ON THE COMPLEXITY OF
ITERATED SHUFFLE

by

Manfred K. Warmuth
David Haussler

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS-201-81 February, 1981

This research was supported in part by
NSF Grant MCS 79-03838, the University
of Colorado doctoral fellowship program,
the Fulbright Commission of West Germany,
and grants from Univac Corporation, and
Storage Technoloay Corporation.

Any opinions, findinas, and conclusions or
recommendations expressed in this publica-
tion are those of the authors and do not
necessarily reflect the views of the National
Science Foundation.

We demonstrate that the following problems are NP complete:

1) Given words w and Wy Wos o, W is w in the shuffle of w,, w

e

LW 7
o

2) Given words w and v, is w in the iterated shuffle of v?

. . : . Ne
From these results we show that the languages {$W¢WRHME fa,bl*},

O

we 1a,b, !

& @ ¢ 1@ ";““
Sw) o, fab"cde £ =) , and {a?%i

no.n L@
I3

non.
b e F inz=0) are

NP complete, where @ denotes the iterated shuffle. By representing
these languages in various ways using the operations shuffle, iterated
shuffle, union, concatenation, intersection, intersection with a
regular set, nonerasing homomorphisms, and inverse homomorphism, we
obtain results on the complexity of language classes generated using
various subsets of these operations. Finally, we show that the iterated
shuffle of a regular set can be recognized in determiﬁistic polynomial

time.

I. INTRODUCTION

The operations of shuffle and iterated shuffle have been used by
numerous researchers to describe sequential computation histories of
concurrent programs [RID72], [SHA75], [KIM767, [SHA78], [ARA ,KAG,TOK797.
Recently, there has been some investigation into the language generating
power of the operations of shuffle a§d iterated shuffle, when used in
combination with the more conventional operations of union, concatenation,
intersection, intersection with a regular set, non erasing homomorphism
and inverse homomorphism [0GD,RID78], [JAN79], [GIS79], [SLU8OT, [JANS1].
Jantzen [JAN79,817 has obtained numerous representations of the recursively
enumerable Tanguages and of the homomorphic images of the computation
sequence sets of petri nets as the closure of various elementary lanquage
classes under certain combinations of the above operations, but allowing
arbitravy homomorphisms or other forms of erasing via cancellation. On
the other hand, it is clear that the class NP is closed under the funda-
mental set of operations Tisted above, in which wé fiave omitted non
erasing homomorphism and all forms of cancellation. Thus the Tanguage
classes generated from the finite languages using these Tength preserving
operations will be subsets of NP. Jantzen's results using non-erasing
homomorphisms leave it unclear at which point, if any, the languages geherated
using these operations become intractable.

In this paper we will be concerned with distinguishing those language
classes generated by various combinations of the above operations
which are recognized in deterministic polynomial time from those that
contain NP complete languages. In?uitéveiya the operations of shuffle and

iterated shuffle are natural candidates for producing the kind of "hiding

of information” which generates NP complete fanguages. This intuition is

Y

borne out in what follows.
In Section I we give a small sct ofinition Then dn Section 111
we present two basic NP complete problems. In the first, we are given a

word w and words w W

10 Woo e W and we ask whether w is in the shuffle of

i

the words Wi Moy o, v This problem remains NP complete

even if all words Wy Wo, o, W oare identical, which yields a second
NP complete problem: for two words w and v, the problen of whether or

not w is in the iterated shuffle of v is NP comple

Using the above NP complete we show in Section IV that

{$W¢W:We&mbﬂ}@,{$w¢wp we{a, bM73LM (5w)®, {abcde Fin=01®
wﬁ;{a,%}*

I

e

and ("4 02 00® are NP-complete, where @ denotes the iterated
shutffle. Because of theiv simple structure, the last two Tanguages can be
expressed using various subsets of our fundamental set of operations. Hence
we are able to use these languages to explore the complexity of the Tanguage
classes generated by closing the finite sets under certain subsets of these
basic operations. For instance, fab"cde" Fin=01® =

((acdf+be)® a b¥*cde*f)® , hence the closure of the finite languages
under iterated shuffle and intersection with a regular set contains

NP complete Tanguages. Jantzen {([JANS81]) has demonstrated that the above
Tanguage 1s not accepted by any real time one-way multicounter machine.

If P = NP, in fact this language is not accepted by any deterministic
polynomial time algovithm. A summary of the complexity results of this

type is given in Tables 4.1 and 5.1.

We conclude Section IV by exploring the effect of alphabet size on the
complexity of the problems and languages we have considered. Basically,
we show that two letters are enough to produce the degree of complexity

achieved using larger alphabets.

