum circuit com-
prising two-site gates (left) and a single two-site unitary gate
corresponding to time step ¢, unitary layer A, and site j (right).
Each time step ¢ consists of £ = 2 layers labeled A, corresponding
to even and odd bonds, as indicated by the labels (¢, 1). The two-
site gates are drawn independently—in both space j and time
t—from the Haar ensemble [64].

may be placed at any point in the single-time-step circuit
relative the time-evolution layers.

C. Time evolution

Time evolution gates act solely on the physical Hilbert
space (i.e., the T = 0 slice of the spacetime lattice). Local-
ity of the dynamics is captured by evolving the system
using a “circuit” of £-site unitary “gates.” A local 1D
circuit with the default £ = 2 is depicted in Fig. 2.

The unitary gates are /ocal in that the gate U, ; (in layer
A of time step 7) acts on a cluster » comprising a contigu-
ous region of ¢ neighboring qudits. We then arrange these
gates into £ layers per time step, so that each site j real-
izes each of the ¢ positions in the various gates in each
time step. In 1D, gates are uniquely labeled by the left-
most qubit j € r, and in layer A, the label j for the gate
U, satisfies j mod £ = A. In this way, the £ layers of
time-evolution gates tile the system in a brickwork geom-
etry in every time step of the circuit. Figure 2 depicts the
{ = 2 case, where the two layers alternate between even
and odd bonds. Note that extension to higher dimensions
is relatively straightforward: the 2D analogue of the brick-
work circuit involves four layers of four-site gates acting
on plaquettes of the square lattice.

The state [i) of the physical system is evolved from
time 7 to time ¢ + 1 according to

W+ D) =W, [y @), (32)

where W, is a circuit given by the time-ordered product

14
Wt = l_[Wt,)u (33)
r=1
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where W, , is a layer of the circuit comprising mutually
commuting ¢-site unitary gates,

Wi = Q) Ui (34)

rex

where U, , is the gate that acts on the physical sites
(r = 0) in cluster r. Absent any symmetries or constraints,
we draw the gates U, , independently for each cluster
r in each layer A of the circuit from the unitary group
U(g*) with uniform measure (i.e., the gates are Haar-
random ¢° x ¢ unitaries). We note that other random-
matrix ensembles exist; however, circuits of unitary gates
drawn from the Haar distribution capture the universal
properties of chaotic quantum evolution [6—11,64]. The
full evolution from the initial state to time # is given by

t—1

W @O) =Wa [y O, WO =][W.  (35)

s=1

where the product is time ordered.

Generally speaking, minimal brickwork circuits (e.g., as
depicted in Fig. 2 for the 1D case) are sufficient to repro-
duce the maximally chaotic physics realized by a ¢V x ¢"
many-body random unitary [8—13,64].

D. Symmetries, constraints, and block structure

The circuits of Sec. III C are designed to be fully generic,
and therefore lack many ingredients present in typical sys-
tems—namely, symmetries. We now extend these generic
circuits (34) to capture arbitrary Abelian symmetries [10—
13] and/or kinetic constraints [13,32,38-42].

We note that the generators of Abelian symmetries can
always be represented using a common basis. In general,
we take this to be the eigenbasis of the Weyl operator Z
(A13b), which reduces to the Pauli Z matrix for ¢ =2
(the Weyl operator basis is detailed in Appendix A). The
local eigenstates of Z form the computational basis.

In models with kinetic constraints (but no conserva-
tion laws), we express the constraints in the computational
basis (the Z eigenbasis, without loss of generality) [13].
With both symmetries and constraints present, we require
that they share a common basis—i.e., that the “charge”
basis is also the computational basis. The rationale is that,
if the constraint were formulated in the X basis, e.g.,
while charges correspond to the Z basis, then the projec-
tor onto configurations of fixed charge would mix between
states that do and do not satisfy the constraint (and vice
versa). However, configurations that violate the constraint
by definition should be dynamically “frozen.” Hence,
our results apply to the “natural” class of symmetry-
compatible constraints—as well as to generic models with
either Abelian symmetries or constraints [13].

0 0 0\ |00

)
0 0| |01)
U. .., =

S > 10)

00 0 11)

FIG. 3. Block-diagonal gate for a 1D circuit with U(1) conser-
vation of Z (or “charge”), for ¢ = £ = 2. Blocks with different
charges cannot mix under dynamics; consequently, the unitary
gate acts nontrivially only within blocks of fixed charge, and the
unitaries in different blocks are independently drawn.

The unitary gate acting on some £-site cluster » can be
written in the block-diagonal form

U= P U, P, (36)

where P projects onto block o (which contains a set of
ny > 1 states of cluster r that are allowed by the sym-
metries and/or constraints to mix under dynamics). The
unitary U,, acts purely within block o [10-13], and is
independently drawn for each « from the unitary group
U (ny) with uniform (Haar) measure [10—13,64].

Unitarity of U, (36) requires that the projectors be
complete and idempotent,

Y PW =1, PYPY =5,PY, (37

and each P can be written as a sum over projectors onto
particular £-site computational-basis configurations of r
that belong to the block «,

PO =" [T la)al;, (38)

aea jer

where a = (aj,a;41,...,a;1¢—1) labels Z-basis configura-
tions of . Each block & contains at least one configuration
a and every configuration appears in some block. Figure 3
depicts the block-diagonal gate for a U(1)-symmetric
1D circuit with ¢ = £ = 2; further examples appear in
Ref. [13].

The blocks o may correspond to configurations of the £-
site cluster 7 with definite conserved charge O, = Zj o s
configurations that satisfy some constraint(s), or a combi-
nation thereof. Note that configurations that do not sat-
isfy the constraint(s) belong to their own trivial blocks
a (with n, = 1). In the case of symmetries, even single-
state blocks have 1 x 1 Haar unitaries (which capture
generic interactions in these states); however, in the case
of constraints, we may take U,, = 1 [13], meaning that
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interactions (if present) are conditioned on satisfaction of
the constraint. In this case (36) becomes

Uy =3 P9 U, PO LY PP, (39)
o B

and Eq. (37) is modified to include both « and 8 blocks.
Note that any combination of Abelian symmetries and
(symmetry-compatible) constraints can be captured by
gates of the form Eq. (36). Moreover, both conservation
laws and constraints may be imposed either within the
g-dimensional Hilbert space [10,13] or through the intro-
duction of ancilla degrees of freedom [11,12]. Our only
other assumption is that all blocks can be represented in a
common basis—namely, the computational basis.

IV. OBSERVABLES AND CORRELATIONS

We now consider expectation values and correlations of
generic observables, which can diagnose dynamical uni-
versality and phase structure in experiment without fine
tuning. These quantities generally require multiple inde-
pendent experimental “shots” to evaluate (i.e., to recover
statistics), where only the initial state of the system pg (11)
need be the same in each shot. That state is evolved under
the hybrid circuit, and the outcomes of various “probe”
measurements O (as distinct from the “circuit” observ-
ables 4 measured as part of the hybrid protocol W) are
recorded and averaged without postprocessing. We fur-
ther restrict to nonadaptive circuits, where the outcomes
of circuit measurements are not utilized.

Such quantities are the most straightforward to mea-
sure in generic condensed matter and AMO experiments.
Moreover, they do not involve postselection or outcome
decoding, are insensitive to sample-to-sample variations
(e.g., gate errors and different measurement outcomes), are
generally not fine tuned, and have a well-defined notion of
typicality (meaning that they can be sampled in practice),
and commonly diagnose phase structure.

Mathematically, these quantities involve only a single
copy of the dilated density matrix o (11)—i.e., they are
linear functions of o. While it has been claimed in the lit-
erature [14,25] that linear functions of the density matrix
are necessarily blind to MIPTs, a key result of this work
is that nonlinearity in the density matrix is neither neces-
sary nor sufficient for detecting MIPTs. This conclusion is
motivated by the analyses of Secs. V and VII.

A. Quantities of interest

The “standard” probes of phase structure we consider
correspond to quantities of the general form

(O1(t1) - Onltn) )gs (40)

where the time arguments {z;} can be ordered on a closed-
time (Keldysh) contour, as shown schematically for n = 4

@(t4)
o— ;
J

O(t2) C O(t3)

FIG. 4. Schematic depiction of the Keldysh contour C [65].
While the time arguments do not satisfy ¢, > #,_;, they are nev-
ertheless orderable on the Keldysh contour, which contains only
one forward (4) and one backward (—) time evolution.

in Fig. 4 [65]. Such quantities correspond, e.g., to the
time-dependent expectation value of a local observable
(n = 1), linear response correlation functions (n = 2), and
time-ordered nonlinear response functions (or n-point cor-
relators) [65]. We note that out-of-time-ordered correlators
(OTOCs) [7,8] cannot be evaluated in practice for y > 0
since the measurement process is “irreversible” from an
experimental standpoint.

Importantly, quantities of the form Eq. (40) can be
extracted using independent experimental ‘“‘shots” per-
formed on a single sample in finite time and without
fine tuning. The outcomes of measurements performed as
part of the hybrid evolution are not subsequently utilized.
Importantly, these types of quantities are immune to shot-
to-shot noise, do not include postselection or feedback,
and the number of observables measured to construct the
probe itself is finite [at most O (N)]. In Sec. VI, we justify
restricting to quantities of the form Eq. (40) by arguing that
all phases of matter can be defined using quantities of this
type (including nonequilibrium and topological phases).

In a given calculation, the probe observables {O;} in
Eq. (40) may be treated separately from the circuit observ-
ables {4, ,}, in either the Schrodinger evolution of density
matrices or the Heisenberg evolution of operators (made
possible by our Stinespring formalism of Sec. II).

The probe observables’ evolution in the Heisenberg
picture factorizes according to

(Wiow,) (WL, 0:W21) -+ (W), 21 OaWi..21)

=wiow]o,.-.-wio,w,--- wym,

meaning that every unitary gate U and its conjugate U'
appears exactly once in any such expression. Averag-
ing the unitary gates in a given hybrid protocol over
the Haar ensemble simplifies (perhaps within each charge
or Krylov sector) to the onefold channel (B1) described
in Appendix B [13,64]. Additionally, each measurement
unitary gate V) (and its conjugate V1) appear exactly once.

B. No signatures in “generic” chaotic dynamics

We first consider the effect of measurements on
“generic” circuits [14]—i.e., in which time evolution is
not enriched with block structure (i.e., neither conserved
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quantities nor kinetic constraints). In this case, the tran-
sition matrix for any time-evolution layer A is given by
Eq. (C16), with matrix elements given by Eq. (C17). Such
Haar-random circuits model fully generic chaotic quantum
systems, which generically equilibrate to the featureless,
maximally mixed state pperm = Poo ¢ 1. We note that the
transition matrix 7 is implicitly averaged over the Haar
ensemble; in the absence of block structure, each layer of
T annihilates all operators except the identity 1.

We now consider the combination of the transition
matrices for time-evolution layer A (C17) and the outcome-
averaged measurement of 4, , on cluster » (C21). Noting
that the time-evolution transition matrix factorizes over
sites, the elements of the combined transition matrix gate
for cluster —corresponding to time evolution and mea-
surement in either order—are given by

~
7o) (Tii| Topr Toor | D)
e - 7 - ol
i i’ m,n tar Lto,r m'’
_ T(f,)h,”) T<t’a’r)
- mm' 7 m wm

il i
= S S O § S G

= [I)(1| = T&52, -, (42)

m,n;m
meaning that, on average, the combination of measure-
ment layer o and time-evolution layer A (in either order)
is identical to time evolution alone. In fact, any number
of measurement layers are trivialized by a single layer of
generic time evolution acting on all physical sites in the
system (in either the Schrddinger or Heisenberg picture,
for arbitrary circuit geometry and choice of {4, ,}).

The blindness of Eq. (40) to projective measurements in
generic hybrid circuits was first conjectured in Ref. [14].
However, it is not the case that projective measurements
do nothing in such systems. Rather, the combination of
generic, Haar-averaged time evolution and arbitrary mea-
surement gates (applied in either order) annihilates the
second term in the outcome-averaged measurement tran-
sition matrix gate (C21), which would otherwise admit
nontrivial dynamics with degenerate measurements.

The first term in the transition matrix gate (C21) acts

as ZZ;} |Z")(Z"| for Z-basis measurements, on aver-
age. However, this differs from the generic time-evolution
transition-matrix gate |1)(1| = |ZO)(ZO| (C16) only in the
inclusion of the n # 0 terms, which are annihilated upon
contraction with Eq. (C16) (in either order). Hence, the
combined transition matrix (42) for time-evolution layer A
and any number of measurement layers (before or after A)
acts on the entire physical system as 7, = |1)(1] (C16),
which is equivalent to 7, alone.

One might conclude from the conjecture of Ref. [14] as
stated that quantities of the form Eq. (40) are blind to the
competition between measurements and chaotic evolution.
The analysis above suggests that such competition does not

exist—at least, not in experimentally observable quantities.
Moreover, there is also no cooperation between these two
features, nor do measurements trivialize chaotic dynamics.
In fact, maximally chaotic dynamics trivialize the effects of
measurements, and produce the infinite-temperature state
Poo more quickly than measurements. In the absence of
block structure, the most generally correct statement is
that the combination of measurements (without feedback)
and highly chaotic time evolution is indistinguishable from
chaotic time evolution alone.

This appears to be a generic feature of measurement-
based quantum protocols in which the measurement
outcomes are not subsequently utilized [34]. Because
the outcomes are effectively discarded, their outcome-
averaged effect is equivalent to allowing the “environ-
ment” to measure the system instead. This is most trans-
parent in the context of quantum error correction repre-
sented in the Stinespring picture: as shown in Ref. [34],
unless and until an error-correction operation is performed
(using the outcomes of the measurements), the state of
the measured degrees of freedom is always the maxi-
mally mixed state p, o< 1, which is simply a random
classical bit (or “dit” for ¢ > 2), with all measurement out-
comes equiprobable (for arbitrary measurements). Impor-
tantly, there is no physical significance to “reading” (or
“recording”) the measurement outcomes—they must be
utilized, or they have no effect on physically observable
quantities (40).

C. Measuring “charge” operators has no effect

Having ruled out detectable effects due to measure-
ments in generic (i.e., structureless) hybrid circuits, we
now investigate the fate of Eq. (40) in nonadaptive hybrid
circuits with arbitrary conservation laws. We consider
Abelian symmetries, and allow for symmetry-compatible
constraints, but require that all configurations have associ-
ated dynamics. Importantly, we restrict to the measurement
of “charge” operators—i.e., those that are diagonal in the
charge (and/or computational) basis.

We note that chaotic time evolution enriched with one or
more conservation laws admits late-time states p,,(¢) that
are not trivially proportional to the identity. The reason
is that information about conserved charges is protected
against scrambling. In the presence of block structure,
Pay (?) generally realizes the maximally mixed state within
each symmetry (or charge) sector, or an “absorbing” (or
“steady”) state [12,13,61]. In general, such states are com-
patible with nontrivial phase structure, where experimen-
tally observable quantities (40) may be nonzero, indicating
order. A priori, such circuits may be compatible with
nontrivial orders due to measurements.

Without loss of generality, suppose that the projectors
P onto dynamical blocks (36) correspond to sums (38)
over Z-basis product states (A13b). For the hybrid protocol
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W as a whole to respect the desired conservation laws,
the circuit observables 4,;,, must act diagonally in the
charge (and/or computational) basis, and thus commute
with one another and with the projectors onto dynami-
cal blocks (36). Thus, the circuit observables {4, ,} must
realize sums of Z" (A27).

The blocks generically capture any Abelian symme-
try, along with symmetry-compatible constraints [13]. The
Z-basis circuit observables 4, , correspond to “charge”
operators (as in Ref. [25]). The transition matrices cor-
responding to symmetric time evolution and symmetry-
compatible measurements (in the Z basis) are given in
Eq. (C18) and Eq. (C21), respectively.

Because the observables A4;,, commute with one
another, any number of consecutive layers of measure-
ments is equivalent to a single layer (up to possibly lifting
degeneracies). Hence, it is sufficient to consider the prod-
uct of the transition matrices corresponding to a single
round of measurements (C21) and one layer of time evolu-
tion (C18), in either order. Using Eq. (C19) and Eq. (C23),
we have

= T(evo) T(meas)
e =

tAr oy

—Z > Z Y 10X O | Osiir X |

aaeau 0 mn'epn

= Z Z |0aa)Oaar| = TS, (43)

aca

meaning that the measurement has no effect whatsoever.
The reverse ordering of the measurement gate relative the
time-evolution gate corresponds to the transpose of the
above; since the transition-matrix gates are Hermitian, the
result is the same in either order.

The result above holds independent of the relative sizes
of the clusters r and 7/, since the time-evolution layer A tiles
all sites. Hence, every configuration /2, 7’ in the measure-
ment layer o is matched to the block-compatible configu-
rations a,a’ above, and thereby trivially absorbed into the
time-evolution layer. Also note that the result above holds
even in the presence of trivial blocks g (39)—i.e., for fine-
tuned models in which constraint-violating configurations
are noninteracting.

Additionally, any further layers of Z-basis measure-
ments do not change this result, as they are successively
absorbed into—and trivialized by—the time-evolution
layer. Thus, we conclude that projective measurements that
commute with the generator(s) of any Abelian symmetry
(along with the projectors encoding any constraints com-
patible with that symmetry) have no detectable effect—on
average—compared to time evolution alone in the absence
of outcome-dependent feedback . In Sec. VII, we recover

nontrivial results for adaptive circuits with charge mea-
surements, and genuine phase transitions in constrained
models without conservation laws.

D. Other measurements “undo” structure

The scenarios considered thus far are the two most rel-
evant to experiment [14,25,28]. We first ruled out the
possibility that measurements of any type have an observ-
able effect compared to generic chaotic time evolution
alone [7,8]. We then ruled out the possibility of “steering”
toward symmetry sectors in chaotic quantum systems with
Abelian conservation laws using measurements of charge
operators (without outcome-dependent feedback).

The results apply to all quantities of the form Eq. (40) in
nonadaptive circuits upon averaging over measurements.
As far as we are aware, there have been no attempts to
investigate the measurement of “charge-changing” oper-
ators in chaotic quantum circuits with conserved quanti-
ties—most likely, this is because one naively expects that
measuring such operators simply spoils the symmetry of
the time-evolution gates in the full hybrid protocol W,
leading to a featureless state p,y(¢) o< 1 [7,8].

