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ABSTRACT 

Lee, Cheuk Yi Joseph (Ph.D., Atmospheric and Oceanic Sciences)  

Exploring the Role of the Atmosphere on Wind-energy Production: From Turbine Wakes to 

Variability of Wind Speed 

Thesis directed by Associate Professor Julie K. Lundquist 

 

This dissertation explores the interactions between the atmosphere and wind turbines 

from numerous perspectives. The work presented here outlines three subjects: the 

characterization of wind-turbine wakes in the evening, the evaluation of simulated wind-power 

productions in a numerical weather prediction model, and the attempt to systematically quantify 

wind-speed (WS) variability over decades.  

After introducing the background of wind-energy meteorology, the first part of this 

dissertation discusses the evolution of wind-turbine wakes during the evening transition. In 

observations as well as simulations from the Weather Research and Forecasting (WRF) model, 

turbine wakes, namely the in downwind WS reduction and turbulence enhancement, become 

more prominent in the evening. Hence, the power generations of downwind turbines decrease 

when the atmosphere changes from unstable to stable.  

The second section of this dissertation focuses on validating the power-production 

predictions of the wind farm parameterization (WFP) scheme in the WRF model. Using the WFP 

with fine (~12 m) vertical grid resolution leads to the most accurate power simulations. 

Compared to the actual power generations, the WFP tends to underestimate power in stable 
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conditions with high winds and low turbulence. Overall, the accuracy of the WRF model in WS 

prediction dictates the skill of the WFP in simulating wind power.  

The third topic of this dissertation explores optimal methods to assess the variability of 

WS and energy production. Among the 27 methods tested, the Robust Coefficient of Variation 

(RCoV), as a normalized, statistically robust and resistant spread metric, yields the strongest 

correlation in connecting the variations between monthly mean WS and monthly net energy 

generation. By comparison to a long data record from a reanalysis product, the RCoV also 

requires 6 years of WS data to effectively quantify the long-term variability of a location.  

Finally, this dissertation ends with a remark on the importance of correctly using the 

WRF WFP and statistics. Future work includes improving the power curve and applying the 

variability metrics in evaluating financial risk.  
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Chapter 1 

1. INTRODUCTION 

 

We live in a society exquisitely dependent on science and technology,  

in which hardly anyone knows anything about science and technology. 

– Carl Sagan 

 

Wind energy, as a renewable energy source, is essential in a sustainable world. Most 

members of the scientific community agree that global warming is a prominent issue and is 

caused by humans (Cook et al., 2016). Renewable energy sources, including wind energy, play 

an indispensable role in mitigating climate change (IPCC 2014). Compared with other thermal 

power plants that use fossil fuels, wind turbines emit far fewer life-cycle greenhouse-gas 

emissions and air pollutants, and require less water in the cooling process (AWEA 2014; IPCC 

2014). Wind energy contributes a remarkable share of our electricity generation, for 3.7% 

globally in 2015 (GWEC 2017), and for more than 5% in the U.S. in 2016 (EIA, 2017). By the 

end of 2017, the wind-power capacity in the U.S. was over 85 GW (AWEA, 2017).  

Further reducing the cost of wind energy will anchor its predominance and its future in 

the energy business, regardless of the political environment. On one hand, even with government 

effort, such as the Paris Climate Accord or the Clean Power Plan proposed by the U.S. 

Environmental Protection Agency, the conversion from fossil-fuel energy to clean energy is still 

slow and is subjected to changes in administrations. On the other hand, through market forces, 

renewable energy technologies will continue to attract investments as long as their rates of return 

are higher than those of the non-renewables. Sometimes the renewable energy industry benefits 
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from public policies. For example, the Renewable Electricity Production Tax Credit (PTC), first 

enacted in 1992, has fostered the development of the wind-energy industry in the U.S. by 

reducing the costs for project owners as well as the prices of electricity bills. Although the PTC 

constantly suffers from threats of shrinking or discontinuation, the unsubsidized cost of wind 

energy is already among the cheapest of all the non-renewable and renewable energy sources 

(Lazard, 2017). Hence, financially competitive clean energy sources can directly increase 

renewable energy penetration, and minimize the impacts from politics at the same time.  

Research in wind-energy science and technology facilitates the reduction of its cost, as 

quantified by the levelized cost of energy (LCOE). The LCOE is defined as the total cost of 

installing and operating a project divided by the electricity generated over the life of the project, 

usually in $ kWh-1. According to the predictions by Dykes et al. (2017), continuing current wind 

research can cut the wind LCOE by half, and wind can become cheaper than natural gas by 2030. 

Atmospheric-science research and innovations serves a critical role to close the scientific 

knowledge gaps within the industry. Current research topics include improving wind-flow 

modeling, evaluating wind-energy production estimations, and reducing uncertainty in wind-

energy production.  

Inherently, wind-energy generation is tightly coupled to the atmosphere and weather 

events. Nighttime mountain drainage flows act as a reliable yet inconsistent wind-energy source; 

wind turbines switch off during destructive winds from tropical storms for safety reasons; cold 

frontal passages create icing on turbine blades and halt power production. Among all 

meteorological variables, wind speed (WS) is the primary component in generating wind energy: 

the wind-turbine power curve illustrates the relationship between the pair.  
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The wind-turbine power curve, usually provided by the manufacturers, describes the 

theoretical non-linear relationship between WS and turbine-power production (Figure 1.1): 

region I of the power curve applies to WS below the cut-in WS (in this example, 3.5 m s-1), 

where the turbine blades remain at rest, hence the turbine produces zero power; region II is 

bounded by the cut-in speed and the rated speed (in this example, 14.5 m s-1), and power 

production increases with WS non-linearly; region III represents the flat, maximum power 

production between the rated speed and the cut-out speed (in this case, 25 m s-1); region IV 

illustrates no power production beyond the cut-out speed to avoid excessive loading. Region II is 

important in understanding the impacts of wake effects on wind-power productions in later 

chapters.  

 

 

Figure 1.1: An example wind-turbine power curve, based on a model with nameplate capacity of 

1.5 MW. The four regions represent the distinct relationships between WS and turbine-power 

production. 
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Besides the power curve, atmospheric science is also critical in other branches of wind 

energy. In operation, wind-farm operators can modify turbine yawing to steer wakes created by 

upwind turbines, so as to optimize power production (Frandsen et al., 2006; Fleming et al., 2017). 

In wind-power forecasting, forecast accuracy affects the wind-energy wholesale prices and the 

energy market (Bathurst et al., 2002; Jónsson et al., 2010). In grid integration, operators and 

utilities control, connect, and integrate power generations from single or multiple wind farms in 

various spatial regions with different wind-resource characteristics (Rodriguez-Amenedo et al., 

2002). In wind resource assessment (WRA) before project construction, in situ meteorological 

measurements and long-term wind records are the key inputs in the measure-correlate-predict 

(MCP) process and the siting of turbines (Brower, 2012). In general, wind energy and 

atmospheric science are inseparable.  

For instance, atmospheric stability affects turbine wakes and their dissipation. Figure 1.2 

summarizes the wake behavior in different stability scenarios based on the literature (Magnusson 

and Smedman, 1994; Wu and Porté-Agel, 2011; Fleming et al., 2016; Vollmer et al., 2016). In an 

unstable case (Figure 1.2a), wakes diffuse and erode faster because of strong vertical mixing. In 

a stable environment (Figure 1.2c), wakes tend to be prominent, dissipate slower, and persist 

downwind. The role of atmospheric stability in wake evolution and power production is further 

discussed in later chapters.  
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Figure 1.2: A generic demonstration of wake effects in terms of downwind velocity deficit. The 

vertical cross-sections illustrate wakes in (a) an unstable, (b) a neutral and (c) a stable 

atmosphere downwind of a turbine.  

 

Moreover, one of the major obstacles in expanding wind-energy penetration is its 

intermittency, causing challenges in maintaining a stable energy supply. Although connecting 

wind farms in different geographical regions can reduce the stress from variability on the grid, 

minimizing the losses and the uncertainties in power production of a particular wind farm 

remains a critical problem to solve. In wind energy, the gross energy production is the theoretical 

annual energy production (AEP) derived from the power curve. The net energy production is the 

actual AEP of a wind farm after accounting for all the losses, including the losses from 

curtailments, turbine unavailability, and wind-turbine wakes. The discrepancy between the gross 

and the net energy productions directly affects the profitability of a wind farm. Therefore, 

minimizing the losses relevant to atmospheric science is both interesting and valuable. The 

industry needs to understand how wind turbines interact with the atmosphere, and how to predict 

and anticipate those interactions. Exploring different uncertainties of power production that are 
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closely connected to the atmosphere, including wake losses and WS variations, reduces costs and 

facilitates further growth of the industry.  

Primarily, the wake effect is the WS reduction caused by wind turbines, and undermines 

the power production of turbines located downwind. Typically, the intra-wind-farm wake effect 

contributes 6.4% of the production losses for North American onshore wind projects, and wakes 

can reduce 10% of energy generation (Table 1.1). Spatially, wakes span from turbine scale to 

wind-plant scale. Wake-induced turbulence enhancement and its evolutions, dependent on 

atmospheric stability, alter downwind power production (Magnusson and Smedman, 1994; 

Barthelmie et al., 2009; Barthelmie and Jensen, 2010; Mirocha et al., 2014). The literature has 

well documented wake behaviors in different atmospheric stability regimes (Magnusson and 

Smedman, 1994, 1999; Hansen et al., 2012; Aitken et al., 2014a; Abkar and Porté-Agel, 2015b), 

whereas the evolution of wakes in the evening, from unstable to stable condition, remains left 

untouched. Because the electricity demand usually spikes in the evening (Figure 1.3), the intra-

wind-farm wake propagation and its effects on power production are prime research subjects. 

Chapter 2 of this dissertation summarizes the investigation on evening wind-turbine wakes, and 

the findings are published in Boundary-Layer Meteorology, “Observing and Simulating Wind-

Turbine Wakes During the Evening Transition” (Lee and Lundquist, 2017b).  
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Loss category 
Typical values in AWS 

Truepower (2014) 

Ranges in Clifton 

et al. (2016) 

Examples of possible 

mitigations 

Availability 6.2% 2 – 5% 
Long-term service agreement 

with manufacturer 

Curtailment 0% 0 – 4% 
Negotiation and cooperation 

with local communities 

Electrical 2.1% 0.5 – 3.5% Optimizing layout 

Environmental 2.7% 0 – 5% 
Improved blade coatings and 

maintenance 

Turbine 

performance 
4.0% 1 – 3% Improved power curve 

Wake effects 6.4% 0 – 10% Improved wake models 

    

Table 1.1: Different losses in percentage of energy production, adapted and modified from AWS 

Truepower (2014) and Clifton et al. (2016). The results from AWS Truepower (2014) are typical 

loss values for onshore projects in North America. The results from Clifton et al. (2016) are valid 

for projects designed and built from 2010 – 2015.  

 

 

Figure 1.3: The electric load over 24 hours in New England averaged from 1 January 2017 to 31 

December 2017, based on the data from the Independent System Operator New England.  
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Moreover, numerical models attract interest because of their widespread applications in 

the wind-energy industry and resulting broad implications on energy production. Inaccurate flow 

models incorrectly estimate wind resources, and the spatial variation of WS within a wind site 

can constitute over 10% of the overall uncertainty in complex terrain (Table 1.2). Modeling 

capabilities also relate to other uncertainties such as wake effect and historical wind resource, 

each contributing at most 35% and 6% of the total uncertainty in power production (Table 1.2). 

On average, wind-flow modeling causes 4% of uncertainty in energy production (AWS 

Truepower, 2014).  

Accordingly, verifying and validating the accuracy of numerical models on wind and 

power simulations provides the legitimacy for model users. As a numerical weather prediction 

(NWP) model, the Weather Research and Forecasting (WRF) model is a commonly used tool in 

operational meteorology and academic atmospheric research. The wind farm parameterization 

(WFP) scheme of the mesoscale WRF model, released since the version 3.3 of the WRF model, 

accounts for wake effects and generates power output for each turbine-containing grid cell (Fitch 

et al., 2012). To quantify the minute- to day-long, wind-farm-scale power-production skill of the 

WFP, a case study using actual power-generation data over 4 days is conducted. The study aims 

to confirm the usefulness of the WFP and to provide directions for future model improvements. 

Chapter 3 of this dissertation appears in Geoscientific Model Development, “Evaluation of the 

wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with 

meteorological and turbine power data” (Lee and Lundquist, 2017a).  
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Uncertainty 

category 

Typical ranges in AWS 

Truepower (2014) 

Ranges in Clifton et 

al. (2016) 

Examples of possible 

mitigations 

Historic wind 

resource 
2.1 – 4.8% 1 – 6% Use of reanalysis dataset 

Plant 

performance 
3.2 – 4.8% 

Electrical: 1 – 2% 

Better inflow conditions, 

improved models, generation 

management 

Curtailment: 1 – 4% 

Turbine 

performance: 0 – 4% 

Wake: 13 – 35% 

Project lifetime 

variability 
0.6 – 1.5% 1 – 10% 

Improved quantification of 

variability 

Site 

measurements 
1.6 – 4.8% 0 – 2% Better calibration 

Spatial 

variation 
2.4 – 8% 

Simple terrain:  

1 – 2% Optimizing wind 

measurement locations Complex terrain:  

> 10% 

Vertical 

extrapolation 
0 – 6.4% 0 – 6% 

Deploying remote sensing 

instruments 

    

Table 1.2: Different uncertainties in percentage of energy production, adapted and modified from 

AWS Truepower (2014) and Clifton et al. (2016). The results from Clifton et al. (2016) are valid 

for projects designed and built from 2010 – 2015. The naming of the uncertainty categories 

between the two reports are different.  

 

Another hurdle of wind energy due to meteorology is the variability of WS across 

temporal scales. Winds ramp up and down in seconds in the form of gusts; WS and wind 

direction (WD) fluctuate drastically for days during tropical storm landfalls and frontal passages; 

wind patterns change every year with climatic oscillations. The ever-changing wind resources 
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create variable energy supply at a particular wind site. In contrast, electricity demand, although 

fluctuates over time, is perpetually continuous from 1 second to the next. Hence, a part of this 

dissertation is devoted to evaluating the uncertainty in the long-term AEP, namely the long-term 

variability of wind resources.  

Our understanding on the long-term and inter-annual variability (IAV) of WS as a 

holistic subject, is weak and non-uniform, from its calculations to its representations. Therefore, 

this topic requires a thorough investigation. Long-term variations in WS affect the energy trading 

market, where the expectations on the wind-power volume affect the energy price and hedging. 

Moreover, wind variability accounts for 10% of total uncertainty at worst (Table 1.2), and one 

study found that the 10-year IAV of WS is 3.5% in general (AWS Truepower, 2014). However, 

various regions experience variability differently, and generalizing WS variability into one 

number across regions oversimplifies this uncertainty. What is worse, numerous methods are 

used to evaluate IAV, and the industry lacks a systematic way to quantify this critical parameter 

in WRA. Hence, Chapter 4 of this dissertation is dedicated to discussing the differences between 

various IAV quantification methods, using WS and energy-production data across hundreds of 

wind farms for over 2 decades. The contents in Chapter 4 will be submitted to Wind Energy 

Science in a manuscript titled “Assessing variability of wind speed: Comparison and validation 

of 27 methodologies”.  

Each chapter focuses on a specific topic on wind-energy meteorology, and they all follow 

the structure of scientific literature with abstract, introduction, methodology, results, discussion, 

conclusion, and acknowledgements, preceding by a chapter prologue. Figures and tables are 

numbered independently in the respective chapter. All references are assembled at the end of this 

dissertation.  
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This dissertation spotlights several meaningful research topics with in-situ, high-

resolution data from modern instruments, outputs from the latest numerical models, 

contemporary data-analysis capabilities, and open-access data sharing. This dissertation 

summarizes my work of my Ph.D. journey at the University of Colorado Boulder (CU Boulder) 

and takes a deep dive to enhance our understanding of atmosphere-related uncertainties in wind 

energy. Enjoy.  
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Chapter 2 

2. WIND-TURBINE WAKES DURING THE EVENING TRANSITION 

 

When the sun has set, no candle can replace it. 

– George R. R. Martin 

 

In modern society, satisfying the household electricity peak demand in the evening is a 

daily challenge for utilities. At the same time, meteorologically, the evening transition (ET) 

begins when afternoon convection ceases and disappears at sunset. The atmosphere becomes less 

turbulent when the influence of the sun’s heating on the planetary boundary layer (PBL) 

dissipates. In other words, the ET takes place when the daytime unstable atmosphere transforms 

into the nighttime stable regime. Because wind energy tightly connects with the atmosphere, this 

stability change influences the wind-turbine wake evolution and hence the wind-power 

production in the evening.  

The wind-turbine wake effect is a well-established research topic. Researchers have used 

observations (S. Lissaman, 1979; Magnusson and Smedman, 1994; Whale et al., 1996; 

Barthelmie et al., 2003; Bingöl et al., 2009; Peña et al., 2009; Trujillo et al., 2011; Iungo et al., 

2013; Rajewski et al., 2013), wind tunnel experiments (Massouh and Dobrev, 2007; Chamorro 

and Porté-Agel, 2009; España et al., 2011), statistical models (Marden et al., 2013) and 

numerical models (Ainslie, 1988; So̸rensen and Shen, 2002; Troldborg et al., 2010; Wu and 

Porté-Agel, 2011; Churchfield et al., 2012b; Meyers and Meneveau, 2012; Aitken et al., 2014a; 

Annoni et al., 2014; Mirocha et al., 2014) to analyze wake effects. Moreover, wake behavior has 

been studied in different stability conditions (Magnusson and Smedman, 1994, 1999; Aitken et 

https://www.goodreads.com/author/show/346732.George_R_R_Martin
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al., 2014a; Abkar and Porté-Agel, 2015b; Vollmer et al., 2016), yet wake evolution during a 

stability transition remains unanswered.  

To reduce the loss and uncertainty caused by wind-turbine wakes, we first must 

understand how wakes behave in reality. Hence exploring and quantifying the intra- and inter-

wind-farm wakes in the ET is an important step towards efficient wind-farm operations. 

Minimizing wake losses directly closes the gap between the gross and the net wind-energy 

productions of a wind farm.  

This chapter discusses the turbine-scale and the wind-farm-scale evening evolutions of 

turbine wakes, using field observations and results from the Weather Research and Forecasting 

(WRF) model based on an evening case study. Understanding wake effects allows better flow 

management moving through a wind farm and thus improves wind-plant control and operational 

strategies, further maximizing energy production.  

The following is reproduced and reformatted from:  

Lee, Joseph C. Y., and Julie K. Lundquist. 2017. Observing and Simulating Wind-

Turbine Wakes During the Evening Transition. Boundary-Layer Meteorology 164 (3): 449–74. 

doi:10.1007/s10546-017-0257-y.  

Julie Lundquist revised the manuscript and provided guidance of the research.  
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2.1 Abstract  

Wind-turbine-wake evolution during the evening transition (ET) introduces variability to 

wind-farm power production at a time of day typically characterized by high electricity demand. 

During the ET, the atmosphere evolves from an unstable to a stable regime, and vertical 

stratification of the wind profile develops as the residual planetary boundary layer decouples 

from the surface layer. The evolution of wind-turbine wakes during the ET is examined from two 

perspectives: wake observations from single turbines, and simulations of multiple turbine wakes 

using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the ET, the 

wake’s wind-speed (WS) deficit and turbulence enhancement are confined within the rotor layer 

when the atmospheric stability changes from unstable to stable. The height variations of 

maximum upwind-downwind differences of WS and turbulence intensity gradually decrease 

during the ET. After verifying the WRF-model-simulated upwind WS, wind direction and 

turbulence kinetic energy profiles with observations, the wind-farm-scale wake evolution during 

the ET is investigated using the WRF-model wind farm parametrization scheme. As the evening 

progresses, due to the presence of the wind farm, the modelled hub-height WS deficit 

monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and 

the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the 

intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer 

during the ET, and undermine the power production of downwind turbines in the evening.  
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2.2 Introduction 

2.2.1 Evening boundary layer and turbine wakes 

Daily electricity demand typically increases in the early evening, making the balance of 

power supply and demand a challenge during this period (McLoughlin et al., 2013). Households 

require higher power demand in the evening, while solar-power generation is diminishing. The 

wind-power capacity of the world continues to grow, and providing stable electricity supply via 

wind power remains an ongoing challenge to power-grid operators due to the variability of wind-

energy production. Therefore, it is important to understand utility-scale wind-turbine-wake 

behavior during the evening transition (ET) because wakes undermine downwind wind-power 

production. An enhanced understanding of wake evolution during the ET can also be helpful in 

other situations. For example, offshore wind farms often experience land and sea breezes such 

that coastal flow undergoes a similar transition to that of a continental ET (Angevine, 2007) and 

can affect wind-power production.  

The unique characteristics of the ET have been explored in the past in terms of changes in 

temperature, turbulence, and surface fluxes (Deardorff, 1974a, 1974b; Mahrt, 1981; Nieuwstadt 

and Brost, 1986; Edwards et al., 2006). The ET is the period during which the daytime unstable 

atmosphere evolves into the nocturnal stable boundary layer, where a distinct transition is 

observed during conditions with quiescent synoptic forcing. Acevedo and Fitzjarrald (2001) 

identified the “early evening transition” as the period when the planetary boundary layer (PBL) 

is decoupled from the surface layer, and leads to a temperature decrease, a wind-speed (WS) 

reduction, and an increase in water vapor mixing ratio near the surface. Lothon et al. (2014) 

defined the ET as the period after the surface sensible heat flux (QH) reaches zero and before the 

establishment of the nocturnal stable layer. The ET can be further described by the temperature 
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profile evolution in the PBL, with the presence of a near-surface temperature inversion as an 

indication of a decoupled nocturnal boundary layer (Grimsdell and Angevine, 2002; Angevine, 

2007). As a result, a temperature inversion near the surface forms at the start of the ET, usually 

at least 1 hour before sunset (Grimsdell and Angevine, 2002).  

Changes in turbulence also suggest the onset of the ET. An abrupt decay in turbulence 

kinetic energy (TKE), associated with the collapse of daytime turbulence, and the sign changes 

in QH, are indicators of the “early evening transition” (Nadeau et al., 2011). The delay between 

the time when QH becomes negative and the TKE decay has been quantified previously 

(Nieuwstadt and Brost, 1986; Sorbjan, 1997; Blay-Carreras et al., 2014). Sastre et al. (2015) also 

demonstrated that the WS reaches a minimum around the time of sunset, and the turbulence time 

scale decreases during the ET.  

In this chapter, we define the ET as the time at which the near-surface atmospheric 

stability undergoes transition from convective to stable, and the value of QH changes sign. 

Though alternative approaches have been used previously, we find this definition the most 

appropriate. Using this approach, we can determine an unambiguous ET in the chosen case study 

as QH declines monotonically.  