Considering the language fab"cde s :n::o}ég of Section 1V, we
see that the iterated shuffle of a linear Tdnguage can be NP-complete.
In Section V. we give a deterministic polynomial time algorithm for the
iterated shuffle of an arbitrary regular language. Using this result we
show that the class Shuf§, defined by Jantzen [JAN79,817 as the closure
of the finite languages under the operations of union, shuffle and itereated
shuffle, is contained in P. We also show that the closure of the finite
Tanguages under any pair of operations consisting of iterated shuffle and
one operation in the set {intersection, non erasing homomorphism, inverse
homomorphism and kleene closure} is contained in P. It remains open
whether or not this is the case for the operations of iterated shuffle and
concatenation. We suspect that in fact the class SE, obtained from Shuf
by closing S€ug under concatenation and kleene closure, is contained in P.
This class has been examined in several papers including [JAN81], [SHA78]
and [KIM76], usually being presented as the class of Tanguages obtained by
extending the regular expressions to include the operations of shuffle
and iterated shuffle. If, contrary to our hypothesis, this class is not
in Psythen perhaps there are NP complete languages which can be expressed

by extending the regular expressions in this natural wéya

In our final section, the complexity of the sets of computation
histories resulting from the random concurrent execution of a set of processes

is discussed in Tight of the results presented in the preceeding sections.

IT. DEFINITIONS

Several different symbols for the operations shuffle and iterated
shuffle have been used in the Titerature (see e.g. [RID72], [JAN7S], [SHA78]).
We use the symbol (&) for shuffle and ® for iterated shuffle, following
Shaw ([SHA78]), because they correspond nicely to the operations concatena-
tion - and kleene closure *. TFormally, we have the following definitions:

N
Given a finite alphabet & and v, weZ we define
e

- - ‘\/» Vo Wa ooV, W, D VL W, © for
VoW = 1W1 22 ik Y

.. kand W= ¢l ...wk},
w” = {)\}, w<:> szﬁvJanc =y dij
i=0
. K defi K .
3T VE ovds Wy e) de detine .= oy oo ¥
Given word Wl’ wz, , Wk Lo, we C‘jﬂtfll w1 W1“z W, oan
. ,

W, & - .
=1 i = W QLB . OW We will extend the above operations from strings

to languages in the usual manner.
A1l the polynomial reductions of our paper are reductions from

™

the following NP complete problem:

3-PARTITION:

GIVEN: a sequence of natural numbers § = <, : 1 <1 < 3m> such that
3m. , Wi . 3 B B
=(7 : . R for each i, 1 <1 = 3m, %+ <n. < &.
B %ﬁl n1)n1z N and for each i, i m, g .
QUESTION: Can S be partitioned into m disjoint subsequences S], R
Sm such that for each k, 1 <k =m, Sk has exactly three elements and

L on = B. This was the first problem proven to be NP complete in

the strong sense ([GAR,JOH75,80]). Thus it remains NP complete when the i
are given in unary notation, which will be essential for our paper. The
number B above will be referred to as the bound for S and the partition

described above will be called a 3-partition.

-6

III. TWO NP COMPLETE PROBLEMS

In this section we will demonstrate how the shuffle operation
can be used to perform the partioning and addition required to determine
if a given instance of 3-PARTITION has a solution. Qur goal is to derive
two fundamental NP complete problems involving the shuffle operation
from 3-PARTITION. First, we present a few properties of the shuffle
operation which will be used extensively in this paper.
Lemma 3.1: Given a finite alphabet ¥ containing the symbols a, b, and c,

*

the words v, X, W, Wl’ Wos «ees wﬁ e %, and natural numbers n, nl,

Nos wees My, for some £ > 0, where x does not begin with a, b or ¢ and

W, does not begin with ¢ for 1 ¢ 1 =1 < £, then

7+

. L N -
i) ak‘bnck Woe xS ab c:wiiiﬁ there exist distinct indicies jl” w“,,jk
i=1
k k L .
such that n =3 n., andwe xe (@ w. Jo @ ab ! cw.
r=1 Iy r=1 Yy =1 ‘

f é{j}'ae.«pjk}

. n. ‘
. n n . L e
i) a cwexed alc 1\M€ﬁ$§there exist distinct indicies

k k L n. n,
such that n =35 n, andwe xo(@ w, Je® a Tc Tw,
r=1 Jg r=1 Jp i=1 E

w{jlgm,jk}

n+1 N Lon 41 n,

+
S . N - - 1 . 1 M’m«»
i) a Tcwexo® al ool owids
i=1
, £ s+l n.
there exists an index k such that N =N and w ¢ xa;wpéfb a } ¢ W
Ci=l
1=k

Proof: i) The words W aWos W, don't start with the symbol c.

Therefore, to account for the a's and c¢'s, the prefix akbnckw must be
) . n.

formed by shuffling exactly k prefixes of the ab "‘(:w_,E 's of the form

n.
ab 1 ¢ and the result follows.

i1) Since the wi’s don't start with ¢, the
oo oo non o i B R e I I ey
prefix a ¢ of a ¢ w has to be created by shuffling prefixes of the
n. n.

i i L D oQ - o .
a ¢ wi's of the form a"c¢”, px2gz0. Since n a's are needed followed

) - : SR) ,
by an equal amount of c's only prefixes of the form a’c! can bhe used

and the resutlt follows.