We now confirm that this is, indeed, the case for hybrid
circuits acting on qubits (¢ = 2), where the Weyl X and
Z operators reduce to the familiar Pauli matrices X and
Z, with Y =1 XZ. For ¢ > 2, the same arguments are
expected to apply, as described in Sec. IV and conjectured
in Ref. [14]. For concreteness, time evolution is generated
by two-site, block-diagonal gates of the form Eq. (36),
with symmetry blocks generated by Z, and we consider
projective measurements of X and Z operators.

1. Qubit models

The unitary gates (30) corresponding to Pauli measure-
ments are also Hermitian [34]. Consider the single- and
two-site physical density matrices

3
piy =2 CP o

(44a)

n=0
pij () = Z Y ol'o! (44b)

n,v=0

and now, measuring X; and X;X;, respectively, gives

pi) = Cy 1;+ Y X, (45a)
() =C 1, + Y X+ C” X + C” XX, (45b
pij (1) = Coo Ly + Ci o Xi + Gy X; + €} XiX;, (45D)

and taking X;; — Z;; in the expressions above gives the

updates corresponding to measuring Z; and Z;Z;.
However, such Z measurements can generically and

trivially be absorbed into the Z-basis time-evolution gates,
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as established in Sec. IV C. As a result, any measurements
of Z have no effect on the density matrix, unless they
appear between X measurements. However, we ignore this
scenario, since such Z measurements have no effect on the
evolution of any observable or density matrix.

2. Ising symmetry

Suppose that the two-site time-evolution gates (36) con-
serve the 7Z, Ising parity G;; = Z;Z;. The unitary gate
U;; contains two symmetry blocks with two states each
(corresponding to G;; = %1), with associated projectors
(1 £ ZZ;) /2. The Haar-averaged update to Eq. (44b) is

pi; () = Cy 1i; + CY} Z:Z;, (46)

and taking Eq. (45) with X — Z is consistent with the
claim in Sec. IV C that measuring any number of Z opera-
tors before or after applying such a time-evolution gate has
no effect compared to time evolution alone.

According to Eq. (45), measuring X; or X; (45) before or
after time evolving (46) gives

pij (") = C(()t,)o 1, 47)

which is equivalent to generic Haar-averaged time evolu-
tion (C16) with neither conservation laws nor constraints.

From Eq. (47), we conclude that measuring X.X; gives
the same result; it is also straightforward to verify that
measuring X;X; before or after applying the gates U and
U; ¢ also leads to the maximally mixed state p o< 1 on all
sites i,7,k,£. In other words, any measurement involv-
ing charge-changing operators X; applied before or after
an Ising-symmetric gate {;; is equivalent to replacing 4,
with a random 4 X 4 unitary.

Essentially, X measurements “undo” the Ising symme-
try, replacing the nontrivial density matrix with the max-
imally mixed state p o 1 on every measured site. Thus,
although measurements cannot infroduce new universal
behavior (compared to chaotic time evolution alone),
they can negate the universal properties of time evolu-
tion, instead realizing “generic” (i.e., featureless) evo-
lution. This rules out the possibility of realizing non-
trivial phases in Ising-symmetric systems using non-
adaptive circuits with competing X- and Z-like mea-
surements, and implies that the measurement-induced Z,
symmetry-breaking and symmetry-protected topological
orders reported in Refs. [26,27], respectively, are experi-
mentally unobservable.

3. Charge conservation

For a more nuanced example, suppose that the two-site
time-evolution gates conserve the local U(1) charge G;; =
Z; + Z; (as depicted in Fig. 3). The unitary gate {{;; con-
tains three symmetry blocks, corresponding to the states

00 =11, 11 =} |, and the two neutral states 01,10 =1
, 4 1. These blocks have G;; = +1, —1, 0, respectively, and
the associated projectors are (1; + Z;) (]lj + Zj) /4 and
(Lj — ZZ;) /2. The Haar-averaged update to Eq. (44b) is

pij () = Céf)o 1 + C§’§ ZiZ;
1 SE—
+5(ch+ch) @+z). @)

where the first line is equivalent to the Ising update (46)
and the new terms in the second line correspond to the two-
state block 1, |1. Note that U(1)-symmetric evolution
mixes the operators Z; and Z;.

As in the Ising case, one can verify that measuring
Z operators immediately prior or subsequent to time-
evolution layer A has no effect on average compared
to time evolution alone. Additionally, measuring Z in
between X measurements again has no effect. Hence, we
need only consider measuring the symmetry-incompatible
operator X;, either before or after the U(1)-symmetric
time-evolution gate I4;; that produces Eq. (48).

After averaging over measurement outcomes and the
Haar ensemble (in either order), the density matrix is

—_— 1 S—
pi @) = Ciy Ly +5 (CA+C) Z (49)

meaning that measuring X; annihilates Z; terms in
Eq. (44b); however, the time-evolution gate {f;; mixes
Z; with Z; (with a factor of 1/2), so that the 0,3 coeffi-
cient survives. If one instead measures the product operator
X;X;, then only the trivial term remains (o o 1), as in the
Z, Ising case (47). The same result holds if one measures
both X; and X; independently.

4. Generalization

We now consider charge-changing measurements for
systems with ¢ states per site and arbitrary Abelian symme-
tries. If constraints are present, we require that all blocks
in Eq. (36) are dynamical (i.e., even constraint-violating
configurations are assigned a 1 x 1 Haar-random unitary,
which captures generic interactions). As always, we take
the charge (and/or computational) basis to be Z.

We then consider the transition-matrix gate correspond-
ing to the measurement of a charge-changing observable
Ay, acting on some cluster x. Importantly, the Weyl decom-
position (A25) of 4, has nontrivial X (A13a) content, and
is thus “charge changing,” as discussed in Appendix C4.
We assume for simplicity that time-evolution gates are
applied before and after the measurement of A4,, and
recover a transition-matrix gate reflecting the combination
of these channels. The details of that derivation appear in
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Appendix C4, and the result is

1 = | i\ (7
L=+ 5 30 TG [27)(Z] 60
70
where Z7(n) is the integer
Timy =) > Suybn (51)

B btb'cB

which counts the number of pairs of states b £ 4" in each
block B of degenerate eigenvalues of A4, that satisfy b’ —
b = n for integer n = n’. Hence, the effective transition-
matrix gate (50) for measurement of the charge-changing
observable 4, preserves any trivial operator content o 1,
suppresses certain Z, operators by a factor O (1 /q‘)"),
and annihilates others entirely. At late times, the non-
trivial parts of Eq. (50) are heavily suppressed (i.e., by
g7 M TNy 5o that T, ~ |1)(1] is effectively that of a
measurement-free evolution without block structure (42)
which is “undone” by the measurement.

If there are multiple, overlapping measurements of
charge-changing observables between two time-evolution
layers, then we cannot enforce m = m’ = 0 on all inter-
mediate measurements (on sites where overlaps occur).
However, we note that the two terms in Eq. (50) do not
mix: the first term allows only the identity, and the sec-
ond term annihilates the identity. All terms with X content
are annihilated by each time-evolution transition-matrix
layer; these operators may be repopulated by the measure-
ment transition matrices, but must also contain nontrivial
Z operator content. In the simple case where all measure-
ments are nondegenerate, then only the identity survives,
as the nontrivial term in Eq. (50) vanishes. In the more sub-
tle case of degenerate measurements, but where Z = 1,
the same n must have nonzero Z for all measurements
between any two time-evolution layers; intuitively, this
is because the sequence of X -basis measurements “lifts”
the degeneracies of each individual observable measured.
Finally, if we allow for § blocks, as in Eq. (39), the time-
evolution layers no longer annihilate all X content, and the
hybrid transition matrices are more complicated.

In the most general case, we find that the 1 part of any
operator (if present) survives the entire circuit unscathed.
Importantly, this term is always present in any density
matrix, with constant coefficient ¢~V The nontrivial terms
(i.e., other than 1) in any operator or density matrix are
suppressed by a factor of 1 /g every time a charge-changing
measurement is made on a site where the operator or den-
sity matrix acts nontrivially. This suppression is present
even in the most complicated cases above, and is cap-
tured by the qubit examples. Hence, we conclude that the
trivial part 1 of any operator O or density matrix p is unaf-
fected by the hybrid evolution, while, in the presence of

charge-changing measurements, all other terms are sup-
pressed by a factor of roughly ¢=7 'V, where y is the rate
of charge-changing measurements.

In other words, we find that measuring observables that
are not compatible with the block structure of the time-
evolution protocol can only trivialize (i.e., “undo”) the
universal features of the time evolution itself. It is not
possible for measurements to introduce new terms not per-
mitted by time evolution without an adaptive protocol. The
two limiting scenarios correspond to (i) no modification
to the physics corresponding to time evolution alone and
(if) trivialization of the time-evolution physics to feature-
less chaotic evolution. At early times, p may realize any
state compatible with block-structured time evolution (i),
while at late times, p reduces to the maximally mixed
state, as would result from generic time evolution alone.
As the measurement rate y is increased, one can tune from
case (i) to case (if) by suppressing all states other than
the maximally mixed state with each additional measure-
ment, without ever seeing a sharp transition. We also note
that neither limiting case corresponds to “new” univer-
sal physics—measurements either preserve or trivialize the
physics of time evolution. The “crossover” between these
two regimes is further smoothed by averaging over mea-
surement locations, so that the weight of nonidentity terms
falls offas g~V V /.

Thus, measurements can either (i) do nothing at all
compared to time evolution; (if) trivialize the dynamical
properties of time evolution; or (ii7) anything intermediate
between these limits. However, there is no sharp “transi-
tion” as one tunes between these limits, and we conclude
that measurements cannot lead to new universality classes
nor transitions that can be witnessed using probes of the
form Eq. (40) without feedback.

V. SPECTRAL FORM FACTORS

We now study spectral properties of hybrid Floquet
circuits with both projective measurements and chaotic
unitary dynamics with and without block structure. Impor-
tantly, such a spectral analysis in the presence of measure-
ments was not possible prior to our development of the
unitary Stinespring formalism in Sec. II, and particularly,
the identification of that unitary with the time evolution of
the system and measurement apparatus [35].

Historically, one of the most prominent examples of a
sharp transition between area-law and volume-law scaling
of entanglement entropy corresponds to the thermaliza-
tion transition between ergodicity and many-body local-
ization [1-5]. However, such [de]localization transitions
are generically manifest in experimentally tractable probes
of the form Eq. (40), and are always evident in spectral
properties, which generically distinguish chaos from its
alternatives.
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Here we consider the SFF, an analytical diagnostic of
spectral rigidity that quantifies the signature level repul-
sion of chaotic quantum systems. We evaluate this quantity
in the presence of measurements for the first time, identi-
fying several possible extensions to hybrid dynamics. Of
these, only a handful are physically sensible, and none
show a transition as a function of measurement rate y. As
in the case of observables (40), both in the absence of block
structure and in the case of structure-preserving measure-
ments (i.e., corresponding to “charge” operators), there is
no dependence of the SFF on y whatsoever. In the case of
structure-incompatible measurements (i.e., corresponding
to “charge-changing” operators), the effects of block struc-
ture on the SFF are smoothly diluted as a function of y
without a transition.

Even more striking is our finding that even variants of
the SFF that is quadratic in the density matrix p is equally
blind to the effects of projective measurements. Such vari-
ants are based on temperature-dependent spectral form
factors in thermal, Hamiltonian systems. Even with posts-
election (of the outcomes realized for the two copies of p),
measurements have no meaningful effect on the spectral
properties of the underlying chaotic dynamics.

Our analysis of the SFF provides compelling evidence
that (7) measurements do not compete with chaotic dynam-
ics as far as the spectrum of the underlying evolution
operator is concerned, but merely destroy entanglement,
and (if) nonlinearity in the density matrix p—even when
combined with postselection—is not sufficient to realize a
transition as a function of the measurement rate y .

A. Chaos and spectral rigidity

Having established that dynamical signatures of quan-
tum chaos, universality, and phase structure (40) are blind
to the effect of measurements in Sec. IV, we now consider a
separate signature of chaos: level repulsion. Thermal cor-
relations in chaotic systems cause the eigenvalues of the
generator of dynamics (i.e., Hamiltonians and Floquet uni-
taries) to repel one another. In general, the eigenvalues of
JF (D3) for a chaotic quantum system are expected to obey
an RMT distribution [9,12,13,43-46]; this is also termed
“spectral rigidity” [9,12].

A useful diagnostic of RMT spectral rigidity is the
two-point SFF [9,12,13,44-51]; for purely unitary Floquet
dynamics the SFF is defined as

D
K=Y '@ =u[F]P (52

myn=1

where ¢ is the on-site Hilbert space dimension, N is the
number of sites, {6,,} are the eigenphases of the Floquet
unitary JF. The SFF (52) is essentially the temporal Fourier
transform of two-point correlations of the eigenvalue den-
sity [44]. We then average Eq. (52) over an ensemble of

statistically similar realizations of ', which we denote by
an overline, K, () = K (7).

Chaotic many-body quantum systems are insensitive
to their initial state and microscopic details; hence, one
expects that K(#) (52) in such systems is well approx-
imated by a random evolution operator with the same
symmetries. For fully generic models, we expect K (7) =
Kcue(®) =t (for 1 <t < D) corresponding to the circu-
lar unitary ensemble [9,12,13,66]. At t = 0, K(¢) is triv-
ially D? = ¢?V; for t > tye; = D, the Heisenberg time
(equal to the inverse mean level spacing), K(f) = D. For
t > Teis, the dominant contribution is the sum over all
m = n terms in Eq. (52), and the off-diagonal contribu-
tions (m # n) are effectively random complex numbers that
sum to zero when ¢ is larger than the mean inverse level
spacing.

This linear ramp for times 1 < ¢ < D is a fingerprint of
spectral rigidity, realized by generic Floquet circuits [9].
Intuitively, in the linear ramp regime, K (¢) (52), is dom-
inated by paired “Feynman histories” [S1], where at time
t there are ¢ possible pairings, so that K(#) ~¢(1 +...),
where the ... terms are suppressed at long wavelengths
and by ensemble averaging [9,12,13,51].

In practice, typical systems do not show RMT behavior
starting from ¢ = 1. To see this, we first note that nonin-
teracting, integrable, and localized models do not show a
linear ramp at all, because their eigenphases are uncorre-
lated and thus do not repel. We find K (f) = D for all times
t > 0 for such uncorrelated phases, as can be verified for
certain noninteracting disordered models [9,12,13]. For a
typical system, at early times one expects that interactions
have not yet had a chance to produce long-wavelength
thermal correlations, and the system is effectively noninter-
acting. Modeling the dynamics via single-site Floquet cir-
cuits predicts K () ~ V. However, as interactions entangle
the system, these effective single-site blocks grow to size
&(f), with £(0) = O (1). The SFF at time ¢ is then expected
to be K(f) = /¥, From this picture, we see that the
onset of the linear ramp regime—associated with ther-
malization—occurs at the time 7y, (the “Thouless time”
[9,12,13,46], named in analogy to the quantity describing
disordered wires [67,68]), defined by &(ty) = N, so that
K(f) ~ t for t > 14,. Here, “thermalization” refers to the
onset of RMT behavior and the loss of information about
initial conditions, captured by a thermal density matrix and
K@) =t

The Thouless time heralds the onset of thermalization:
Maximally chaotic systems have g, = O (1), while non-
thermal (e.g., localized) systems have ty > D, so that
there is no linear ramp regime. In generic systems, the scal-
ing of the Thouless time 7y, ~ L” is directly associated with
linear-response correlators [13], where the exponent z is
the dynamical exponent. A 1D system with a U(1) con-
served charge, e.g., has z = 2 [12,13,46], from which we
conclude that thermalization is delayed until information
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about the symmetry diffuses through the system, which
requires ¢ = Ty, oc L2

In fact, the Thouless time is directly related to linear-
response correlation functions at infinite temperature [13,
45,46]. Using F© = F~!, we rewrite Eq. (52) as

D

K@) =Y (a|F'|a)(p|F |p)
a,b=1
D

=3 [ b)al F ' la)bl 1],

a,b=1

(53)

where the labels a and b correspond to any valid choice of
orthonormal basis for H, e.g., the Weyl Z basis (A13b). In
the naive operator basis of Appendix A 2 (53) becomes

D
K= %tr[@j:b}'*f Oabff]
a,b=1
D

=Y [ 0L, Ou®) px |

a,b=1

D
= > (0,0 Ouw(®) V1—nes

a,b=1

(54)

in the Heisenberg picture of Floquet operator evolution,
where in the last line, the correlation functions are evalu-
ated in the infinite-temperature state po, = 1/D.

Importantly (54) is an equal-weight sum over the tem-
poral autocorrelation functions of all basis operators at
infinite temperature—where Eq. (52) defines the SFF at
infinite temperature (this is most natural given that Floquet
evolution does not conserve energy and generically heats
up to T = oo, although it is possible to define the SFF at
finite temperature as well, as in Sec. VF).

B. Extension to hybrid circuits

The Stinespring formalism of Sec. II provides for a
straightforward extension of the SFF K (#) (52) to hybrid
quantum dynamics with both time evolution and projec-
tive measurements. For a spectrum to exist, the evolution
must be periodic in time (i.e., Floquet), as detailed in
Appendix D. While the measurement protocol is periodic,
the observed outcomes need not repeat in time.

Naively, one could extend the SFF to the isometric
measurements described in Sec. II A. Because the corre-
sponding Floquet F is an isometry, it creates Stinespring
kets |m) with each measurement (while ' creates Stine-
spring bras (m|). The natural extension of Eq. (53) to

isometric measurements is given by

Dph

K=Y > (aF~

m gb=1

a, m)(b, m\]—" ’|b> , (55)

where the label “in” reflects the fact that the two evolutions
create Stinespring kets and bras pointed inward. Note that
Eq. (55) is postselected in the sense that both evolutions
realize the same outcome trajectory.

However, upon Haar averaging (as described in
Appendix E), we find that Kj,(f) < t. Yet, for maxi-
mally chaotic systems, one expects K(f) ~ ¢, while for
less chaotic systems, one expects K (f) > ¢ [with K(f) =D
for maximally athermal systems]. Thus, Kj,(f) < ¢ instead
suggests that the SFF is not well defined (i.e., because there
is effectively no single operator that generates all time evo-
lution upon absorbing measurements). If one includes the
default Stinespring initial state 0 by writing (a|- - -|b) —
(a,0]---1b,0) in Eq. (55), one can then absorb the outcome
trajectory m into the measurement unitaries via

Vor, VI, = B, (56)
at which point the hybrid evolution is no longer unitary.
More importantly, the evolution is no longer periodic. In
practice, the Haar averaging procedure only gives, nonzero
contributions for the small fraction of trajectories m that
are periodic, leading to Kj,(f) < ¢ (55), meaning that
Eq. (55) is not a valid extension of the SFF to hybrid
dynamics, because there is effectively no spectrum.