The ET presents a scientific challenge for wind-energy forecasting, since the flow 

becomes increasingly stratified during the ET, making the forecasting of wind-power production 

a challenge (Sanderse et al., 2011). While summer nocturnal low-level jets (LLJs) increase 

boundary-layer WSs (Bonin et al., 2015; Vanderwende et al., 2015), providing ample wind 

resources during the summer in the Great Plains, the power deficit, the reduction in power 

production of downwind turbines located within the wakes, increases with atmospheric stability 

(Hansen et al., 2012). New approaches to yawing upwind turbines in order to improve the power 
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production of downwind turbines (Fleming et al., 2015, 2016) require accurate wake prediction. 

The difficulties posed by uncertain flows, substantial wind resources, large power deficits and 

possible wake manipulation potentially affect wind-power production in the evening.  

Wake features in different atmospheric stability regimes have been widely studied, but 

wake behavior during the ET remains unexplored. Early wake observations (Magnusson and 

Smedman, 1994) concluded that the WS deficit and the downwind turbulence generation are 

greatest in a stable atmosphere, as wakes erode minimally due to the lack of background 

turbulence. Wake behavior depends not only on thermal stability but also on the upwind wind 

profile, and wind-tunnel experiments have demonstrated that inhomogeneous upwind flow 

disturbs the vertical symmetry of the downwind WS deficit and turbulence (Chamorro and Porté-

Agel, 2009). The WS deficit and the vortices in the wake also affect wake meandering and wake 

expansion from the turbine centerline (Howard et al., 2015).  

 

2.2.2 Turbine-wake simulations 

Comparisons of Light Detection And Ranging (LiDAR) measurements to large-eddy 

simulations (LESs) with a generalized actuator disk (GAD) model in the Weather Research and 

Forecasting (WRF) model are capable of representing wake-deficit characteristics qualitatively 

(Aitken et al., 2014a; Mirocha et al., 2014, 2015). GAD model results have indicated that turbine 

wakes expand more in the horizontal direction than vertically (Mirocha et al., 2014). At a 

downwind distance of 6.5 times the rotor diameter (D), the flow experiences up to 25% WS 

reduction in a weakly convective regime (Mirocha et al., 2014). LESs have also revealed that the 

WS deficit extends further downwind, the turbulence generation decreases and the overall wake 

recovers more slowly in the stable PBL than in the unstable PBL (Abkar and Porté-Agel, 2015b; 



18 

 

Bhaganagar and Debnath, 2015; Mirocha et al., 2015). However, modelled turbine wakes grow 

horizontally twice as rapidly, and the wake meanders from the wake centerline to a greater extent 

in convective than in stable conditions (Abkar and Porté-Agel, 2015b). Unfortunately, examining 

the wake behavior of a sizable wind farm using LES is computationally expensive (Churchfield 

et al., 2012a), and the simulation of wind-farm impacts using mesoscale meteorological models 

is more practical.  

Various approaches of representing wind farms in mesoscale models have been explored. 

For example, surface roughness has been locally increased in climate models to represent the 

drag effects of wind turbines (Keith et al., 2004; Frandsen et al., 2009); however, this method 

ignores turbine impacts on flow phenomena such as below-rotor speed-up within the lowest few 

hundred meters above ground level (a.g.l.) (Fitch et al., 2012). Further, the use of the roughness 

approach generates turbine-induced daytime heating and nocturnal cooling (Fitch et al., 2013b) 

rather than the observed nocturnal heating (Zhou et al., 2012; Rajewski et al., 2013, 2014). 

Alternatively, the fact that the turbine rotor disk is elevated is considered by using flow-

dependent parameters to introduce the effects of turbines into the flow, resulting in turbine-

induced elevated drag and an increase in turbulence intensity (TI). When the inflow speed 

increases, both the induced drag and the turbine-power production increase, according to the 

associated turbine-power curve (Blahak et al., 2010; Baidya Roy, 2011). In addition to the power 

curve, the use of the turbine thrust coefficient, which also varies with WS, provides a more 

accurate estimate of turbine drag and power loss (Fitch et al., 2012). This elevated-drag approach 

has been shown to reproduce correct nocturnal heating from wind farms (Fitch et al., 2013b). 

Here, we use the mesoscale WRF model’s wind farm parametrization (WFP) scheme 

(Fitch et al., 2012; Fitch, 2015) to simulate an actual wind farm. The WFP scheme is based on 
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(Blahak et al., 2010; Baidya Roy, 2011), and uses the turbine-thrust coefficients. In the WFP 

scheme, wind turbines are represented as a momentum sink and a source of turbulence at the 

altitudes at which turbine blades are located (Fitch et al., 2012; Fitch, 2015). The WFP scheme 

estimates local turbine drag based on the thrust coefficient, which is the total fraction of kinetic 

energy extracted from the atmosphere as a function of WS. The modelled generation of TKE 

varies with WS, and the momentum sink converts a fraction of kinetic energy into electricity 

generation (Fitch et al., 2012). Unlike LES, the WFP scheme does not account for wake 

meandering or the wake effects on turbines in the same grid cell (Fitch et al., 2012). The grid-

averaged wake thus includes some uncertainty in characterizing wakes (Vanderwende et al., 

2016). While the WFP scheme tends to underestimate the power deficit of downwind turbines, it 

is capable of qualitatively reproducing wind-farm impacts in different atmospheric stability 

conditions (Jiménez et al., 2015), and has been used to explore the impact of surface roughness 

on wind-farm production (Vanderwende and Lundquist, 2016).  

Using the WFP scheme in the WRF model, wake evolution during the ET was briefly 

examined in (Fitch et al., 2013a), though without comparison to observations. In Fitch et al. 

(2013a), the background boundary-layer WS increased throughout the ET, leading to greater WS 

deficits and turbulence enhancement within the rotor layer and to heights up to 2D above the 

rotor layer. Even though the power production increased during the ET, downwind vertical 

mixing was inhibited within the growing stable layer, leading to strong and persistent wakes. 

However, Fitch et al. (2013a) did not include a comprehensive discussion on the response of 

wakes to atmospheric stability changes during the ET, the topic that we address herein.  

Wake evolution during the evening stability change has not been addressed in previous 

work; therefore, we examine turbine-wake evolution during the transition using both 
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measurements and simulations. The observations and the modelling approach are described in 

Sect. 2.3, and we discuss the observations of individual turbine wakes for one well-observed case 

study (Sect. 2.4.1). Then, we compare the upwind observed profiles to the simulated background 

atmosphere in the WRF model, so as to verify the modelled inflows (Sect. 2.4.2). Next, the 

aggregate wake evolution during the ET caused by multiple wind turbines is further explored 

using the WFP scheme (Sect. 2.4.3). The observations and model results demonstrate that, 

through the ET, increasingly persistent wakes develop, as quantified by downwind WS deficits 

and turbulence generation. The evolving atmosphere during the ET potentially poses challenges 

in the prediction of wind-power production.  

 

2.3 Data and methods 

2.3.1 Wake observations 

Assessing the meteorological impacts of wind-turbine wakes and their subsequent impact 

on power production during the ET requires detailed atmospheric measurements of the upwind 

and downwind flow. To explore wake behavior, the Crop Wind Energy EXperiment 2011 

(CWEX-11) collected wind observations in a 200-turbine wind farm in central Iowa from June to 

August 2011 (Rajewski et al., 2013, 2014; Rhodes and Lundquist, 2013). The hub height and the 

D of the 1.5-MW super-long extended (SLE) wind turbines manufactured by General Electric 

(GE) are 80 m and 77 m respectively, with the rotor layer extending from approximately 40 m to 

120 m a.g.l. (Rajewski et al., 2013). The cut-in, rated and cut-out speeds of the turbines are 3.5, 

14 and 25 m s-1 respectively. High-resolution wind profiles upwind and downwind of a row of 

wind turbines were measured using two vertical profiling Doppler wind LiDARs and four 
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surface-flux towers. Note that we present time as both local time (LT) and Coordinated 

Universal Time (UTC), where LT + 5 hours = UTC.  

The WINDCUBE (WC) LiDARs measured velocity components at approximately 0.25 

Hz from 40 to 220 m a.g.l., while the flux towers collected 20-Hz measurements of near-surface 

WS and wind direction (WD), QH, virtual temperature, and water vapor density at 4.5 m a.g.l. 

Since the prevailing WD at the site is southerly, the instruments were located directly north (250 

m, about 3D) and south (164 m, about 2D) of a row of east-west oriented turbines (Figure 2.1). 

The two furthest downwind flux towers were positioned 664 m (about 8.6D) and 1036 m (about 

13.5D) north of the row of turbines. As a result, turbine-wake impacts can be quantified via 

comparison of the upwind and downwind sites, including WS deficit, near-surface temperature 

change, TI and TKE enhancement. The TI can be calculated as  

𝑇𝐼 =  
√𝜎𝑢

2+𝜎𝑣
2

�̅�
,                 (2.1) 

and the LiDAR-estimated TKE can be calculated as  

𝑇𝐾𝐸 =  
1

2
(𝜎𝑢

2 + 𝜎𝑣
2 + 𝜎𝑤

2 ),               (2.2) 

where �̅� is the average horizontal WS, and 𝜎2 are the 2-minute averaged variances of the u, v, w 

velocity components (Stull, 1988).  
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Figure 2.1: Topography map of CWEX-11. Blue diamonds, red circles and yellow triangles 

represent the wind turbines (WT), the NCAR surface-flux stations (NCAR) and the WINDCUBE 

LiDARs (WC) respectively. The instrument locations were constant throughout the whole 

campaign. The contours represent the elevation above sea level in meters.  

 

Pulsed LiDARs (WC1 and WC2) use the Doppler beam swinging (DBS) method to take 

wind measurements at all specified altitudes based on the same pulse, by comparing the 

backscattering arrival time at different heights to the pulse initialization time (Courtney et al., 

2008). The method assumes flow homogeneity over a horizontal area so as to retrieve horizontal 

and vertical WSs. In CWEX-11, the wind components are averaged every 2 minutes to quantify 

the associated variability. However, the errors in cross-stream and vertical velocity components 

from near-wake LiDAR measurements at a distance 2D downwind can be significant in stable 



23 

 

conditions (Lundquist et al., 2015). Besides, the WC LiDARs do not measure atmospheric 

turbulence precisely due to the spatial separation of the data points along the line-of-sight and in 

the conical section (Sathe et al., 2011). As a result, the observed 2-minute averaged turbulence 

parameters describe only the variances as observed by the LiDAR, rather than the evolution of 

small-scale turbulence. Nonetheless, the wake effects due to an individual turbine can still be 

described by contrasting the LiDAR-measured 2-minute averaged WS and LiDAR TKE, when 

the upwind flow is southerly and most of the wake overlaps the LiDAR scanning volume.  

Wind outside of the downwind wake edges is occasionally measured when slight WD 

changes divert part of the wake outside of the LiDAR’s sampling volume. At hub height, the 

cross-stream 1-Hz beams from the downwind LiDAR measure wind components beyond the 

wake edges when the inflow WD deviates by more than 3.19° on each side of the 180° WD. 

Downwind WS measurements derived from along-stream LiDAR beams are not affected by this 

caveat. However, the sampling beyond the wake edges introduces a source of uncertainty for 

downwind turbulence measurements, as the cross-stream observations are incorporated into such 

measurements.  

The sonic anemometers and gas analyzers installed at the NCAR (National Center for 

Atmospheric Research) surface-flux stations provide 20-Hz measurements of wind velocity, 

virtual temperature and water vapor density at 4.5 m a.g.l. (Rajewski et al., 2013). The sonic 

wind vectors are rotated to correct for instrument tilt using the planar fit technique (Wilczak et 

al., 2001). The flux stations also record 2-m and 10-m air temperature, 2-m air pressure, and 2-m 

relative humidity at a rate of 1 Hz. In addition, located between the LiDARs and the NCAR flux 

stations, two upwind and downwind flux towers from Iowa State University (ISU) also provide 

5-minute precipitation measurements. Since the locations of the NCAR flux towers are more 
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advantageous than the ISU tower locations in observing wakes in southerly flow, only high-

resolution data from the NCAR flux stations are analyzed herein.  

 

2.3.2 Case study description 

A case study for 9 July 2011 is chosen to illustrate the wake effects during the ET, based 

on several criteria. First, both LiDARs must report data without interruption between 1500 and 

2200 LT; second, the WDs across the rotor layer, as measured by the LiDARs, must consistently 

record southerly inflow throughout the evening; third, the measured hub-height WSs must 

exceed the turbine cut-in speed; fourth, no major synoptic-scale system should influence the 

local weather in Iowa throughout the period. On this evening, WDs at the surface, 850-hPa level, 

and 500-hPa level were primarily southerly, south-westerly, and westerly, respectively. 

Throughout the campaign, southerly evening inflow was also recorded on two other evenings, 16 

and 23 July 2011. However, the WC2 LiDAR did not record sufficient data during the evening of 

16 July (Mirocha et al., 2015), and the ET on 23 July was ambiguous due to afternoon 

precipitation. Therefore, those two cases are not considered.  

 

2.3.3 WRF model configurations  

We use the Advanced Research WRF (ARW) model (version 3.6.1) (Skamarock and 

Klemp, 2008) to simulate the wake characteristics on a wind-farm scale during the ET. To ensure 

the mesoscale model depicts the upwind conditions correctly, simulation results are compared to 

the upwind observations before introducing the virtual wind farm. The simulations began at 0000 

UTC on 9 July 2011 and ran for 30 h, and we focus on the model data during the ET, from 2000 
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UTC 9 July to 0300 UTC 10 July (1500 to 2200 LT 9 July). The Global Forecast System (GFS) 

reanalysis provides initial and boundary conditions for the one-way-nested three-domain 

simulations (Figure 2.2). We also tested other initial- and boundary-condition datasets, the ERA-

Interim (ERA-I) dataset and the GFS 0.5-degree resolution dataset. The WRF-model results 

using the GFS reanalysis data with 1-degree resolution are selected because the wind field, 

turbulence and QH are more accurately modelled when forced with the GFS 1-degree resolution 

dataset (not shown). The finest domain, simulated with 571 × 511 points at 990-m horizontal 

resolution, covers the entire state of Iowa with an integration time step of 1 s. To capture the 

southerly surface flow and the westerly synoptic flow above the surface layer, the inner grids are 

located north-east of each coarser grid’s center, thus ensuring adequate upwind coverage. To 

simulate high-resolution boundary-layer features, vertical levels are progressively stretched from 

the surface, with 70 levels in total. The vertical spacing below 200 m a.g.l. is about 22 m on 

average, allowing for four vertical levels in the rotor layer, approximately at 45, 67, 89, 112, 134, 

156, 179 and 201 m a.g.l.  
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Figure 2.2: Map of the three domains simulated with the WRF model: largest grid as d01, 

intermediate grid as d02 (yellow) and finest grid as d03 (orange). The white cross marks the 

location of the CWEX-11wind farm.  

 

The Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme is currently required, for the 

WRF model to simulate the effects of wind farms via its WFP scheme (Fitch et al., 2012); the 

MYNN level-2.5 scheme predicts sub-grid TKE as a prognostic variable and produces local 

vertical mixing (Nakanishi and Niino, 2006). Based on the Mellor-Yamada-Janjić scheme, the 

MYNN scheme uses fundamental closure constants derived from LES, and includes stability 

effects on the mixing length and buoyancy effects on pressure covariance (Nakanishi and Niino, 

2006). The MYNN surface layer and TKE advection in the PBL scheme are also applied. 

Microphysics is parametrized with the single-moment 3-class scheme (Hong et al., 2004) in the 
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model runs; longwave radiation is estimated with the Rapid Radiative Transfer Model (Mlawer 

et al., 1997); and the Dudhia scheme provides shortwave radiation (Dudhia, 1989). The 

simulations also use the unified Noah land-surface model, and for the cumulus parametrization, 

the Kain-Fritsch scheme (Kain, 2004) is enabled on the coarsest domain. The non-hydrostatic 

simulations allow simple diffusion with horizontal Smagorinsky first-order closure and an 

implicit gravity-wave damping layer.  

Of the two sets of simulations, one actively employs the WFP scheme (the “WFP” run) 

and one has the WFP scheme inactive (the “control” run). In the simulations that included the 

wind-farm effects, virtual wind turbines are added to the finest domain via the WFP scheme. 

This scheme explicitly models the elevated drag and turbulent mixing of turbines by establishing 

an elevated momentum sink and a turbulence source (Fitch et al., 2012). We use the 

configurations of the 1.5-MW Pennsylvania State University (PSU) generic turbine (Schmitz, 

2012), similar to the GE SLE turbine described above (80-m hub height and 77-m D). The 

standing thrust coefficient chosen is 0.041. The WFP run includes a 100-turbine wind farm, 

which comprised half of the turbines at the site of the CWEX-11 campaign to produce the utility-

scale turbine-wake effects. Although the whole wind farm in this location consists of 200 

turbines, here we focus on the southern half of the wind farm, the location of the meteorological 

measurements. Note that the size of a 100-turbine wind farm is representative of most wind 

farms in North America. Comparison between the control simulation and the WFP simulation 

indicates the progression of downwind horizontal WS deficits, TKE generation, QH sign changes 

and power production through the ET.  
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2.4 Results 

2.4.1 Observations 

2.4.1.1 Evening transition characterization 

The near-surface region of the PBL undergoes a transition from convective to stable 

conditions at least 2 hours before sunset (at 2051 LT) on 9 July 2011 (0151 UTC 10 July), with 

the stability parameter, z L-1 (where z is height and L is the Obukhov length) changing from 

negative to positive at 1830 LT (2330 UTC) (Figure 2.3a). The value of the QH changes sign at 

the same time (Figure 2.3b), while the latent heat flux decreases over time (Figure 2.3b). The 

abrupt collapse of the absolute temporal TKE change (|
𝑑

𝑑𝑡
𝑇𝐾𝐸|) at hub height (Figure 2.3c), 

which signifies the onset of the transition (Nadeau et al., 2011), coincides with the stability 

change. The above evidence suggests a distinct ET before sunset, consistent with the 

observations of Grimsdell and Angevine (2002). The differences of z L-1 and heat fluxes between 

upwind and downwind sites are trivial, so the downwind stability observations are not presented 

here.  
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Figure 2.3: Time series of stability parameters from the upwind surface-flux station (NCAR1) 

and LiDAR (WC1) on 9 July: z L-1 (a), 20-Hz surface sensible and latent heat fluxes (b), and the 

absolute temporal TKE change at turbine hub height of 80 m (|
𝑑

𝑑𝑡
𝑇𝐾𝐸|) (c). The purple vertical 

dash line indicates the ET at 1830 LT (2330 UTC). The green vertical dash line represents the 

time of sunset at 2051 LT (0151 UTC).  
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2.4.1.2 Wind-speed deficits and turbulence generation 

The stability, heat flux, and temporal TKE changes affect the wake behavior in the 

evening, as illustrated in the upwind (Figure 2.4a) and downwind (Figure 2.4b) LiDAR wind 

profiles and the differences between them (Figure 2.4c). When the PBL undergoes transition 

from an unstable to a stable state, the wake WS deficit is less likely to extend above the height of 

the rotor top at 118.5 m (Figure 2.4c). Before the transition, convective vertical mixing, initiated 

by surface heating, leads to relatively uniform upwind WSs across the daytime boundary layer 

(Figure 2.4a). When the stable PBL begins to develop, stratification develops in the flow, with 

lower WSs near the surface and greater WSs aloft. Stable stratification is initiated at 1900 LT 

(0000 UTC 10 July), following the ET. As the stratification develops, the WS deficit becomes 

less intermittent over time and is mostly confined to the rotor layer (Figure 2.4c).  
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Figure 2.4: Time-height contours of 2-minute averaged LiDAR WS measurements on 9 July: 

upwind measurements from the WC1 LiDAR (a), downwind measurements from the WC2 

LiDAR (b) and the difference of upwind minus downwind (c). The brown vertical dash line 

indicates the onset of the ET at 1830 LT (2330 UTC). The white horizontal dash line represents 

the top of the rotor layer, at 118.5 m a.g.l.  
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As with the WS deficit, the turbulence enhancement caused by the wind turbines 

becomes steady during the ET, as evidenced by the upwind TI value (Figure 2.5a), upwind TKE 

value (Figure 2.5b), downwind TI value (Figure 2.5c), downwind TKE value (Figure 2.5d), TI 

difference (Figure 2.5e), and TKE difference (Figure 2.5f). From Equations 2.1 and 2.2, TI 

represents the variations in horizontal velocities, while the TKE also accounts for vertical 

velocity deviations. In the case study, both the upwind TI and TKE values decrease dramatically 

when the PBL becomes stable (Figure 2.5a and b). After the transition, the downwind TI value is 

confined to the rotor layer (Figure 2.5c), although the increase in the TKE value persists above 

the rotor layer (Figure 2.5d). In the wake region, the TKE varies above the rotor layer before and 

after the ET (Figure 2.5f), while TI values have no substantial differences above the rotor top 

(Figure 2.5e). This contrast between TI and TKE values suggests that vertical velocity variations 

contribute most to the turbulence enhancement above the turbine rotor layer during the ET, 

consistent with previous wind-tunnel studies (Cal et al., 2010) and idealized LES results (Calaf et 

al., 2010), which emphasize the importance of the vertical flux stimulated by wakes.  
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Figure 2.5: Time-height contours of 2-minute averaged LiDAR-measured TI and TKE values on 

9 July: upwind measurements from the WC1 LiDAR (a, b), downwind measurements from the 

WC2 LiDAR (c, d) and the difference of upwind minus downwind (e, f). The grey vertical dash 

line indicates the onset of the ET at 1830 LT (2330 UTC). The white horizontal dash line 

represents the top of the rotor layer, at 118.5 m a.g.l.  
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Within the rotor layer, the altitude of the maximum in downwind turbulence 

enhancement evolves throughout the transition. The height of maximum downwind turbine-

induced turbulence generation varies within the rotor layer before 2000 LT (0100 UTC 10 July) 

and stabilizes at 60 m afterwards (Figure 2.5e). However, no distinct trends emerge regarding the 

changes in the height of the peak downwind TKE enhancement (Figure 2.5f).  

Although upwind turbulence diminishes during the ET, the downwind turbulence 

enhancements within the rotor layer, due to the turbine, remain at the same order of magnitude 

throughout the ET. Our wake observations, recorded at a distance 3D downwind of turbines, 

differ from the conclusions of Magnusson and Smedman (1994), where the maximum values in 

turbulence enhancements diminish downwind more rapidly in unstable than in stable conditions. 

However, their observations, obtained at a distance 4.2D downwind, were only relevant to stable 

and unstable states and not to the transition period. 

 

2.4.1.3 Wake evolution with heights and wind directions 

Not surprisingly, wake features in the ET respond to subtle variations in the upwind wind 

profiles. The fluctuations of upwind variables decrease gradually during the transition, with the 

upwind hub-height WS oscillating around 8 m s-1 and fluctuating less frequently after 1900 LT 

(0000 UTC 10 July) (Figure 2.6a). At the same time, the background TI and TKE values at hub 

height also begin to decline steadily (Figure 2.6b and c). As the inflow becomes steady after the 

ET, the wake signatures in WS, TI and TKE are only observed below the rotor top. In contrast, 

before the ET, these wake signatures appear occasionally above the rotor top (Figure 2.6d, e, and 

f). All three wake parameters vary collectively below hub height after 2030 LT (0130 UTC 10 
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July). Overall, the maximum wake effects steadily become more distinct within the rotor layer as 

the evening progresses.  