. - n+tl n n+lon ..
i11) To get the prefix a ¢ of a ¢ W, prefixes of the
xwi+1 ns b q
a c w.'s of the forma“¢"',p>qg=0, have to be shuffled. Since

i
n+l n

there is only one more a than ¢ in a ¢ at most one prefix can be
used. [J

Lemma 3.2: Llet S = <ny o l<1<3m> be an instance of 3-PARTITION with

bound B. The following are equivalent:

i) S has a 3-partition,

. m 2 .
.. 3. B 3 pall i
i) (a’b ¢’) e (m ab ¢,

. i g 1
m 3Im ns ne«
o B. B > i i
i11) (@ b)) e @ a b
"i F 1

Proof: It is easily seen that i =11 and 12111, We simply merae using the

Shuf1?eoperationudch<3?then}trip1etsquaramﬁeedby'mwap&rtithwltoobtain the

desired word. To sce that iiiﬁ}i we argue by induction on m. The case

o . 3.8 3,38 3™ 30ul) no
m =1 is trivial. If w = a’b ¢ (a”b'c) ¢ {r) ab ¢ for some
i=1

S = <n,:1<i<3(m+l)> an instance of 3-PARTITION, with bound B, then the

i
iiraag 3.8 3 et ha b o TE R, Ty o
initial a~ b~ c¢” of w must be the result of shuffling exactly three words
n'- " v P ‘ e . - P o P ~ A

from <ab 'c sl <d <3(mrl)>. This follows divectly from Lemma 3.1 part 1.
N . i 3.8 3, o N
Thus the remaining suffix (a” b ¢”) of w is formed by shuffling the

n.

1o

remaining 3m ab " c¢'s. By hypothesis then, these remaining Hﬁ’S have

a 3-partition. Hence the entire sequence S has a 3-partition and the

inductive step is complete. The proof that itiz==>1 is similar. Assuming

BB (B,8y" ‘\3%}'1) hi - BB
/

that a b (a'l e @ 'a b for S, B as above, again the initial a b

i=1
must be obtained from shuffling some words from

. Ns Ny .) , L .
T=<alb ' :1si<3(ml)>. Here we use Lemma 3.1 part ii. The fact

¥

that in any instance of 3 PARTITION we require that %~<mq<

implies that we must use exactly three words from 7. Our result then

for all 1

~o oo

follows by induction as above.

{
L.

As an immediate consequence of the above Temma, we have the
following theovrem.

e}

Theorem 3.1: Given a finite alphabet ¥ = {a,b} and words w, My e
* k o o
W el , the problem of whether or not w e () w, is NP complete.
i f '::1

Proof: HWe use Lemma 3.2 to encode an instance of 3 PARTITION into the
above problem. Since 3 PARTITION is strongly NP complete, we can assume
the numbers are given in unary notation, thus the transformation will

be polynomial. L
The above problem remains MHP complete
when we restrict ourselves to the case in which all of the wi's are

identical. To demonstrate this, we will use the set

3m 3m on; 31 n;
@M (n ab " ¢) in place of the simpler set (W ab "¢ used in Lemma 3.1.
k::l j;:l ' [?l

The essence of our argument is contained in the following Temma.

n,
, . . - T e
Lemma 3.3: Given a sequence of words T =<ab " c:1=<1 <3m>
i L% 3m e] .
et u. = m ab “"candv,= 1 ab “c¢ for 1l <1 < 3m.
' [oy
K=1 k=1
3m N
Let w = Ug ™ Vg = ab 'c
1=1
3m~1 3m
Let p = u. and g= o v

3 op 3. §E§ 5o 3 3m N
Then for any B, pla"b ¢”) qew > iff (a”b ¢”) Q) ab c.

Proof: The "if" part of this proof is very simple. We form the p and q
5 m

3.B 3 . . .
of plab” c”)q by collecting the proper prefixes and suffixes of each
.
of the copies of w, in each case leaving one string of the formab ' ¢

. . 3.8 3 ; R
for a different 1 to contribute to (a”h”c¢”) . The sequence of middle

words obtained in this way will be T, which by hypothesis will shuffle to

m
N L 3 B 3 . .
form the desired word b”c?) . To see that the “only if" part holds,

. 3. B 3.m ; * ok .

we notice that every subword of p(a”b" ¢)"q the form &kt> ck for k e 11,3}
o - ‘;(~

must have come from exactly k subwords of the form ab ¢, each from a

different copy of w. This follows from Lemma 3.1 part i. Since

o
3.8 3\m G e . "
p(a”b ¢c”) q=« w‘\w), a total of 3m copies of each ab ' ¢ are involved.

n,
p and g consume exactly 3m-1 copies of each ab '¢ for 1 = 1 < 3m,

n.
leaving exactly one copy of each ab 'c¢ to be shuffled together to form
3,B.3ym 3.8.3m o0

). e

@ ab 1c. 8
oA

the middle word (a”b Thus {a”b

Using this Temma, we obtain a second NP complete problem.

‘ *
Theorem 3.2: Given a finite alphabet I = {a,b,c} and words w, vel

b
S N I
the problem of whether or not v ew~ 1s NP complete.