If one reverses the order of F and F' in Eq. (55), then
the corresponding SFF is given by

Dph

Kou® = Y2 3 fa.m|Fa)fe|7b..

m,n g bh=1

(57)

where “out” reflects the fact that the evolutions spawn
outward-facing Stinespring kets and bras. Note that includ-
ing the default initial state and absorbing the trajectory
into the evolution via Eq. (56) leads to independent sums
over all measurement projectors, realizing the identity in
place of each measurement, independent of the nature of
the measurement. Hence, K, (?) (57), is trivially indepen-
dent of measurements, and thus not a valid hybrid SFF.
Finally, we note that if we do not sum Eq. (57) over tra-
jectories, the resulting SFF is operator valued (and acts
on the Stinespring Hilbert space), and thus has no obvious
interpretation as a spectral probe.

Essentially, there is no valid definition of the hybrid
SFF (52) that results from considering isometric mea-
surements. Importantly, we note that these quantities all
have analogues in which the measurement channel is uni-
tary. Essentially, any SFF in which the outcome trajectory
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makes an explicit appearance is not a valid probe of
spectral rigidity in the presence of measurements: these
quantities either (7) fail to have a spectrum, (i7) fail to be
sensitive to measurements in any sense, or (ii7) fail to real-
ize a scalar object. Thus, we conclude that the hybrid SFF
must be defined in terms of unitary measurement chan-
nels, and that we must simply trace over all Stinespring
registers. The resulting hybrid SFF is

Kineas (1) = gir] [F'la[F '], (58)

dil
which will prove to have all the required properties. The
only adjustment required for Kpeas(#) (58) to be well
behaved is that we must either (7) enforce postselection on
the two copies by including a “swap” operation between
the two Stinespring Hilbert spaces or (ii) explicitly
include the channel that resets the Stinespring qubits to the
default state |0). Though we primarily consider the former
case (corresponding to postselection), the two possibilities
give equivalent predictions in the cases of interest. Addi-
tionally, postselection is not a barrier since the SFF cannot
be measured experimentally anyway.

Details of the Haar-averaging procedure for hybrid
Floquet circuits appear in Appendix E. The ensemble-
averaging procedure follows that of Refs. [9,12,13,49,66];
however, numerous subtleties appear due to the inclusion
of projective measurements. We note that the details of
Appendix E are not physically revealing, and may not be
necessary to understand the results below for particular
systems.

C. Generic hybrid circuits

The evaluation of Eq. (E7) for hybrid circuits with
generic time evolution (i.e., no block structure) is straight-
forward. The important simplifications to the Haar aver-
aging in Appendix E follow from replacing the block
projectors (36) according to P — 1,, so that the sin-
gle “block” contains all ¢* states. There is only one “block
trajectory” in Eq. (E7), with weight V' = ¢~/ (E1). We
have

e
! t
K =t > ] q—Ntr[IPg,;ng ]Pgﬁg], (59)
m ¢=I
where the projectors in Eq. (E8) simplify to
T (o3 os
= (mso) (mg 57)
e Pone [T PO [T P, (60)

o=05 o'=0

and using idempotency (3) the middle two copies of P"so)
become a single Ps<), Summing P™s) over outcomes
ms s, resolves the identity by completeness (4), removing
this measurement layer from Eq. (60). We then repeat this

procedure for the two copies of Pss+1) in the middle
of the product (60), and so on. Summing Eq. (60) over
all measurement trajectories resolves the identity, so that
Eq. (59) becomes

t
_ 1
Kpost(t) =1 1_[ q_N Ztr[ IPS'a’;’g ]
¢=1

g
Loy
=1 _N tr[ 1 ]
s=l1 9
= Kcue(®) =1¢, (61)

which is identical to the SFF for time evolution alone [9],
which corresponds to the RMT prediction for unitary gates
of any size drawn from the CUE [9,66]. Importantly, the
fact that the measurements disappear on average is not triv-
ial, as is the case for alternative definitions of the SFF other
than Eq. (E4). Thus, on average, measurements have no
effect on spectral properties in generic chaotic models with
neither symmetries nor constraints.

D. Enriched hybrid circuits

We now evaluate Eq. (E7) for hybrid circuits in which
the projectors onto dynamical blocks (36) and measure-
ment outcomes (2) commute. This corresponds to measur-
ing operators in the charge (or computational) basis, which
we take to be the Weyl Z basis, without loss of general-
ity. We again consider the projectors in Eq. (E7), which
correspond to closed loops in the diagram in Fig. 9.

Importantly, because the projectors in Eq. (E8) mutu-
ally commute, we can write them in any order. Using
idempotency of the projectors, we then write

a8
T = S,0
]Ps‘ﬁlg ]Pg’rhglP(a§+l) [ l_[ ]P(m ’ ) ] ]P(ag)’ (62)
g=01
and the trace of this quantity can be written as
(@1 msos) (msos] - |mso Jmso |ag),  (63)

so that each |m)(m| term appears exactly once in the
SFF (E7). Summing over measurement outcomes gives
>, Im)(m| = 1 by completeness of the measurement pro-
jectors (4). Averaged over outcomes (63) reduces to

a iy ‘a§>, which is exactly the same result that is obtained
in the absence of measurements [12,13].

For concreteness (62) allows the SFF (E4) to be written
in the standard form [12,13]

KO =tw[T'], (64)
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i.e., t times the [physical] trace of the 7th power of the time-
evolution transition matrix for a single period,

T=[]75=[]Q & (65)

where the individual time-evolution gates are given by

Le=Y Y I, (66)

o a,bea

which is identical to the superoperator gate T responsible
for the time evolution of operators (C19); the only dif-
ference is that the ¢¢ diagonal operators 7“? have been
replaced by the ¢° states |a, b) in Eq. (66) [12,13].

At the same time, the sum over measurement out-
comes—enforced by the postselection condition (E6)—
ensures that the measurements drop out of the transition
matrix 7 (65), as in the evaluation of n-point functions
(40) in Sec. IV. The fact that the measurement projec-
tors commute with the projectors onto dynamical blocks
(and each other) ensures that every pair of projectors
onto the outcomes of a given measurement can be placed
sequentially, and combined into a single projector. Sum-
ming that projector over all outcomes resolves the iden-
tity. As a result, the transition matrix 7 in Eq. (64) is
identical to the measurement-free transition matrix. Thus,
symmetry-compatible (and/or constraint-compatible) mea-
surements have no discernible effect on the spectral rigidity
of chaotic, enriched quantum dynamics, even in the case of
the postselected spectral form factor (E4).

E. Charge-changing measurements

We now comment on the measurement of charge-
changing operators, where the projectors onto measure-
ment outcomes 71 do not commute with the projectors onto
symmetry and dynamical sectors & (and may not com-
mute with one another). As a result, the pairs of projectors
(E8) onto a given measurement outcome cannot trivially be
brought together in the trace loops in Eq. (E7), merged into
a single projector, and summed over outcomes to resolve
the identity. In general, attempting to do so result in (i)
the generation of a superposition of terms in the product
operator (62), likely with an O (q_V N ) suppression and
(if) the association of an m- and a-dependent phase factor
o' @™ Each of these complicates the sum over outcomes
and interpretation of the resulting trace term(s) in Eq. (E7).

It does not appear possible to recover generic results for
the postselected SFF (E4) in the case of charge-changing
measurements. Meanwhile, the SFF with the reset opera-
tion included—and independently summed over outcome
trajectories of the two copies of the evolution opera-
tors—is trivially insensitive to the effects of measurement.
This also provides evidence that the postselected SFF

(E4) is not trivial by construction, but that the symmetry-
compatible (and/or constraint-compatible) measurements
genuinely have no effect, on average, on the spectral prop-
erties of enriched chaotic dynamics (nor do measurements
have any effect on the spectral properties of featureless
chaotic dynamics). What is clear is that charge-changing
measurements destroy the conservation laws of the under-
lying time evolution (as seen in Sec. IV D). However, it is
not clear whether the resulting SFF corresponds to generic
chaotic time evolution (61) and it does not appear possible
to extract a Thouless time.

F. Including the density matrix

While we have thus far considered Floquet circuits
with discrete time-translation symmetry, it is perhaps more
common to define the SFF for Hamiltonian dynamics
[45,50] with continuous time-translation invariance,

D
K@= ' =ju[e ]2, (67)

myn=1

where {E,,} are the eigenstates of the Hamiltonian H.

While Floquet systems do not conserve energy, and
generically heat up to infinite temperature § — 0, in the
case of Hamiltonian dynamics (67), one can also define
a temperature-dependent spectral form factor [50]. Using
the inverse temperature S = 7!, one first defines the
finite-temperature partition function,

e PH
Z(B) =tr[ e ? "], where pg =

—-—, 68
Z(B) %)

so that the corresponding finite-temperature SFF is

Kan(t,B) =D*Z(B+inZ(B—i1) | Z(B)%,  (69)

where the overline denotes ensemble averaging; in some
conventions [50], the denominator and numerator in
Eq. (69) are separately averaged [69] Also note that
Eq. (69) correctly reproduces Eq. (67) in the limit 8 — 0
(T — 00), where Z(0) = Dand Z(B £it) — eF 11,

However, we are primarily concerned with the SFF in
the context of Floquet dynamics, where there is no (exten-
sive) conserved energy. Accordingly, temperature is ill
defined, and effectively infinite. However, we can instead
view pg in Eq. (68) as the late-time density matrix pg —
p(7), which realizes pg for Hamiltonian dynamics at suf-
ficiently late times t (more chaotic systems require shorter
times 7 to equilibrate).
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Making this replacement in Eq. (69) gives

Ka(t,t) = D2 e[ p(@ WO ] tr[ p(2) WD) ]
=D lr[pO) W® 1P, (70)

which is independent of t for either Hamiltonian OV (¢) =
e 1M or Floquet W(f) = F') evolution since p(t) =
W) p(0)W'(£). We recover the standard form Eq. (52)
upon taking p(0) - ps = 1/D, and more generally, a
state-dependent SFF given by

Ka(t, po) = D? |tr [op W) 117, (71)

which we now evaluate in the presence of measurements.

Upon including the initial density matrix via Eq. (71),
the ¢ different Gaussian diagrams that contribute to
Eq. (E7) correspond to the ¢ different relative positionings
of the two copies of py in F versus F*. The t — 1 terms
in which the two copies of py appear at different times
always contain two trace loops with one copy of p, each.
Importantly, the two trace loops with py can be treated
as before: both in the absence of block structure and in
the presence of structure-compatible measurements, cyclic
invariance of each trace loop allows for the projectors cor-
responding to a given measurement to be brought together
and summed to the identity, independent of the presence
po. The remaining term (with two copies of pg in the same
trace loop) cannot be treated in this way.

However, this term is equivalent to its measurement-
free analogue in the absence of block structure, or if the
measurements and initial density matrix py commute with
the block structure. In fact, even for unphysical choices
of po that are not compatible with the block structure,
we still find that K, (f) = Ko(¢) + O (1) is asymptotically
independent of the measurement rate y.

Thus, we find that K, (¢, pg) = Ko (%, po) (the measure-
ment-free SFF) in featureless chaotic dynamics and in the
case where the measurements and py are compatible with
any symmetries and/or constraints of the time evolution.
More generally, one should consider Eq. (70) with p(7)
replaced by some density matrix of interest, i.e.,

Kq(t,p) = D? |tr[p W) 11%, (72)

where, e.g., p o exp(—pu Zj q;) corresponds to some con-
served quantity. In this case, the analysis of Eq. (71) holds,
but now, p is guaranteed to commute with any symmetries
of the underlying time evolution. As a result, the hybrid,
state-dependent SFF (72) for any measurement rate y is
exactly equal to its measurement-free (y = 0) counterpart.
Hence, we conclude that even the postselected, quadratic-
in-p hybrid spectral form factor has only asymptotically
vanishing and nonuniversal dependence on the measure-
ments; in the cases of greatest interest, there is no effect
whatsoever due to measurements.

VI. MEASUREMENT-INDUCED
ENTANGLEMENT TRANSITIONS DO NOT
SEPARATE DISTINCT PHASES OF MATTER

In Secs. IV and V, we found that measurements gener-
ically have no experimentally observable effect on the
universal properties of the underlying chaotic time evo-
lution, except for possibly destroying symmetries of the
underlying dynamics. In other words, measurements either
have no effect whatsoever, or trivialize universal features
present without measurements. In the former case, no
quantity depends on the measurement rate y; in the latter
case, the dynamics may exhibit a crossover as a function
of y from symmetric to featureless.

The generic indifference of correlation functions,
linear-response functions, and spectral statistics to the
inclusion of projective measurements distinguishes the
measurement-induced entanglement transition (MIET)
[14-28] from all known conventional and topological
phase transitions. Perhaps surprisingly, the results of
Secs. IV and V further distinguish the MIET from thermal-
ization transitions, which are also associated with a tran-
sition from area- to volume-law scaling of entanglement
entropy.

These results suggest that (i) projective measurements
do not compete with chaotic time evolution except, e.g.,
in the context of trajectory-resolved measures of entangle-
ment; (i7) relatedly, standard diagnostics of phase structure
do not undergo transitions as a function of y; (iii) mea-
surements can only remove universal properties of the
underlying chaotic time evolution. as diagnosed by such
probes; and (iv) nonlinear dependence of a quantity on
the density matrix p is not sufficient to guarantee a sharp
transition as a function of the rate y.

Together, these findings raise the question of whether
the MIET and similar transitions [14-28] are transitions
between distinct phases of matter in any physically mean-
ingful—and historically consistent—sense of the term.
We now argue that they are not: we explicitly enumer-
ate widely recognized criteria for what constitutes a phase
of matter, establish that no postselected probe can ful-
fill these criteria, and further comment on various claims
and proposed workarounds from the literature on MIETs,
arguing that none fulfill the criteria for a phase of mat-
ter. We also distinguish certain “classifier” transitions from
physical phase transitions, before discussing the require-
ments for a quantity to be sensitive to the measurement
rate y, finding that the measurement outcomes must be
utilized. Finally, we identify outcome-dependent feedback
(adaptive dynamics) as the only route to realizing genuine
measurement-induced phase transitions.

A. What is a phase of matter?

Before discussing the measurement-induced entan-
glement transition itself, we first outline the physical
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conditions that phases of matter must fulfill. We identify
a pair of physical criteria on the types of probes that can
identify phases of matter, which apply to al/l known phases
of matter (conventional or topological, both in and out of
equilibrium). At the same time, relaxing either of these
criteria removes the essential physical meaning associated
with the concept of a phase of matter.

The criteria follow from simple requirements that have
always been associated with the term “phase of matter,”
along with the fact that phases of matter are only well
defined in the thermodynamic limit. The first requirement
is that phases of matter be physical—meaning that their
physical existence and experimental detection is possi-
ble in principle (i.e., cannot be ruled out). The second
requirement is that knowledge of the phase realized by
a particular sample or material must furnish predictions
about the “universal” and physically detectable properties
of that sample (i.e., dynamical and/or thermal properties
that are not sensitive to microscopic details).

We now formally enumerate the two physical crite-
ria that enforce the foregoing requirements constraining
genuine phases of matter. Namely, a phase of matter
must be detectable (i) using experimentally measurable
quantities whose detection requires resources (e.g., run
time) that scale at most polynomially in the number of
degrees of freedom N and (if) the existence and detec-
tion of this property must be robust to microscopic
detail.

The first criterion (7) simply requires that the detection
of any genuine phase of matter be possible in principle,
even in the thermodynamic limit. Note that one can ascribe
universal properties not yet realized in any experiment to
a legitimate phase of matter; however, the same cannot be
said for properties that provably cannot be observed in the
thermodynamic limit. The latter are precluded by requiring
that the phase be detectable using resources (e.g., run time)
that scale at most as poly(#), where the polynomial has
bounded (finite) degree. This is consistent with historical
examples.

The second criterion (ii) requires that phases of matter
not be fine tuned. Otherwise, any instance of any sample
would qualify as a phase, stripping the term of meaning. At
the same time, knowledge of the phase of the sample would
not afford predictions about universal properties particu-
lar to that sample. Genuinely universal features would be
shared by other “phases” (suggesting that other, micro-
scopically distinct samples lie in the same phase), while
nonuniversal features may not manifest in every experi-
mental shot due to fluctuations and microscopic variations
(suggesting that the phase itself lacks the required predic-
tive property). Hence, this criterion requires that a notion
of universality exist, which must be robust to some class of
perturbations and microscopic variations, and must specifi-
cally include sample-to-sample and shot-to-shot variations
in experiments.

Importantly, any candidate phase of matter whose detec-
tion does not satisfy the foregoing criteria lacks at least one
of the defining features of a phase of matter. If the signa-
tures of a proposed phase cannot be observed at all, then
they have no physical meaning, and cannot be associated
with (nor define) a phase of matter. However, if a signature
requires time ¢ ~ exp(/V) to observe in experiment, then it
cannot be detected in any sample that approaches the ther-
modynamic limit; such a phase would only be detectable
in limits where phases of matter are ill defined [70]. Sepa-
rately, if the signatures of a proposed phase are not robust
to microscopic details, then there can be no meaningful
notion of universality. More importantly, without robust-
ness, observation of the phase may destroy the phase itself,
so that knowledge of a sample’s “phase” no longer affords
universal predictions.

A key distinction between genuine phases of matter (as
constrained above) and properties of particular quantum
states follows from the notion of dynamical stability. While
numerous phases of matter can be distinguished using a
single experimental probe (e.g., a ferromagnet is distin-
guished by measuring the magnetization, a spin liquid can
be diagnosed using transport, scattering experiments [71],
or, more recently, nonlinear spectroscopy [72], and numer-
ous electronic phases are characterized via transport), other
conventional phases may require multiple measurements
(and statistics) to distinguish.

A useful example is the spin-glass phase [73,74], whose
temporally long-ranged order is diagnosed, e.g., via auto-
correlation functions. Importantly, this long-range order is
a property of the entire spin-glass phase, and is not sen-
sitive to the exact microscopic state of the system (i.e.,
generic states within the phase give equivalent predic-
tions). Thus, it is possible to perform the multiple mea-
surements required to diagnose spin-glass order on a single
sample using independent shots, without worrying whether
disturbances to the state (necessary to determine the phase
of the sample) spoil the associated order.