This sensitivity of the height of the maximum downwind WS deficit to atmospheric 

stability has yet to be examined in the literature. Aitken et al. (2014b) summarized the 

discrepancy on the altitudes of peak WS deficit among previous investigations, although the role 

of atmospheric stability was not discussed, since stability was not always quantified in the 

historical observational studies. Using LESs, Bhaganagar and Debnath (2015) characterized WS 

deficit in two stable scenarios with different surface cooling rates. They concluded that in 

strongly stable atmospheric conditions, the maximum downwind deficit was found below hub 

height, while in weakly stable atmospheric conditions, the maximum downwind deficit 

developed above hub height. The contrast of wakes in different atmospheric stabilities was, 

nonetheless, not discussed. Abkar and Porté-Agel (2015b) hypothesized that the maximum WS 

deficit occurred at hub height regardless of atmospheric stability, though we have found different 

results in this case study: the height of maximum WS deficit changes over time as the 

atmosphere evolves from unstable to stable stratification.  
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Figure 2.6: Left column presents the time series of 2-minute averaged measurements from the 

WC1 LiDAR at 80 m a.g.l. on 9 July: WS in black (a), TI values in red (b) and TKE values in 

blue (c). Right column presents the altitude evolution of the absolute maximum differences 

between upwind and downwind LiDAR measurements in WS (d), TI (e) and TKE (f). The purple 

vertical dash line indicates the onset of the ET at 1830 LT (2330 UTC). The green horizontal 

dash line represents the top of the rotor layer, at 118.5 m a.g.l.  
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In addition to the changes in the altitude of the maximum wake WS deficit, the wake also 

becomes more sensitive to upwind WD during the ET, likely due to the smaller effect of ambient 

turbulence on the wake. Upwind WD influences the wake parameters across the rotor layer. 

Additionally, veering, or clockwise turning with height in the wind profile, commences during 

the ET; this veering affects the wake. Before the ET, southerly inflow ranges from directions 

176° to 200° and produces the strongest normalized downwind WS deficit centered at 185° 

(Figure 2.7a), while the downwind turbulence enhancement is relatively weak in magnitude and 

thus indistinct (Figure 2.7c and e). After the ET, both the inflow and the wake start to veer with 

height. The WS deficit is greatest around 185°, especially below hub height (Figure 2.7b). In the 

same way, the normalized TI and TKE differences demonstrate intensifying wake effects, mainly 

at and below hub height (Figure 2.7d and f). In general, the turbulence enhancements veer with 

height, and have the greatest values around 185°. Note that Figure 2.7 only illustrates data up to 

100 m a.g.l., as the downwind LiDAR might sample partial wakes beyond that height. Overall, 

the wakes veer and become more distinct during the ET of 9 July.  
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Figure 2.7: Contour plots of normalized differences between upwind and downwind LiDAR 

measurements in WS (a, b), TI (c, d) and TKE (e, f) as a function of upwind WD at heights 

across the rotor layer, from 40 to 100 m a.g.l. The left column (a, c, e) illustrates the normalized 

differences before the ET, from 1500 to 1830 LT (2000 to 2330 UTC). The right column (b, d, f) 

displays the wake effects after the ET, from 1830 to 2200 LT (2330 to 0300 UTC 10 July). The 

normalized differences are averaged in 2-degree WD bins.  
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2.4.2 Observation-simulation comparison 

We first evaluate the skill of the WRF model in simulating the evolution of the upwind 

profiles of WS, WD, and TKE. Although the maximum absolute error of WS at hub height 

before, during and after the ET is 1.5 m s-1, the model captures the temporal trend of the WS 

profile (Figure 2.8a). Even as the error of the WD profile grows over time, the simulation error in 

the 80-m WD is less than 10° throughout the ET. (Figure 2.8b). Moreover, the simulated TKE 

profile and its decline in magnitude during the transition generally agree with the observations 

(Figure 2.8c), with a hub-height maximum error in TKE of 0.18 m2 s-2. Note that the observed 

TKE is the LiDAR-measured, 2-minute averaged TKE. The WRF-calculated TKE is a mesoscale 

representation of atmospheric turbulence over the entire grid cell, and as such is not directly 

comparable to the observations, but is shown for reference in Figure 2.8c and Figure 2.9c.  

Likewise, the comparison between modelled and observed time series further supports 

the claim that the WRF model is capable of simulating the upwind condition. The mean absolute 

errors between the simulated and observed time series of hub-height WS, hub-height WD, hub-

height TKE and QH on 9 July are small, being 1.1 m s-1, 7.7°, 0.17 m2 s-2 and 21 W m-2, 

respectively (Figure 2.9). Nevertheless, the timing of the simulated atmospheric stability change 

is within 1 hour of the actual change: QH changed sign at 1755 LT (2255 UTC) in the WRF 

model, 35 minutes earlier than the observation. However, the simulated hub-height TKE 

experiences abrupt decay at the same time as that observed, 1900 LT (0000 UTC 10 July) 

(Figure 2.9c). Overall, the WRF model produces satisfactory background flows for this 9 July 

case study.  
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Figure 2.8: Vertical profiles from the WC1 LiDAR (abbreviated as Obs, dash lines) and the 

WRF-model simulations at the nearest grid point from the WC1 LiDAR (solid lines) of WS (a), 

WD (b), and TKE (c) at three different times, 1730 (red), 1830 (blue) and 1930 (black) LT on 9 

July (2230, 2330 and 0030 UTC).  
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Figure 2.9: Time series from the WC1 LiDAR at 80 m a.g.l. (red) and the WRF-model 

simulations at the nearest grid point from the WC1 LiDAR (blue) on 9 July: 2-minute averaged 

hub-height WS (a), 2-minute averaged hub-height WD (b), 2-minute averaged hub-height TKE 

(c) and 1-minute averaged QH (d). The WRF-model variables plotted are interpolated to hub 

height. The purple vertical dash line indicates the onset of the ET at 1830 LT (2330 UTC).  
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2.4.3 Simulations with the WFP scheme 

2.4.3.1 Downwind meteorological impacts 

Via the WFP scheme, virtual wind turbines are introduced in the 9 July WRF model 

simulation to characterize the evolution of wake effects during the ET. The WS deficit, 

calculated by subtracting the horizontal WS of the “control” run with no virtual wind turbines 

from that of the “WFP” run with virtual turbines, is the primary method to quantify wind-farm 

wakes. The modelled WS deficits, produced by the 100-turbine wind farm, intensify at hub 

height over time, and extend further downwind after the ET at 1830 LT (2330 UTC) (Figure 

2.10a to d). The WS deficits reach a maximum value within 5 km downwind from the northern 

edge of the virtual wind farm, and the WS deficits erode for distances further downwind. As the 

simulated WD shifts from south-westerly to southerly throughout the transition, the location of 

the wake WS deficits changes accordingly. Additionally, the hub-height WS of the control run 

varies between 8 and 11 m s-1 during the 2 hours before and after the ET (Figure 2.9a). The 

wind-farm drag reduces the downwind WS by more than 1.2 m s-1 throughout the transition; this 

wind-farm wake represents more than 10% of the inflow WS at the end of the transition (Figure 

2.10d).  

The simulated WS deficit within the rotor layer also becomes more intense during the ET. 

Throughout the ET, the WS deficit is greater below hub height than above (Figure 2.11). At the 

top of the rotor disk, the WS reduction is minimal before the ET, but doubles after the transition 

(Figure 2.11d and h). At all altitudes across the rotor disk, the WS deficits stretch further 

downwind after the transition than before the transition.  
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Figure 2.10: 1-hour averaged differences of simulated hub-height WS (a to d), hub-height TKE 

(e to h) and QH (i to l), subtracting the variables of the “control” run from those of the “WFP” 

run, over 4 hours from 1630 to 2030 LT (2130 to 0130 UTC) 9 July: 2130 to 2230 UTC (a, e, i), 

2230 to 2330 UTC (b, f, j), 2330 to 0030 UTC (c, g, k), and 0030 to 0130 UTC (d, h, l). The 

black vectors represent the 1-hour averaged WD of the control run interpolated to hub height, 

and the vector lengths are proportional to the WS of the control run. The turbine locations are 

labelled as dots in cyan.  
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Figure 2.11: 2-hour averaged WRF-model WS difference, subtracting WS of the control run 

from WS of the WFP run from 1630 to 1830 LT 9 July (2130 to 2330 UTC) (a to d) and from 

1830 to 2030 LT 9 July (2330 to 0130 UTC) (e to h) at 40 (a, e), 60 (b, f), 100 (c, g) and 120 (d, 

h) m a.g.l. As in Figure 2.10, the vectors represent the wind field of the control run and the cyan 

dots represent the wind-turbine locations.  

 

Although the absolute changes in hub-height TKE difference decrease over time (Figure 

2.10e to h), the virtual wind turbines increase the relative downwind TKE difference during the 
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ET. Since the background TKE diminishes as the evening progresses (Figure 2.9c), the TKE 

enhancement caused by the wind farm decreases in absolute terms but increases in relative terms. 

One hour before the ET, the turbines generate a maximum downwind TKE enhancement of more 

than 0.18 m2 s-2 (Figure 2.10f), which is about 20% of the average ambient TKE value of the 

hour in the control run (Figure 2.9c). By the end of the transition, the downwind TKE 

enhancement is more than 50% of its base value (Figure 2.10h): the downwind TKE increases by 

50% due to the existence of the wind farm.  

Furthermore, the downwind TKE differences across the rotor layer display irregular 

variations, in contrast to the WS deficits. In general, the downwind TKE enhancement increases 

with height within the rotor layer throughout the ET (Figure 2.12). On one hand, particularly 

below hub height, the TKE enhancement induced by the virtual wind farm diminishes after the 

transition (Figure 2.12e and f). On the other hand, above hub height, the differences in TKE 

enhancement before and after the transition are subtler (Figure 2.12c, d, g, and h). Furthermore, 

in terms of horizontal extent, the downwind WS deficit at hub height persists for a distance of 

more than 15 km downwind after the ET (Figure 2.10c and d), but the downwind TKE 

enhancement dissipates after a distance of 10 km downwind (Figure 2.10g and h).  

Besides, wind turbines also interrupt the evening reduction of the QH downwind, as well 

as the emergence of the near-surface stable layer. At the beginning of the ET, the virtual wind 

farm increases QH by less than 2 W m-2 consistently (Figure 2.10i), which is less than 10% of the 

control value (Figure 2.9d). As the evening progresses, the wind farm enhances and expands the 

downwind flux increase by more than 6 W m-2 at the end of the transition (Figure 2.10l), which 

is about 20% of the ambient value (Figure 2.9d). In contrast, QH in a typical environment should 

decrease and become negative in the evening. Therefore, the positive downwind heat-flux 



46 

 

difference during the ET suggests the modelled wind turbines impede downwind surface cooling 

and hence the development of the nocturnal stable boundary layer.  

 

 

Figure 2.12: As in Figure 2.11, the variable shown is 2-hour averaged TKE difference across the 

rotor layer.  
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2.4.3.2 Power production evolution 

In the “WFP” simulations, turbine-power production can be calculated from the WS at 

hub height in a simulation cell. The power ratio (Figure 2.13) represents the ratio between the 

WFP-simulated power production and the calculated power production derived from the WSs of 

the same turbine-containing grid cells in the “control” run, based on the turbine power curve. As 

expected, waked grid cells produce less power. Because the WD shifts from south-south-

westerly to southerly, the grid cells on the south-western half of the wind farm consistently yield 

higher power per turbine than those in the north-eastern half, which are usually waked. Note that 

the WFP scheme assumes that the virtual wind turbines are always oriented perpendicular to the 

flow (Fitch et al., 2012), and the power production of each grid cell is proportional to the number 

of turbines contained therein.  

Because of the strengthening wakes during the 4-hour ET, the 1-hour averaged power 

ratio gradually decreases to 68%, from 82% (Figure 2.13). The reduction in the power ratio 

during the first 2 hours can be explained by the larger decline in the average WS of the WFP run 

compared to that of the control run (Figure 2.14). Meanwhile, the mean power ratio continues to 

decrease even when the WSs increase after 1900 LT (0000 UTC 10 July) (Figure 2.14), 

indicating a growing discrepancy between the potential and the WFP-simulated power 

productions throughout the ET. The continuous reduction in power ratio (Figure 2.13 and Figure 

2.14) illustrates that the maturing wakes undermine the power production of downwind turbines.  
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Figure 2.13: 1-hour averaged power ratio in each grid cell over 4 hours from 1630 to 2030 LT 

(2130 to 0130 UTC) 9 July: 2130 to 2230 UTC (a), 2230 to 2330 UTC (b), 2330 to 0030 UTC 

(c), and 0030 to 0130 UTC (d). The black vectors represent the 1-hour averaged WSs of the 

WFP run, and vector lengths are proportional to the WS. The brown dots represent the turbine 

locations. The numbers following the time periods represent the 1-hour averaged power ratio of 

the 100 turbines.  
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Figure 2.14: Time series of the power ratio (yellow), the average control-run WS (black) and the 

average WS of the WFP run at hub height (red) among all turbine-containing grid cells, from 

1600 to 2100 LT 9 July (2100 UTC to 0200 UTC 10 July). The purple vertical dashed line 

indicates the onset of the ET at 1830 LT (2330 UTC).  

 

2.5 Discussion  

Because daily electricity demand increases during the evening, efforts to provide reliable 

electricity generation from wind energy must include a characterization of wind-turbine-wake 

behavior during the ET. Here, we have investigated the evolution of wind-turbine wakes using 

both observations and model simulations of a case study when the lower PBL undergoes a 

transition from typical daytime convective to nocturnal stable conditions.  
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Turbine wakes undermine power production of downwind turbines. Wake characteristics, 

such as downwind WS deficits and downwind turbulence generation, respond to the decoupling 

of the surface layer from the PBL during the ET. In the evening, the sign of QH becomes 

negative as the ground starts to cool, the atmospheric PBL develops stable stratification, and the 

background WD veers with height and undergoes transition into a laminar flow. During the ET, 

variable daytime turbine wakes coalesce and appear to be more persistent and more confined 

within the rotor disk altitudes.  

The evolving upwind profile and the declining convective turbulence in the evening also 

determine the height of the strongest wakes within the rotor layer. In an unstable regime, the 

largest WS deficit is observed above hub height. After the ET, the maximum in the WS deficit is 

found below hub height (Figure 2.6a). The heights of the maximum WS deficit and turbulence 

production also coincide, especially after the ET, due to the strengthening atmospheric 

stratification (Figure 2.6). The wakes themselves begin to veer with height across the rotor layer 

after the ET (Figure 2.7). Previous studies (Aitken et al., 2014b; Abkar and Porté-Agel, 2015b; 

Bhaganagar and Debnath, 2015) did not examine the effects of atmospheric stratification on the 

height of the maximum WS deficit in the wake, and our study has demonstrated the strong 

influence of evolving stability on the height of the maximum wake. Empirical reduced-order 

wake models (Jensen, 1983; Katíc et al., 1986) could therefore be modified to account for 

evolving stability.  

Introducing a virtual wind farm into the WRF-model simulations enables the exploration 

of wind-farm-wake behavior during the ET. The maximum hub-height WS deficit and turbulence 

enhancement take place within 5 km of the downwind edge of the wind farm (Figure 2.10a to h), 

which is consistent with the WRF-model simulations of Fitch et al. (2013a) and Jiménez et al. 
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(2015). Moreover, after the ET, the hub-height WS deficit persists for more than 15 km 

downwind, while the turbulence enhancement vanishes beyond 10 km downwind. In contrast to 

LES studies with constant atmospheric stratification (Churchfield et al., 2012a; Mirocha et al., 

2014, 2015; Abkar and Porté-Agel, 2015b; Vanderwende et al., 2016), the wake structure 

illustrated herein varies both temporally and spatially downwind of the wind farm. The turbine 

locations in these simulations, based on an actual wind farm, contribute to this variability. 

Furthermore, the left-hand-side downwind horizontal flow acceleration or turning during the ET 

found in Fitch et al. (2013a) does not emerge in the simulations presented herein. Nonetheless, 

we observe a strengthening of the downwind WS deficit throughout ET, similar to that of Fitch 

et al. (2013a). The validity of the power production from the WFP scheme awaits validation 

from observations.  

The wake behavior in the individual wake observations is different from that in the wind-

farm wake simulations, and the results herein of wake evolution through the ET may serve as 

reference for improving the WFP scheme in the WRF model. Of course, differences between 

simulations and observations may be due to scale, as our observations are within one mesoscale 

model cell, and variability within the cell is not permitted using the current WFP scheme. 

Simulations suggest that after the ET, the modelled WS deficit strengthens more near hub height 

than at the top and bottom of the rotor layer (Figure 2.10c and d, and Figure 2.11), which agrees 

with the observations (Figure 2.7b). However, the WFP scheme underestimates the maximum 

WS deficit at and above hub height by about 1 m s-1 (not shown). In addition, the observed 

maximum TKE enhancement within the rotor layer (Figure 2.5f) is also at least twice as large as 

the modelled downwind �̅�  increase in the evening (Figure 2.10e to h, and Figure 2.12). 

Considering the WS deficit and TKE enhancement decrease with downwind distance, these 
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observation-model differences may be due to the resolution of the mesoscale model as compared 

to the observations. After all, the observations are collected at a location about 240 m downwind, 

while the simulations are representative of a 1 km × 1 km grid cell. Moreover, the elevation of 

TKE enhancement also differs between measurements and simulations: after the ET, the 

simulated downwind TKE increase only occurs above hub height (Figure 2.12e to h), conversely, 

the observed TKE increase downwind across the rotor layer (Figure 2.5f and Figure 2.6f). 

Recognizing that the observations and the WFP scheme depict turbine wakes at different spatial 

scales, the parametrization still has difficulties describing evening wake evolution, particularly 

TKE enhancement below hub height. The observation-simulation disagreement in wake behavior 

is due to a combination of measurement errors, differences in observed and simulated upwind 

conditions, and the fundamental limitation of the WFP scheme in characterizing sub-grid 

features. In the CWEX-11 simulations, some grid cells contain multiple turbines, and the WFP 

scheme cannot model sub-grid scale phenomena, contributing to the observation-simulation 

differences.  

During the ET, power production decreases in the wind-farm simulations, due both to 

strengthening wakes and the temporal and spatial variability of the inflow to the turbines. 

Accompanying the small fluctuations in the simulated hub-height WD of less than 20° (Figure 

2.9b), the background WS oscillates between 8 to 11 m s-1 and remains below rated speed during 

the ET (Figure 2.9a). The free-stream WS is in the Region II of the turbine power curve, where 

the power production is highly sensitive to WS variations. Before the ET, the temporal trend of 

power generation in the turbine-containing grid cells follows closely the upwind WS changes, 

which explains the rapid reduction of the power ratio during the ET (Figure 2.13 and Figure 

2.14). After the ET, stronger wakes lead to a lower downwind power ratio, so the average power 



53 

 

production continues to plummet even as the WS rebounds. The modelled streaks of gusts or 

lower WSs across the whole wind farm also produce fluctuations in the overall power production. 

The stability transition near the surface modifies the wind-profile stratification; this progression 

can also lead to reductions in power output during the ET.  

 

2.6 Conclusion 

Herein, we present the evolution of both observed and simulated wind turbine wakes 

during the evening transition ET. Through the ET, the vertical extent of the wake WS deficit, 

produced by an individual turbine, gradually decreases and becomes confined within the rotor 

layer. After the upwind buoyancy-driven turbulence diminishes in the evening, the downwind 

turbulence generation rebounds and persists within the rotor layer. Transitioning surface inflow 

and strengthening wakes introduce temporal fluctuations in downwind power deficit.  

The mesoscale WRF-model simulations using the WFP scheme also offer a basis for the 

prediction of power production when the daily electricity demand increases in the evening. As 

the ET progresses, the downwind turbines and the downwind atmosphere experience 

continuously strengthening wake effects. Compared to the control simulations with no wind-

turbine effects, the virtual wind farm leads to an increase in hub-height WS deficit by more than 

10%, a 50% increase of TKE at hub height, and a 20% increase in QH, which stalls surface 

cooling through the end of the ET. The power ratio, a measure of the simulated power generation 

to the potential power production given undisturbed inflow, decreases nearly 15% during the 

transition. Overall, turbine wakes respond to the evolving PBL during the ET, thereby affecting 

total wind-farm power production by reducing the productivity of downwind turbines. As wind-

energy control research moves from a focus on manipulating individual turbines to optimizing 
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power production of larger plants (Fleming et al., 2014, 2016), these varying stability-driven 

wake characteristics should be incorporated into control schemes.  

Having demonstrated that the WRF model has skill in simulating the ambient wind field 

for the selected ET case, we demonstrate that the WFP scheme is capable of modelling turbine 

wakes through changing atmospheric stability conditions. Thus, this study lays the groundwork 

for future investigations to compare the power output of the WFP scheme to the observed power 

production, which can be conducted with nacelle anemometer measurements (St. Martin et al., 

2017). Since mesoscale modelling is crucial in predicting power production in wind farms 

(Marquis et al., 2011; Jiménez et al., 2015; Wilczak et al., 2015), comparisons of predicted and 

observed power output can help to identify areas for improvement in the WFP scheme in the 

WRF model. Moreover, accurate representation of wind farms in numerical weather prediction 

models is important for both simulating wind-energy production and planning for energy 

infrastructure (Jacobson et al., 2015; MacDonald et al., 2016).  
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Chapter 3 

3. EVALUATION OF THE WRF WIND FARM PARAMETERIZATION 

 

Доверяй, но проверяй. 

(Trust, but verify.) 

– Russian Proverb 

 

Fundamentally, meteorology boils down to understanding and forecasting the weather. 

Similarly, a branch of wind-energy meteorology focuses on wind-power forecasting. To a 

modern forecaster, numerical models are essential in forecasting the microscale, mesoscale, 

synoptic and global weather events that persist from minutes to seasons. For wind-energy 

purposes, the capability of a numerical weather prediction (NWP) model to accurately predict 

ambient WS dictates its ability to simulate wind-power production. For instance, the wind farm 

parameterization (WFP) scheme in the Weather Research and Forecasting (WRF) model, a 

widely used NWP approach, considers both the meteorological and the wind-turbine aspects of 

wind flow.  

Since its first public release, research involving the WRF WFP scheme has been active at 

different locations, including the U.S. and Denmark (Jiménez et al., 2015; Vanderwende et al., 

2015; Lundquist et al., 2016). Nonetheless, the simulated power productions of onshore wind 

farms have yet to be validated with real power generations, hence a question mark hangs over the 

validity of the skill of the WFP in estimating wind power. No model is perfect, therefore the 

research community demands a comprehensive validation of the WRF WFP.  
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This chapter takes the first step to quantify the performance of the WRF WFP and 

dissects when and why the WFP produces trustworthy results. Comparison between the recorded 

and the modelled power productions with a fixed WS in a neutral stability environment has been 

carried out in Jiménez et al. (2015). Building on the literature, the modeling community demands 

an assessment on the WFP using a range of WS and stability scenarios. Therefore, this chapter 

aims to examine the WFP performance thoroughly. This work illustrates the results from field 

data, observed turbine-power generations, and numerical model outputs on simple terrain with 

the layout of a real wind farm. From the meteorological standpoint, the case study chosen is 

interesting, considering the winds ramp up and down and the wind direction (WD) changes over 

time during the summer low-level jets (LLJs).  