Using Lemmas 3.2 and 3.3, given an xns{unao of 3-PARTITION

§ = {1 1 i <3mb with bound B we can find words w and v such that
v ¢¢4\\> ff S has a 3-partition. Thus we can reduce 3-PARTITION to the

above problem. Ll

IV. NP COMPLETE LANGUAGES AND THEIR REPRESENTATIONS

Each of the NP complete problems from Section IIT had the form:
given a word and a simple language, is the word contained in the language?
In this section we will exhibit fixed Tanguages that contain within them
encodings of each of the instances of one of the problems from the previous
section. Thus we will convert the problem of membership in which both the
word and the language are variable, into the problem of membership in a

i

fixed language. Our basic technique is demonstrated in our first lemma.

Given-words v and w over some finite alphabet % not including
the symbols § and ¢, the following are equivalent:

i) Woe VG§

i1) ($veg) w ¢ {§x¢x:xern

~

. .k R
i11) (Sve) w2 1%
(where WR indicates the reverse of the word w)

.) @ [
iv) vkw U (5% and |w| = k|v|
X £ 0

ing the prefixes $v ¢ in the front and shuffling the suffixes v to form

w. To show that ii =1 we argue that the prefix ($v ¢)k of ($v ¢)K W
must have been formed by shuffling k prefixes of the form $v ¢ from
words in {$x¢x :Xséi*} . This follows from the fact that v does not
contain the symbols § and ¢. Hence the suffix w of ($v¢)k w must have

been formed by shuffling k copies of the suffix v.

The proof that i€&1i1 is very similar to i<Dii. 1=Div is

. . . . k x) . .
obvious, since if w ¢ vqg, v we ($v)T To show that iv=yi we note

k N . . K
“we ($x) 0 for some x, then the prefix $v of v" w must

o,

k]

that if $v 3§

. . ; . oK - ook
be a prefix of $x. Further, $v § w has k+1 $'s, hence $v $ we ($x)

1=

Thus since |w| = k Jv|, v must equal x, and w must arise from shuffling
the remaining k copies of v. N
) - » * & . R * @
Theorem 4.1: The languages {$w¢w:wela,b,cl b, {$wéw :wefa,b,c} I,
. ®
and U (&x)* are NP complete.
Xeia,h,cl
Proof: Follows from Theorem 3.2 and Lemma 4.1. [
In our next theorem we will employ our techniques for converting
a variable Tanguage membership problem into a fixed language membership
problem to the problems considered in Lemma 3.7.
a . ‘ n n. & ntl.on o non @
Theorem 4.2: The languages {ab cde f:nz o0} and {a L ns o)
are NP complete.
Proof: We claim that given natural numbers B, Ngs «..5 Np the following
hold:
Jm n
. ;3 B 3m e 1 S,
1) (d7e” f7) m de f &
1=]
UL 3 B 3\m n n ®
Wy o= (o ab c){d7e") e {ab'cde' f:inzo} .
i=1
Im on n <0
B Bym i i<
2) (cd) e ® ¢ 'd)
1=1
3m n;+l n :
i B Bym ntl . n onon &
w, = (™ a b ')(c d”)" e 1 N LI
2 i::‘
The forward implicatiens are obvious, we need only select the sets
ns n. oot nyongo
L] ={ab cde f:lsi=<3mbandl,="{a "' b 'c d':1<123m from
. £

n+1bn ndn

n 'ﬂ o P . : - 1 i st
fab ' cde’ f:n=o} and {a C n=zo0r and shuffle them together as

proscribed in Wy and w?ﬁrespecﬁive1y, To orove the reverse implication for

7
£ k. i
3 e .§ 3 2
(1), assume that w, & @) ab Ycde 'f for some k s ..., Ky e N Since w
EX Ni:]_ }. ,@ 1
contains 3m a's, £ = 3m. Using Lemma 3.1 part (i) iteratively, we can show
) o , C . 3B.3wm 3m k.
that \kls...,kﬁz is a permutation of Nyse.eshg > and (d7e”f7)" ¢ QQ de 1f,

1=1

-17~

which establishes the result. The reverse implication for (2) is

proved in a similar manner using Lemma 3.1 part (iii).

Now using this claim along with Lemma 3.2, we see that we can

reduce an instance of 3-PARTITION to a question of membership in the

n n. . ® ntl ononon ® o e
language {ab cde T:nz0}l or {a b ¢ d :n=zol . Hence these
languages are NP complete. 0

) n+] no.n A - . .
fhe Tanguage {a L b d" izl ds an interesting borderiine

case. The extra "a" provides the minimal amount of asymetry needed to

ntl.n n n
10 c'd inzol

determine the number of words from {a shuffled in

n.n
N C}

. n+l ® ‘ .
forming a word from {a b d :nzol . We could easily replace the

(R

11N
}

. . ‘ . U (N . ®
extra "a" with a special marker §, i.e., the language {$a b ¢ d :n=o0)

is also NP complete. On the other hand, the corresponding symetric

n @ &

language A" "M s n213 0 reduces to (abcd) , which we will show in
Section V can be recognized in deterministic polynomial time.

Owing to their simple structure, the languages from Theorem 4.2
are of central importance in obtaining results on the power of the operation
of iterated shuffle, when used in conjunction with other basic Tanguage
operations. We will consider the complexity of various classes of languages
generated by taking the closure of the finite languages under subsets of
the operations shuffle, iterated shuffle, union, concatenation, intersection,
intersection with a regular set, non erasing homomorphism, and inverse
homomorphism, denoted®, & , +, ., n, nR, h, hl respectively. Thus all
our tanguage classes will be contained in NP. On the other hand, without
iterated shuffle the 1dnguag@5 generated are always regular, since the

regular languages are closed under all of the remaining operations.