In contrast, properties of particular states of a system
are highly sensitive to such disturbances, and do not admit
robust diagnostics as described above. For example, in
diagnosing the entanglement of a quantum state—even
using ancilla probes—after making the first probe mea-
surement, one must then prepare an identical many-body
quantum state before performing the next measurement.
While each “shot” of the experiment may require a time
t ~ poly(N), the total number of shots—and hence, the
total run time—scales as exp(NV), which violates criterion
(7). Moreover, the requirement that each sample is prepared
and evolved identically violates the robustness criterion
(if). We also note that, while the effects of measurements
are manifest (in some sense) along particular trajectories
n, there are no meaningful predictions to be made for such
trajectories (as discussed in Sec. I1 D), leaving only probes
that require exp(V) shots. Thus, we conclude that the need
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for multiple measurements on a single sample is accept-
able in a diagnostic of phase structure; the need for a large
number of macroscopic samples with identical quantum
many-body states is not.

B. Postselection is unphysical

As discussed in Sec. IV, the “standard” probes of phase
structure compatible with the two criteria of Sec. VIA
are completely blind to the measurement-induced entan-
glement transition. This is also true of the experimentally
undetectable spectral form factor discussed in Sec. V,
which is related to correlations functions. In fact, far from
showing any sharp feature (as is associated with a tran-
sition between distinct phases), in the hybrid protocols
relevant to the literature, these quantities are independent
of the measurement rate y, on average.

However, two classes of quantities have been reported
in the literature to show a sharp transition at some critical
¥, [20]: measures of entanglement [14—19,22,25-28,52]
and variances of two-point functions [25—27]. Importantly,
these two types of probes do not generally diagnose the
same transition—i.e., the charge-sharpening transition is
not the MIET [25]. Note that we do not consider either
type of quantity herein, and instead refer the reader to the
literature for technical details related to these quantities.

Rather, we investigate whether the transitions captured
by these probes constitute transitions between two genuine
phases of matter, as codified in Sec. VIA. We find that
there is no physical sense in which they do so. In fact,
we find that no postselected probe can differentiate dis-
tinct phases of matter in any conventional sense of the
term. We now discuss two separate issues—one practical
and one conceptual—that render any postselected quantity
incompatible with the diagnosis of phase structure.

The practical issue with postselection is generally
acknowledged in the MIET literature [20]. Postselected
quantities require exp(/N) resources to measure in an
actual experiment. Specifically, postselected quantities are
impossible to measure using independent experimental
“shots” performed on an individual sample; instead, one
must coherently interfere the outcomes of multiple inde-
pendent experiments, or alternatively, prepare multiple
identical copies of the sample, subject them to identi-
cal hybrid-circuit protocols, and ensure that they realize
identical outcomes for a/l measurements in the protocol.

This requires (a¢) an unknown level of precision in
the application of time-evolution gates and (b) postselec-
tion of measurement outcomes. Even ignoring the former
requirement, the latter entails an exponential number of
experimental shots, so that the run time is exponential in
the spacetime volume #,,, ~ exp(N 7).

This is often termed the “postselection problem” [20].
Consider a D-dimensional system with N ~ LP g-state
qudits, measurement rate y, and maximum circuit depth

T per shot. In the thermodynamic limit—the only regime
in which phases of matter are well defined—both N and
T diverge. Evaluation of a postselected quantity requires
g” V' T shots on average, which is experimentally impossi-
ble in the thermodynamic limit (e.g., 4000 shots for ¢ = 2,
N = 8 [28]). We also rule out quantum state tomography
as a viable practical probe for the same reason [20].

While Ref. [14] refers to this postselection problem as
a “severe statistical challenge,” in reality, it is a genuine
impossibility: the probability of measuring any postse-
lected quantity in any finite time is identically zero in the
thermodynamic limit. Thus, postselected quantities neces-
sarily violate criterion (i) for probes of phase structure,
which requires that the phase to which a sample belongs
can be determined experimentally in polynomial time (in
N), even as the sample size approaches the thermodynamic
limit. Additionally, postselected probes almost certainly
violate criterion (ii), as they are not robust to shot-to-
shot variations (e.g., in the application of time-evolution
gates) and are fundamentally fine tuned. While the exis-
tence of a postselection problem is acknowledged in the
MIET literature, the extent of that problem has neither been
acknowledged nor successfully remedied in the MIET
literature, as far as we are aware.

Additionally, we now point out a conceptual problem,
which does not appear to be recognized in the literature,
and which persists even if the practical postselection issue
is remedied, as far as we are aware. One of the require-
ments of a phase of matter discussed in Sec. VI A is that
knowledge of the phase to which a sample belongs must
furnish predictions about that sample.

Now, suppose that we knew the “entanglement phase”
of a particular sample (i.e., a particular hybrid circuit pro-
tocol and initial state, along with a late-time many-body
state of the system whose entanglement entropy has known
area- or volume-law scaling). This would only allow for
the prediction of postselected quantities like entanglement
measures and variances of correlation functions, neither of
which can be experimentally observed—much less vali-
dated—in any finite time for thermodynamically large sys-
tems. Meanwhile, the quantities (40), that can be measured
in finite time are indifferent to the “entanglement phase.”
Thus, knowing that a sample realizes some “phase” that is
only accessible to postselected quantities affords no exper-
imentally testable predictions about the behavior of that
sample in the thermodynamic limit, meaning that any such
“phase” is incompatible with a defining property of phases
of matter.

We now briefly remark on several proposals for mitigat-
ing the postselection problem. For example, the “scalable”
ancilla probe of [22] parametrically reduces the number
of measurements that require postselection; however, the
measurement outcomes within the light cone emanating
from the ancilla qubit must be postselected, meaning that
the number of shots remains exponentially divergent in the

040309-22



MEASUREMENT-INDUCED PHASES OF MATTER...

PRX QUANTUM 4, 040309 (2023)

thermodynamic limit. This manifestly violates criterion (i)
for probes of phase structure. Likewise, the ancilla probe
of Ref. [25] only reduces the measurement overhead per
shot; however, this is not the limiting issue with postse-
lection, and the total cost remains exponential in the full
spacetime volume of the hybrid circuit. In other words,
none of the “scalable” probes of the MIET reported in
the literature scale to the thermodynamic limit, which is
the only meaningful notion of scalability. Additionally, the
dual-unitary protocol of Ref. [75] is fine tuned, violating
criterion (i), and requires postselection of measurements
on the spacetime boundary, which is unlikely to scale
and does not afford useful predictions. It is also unclear
whether experimental realizations exist [20]. Finally, pro-
posals that require concurrent classical simulations with
the same measurement outcomes also fail to remedy the
practical and conceptual issues (e.g., the recent experiment
[28] using the ancilla probe of Ref. [22]).

Hence, we conclude that (i) the postselection problem
is not merely a statistical challenge, but impossible in the
only limit in which phases of matter can be defined; (if)
in addition to being experimentally impossible to eval-
uate in thermodynamically large systems, postselection
requires an unknown degree of fine tuning; (iif) in addi-
tion to the foregoing practical issues, even knowing which
postselected probe a particular sample realizes affords no
practically testable predictions about that sample, which is
a defining property of a phase of matter; and (iv) there is no
means by which to circumvent these practical and concep-
tual issues: any quantities that involve postselection cannot
diagnose phase structure.

C. Distinction from “classifier” transitions

We also distinguish between phases of matter and, e.g.,
computational complexity classes [76]. It is commonplace
in the literature on, e.g., computer science to refer to sharp
transitions between regimes with different notions of com-
plexity and/or simulability as “phase transitions.” How-
ever, there is no sense in which these transitions amount
to transitions between distinct phases of matter.

In particular, knowledge of a system’s phase of matter
allows for quantitative predictions about observable out-
comes of experiments performed on that system. By con-
trast, knowledge of a problem’s computational complexity
class allows for predictions about whether a given instan-
tiation of the problem can be solved in a certain amount
of time. There are several works in the MIET literature
that draw parallels between computational complexity (or
simulability) classes and the MIET itself. However, such
transitions do not provide a way to detect the MIET in
practice, and in no way imply that the MIET realizes a
genuine transition between distinct phases of matter.

For example, the “learnability transition” of Ref. [53]
is a simulability transition. Knowledge of the learnability

class of the problem predicts whether a classifier exter-
nal to the system can determine the system’s total charge
after some number of measurements. Not only that, but the
learnability transition (for the classifier) does not coincide
with the MIET—even if there were a proven and direct
relation between the two transitions, the learnability transi-
tion still would not “detect” the MIET or classify the phase
of the system in any meaningful sense. In other words,
“learnability” is a property of the classifier that reflects
computational complexity; a priori, it does not afford any
predictions about the observable properties of the system
accessible using a single sample. Although the learnability
probe does not require postselection—and thereby avoids
the issues detailed in Sec. VIB—the learnability tran-
sition [53] does not imply a transition between distinct
phases of matter. Analogous considerations apply to the
neural-network decoders of Ref. [77].

D. Necessity of feedback

We now seek to identify valid probes of measurement-
induced phase structure. It is instructive to consider why
postselected quantities like entanglement measures see a
measurement-induced transition while standard diagnos-
tics of the form Eq. (40) do not. The results of Sec. VF
reveal that nonlinear dependence of a quantity on the den-
sity matrix p is not sufficient to guarantee that that quantity
sees a measurement-induced transition. Rather, the reason
postselected quantities and certain decoders see a transition
is that the measurement outcomes are wutilized. However,
both postselected quantities and decoders utilize the out-
comes in a manner that is incompatible with genuine phase
structure.

However, a recent cross-entropy diagnostic [52] using
concurrent classical simulations successfully resolves
the practical issues—and partially remedies the concep-
tual issues—that afflict other measures of entanglement
entropy. Importantly, the cross-entropy probe [52] does
not require postselection: The classical Clifford simulation
uses a different initial state and allows for arbitrary mea-
surement outcomes. In this sense, it also enjoys greater
robustness to shot-to-shot variations. More importantly,
the computational cost of the classical “decoding” proce-
dure scales polynomially—rather than exponentially—in
N, meaning that this classically assisted cross-entropy
probe can, in principle, be scaled to the thermodynamic
limit. However, the cross-entropy protocol is only viable
when the time-evolution gates are restricted to Clifford
operations, and to the best of our knowledge does not sur-
vive generic perturbations, so fails criterion (ii) for probes
of genuine phases of matter.

We note that, in general, such classical postprocessing
(or “decoding”) may be compatible with nontrivial and
scalable probes of phase structure, as noted in Refs. [54,
55]. In principle, it is possible to identify probes of the
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MIET that utilize the outcomes for classical decoding,
thereby avoiding the trivial results observed in Sec. IV.
However, to our knowledge, no such classical prescription
has managed to fulfil all of our criteria for a genuine phase
of matter, especially as the transition is approached. In par-
ticular, it seems likely that the classical decoding procedure
of Ref. [54] becomes exponentially costly (in system size)
as the measurement rate y approaches the critical value y..

More generally, our analysis in Sec. IV using the Stine-
spring representation of measurements demonstrates (by
contradiction) that the outcomes of measurements must be
utilized prior to extracting expectation values. If they are
not utilized, hybrid dynamics with any measurement rate
y > 0 are equivalent to chaotic time evolution alone with
the same combined symmetries. Hence, it would appear
that classical postprocessing is only viable when applied
to the full density matrix for a given outcome trajectory, as
with the cross-entropy probe of Ref. [52]. However, this is
impossible in the thermodynamic limit without fine tuning
(e.g., to Clifford circuits).

Thus, we expect that genuine phases of matter
require quantum decoding of measurement outcomes. This
involves quantum feedback in the form of adaptive gates,
which are conditioned on prior measurement outcomes,
thereby avoiding the trivial results of Sec. IV. However,
because the quantum state is modified by the quantum
decoding, any genuine transition realized using such quan-
tum feedback is unlikely to coincide with the MIET.
Nonetheless, we now investigate whether measurement
transitions of any type can realize in adaptive protocols.

VII. ADAPTIVE PROTOCOLS

Having ruled out genuine measurement-induced phases
of matter in large swaths of systems, we now consider
the remaining class of candidates. Essentially, the n-point
functions (40) considered in Sec. IV and the SFF (52) con-
sidered in Sec. V fail to show nontrivial effects due to
measurements not because these quantities are linear in the
density matrix, but because the measurement outcomes are
not subsequently utilized. As discussed, such protocols are
tantamount to allowing the “environment” to measure the
system, which has the same effect as ensemble-averaged
chaotic time evolution alone. Including symmetries and/or
constraints does not alter this conclusion, but merely intro-
duces the possibility of using measurements to undo the
block structure itself. Postselected quantities such as entan-
glement entropies use the outcomes of measurements in
an unphyiscal manner; as discussed in Sec. VI, postse-
lected quantities cannot distinguish phases of matter, by
definition of the latter.

The leading—and ostensibly only—remaining possi-
bility is the use of adaptive hybrid protocols (see, e.g.
Refs. [55-61]), which utilize the outcomes of circuit
measurements in the same experimental shot via active

feedback, avoiding the issues associated with postselec-
tion while also potentially realizing nontrivial effects due
to measurements. The defining feature of adaptive cir-
cuits is that certain gates (or possibly measurements) are
conditioned on the outcomes of prior measurements. It is
known from Ref. [34] that such adaptive gates are cru-
cial to quantum error correction: in the context of quantum
teleportation, e.g., the state is only transferred once the
error-correction gate is applied; prior to that, the target
qubit’s state is simply the maximally mixed state [34].

We first define adaptive protocols and the constituent
gates in Sec. VII A. In Sec. VIIB we consider feature-
less circuits, finding that no observables are robust to any
time evolution, precluding order. In Sec. VII C we consider
chaotic evolution enriched with discrete symmetries, find-
ing that no observables are robust to a full time step of
chaotic evolution. In Sec. VII D we consider chaotic evo-
lution enriched with continuous symmetries, finding that
local order is possible and robust to time evolution. We
showcase this via numerical simulation of a 1D chain of
qubits involving U (1)-symmetric two-qubit gates that con-
serves the magnetization ) ; Z; and measurements of Z;
followed by the operation X; if the outcome is 1. This
model steers toward the absorbing state [29—31] |0) for any
nonzero measurement rate y starting from the maximally
mixed state. Hence, there is no transition: while adaptive
measurements replace Z; — 1 in the Heisenberg picture,
the unitary evolution conserves the number of Z operators,
meaning there is no competition.

Finally, in Sec. VIIE we consider chaotic circuits
enriched with kinetic constraints only, which dynamically
privilege operators in the constraint (Z) basis but do not
conserve their number, allowing for competition between
adaptive measurements and chaotic evolution. We note
that the same features are present in deterministic evolution
without continuous symmetries, and possibly in Hamilto-
nian evolution with no other symmetries. We confirm that
this competition leads to a genuine, measurement-induced
absorbing-state transition by considering a 1D quantum
East model [32], in which a unitary is applied to site j
only if the East neighbor j + 1 is in the state |1), and
with the same adaptive protocol as in the U(1) example.
We find a sharp transition in the directed-percolation uni-
versality class [31] with critical measurement rate y, ~
0.038. We expect this finding is generic to constrained
Haar-random or deterministic chaotic time evolution with
an appropriate choice of adaptive measurement proto-
col. Such models capture all known examples of genuine
measurement-induced phase transitions [58—61].

A. Adaptive gates

We now define the crucial component of adaptive hybrid
circuits: the feedback gate. Note that we do not consider
outcome-dependent measurements, which are generally
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more complicated and no better suited to realizing large
classes of states [34,56,57,78]. Consider a gate R condi-
tioned on the outcome of measuring the observable 4, ,
(2) with M unique eigenvalues on cluster » of measurement
round T = (¢,0) (27),

M
Rr’,r/;r,t = Z Rm;rJ,O ® P;f,’g)’ (73)

m=0

which acts on the physical cluster # in circuit layer 7/ =
¢,o’ as the physical unitary R, if the measurement of
A, , (in some previous layer T = t,0) resulted in the mth
eigenvalue a,,. The expression (73) can be extended to be
conditioned on the product of multiple outcomes stored in
a set of Stinespring registers, but is otherwise generic (note
that the Stinespring registers are “read only”).

The example protocols we consider all act on systems of
qubits (¢ = 2), and we restrict to the measurement of Pauli-
string observables for convenience. In this case, every
measured observable 4 has two unique eigenvalues +1,
and the measurement unitary is always of the form

1 1
Vi=50+DH@1s+-A-HOX, (74
and the outcome-dependent gates (73) act as
Ry e = Royo ® ,Pr(,(? + R0 ® Pr(,lr)’ (75)

and importantly, if both Ry commute with some observ-
able O of interest (at the Heisenberg time immediately
prior to the feedback channel R), the combination of
measurement and feedback acts trivially on O.

We now consider quantities of the form Eq. (40) evalu-
ated in adaptive hybrid circuits involving featuring maxi-
mally chaotic time evolution, measurements, and outcome-
dependent unitary operations (73). In particular, we con-
sider order parameters of the form

©0) =E| WOIOWO) |

=E[ (0o W0 OW@0) o) |. - 76)

that vanish under time evolution alone (and, thus, in any
nonadaptive hybrid circuit, as established in Sec. 1V),
ensuring that the corresponding order (O(¢)) # 0 is unique
to adaptive hybrid protocols. We restrict to Hermitian
observables O with tr [(O] = 0, and require that the criteria
of Sec. VI A defining a phase of matter all be satisfied.

B. Generic adaptive protocols

We first consider the fate of order parameters (76), in
adaptive hybrid protocols where the underlying time evo-
lution is “generic” (i.e., the unitary gates do not have block

structure). We consider the hybrid evolution of the order
parameter O (76) in the Heisenberg-Stinespring picture. If
the first channel encountered in the Heisenberg picture cor-
responds to featureless, Haar-random time evolution, then
the update to O is

P e — 1
O - U, OUy,=—1w[01=0, (77)
2 p

since O has no identity component. Any term in O pro-
portional to 1 evolves trivially both in time and under
measurements, and has expectation value one. Since any
observable can be written in the form O =tr[O] 1+
... (where the terms ... are all traceless), we simply
ignore the part of any O proportional to 1. However (77)
shows that, in the Schrodinger picture, the nontrivial part
of any of observable O (76) evaluated immediately fol-
lowing generic time evolution, on average, has vanishing
expectation value (i.e., (O(f)) = tr[O] is trivial).