This chapter tests the ability of the WFP to simulate accurate power production of a wind 

farm with an irregular shape, which is common in reality. Improving accuracy in power 

predictions helps to advance wind-plant control and operational strategies. Ultimately, reducing 

the uncertainty from NWP models further decreases the levelized cost of energy (LCOE) of wind 

energy.  

The following is reproduced and reformatted from:  

Lee, Joseph C. Y., and Julie K. Lundquist. 2017. Evaluation of the wind farm 

parameterization in the Weather Research and Forecasting model (Version 3.8.1) with 

meteorological and turbine power data. Geoscientific Model Development 10 (11): 4229–44. doi: 

10.5194/gmd-10-4229-2017.  

Julie Lundquist revised the manuscript and provided guidance of the research.  
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3.1 Abstract 

Forecasts of wind-power production are necessary to facilitate the integration of wind 

energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. 

This chapter focuses on a case study of four diurnal cycles with significant power production, 

and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather 

Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model 

configuration. After verifying the simulated ambient flow with observations, we quantify the 

value of the WFP as it accounts for wake impacts on power production of downwind turbines. 

We also illustrate that a vertical grid with approximately 12-m vertical resolution is necessary for 

reproducing the observed power production, with statistical significance. Further, the WFP 

overestimates the wake effects and hence underestimates downwind power production during 

high wind-speed (WS), highly stable and low turbulence conditions. We also find the WFP 

performance is independent of the number of wind turbines per model grid cell and the upwind-

downwind position of turbines. Rather, the ability of the WFP to predict power production is 

most dependent on the skill of the WRF model in simulating the ambient WS.  

 

3.2 Introduction 

In recent years, numerical weather prediction (NWP) models have become an 

indispensable tool in the wind-energy industry, not only in day-to-day wind-energy production 

forecasts (Wilczak et al., 2015), but also to support wide-scale wind-power penetration (Marquis 

et al., 2011) and wind resource assessment (WRA). To forecast power production accurately at 

wind farms, the simulation tools should resolve all physical processes relevant to the wind field, 
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including possible impacts of the wind turbines themselves. Consequently, including the 

meteorological effects of wind farms in NWP models can improve power-production forecasts.  

Researchers have developed various methods to numerically represent wind farms. Via 

large-eddy simulations (LESs), some investigators assess the meteorological impacts of wind 

turbines as well as power production (Jimenez et al., 2007; Calaf et al., 2010; Wu and Porté-Agel, 

2011; Churchfield et al., 2012b; Aitken et al., 2014a; Mirocha et al., 2014; Abkar and Porté-Agel, 

2015b; Na et al., 2016; Sharma et al., 2016). Simulating wind turbines and their effects in LESs 

is, while useful, computationally expensive, making wind-farm-scale simulations unreasonable 

in an operational setting.  

At coarser spatial scales, suitable for global, synoptic or mesoscale models, numerically 

representing wind turbine effects may involve unrealistic assumptions. For example, researchers 

have used exaggerated surface roughness to represent the reduction of wind speed (WS) caused 

by wind farms in a global model (Keith et al., 2004; Frandsen et al., 2009; Barrie and Kirk-

Davidoff, 2010). Similarly, the analytical wind park model of Emeis and Frandsen (1993) 

considers both the downward momentum flux and the momentum loss due to surface roughness. 

The revised model by Emeis (2010) accounts for the spatially averaged momentum-extraction 

coefficient by turbines, and the parameters become atmospheric-stability dependent. However, 

these models omit the consideration of turbine-scale interactions between the hub and the surface 

(Fitch et al., 2012, 2013b; Abkar and Porté-Agel, 2015a).  

Aside from indirectly representing wind turbines via exaggerated roughness, another 

common approach is to use the turbine power curve to deduce elevated drag and turbulence 

production of wind turbines. A power curve illustrates the relationship between inflow WS at 

hub height and power production of a particular turbine model. This method can model 



60 

 

meteorological impacts of wind turbines and the impact of turbine drag force (Blahak et al., 2010; 

Baidya Roy, 2011). Based on this technique, Fitch et al. (2012) added the consideration of the 

turbine thrust coefficient to simulate both turbine drag and power loss.  

In the wind farm parameterization (WFP) of the Weather Research and Forecasting 

(WRF) model, wind turbines in each model grid cell are collectively represented as a turbulence 

source and a momentum sink within the vertical levels of the turbine rotor disk (Fitch et al., 

2012). A fraction of the kinetic energy extracted by the virtual wind turbines is converted to 

power, and the turbulence generation is derived from the difference between the thrust and 

power coefficients. In the WFP scheme, the use of the WS-dependent thrust coefficients 

accounts for the effects of local wind drag on wind-energy extraction as well as on power 

estimation. The WRF WFP offers flexibility, where users can modify the parameters of a turbine 

model, such as its hub height, rotor diameter (D), power curve, and thrust coefficients, and does 

not require other empirically-derived parameters. By simulating wind farms in a mesoscale 

weather model, WRF users can simulate aggregated effects of wind-turbine wakes and thus the 

effects of power production of downwind turbines.  

An approach similar to the WRF WFP proposed by Abkar and Porté-Agel (2015a) relies 

on an extra parameter, which is the ratio of the free-stream velocity to the horizontally averaged 

hub-height velocity of a turbine-containing grid cell. This ratio depends on various factors such 

as the wind-farm density and layout, and requires preliminary simulation results (Abkar and 

Porté-Agel, 2015a). Therefore, the publicly available WFP in the WRF model is chosen in this 

project for observed power comparison. Several approaches are available to incorporate impacts 

of wind farms into mesoscale simulations. The explicit wake parameterization (EWP) recently 

designed by Volker et al. (2015) uses classical wake theory to describe the unresolved wake 
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expansion. Both the WRF WFP and the EWP average the drag force within grid cells. 

Nevertheless, users of the EWP need to adjust the length scales that determine wake expansion in 

the EWP for different situations. 

In this chapter, we evaluate the WFP in the WRF model via comparison to actual power-

production data. The WRF WFP has been widely used to assess the impacts of onshore and 

offshore wind farms at different spatial scales and in different stability regimes (Fitch et al., 

2013a, 2013b; Vautard et al., 2014; Eriksson et al., 2015; Jiménez et al., 2015; Miller et al., 2015; 

Vanderwende and Lundquist, 2016; Vanderwende et al., 2016; Lee and Lundquist, 2017b). 

Whereas WFP predictions have been compared to power production of offshore wind farms for a 

limited set of WSs (Jiménez et al., 2015), here we explore a range of WSs, wind direction (WD), 

turbulence, and atmospheric stability conditions. The large range of wind conditions induces 

spatially and temporally diverse power production, thereby providing a basis for a 

comprehensive evaluation of the WFP. The uniqueness of this project lies in the in-depth 

assessment of the WRF WFP performance in forecasting and simulating wind energy of a sizable 

onshore wind farm, using observed power-production data. 

We describe the observation data and the model design in Section 3.3. In Section 3.4, we 

evaluate the simulations by comparing the meteorological and power-generation data with a 

statistical examination. We close with a proposal of improvements on the WRF WFP in Section 

3.5.  
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3.3 Data and methods 

3.3.1 Observations 

The 2013 Crop Wind Energy eXperiment (CWEX-13) took place in central Iowa at a 

200-turbine wind farm to quantify far-wake impacts of multiple rows of turbines (Lundquist et 

al., 2014). In CWEX-13, measurements from seven surface flux stations, a radiometer, three 

profiling LiDARs (or Light Detection And Ranging) and a scanning LiDAR were collected. This 

campaign was a component of the larger CWEX project, which explored the interactions of wind 

turbines with crops, surface fluxes and near-surface flows in different atmospheric stability 

regimes in flat terrain (Rajewski et al., 2013). Research facilitated by the CWEX projects include: 

diurnal changes in observed turbine wakes (Rhodes and Lundquist, 2013), turbine interactions 

with moisture and carbon dioxide fluxes (Rajewski et al., 2014), LES modelling of turbine wakes 

in changing stability regimes (Mirocha et al., 2015), nocturnal low-level jet (LLJ) occurrences 

(Vanderwende et al., 2015), diurnal changes of the microclimate near wind turbines (Rajewski et 

al., 2016), multiple-wake interactions (Bodini et al., 2017), the evolution of turbine wakes during 

the evening transition (Lee and Lundquist, 2017b) and coupled mesoscale-microscale modelling 

(Muñoz-Esparza et al., 2017).  

This wind farm consists of 200 wind turbines, represented by the red dots in Figure 3.1. 

Half of the wind turbines in the wind farm are General Electric (GE) 1.5-MW super-long 

extended (SLE) model, and the other half are GE 1.5-MW extra-long extended (XLE) model 

(Rajewski et al., 2013). The cut-in and cut-out speeds of the SLE model are 3.5 and 25 m s-1 

respectively, and the rated speed is 14 m s-1. With the same cut-in speed, the XLE model has 

lower rated and cut-out WSs at 11.5 and 20 m s-1. The hub height of both models is 80 m; the Ds 

of the SLE and the XLE model are 77 and 82.5 m respectively. For simplicity, references to the 
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D herein refer to the 77-m D. Power generated by each turbine is recorded by the Supervisory 

Control and Data Acquisition, also known as SCADA, system every 10 minutes, and we sum up 

the power production of all turbines for wind-farm production for each 10-minute period.  

Observations of the wind profile are collected by a profiling LiDAR and a scanning 

LiDAR. The WINDCUBE (WC) v1 profiling LiDAR (yellow square in Figure 3.1) is located 

528 m, or 6.3 D, south of the nearest turbine. The WC LiDAR measures winds at about 0.25 Hz 

from 40 to 220 m above ground level (a.g.l.) every 20 m via the Doppler beam swinging (DBS) 

method. The WC LiDAR derives wind components by measuring radial velocities using DBS at 

an azimuth angle of 28°. Note that the WC-observed turbulence parameters, namely the 

turbulence kinetic energy (TKE) and the turbulence intensity (TI), are derived from the variances 

of the three wind components in 2-minute intervals, and hence do not represent small-scale 

turbulence. The turbulence parameters, TI and TKE, are defined in Equations 3.1 and 3.2. In 

CWEX-11, wind-turbine wake measurements at a different location in this wind farm were 

collected with these instruments (Rhodes and Lundquist 2013), and the errors in the WC LiDAR 

measurements due to inhomogeneous flow were explored by Bingöl et al. (2009) and Lundquist 

et al. (2015).  
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Figure 3.1: Map of the three domains (d01, d02 and d03) in the WRF simulations (a), with the 

white x representing the CWEX-13 wind farm. Zoom-in map of the wind farm (b), with the 

black horizontal and vertical lines outlining the WRF grid cells, the red dots as the actual 

locations of wind turbines, the blue numbers as the number of wind turbines per WRF grid cell, 

the yellow square as the WC LiDAR, the green square as the 200S LiDAR and the purple square 

as the surface flux station. Other instruments were deployed in CWEX-13, and only the 

instruments used herein are shown.  

 

The WINDCUBE 200S scanning LiDAR (green square in Figure 3.1) is positioned 437 

m, or 5.7 D, north of the nearest turbine row. In CWEX-13, the 200S LiDAR scanning strategy 

included velocity azimuth display (also known as VAD) scans that measures winds from ~100 to 
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~4800 m a.g.l. approximately every 50 m for every 3 minutes. In this chapter, we use the 200S 

75° elevation scans (Vanderwende et al., 2015) to estimate horizontal winds every 30 minutes to 

validate the simulated winds in the boundary layer. In the case study chosen, the dominant WD is 

south-easterly to south-westerly (Vanderwende et al., 2015), and thus some of the 200S 

measurements below the rotor top (about 120 m a.g.l.) could be influenced by turbine wakes 

during conditions when the wakes persist longer than 5 D downwind from the turbine (Bodini et 

al., 2017). However, the WC measurements are largely unaffected by turbine wakes except when 

WD is east of 150°. The closest upwind turbine during this simulation period was located over 

2.7 km (33 D) to the south-east.  

The measurements from the surface flux station can also quantify model skill. The 

surface flux station of interest (purple square in Figure 3.1) is located 681 m, or 8.8 D, south of 

the closest turbine. At 8 m a.g.l., the station measures 20-Hz winds via a CSAT3 sonic 

anemometer, as well as virtual temperature and water-vapor density via a HMP45C probe. After 

tilt correction (Wilczak et al., 2001), we calculate surface sensible heat flux (QH) using a 30-

minute averaging time period. We use the Obukhov length (𝐿) to categorize atmospheric stability 

conditions:  

𝐿 = −
𝑇𝑣̅̅ ̅𝑢∗

3

𝑘𝑔(𝑤′𝑇𝑣′̅̅ ̅̅ ̅̅ ̅̅ )𝑠
,                (3.1) 

where 𝑇�̅�  is the mean virtual temperature, 𝑢∗  is the frictional velocity, 𝑘  is the von Karman 

constant, 𝑔  is the gravity acceleration, and (𝑤′𝑇𝑣′̅̅ ̅̅ ̅̅ ̅)𝑠  is the surface virtual temperature flux 

calculated from the 20-Hz measurements (Stull, 1988). A positive QH and Obukhov length ratio 

(𝑧 𝐿−1 ), where 𝑧  is 8 m, indicates a stable atmosphere, whereas a negative ratio represents 

unstable conditions.  
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From 24-27 August 2013, nocturnal LLJs were observed (Vanderwende et al., 2015). No 

major synoptic events affected the area during this period. Moreover, when the near-surface 

flows are southerly, the WC and the surface flux station measure winds unaffected by wind 

turbines (Muñoz-Esparza et al., 2017). Additionally, no curtailment of wind turbines occurred, 

and the instruments operated normally during the period, making these 4 days ideal for model 

validation.  

 

3.3.2 Modelling 

To establish direct comparison with the observations, we simulate winds with and 

without the WFP using the Advanced Research WRF (ARW) model (version 3.8.1) (Skamarock 

and Klemp, 2008). We simulate the winds on each day separately, from 0000 Coordinated 

Universal Time (UTC) to 0000 UTC, after 12 hours of spin-up time. The ERA-Interim (ERA-I) 

(Dee et al., 2011) and the 0.5° Global Forecast System (GFS) reanalysis datasets provide 

boundary conditions for two different sets of model runs. We set three domains in our 

simulations with horizontal resolutions of 9, 3 and 1 km respectively, where the finest domain 

covers the state of Iowa (Figure 3.1). To capture the westerly synoptic flow and the southerly 

near-surface winds, we position the inner grids north-east of the centers of the coarser grids.  

The WFP scheme simulates wind farms and their meteorological influences on the 

atmosphere. We provide a brief summary here, and the details are discussed in Fitch et al. (2012). 

Wind turbines slow down ambient wind flow and convert a part of the kinetic energy of wind 

into electrical energy. The WFP represents this wind-turbine drag force as the kinetic energy 

harvested by the turbine from the atmosphere:  
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𝑭𝑑𝑟𝑎𝑔 =
1

2
𝐶𝑇(|𝑽|)𝜌|𝑽|𝐴𝑽,               (3.2) 

where 𝐶𝑇 is the turbine-specific thrust coefficient (discussed in detail in Fitch, 2015), 𝑽 is the 

horizontal velocity vector, 𝜌 is air density, 𝐴 =
𝜋

4
𝐷2 is the cross-sectional rotor area, and 𝐷 is the 

rotor diameter. This kinetic-energy extraction also causes changes in the atmosphere, namely the 

kinetic energy loss in the grid cell, which is described by the momentum tendency:  

𝜕|𝑽|𝑖𝑗𝑘

𝜕𝑡
=

𝑁𝑡
𝑖𝑗

𝐶𝑇(|𝑽|𝑖𝑗𝑘)|𝑽|𝑖𝑗𝑘
2 𝐴𝑖𝑗𝑘

2(𝑧𝑘+1−𝑧𝑘)
,               (3.3) 

where 𝑖, 𝑗, and 𝑘 represent the zonal, meridional, and vertical grid indices, 𝑁𝑡
𝑖𝑗

 is the number of 

wind turbines per square metre, and 𝑧𝑘  is the height at model level 𝑘. Of the kinetic energy 

extracted by the turbines, the WFP accounts for the electricity generation with the following:  

𝜕𝑃𝑖𝑗𝑘

𝜕𝑡
=

𝑁𝑡
𝑖𝑗

𝐶𝑃(|𝑽|𝑖𝑗𝑘)|𝑽|𝑖𝑗𝑘
3 𝐴𝑖𝑗𝑘

2(𝑧𝑘+1−𝑧𝑘)
,               (3.4) 

where 𝑃𝑖𝑗𝑘  is the power output in the grid cell in watts, and 𝐶𝑃  is the power coefficient. 

Assuming negligible mechanical and electrical losses, the rest of the kinetic energy harvested 

turns into TKE:  

𝜕𝑇𝐾𝐸𝑖𝑗𝑘

𝜕𝑡
=

𝑁𝑡
𝑖𝑗

𝐶𝑇𝐾𝐸(|𝑽|𝑖𝑗𝑘)|𝑽|𝑖𝑗𝑘
3 𝐴𝑖𝑗𝑘

2(𝑧𝑘+1−𝑧𝑘)
,              (3.5) 

where 𝑇𝐾𝐸𝑖𝑗𝑘 is the TKE in the grid cell, and 𝐶𝑇𝐾𝐸 is the difference between 𝐶𝑇 and 𝐶𝑃. 

In this chapter, we employ two resolutions of vertical grids: approximately 12-m and 22-

m resolution below 400 m a.g.l., with 80 and 70 total levels respectively (Figure 3.2). Three and 

six vertical levels intersect the atmosphere below and within the rotor layer in the finer vertical 

grid, while the 22-m grid only allows one full level below and four levels within the rotor layer 
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(Figure 3.2). The vertical levels are further stretched beyond the boundary layer. In past research 

involving the WRF WFP scheme, the selections of vertical resolution within the rotor layer 

include 9 to 18 m in Vanderwende et al. (2016), about 10 to 16 m in Volker et al. (2015), about 

15 m in Fitch et al. (2012), Fitch et al. (2013a), Fitch et al. (2013b) and Vanderwende and 

Lundquist (2016), about 20 m in Miller et al. (2015) and Vautard et al. (2014), about 22 m in Lee 

and Lundquist (2017), and about 40 m in Eriksson et al. (2015) and Jiménez et al. (2015).  

 

 

Figure 3.2: Illustration of the two vertical grids chosen: the 12-m grid on the left in blue and the 

22-m grid on the right in purple. Both grids shown use the ERA-I as the boundary conditions. 

The simulations initiated with the 0.5° GFS have similar vertical grids.  
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Moreover, the Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5 planetary boundary 

layer (PBL) scheme is required for the WFP in the WRF model version 3.8.1 (Fitch et al., 2012). 

Note that substantial upgrades were made on the MYNN PBL schemes in WRF version 3.8 

(WRF-ARW, 2016). The MYNN PBL scheme supports TKE advection, active coupling to 

radiation, cloud mixing from Ito et al. (2015), and mixing of scalar fields. The MYNN scheme 

also uses the cloud probability density function from Chaboureau and Bechtold (2002), and here 

we keep the mass-flux scheme deactivated. We summarize the other model configuration details 

in Table 3.1.  

 

Parameterization Scheme Reference 

Cumulus Kain-Fritsch Kain (2004) 

Land surface NOAH LSM Ek et al. (2003) 

Land surface roughness Thermal roughness length Chen and Zhang (2009) 

Microphysics Thompson aerosol-aware Thompson and Eidhammer (2014) 

PBL MYNN Level 2.5 Nakanishi and Niino (2006) 

Radiation RRTMG Iacono et al. (2008) 

   

Table 3.1: The WRF model configuration.  

 

After validating the background flow simulated by the WRF model (first four rows in 

Table 3.2), virtual turbines are added via the WFP (last four rows in Table 3.2). We simulate all 

the turbines using the 1.5-MW Pennsylvania State University (PSU) generic turbine model 

(Schmitz, 2012), in which its specifications are based on the GE 1.5-MW SLE model installed at 

the wind farm. The turbines within the WRF grid cells are located using the latitudes and 

longitudes provided by the wind-farm owner-operator. The model grid cells within the wind farm, 
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containing 1 to 4 wind turbines per cell, are labelled as blue numbers in Figure 3.1. With the 

WFP activated, the model simulates the total power production at each time step in each turbine-

containing grid cell, regardless of the number of turbines per cell. To match the 10-minute 

average power data from the turbines, we sample 10-minute power from the WFP output.  

 

Run name Boundary condition Vertical resolution WFP 

ERA12 ERA-I 12 m No 

ERA22 ERA-I 22 m No 

GFS12 0.5° GFS 12 m No 

GFS22 0.5° GFS 22 m No 

ERA12WF ERA-I 12 m Yes 

ERA22WF ERA-I 22 m Yes 

GFS12WF 0.5° GFS 12 m Yes 

GFS22WF 0.5° GFS 22 m Yes 

    

Table 3.2: List of WRF simulations and their features. 

 

We also estimate the power generation of the WRF simulations without using the WFP. 

Based on the ambient WS of the turbine-containing grid cells in the control WRF runs, we use 

the turbine power curve to obtain an assessment of the power every 10 minutes. We then 

multiply the power with the number of turbines per cell to calculate power in each grid cell, as 

would be done in wind-energy forecasting without a wake parameterization. This method of 

power estimation omits the wake effects, in contrast to the WFP.  
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3.4 Results 

3.4.1 Ambient flow evaluation 

The WRF-model simulations without the WFP simulate accurate ambient winds 

compared to the LiDAR measurements. Qualitatively, the ERA12 simulation (see Table 3.2 for a 

listing of all the simulations) has skill in simulating WS and WD during the 4-day period, 

including the occurrence, the strength and the elevation of the nocturnal LLJs (Figure 3.3). The 

200S records the vertical shear caused by LLJs above 100 m (Figure 3.3a), and the WC measures 

the near-surface winds with high temporal resolution (Figure 3.3b). In the observations and the 

simulations of WS (Figure 3.3c), the night-time WS profile is stratified whereas the daytime 

atmosphere is well-mixed. The WD simulations also match well with the measurements, where 

in the evening the winds veer, or turn clockwise with height (Figure 3.4), while the WD remains 

relatively constant with height during daytime. Except for the last hours on 24 August, the 

ERA12 captures the general temporal and vertical fluctuations in WS and WD, when the winds 

change from south-easterly to south-westerly (Figure 3.3 and Figure 3.4). The 200S 

measurements above the rotor layer (120 m) are unaffected by turbine wakes (Figure 3.3a and 

Figure 3.4a); the LLJs observed above the rotor layer resemble those from the ERA12, 

confirming the skill of the simulations. To evaluate the effects of boundary conditions and 

vertical resolutions on simulating winds, we compare the four no-WFP runs: ERA12, ERA22, 

GFS12 and GFS22.  
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Figure 3.3: Time-height contour of WS from the 200S (a), the WC (b) and the ERA12 at the 

closest grid point to the 200S (c).  
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Figure 3.4: As in Figure 3.3, but for WD.  