~-13-

Our next theovem gives numercus sets of operations which can be used
to generate NP complete languages from finite sets. The examples of
NP complete languages given will include some of those given above, along
with a few variations on these langugaes, including

(3D 65 () W@ s 0 = 1P, fane Mo f:ne01® and
P

v

—.n - & . .
{aabp(cd)neglff}“)n a (ab c) (dc) (d o’) f . It is easily demonstrated

that these languages are NP complete using the techniques from Theorem 4.2.

1'

Before giving the theorem, we prove a few useful technical Temmas.

s
: For ¢ : : R 5 T (5 — \®
Lemma 4.2: For any k = 1, (a,a;.. A)T nagag akak@}<a}a1‘““ 1,)

RN o
{,\al&l) (ukdk} n=lr.

Proof: This result foliows from a simple counting argument involving the

ratios of barred and unbarred Tetters in any word in the given intersection.
The essence of the argument is given in the proof of Corollary 3.1 part f

of [JAN 81], so we will not repeat it here. 0

Lemma 4.3: let I = {al.“.5a2k+1} for some k > 0 and let h:7 - Z bt the

homomorphism defined by h(ai) = Ei, h(a2k+1) =y h(aﬁi) = A dziml

and h(a2 +1) = Jw “21*1 for i:1 < 4§ <k, Let

L, = h"l((d1 *ék)gp) n al(zw{al})* and Tet

L, = {a. 42 ey 1d2k Qo] :nz 0}, Then_Ll = L.

Proof: First, assume that we are given w = alagnagg..azkmlazgya2k+1 e Ly
h(w) = 33 (a2)" (@a3) - (g gy) (g apy) ey = (@)™

o e
(a2k»1a2k> € (al ,B,aZK}

-k .
W e al(z~{a1}) , hence w ¢ Ll“ Thus L2 < Ll‘

Hence w e h™ ((dlou. agk}éﬁ). Obviously,

Now, assume that we are given w = alngLiﬁ Since h(al) = 515

hix) ¢ CPREE agké)ﬁ@ CERRRRR for some n = 0. a, and a5 are the only letters

in ?"‘{d } whose images under h begin with X& or a,. Since hla,) =
-

~14-

a2é§ and h(ag) = azﬁé, there must exist m :0s<m<n such that x = ag]a?y,

m n-m
where h(y) € ay - 32k<>f§i ay ,..a2k43523 g e gy This is only
n
. . _ . I (T - = N _ —
possible if n-m =0, f.e., if x = a, a5y and h{y) « ay - -Cjﬁg[a3"' oy

In this case a4 and a5 are the only letters in E-{a1} whose images under

h begin with 55 or 5&. Hence we can repeat the above argument. Continuing

n f

b i i e T .n
in this manner, it is apparent that x Ag Ageew o Aoy and thus

| —

W e ng Hence L1 = LZ“

*

Lemma 4.4: let A =% u {$} where § ¢ ©. Then for any L c A ,

- * s "
if (Ln$s)O is NP complete, then there exists an alphabet [and a

. . L @
non erasing homomovphism h: A - [such that (h(LnA -2)} s NP complete.

Proof: Llet [= A u {¢} where ¢ ¢ A. Let h be the homomorphism defined by
& * %k

h($) = ¢ $ and h(a) = a forae 5. let T = (h(L.nA*’~X+))C>n ¢ A .

o0 %
It is easily verified that T =J ¢Wl(Lf%$X)QD~
m=0

Now assume that there is a deterministic polynomial time algorithm
for T. Since w ¢ (L(i$2*}ﬁaif and only if ¢"weT for some n:0<n<|w|,
we can easily convert this algorithm into a deterministic polynomial time
algorithm for (L n$ Z*)ﬂi, Since this Tanguage is NP complete, it follows
that T is NP hard. Since T 1is obviously in the ciass NP, it follows that
T is NP complete. Finally, since T is NP complete, it follows that

* E3
(h{LnA -—Z+))<) is NP complete. 0

*
the class of finite languages in I under each of the following sets of

operations contains NP complete languages:

(1) {®, R},
(2) any set in {®} x {®,-} x {n, h, hl)
or (®Yx{at x {h,hH
and (@, n, 071y,
Proof: ad.1. This follows from the fact that ((iﬁ%abcd)Q n§abc *d*)694

$ap"cd" nzzﬁ}ﬁe‘ (See Theorem 4.2 and comments following).

ad, 2. For each of the nine sets of operations Tisted we give an example of
an NP complete language generated from finite sets using these operations.
Detailed verification of the examples is left to the reader.

i) {®, -, n)

G ®. h‘@' C*)' d@))@ ~ {aﬂﬂ. bﬂ Cn dﬂ:

(a -« (abcd)
i) {®,0, 0}

(($®(a§"b;5c'€da)) n(Saabbccdd®(aabbccdd) %‘;))
DTG ()" (dD" :ﬂzl}éé This follows using Lemma 4.2.
ii1) 1@} x @,) x {h™1)