If, instead, the first channel encountered in the Heisen-
berg picture corresponds to a projective measurement with-
out feedback, we know from Sec. IV that this measurement
has no average effect on O. The only remaining option is
that the first gate encountered corresponds to a feedback
gate R (73) in which case

O - R,OR,,
M—1
= Z RZ,;r,o O Ry ® P;)m) Ps(zn :
m,n=0
M—1
=> Rl ORuo®PY, (78)
m=0

for a single adaptive gate acting on the physical cluster
and conditioned on the product of outcomes in the Stine-
spring set 2 [79]. If the next operation (after conjugation
by R) corresponds to generic time evolution, then we find

1
O > [RI,, O R,,,] F1=0 (79)

and, as before, a measurement for which the outcome is
not utilized has no effect. The two remaining options for
what comes next are (i) another adaptive gate R’ or (if)
the measurement channels upon which R was conditioned.
We note that (i) can trivially be absorbed into R, leaving
(if). Conjugating Eq. (78) by the appropriate measurement
channels and evaluating in the default initial state of the
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Stinespring registers, we find

O — Vi Ri, ORy, Vi
M—1
= Y PYRL0 ORuoP,
a,b,m=0
x (oxze pY xt o)
M—1
= Y PBYy Rl O Rl (a|PL7

r
a,b,m=0

g
M—1

=Y PR O Rl &
m=0

in the case where R is based on the outcome of measur-
ing a single observable 4 on cluster 7 in layer T = ¢, 0.
Extending the above to more general cases is straightfor-
ward [34,36], and the result generically takes the form
Eq. (80).

Additional sequences of measurement channels and
adaptive gates conditioned on the recorded outcomes only
lead to additional updates of the form Eq. (80). At some
point, however, a layer of generic Haar-random gates tiling
all sites will be encountered. Suppose this happens imme-
diately after the measurement of 4 (in the Heisenberg
picture). In this case (80) becomes

M—1
1
O —> q_N 1 Z tr [Rjn;r,o (@] Rm;r,OIP,(;fl(Z] ’ (81)
m=0

which can indeed capture nontrivial order.

To see this, consider a system of qubits (¢ = 2). Suppose
O = A = Z; are both the Pauli Z operator, and define the
outcome-dependent gate (75) to be

R=18P"%+X &P, (82)

so that Eq. (81) becomes

500 =51 % w|xr g5 (14 10z |

m=0,1
1 ,,, m
=Znn§1 w[ 0"z (1+-10"2) ]
1
=71 zi: [l £7] =1, (83)

which means that (Z; (1)) = 1, since no subsequent gates in
the Heisenberg picture modify 1 (83).

However, several remarks are in order. We first note
that (Z; (1)) = 0 in the absence of either measurements or

the outcome-dependent operation R (82), which means
that such “order” is only possible in hybrid circuits with
outcome-dependent gates. We also note that any observ-
able O (with tr[O] = 0) can be engineered to have a
nonzero expectation value in some adaptive protocol (and
zero expectation value in nonadaptive circuits). Impor-
tantly, this order is extremely fine tuned: the only scenario
in which (O(#)) (81) is nontrivial [e.g., (Z; (#)) # 0] is if
no unitary time evolution occurs between the measure-
ment of 4, the application of the gate R conditioned on the
outcome of measuring 4, and the measurement of O. Addi-
tionally, no observables other than O will realize nontrivial
order [i.e., if we instead measure Z; on some site i £ j, we
find (Z;(¢)) = 0]. By contrast, a local order parameter O;
should satisfy (O; (¢)) # 0 for all sites j .

The only way to ensure that such a local order param-
eter (Z;) # 0V j is nontrivial is to measure every single
site in the system, correctly apply outcome-dependent
gates to all sites, and immediately evaluate O. In other
words, any order in generic, adaptive hybrid protocols is
highly fine tuned, and incompatible with the definition
of a phase of matter given in Sec. VI A. Essentially, in
the presence of generic Haar-random evolution, the only
“privileged” observable O is the trivial one O = 1; the
nonzero expectation value of 1 does not imply order.

Hence, we conclude that observing measurement-
induced order corresponding to a genuine phase of mat-
ter requires either (i) introducing block structure or (if)
avoiding maximally chaotic ensembles (or using determin-
istic time evolution). The latter is beyond the scope of
this work; in the remainder, we investigate the possibil-
ity of a measurement-induced phase transition in adaptive
protocols with various types of block structure.

C. Discrete symmetries

We now consider measurement-induced order in hybrid
adaptive circuits in which the underlying time evolution
has some structure, corresponding to a global discrete
symmetry. Familiar examples from statistical mechanics
include Ising, clock, and Potts models. While featureless
Haar-random dynamics privilege only the trivial operator
1, other operators are preserved in the presence of a dis-
crete Abelian symmetry. The question is whether this leads
to a robust order parameter (O(¢)) # 0 (76).

Suppose that the global discrete symmetry corresponds
to the finite group G with elements {gi, g, . . ., }, where the
number of elements |G| is finite. The symmetry group G is
generated by the conserved charges g according to

G = span{gi,..., 0.}, (84)
where n < |G| is the number of unique generators, and the
elements g; of G (including 1) correspond to all unique
products of the various “generators” g;. Note that we
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also restrict to Abelian symmetries, where the symme-
try generators (and elements) commute—i.e. [gi, gv] =
OV kK.

As discussed in Secs. III and IV, each unitary gate U4, in
the circuit must commute with all elements of G. Generally
speaking, each ¢-site gate I/, (with £ = |r|) must commute
with every generator g; for any choice of cluster 7; this
is accomplished by identifying the unique “local” expres-
sions of each generator g;, which may require a particular
gate size. Each unitary gate U, realizes a sum over symme-
try blocks labeled « (36), where each block o corresponds
to a particular value of the local charge g, on cluster r, for
each of the n independent charges in Eq. (84).

Depending on the gate size £ = |r| and the order |G| of
the symmetry group G, any number of operators O may
survive a single layer A of Haar-averaged, symmetric time
evolution. These operators O act on each cluster » € X as
an element of g € G, restricted to the cluster » (i.e., g,).
If the operator O is exactly an element of G, then it also
survives all subsequent layers (note that the gates in each
layer are staggered to tile all sites). However, most of the
operators O that survive a single layer of time evolution
realize different elements g on each cluster r.

For example, in a system of N qubits (¢ = 2) with a Z,
“Ising” symmetry generated by the Z-parity operator

N
s=[]2 (85)

Jj=1

with g> = 1, the unitary gate If; ;;; must commute with
Z;Z; 1. In this way, each local Ising gate preserves the
local Z parity Z;Z; 1 (i.e., in the Schrodinger picture,
U; j+1 only mixes the states |00) with [11) or [01) with
[10)). However, the full unitary circuit preserves only the
global Z parity g (85). For example, suppose that the
operator O = Z;Z; | survives a given layer of evolution.
The next layer applies Ising-symmetric gates to the clus-
ters (j — 1,7) and (j 4+ 1,7 + 1); those gates, respectively,
update the operators the operators 1Z; and Z; 1, nei-
ther of which is preserved by the Z, symmetry, so O is
annihilated by the second layer and (O(¢)) = 0.

Hence, the only observables O that have can real-
ize nontrivial expectation values (O(¢)) # 0 under Ising-
symmetric dynamics are (i) O = ]_[]].Vzl Z;, (ii) observ-
ables that can be connected to 1 using measurements and
feedback, and (iii) those that can be connected to g =
]_[j].\;1 Z; using measurement and feedback. The first case
(i) is guaranteed to have nonzero expectation value in any
Z-basis state, independent of whether measurements are
made or feedback applied; hence O = g does not diag-
nose measurement-induced properties. The second case (i7)
is identical to the case considered in Sec. VII B without
symmetries, and hence does not take advantage of the dis-
crete symmetry. The final case (iii) does require adaptive

dynamics and utilizes the discrete symmetry; however, this
case requires as much fine-tuning as in the generic case
(if), and one must correctly measure and apply outcome-
dependent rotations and to all sites of the system without
intervening time evolution.

To see that this is not robust, imagine measuring Z;
on all sites j with some amount of noise, so that the
operator actually measured is (1 — €)Z; + €X;. Taking the
product over all sites and expanding the measured oper-
ator onto Pauli strings, we find that the overlap with the
intended operator g = ]_[jj.v=1 Z; is (1 — €)V. For the mea-
sured operator to have O (1) overlap with the intended
operator requires € N < 1, which means that € — 0 in the
thermodynamic limit. Moreover, such a protocol merely
uses measurements to replace the time-evolved state of
the system with the desired state |0) or [1); it iS not pos-
sible to steer gradually toward the desired state, and any
intervening time evolution results in failure.

Returning to generic systems with g arbitrary, we now
argue that, in the presence of a generic discrete symmetry
group G, no operators other than the symmetry elements
g € G survive all time-evolution layers in a given time
step. By definition, the gates must preserve all operators
g € g1, however, if operators O ¢ G could survive all lay-
ers, this would imply that either (i) there exists another
symmetry that ought to belong to G, (ii) that the symmetry
is actually continuous, or (iii) that the dynamics trivially
preserve a large number of operators. Each of these vio-
lates the assumption of a global discrete symmetry with
nontrivial time evolution; hence only the elements of G
survive all layers of time evolution.

In Sec. VII B—in the context of generic Haar-random
circuits—we found that a nontrivial order parameter
(O(8)) # 0 could only be realized if the Heisenberg evolu-
tion of O converted O to 1 prior to any time evolution. In
the Schrédinger picture, the equivalent requirement is that
the appropriate measurements and outcome-conditioned
rotations be applied immediately prior to evaluation of ()
at time ¢, without intervening time evolution. In the case of
discrete symmetries, the same arguments hold; however,
one can also instead convert O to g € G in the Heisenberg
picture using measurements and feedback. In the presence
of the discrete symmetry group G, all such operators g
are invariant under Haar evolution; hence, these opera-
tors may have nontrivial expectation values independent
of measurements and feedback. However, those expecta-
tion values are determined by the initial state (and only 1
is nontrivial in every initial state).

In other words, discrete Abelian symmetries are not
sufficient to realize robust order (O(f)) # 0 unique to
adaptive dynamics, let alone a phase transition. While
it is possible to realize (O(¢)) # 0 in chaotic dynamics
with discrete symmetries, this either (i) is possible in the
absence of measurements and/or outcome-dependent gates
or (ii) requires the same amount of fine tuning as in generic
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circuits. The only distinction compared to the generic case
of Sec. VII B is the existence of finitely many other “paths”
to nontrivial orders (corresponding to the nontrivial ele-
ments g # 1 € G), provided that the initial state belongs
to a particular sector of the discrete charge.

D. Continuous symmetries

We next consider the possibility of order in hybrid adap-
tive circuits enriched by a continuous symmetry. Familiar
examples include models with U(1) conserved charge
(e.g., total Z spin), models that conserve higher moments
of charge (e.g., dipole), and those with continuous rota-
tional invariance. We also allow for the possibility that
the symmetry group G also contains discrete generators;
the only requirement for description in terms of block-
diagonal gates (36) is that G be Abelian.

The generators of the continuous part of the symmetry
group G correspond to operators of the form

N
a=> 9.
j=l

(86)

where g; is Hermitian, so that the corresponding elements

of the group G can be written as, e.g.,
g(®) =exp(-ib g) €6, (87)

which is unitary, and depends on the continuous parameter

0. We allow for multiple such generators g. In the case

where Eq. (87) spans G, the symmetry group G is the Lie

group U(1), parameterized by 6 € [0, 27).

Each time-evolution gate U, preserves the local charge

9r = Z 9>

Jjer

(8%)

for each distinct continuous generator g (86) and for any
discrete generators (as outlined in Sec. VII C). This implies
that g; is a privileged local operator, in contrast to dis-
crete symmetries, in which only the global generators are
invariant under Haar-random evolution, on average.

As a result, there are O (V) local operators that survive
any number of layers of symmetric time evolution. In gen-
eral, evolution under U/, must preserve the number of g;
operators in cluster 7, but it may move them around. In the
maximally chaotic case, a given number of symmetry oper-
ators g; is uniformly distributed among the ¢ sites in the
cluster ». This means that any observable O proportional
to some number of charge operators is preserved under
dynamics, and a finite amount of that operator remains in
place. As a result, we expect that models with continu-
ous symmetries are robust to intervening time evolution
and are further compatible with local order parameters

Q) #0V.

For example, in a system of N qubits (¢ = 2) with a
U(1) symmetry corresponding to conserved total magne-
tization g = ijl Z;, the unitary gate {{; ;| must com-
mute with Z; +Z; ;. In other words, {f; ;1 only mixes
the states |01) and |10) (while leaving |00) and |11)
invariant). In terms of operators, the gate U/, preserves
the number of Pauli Z; operators on cluster ». Since the
Haar-random dynamics privilege Z; operators (the local
symmetry charge), any observable O (76) that acts non-
trivially only as Z is potentially robust to chaotic time
evolution, while all other observables fail to realize robust
order parameters for the reasons outlined in Sec. VIIB.
The most natural choice of local order parameter is

0 =7, (89)

though, in general, products of Z operators are also robust.
Under chaotic time evolution with U(1) conservation of
Eq. (86), every gate U; ;1 leaves Z; in place with proba-
bility 1/2, and hops Z; to Z; 1 with probability 1/2,

1
U 2,1y =5 (@+2). (90)

while 1 and Z;Z; are unaltered by the gate ;.

In other words, under U(1)-symmetric time evolution
acts on Z operators as a Markovian symmetric simple
exclusion process (SSEP) [12,62], which for a single Z;
operator results in a random walk. Thus, the weight of the
observable O(0) = Z; (89) spreads diffusively in time ¢
from the site / under time evolution; for times < O (N?),
the time-evolved operator O(#) (89) still has significant
overlap with the original operator Z;.

We now consider the measurement and outcome-
dependent channels. For simplicity, consider the standard
measurement-based protocol in which one measures Z;
with some rate y, and subsequently applies the operator
X; if the outcome is —1 (i.e., » = 1 or spin down | ), and
does nothing if the outcome is +1 (i.e., » = 0 or spin up
7). The corresponding dilated channels are given by

1 1
Vie = 3 (L+Zy) 1.+ 3 (1-2%0) X, (la)

Rjrerjr =10 P/(,O,) +X 0 73_;,12, (91b)

and we define the infinite-temperature diffusive “kernel”
1
fn=5ir [Z. W OZW©DH]  (92)

L 2i—1
=4 (Lt— |r|/2J>’ ©3)

where W(#) captures U(1)-symmetric evolution by ¢ time
steps, and |[r| — |r| + 1 above if r < 0.
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For simplicity, suppose that the adaptive update (91b)
and the measurement of Z; Eq. (91a) occur without inter-
vening time evolution. If these two gates are separated by »/
sites and ¢ time steps, their combined effect is suppressed
by the finite factor f (+/,¢) (92); thus, applying the oper-
ations sequentially leads to a stronger signature (76). In
the Heisenberg evolution of Z; (89), suppose that the first
adaptive sequence is encountered after ¢ time steps and on
site j + 7. At this point, we have

(Zi(D)oo = [ (r,0), 94)

for any site j ; subsequent adaptive gates only increase this
lower bound by providing additional routes to (Z; (1)) # 0
evaluated in the infinite-temperature state.

This suggests that the quantity (Z,(r)) = O (1) for all
sites x and times ¢, and may therefore be a valid local order
parameter. However, we note that such “order” (Z,(¢)) =
O (1) can also realize in measurement-free dynamics
provided that the initial state has definite U(1) charge.
Thus (94) only meaningfully captures the effects of mea-
surements and feedback when evaluated in the infinite-
temperature state po,. However, this confirms that it is
possible to realize nontrivial expectation values (or corre-
lation functions) in the presence of measurements, even in
the maximally mixed state. In fact, not only is (Z(¥)) ., =
O (1) possible in the presence of measurements—it is only
possible in the presence of measurements (combined with
outcome-dependent feedback).

Although the “order” (94) is local and robust to the
U(1)-symmetric time evolution, it does not distinguish
two phases of matter. Essentially, (Z,(#)),, = O (1) (94)
implies that Z,(f) — 1, meaning ]P)(CO) () = 1 under the
adaptive U(1)-symmetric circuit (for all sites x and times
f). Intuitively, the combination of measurement and feed-
back projects the state |1/) of the qubit y onto a Z,-basis
state, and then ensures that state is |0). Thus, at suffi-
ciently late times, any initial state (including the maxi-
mally mixed state p,) is “steered” toward the state |0) by
the hybrid circuit, up to a subextensive number of defects
(so that the density of qubits in the state 1 vanishes in the
thermodynamic limit).

Note that |0) is an absorbing state [29,30,61] of the
U(1)-symmetric time evolution. Since |0) belongs to its
own charge sector, it is stationary under time evolu-
tion—once reached, the system remains in the state |0).
However, a transition is not possible because, for any mea-
surement rate y > 0, the U(1)-symmetric hybrid protocol
described above reaches the absorbing state |0) (up to a
vanishing density of defects) in finite time ¢.

To see that there is no sharp transition as a function
of measurement rate y > 0, we numerically simulate the
U(1)-symmetric adaptive circuit described above on a
1D chains of N = L qubits. In particular, we numerically

y = 0.002
y = 0.01
10714 e y=0.04
-~ e y=0.16
s exp(—y1)
1072
107

0 1 2 3 4 5 6

FIG. 5. The density ny(t,L) of down spins (95) versus time
(rescaled by the measurement rate ) for a 1D circuit comprising
U(1)-symmetric, two-site Haar-random gates interspersed with
Z-basis measurements, followed by X if the outcome is down
(91). The time ¢ required to remove all but a vanishing den-
sity of defects c1 from the chain is independent of system size,
and is a function of the measurement rate per site y alone, as
shown by the collapse of the various curves. While the above
data correspond to system of size L = 256, the time scale ¢ to
reach ny(t, L) = 0 is independent of L.

evaluate the time- and L-dependent “defect density”

L
1
nat,L) =73
j=1

in the infinite-temperature initial state p. In Fig. 5, we
plot n; (95) as a function of rescaled time y ¢ for various
y . Though the data in Fig. 5 correspond to L = 256, other
system sizes realize the same scaling form.

We simulate the evolution of local observables O in
the Heisenberg picture by sampling the ensemble- and
outcome-averaged dynamics of the adaptive U(1) evo-
lution. This is achieved by mapping the operator evo-
lution to a classical stochastic process, which we then
sample. Under a two-site U(1)-symmetric gate acting on
sites j and j + 1, the operators 1 and Z;Z; | are sta-
tionary, Z; and Z;; are updated according to Eq. (90),
and all operators with X or Y content are annihilated.
Additionally, we use the fact that Z; — 1 under the
combination of the measurement and feedback gates
o).