 

Quantitatively, simulations using finer vertical resolution have more skill in simulating 

winds than those with coarser resolution (Table 3.3). In comparison to the 200S and WC 

observations, the mean absolute errors in WS and WD of the 12-m runs are lower than those of 
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the 22-m runs over the 4-day period, by 0.3 m s-1 and 0.8° on average. Particularly in the ERA12, 

the errors in WS decrease by at least 19% relative to the ERA22. Although the GFS22 yields 

smaller WS errors than the ERA22, refining the vertical grid of the simulations using either 

boundary condition dataset improves the WS-prediction skill of the WRF model more than 

changing the boundary conditions (Table 3.3). The errors in simulating WD remain similar 

regardless of the choice of boundary condition or vertical grid. Of all our control runs, the 

ERA12 simulates the most accurate inflow.  

 

 ERA12 ERA22 GFS12 GFS22 

200S 120 m WS 1.49 1.84 1.35 1.54 

WC 120 m WS 1.21 1.63 1.34 1.48 

WC 80 m WS 1.24 1.64 1.36 1.55 

WC 40 m WS 1.47 1.90 1.53 1.86 

200S 120 m WD 14.99 15.98 14.68 14.99 

WC 120 m WD 12.66 13.86 13.07 13.47 

WC 80 m WD 13.23 14.55 13.85 14.24 

WC 40 m WD 14.19 15.58 14.83 15.15 

     

Table 3.3: Average absolute error in WS (m s-1) and WD (°) of different no-WFP runs. The 

smallest errors across different WRF settings are highlighted in bold.  

 

3.4.2 Power simulations 

The simulation omitting the WFP ignores the wake effects on power production of 

downwind turbines, and therefore overestimates total power. For each 10-minute time step, we 

compare the spatial distribution of power production as well as the total power between the 

ERA12, the ERA12WF, and the observations; Figure 3.5 represents one 10-minute time step in 
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the 4-day period. As mentioned above, we calculate the power estimates of ERA12 using the 

ambient WS, the number of turbines in each grid cell, and the power curve (Figure 3.5a). The 

WRF WFP generates power predictions (Figure 3.5b), and we sum up the actual power 

production in each grid cell (Figure 3.5c). We present the total 10-minute simulated and 

observed power of the whole wind farm at the bottom of each panel in Figure 3.5, and the total 

power production of the WFP run matches the observed. We then assemble the 576 10-minute 

total power values over the 4-day period and compare the simulations to the observations (Figure 

3.6). We also calculate an error and a bias of modelled total power for each 10-minute interval, 

summarizing as the daily root-mean-squared errors (RMSEs) and average biases in Table 3.4 and 

Table 3.5. The large average biases in Table 3.5 highlight the consistent power overestimation of 

the no-WFP runs.  
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Figure 3.5: The power production for one 10-minute period from the ERA12 estimates (a), the 

ERA12WF outputs (b) and the observation (abbreviated as OBS) (c). The total power in each 

grid cell is presented regardless of the number of turbines in each cell, and the wind-farm totals 

are summarized at the bottom. The vectors indicate the simulated winds, and their lengths 

correspond to the horizontal velocity magnitude.  
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Figure 3.6: Scatterplots comparing the 10-minute average observed total wind-farm power over 

the 4-day period against the calculated total power from the ERA12 (a) and the ERA22 (b), and 

the simulated total power from the ERA12WF (c) and the ERA22WF (d). The dots represent the 

total power productions on 24 August (purple), 25 August (blue), 26 August (green) and 27 

August (yellow).  
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24 Aug 25 Aug 26 Aug 27 Aug 4-day mean 

ERA12 73.6 73.5 35.4 22.6 51.3 

ERA22 79.5 72.8 48.5 41.0 60.5 

GFS12 62.0 76.5 58.3 40.9 59.4 

GFS22 73.9 89.6 65.3 51.9 70.2 

ERA12WF 42.2 49.4 31.1 46.5 42.3 

ERA22WF 61.7 61.2 50.9 71.6 61.4 

GFS12WF 46.2 54.6 34.1 36.1 42.8 

GFS22WF 40.0 60.0 32.6 37.3 42.5 

      

Table 3.4: RMSE of 10-minute total power (in MW) of different model runs each day. 

 

 
24 Aug 25 Aug 26 Aug 27 Aug 4-day mean 

ERA12 68.3 62.6 26.8 8.1 41.5 

ERA22 58.3 52.1 28.0 6.2 36.2 

GFS12 49.4 65.0 51.8 29.0 48.8 

GFS22 65.5 80.7 60.3 35.8 60.6 

ERA12WF 17.5 16.6 -12.2 -41.6 -4.9 

ERA22WF 10.4 0.6 -17.6 -53.6 -15.1 

GFS12WF 3.8 22.2 9.6 -18.6 4.3 

GFS22WF 2.9 29.7 10.9 -12.3 7.8 

      

Table 3.5: Average bias of 10-minute total power (in MW) of different model runs each day. The 

RMSEs and biases closest to zero across different days are highlighted in bold.  

 

Over the 4-day period, the WFP produces total power of the whole wind farm that 

generally agrees with observation (Figure 3.6c). Although the RMSEs between the no-WFP and 

WFP runs are comparable (Table 3.4), the average biases are smaller in the WFP simulations 
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(Table 3.5). For instance, the ERA12WF slightly under-predicts total power by -4.9 MW on 

average (Figure 3.6c and Table 3.5). The ERA12, by contrast, consistently over-predicts power 

production by 41.5 MW (Figure 3.6a and Table 3.5). The daily positive biases of the ERA12 in 

the first 2 days are nearly 20% of maximum wind farm production (Table 3.5). The average 

positive power bias of 36.2 MW in the ERA22 is also remarkably larger than the mild negative 

bias of -15.1 MW in the ERA22WF (Figure 3.6b and d, and Table 3.5). Furthermore, the ERA12 

and the GFS12 generally outperform the ERA22 and the GFS22 in power predictions, 

particularly in RMSE (Figure 3.6 and Table 3.5). However, on the last day, with more south-

westerly flow, the ERA12 and the ERA22 outperform the ERA12WF and the ERA22WF, while 

the GFS12WF and the GFS22WF yield smaller errors and biases (Table 3.4 and Table 3.5). 

Nonetheless, in aggregate, the simulations using the WFP predict wind-farm power production 

with more skill than simulations without the WFP.  

As demonstrated by the average absolute errors (Table 3.3), the WFP power simulations 

improve when using 12-m rather than 22-m vertical resolution (Figure 3.6). Changing the 

vertical grid improves the predictions more than changing boundary conditions (Table 3.4 and 

Table 3.5). In particular, in the ERA-I simulations, the RMSE each day decreases by 19% to 

39% when switching from ERA22WF to ERA12WF (Table 3.4; Figure 3.6c and d). Since the 

power-prediction skill of the ERA-I-initiated runs and the GFS-initiated runs are comparable, the 

rest of the chapter will focus on the WFP runs using the ERA-I as initial and boundary 

conditions.  

Moreover, to statistically differentiate the power productions from various model runs, 

we apply the two-sample Student’s t-test. The null hypothesis of a two-sample t-test is that the 

two population means are the same, assuming the underlying distributions are Gaussian (Wilks, 
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2011). Hence, if the resultant p-value is equal to or below 0.05, the two distributions are 

statistically significantly different at the 95% confidence level. For example, the difference 

between the 4-day power-production averages from the ERA12 and from the ERA12WF is -46.8 

MW, and the respective p-value is 0 (Table 3.6). Thus, the difference between the means is 

statistically significant. In other words, the ERA12 and the ERA12WF yield different power-

production distributions at any confidence level. Similarly, the GFS12 and the GFS12WF lead to 

statistically different power outputs as the p-value from t-test is 0 as well (Table 3.7). We also 

use the two-sample t test to contrast the actual and the modelled power distributions. For instance, 

all the p-values between the no-WFP runs and the observation are 0, implying those simulations 

yield power-generation distributions significantly different from the reality (Table 3.8).  

 

 
 ERA12 ERA12WF ERA22WF 

 4-day mean 41.8 -4.9 -15.1 

ERA12 41.8  -46.7; 0  

ERA22 36.1 5.7; 0.03  -51.2; 0 

ERA12WF -4.9    

ERA22WF -15.1  10.2; 9.6×10-4  

     

Table 3.6: Differences of the 4-day means (first value) and p-values (second value) from two-

sample t-tests of simulated power from different ERA-I runs. 
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 GFS12 GFS12WF GFS22WF 

 4-day mean 48.6 4.2 7.8 

GFS12 48.6  -44.4; 0  

GFS22 60.5 -11.9; 1.1×10-7  -52.7; 0 

GFS12WF 4.2    

GFS22WF 7.8  -3.6; 0.16  

     

Table 3.7: As in Table 3.6, but for GFS runs. 

 

 

Simulated 4-day 

mean 

Observed 4-day 

mean 

Difference of 

means 
p-value 

ERA12 212.7 

170.9 

41.8 0 

ERA22 207.0 36.1 0 

GFS12 219.5 48.6 0 

GFS22 231.4 60.5 0 

ERA12WF 166.0 -4.9 0.106 

ERA22WF 155.8 -15.1 6.5×10-6 

GFS12WF 175.1 4.2 0.167 

GFS22WF 178.7 7.8 0.014 

     

Table 3.8: The p-values from 2-sample t-tests of the 10-minute observed power and the 10-

minute simulated power from different model runs. 

 

Given the utility of the WFP, assessing the interactions between atmospheric forcing and 

power production is an important step to further examine the performance of the WFP. As with 

the ERA12, the ERA12WF adequately simulates the evolution of the meteorological variables 

over the 4-day period (Figure 3.7a to d). Both the ERA12 and the ERA12WF capture the overall 

trends of hub-height ambient WS and WD measured by the WC (Figure 3.7a and b), 
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corresponding to Figure 3.3 and Figure 3.4. Nonetheless, although the simulations suggest 

stronger TKE diurnal cycles than the observations, especially in the first 36 h, the simulated 

values follow the trends of the WC-measured TKE (Figure 3.7c). Although the magnitudes of the 

QH of the surface flux station and the simulations differ, their signs change at similar times, 

particularly in the last 3 days (Figure 3.7d). Hence the WRF model is capable of representing 

diurnal atmospheric stability changes. Note that in Figure 3.7c, the LiDAR derives TKE using 2-

minute variances, which is intrinsically different from the modelled TKE, as discussed in Kumer 

et al. (2016) and Rhodes and Lundquist (2013). Hence, readers should focus on the general 

trends of the TKE time series, rather than their absolute values.  

The observed WS fluctuates more than the mesoscale-simulated WS during daytime 

(Figure 3.7a). The ramp events, when the WS changes rapidly in a short period (Potter et al., 

2009; Kamath, 2010), induce considerable swings in power production (Figure 3.7e). The five 

distinct ramp events with sudden WS increases are from 0000 to 0100 UTC on 24 August, from 

1800 to 1900 UTC 24 August, from 0000 to 0100 UTC 25 August, from 0000 to 0200 UTC 26 

August, and from 0000 to 0200 UTC 27 August. Most of the ramp events are related to the LLJs 

(Figure 3.3), and the simulated WS usually lags behind that observed (Figure 3.7a). Therefore, 

the WFP under-predicts total power in nearly all the ramp events (Figure 3.7e). Note that the 

measured WS ranges between the cut-in and rated speed of the wind turbine, when power 

production is highly sensitive to WS. The strong linkage between the temporal fluctuations of 

WS and power emphasizes the importance of accurate WS predictions.  
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Figure 3.7: Time series of hub-height WS (a), hub-height WD (b), hub-height TKE (c), surface 

sensible heat flux (QH) (d), and total wind-farm power (e) from the simulations (ERA12, in blue; 

ERA12WF, in black) and the measurements (in light blue). The simulated values are interpolated 

to hub height in the grid cell closest to the WC. In (b), the grey horizontal dash line marks the 

WD of 180°. In (d), the grey horizontal dash line marks the heat flux of 0 W m-2.  
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Along the same line, the WFP power performance changes in different meteorological 

conditions. To quantify WFP’s skill, we use the bias in total power as a benchmark, calculated 

by subtracting the observed power from the WFP simulated power every 10 minutes (Figure 3.8). 

Particularly, in conditions of strong winds and weak turbulence, the WFP overestimates the wake 

effects and thus underestimates power. However, for calm conditions with moderate or strong 

turbulence, the WFP tends to underestimate the wake effects and thereby over-predicts power 

(Figure 3.8a and c). Besides, the Pearson’s correlation coefficient (𝑟) between total power bias 

and WC-observed TKE is 0.48 (not shown).  

On the contrary, WD and atmospheric stability have weaker influence on the skill of the 

WFP in general. The winds gradually rotate from south-easterly to south-westerly over this 4-day 

period while maintaining similar magnitudes of WS. During this direction shift, the WFP 

demonstrates a weakly positive power bias when the WD is strictly southerly, while the biases 

skew negative when the winds have more easterly or westerly component (Figure 3.8b). 

Similarly, the WFP power bias is generally unresponsive to stability changes, although biases 

tend to be small in strongly stable conditions (Figure 3.8d). Moreover, strongly stable conditions 

tend to have stronger and more distinct wakes (Magnusson and Smedman, 1994; Rhodes and 

Lundquist, 2013; Abkar and Porté-Agel, 2015b; Lee and Lundquist, 2017b).  
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Figure 3.8: Scatterplots of the bias of the ERA12WF 10-minute total power and the WC-

observed hub-height WS (a), hub-height WD (b), hub-height TI (c) and stability parameter z L-1 

measured at the surface flux station (d). The 𝑟 represents the Pearson’s correlation coefficient. 

Similar to Figure 3.6, different colored dots represent biases on different days. The horizontal 

black dash lines mark the zero-power bias. In (d), the vertical black dash line at zero z L-1 

differentiates the two stability regimes.  
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To isolate the WFP errors in power predictions from the WRF model errors in simulating 

ambient winds, we analyze a subset of data where the winds are simulated accurately. When the 

absolute error in WS is smaller than 1 m s-1 and the absolute error in WD is smaller than 5°, the 

relationships between power bias and WS, WD and TI (Figure 3.9a to c) remain similar to the 

general trends shown in Figure 3.8a to c. The WS-power-bias and TI-power-bias correlations 

become stronger in this subset (Figure 3.9a and c), compared to the correlations using all the data 

in the 4-day period (Figure 3.8a and c). Moreover, when considering only cases of accurate wind 

predictions, the correlation between power bias and stability increases from -0.06 (Figure 3.8d) 

to -0.42 (Figure 3.9d). In the few (27 10-minute time steps) unstable conditions with accurate 

WS predictions, the power bias is generally positive, given moderate WS and high TI (Figure 

3.9a, c and d). In the stable regime, the WFP tends to underestimate power, regardless of WD 

(Figure 3.9b and d): 106 of the 125 stable data points are negatively biased. If the few strongest 

stability points (z L-1 larger than 0.55) are removed from the subset shown in Figure 3.9d, a 

weakly negative correlation between power bias and stability emerges as 𝑟  becomes -0.61. 

Additionally, generally south to south-westerly flows yield stronger negative power biases 

(Figure 3.9).  
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Figure 3.9: As in Figure 3.8, and only including data when the winds are accurately simulated in 

the ERA12WF run: the modelled-observed absolute error in WS smaller than 1 m s-1 and the 

absolute error in WD smaller than 5°. Different colors represent different WD bins: 150° to 170° 

in blue, 170° to 190° in cyan, 190° to 210° in orange, 210° to 230° in red, and 230° and beyond 

in maroon. The n values illustrate the sample size in each WD bin. Solid circles represent 

unstable conditions (z L-1 smaller than 0) and hollow circles represent stable conditions (z L-1 

larger than 0).  
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As expected, when the model properly simulates ambient WS, the WFP performs better. 

When the ERA12WF predicts larger WS than observed, the simulation over-predicts the total 

power. The positive WFP power bias corresponds to WS overestimation, and the negative bias is 

associated with WS underestimation (Figure 3.10). Interestingly, when the error in simulated 

total power lies between ±30 MW, the error of the simulated WS is mostly within ±2 m s-1 

(Figure 3.10). Nevertheless, the power bias does not seem to be related to WD or to ambient 

TKE: the correlation between the power bias and the simulated WD (TKE) bias is low, at 0.3 

(0.22) (not shown). Although the simulated WD and TKE generally match the WC observations 

(Figure 3.7b and c), and the model’s skill in simulating WD and TKE does not strongly influence 

the WFP’s power performance.  

 

 

Figure 3.10: Scatterplot between the bias of the ERA12WF 10-minute total power compared to 

observation, and its bias of the simulated hub-height WS in the closest grid cell to the WC. The 𝑟 

represents the Pearson’s correlation coefficient.  
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Although the WFP omits sub-grid-scale wake interactions between the wakes of multiple 

turbines within a cell, this omission does not affect the accuracy of the ERA12WF in power 

prediction: the performance of the WFP is insensitive to the number of turbines per model grid 

cell. The turbine-normalized bias demonstrates no dependence on the number of turbines within 

the model grid cell (Figure 3.11). Each whisker in Figure 3.11 marks the maximum, the upper 

quartile, the median, the lower quartile, and the minimum of the average bias. Despite the large 

positive biases of the maxima, more than half of the average biases fall between ±1.5 MW, 

regardless of the numbers of turbines per cell (Figure 3.11). Simulating one or four turbines in a 

grid cell (Figure 3.1) does not influence the WFP’s overall power-prediction performance in the 

cases shown here.  

 

 

Figure 3.11: Boxplot of the average bias of the ERA12WF simulated power across different 

numbers of wind turbine per WRF grid cell (Figure 3.1) every 10 minutes during the 4-day 

period.  
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Furthermore, the WFP performance remains consistent between upwind and downwind 

turbines, based on their positions against the ambient winds (Figure 3.12). Given the square 

shape of grid cells, we determine the sequential rows of turbines during strictly southerly flows, 

with WD between 175° and 185° (Figure 3.12a). The bulk of the normalized power biases fall 

within 0 to 0.4 MW, regardless of the upwind-downwind positions of turbines (Figure 3.12b). 

Additionally, the power bias is independent of the mean distance between the actual turbine 

locations and the center points of their respective grid cells (not shown).  

 

 

Figure 3.12: Map of the wind farm where the blue numbers represent the row number from the 

upwind row during southerly winds (a). The upwind row number is reset to 1 when the next two 

downwind grid boxes to the north contain no turbines. Boxplot of the average ERA12WF power 

bias normalized over different number of wind turbine rows, when the hub-height WD in the grid 

cell closest to the WC is between 175° and 185° (b).  
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3.5 Discussion 

Herein, we compare WRF model simulations with different choices of vertical 

resolutions and boundary conditions. The evidence suggests that, at least for this onshore case 

with a strong diurnal cycle, the vertical resolution is more crucial than the choice of boundary 

conditions in simulating accurate winds and wind-power production. Shin et al. (2011) have 

explored the impacts of the lowest model level on the performance of various PBL schemes in 

the WRF model, suggesting that increasing the number of model layers can simulate more 

accurate surface layer in different stability regimes. In this study, we further illustrate that 

establishing more vertical levels in the boundary layer as well as the rotor layer improves the 

skill of the WRF model in simulating ambient WS, ambient WD and wind power (Table 3.3, 

Table 3.4 and Table 3.5). Furthermore, Carvalho et al. (2014) discussed the effects of different 

reanalysis datasets on wind-energy production estimates, and found the ERA-I presents the most 

precise initial and boundary conditions, followed by the GFS. Herein, we test the ERA-I and the 

0.5° GFS, and both datasets produce simulations that resemble observed winds and power 

generations. Since the simulated power is sensitive to the resolution of the model vertical grid, 

particularly near the surface, future WRF WFP users should select vertical levels with care.  

Additionally, the outcomes from the statistical tests among the model runs further 

validate the importance of using the WFP as well as using a fine vertical grid. From the Student’s 

t-test, the p-values of all the no-WFP and WFP pairs are 0 (Table 3.6 and Table 3.7), 

demonstrating that the differences between the power-generation distributions of the no-WFP 

runs and the WFP runs are statistically significant at any confidence level. Therefore, to 

accurately simulate power production, applying the WFP is better than not using it, regardless of 

the choice of vertical resolution and boundary condition, and the corresponding improvements in 
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Table 3.4 and Table 3.5 are statistically significant. Although the distinction between the 

GFS12WF and GFS22WF is not statistically significant at the 90% confidence level (Table 3.7), 

switching from ERA22WF to ERA12WF improves power simulations significantly at 99% 

confidence (Table 3.6). In particular, the RMSE drops by 19.1 MW and the bias reduces by 10.2 

MW on average in the ERA12WF (Table 3.4 and Table 3.5), and these are proven statistically 

significant.  

Similarly, results from the statistical tests between the distributions of power from 

simulations and observations support the value of the WFP applied in a fine vertical grid. The p-

values of the ERA12WF-observed pair and the GFS12WF-observed pair are 0.106 and 0.167 

respectively (Table 3.8). The high p-values illustrate that the distinctions between the distribution 

of observed power and the distributions of simulated power from the 12-m WFP simulations are 

not statistically significant, at the 90% confidence level. Among all the simulations analyzed 

above, running the WFP over the 12-m vertical grid is the only combination that is not 

statistically different from observations (Table 3.8). In other words, the 12-m WFP simulations 

provide the closest approximations to the actual power production, regardless of the boundary-

condition dataset.  

One of the objectives of this study is to propose general directions for improvements on 

the WFP. First of all, as the key determinant of wind-power production, WS plays a critical role. 

Ramp events pose a challenge to the WRF model in simulating WS as well as to the WFP in 

predicting power (Figure 3.7a and e). However, windy conditions of WS exceeding 10 m s-1, 

although below the rated speed, lead to WFP power underestimation (Figure 3.8a). Furthermore, 

the WFP performance depends more on the horizontal winds and turbulence, rather than their 

vertical components, since the power bias correlates more strongly with TI than TKE (Figure 
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3.8c). Reducing turbulence diffusion in the WRF model could potentially yield more accurately 

simulated winds in stable conditions, including LLJs (Sandu et al., 2013); active research in 

modifying mixing lengths (Jahn et al., 2017) also suggests promising model improvements. 

More importantly, sharpening the skill of the WRF model in simulating WS can improve the 

WFP power performance (Figure 3.10). Future versions of the WRF model and the WFP should 

aim to better account for instantaneous horizontal WS variations and the subsequent sub-grid 

wake interactions.  