* o
let ¥ = {$,a,b,c,d, e, f} and Tet h:Z -2 be the homomorphism defined by

and h(f) = f. Let [be an operation in {®,+}. Then (hui(ﬁf](ﬂ'm”

fa)

o
ol
ol
@ |
|
s
S
e
i

(%
{ab"cgMde £ :r;zﬁ)}lz using Lemma 4.3.

iv) (®, hml, nJ
— g
Let & and h be defined as in (iii), except let h{a) = a. Let g: o > 7

be the homomorphism defined by gf{a) = a, g{x) =) for x ¢ ¥ - {al.
- I ¢) o1 *
Then Ch.lé(a bc:de%f)cj)rwg 1(a))O = {ab"cs"de f: nz:O}C)g again using

Lemma 4.3.

v) {®, n Shnl}

Let £ and h be defined as in (iv). Using Lemma 4.3, it follows that

1 . ® _ @ nonon

e @
(h "({abcdef) Jna{z-{alt)) ={ab ¢$ de f cn=0}" which is NP complete.

~16-

Hence by Lemma 4.4 there exists a non erasing homomorphism g such that

(a(h"H((abC €

O
o

o whk o y . . -
e'f)c% ny -(z-{al)))*j is NP complete. However,

GEETEeD®) < ol - an’, hence (g (GETaEHON® s

NP complete.
vi) {®,n,nr. Let = {a,b,c,d} and A =1 u {$}.

L ® ™
Let L= ($+aabbccdd)”n ($aabbeccddtaabbccdd) ™. Using
Lemma 4.2, it is easily verified that (Ln$2) =

®

S D))" dD" :n=11", which is NP complete. Hence by

Lemma 4.4 there exists a non erasing homomorphism h such that

* & oF
(h(L na «-Z+))C>is NP complete. However L < A -—Z+, hence (h(L))O
is NP complete.

vii) (@} x{®,:} x {ht

* .
tet £ = {a,b,c,d, e, f} and Tet h: 2 "+(thx)+ be the homorphism defined

by h(a)=aa, h(b) = b, hic) = cd, h(d) = d, h(e) = e, h(f) = f¥.

ke x * * 3 * 3 de K B .,
Let R=a (ab ¢) (dc¢) (d7e) T . Let [be an operation in {©®,-}.
®

Let L = (h{a{bce) [If))”". It is easily verified that
LaR={aab " (cd)"e"fF :n z:O}n R, which is NP complete.
Hence L is NP complete.

This completes the proof of Theorem 4.3. a

The results of the second part of Theorem 4.3 are summarized in
Table 4.1. For each pair of distinct operations in the set
{0, n, h, hui} an indication of the complexity of languages generated
using these operations in conjunction with iterated shuffle is given.
A "c" in the row and column for operations 01 and 02 indicates that the
closure of the finite Sets under the operations @Q Diarmfﬂz contains

NP complete languages.

operations]l- |n Uy
© C c
h clc
h ! c

“17-

Table 4.1

-18-

In most of our NP completeness results up to this point, we have
relied on alphabets of size three or lavger. 1t is obvious that with
the aiphabet = = {a}, Theorems 3.1 and 3.2 do not hold, and that all
Tanguages generated from a* using the operations considered above,
excluding h and hwl, are regular. The case in which % has just two elements
remains unexplored. The possibility vremains that there is some sort of
complexity gap between alphabets of size two and three in the context of
some of our iterated shuffle results. The following indicates that

this is not the case.

Lemma 4.5: Given the alphabet A = {aly‘,.ar} we define the homomorphism

*

A

o i -
h:A ~{ab} as h{a.) = a b . Then for any languages L L

12

we nave

1) we Ly Ly iff hiw) e h(L,) * n(L

iv) we L, + L, iff h{w) e h(L,)

ot

~

o
ot

SN

—

™o
f—

Proof: i1, iv and v follow from the fact that h is a code, i.e., the
~ + * r fon * . . - . ’ . o . - . .
function h A > {a,b} s injective. For parts i and ii, it is obviocus
o @ , @ -
that if w ¢ Ll then hiw) ¢ <h(L§)} and if we L @® L, then

hiw) ¢ h(L1}<Di1(Lq}, we need only shuffle images of Tetters in A as

(=
units. For the reverse implications we use Lemma 3.1 part iii iteratively

to "decode" a word in the range of h formed by shuffling words from the

range of h. U

-19-

The "shuffle resistant” code defined in the above theorem can
be used to reduce the size of the alphabet requived for our results.

Corolflary 1: Theorems 3.2, 4.1 and the parts of 4.3 not involving the

. -1 :
operations h and h ~ hold for ¥ = {a,b}.