As a result, we need only consider operators O of the
form []; Zf’ i, which we represent as classical bit strings
b = bb; - - - by. The bit string tracks the number and loca-
tions of all Z operators in O, which are updated classically
according to the rules enumerated above. In simulating
Eq. (95), the initial operator Z; (0) corresponds to an ini-
tial bit string with a single nonzero entry b; = 1, with all
other b; = 0 for i # j. The U(1)-symmetric time evolution

1
(1-(Z(®)), 95

N
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simply hops this nonzero bit between neighboring sites via
Eq. (90) or leave it in place, realizing a SSEP [12,62]. The
combination of measurements and feedback leave any bit
b; = 0 unchanged, but change b, = 1 to b; = 0, realizing
the bit string b = 0 (i.e., the identity 1).

Note that only the identity operator survives the infinite
temperature trace over initial states. Hence, (Z; (7)) is gov-
erned by the survival probability of the nonzero bit, which
should decay as exp(—yf). This expectation is confirmed
in Fig. 5, which shows that the density of defective spins
(95) decays exponentially with a rate y ~!. Thus, the sys-
tem always reaches a state with a vanishing density of
defects ny(t,, L) — 0 over a time scale t, ~ y~!, since the
number of defective spins can only decrease under dynam-
ics. Hence, a sharp transition is not possible, since for any
system size L and any y > 0, there is only one regime: for
some fixed time scale # > y~!, every initial state realizes
the absorbing state |0) up to a vanishing density of defects
ng(t,L) = o (1) (95).

Importantly, these conclusions generalize to arbitrary
continuous symmetries with commuting local generators
(86) and to arbitrary lattices in any spatial dimension D >
1 with any local Hilbert-space dimension ¢. In any such
model, there is an extensive number of local operators that
are privileged under symmetric, chaotic time evolution,
while all other observables decay rapidly. As a result, only
the local symmetry operators g; are robust to time evo-
lution, and thereby candidates for a local order parameter
(76). Moreover, it is always possible to engineer adaptive
hybrid dynamics (91) that “steer” any initial state into a
particular state, provided that the target state (i) station-
ary under the time-evolution part of the hybrid circuit and
(if) has uniform charge on all sites (other states require
nonlocal circuits to target).

However, such a protocol always reaches the target
absorbing state for any nonzero rate y > 0 of measur-
ing symmetry operators (and applying outcome-dependent
gates thereafter). Essentially, the guaranteed success of
such protocols—and corresponding absence of a phase
transition—stem from the fact that there is no competition
between the measurements (and adaptive gates) and the
symmetric time evolution. While the combination of mea-
surements and feedback generically replace, e.g., Z-type
operators with exp(2wik/q) 1, the chaotic dynamics pre-
serve the number of Z operators (owing to the symmetry).
As a result, there is no competition with the effect of mea-
surement. Thus, in adaptive dynamics with Haar-random
time evolution that preserves a continuous symmetry, (i)
it is possible to realize nontrivial expectation values of
local symmetry operators from any initial state, (if) such
“order” corresponds to the ability to steer toward uni-
form absorbing states in finite time for any nonzero rate
y > 0 of measuring local symmetry operators, but (iif) it
is not possible to realize a sharp transition as a function
of y.

E. Constrained models

Thus far, we have established that (i) the absence of
block structure is incompatible with robust order (O(?)) #
0 and (i7) maximally chaotic models with continuous sym-
metries, while compatible with robust order, do not admit
a sharp transition as a function of the measurement rate
y > 0. In the former case, the absence of dynamically priv-
ileged operators means that there is no choice of order
parameter O (76) robust to any amount of chaotic time
evolution, on average. In the latter case, the fact that all
of the dynamically privileged operators are conserved in
number means that there is no competition to the combina-
tion of measurements and adaptive gates (73) precluding a
transition as a function of y.

Fortunately, kinetically constrained models [13,32,38—
42] without conservation laws generically admit dynami-
cally privileged operators, whose number is not conserved.
Hence, nonconserving constrained models are, in princi-
ple, compatible with genuine phase transitions as a func-
tion of the measurement rate y > 0. We establish that such
transitions are possible in the context of a quantum East
model [13,32] combined with measurements and feedback.

The quantum East model is defined on a 1D chain of
qubits ¢ = 2; time evolution is generated by two staggered
layers of two site gates that act as

U =1, PO + U @ P, (96)

which applies the 2 x 2 Haar-random gate U to qubit j if
its “East” neighborj + 1 isinthe state |1) = | | ), and acts
trivially otherwise. Note that the state |0) is an absorbing
state of the dynamics generated by Eq. (96).

We intersperse the chaotic dynamics generated by f; ;1
(96) with Z-basis projective measurements, followed by
outcome-dependent spin flips,

1 1
Vie=3 (L+2Zo) L+ 3 (1—-Zyo) X, (97a)

Rj’r’;j,r == ]lj,O 73](,01) +)(j,0 73]_(,12’ (97b)
which is identical to the measurement protocol used in
the U(1)-symmetric example (97) in Sec. VIID. As in
the U(1) case, we apply the adaptive gate R immediately
following measurement for maximum effect.

Evolving operators in the Heisenberg picture, the East
gate U; ;1 (96) leads to the Haar-averaged updates

Loz, - 1L,z (98a)
497, — 485 (U+Z.), (98

in the Pauli operator basis, and
PP P9 — PP, (992)
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(a) Scaling collapse of the the density n,(#, L) of down spins (101) evaluated at a time # = 2L. The data exhibit a high-

quality collapse for a critical measurement rate y. = 0.038 and using the exponents § = 0.159 and v; = 1.73 consistent with directed
percolation. The inset depicts n,(z, L) (101) without rescaling. (b) Scaling collapse of n,(t, L) for fixed system size L = 1024 as a
function of time for various measurement rates y € (0.03708, 0.03913).

PP QP — %11] P, (99b)
in the (naive) projector basis. As in previous examples, the
combination of measuring Z; and applying the outcome-
dependent gate R (97) acts as

in the Heisenberg-Stinespring picture (averaged over mea-
surement outcomes and projected onto the default state of
the apparatus) while annihilating X and Y.

To see that the adaptive hybrid East model detailed
above admits a transition as a function of y, we again turn
to numerical simulation. As with the U(1) example, we
use the update rules (98) and (100) to sample the evolu-
tion of local operators Z; (f) in the Heisenberg picture using
a stochastic classical Markov evolution of the bit string
with b; = 1 with all other b; = 0. Sites with b; = 1 will
be referred to as either defective or “active.”

As in the previous example, we compute the quantity

L
1
nd(t’L) = Z E
J=l

which vanishes if the adaptive dynamics (locally) realize
the target absorbing state |0) up to a vanishing fraction
of defects (i.e., a subextensive number of spins down in
the thermodynamic limit L — o0). Note that n,(¢,L) — 0
corresponds to ( Z; (7) ), = 1 — o(1), signalling order.
The numerical results for n,(¢, L) (101) under adaptive
East dynamics are depicted in Fig. 6. In contrast to the
U(1) example of Sec. VIID, the East updates (98) may
spawn additional nonzero bits (i.e., Z operators) to the
right of existing nonzero bits. Hence, although the com-
bination of measurements and feedback removes defects,

(1-(Z(®)x ) (101)

N =

the dynamics generated by time evolution can add them
back. Thus, the density of defective spins nq(f,L) (101)
with respect to the state |0) is no longer a nonincreasing
function of time (though |0) remains an absorbing state
since Zs cannot spawn spontaneously). Since the system
exhibits competition between “survival” and “extinction”
(of Z’s), with no additional symmetries, it is expected to
belong to the directed percolation (DP) universality class
[31]. Since we probe the probability that a cluster grown
from a single seed remains active, we expect ny(t,L) to
obey the scaling form [31]

na(t,L) ~ °f (v —yo) 70,0 /L), (102)
which we plot in Fig. 6(a) as a function of y — y, at
fixed time ¢t = 2L, for L =2" with n =28,9,10,11. We
observe a high-quality scaling collapse consistent with the
ansatz (102) using exponents vy = 1.73 and § = 0.159 cor-
responding to the DP universality class (the DP exponent
v, describes spatial correlations, which are not relevant to
this analysis) [31]. Meanwhile, Fig. 6(b) shows a plot of
nq(t, L) as a function of time ¢ for various y close to y, at
fixed system size L = 1024.

The two panels of Fig. 6 show that, for y > y., the
absorbing state |0) is reached rapidly in time, while for
y < ¥, (and for sufficiently large system sizes L), there
remains a nonzero density n,; of defective (or “active”)
sites. In the vicinity of the critical point, the density decays
as ng(t,L) ~ t~% until a time ¢ ~ |y — y,|™"I correspond-
ing to the the correlation length, which is depicted prior to
rescaling in the inset of Fig. 6(b). The collapses establish a
critical measurement rate of y. ~ 0.038.

The numerical simulation of the adaptive quantum East
model establishes that measurement-induced transitions
are possible in maximally chaotic models with kinetic con-
straints but without continuous symmetries. Note that a
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similarly small critical measurement rate y, recovers for
a distinct adaptive constrained model [61].

Importantly, the adaptive absorbing-state MIPT of
Ref. [61] is distinct from the MIET [14-28]. Additionally,
while Ref. [61] allows for independent rates of projec-
tive measurements and feedback, we note that this is not
physically meaningful for physically observable quantities
of the form Eq. (40). As we have shown, any measure-
ment without outcome-dependent feedback has no effect
on dynamics, on average; at the same time, feedback with-
out a corresponding measurement is just a unitary gate.
This is consistent with the numerical data reported in
Ref. [61].

We expect that such absorbing-state MIPTs can be real-
ized in generic adaptive hybrid dynamics without contin-
uous symmetries, involving either deterministic time evo-
lution or Haar-random evolution subject to constraints. In
either case, the order parameter (76) must not correspond
to a local generator of a continuous symmetry, or competi-
tion with the measurements (generally of the same type of
operator as the order parameter) is impossible. The exis-
tence of nonconserved operators that are not dynamically
trivial is guaranteed in the case of deterministic dynam-
ics (without continuous symmetries). In the Haar-random
case, the order parameter must be diagonal in the com-
putational basis (in which the constraint is expressed) to
ensure robustness to time evolution. These findings extend
to models on arbitrary g-state qudits on any graph in any
number of spatial dimensions D.

We expect that such transitions represent the only gen-
uine measurement-induced phase transitions given max-
imally chaotic dynamics. However, we expect that the
constrained dynamics considered herein generally capture
the universal features of deterministic (and/or submax-
imal) chaotic time evolution. Any such MIPT requires
the utilization of measurement outcomes, with outcome-
dependent unitary operations designed to “steer” toward
a particular many-body state being the most promising,
scalable, and generally applicable strategy. Finally, our
identification of an MIPT captured by an order parameter
of the form (Z; (¥)) establishes that nonlinearity of a quan-
tity in the density matrix p(f) is not necessary to observe
measurement-induced phase structure.

VIII. CONCLUSION

We have explored the generic effects of projective mea-
surements on phase structure and dynamical universal-
ity in chaotic quantum dynamics. Our exhaustive study
fully characterizes the landscape of physically observ-
able hybrid quantum dynamics, and sharply constrains the
existence of genuine (i.e., physical) measurement-induced
phases of matter. Our results apply to generic chaotic
quantum models acting on g-state qudits on any graph,

in any spatial dimension, and with arbitrary (Abelian)
combinations of symmetries and/or kinetic constraints.

Crucially, we find that (i) nonlinearity in the density
matrix p(f) is neither necessary nor sufficient for a quantity
to detect nontrivial effects due to measurements; (ii) the
utilization of outcomes via adaptive feedback, postselec-
tion, or classical decoding is the crucial ingredient to real-
ize a measurement-induced transition (observable or oth-
erwise); (iii) any transition that only manifests in postse-
lected quantities is not a transition between distinct phases
of matter in any physically meaningful or historically
consistent sense; (iv) projective measurements have no
effect on the underlying chaotic spectrum, distinguishing
the measurement-induced entanglement transition from
thermalization (localization) transitions, which also man-
ifest in entanglement entropy; (v) genuine measurement-
induced phases of matter can only be realized in adap-
tive hybrid protocols—in which gates are conditioned on
prior measurement outcomes—in which the underlying
time evolution lacks continuous symmetries and is either
deterministic or constrained.

Our findings are made possible—or otherwise facili-
tated—Dby the representation of measurements we develop
in Sec. II. Following the Stinespring dilation theorem [33],
measurement channels act unitarily on a dilated Hilbert
space that includes the measurement apparatus. Our cru-
cial insight is the identification of this unitary with the
time evolution of the combination of the system and appa-
ratus [35], allowing for the evolution of operators in the
Heisenberg picture and diagnosis of spectral properties in
the presence of measurements.

In Sec. IV, we established that standard diagnostics of
phase structure (e.g., expectation values of observables, n-
point correlation functions, and both linear and nonlinear
response) are blind to the average effects of measurements
without feedback. We prove this result for the first time,
on all time scales and in the presence of arbitrary sym-
metries and/or constraints. At most, measurements can
continuously spoil the structure of the underlying time evo-
lution without realizing a sharp transition. Essentially, on
average and at late times, both projective measurements
and chaotic time evolution drive a system toward a ther-
mal mixed state (possibly within some symmetry and/or
Krylov sector), so that only the structure preserved by their
combination is important. At short times, the combination
of chaotic evolution and measurements without feedback
is equivalent to the former alone, indicating that there is no
competition between measurements and chaotic evolution
in the absence of feedback.

In Sec. V we considered spectral properties in the pres-
ence of measurements for the first time. Our analysis of
the SFF is only possible using the Stinespring formalism.
Prior to the MIET, the most prominent example of a tran-
sition from area- to volume-law scaling of entanglement
entropy corresponded to thermalization transitions [1-5];
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that transition also manifests in spectral statistics and the
SFF. However, we find that measurements have no effect
on the spectrum of the underlying time evolution. This
holds even when the SFF is defined to be quadratic in
p(¢) and even if the outcomes for the two copies of p(?)
are postselected. This further establishes that nonlinearity
in p(?) is not sufficient to detect a measurement-induced
transition.

In Sec. VI we apply a physically reasonable and his-
torically consistent definition of a “phase of matter” to
measurement-induced transitions reported in the literature
[14-28]. We find that postselected quantities are plainly
unphysical and cannot define (or distinguish) genuine
phases of matter. Thus, the measurement-induced entan-
glement transition, charge-sharpening transition, and other
analogous measurement-induced transitions reported in the
literature are not transitions between distinct phases of
matter in any physically meaningful or historically con-
sistent sense. We also find that all attempts to circumvent
the postselection problem fail to meet the requirements
for a phase of matter. We further distinguish classifier
transitions [53,77] from transitions between phases of mat-
ter. Noting that nonlinearity in p is unrelated to realizing
MIPTs, we identify utilization of outcomes as the cru-
cial ingredient. However, we note that classical utilization
of the measurement outcomes via classical postprocess-
ing does not appear to be sufficiently scalable to diagnose
genuine phase structure.

In Sec. VII, we consider the remaining option, corre-
sponding to adaptive hybrid circuits, which use the out-
comes of measurements to determine future gates. We find
that adaptive protocols cannot realize MIPTs in maximally
chaotic models without structure or with only discrete
symmetries, as no observables are robust to time evolution.
We then find that continuous symmetries are compatible
with robust order and successful “steering” of quantum
states, but not a sharp phase transition. To see this, we con-
sider a U(1)-symmetric hybrid model in 1D, which suc-
cessfully realizes the absorbing state |0) from any initial
state for any nonzero measurement rate y > 0.

Finally, in Sec. VII E, we identify the only class of mod-
els that appears compatible with genuine measurement-
induced transitions between distinct phases of matter. This
corresponds either to deterministic time evolution or Haar-
random evolution subject to kinetic constraints. In the
latter case, the order parameter and projective measure-
ments must act diagonally in the basis in which the con-
straint is defined. It is also essential that the evolution
does not have any continuous symmetries, or that the order
parameter (and/or measured observables) not be conserved
themselves (i.e., we expect that continuous time transla-
tion symmetry is not an obstacle to realizing an MIPT). We
provide evidence of a genuine MIPT in the context of an
adaptive quantum East model [32], in which measurements
steer toward the absorbing state |0) starting from arbitrary

initial states. We find a critical measurement rate of y,. ~
0.038, and a high-quality scaling collapse consistent with
a directed percolation transition [31]. These findings are
consistent with concurrent results [55,58—61] on adap-
tive dynamics, and our analysis straightforwardly extends
to arbitrary models on generic systems. We expect that
absorbing-state transitions in adaptive hybrid protocols
(which realize “steering”) are the only physically meaning-
ful example of a measurement-induced phase transition.
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APPENDIX A: OPERATOR GYMNASTICS

Here we provide some supporting details regarding
operator spaces and bases relevant to the main text.

1. Operator space

A quantum “‘state” is realized by an appropriately nor-
malized element of the physical Hilbert space H with
dimension D—i.e., a vector space defined over the com-
plex field C with D linearly independent basis vectors
{|n)}, imbued with an inner product satisfying (a|b) =
(bla)* and (m|n) = §,,, for the basis vectors.

The operators |O) that act on the state space H are ele-
ments of the operator space End (H). The set End (H) of
linear maps on H is itself a Hilbert space with dimension
D? and an inner product satisfying (4|B) = (B|A)*.

By convention, the operator inner product is given by
the standard (Frobenius) norm

1
(4|B) = 5tr[ATB], (A1)
which manifestly obeys (4|B) = (B|4)*, where D = tr[1]
is the dimension of the underlying state space. Given this
norm, the D? basis operators satisfy

(c"]0") = 8,10 (A2)
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where w,v € [0, D* — 1] label the D* many-body basis
operators, where u = 0 corresponds to the identity.
This basis is both orthonormal and complete, i.e.,

D2-1

1= Y o)

; (A3)

realizes the superidentity 1 |4) = |4), which maps any
operator onto itself. Using these relations, any operator can
be written in the basis-dependent form

D2 D2
A=) A 0" > A=) A,|0")., (A4
n=1 n=1

where the coefficients are given by

A, = (o"|4) = %tr[(aﬂ)u], (AS)
much as a vector can be decomposed in a given basis
according to |v) = ), v,|n) with v, = (n|v). In the case
of time-dependent operators, all time dependence is carried
by the coefficients (AS5) as the basis is static.

In general, our interest lies in local lattice models, in
which the physical Hilbert space factorizes over a collec-
tion of sites as H = H?N , where H; = CY is the on-site
Hilbert space. We then form a many-body operator basis as
the set of Kronecker products over sites of the single-site
basis operators. In other words (A4) becomes

N
A=) a0 =) 4, Qo (A6)
iz n Jj=1

where the length-N vector g = (i, ..., uy) stores which
basis operator acts on each site, with u; € [0, — 1]. For
a system of qubits (¢ = 2), the on-site operator space is
spanned by the Pauli matrices 1, X, Y, and Z; the many-
body operator basis is then the set of all possible Pauli
string operators o #.