Besides necessary improvements in simulating ambient WS, the WFP scheme itself also 

requires refinements. When background winds are accurately predicted, the power-bias 

dependence on WS and TI remains strong (Figure 3.9a and c). Moreover, the correlation between 

the WFP performance and atmospheric stability becomes weakly negative without the strongly 

stable data (Figure 3.9d). Therefore, even when the simulated winds are close to observations, 

the WFP tends to underestimate power during high WS, low TI and stable conditions. In contrast, 

the WFP tends to over-predict power in calm, unstable, and turbulent conditions, with the caveat 

that a small number of unstable cases are considered here. The WFP scheme appears to 

overestimate wake loss within a grid cell in stable and windy conditions, and underestimate the 

wake effects in an unstable and well-mixed atmosphere. Certainly, the interactions between WD 

and wind-farm layout affect the power-bias relationships, and further sensitivity tests can provide 

more insight into the WFP performance, particularly in intra-cell WS reduction. We demonstrate 

that inter-cell wake effects are not the critical factor to power error (Figure 3.12b); hence the 

inability of the WFP to simulate intra-cell wake effects can explain the biases when many of the 

turbines experience accurately simulated ambient flow.  
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In contrast, WD has no clear influence on the WFP skill (Figure 3.8b) in this case, 

although the irregular shape of the wind farm adds uncertainty to this relationship. Similarly, the 

skill of the WFP for this case is insensitive to the number of virtual turbines per cell, and the 

downwind position of turbines against inflow (Figure 3.11 and Figure 3.12). Compared to the 

power overestimation of downwind turbines in the idealized cases described in Vanderwende et 

al. (2016), both the upwind and downwind turbine-containing cells presented in this study have 

consistent positive biases on power production (Figure 3.12). Our findings suggest that the WFP 

is skillful in simulating power of aggregate wind turbines and can represent the impact of inter-

cell wakes on power. In the end, the primary limitation of the WFP is rooted in the ambient 

simulated WS in the WRF model.  

 

3.6 Conclusion 

The WFP scheme in the WRF model (version 3.8.1) provides a convenient way to 

represent wind farms and their meteorological impacts in the NWP models. However, its power 

predictions have not been validated for onshore wind farms or in a range of WS conditions. 

Herein, we evaluate the performance of the WFP in various atmospheric conditions to guide 

users of the WFP and to suggest future WFP advancements.  

Using data from the CWEX-13 campaign, we select a 4-day period, from 24 to 27 August 

2013, for our case study, due to the consistent nocturnal LLJ occurrences. We use measurements 

from a profiling LiDAR, a scanning LiDAR and a surface flux station to validate the ambient 

flows simulated by the WRF model. The wind farm of interest, located in central Iowa, consists 

of 200 1.5 MW wind turbines.  
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We explore the role of vertical resolution in the operation of the WRF WFP. We evaluate 

two vertical grids with 12-m and 22-m resolution near the surface. We find that the finer vertical 

resolution produces simulations that agree better with observed WS, WD and power than the 

simulations with coarser vertical resolution. Further, because the WFP accounts for the wake 

effects on power production of downwind turbines, the use of the WFP enables more accurate 

power prediction, whereas simulations without the WFP generally over-predict power production. 

Statistically, the WFP simulations with a fine vertical grid, regardless of the boundary conditions, 

are the most skillful in simulating power.  

The skill of the WFP varies with meteorological conditions. When the model simulates 

WS close to the observations, the WFP predicts power properly, making WS the critical factor in 

improving the WFP. Rapid temporal fluctuations in WS introduce errors in power simulations, 

especially during ramp events. Further, in windy, stable and less turbulent conditions, the WFP 

tends to overestimate the wake effects and thus underestimates power production. However, the 

WFP performance demonstrates no clear dependence on the number of turbines per model grid 

cell or the downwind distance of turbines with respect to the upwind ones.  

In conclusion, we demonstrate the value of the WRF WFP and the importance of using a 

fine vertical grid. Since WS greatly affects the skill of the WFP, subsequent research could 

include evaluating the WFP for an even larger range of WSs, especially at WS beyond the 

turbine cut-out speed (which would be 25 m s-1 in this case; no such high WSs were observed 

during the CWEX-13 campaign). Evaluating the performance of other wind-farm layouts in 

locations with complex terrain is also needed. Modifications in the inflow WS considered by the 

WFP, for example, considering the rotor equivalent WS (Wagner et al., 2009), may bring 

promising improvements. More accurate power forecasts will help shape a more competitive 
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wind-energy industry, and further facilitate grid integration of wind energy (MacDonald et al., 

2016).  

 

3.7 Data availability  

The code of the WRF-ARW model (doi:10.5065/D6MK6B4K) is publicly available at 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. This work uses the WRF-

ARW model and the WRF Preprocessing System (WPS) version 3.8.1 (released on 12 August 

2016), and the WFP is distributed therein. The PSU generic 1.5 MW turbine (Schmitz, 2012) is 

available at doi:10.13140/RG.2.2.22492.18567. The user input required to run the WRF WFP is 

available at doi:10.5281/zenodo.847780.  
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  Chapter 4 

4. LONG-TERM VARIABILITY OF WIND SPEED 

 

I can live with doubt, and uncertainty, and not knowing. I think it’s much more interesting  

to live not knowing than to have answers which might be wrong.  

– Richard Feynman 

 

Assessing and extracting wind energy, an intermittent energy source, inevitably entails 

uncertainty. Inter-annual variability (IAV) of wind resources is a key component in the overall 

uncertainty for wind projects. Particularly, uncertainty is defined as the variability of the 

differences between predictions and measurements of both wind speed (WS) and energy 

production.  

Because wind turbines cost no fuel to operate, a large part of the cost for wind-farm 

owners is fixed or paid upfront. Once built, relocating wind turbines is also nearly impossible 

with current technologies. Therefore wind-farm developers need to select a site productive for 

decades. One of the goals of the wind resource assessment (WRA) process attempts to quantify 

the uncertainties that are not caused by turbine operations, in opposite to mechanical failure. One 

example is the uncertainty from wind fluctuations, because turbines produce no power at low 

WSs below their cut-in speeds as well as at high WSs beyond their cut-out speeds. From the 

WRA and system planning perspective, IAV remains a critical topic.  

A common practice in the industry is to represent IAV as a percentage, which is the 

standard deviation (a spread metric) around the mean (an average metric) based on a Gaussian 

distribution of WS. The Gaussian assumption simplifies statistical analyses, yet it is rarely 
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applicable. Hence, the industry should reconsider the Gaussian approach, and evaluate using 

alternative parametric or non-parametric distributions. Reviewing different methods of 

evaluating variability and exposing their shortcomings is a first step to start the discussion.  

Building on the contents in previous chapters, this chapter expands the spatial and 

temporal scale of the analysis to the contiguous United States (CONUS) across multiple decades. 

This chapter presents results from a fusion of atmospheric science, statistics, and wind energy. 

Understanding the long-term variability of WS consolidates our confidence in assessing 

uncertainties in wind energy, further facilitates electric grid integration, and improves the 

performance of existing and future wind farms.  

The following is reproduced and reformatted from:  

Lee, Joseph C. Y., M. Jason Fields, and Julie K. Lundquist. Assessing variability of wind 

speed: Comparison and Validation of 27 methodologies. In preparation for Wind Energy Science.  

Jason Fields and Julie Lundquist revised the manuscript and provided guidance of the 

research. Readers are advised to seek out the final version of the journal article.  
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4.1 Abstract 

Because wind resources vary from year to year, the long-term and inter-annual variability 

(IAV) of wind speed (WS) is a key component of the overall uncertainty in the wind resource 

assessment process and causes challenges to wind-farm operators and owners. We present a 

critical assessment of several common approaches for calculating variability by applying each of 

the methods to the same 37-year monthly mean WS and energy-production time series to 

highlight their differences. We then assess the accuracy of the variability calculations by 

correlating the WS variability estimates to the variabilities of actual wind-farm energy 

production. We recommend the Robust Coefficient of Variation (RCoV) for systematically 

estimating variability, and we underscore the advantages as well as the importance of using a 

statistically robust and resistant method. Using normalized spread metrics, including RCoV, high 

variability of monthly mean WSs at a location effectively denotes strong fluctuations of monthly 

total energy generations, and vice versa. Meanwhile, the WS IAVs computed with annual-mean 

data do not adequately represent energy-production IAVs of wind farms. Finally, based on this 

analysis, we suggest quantification of WS variability via RCoV and derivation of energy-

generation variability with 10 ±3 years of monthly mean WS records, resulting in 90% statistical 

confidence. Spatially, wind-energy development should focus on regions with strong WSs and 

low RCoVs.  

 

4.2 Introduction  

The P50, a widely used parameter in the wind energy industry, is an estimate of the 

threshold of annual energy production (AEP) of a wind farm that is expected to exceed 50% of 

the time (Clifton et al., 2016). The P50 is usually determined over the lifetime of a wind farm, 
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typically 20 years. To estimate P50 in the wind resource assessment (WRA) process, a single 

percentage value is usually assigned to represent the uncertainty for the desired certain time 

period at a wind site (Brower, 2012). The inter-annual variability (IAV) of wind resources, along 

with site measurements and wind plant performance, is an important component in the overall 

uncertainty in power production (Klink, 2002; Pryor et al., 2006; Lackner et al., 2008; Clifton et 

al., 2016). The IAV also plays a critical role in the measure-correlate-predict (MCP) process 

(Lackner et al., 2008), which usually considers wind measurements spanning less than 2 years.  

Analysts and researchers use numerous metrics to quantify wind-speed (WS) variability, 

and the most common method is standard deviation (σ). For instance, the variability in historical 

or future wind resources is often represented as the σ from the annual-mean WS of a certain 

location (Brower, 2012). As wind-turbine power generation is a function of WS, the variability 

of wind resources has important implications on resultant long-term energy production. 

Financially, when wind resources in some regions, for example the United Kingdom, is projected 

to fluctuate more from year to year (Hdidouan and Staffell, 2017), the levelized cost of wind 

energy increases as well.  

Because the profitability of wind farms depends on wind variability, past research has 

explored the implications of inter-annual and long-term variability in wind energy. Pryor et al. 

(2009) analyze trends of annual-mean WS and IAV, without explicitly quantifying IAV values. 

Archer and Jacobson (2013) evaluate the seasonal variability of wind-energy capacity factor. Lee 

et al. (2018) assess the spatial discrepancies between WS variabilities of different temporal 

scales, from hourly mean to annual-mean data. Bett et al. (2013) use σ and Weibull parameters to 

assess the wind variability in Europe. Extreme event analysis also offers another perspective to 

assess variability. For example, Cannon et al. (2015) examine extreme wind-energy generation 
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events via reanalysis data and discuss the associated seasonal and inter-annual variability 

qualitatively. Leahy and McKeogh (2013) also quantify the return periods of multi-week wind 

droughts.  

To quantify variability, the normalized standard deviation or the Coefficient of Variation 

(CoV), the σ divided by the mean of a time series, is a commonly used tool. Justus et al. (1979) 

calculated and compared the CoVs of monthly and yearly mean WSs at different sites across the 

United States. Baker et al. (1990) quantified inter-annual and inter-seasonal variations of both 

WS and energy production at three locations in the Pacific Northwest. They found the annual 

CoVs ranged from 4% to 10%, matching the conclusions from Justus et al. (1979). Recently, Li 

et al. (2010) calculate hub-height WS variance and σ of 30 years to spatially evaluate seasonal 

and inter-annual variability in the Great Lakes region. Bodini et al. (2016) estimate the IAV of 

wind resources with a modified version of CoV, using observed meteorological data in Canada. 

As the sample period increases, the IAVs of most sites gradually increase, averaging 5 to 6% 

among the chosen sites (Bodini et al., 2016). Krakauer and Cohan (2017) correlate the CoVs of 

monthly mean WSs with different climate oscillation indices, and find the global mean CoV at 

8%. Other than characterizing WS, the metric is also used to evaluate the benefits of grid 

integration. For example, Rose and Apt (2015) conclude the inter-annual CoV of aggregate 

wind-energy generation in the central U.S. at 3 ±0.1%, much smaller than that of individual wind 

plants between 5.4% and 12%, ±4.2%.  

Aside from CoV, other metrics representing the spread of data have also been chosen to 

estimate variability in the literature. For example, the Robust Coefficient of Variation (RCoV), 

dividing the median absolute deviation (MAD) by the median, is a substitute to CoV. Gunturu 

and Schlosser (2012) quantify the spatial RCoV of wind-power density in the U.S. and 
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demonstrate that the regions east of the Rockies, especially the Plains, generally have weaker 

variability and higher availability of wind resources. Seasonality index, originally used in Walsh 

and Lawler (1981) for precipitation purpose, is another measure to express variability. Chen et al. 

(2013) use the seasonality index to assess the inter-annual trend and the variability of WS in 

China, and they relate WS IAVs to climate oscillations.  

Alternative variability metrics emphasize the long-term trends via contrasting WSs of 

different periods. The “wind index”, used in Pryor et al. (2006) and Pryor and Barthelmie (2010), 

is a ratio of WSs of a reference period and an analysis period. An entirely different wind index 

evaluated in Watson et al. (2015) is a ratio of spatially-averaged WSs during two different 

periods.  

Despite the importance of long-term variability, the wind-energy industry lacks a 

systematic method to quantify this uncertainty. As various metrics to assess variability exist, a 

comprehensive comparison of measures is necessary. Therefore, the goal of this study is to 

evaluate various methods of estimating long-term and inter-annual variability in a reliable way 

using a comprehensive long-term database. Specifically, our objective is to determine the 

optimal metric in relating WS variability and energy-production variability. We describe the WS 

and energy-generation data, the methodology and the chosen variability metrics in Section 4.3. 

We evaluate different variability measures via two case studies in Section 4.4. We also contrast 

the results computed from monthly mean and annual-mean data, and we illustrate the spatial 

distribution of WS variability in Section 4.4. We then recommend the best practice in using the 

ideal method in Section 4.5. After all, we focus on the applicability of imposing such metrics to 

quantify the variabilities of WSs and wind-energy productions.  
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4.3 Data and methodology 

4.3.1 Wind and energy data 

In this study, we use a 37-year time series of monthly mean WS and monthly total wind-

energy production in the Contiguous United States (CONUS) to calculate their variabilities. For 

WS, we use hourly horizontal wind components in the Modern-Era Retrospective Analysis for 

Research and Applications, Version 2 (MERRA-2) reanalysis dataset (Global Modeling and 

Assimilation Office (GMAO), 2015; Gelaro et al., 2017) by the National Aeronautics and Space 

Administration (NASA) from 1980 to 2016. We then derive the monthly mean WS at 80 m 

above the surface, to represent hub height in this chapter, via the power law (4.1) and the 

hypsometric equation (4.2):  

𝑢(𝑧2)

𝑢(𝑧1)
= (

𝑧2

𝑧1
)

𝛼

 ,                (4.1) 

𝑧2 − 𝑧1 = 𝑅𝑑�̅�𝑙𝑛 (
𝑝2

𝑝1
) ,              (4.2) 

In (4.1), 𝑢(𝑧1) and 𝑢(𝑧2) are the horizontal WSs at heights 𝑧1 and 𝑧2, 𝛼 is the shear exponent; in 

(4.2), 𝑅𝑑 is the dry air gas constant, �̅� is the average temperature between levels 𝑧1 and 𝑧2, 𝑝1 

and 𝑝2  are atmospheric pressures at 𝑧1  and 𝑧2 . In most grid cells, we use the MERRA-2 

meteorological output at 10 and 50 m above surface. In mountainous regions, sometimes the 

heights at 850 hPa, or 500 hPa are closer to 80 m than 10 m above surface, hence we use data at 

the next available level of 850 hPa or 500 hPa.  

The horizontal resolution of the MERRA-2 is 0.5° in latitude (about 56 km) and 0.625° in 

longitude (about 53 km). The MERRA-2 reanalysis interpolates the data and the metadata at the 

exact output latitude and longitude, hence the WS, air density and elevation refer to the grid 
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points with the particular sets of latitude and longitude (Bosilovich et al., 2016). Hence, the 

longest distance between a wind farm and the its closest MERRA-2 grid-cell center is about 39 

km.  

For energy-production data, we use the net monthly energy production of wind farms in 

megawatt-hours (MWh) from the Energy Information Administration (EIA) between 2003 and 

2016. Each of the wind farm has a unique EIA identification number. After we neglect about 300 

wind sites with incomplete or substantial zero production data, a total of 607 wind farms in the 

CONUS are selected in this analysis. For simplicity, the CONUS in this analysis is defined as the 

area bounded by 127°W, 65°W, 24°N and 50°N, and geographically includes the 48 states in 

CONUS and Washington, D.C. (Figure 4.1).  

 

4.3.2 Methodology  

4.3.2.1 Linear regression and data post-processing  

We focus on the direct relationship between WS and energy production to investigate 

approaches of calculating long-term variability. Therefore, we must minimize the influence from 

other determinants of energy production, such as curtailment and maintenance. First, we 

eliminate data with zero monthly energy productions, which is typical in the first months of a 

new wind farm. Next, we linearly regress the monthly total energy production on the monthly 

mean MERRA-2 80-m WS at the closest grid point to each wind farm from 2003 to 2016. In 

other words, each wind site is assigned with its own regression equation. We then remove any 

production data below the 90% confidence interval to exclude under-productions for reasons 

other than low WSs, and omit the data above the 99% confidence interval, or potentially 
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erroneous over-productions. Hence, we focus on presenting the results from the linear fit in this 

study.  

After regressing the outlier-free energy data on WS, we then filter the wind farms based 

on the coefficient of determination (R2), which indicates the confidence of the linear regression. 

We select the R2 threshold of 0.75, and 349 of the original 607 wind farms pass this filter. 

Considering some farms lack years of complete generation data, we extend the monthly total 

energy production to 37 years using the same site-specific linear models with the monthly mean 

MERRA-2 WS. In other words, we compute the predicted energy-production data from 1980 to 

2016 based on the linear fit.  

We then further apply a second filter using the Pearson’s correlation coefficient (𝑟) 

between the predicted and actual monthly total energy productions, and only choose the 195 

wind farms with 𝑟 larger than 0.8. As a result, of the 𝑟-filtered wind sites, we ensure WS is the 

primary driver of wind-power production, and we confirm the energy predictions match well 

with those observed.  

The non-filtered, R2-filtered and 𝑟-filtered wind farms carpet most of the popular wind-

farm regions across the CONUS (Figure 4.1), even with the high 𝑟 threshold at 0.8. Thus, the 𝑟-

filtered samples provide a sufficient representation of the wind farms across the United States. 

To illustrate our analysis with examples, we select one site in Oregon (OR) and another site in 

Texas (TX) that demonstrate distinct WS distributions. We choose the two sites to contrast the 

results of different variability metrics throughout the chapter, and both pass the 𝑟 filter (Figure 

4.1).  

 



107 

 

 

Figure 4.1: Wind-farm locations in the CONUS: non-filtered 607 sites in dark red, R2-filtered 

349 sites in orange, and 𝑟-filtered 195 sites in yellow. The yellow square represents the OR site 

and the yellow star indicates the TX site (Table 4.2). The grey box illustrates the boundary of the 

CONUS used in this study.  

 

Recognizing that the horizontal resolution of the MERRA-2 data could be perceived as 

undermining the linear regressions, we explore any possible role of the distance between the 

closest MERRA-2 gird point and the actual wind farm, but we find no reason for concern. In 

particular, horizontal and vertical discrepancies between the model and the observations do not 

affect the resultant R2 in the linear regressions. More than half of the 607 wind farms pass the R2 

filter, and more than half of those pass the 𝑟 filter (Figure 4.2a). The distribution shapes of the 

horizontal distances and the elevation differences between the closest MERRA-2 gird point and 

the actual wind farm remain similar with the two filters applied (Figure 4.2b and c). In other 

words, the horizontal and vertical model-actual distances have no apparent impact on the 

representativeness of the wind farms in the linear regression. Hence, the model-actual horizontal 
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spatial range and the ability of MERRA-2 to represent terrain complexity are not the major 

determinants in the WS-energy relationships.  

 

 

Figure 4.2: (a) Histogram of R2 of all non-filtered sites (dark red), R2-filtered sites (orange) and 

𝑟-filtered sites (yellow); (b) Histogram of horizontal distances between the closest MERRA-2 

grid cell and the actual locations of the sites; (c) Histogram of absolute elevation differences 

between the closest MERRA-2 grid cell and the actual locations of the wind sites.  
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Additionally, we analyze the uncertainty of the linear regression method. We first test the 

influence of the error term in the regression, to account for the uncertainty associated with the 

input data. Specifically, after a wind farm passes the R2 threshold of 0.75, we add a random 

value within one standard error to the predicted energy production of each month. This random 

error term introduces uncertainty to the regression process but does not affect the R2 of the site-

specific regression. Furthermore, we also test the sensitivity of the R2 and 𝑟  thresholds by 

analysing the results after modifying those limits. Particularly. We loosen the R2 and 𝑟 thresholds 

to 0.6 and 0.7, and we tighten the R2 and 𝑟 thresholds to 0.85 and 0.9.  

We also consider the hub-height air density extrapolated from MERRA-2 as another 

regressor in the regressions. However, air density is a statistically insignificant predictor and thus 

is not discussed in the rest of this chapter. We further perform the regression based on the WS 

anomalies after removing the long-term means and the impacts of annual cycles, but the R2 

results are unsatisfying. Moreover, we perform the same analysis with the ERA-Interim (ERA-I) 

reanalysis dataset (Dee et al., 2011). The results of the key variability parameters such as σ, CoV 

and RCoV resemble the findings using MERRA-2, hence we focus on the MERRA-2 findings in 

this chapter.  

Our analysis, although comprehensive, is constrained by the quality of our data. On one 

hand, reanalysis datasets have errors and biases in WS predictions from complexities in elevation 

and surface roughness (Rose and Apt, 2016). Reanalysis datasets also demonstrate long-term 

trends of surface WSs as well (Torralba et al., 2017). The MERRA-2 dataset can also depict 

different meteorological environments than those at the wind-farm locations, especially in 

complex terrain. Thus, regressing actual energy production on reanalysis WS adds uncertainty to 

our analysis. On the other hand, constrained by the monthly total energy-production data from 
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the EIA, our analysis ignores the signals finer than monthly cycles. The quality of the EIA data 

also varies across wind sites, therefore the filtering process via linear regression is necessary.  

 

4.3.2.2 Variability metrics relating wind speed and energy production 

To evaluate the variabilities of both the WSs and the predicted energy generations from 

the filtered wind farms, we investigate a total of 27 combinations and variations of existing 

methods describing the spread of data. We categorize different variability metrics according to 

statistical robustness (insensitivity to assumptions about the data, for instance, Gaussian 

distribution) and statistical resistance (insensitivity to outliers) (Wilks, 2011). Of the 27 

variability methods tested, we select four representative measures to inter-compare and discuss 

in detail, according to their robustness, resistance, and the nature of normalization by an average 

metric:  

• RCoV, defined as the MAD divided by the median (Gunturu and Schlosser, 2012; Watson, 

2014), is a spread metric divided by an average metric, and is both statistically robust and 

resistant;  

• Range (maximum subtract minimum) divided by trimean (weighted average among quartiles) 

is a spread metric divided by an average metric, and the numerator is not resistant;  

• CoV (Justus et al., 1979; Baker et al., 1990; Wan, 2004; Rose and Apt, 2015; Bodini et al., 

2016; Hdidouan and Staffell, 2017; Krakauer and Cohan, 2017), defined as the σ divided by 

the mean, is a spread metric divided by an average metric, and both the denominator and the 

numerator are not robust or resistant;  

• σ is simply a spread metric that is not robust or resistant.  
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Among the four measures, only RCoV is completely statistically robust and resistant, and the 

first three methods are all normalized spread metrics. We further describe all the tested 

variability methods comprehensively in Table 4.3, and they are easy to implement via basic 

Python packages such as NumPy and SciPy with no more than a few lines of code. In addition, 

based on the exponential scaling relationship between power and WS developed by Bandi and 

Apt (2016), we also analyze the results from the exponential CoV and the exponential RCoV in 

this chapter (Table 4.3).  