Proof: Follows directly from Lemma 4.5. [

-20-

V. LANGUAGE CLASSES CONTAINED IN P

In Section IV, we have presented a variety of NP complete languages,

. @ : : ,

each of which had the form L~ for some language L. In each case there is
a strong structual relationship between the language L and the Tanguage
{ww :szx*}' Each of the languages exhibits seme kind of unbounded
pairing or vrepetition along with markers which in the simplest case
reduces to counting as in fab"cde" F:nz=11. Hence there are NP complete
}anguagés among the iterated shuffles of linear lancuages. We have not
however, been able to give an NP complete language of form R@a for regualar

R. The next theorem indicates that this is impossible uniess P = NP.

) @ : .
Theorem 5.1: For any regular R, the language R~ can be recognized in

deterministic polynomial time.

Proof: Let us suppose we are given a finite automaton A for the Language

R with k states, possibly nondeterministic, but without x-moves. To
) @
recognize a word w ¢ R, we imagine that we begin with a pile of pebbles
nlaced in the start state of A. Each time we read a letter £ from w,
we must find a state q of A which has one or more pebbles in it, such that

H

q maps with letter £ to some state ¢ in the automaton A. Upon finding such a

state g, we remove a pebble from q and place it in gq'. We claim that w ¢ R

iff there 15 a way to move some jnitia1 pile of pebbles while reading w such

i
i

that

when we are finished, all the pebbles are in a final state. This follows since

the movement of each pebble contributes one word from R, which is shuffied
b

with the words obtained from moving the other pebbles.

. . @ . a :
We will determine if we R, for w = A, by computing all possible final

pebble configurations for w. If |w| = n then we need to start with at

most n pebbles in the start state. At any given time as we are reading

a letter of w, there are at most n pebbles in any given state. Since

A has k states, the number of possible intermediate pebblings of the

it

. k) o .
automaton A is less than n . Hence, we can keep track of all possible

I I

pebble configurations of A as we read w. Cach time we read a letter from

. . s g . . ky .. .
W we revise our list of possible configurations using O(n) time. Thus

k k+1
n

our total time is O{n.n") = 0(), which completes the proof. 0

Corollary 5.1: For any finite alphabet, the closure of the finite languages

* bl 3 5 3
in £ under any set of operations in (& x{*, n,h,h 1} is contained in P,
the class of all languages recognized in deterministic polynomial time.

Proof: The following calculation rules are easily verified. For any

* * * k3 *

languages L, Ll’ caes Lk ¢ & and homomorphisms h1 L o~ A and h2 A T,
) * (R %) & *) &
SRS R A WA L

k % & K %)
i) (o 19)%=0 19,

i=1 i=1
(ii1) (h;zﬂﬁgjfy;vhii’§$} and
. @, @ @
(iv) (h (5N = (h (L)

Using these rules, we can easily find a representation for any language
. . . :
in any of the above classes in which the applications of the operation
do not appear nested, Hence the result follows from Theorem 5.1, using

the elementary closure properties of the class P. [

Following Jantzen [JAN81], we make the following definitions:
Definition: Given a finite alphabet ¥, we define the Tanguage class
Shuf.. as the closure of the finite languages over I under the operations

+,@and @ and the language class SEy. as the closure of the finite

languages over I under the operations +, «, *,@and ®.

e

The class SET is the class of languages definablie by the shuffie
expressions of [SHA 78] or the c-expressions of [KIM 76] over the alphabet I.

In [JAN 81] Jantzen shows that Shuf. ¢ SE. and he gives a
7 L

LA
o X i . e .

representation for an arbitrary L & Shuf. as 'Ul My ® N, for finite

L -i'm i

* R C
Mi’ Ni < & . A Tanguage of the form R® S~ for regular sets R and S

can be recognized in deterministic polynomial time by a simple extension
of the algorithm of the previous theorem. Thus we have the following
corollary.

Corollary 5.2: For any finite alphabet I, the class Shufy is contained

in P.

Table 5.1 summarizes the state of our knowledge about the complexity
of languages generated by the operation 5? iterated shuffle in conjunction
with any other single basic Tanguage operation. A "P" in the row for
operation [indicates that the closure of the finite languages in Zw under
the operations @ and [1 is contained within P for any ». A "C" indicates
that there exists a finite I such that the closure of the finite languages

&
in % under @ and (] contains NP complete languages.

OPERATION COMPLEXITY

+ p

?
* p
n P
h P

-1

h = p
© p
n R C

Table 5.1

93

The complexity of the class SE. for | © | = 2 remains open, as does
the complexity of any of the classes of languages generated by closure of
the finite languages under any subset of the operations +,* , *,® and @
which includes both + and ® . We have not found any NP complete tanguages
in the class SEZ for any I, nor have we been able to exhibit deterministic
polynomial time algorithms for any class of Tanguages containing the
finite languages, and closed under + and & . Our hypothesis is that
such polynomial time algorithms can be found, and indeed that SE§j is

contained in P for any I.