2. The naive basis

A simple choice of operator basis—which we term the
“naive basis”™—is specified straightforwardly by the matrix
elements of operators as realized by a particular basis for
the underlying Hilbert space ‘H for states.

We define the on-site orthonormal basis operators

Y2 \m)nl,

O =gq (A7)
where 0 < m,n < g — 1 (in some orthonormal basis for
the single-site Hilbert space ;) label the ¢ unique basis

operators for a given site. The basis operators (A7) are

orthonormal under the operator inner product (A1), as can
be verified by direct inspection:

1
(Oxe|Op) = p tr[ ¢"* [€)(k| "% |m)(n] ]

= ‘Sk,m 5€,m (AS)

and completeness of the basis follows from linear indepen-
dence: in other words, the only solution to

q—1
> amn O =0, (A9)

m,n=0

is the trivial solution a,,, = 0 for all m, n.
Following Eq. (A4), generic single-site operators can be
expressed in this basis as

q—1

A=Y Ann O, (A10)
m,n=0
where the coefficient
Amp = (m|A|n), (A1)

is simply the matrix element of the operator 4 in the chosen
on-site state-space basis. The many-body operator basis is
simply the Kronecker product over sites of the single-site
operator basis (A6).

3. The Weyl basis

The Weyl basis is useful, unitary extension of the
Pauli-matrix basis for ¢ = 2 to generic on-site dimension
q>2,

T =X"Z", (A12)
where the Weyl operators X and Z are defined by

q—1

X = Z Ik + 1)(k], (Al13a)
k=0
q—1

Z = Z o k) (K], (A13b)
k=0

which generalize the Pauli X and Z. Above, note that the
ket labels are defined modulo ¢ (i.e., |k + ¢) = |k)) and w
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is the gth root of unity,

w= e, (Al14)
and we also note the general relations
1=X7=274, (Al5a)
O=tr[Z]=1tr[X ], (A15b)
Xt =x"1 (Al5c)
Zt=z71, (A15d)

so that Z and X are both traceless and unitary, and
reduce to the X and Z Pauli matrices for ¢ = 2. These two
operators obey the multiplication rule

ZX =0X Z, (A16)

and corollary relations follow from Z"X" = o™ X"Z™
(note that w — —1 for ¢ = 2). We verify that ', (A12)
forms an orthonormal basis by checking Eq. (A2):

(Ti|Tomn) = L [z*x~x"Z"]
q

1 .
= Ztr[xm Zn—k
iz

= 8j,m8k,na (A17)

and completeness follows from linear independence.
Single-site operators are decomposed in this basis via

~1
1 4
A=- > w[z"Xx "4 X"Z", (A18)
q m,n=0
or, in the operator ket notation,
q—1 qg—1
) =Y 1T) Conld) = D Ay [T, (A19)
m,n=0 m,n=0
where the coefficients are given by
Lot
Am,n = (an |A) = 5 tr[ Fmﬂ A ] ) (AZO)

via completeness. From Eq. (A18), we conclude that

q—1

1
m)m| = = " & 7,

q k=0

(A21)

where |m) satisfies Z |m) = »™|m). By convention, the Z
eigenbasis is the default basis for single-qudit states.

Owing to self duality of the clock operators, we can
express projectors onto eigenstates of X as

-1

=

1 -
lm)m == ) o™ XF, (A22)
q %=0
from which it is straightforward to verify that
X || = o |m)(ml, (A23)

meaning |7) is an eigenstate of X with eigenvalue ™, as
expected. Specifically,

-1

=

~ 1 =
) = — o "k k), (A24)
Vi iS
where |k) is the eigenstate of X with eigenvalue .
Generic many-body operators can be written as
1
A=z > [T 4] T (A25)
m,n
where we have implicitly defined the shorthand
Tmn = Q) X"2Z", (A26)

i€Hqj)

where the integer-valued vectors m and n reflect the pow-
ers of X and Z that act on each degree of freedom in the
dilated Hilbert space, as in Eq. (C7).

4. Projectors and other useful relations

Using the naive operator basis (A7) with Weyl Z-basis
states, we define the orthonormal set of diagonal operators
(or normalized Z-state projectors) according to

g-1 —nk

i _ w k
;" = Oyn = /q In)(n|; = E Zi,  (A27)
j i £ N

where Z|n) = w"|n). We similarly define the set of projec-
tors onto Weyl X states of site j via

L
~(n) ~ > w k
7" = O = g M@, = xF,
J n.n J J
= V4

where X [71) = w"[ii) (A24). The projectors (A27) and
(A28) are orthonormal (A2),

m| _mY\ _ (=m|x0m)) _
(nj TT; >_(7rj T >_8m,n,

as can be verified from Eq. (A1) and the definition (A27).
These operators therefore comprise a complete orthonor-
mal basis for the diagonal operators acting on site j in
either the Weyl Z (™) or X (7™) eigenbases.

(A28)

(A29)
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For reference, we also state the following relations:

L —
1)
Ow =g la)bl=)  —X"7",  (A30a)
NG
q-1 w—m7 -
Oz = Jq )| = X"z, (A30Db)
’ m=0 ﬁ
with inner products given by
(Oab|rmn) = 6]_1/2 b 8a m+b> (A3la)
(OTm) =q7 ke 87 niTo (A31b)
and it is also useful to define
q ~
e
[,
=- o " Oy), (A32a)
1 =0
1 ‘12': -
(Oma| = —= D ™ "Dkl
Vi k=0
[
==Y " (Oul, (A32b)
1 1=

where we used the relation (A24).

APPENDIX B: THE ONEFOLD HAAR CHANNEL

We now introduce the Haar-averaging procedure in
the context of generic, Haar-averaged time evolution
(i.e., without conservation laws or constraints). In the
Schrodinger picture, one considers the time evolution of
density matrices (or similar objects like WApWT), while
operators remain constant in time; in the Heisenberg pic-
ture, one considers the density matrices (and states) to
be independent of time, and instead evolves operators
according to YWTOW. Note that our unitary Stinespring
formalism of Sec. II allows for the evolution of operators
O in the presence of projective measurements.

In this work, we primarily consider expressions involv-
ing one copy of a given random unitary U (and its conju-
gate UT) over the unitary group U (qg) with uniform (Haar)

measure. We find that Ut O U = U O Ut; in other words,
Haar-averaged time-evolution updates of either density
matrices in the Schrédinger picture or operators in the
Heisenberg picture are both captured by the same one-fold

Haar channel [64],

P[O0] = U"W’)U:%ﬂtr[(’)], (B1)
where D is the dimension of the underlying Hilbert space
[i.e., the unitaries U are averaged over U(D) with uni-
form measure]. The equivalence of the Haar-averaged
Heisenberg- and Schrodinger-picture update channels can
be verified by noting that ® [(9'*'] = O [O*].

In the absence of symmetries or constraints (i.e., each £-
site unitary gate is a ¢* x ¢* Haar-random unitary without
block structure), the Haar-averaged Heisenberg update rule
for the time-evolution layer labeled X is given by

OU+s) = W, 00 Wi, (B2)
where the “upper” average applies only to the unitaries in
layer #, A, and the “lower” average on the right-hand side
includes averages for all prior Heisenberg time steps.
Using Eq. (A25), any physical observable O can be

decomposed according to

- @ Q"

m,n

S

(B3)

where m, 1 are restricted to the physical slice T = 0, and
the coefficients C are given by

=mu |00Q7Z" 5" |, B4

which may be averaged over previous time-evolution
gates.

Assuming that W is a circuit of the form Eq. (34),
the Haar-averaged time-evolution channel corresponding
to layer A of time step ¢ acts on O (B3) according to

O+ = Z CY Wi Tz W,

n

_ C(f) ® u F(V) u;f)\r

mn rei
— 1
0) )
= > G @ e g ]
P rer 4
= it H 8.0 870

R 1 _
= g})]l:q—Ntr[O(t)] 1 (BS)

which means generic operators are trivialized by a single
layer of featureless Haar-random gates that tile all sites
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of the system. Note that the same update applied to the
density matrix in the Schrédinger picture gives
- = 1 N
pUtsn =C1= i tr[,o(t)] 1=pe, (B6)

the infinite-temperature density matrix p,o =g " 1 (a
featureless, maximally mixed state), for any p(?).

APPENDIX C: TRANSITION MATRIX
FORMULATION

There are two approaches to evaluating the quantities of
interest (40) in Sec. I'V: the first is to evolve the dilated den-
sity matrix o(¢) (11) in the Schroédinger picture; the second
is to evolve the probe observables OJ; in Eq. (41) in the
Heisenberg picture. In the former scenario, one includes
n additional Stinespring qubits to store the outcomes of
measuring each of the n probe observables O;.

1. Evolution in operator space

In either case, we consider hybrid evolution under
a dilated unitary circuit W € Aut(Hgy) (35) compris-
ing layers of local gates corresponding to (i) maximally
chaotic time evolution, possibly with block structure (to
encode arbitrary combinations of Abelian symmetries
and/or kinetic constraints) and (i) projective measure-
ments of the circuit observables 4, ;. As noted in Sec. II,
the initial state of all Stinespring registers is |0) by default,
and we trace over all Stinespring qudits in evaluating
Eq. (40) to capture repeated experimental trials [80].

The ensemble- and outcome-averaged evolution of
either the density matrix o(#) or the probe observables O;
is efficiently captured using a transition matrix. Much like
the hybrid evolution unitary W(¢,¢') (for ¢t > ¢) is a lin-
ear operator that maps the state |y (¢)) at time ¢ to the
state | (¢)) at time ¢, the transition matrix 7 (¢,7) is a lin-
ear superoperator that maps the density matrix p(¢) at
time 7 to the density matrix p(f) = W(t,¢) p(¢) Wi(t,1)
at time ¢ (in the Schrodinger picture). Additionally, the
superoperator 7 ' (¢, #) maps the operator O(#) at time ' to
O =W, 1) OF) W(t,t') at time ¢ (in the Heisenberg
picture). Importantly, in the absence of outcome-dependent
feedback, all dilated unitary updates can be restricted to the
physical Hilbert space. In other words,

THt,1) o O =tr[W'(t,/) OW(t,1) |00 ] (Cla)
T(t,{)op = tr [Wt,!)p ® 1000[ WV (1, £)]. (Clb)

Suppose that the operator WW(z,#) takes the form

t Sy 4
W(ta t/) =T l—[ l_[ ® Vs,a,r ]—[ ®us,k,r’a (Cz)

s=f o reo A=l e

where 7 is a time-ordering operator, s runs over time steps
¢ through ¢, o runs over the S; measurement layers in
round s with individual gates V acting on clusters », and
A runs over time-evolution layers with individual gates
U acting on £-site clusters 7. Then the transition matrix
T (t,¢) corresponding to W(t,¢) (C2) is given by

t Ss V4
TeH)=T[] [[Q1 IR 157

s=t o=l reo r=1rex

(©3)

where 7 is a Hermitian transition-matrix gafe. The above
realizes Schrodinger evolution of density matrices; the
conjugate 7 ' (z,#) for Heisenberg evolution is given by

ﬁ e R aval

o=S85 reo

4 1
T, t) = f’]—[ [[R e

s=t A=l Fer

(C4)

where 7 is the anti-time-ordering operator (which
arranges the transition-matrix gates in reverse chronologi-
cal order compared to the time-ordering operator 7).

Importantly, the transition matrix 7 is a circuit of
transition-matrix gates (corresponding to both time evo-
lution and measurements) with precisely the same cir-
cuit structure as the corresponding unitary operator W.
Likewise, 7 has the same circuit structure as WW1.

By restricting to hybrid quantum circuits without adap-
tive feedback (i.e., in which the results of measurements
are not utilized), we need only consider the evolution of
observables (and density matrices) acting on the physi-
cal degrees of freedom. It will prove convenient to regard
operators as kets that live in the operator Hilbert space,

|O) € End (Hp), (C5)
where End(H,n) is the space of operators acting on
the physical Hilbert space H,n, which is detailed in
Appendix A 1.
The operator space is imbued with the inner product

(A|B) = % tr[ 4" B], (C6)

where D is the dimension of the underlying Hilbert space.
Note that (B|4) = (A|B)* is skew symmetric, meaning that
the operator space is a Hilbert space.

The elements of the operator space span all observables
(and density matrices) acting on H,,. As with generic
inner-product spaces, the elements of End(H,,) can be
decomposed onto an orthonormal basis (see Appendix A).
Of particular interest is the Weyl basis

Fii =@ X" 77, (ep)
J
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where X is the Weyl “shift” operator (Al13a) and Z is
the Weyl “weight” operator (A13b), which provide a uni-
tary extension of the Pauli X and Z operators to ¢ > 2.
Importantly, this basis is orthonormal, i.e.,

(T |Tinit) = S S (C8)
and also complete, i.e.,
1= |Tii)(Tii (C9)
where the superidentity 1 maps any operator to itself.
The foregoing relations imply the decomposition
0®W) =" [Tii) (T O0)
=Y 0 ITaa), (C10)
and relating the two lines above gives
0 1 i
0% = (Tas|0W) = — v[ i, 00 |, (1
q"

for the time-dependent coefficients. Analogously, we
decompose density matrices according to

lo(®) = Z D) (Tini | 0 (D)
= Z Co- i) (C12)
where the coefficient C for the density matrix is
¥ = (Tazlo() = —tr[rT P ] €13

The transition matrix 7 (¢, ) satisfies the relations (C1),

0W) =T'w,7) |0W)),
lp() =T@,1) |p),

(Cl4a)
(C14b)

where 7 (t,7) [T (¢,7)] is a circuit with the same structure
as the underlying unitary circuit W(t, ) [WT(¢,1)].

The identification of 7 (¢,¢) as a matrix is most trans-
parent when one considers the updates to the coefficients
of observables (C11) and density matrices (C13) under
hybrid time evolution. Taking the operator inner product of
Eq. (C14) with Weyl basis operators (C7) to the following

expressions for a single update ¢ — ¢ + §¢ corresponding
to layer #, A of the hybrid circuit.

(t+61) (1) (t)
Of"fl - Z 7;1 nyim’ i’ Or'h/ N7 (Clsa)
m' i
(t+8!) (SO
C Z 7771 nym’ i’ Cfn’ 7' (CISb)

' i

where the superscripts denote which layer of transition-
matrix gates acts, and may correspond to time evolution or
measurement. The gates T are all Hermitian, and each layer
t, ) is the same for either the Heisenberg or Schrodinger
picture—only the ordering of the layers changes, as indi-
cated in Egs. (C3) and (C4).

We now work out the elements of the transition matrices
corresponding to layers of time evolution and measure-
ment gates in the Weyl basis m, i (C7).

2. Time-evolution transition matrices

We ﬁrst consider the time-evolution transition-matrix
gates T§ 5. corresponding to local unitary gates Uy, - (36)
that act on operators supported on the cluster » in layer A

of time step ¢. The superoperator ijvf) encodes the aver-
aging of the unitary gate I/ (36) over a chaotic ensemble
(possibly within various blocks corresponding to Abelian
symmetries and/or kinetic constraints) with Haar (i.e.,
uniform) measure [6—13,64].

In the absence of block structure we find

TS =10l = 75 = 1), (Cl6)

where we assume that the gates in layer A tile the entire
system. In other words, a single layer of featureless, max-
imally chaotic time evolution annihilates any nontrivial
observable O, and replaces any density matrix p with
the infinite-temperature Gibbs state p,, o 1. The matrix
elements of Tﬁjvo) (C16) are given by

740

m,n,m n

= S S S 5 S o (C17)
for any layer ¢, A that tiles the system.

For block-structured time-evolution gates U4, , of the
form Eq. (36)—corresponding to generic combinations of
Abelian symmetries and/or constraints—where the blocks
« are defined in the Weyl Z basis (A15d) and all realize
chaotic dynamics, the matrix elements of the correspond-
ing transition-matrix gate are given by
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and the basis-independent form of the gate is

Tior = Z a Z (a))<7tr(a/)

a,d ea

; (C19)

where 7@ is the normalized projector (A27) onto the Z-
basis configuration a of cluster r and n, is the number of
configurations a in block «. Though we default to the Z
basis (A13b), more generally, normalized projectors can
be defined for arbitrary choices of orthonormal basis.

3. Measurement transition matrices

We next consider the measurement gates Tfrf,lef ¥ that act
on operators in the cluster » in measurement round o of
time step ¢. This gate captures the update due to projective
measurement of the circuit observable 4, , with spectral
decomposition (2). We primarily consider 4,,, that are
diagonal in the Z basis (A13b) (i.e., the eigenstates of A
are Z-basis states); however, we also consider 4,, , that
are diagonal in the X basis (A13a) [81].

Here we consider protocols in which the outcome of a
given projective measurement is not utilized in evaluation
of quantities of the form Eq. (40). The outcomes are not
used adaptively (i.e., to determine subsequent gates) nor
are they used for postprocessing (i.e., the assignment of
outcome-dependent weights to different trajectories). Thus,
we average each individual measurement gate over all out-
comes, weighted by their probabilities. This corresponds
to taking the trace over the Stinespring degree of freedom;
accordingly, the transition matrices act on the physical
operators alone, as in Eq. (C1).

In either the Heisenberg or Schrodinger picture, the
transition-matrix gate 7‘“, - )—correspondmg to the mea-
surement of 4, , (2)—is defined via

i 1
ﬁt:%;,;,/HslS) =— Z tr[ T ﬁIP(M)Fﬁ/ Q/IP(M)] , (C20)

m,n

where p labels the M distinct eigenvalues of 4, (2),
which acts on the ¢-site cluster r.

If A5, is diagonal in the Z basis (A13b), then the
elements of the corresponding transition-matrix gate are

) -
i mm/sﬁﬁ/g”o

TR )L )

B pbeB

o,
m,i;

r,
s’
b(n n

8,71/’5/75, (C2 1)

and, alternatively, if A4;,, is diagonal in the X basis
(A13a), the elements are instead given by

TETEY) = 8 a8 i

m,n,m’ ,n
+ S Z Z

B ptbeB

h (m m)

6*/’5/_2,, (C22)

where, in both expressions above, B labels blocks of
degenerate eigenstates of 4;,, (2) and b #* b’ label distinct
eigenstates within that block. The basis-independent form
of the transition-matrix gate is simply

1 =% 5 (o)

n=0 a,a’ epn

; (C23)

where 1 runs over all eigenvalues of 4, , (2) and O; 7 =
q'/? |a)(@|, is the naive basis operator (A7), defined in the
elgenba51s of the circuit observable 4, .
If 4, has a nondegenerate (ND) spectrum, the second
term in both Eq. (C21) and Eq. (C22) vanishes, leaving

)|

where the normalized projectors (A27) may realize any
basis for the ¢° states of cluster 7, corresponding to the
(nondegenerate) eigenbasis of 4, .