In addition to calculating variabilities with the spread measures, we evaluate other 

diagnostics that describe distribution characteristics. These diagnostics include averaging metrics 

such as the arithmetic mean (not resistant) and median (the 50th percentile, which is resistant), 

symmetry metrics such as skewness (involving the third moment, not robust or resistant) and 

Yule-Kendall Index (YKI, robust and resistant), a tailedness metric, namely kurtosis (involving 

the fourth moment, not robust or resistant), the Weibull scale and shape parameters (not robust), 

and the autocorrelation with 1-year lag to dissect the inter-annual cycles. We summarize the 

diagnostics evaluated in this analysis in Table 4.4. Along with the regression results, results from 

the four representative variability metrics and other distribution diagnostics demonstrate 

differences between the two selected sites (Table 4.2).  

Herein, we quantify the variabilities of the 37-year extended time series of WS and 

energy production via different methods, using a range of time frames: 1 year, 2 years, and up to 

37 years for each wind farm. A metric is considered useful when the resultant WS variability 

correlates well with the resultant energy-production variability across wind farms, even when 

random errors are implemented and the thresholds R2 and 𝑟 are changed. In this analysis, we 
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inter-compare results with three correlation metrics: Pearson’s 𝑟, Spearman’s rank correlation 

coefficient (𝑟𝑠) and Kendall’s rank correlation coefficient (𝜏) (Table 4.1).  

 

Correlation metrics 

Robust 

and 

resistant 

Description 

Pearson correlation 

coefficient (𝑟) 
No 

Calculate the covariance of x and y, divided by the 

product of standard deviations of x and y.  

Spearman’s rho, or 

Spearman rank correlation 

coefficient (𝑟𝑠) 

Yes 

Transform x and y values into ranks within x and y 

themselves, then calculate the covariance of ranks in x 

and y, divided by the product of standard deviations of 

ranks in x and y.  

Kendall’s tau, or 

Kendall’s rank correlation 

coefficient (𝜏) 

Yes 

Match all data pairs between x and y, with 
𝑛(𝑛−1)

2
 

matches possible with sample size of 𝑛. 

Define concordant pair as both x1 larger than x2 and y1 

larger than y2, or both x1 smaller than x2 and y1 smaller 

than y2. Define discordant pair as either x1 larger than 

x2 and y1 smaller than y2, or x1 smaller than x2 and y1 

larger than y2. 

Calculate 𝜏 =
2(𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠−𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

𝑛(𝑛−1)
.  

   

Table 4.1: Details of the three correlation metrics applied, adapted from Wilks (2011). All three 

metrics yield values between -1 and 1.  

 

To assess the applicable time frames of various variability metrics, we evaluate the 

asymptote period of correlations for each method. In most cases, the correlation coefficients 

asymptote to the 37-year value after a certain analysis time frame. Using RCoV as an example, 

the Pearson’s 𝑟’s of shorter analysis periods (1-year, 2-year, etc.) gradually concenter to the 37-

year value at 0.856 as the RCoV-calculation time frame expands (Figure 4.5a). Hence, for each 

metric, assuming the 37-year correlation coefficient represents the long-term correlation, we 
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calculate the normalized differences between the correlation coefficients and the 37-year value in 

each time frame, starting from 1-year. When the absolute mean of the normalized differences 

drops below 0.05 in a particular year, we determine that year as the length of data required for 

reliable results via that variability method. In other words, the asymptote year of a certain metric 

illustrates that the error of the resultant correlation between WS and energy-production 

variability via that data length is under 5% from the long-term value. For example, the asymptote 

period of RCoV correlations is 3 years according to Pearson’s 𝑟 (Table 4.5).  

To relate the IAVs between WS and energy production, we also perform the same 

analysis for annual-mean data. Strictly speaking, calculating the variabilities using monthly mean 

data yield inter-monthly variabilities, because the results account for monthly, seasonal and 

annual signals. To isolate the signals from inter-annual variations, we also examine the metrics 

and their correlations between the annual-means of hub-height WSs and energy productions, 

after linear regressing and filtering via monthly means. However, the sample of each site are then 

limited to 37 data points of annual-mean WS and annual-total energy production. Besides, 

selecting de-trend data from long-term means to calculate variabilities and their correlations 

leads to trivial results because of the small sample sizes, and hence is omitted in this chapter.  

 

4.3.2.3 Investigation on wind-speed RCoV  

After we demonstrate RCoV is the most systematic approach in linking WS and energy-

generation variabilities in Section 3.2, we further examine the details of using RCoV, specifically 

determining the minimum length of WS data necessary to quantify variability effectively. We 

use 37 years of WS in every MERRA-2 grid cell in the CONUS (a total of 5049 grid points), and 

we calculate the RCoVs with 1 to 37 years of data for each grid cell. Because the RCoVs 
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calculated using data between 1980 to 2016 are only samples of the true long-term WS 

variability and hence the results involve uncertainty, we select a confidence interval approach.  

We assume that the distribution of RCoV is Gaussian with infinite years of WS. Hence, 

we use a chi-square (𝜒2) distribution to set bounds for the σ’s from samples of RCoV. In other 

words, because the derived RCoVs differ with years of WSs sampled, we use the 𝜒2 distribution 

to quantify the confidence intervals of RCoV for each sample size. To determine the minimum 

data required for RCoV calculation, we use the following criterion (Montgomery and Runger, 

2014):  

𝜎37 ≥ |√
(𝑛𝑖−1)𝜎𝑖

2

𝜒𝛼 2⁄ ,𝑛𝑖−1
2 | ,               (4.3) 

where 𝜎37 is the per-determined 37-year σ of RCoV, 𝑛𝑖 is the sample size of n years in year i 

which is between 1 to 36 years, 𝜎𝑖
2  is the variance of the sample of RCoVs in year i, and 

𝜒𝛼 2⁄ ,𝑛𝑖−1
2  is the percentage point of the 𝜒2 distribution given the confidence level of 𝛼 and the 

degrees of freedom of 𝑛𝑖 − 1. We select a pair of 𝛼 levels, 90% and 95%, hence we use four 

percentage points of the 𝜒2 distribution at 0.025, 0.05, 0.95 and 0.975 to construct the respective 

confidence intervals. Because the 37-year RCoV is an estimate of the truth, which is the WS 

RCoV of infinite years, its singular value does not yield any variance or possess any distribution 

shape. Thus, to construct the confidence interval of the standard deviation of the truth, we set the 

pre-determined 𝜎37 as a fraction of the 37-year RCoV. Particularly, the 𝜎37 are 10% and 5% of 

37-year RCoV for the 90% and 95% confidence levels respectively.  

In summary, for each grid point, we first determine an uncertainty bound based on the 

37-year WS RCoV of the location and assign a 37-year σ dependent on the confidence level, 
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which is either 5% or 10% of the 37-year RCoV. For each year i, from 1 to 37 years, we 

calculate the pairs of 𝜒2-derived σ’s of year i, which represent the lower and upper bounds of the 

confidence interval. When both of the 𝜒2-derived σ’s become smaller than the per-determined 

37-year σ, year i becomes the minimum length of data required to calculate RCoV effectively at 

the specific confidence level. We analyze the WS RCoV via both monthly mean and annual-

mean WSs. We label the resultant minimum length of WS data based on the 𝜒2  method as 

convergence year, in contrast to the asymptote period which determines the asymptote year of 

correlation coefficients.  

 

4.4 Results 

4.4.1 Case studies: OR and TX sites 

We select two sites from two different geographical regions with considerable wind-

energy deployment, the southern Plains and the Pacific Northwest in the United States, to 

contrast the results of various variability metrics. Based on the site-specific regressions, we 

extend the monthly total energy-production time series to 37 years (Figure 4.3a and b) for the 

two sites. Both sites pass the R2-filter at 0.75 and the 𝑟-filter at 0.8. Although the OR site is 

farther from the closest MERRA-2 grid point in a region with more complex terrain, the resultant 

R2 (0.87) and predicted-actual energy Pearson’s 𝑟 (0.91) are larger than those of the TX site 

(0.79 and 0.81 respectively) (Table 4.2). The 37-year-average WS of about 7.6 m s-1 at the TX 

site is larger than that of the OR site at about 6.8 m s-1 (Table 4.2). Additionally, the 12-month-

lag autocorrelations demonstrate that the annual cycle of monthly mean WSs of the TX site is 

stronger than that of the OR site, yet the autocorrelations of the sites, 0.53 and 0.32, are still 

lower than the CONUS median of 0.58 (Table 4.2).  
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None of the monthly and yearly mean WS distributions of the sites are not perfectly 

Gaussian. According to the kurtosis, skewness and YKI values of the monthly mean WSs (Table 

4.2), the monthly mean WS distribution at the OR site skews towards lower WSs with more and 

stronger extremes (Figure 4.3c). The skewed distribution at the OR site leads to 71.2% of the 

monthly mean WSs locating within 1 σ from the mean, compared to the classic Gaussian of 

68.3%. Nevertheless, although the TX site monthly mean WS distribution is very close to 

symmetric with fewer outliers (Figure 4.3d), which is supported by near-zero skewness and YKI 

(Table 4.2), only 64.6% of monthly mean data fall within 1 σ from its mean. For annual-mean 

WSs, the averaging with a 12-month time span at both sites reduces the ranges, and thus leads to 

kurtosis close to -1 (Table 4.2). Although the skewness and YKI are close to 0 (Table 4.2), only 

59.5% and 56.8% of the annual-mean WSs locate within 1 σ from the means of the OR and TX 

sites respectively.  

The four selected variability methods yield similar resultant monthly variabilities that are 

close to the respective CONUS medians based on the 37-year monthly mean data. On one hand, 

for variabilities of monthly mean WSs, the differences between the two sites are ambiguous 

because the comparison among the results of the four metrics is inconclusive (Table 4.2). Even 

though, the monthly variabilities are not far from the national medians (Table 4.2). On the other 

hand, results from the normalized spread metrics (RCoVs, range divided by trimean, and CoV) 

using the 37-year and the observed energy production illustrate that the OR site generates more 

variable wind power than the TX site (Table 4.2). The magnitudes of the variabilities between 

the 37-year and the actual monthly total energy productions are also comparable, except for the 

RCoVs at the TX site. The TX site only records 9 years of monthly total energy production, 

leading to a larger MAD, a smaller median, and thus a larger RCoV than the simulated energy 
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time series. Nonetheless, the predicted and the observed monthly total energy productions of the 

two sites demonstrate resembling variability characteristics overall.  

 

 

Figure 4.3: (a) Time series of MERRA-2 monthly mean 80-m WS (black), actual monthly net 

EIA energy production (lime), and extended monthly total energy production from 1980 to 2016 

(green) at the OR site; (b) Time series at the TX site with the same annotations as in (a); (c) 

Histograms of MERRA-2 monthly mean WS distribution (black) and yearly-mean WS 

distribution (grey) at the OR site from 1980 to 2016. The blue curve indicates the Gaussian fit of 

the monthly mean WSs via the mean and the σ, and the cyan curve represents the Gaussian fit of 

the annual-mean data; (d) Histograms and curves of Gaussian fit of WS distributions at the TX 

site with the same annotations as in (c).  
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Site specifics OR site TX site 

CONUS 

median 

(monthly 

mean) 

Location, region and state 
Condon, Columbia 

Gorge, OR 

Bryson, north-west 

of Fort Worth, TX 
 

Nominal capacity (MW) 24.6 120  

Elevation at closest MERRA-2 grid 

point - elevation of actual wind 

farm (m) 

-501.4 -67.4  

Horizontal distance between 

MERRA-2 location and actual 

location (km) 

33.07 21.22  

R2 of final linear regression 0.868 0.794  

RMSE (root-mean-squared error) 

of final linear regression (MWh) 
1140.5 4185.0  

Pearson’s 𝑟 between predicted and 

actual energy 
0.906 0.809  

Variability metrics 
Monthly 

mean 

Annual 

mean 

Monthly 

Mean 

Annual 

mean 
 

37-year WS RCoV 0.082 0.029 0.094 0.023 0.102 

37-year energy-production RCoV 0.226 0.059 0.166 0.041 / 

Actual energy-production RCoV 0.233 0.067 0.212 0.055 / 

37-year WS 
𝑟𝑎𝑛𝑔𝑒

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.893 0.129 0.596 0.122 2.066 

37-year energy-production 
𝑟𝑎𝑛𝑔𝑒

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 2.050 0.288 1.059 0.218 / 

Actual energy-production 
𝑟𝑎𝑛𝑔𝑒

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 1.768 0.307 1.303 0.305 / 

37-year WS CoV 0.134 0.036 0.127 0.031 0.143 

37-year Energy-production CoV 0.333 0.081 0.225 0.055 / 

Actual energy-production CoV 0.341 0.088 0.279 0.089 / 

37-year WS σ 0.909 0.242 0.964 0.234 0.895 

37-year energy production σ 2.599 0.632 5.828 1.421 / 

Actual energy-production σ 2.663 0.687 6.964 2.228 / 

37-year WS diagnostics 
Monthly 

mean 

Annual 

mean 

Monthly 

Mean 

Annual 

mean 
 

mean (m s-1) 6.79 6.79 7.59 7.59 6.45 

median (m s-1) 6.64 6.79 7.63 7.57 6.51 

kurtosis 0.886 -0.962 -0.663 -0.872 -0.482 

skewness 0.811 -0.129 -0.074 0.172 0.045 

YKI 0.153 0.101 -0.072 0.041 -0.024 

12-month-lag autocorrelation 0.324 0.039 0.525 -0.052 0.578 

      

Table 4.2: Site details, monthly means, and annual-means of various metrics at the two selected 

sites based on 37 years of monthly and yearly mean WSs, 37 years of predicted energy 
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productions, and actual energy productions; and the CONUS medians of WS metrics using 37 

years of monthly mean data.  

 

Moreover, using the four selected methods based on the annual-mean data, the results 

represent IAV exactly. For both variables, WS and energy generation, nearly all metrics illustrate 

that the OR site has stronger IAV than the TX site, except for using σ to quantify energy-

production IAV (Table 4.2). Echoing the results of the monthly mean data above, using 

normalized metrics suggest the energy production at the OR site varies more than that at the TX 

site, inter-monthly and inter-annually. Note that all the IAVs are smaller than the variabilities 

calculated using monthly means (Table 4.2), because the annual averaging collapses variations in 

the data.  

Additionally, the magnitudes of energy variabilities and IAVs are also nearly or more 

than twice as large as those of WS (Table 4.2). The reason is the nature of the power curve: 

wind-power generation is a function of WS to the third power. Therefore, small WS variations 

propagate into large energy-production fluctuations that are discernible in monthly and yearly 

mean data.  

 

4.4.2 Variability metrics comparisons 

Matching the WS and energy variabilities over 37 years at each 𝑟-filtered site, RCoV, as 

a statistically robust and resistant metric, yields the highest Pearson’s 𝑟 (0.86) among the four 

highlighted methods as well as all the variability metrics evaluated (Figure 4.4 and Table 4.3). A 

perfect variability measure would link WS and wind-power variations closely together with a 

correlation of unity, and herein RCoV is the best of all. On one hand, a strong correlation 
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between the WS RCoV and the energy-production RCoV implies that the high WS variability at 

a wind farm translates to high energy-generation variability, and vice versa (Figure 4.4a). For 

instance, the moderate 37-year WS RCoVs of the OR and TX sites indicate modest fluctuations 

in energy productions between months (Figure 4.4a). On the other hand, a non-resistant method, 

range divided by trimean, leads to a lower 𝑟  (0.64) and labels the OR site of having 

comparatively variable WS and energy production (Figure 4.4b). For the other two non-robust 

and non-resistant methods, the CoV results in a modest 𝑟 (0.70) with a similar scatter as the 

RCoV (Figure 4.4c); the σ, not normalized by an average metric, does not relate WS and energy 

variabilities effectively (Figure 4.4d). The positions of the two wind farms relative to the rest of 

the sites in Figure 4.4 illustrate that the TX site experience average variabilities in wind resource 

and energy production, whereas the OR site has above-average energy-generation variability. 

The four methods lead to different representations of energy variability at the OR site, signifying 

their differences in robustness and resistance. 
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Figure 4.4: Scatterplots of 37-year WS variability and energy variability via four metrics: (a) 

RCoV, (b) 
𝑟𝑎𝑛𝑔𝑒

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 , (c) CoV and (d) σ, based on monthly mean data from the 195 𝑟-filtered wind 

sites. Each black dot represents each filtered site, and the 𝑟 value at the corner of each panel 

indicates the Pearson’s 𝑟 between each pair of WS and energy spread metrics. The yellow square 

and the yellow star denote the OR and the TX sites respectively. 

 

  



122 

 

Spread metrics 37-year 𝑟 

Robust 

and 

resistant 

Why not robust 

and resistant 

𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 (𝐼𝑄𝑅) = 𝑞0.75 − 𝑞0.25 0.214 Yes / 

𝐼𝑄𝑅

𝑚𝑒𝑑𝑖𝑎𝑛
 0.845 Yes / 

𝐼𝑄𝑅

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.834 Yes / 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑒𝑑𝑖𝑎𝑛

= 𝑚𝑒𝑑𝑖𝑎𝑛[𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)] 
-0.048 Yes / 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑀𝐴𝐷)

= 𝑚𝑒𝑑𝑖𝑎𝑛|𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)| 
0.196 Yes / 

𝑅𝑜𝑏𝑢𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝑅𝐶𝑜𝑉)

=
𝑀𝐴𝐷

𝑚𝑒𝑑𝑖𝑎𝑛
 

0.856 Yes / 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑅𝐶𝑜𝑉 =
ln (𝑀𝐴𝐷)

ln (𝑚𝑒𝑑𝑖𝑎𝑛)
 0.595 Yes / 

𝑀𝐴𝐷

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.848 Yes / 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎) = √
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 0.184 No Reason I 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎2) =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 0.136 No Reason I 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝐶𝑜𝑉) =
𝜎

𝑚𝑒𝑎𝑛
 0.704 No Reason I 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑉 =
ln (𝜎)

ln (𝑚𝑒𝑎𝑛)
 0.466 No Reason I 

𝑀𝑒𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑛 = (𝑥 − �̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  -0.043 No Reason I 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝑥 − �̅�|̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.187 No Reason I 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎)

= 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 𝑄10 𝑎𝑛𝑑 𝑄90, 𝑜𝑟

= √
1

𝑛 − 2𝑘
∑ (𝑥(𝑖) − �̅�𝑎)

2
𝑛−𝑘

𝑖=𝑘+1

, 𝑘 𝑎𝑠 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑡𝑜 𝑎

× 𝑛 

0.206 No Reason I 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

�̅�
 0.775 No Reason I 

𝑅𝑎𝑛𝑔𝑒 0.177 No Reason II 
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𝑅𝑎𝑛𝑔𝑒

�̅�
 0.609 No Reason I 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =
∑ |𝑥 − �̅�|

𝑛 × �̅�
 

(modified from Walsh and Lawler (1981)) 

0.744 No Reason I 

𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.743 Partially Reason III 

𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.728 Partially Reason III 

𝐼𝑄𝑅

�̅�
 0.818 Partially Reason IV 

𝑀𝐴𝐷

�̅�
 0.834 Partially Reason IV 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.806 Partially Reason III 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.794 Partially Reason III 

𝑅𝑎𝑛𝑔𝑒

𝑚𝑒𝑑𝑖𝑎𝑛
 0.650 Partially Reason V 

𝑅𝑎𝑛𝑔𝑒

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.635 Partially Reason V 

    

Table 4.3: Description of the 27 spread metrics tested, adapted from Wilks (2011), and the 37-

year 𝑟’s from the 𝑟-filtered monthly mean data. 𝑞0.25 is the 25th percentile (first quartile), 𝑞0.5 is 

the 50th percentile (median), and 𝑞0.75  is the 75th percentile (third quartile). 𝑇𝑟𝑖𝑚𝑒𝑎𝑛 =
1

4
(𝑞0.25 + 2 × 𝑞0.5 + 𝑞0.75), 𝑟𝑎𝑛𝑔𝑒(𝑥) = max(𝑥) − min (𝑥), and an overbar (�̅�) indicates the 

arithmetic mean. Reason I: the metric is not robust because the metric possesses distribution 

constraints which is usually Gaussian, and the metric is not resistant because outliers influence it; 

Reason II: the metric is not resistant as outliers influence it; Reason III: the numerator of the 

metric is not robust or resistant; Reason IV: the denominator of the metric is not robust or 

resistant; Reason V: the numerator of the metric is not resistant. 
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Distribution diagnostics Meaning 37-year 𝑟 

Robust 

and 

resistant 

Why not 

robust and 

resistant 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑇𝑎𝑖𝑙𝑒𝑑𝑛𝑒𝑠𝑠)

=

1
𝑛 − 1

∑ (𝑥𝑖 − �̅�)4𝑛
𝑖=1

(
1

𝑛 − 1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 )2
 

Positive value means the 

distribution is tail-heavy 

with more and more 

extreme outliers compared 

to Gaussian; vice versa 

0.936 No Reason I 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠

=

1
𝑛 − 1

∑ (𝑥𝑖 − �̅�)3𝑛
𝑖=1

(
1

𝑛 − 1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 )
3
2

 

Positive value means long 

right tails, or right-

skewed; vice versa 

0.943 No Reason I 

𝑌𝑢𝑙𝑒

− 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝐼𝑛𝑑𝑒𝑥 (𝑌𝐾𝐼)

=
𝑞0.25 − 2 × 𝑞0.5 + 𝑞0.75

𝐼𝑄𝑅
 

Positive value means long 

right tails, or right-

skewed; vice versa 

0.778 Yes / 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
Determine the peak and 

the stretch 
0.379 No Reason II 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Determine the average, 

the symmetry and the 

shape 

0.721 No Reason II 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 
Pearson’s 𝑟 with its own 

past and future values 

Not 

applicable 

Not 

applicable 
/ 

     

Table 4.4: Description of the distribution diagnostics tested, adapted from (Wilks, 2011) and the 

37-year 𝑟’s from the 𝑟-filtered monthly mean data. Reason I: the metric is not robust because the 

metric possesses distribution constraints which is usually Gaussian, and the metric is not resistant 

because outliers influence it; Reason II: the metric is not robust because it assumes Weibull 

distribution.  

 

By increasing the years included in the variability calculations using monthly means, the 

resultant correlations of most metrics vary less, the correlations gradually concenter to their 37-

year values, and their asymptote periods vary. The 37-year Pearson’s 𝑟 values from the four 

selected metrics between WS and energy-production variabilities in Figure 4.4 transform into the 

37-year marks in Figure 4.5, and we use a 5% threshold of normalized deviation to determine the 
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asymptote periods. Particularly, the 𝑟’s from RCoV and CoV (Figure 4.5a and c) reach their 

respective asymptotes steadily with longer length of data, whereas the 𝑟’s from range divided by 

trimean does not (Figure 4.5b). The 37-year correlation using σ is weak and thus the method is 

not as useful after all, even though the 𝑟’s approach to the 37-year value (Figure 4.5d). Pairing 

with a high long-term 𝑟, the asymptote period of a metric indicates the appropriate time span of 

WS data required to represent the variability of wind-energy production. For example, the 

resultant 𝑟’s using RCoV asymptote after 3 years, meaning one needs 3 years of WS data to 

estimate the WS variability so as to adequately infer the energy-production variability of a 

certain or potential wind farm via RCoV.  