P4

VI. APPLICATIONS TO THE STUDY OF CONCURRENT COMPUTATION

A natural problem to consider in the area of concurrent computation
is the following: Can a given sequence of actions occur in the random
1 . Pk? Let

S<Pi) be the set of possible computation histories of the pDrocess P?‘

concurrent execution of a given set of processes P

This problem can then be formulated: Given a word w and languages

>
¢

k>‘
In [0GD,RID78] it was shown that the shuffle of two context free languages

7y

S(Pl), e S<Pk)’ is w in the shuffle of the languages S(Pl), ..., S(p

N

can be NP complete. Using similar techniques ([HAU,WAR80]) one can find

b

a linear language L such that L ® L is NP complete. Thus the above
problem is NP complete for k = 2 if the languages S(Pi) and S(Pg) are
given as linear grammars, even if these grammars are identical and fixed
for all w. On the other hand, if k is fixed and if S(Pg), Ce S(Pk)
are regular, given as regular grammars or non deterministic finite

automata, we can form the nondeterministic finite automaton A for

K
{} S(Pi) in deterministic po?ynomia} time and check whether or not w
igmiccepted by A via dynamic programming. Hence for any fixed k and
S(P.), ..., S(Pk) reqular, this problem is solvable in deterministic
polynomial time. However, if we allow k to vary, by Theorem 3.1 we
see that this problem is NP compliete, even when each process is a
determined linear sequence of actions, i.e., when S(Pl)’ U S(?k)
are single words. This result can be further sharpened using Theorem 3.1.
From this theorem we see that the problem of whether or not a given
sequence of actions can occur in the random, unbounded concurrent ex-
ecution of a given determined Tinear sequence of actions is NP complete,

To summarize, the variable language membership problem concerning

25

computation histories of sets of parallel processes described above
becomes difficult if either

1) the processes are allowed to include finite automata augmented
with a stack, even if the stack is Timited to one reversal or

2) the number of concurrent processes is unbounded.

Results from Section IV and V ﬁave some bearing on the complexity
of the sets of computation histories resulting from the random concurrent
execution of a fixed set of processes. If the sets of computation
histories of the individual processes are regular, then the set of
computation histories resulting from their random concurrent execution
will be regular, since the regular languages are closed under the opera-
tion shuffle. However, by the result cited above, if the sets of
computation histories of the individual processes are Tinear, the result-
ing set of computation histories may be NP complete, even when we consider
at most two processes.

If we consider the random, uab@unded concurrent execution of a
single fixed process, then by TheoremiS.l we see that the resu?timg set
of computation histories will be recognized in deterministic polynomial
time if the set of computation histories of the process is reqular.
However, since the Tanguage {a bnc:def)f :nzz@}éﬁ is NP complete (Theorem
4.2), if we allow the process just a single counter limited to one
reversal, the resulting set of computation histories may be NP complete.

[t remains to determine the complexity of the variable and fixed
Tanguage membership problems for the shuffle of a fixed number of single
reversal counter languages. However, barring this issue, sharp boundaries
have been established with regard to the tractability of the basic
variable and fixed language membership problems involving computation

histories resulting from random concurrency.

w2

ACKNOWLEDGMENT

We would Tike to thank Professor Andrzej Ehrenfeucht for numerous

nelpful discussions concerning this material.

REFERENCES
[ARA,KAG,TOK79] Araki, T., Kagimasa, T. and Tokura, N., Relations of
flow languages to Petri Net Languages, Theoretical Computer Science,

15(1)(1981) 51-76.

[GAR,JOH75] Garey, M. and Johnson, D., Complexity results for multi-
processor scheduling under resource constraints, SIAM 5, Computing, 4,

397-411, 1975.

[GAR,JOH80] Garey, M. and Johnson, D., Computers and Intractability, A
Guide to the Theory of NP Completeness, Problem SP15, p. 224, Freeman

Press, 1980.

[GIS79] Gisher, J., Shuffle languages, Petri Nets, and context-sensitive

grammars, CACM, 24(9)(1981), 597-605.

[HAU,WAR80] Haussler, D. and Warmuth, M. K., The shuffle of a linear

language with itself can be NP complete, unpublished manuscript, 1980.

[JAN79] Jantzen, M., Eigenschaften von Petrinetzsprachen, Doctoral
Disseration, Bericht Nr. IFI-HH-B-64, Fachbereich Informatik,

Universitat Hamburg, West Germany, 1979.

[JAN8B1] Jantzen, M., The power of synchronizing operations on strings,

Theoretical Computer Science, 14(2)(1981) 127-154.

LKIM76] Kimura, T., An algebraic system for process structuring and
interprocess communication, Proc. 8th Annual ACM Symp. on Theory of

Computing, pp. 92-100, 1976.

2 B

[0GD,RID78] Ogden, W. F., W. E. Riddle, W. C. Rounds, Complexity of
expressions allowing concurrency, 5th ACM POPL, Tucson, Arizona, 1978,

pp. 185-194.

[RID72] Riddle, W. E., Modelling and analysis of superviosr systems,

Ph.D. thesis, Computer Science Dept. Stanford University, 1972.

[SHA75] Shaw, A. C., System design and documentation using path
expressions, Proc. Sagamore Computer Conference on Parallel Processing,

IEEE Computing Society (1975), pp. 180-181.

[SHA78] Shaw, A. C., Software description with flow expression, IEEE
Trans. on Software Engineering 3, SE-4 (1978), pp. 242-254,
[SLuso] ‘STutzki, G., Descriptional complexity of concurrent processes,

unpublished manuscript, Department of Mathematics and Computer Science,

Clarkson College of Technology, Potsdam, New York 13676, 1980.