ND
Ttar

(C24)
3

4. Charge-changing measurements

Here we derive the transition matrix for two layers of
evolution corresponding to time evolution with Z-basis
block structure, and measurement of the observable 4, act-
ing on the cluster x, where 4 has nontrivial X content,
and is thus incompatible with the time-evolution block
structure. In other words, an observable 4 with any X
content in its Weyl decomposition (A25) constitutes a
“charge-changing” operator. However, there is no generic
expression for the spectral projectors (2) of such an oper-
ator, given that we have fixed the Z basis to describe
the symmetries (and/or constraints) of the time evolution.
Given an operator

A= E @i Ui

i,

(C25)

we can define a generic, rotated operator

Ac=Zi4, 2, =) X} (C26)
P
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where Z comprises only Z operators, and the modified
coefficient can be written in the form

i

though we do not use this expression. Instead, we imag-
ine measurlng A (C26) on cluster x, applying the chan-
nel ZT prior to measurement, and the channel Z after.
Importantly, because Z contains only Z operators, the
corresponding transition matrix preserves any X content.

In the absence of B blocks (39) the unitary gate U,
acting on cluster 7 in layer A of time step ¢ corresponds to
a transition-matrix gate with elements

an —a-n

O(Sm’ 0 Z Z 4

Ot
aaea

T(n\r)

mam’ ' T

(C28)

where ¢ = |r| and we have dropped the vector notation for
presentation. Importantly, the gate (C28) annihilates any
X content, and the transition-matrix gates corresponding
to both the Z and Z7 channels does not change this.

Suppose that only a single layer of charge-changing
measurements occurs between any pair of time-evolution
layers. In this case, the time-evolution transition matrices
ensure that there is no X content in any operator (or density
matrix) before or after the measurement channel.

The transition-matrix gate corresponding to the mea-
surement of 4 (C26) has elements

Tfrf;j; = mm’ 571,0 Sn/,O
b-(m/fm)
w
+ ‘Sn,n/ Z Z Il 6n/,b/—ba (C29)
B bives 1

and imposing the condition of no X operators (due to
the time-evolution and Z transition matrices), we set m =
m’' = 0, and Eq. (C29) becomes

_’Z'N
T4 A St St (5,,,0 + Alfc")) , (C30)
where Z7(n) is the integer
Tim) =Y Y Suybn (C31)

B b#b'eB

which counts the number of pairs of states b ## b in each
block B satisfy &' — b = n, for a given n = n’. Hence,
the effective transition-matrix gate for measurement of the

charge-changing observable A (C26) is given by
7)7

which preserves any trivial operator (or density matrix)
content o< 1, and suppresses certain Z, operators by a
factor O (1/¢4"), while annihilating others entirely.

. (C32)

Tix= DAL+ o5 ZIA
n;EO

APPENDIX D: FLOQUET CIRCUITS

In calculations pertaining to dynamics, universal prop-
erties are well-captured by noisy quantum circuits (i.e.,
those that are random in space and time). However, one can
also use spectral properties to diagnose universal quantum
dynamics [9,12,13,43,44,49], but a spectrum only exists if
evolution to arbitrary times can be captured by a single
operator. In static systems, that operator is the Hamilto-
nian; in Floquet systems—which are periodic in time—that
operator is the “Floquet unitary” (or single-period evolu-
tion operator) F. Evolution by ¢ time steps is realized by
W) = F ' (395).

It is straightforward to realize Floquet extensions of
the noisy hybrid circuits described thus far. We empha-
size that, while the measurement gates {)), ,} are periodic,
their outcomes need not be. Because evolution is periodic,
we need only determine the single-period evolution cir-
cuit F—i.e., we simply specify the single-period circuit
JF for the first time step, and later times are reached via
repeated application of the same Floquet operator F. In
other words, all Haar-random unitaries are independently
drawn only in the first time step (to determine F); the set
of measurement observables {4, ,} and sites 2 to measure
are similarly chosen only in the first time step, after which
the evolution repeats in time.

The time-independent analogue of the measurement
unitary (30) is given straightforwardly by

M—
VU,V = Z IP((Tn;,l)?,O ® Xﬁtln;l,rﬂ (Dl)

so that the measurement outcomes are always stored in
layer 7 = 1 (with T = 0 the physical layer).

Following a given round of measurements, one applies a
cyclic time translation operator T to the Stinespring slices
of the spacetime lattice defined in Sec. III A. That operator
shifts the time slice T > 0 to position 7 — 1 mod Sy, while
leaving the physical slice T = 0 untouched, i.e.,

N Stot

T=> QR In—1)m.l,

{n;}j=1 =1

(D2)

which is only sensible if we include N Stinespring regis-
ters with ¢ internal states in each slice 7, as described in
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3|E|ealEd

FIG. 7. Circuit diagram of a four-site cut of a 1D Floquet
unitary (D3) for £ = 2, with operators multiplied from bottom
to top. Left—diagrammatic depiction of F: the block-diagonal
time-evolution gates (36) act first (where the blue objects are
the Haar unitaries U, and the unfilled objects labeled « are pro-
jectors onto blocks «), followed by measurement unitaries (30),
and finally a cyclic shift (D2) of all time slices T # 0 of the lat-
tice. Right—diagram for F: the alternate coloring of the gates
indicates complex conjugation, while their reversed ordering and
inverted marker indicate transposition. The legs correspond to
all dilated sites labeled j, and the circuit continues to the left and
right. Note that only the two «s sandwiching a given gate are
related (36).

Secs. IIT A and 111 B. Note that 7 may act trivially on any
number of Stinespring registers, and that } (D1) need not
use all levels of a given Stinespring register.

To summarize, consider a hybrid Floquet evolution with
at most S measurements per time step s. The opera-
tor F comprises layers A of time-evolution gates inter-
spersed with layers o of measurement gates. For each
measurement layer o, we apply each of the the unitary
measurement channels V,, (D1)—corresponding to all
measurements of clusters » in measurement round oc—and
the outcomes are recorded in the Stinespring layer t = 1.
We then apply the cyclic temporal shift operator T (D2)
moving the most recent measurement results to the slice
7 = S0t (26). After the final measurement round o = S in
the final time step s = T, the final application of T (D2)
moves all measurement outcomes to their expected loca-
tions—i.e., slice T = 5,0 (27), corresponds to round o of
measurements in time step s. A diagrammatic depiction of
the Floquet operator (D3) appears in Fig. 7.

In a simple example wherein all measurement layers fol-
low all time-evolution layers in each time step, the Floquet
operator is given by the time-ordered product

(D3)

F=T ﬁ [T é Vo | ]£[® Uy,

o=1 reo A=1 rea

where 7 is a time-ordering operator, which captures the
general case in which the measurement layers and time-
evolution layers are interspersed. Note that a cluster » can
always be uniquely assigned to a Stinespring site j .

Once F is determined, we simply apply this operator
repeatedly to reach later times. The measurement proto-
col (i.e., what, where, and when to measure) are the same
in each time step; however, the outcomes need not be the
same. This is transparent in the Stinespring formalism (13)
as all outcomes occur. In the noisy case (with no time-
translation symmetry), we simply absorb the temporal shift
T (D2) into the initial density matrix, take V;; as defined in
Eq. (30), and draw all time-evolution gates randomly and
independently in both space and time.

APPENDIX E: ENSEMBLE AVERAGING THE SFF

The diagrammatic method for averaging over the unitary
group is detailed in Ref. [66], and its application to the SFF
is prescribed in Ref. [9]. This procedure also generalizes to
systems with block structure [12,13], which generally real-
ize a L-dependent Thouless time 7y, ~ L > 1 [13], where
L is the linear size of the system (N ~ L?). We diagramat-
ically average Kmeas(?) (58) over the Haar ensemble prior
to contending with the measurement gates.

The Haar-averaging procedure applies only to the uni-
taries U in the block-structured gates U (36). For block o
with n, states, U is drawn from the unitary group U(ny)
with uniform measure. Calculations for generic (i.e., “fea-
tureless”) circuits realize from taking the limit of a single
block containing all ¢* states with P’ — 1,. Regarding
the various terms in Eq. (D3), we note that the shift oper-
ator T, unitary measurement gates )/, and projectors onto
blocks P are not modified by the Haar-averaging pro-
cedure, and so we need only introduce placeholders to
keep track of them while averaging the unitary gates these
projectors sandwich (36) over the Haar ensemble.

In the absence of block structure, the Haar-averaging
procedure for K(f) involves summing over pairings of
each of the ¢ Haar-random unitary gates U, , that
appear in F ' with their counterparts U, . in (F *)', for
1 <s <t In practice, we replace <b,n|F -t \b, n) with

<b,n{(]—' *)|b, n)T, as depicted in Fig. 8 for £ =2 with a
single round of measurements per time step. Note that the
trace on the right—corresponding to F*—has been rotated
by 180° compared to the trace on the left. The unitaries
U, ro and their conjugates are distinguished by different
shading, and the gates labeled « represent projectors onto
dynamical blocks. Additionally, only the physical traces
are depicted explicitly (via “hooks”), and the Stinespring
traces are hidden “behind” them.

The SFF is the sum of an exponential number of “dia-
grams” in which a given gate U in F ' is contracted
with one of its partners U* in (F *)' [9,66]. The dia-
grammatic method assigns a weight V' to each contraction,
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FIG. 8. Diagrammatic depiction of the spectral form factor

K(?) (52) for a simple circuit corresponding to the Floquet oper-
ator depicted in Fig. 7. The trace loop on the left involves the
product of ¢ copies of F, while the trace on the right is a prod-
uct of ¢ copies of FT. The loop on the right has been transposed
(rotated by 180°) for convenience of pairing with the loop on
the left.

where the contractions and their weights are determined
by the #-fold Haar channel [64]. A convenient approx-
imation of K(#) (52) corresponds to retaining only the
leading-order “Gaussian” diagrams [9,66], which is equiv-
alent to approximating the elements of each unitary gate as
Gaussian-random complex numbers, leading to an equiv-
alent of Wick’s theorem, so that the corresponding dia-
grams only contain “1-cycles” [9,66]. This approximation
is equivalent to taking the “large-N” limit ¢ — oo.

Note that each non-Gaussian diagram is suppressed by
g2 ¢ per “violation” of the Gaussian condition (at most ¢
per site). In general, there are far too many non-Gaussian
diagrams to enumerate, let alone evaluate. It is also known
that the O (1/4?) corrections to the Gaussian approxi-
mation do not explain the SFF’s plateau for ¢ > D, nor
do they predict a nontrivial Thouless time #;, > 1 in the

absence of block structure [9]. It also appears that the sub-
leading corrections in ¢~ do not capture any universal
features, as indicated by excellent agreement between the
calculation of K (¢) with ¢, N, T — oo and numerical sim-
ulation for ¢ =2,N ~ 14,7 < 100 in the presence of a
U(1) conserved charge [12].

Consider a calculation involving N x N Haar-random
unitaries U, and U}, each of which appears n times (the
Haar average is zero if there are different numbers of
U, versus UI,). The weight associated with any Gaussian
diagram for this calculation is ¥, = N™" + O (N~"72).

In the context of the spectral form factor, in the absence
of block structure, there are ¢ Gaussian diagrams (indexed
k € [0, — 1]) corresponding to the pairing of all Haar-
random gates U, , in each time step 1 < s < ¢ with their
conjugates in time step s + k. The Gaussian condition (i.e.,
the limit ¢ — co) demands that all gates share the same
temporally shifted pairing (with shift k).

In the presence of block structure, the particular unitary
U,.-« realized by the gate U, , (36) is determined by the
state upon which U4 , acts. If the state belongs to the block
«, then U, , acts as U, ;. The full expression for K(¢) is
then a sum over all possible “block trajectories” of the
Floquet circuits F and ', where a given Haar-random
unitary appears at most ¢ times.

However, the Haar average is only nonzero if there are
equal numbers of a given Haar-random unitary U, and its
conjugate Uy More importantly, the Gaussian approxima-
tion requires that we pair U, in time step s with Ul in time
step s + k (for k € [0,¢ — 1]), for all time steps s and all
gates in each time step. Hence, F ' must realize the same
block trajectory & as F, up to a cyclic temporal shift (mod-
ulo 7). As aresult, each Gaussian diagram has an associated
weight

1
va=T1T1T1] , (E1)
sol A=l ren [Shr
to leading order, where
a={ay,|l<s<t1<i<trer} (B2

labels all blocks in a given “block trajectory,” ng,., =
tr IPiaS”’A) is the number of states in the local block

labeled «,. 5, and we neglect subleading terms.

A total of ¢ Gaussian diagrams contribute to K (¢), all
with equal weight (E1), one of which is always the equal-
time contraction depicted in Fig. 9. The other # — 1 dia-
grams can also be expressed as equal-time pairings, where
FT has been shifted by 0 < k < ¢ time steps relative to F.
Periodicity of F and cyclic invariance of the trace then
ensure that all 7 contracted diagrams (as depicted in Fig. 9)
are equivalent to one another.
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FIG. 9. The SFF circuit diagram pictured in Fig. 8 after imple-

menting the equal-time contractions. Closed loops correspond to
traces, and we note that only the physical degrees of freedom
are affected by the contractions—all Stinespring registers are
affected only through the entangling action of the measurement
unitaries V; (D1).

Thus, to leading order, the SFF (52) corresponds to ¢
times the sum over block trajectories o = {, -} (E2) of
the diagrammatic weight V; (E1) times the equal-time
Gaussian contraction of F with F'. The corresponding
algebraic expression is a sum of products of traces over
the remaining objects in the circuit after Haar averaging
(which includes the measurement unitaries, block projec-
tors that enforce the “block trajectory”, temporal shift
operators, and Stinespring reset channels). The different
traces result from the Haar averaging, and join various
block projectors and dilated operations into various “trace
loops” that involve terms from both F and F7.

Figure 9 depicts the trace loops resulting from the equal-
time contraction for a 1D hybrid circuit with £ = 2 layers
of time evolution followed by a single layer of single-
site measurements in each time step. The pointer dials in
Fig. 9 reflect the measurement unitary ) (D1), which acts

on “hidden” Stinespring registers. The remaining gates
(in red) reflect the cyclic temporal shift operator T (D2),
which act only on the Stinespring qubits. These shift oper-
ations can be absorbed into the Stinespring part of the
measurement operations (denoted by pointer dials), so that
each measurement gate is coupled to a distinct Stinespring
register (in both the F and F™* copies).

At this stage, we can eliminate the Stinespring part of
the traces in Eq. (58), hidden in Figs. 8 and 9. First, con-
sider the case in which we include the Stinespring reset
channel prior to each measurement and absorb the tempo-
ral shifts T into all measurement unitaries 1. While the
Haar averaging joins the two copies of the evolution into a
single trace over physical degrees of freedom, the Stine-
spring traces remain separate. For a given measurement
gate s, 0,7, the two Stinespring traces correspond to

Mz T
ol XL D 0, | =1, (E3a)
m'=0 |
Mo, T
w0 X =1, (E3b)
/=0

where m and n denote the measurement projectors P/,
(the physical part of the measurement unitary V;,) in F
and JF*, respectively. In other words, the Stinespring traces
always return one, leaving behind individual sums over
projectors, which resolve the identity and vanish.

Alternatively, consider the case in which we “posts-
elect” by including a swap operation in the two traces,
ie.,

Kpost = gi (2) [ S F ! ® F ] > (E4)
where S is a swap operator. This operator satisfies

tr(2) [S A ® Bss ] — tr [Ass By | (E5)

SS SS

and, as a result, the two Stinespring traces for a given
measurement unitary become a single trace given by
—n m
tr(2) [ X2 X" ] = Smms (E6)
where we omit the reset operations in this case. Hence, the
swap operation S (E5) on the Stinespring Hilbert spaces
enforces postselection in Eq. (E4).

We now consider this postselected variant of the hybrid
SFF (58). It is straightforward to generalize the scenario
depicted in Fig. 9 to arbitrary hybrid Floquet unitaries with
any £, D, and number of measurement layers S per time

step. The projectors onto time-evolution blocks—denoted
by rectangular boxes labeled o—are constrained by the
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Haar-averaging procedure to realize the same “block tra-
jectory” in both the F and JF™* traces depicted in Fig. 8.
Hence, the block projectors at equal times in each copy
correspond to the same block. Because they are idem-
potent (37), the trace loops in Fig. 9 corresponding to
consecutive layers of time-evolution gates A, A 4+ 1 (with
no intervening measurements) can be simplified according
to tr[[1,. P2Q%] = tr[[1,,. P+O,], where P, and O, are
placeholders for the projectors in the top and bottom layer
of each such loop.

With ¢ time-evolution layers A per time step s (32), we
label the layer s, A as ¢ = £ s + A. The SFF is then

01

Ko =13 Vi [] tr[IPzﬁg Pg,ﬁg], (E7)
a,m s=l1

where V; is the diagrammatic weight (E1) for block tra-

jectory a, m labels outcome trajectories, and the projectors
above are defined by the time-ordered products

s+1
IPg;rhg — IP(a§+1) [l_[ IP(ms,cr) ] IP(Ot;)’

0=¢

(E8)

where the individual projectors above act on H,, as either

P = (X) P, (E9a)
rea

]P(ms’a) — ® P}(jns,o,r), (E9b)
reoc

and the middle terms in Eq. (E8) result from the post-
selected Stinespring traces (E6), which ensure that the
physical measurement projectors (E9b) left over from the
measurement unitaries in both copies of the evolution real-
ize the same trajectory m. The projector (ES) reflects both
the block and outcome trajectories indicated in Eq. (E7).
Note that Eq. (E8) allows for any number of measurement
rounds between time-evolution layers ¢ and ¢ + 1; and if
¢ = {t is the final time-evolution layer, then ¢ +1 =1 is
the first time-evolution layer.

Returning to the contraction in Fig. 9, there are two types
of trace loops corresponding to ¢ =s,1 and ¢ =5,2. In
the former case, the trace loop in Eq. (E7) involves the
time-evolution layers s, 1 and s,2 in the same time step s,
with no intervening measurements. In the latter case, the
trace loop includes projectors corresponding to all mea-
surements that occur between time-evolution layers s, 2
and s+ 1, 1. In general, we allow for arbitrary numbers
of measurement rounds between time-evolution layers A.
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