 

 

Figure 4.5: Boxplots of Pearson’s 𝑟 between WS variability and energy variability for differet 

analysis time frames, from 1 year to 37 years: (a) RCoV, (b) 
𝑟𝑎𝑛𝑔𝑒

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 , (c) CoV and (d) σ, based 

on the monthly mean data from the 195 𝑟-filtered wind sites. The 37-year correlations equal to 

the 𝑟 values listed in Figure 4.4.  
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The three correlation coefficients yield consistent results among all variability metrics 

tested, hence we primarily present the results using Pearson’s 𝑟 herein. Table 4.5 summarizes the 

37-year correlations ( 𝑟 , 𝑟𝑠  and 𝜏 ), between the WS variabilities and the energy-production 

variabilities using the 𝑟-filtered data, and the respective asymptote periods of the methods. The 𝑟 

and 𝜏 of RCoV are the largest (0.86 and 0.67 respectively) among all variability metrics, and the 

associate asymptote periods are also relatively short (2 to 3 years) (Table 4.5). Another 

normalized, robust, and resistant spread metric, interquartile range (IQR) divided by median, 

results in the highest 𝑟𝑠, and the 𝑟𝑠 of RCoV is the second largest (Table 4.5). More importantly, 

the asymptote periods of RCoV are the smallest of all, regardless of the choice of correlation 

coefficient. In other words, fewer years of data are necessary to calculate RCoV to effectively 

connect WS and energy variabilities than any other metric. Overall, when a spread metric yields 

strong correlations between variabilities of WS and energy generation, the correlation metrics 

agree with each other (Table 4.5). Therefore, the results in this chapter focus on Pearson’s 𝑟, 

which is a commonly used correlation coefficient.  
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Spread metrics 
37-

year 𝑟 

Asymptote 

years from 

𝑟 

37-

year 𝑟𝑠 

Asymptote 

years from 

𝑟𝑠 

37-

year 𝜏 

Asymptote 

years from 

𝜏 

CoV 0.704 5 0.754 4 0.565 9 

𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.743 4 0.781 3 0.595 4 

𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.728 4 0.770 3 0.583 6 

𝐼𝑄𝑅

𝑚𝑒𝑎𝑛
 0.818 4 0.821 3 0.636 6 

𝐼𝑄𝑅

𝑚𝑒𝑑𝑖𝑎𝑛
 0.845 3 0.843 3 0.662 6 

𝐼𝑄𝑅

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.834 3 0.834 3 0.650 6 

RCoV 0.856 3 0.836 2 0.663 3 

𝑀𝐴𝐷

𝑚𝑒𝑎𝑛
 0.834 3 0.822 3 0.648 5 

𝑀𝐴𝐷

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.848 3 0.832 3 0.660 5 

𝑅𝑎𝑛𝑔𝑒

𝑚𝑒𝑎𝑛
 0.609 30 0.711 28 0.516 31 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.806 3 0.807 3 0.631 5 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.794 4 0.801 4 0.622 6 

Seasonality Index, 

modified from Walsh and 

Lawler (1981) 

0.744 5 0.766 4 0.584 7 

Distribution diagnostics       

Kurtosis 0.936 1 0.934 14 0.785 24 

Skewness 0.943 1 0.938 1 0.798 18 

YKI 0.778 23 0.712 33 0.538 34 

Weibull shape parameter 0.721 4 0.741 5 0.559 7 

       

Table 4.5: Correlations and the associated asymptote periods of WS variability and energy 

variability using various methods, diagnositcs with different correlation metrics, based on the 

monthly mean data of the 195 𝑟-filtered wind sites.  
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In addition to the spread metrics, other distribution diagnostics also yield strong 

correlations between the 37-year monthly mean WS and energy production. For example, 

kurtosis and skewness result in 𝑟 and 𝑟𝑠 above 0.9. Since we determine the asymptote periods 

based on normalized deviations, when the 37-year correlation benchmark of a metric is high, the 

respective asymptote period tends to be shorter. Therefore, only 1 year of monthly mean data is 

required to compute kurtosis and skewness adequately, except for using 𝑟𝑠  in kurtosis, where 

those 𝑟𝑠’s of smaller number of years are low. (Table 4.5). Moreover, the symmetry and the 

shape of energy-production distribution can be characterized using WS data, given the 

moderately strong correlations of YKI and Weibull shape parameter (Table 4.5).  

Additionally, we also perform the same correlation and asymptote analyses on the data 

from changing the R2 and 𝑟 filter thresholds as well as the data with random error, and RCoV 

again yields the strongest correlations and the shortest asymptote periods among all methods. We 

adjust the R2 and 𝑟  requirements in the linear-regression process, thus changing the filtered 

sample sizes. On one hand, reducing the R2 threshold to 0.6 and 𝑟 threshold to 0.7 increases the 

respective sample sizes to 461 and 306 wind farms, but weakens the correlations between WS 

and energy variabilities for all methods (Table 4.6). On the other hand, increasing R2 threshold to 

0.85 and 𝑟 threshold to 0.9 strengthens the WS-energy correlations of all the metrics, and shrinks 

the sample sizes to 212 and 83 wind farms respectively (Table 4.6). Modifying the filtering 

thresholds leads to different 𝑟’s yet similar asymptote periods among all metrics. Moreover, we 

also test the vigorousness of our findings by introducing an error term, randomized based on the 

standard error, in predicting the 37-year energy productions. The error term adds uncertainty to 

resemble the reality of noisy WS and power-production data. We introduce the error term to the 

predicted energy productions for each of the 349 wind farms that pass the original R2-threshold 
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of 0.75. This approach weakens the correlations and lengthens the asymptote periods for most 

metrics (Table 4.6). Overall, according to the results from the R2-r-threshold and the random 

error tests, RCoV yields the highest 𝑟’s among all methods, and its asymptote periods remain 

reasonably short.  

 

 R2 = 0.6 

𝑟 = 0.7 

R2 = 0.85 

𝑟 = 0.9 
Random error 

Spread metrics 
37-

year 𝑟 

Asymptote 

years 

37-

year 𝑟 

Asymptote 

years 

37-

year 𝑟 

Asymptote 

years 

CoV 0.650 6 0.787 3 0.675 6 

𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.682 5 0.820 2 0.708 4 

𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.671 5 0.804 3 0.695 5 

𝐼𝑄𝑅

𝑚𝑒𝑎𝑛
 0.786 4 0.837 3 0.774 7 

𝐼𝑄𝑅

𝑚𝑒𝑑𝑖𝑎𝑛
 0.811 3 0.865 2 0.799 6 

𝐼𝑄𝑅

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.801 4 0.851 3 0.789 7 

RCoV 0.815 3 0.879 2 0.808 6 

𝑀𝐴𝐷

𝑚𝑒𝑎𝑛
 0.793 3 0.859 3 0.786 7 

𝑀𝐴𝐷

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.807 3 0.870 3 0.800 6 

𝑅𝑎𝑛𝑔𝑒

𝑚𝑒𝑎𝑛
 0.524 31 0.767 26 0.567 29 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.736 5 0.816 3 0.741 6 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.753 4 0.831 3 0.758 5 

Seasonality Index, 

modified from Walsh and 

Lawler (1981) 

0.695 5 0.804 3 0.710 5 

Distribution diagnostics       

Kurtosis 0.896 5 0.927 1 0.886 14 
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Skewness 0.931 1 0.951 1 0.918 8 

YKI 0.756 23 0.833 19 0.669 25 

Weibull shape parameter 0.656 5 0.802 3 0.706 4 

       

Table 4.6: As in Table 4.5, but calculated metrics, the associated correlations and asymptote 

periods using different R2 and 𝑟 filters and adding random standard error to predicted monthly 

total energy productions. The sample sizes of the 0.7-𝑟 threshold test, the 0.9-𝑟 threshold test and 

the random error tests are 306, 83, and 195 wind farms respectively.  

 

Besides, normalized and simple spread metrics yield different relative WS variabilities 

between wind sites. On one hand, the correlations coefficients between 37-year monthly mean 

WS RCoV and CoV, two spread metrics that are normalized by average metrics, are nearly unity 

(Figure 4.6a). The comparison between two simple spread metrics, MAD and σ, result in 

correlation coefficients close to 1 too (Figure 4.6d). The relative positions of OR site highlight 

the differences between Figure 4.6a and Figure 4.6d: compared to other wind farms, the OR site 

has moderate WS RCoV and CoV, but small MAD and σ. Compared to Figure 4.6a, the lower 𝑟𝑠 

and 𝜏 in Figure 4.6d illustrate that MAD and σ can misrepresent the relative WS variabilities of a 

wind site. On the other hand, the results between a normalized spread metric (RCoV and CoV) 

and the respective simple spread metric (MAD and σ), which is also the numerator of the 

normalized spread metric, lead to weaker correlations (Figure 4.6b and c). The 𝑟 , 𝑟𝑠  and 𝜏 

between 37-year monthly WS RCoV and σ are 0.684, 0.738, and 0.579 respectively (not shown). 

The wind sites with slower average WSs and thus disproportionately larger normalize spread 

results cause the deviations from perfect correlations in Figure 4.6b and c. Therefore, normalized 

spread metrics, which account for the differences in WS magnitude, become advantageous over 

simple spread metrics in comparing variabilities of wind sites. Note that we demonstrate similar 

comparisons between WS spread metrics via annual-mean data in Figure 4.7.  
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Figure 4.6: Similar to Figure 4.4, but for scatterplots to compare 37-year WS variability metrics: 

(a) RCoV and CoV, (b) RCoV and MAD, (c) σ and CoV, and (d) σ and MAD, based on monthly 

mean data from the 195 𝑟-filtered wind sites. Each black dot represents each filtered site, and the 

𝑟, 𝑟𝑠 and 𝜏 at the corner of each panel indicate the Pearson’s 𝑟, the Spearman’s rank correlation 

coefficient and the Kendall’s rank correlation coefficient between each pair of WS spread 

metrics. The yellow square and the yellow star denote the OR and the TX sites respectively.  
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Figure 4.7: As in Figure 4.6, but the metrics are calculated using yearly mean WS. 

 

Meanwhile, using annual-mean data to compute IAVs can lead to misleading 

interpretations. Scatterplots of the 37-year WS and energy IAVs similar to Figure 4.4 are 

illustrated in Figure 4.8. The correlations via yearly averages are generally weaker except for a 

few metrics, including range divided by mean which yields the largest 𝑟  of all (Table 4.7). 

However, the 37-year correlations do not adequately represent the long-term values (Table 4.7), 

so even the resultant asymptote periods are longer than those using monthly mean data, the 

asymptote analysis method is unsuitable for annual-mean data. Moreover, using annual averages 
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greatly limits the sample size at each site even with 37 years of hourly mean WS data. 

Statistically, a smaller sample leads to a smaller spread of that distribution. Accordingly, with 

few years of data, small spreads in annual-mean WSs result in a tight cluster of IAVs among all 

the wind farms. Therefore, the compact collection of WS and energy-production IAVs causes 

strong correlations, solely because of the small number of annual averages used in the IAV 

calculation. Thus, the correlations via annual means demonstrate a downward trend with 

increasing length of data, regardless of the variability metrics chosen (Figure 4.9). Although the 

correlations asymptote to the 37-year values, the weakening correlations with more years 

included in the IAV calculations imply that using less data is preferred in connecting the two 

IAVs. Note that the spread cannot be computed with one data point and hence the correlations 

between WS IAVs and energy IAVs do not exist with a single year of data (Figure 4.9). Overall, 

the asymptote analysis causes deceiving results, and given the nature of the annual means, we 

cannot determine the sufficient length of data to effectively link the IAVs of WS and energy 

production. In other words, relating WS IAV and energy-generation IAV with annual-mean data 

is flawed.  
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Figure 4.8: As in Figure 4.4, but the metrics are calculated using annual-mean WS and energy 

production. 
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Figure 4.9: As in Figure 4.5, but for annual-mean data.  
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IAV metrics 37-year 𝑟 Asymptote years 

CoV 0.573 27 

𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.567 27 

𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.569 27 

𝐼𝑄𝑅

𝑚𝑒𝑎𝑛
 0.699 24 

𝐼𝑄𝑅

𝑚𝑒𝑑𝑖𝑎𝑛
 0.697 24 

𝐼𝑄𝑅

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.699 24 

RCoV 0.668 27 

𝑀𝐴𝐷

𝑚𝑒𝑎𝑛
 0.670 25 

𝑀𝐴𝐷

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.670 25 

𝑅𝑎𝑛𝑔𝑒

𝑚𝑒𝑎𝑛
 0.723 27 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑚𝑒𝑑𝑖𝑎𝑛
 0.567 27 

𝑇𝑟𝑖𝑚𝑚𝑒𝑑 𝜎

𝑡𝑟𝑖𝑚𝑒𝑎𝑛
 0.569 27 

Seasonality Index, modified from Walsh 

and Lawler (1981) 
0.547 29 

Distribution diagnostics   

Kurtosis 0.985 5 

Skewness 0.980 4 

YKI 0.853 12 

Weibull shape parameter 0.649 28 

   

Table 4.7: As in Table 4.5, but calculated metrics, the associated correlations and asymptote 

periods using different R2 and 𝑟 filters and adding random standard error to predicted monthly 

total energy productions. The sample sizes of the 0.7-𝑟 threshold test, the 0.9-𝑟 threshold test and 

the random error tests are 306, 83, and 195 wind farms respectively.  
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4.4.3 Wind-speed RCoV calculation and spatial distribution 

Considering RCoV is a powerful tool in relating WS and energy-generation variations, 

we then assess the required length of data to sufficiently calculate the RCoV of WS. We compute 

the site-specific RCoVs using different spans of monthly mean WSs, including the OR and the 

TX sites (Figure 4.10). The variations of RCoVs decrease with more years included in the 

calculations, and for each location we use the 37-year WS RCoV as the long-term benchmark. 

For example, the 37-year WS RCoV of 0.082 at the OR site means that the median among the 

absolute deviations from the median is 8.2% of the median monthly mean WS (Figure 4.10a and 

Table 4.2). We determine the 37-year σ’s as 10% and 5% of the 37-year RCoV, and we apply the 

𝜒2 approach at 90% and 95% confidence levels respectively to derive the convergence years, or 

the minimum length of WS data required to calculate RCoV effectively. The convergence years 

of the OR and TX sites are 12 and 25 years with 90% confidence, and 20 and 31 years with 95% 

confidence respectively (Table 4.8). In other words, for the OR site, one needs 12 years of 

monthly mean WSs to compute RCoV with 90% confidence that the resultant RCoV is within 

10% deviation from the 37-year RCoV.  

 

 

Figure 4.10: Boxplots of WS RCoV using monthly MERRA-2 data for different time frames 

from 1 year to 37 years at (a) the OR site and (b) the TX site.  
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Monthly mean WS RCoV CoV σ 

Confidence level 90% 95% 90% 95% 90% 95% 

37-year sample size  

(of 5049 grid points) 
5049 4923 5049 5039 5049 5048 

Convergence years – CONUS median 10 20 4 12 4 12 

Convergence years – CONUS MAD 3 4 2 5 2 5 

Convergence years – OR site 12 20 6 15 6 15 

Convergence years – TX site 25 31 7 24 5 24 

Yearly mean WS RCoV CoV σ 

Confidence level 90% 95% 90% 95% 90% 95% 

37-year sample size  

(of 5049 grid points) 
4414 2565 5034 4292 5034 4301 

Convergence years – CONUS median 27 33 20 28 19 28 

Convergence years – CONUS MAD 4 2 4.5 3 4 3 

 

Table 4.8: Convergence years based on the 𝜒2 approach of WS RCoV (as in Figure 4.10 and 

Figure 4.11), WS CoV, and WS σ, using monthly and yearly mean WSs. The calculations of 

median and MAD exclude the data with convergence years beyond 37 years in the CONUS.  

 

To quantify the long-term variability of WS at a wind farm, RCoV requires 10 years of 

monthly mean WS record with 90% confidence. In general, the σ’s of WS RCoVs across the 

CONUS decrease with more years included in the RCoV calculation (Figure 4.11a). For each 

grid point, the sample size of RCoV also becomes smaller, from 37 RCoVs of 1 year of data to 1 

RCoV of 37 years of data, and hence the σ of RCoV decreases with the length of WS records 

(Figure 4.11a). With the σ’s of RCoVs across 37 years, we determine the convergence years via 

the 𝜒2 method. For a certain confidence level, the cumulative fraction of the CONUS grid cells 

exceeding the associated threshold of 𝜒2-derived confidence intervals increases with the length 

of data (Figure 4.11b). Among all of the MERRA-2 grid cells in the CONUS, the median 



139 

 

convergence year is 10 years and the associated MAD is 3 years at 90% confidence level (Figure 

4.11b and Table 4.8). In other words, to assess the WS variability via RCoV with a maximum of 

10% error from the long-term value and 90% confidence, one needs 10 ±3 years of monthly 

mean WS records.  

Moreover, raising the confidence level extends the minimum length of WS data to 

compute RCoV. At 95% confidence level, the median convergence years is 20 years, and 2.5% 

of grid points in the CONUS require more than 37 years of monthly mean data to calculate 

RCoV (Figure 4.11b and Table 4.8). Additionally, using yearly mean WSs to calculate RCoV 

leads to longer convergence years. At 95% confidence, 33 years of annual-mean data is the 

average required length, and half of the CONUS grid points have convergence years over 37 

years (Figure 4.11b and Table 4.8). We also perform the same analysis on CoV and σ of WSs 

(Table 4.8). Although CoV and σ result in shorter convergence years, these non-robust and non-

resistant methods yield worse correlations between WS and energy-production variabilities than 

RCoV, and hence we focus on demonstrating the RCoV results.  
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Figure 4.11: (a) Boxplots of σ’s of WS RCoVs, where the RCoVs are calculated using monthly 

mean MERRA-2 data of 1 to 37 years. For each year, each box summarizes the σ from each 

MERRA-2 grid cells in the CONUS; (b) The fraction of grid cells in the CONUS that the pair of 

the 𝜒2-derived σ’s from each of those grid cells become smaller than the 37-year σ. The solid 

black, dash black, solid orange, and dash orange lines respectively indicate the minimum length 

of data: when the WS RCoV using monthly mean data yield 10% deviation at maximum from 

the 37-year value at 90% confidence level; when the WS RCoV using monthly mean data yield 

5% deviation at maximum from the 37-year value at 95% confidence level; when the WS RCoV 

using yearly mean data yield 10% deviation at maximum from the 37-year value at 90% 

confidence level; and when the WS RCoV using yearly mean data yield 5% deviation at 

maximum from the 37-year value at 95% confidence level. 
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Spatial distributions of WS RCoVs across the CONUS identify locations with reliable 

wind resources. Based on the site-specific convergence years at 90% confidence level (Figure 

4.12a), we calculate the RCoVs with monthly mean WSs of the particular time spans at each grid 

point and normalize with the CONUS median (Figure 4.12b). Regions requiring long WS 

records irregularly scatter across the continent, such as the Northeast, the Dakotas, and Texas; 

whereas the pattern of WS RCoV displays geographical arrangements, and the mountainous 

states generally illustrate high RCoVs, including the Appalachians and the Rockies. Given the 

strong correlations between the WS RCoV and energy-production RCoV, Figure 4.12b offers a 

realistic estimation of the general spatial pattern of the variability in wind-energy production as 

well. Note that qualitatively, Figure 4.12b is similar to the maps of WS variability in Figure 13a 

of Gunturu and Schlosser (2012) and in Figure 3 in Hamlington et al. (2015), which also 

illustrate the variability of wind resources in the CONUS. In addition, using a fixed length of WS 

data of 10 years for all CONUS grid points to compute RCoV results in a nearly identical spatial 

distribution to the pattern in Figure 4.12b.  

Further, an ideal location for wind farms should exhibit ample WSs with low variability. 

We combine the spatial variations of the normalized RCoV and the long-term wind resource 

(Figure 4.12b and c), and we differentiate regions according to the CONUS median RCoV and 

WS (Figure 4.12d). Favorable candidates for wind-farm developments have above-average WSs 

and below-average variabilities, such as the Plains, parts of the Upper Midwest, spots in the 

Columbia River region and the Carolinas; poor places for wind power with weak winds and 

strong variabilities include the Appalachians and most of the Northeast.  

The convergence years in some CONUS grid points are beyond 37 years when we 

increase the confidence level from 90% to 95% (Figure 4.11b and Table 4.8), and those grid 
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points do not demonstrate any geographical pattern as in Figure 4.12a. Additionally, using RCoV 

to represent IAV, the spatial patterns of required data lengths and the resultant normalized 

RCoVs are notably different from the monthly mean results, and geographical features seem to 

be irrelevant (Figure 4.13). Furthermore, the categorical features of CoV demonstrates very 

similar to those of RCoV for onshore wind resources in the CONUS, whereas using σ results in 

notably distinct classifications of CONUS wind resources (Figure 4.12d and Figure 4.14).  
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Figure 4.12: (a) Map of the convergence years, or years of monthly mean WS data required to 

derive a maximum of 10% deviation from the 37-year RCoV at each grid point, at 90% 

confidence level. The CONUS median is 10 years with the MAD of 3 years; (b) Map of RCoV 

of monthly mean WS using the grid-cell-specific convergence years in (a), normalized using the 

CONUS RCoV median at 0.100. The RCoVs illustrated are averaged over (37-convengence 

year+1) available year blocks. The MAD of the normalized RCoV in the CONUS is 0.224; (c) 

Map of the mean monthly WS at 80 m of 37 years from 1980 to 2016. The CONUS median is 

6.45 m s-1 with the MAD of 1.03 m s-1; (d) Map of wind resource and its variability, by 

summarizing (b) and (c) into four categories: regions with below-median WS and above-median 

RCoV (grey), regions with below-median WS and below-median RCoV (orange), regions with 

above-median WS and above-median RCoV (orange red), and regions with above-median WS 

and below-median RCoV (dark red), based on the CONUS median WS and RCoV.  
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Figure 4.13: As in Figure 4.12, but the data plotted are annual-mean WSs: (a) Map of the 

convergence years, or years of WS data required to derive a maximum of 10% deviation from 

the 37-year RCoV at each grid point, at 90% confidence level. Because 12.6% of the CONUS 

grid points yield convergence years beyond 37 years using annual-mean data (solid orange line 

in Figure 4.11 and first column in Table 4.8), we assign 37 years as the convergence years for 

those grid points. After excluding the non-numeric values, the CONUS median is 27 years and 

the MAD is 4 years; (b) Map of RCoV of annual-mean WS using the grid-cell-specific 

convergence years in (a), normalized using the CONUS RCoV median at 0.020. The RCoVs 

illustrated are averaged over (37-convergence year+1) available year blocks. The MAD of the 

normalized RCoV in the CONUS is 0.205.  
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Figure 4.14: As in Figure 4.12d, but the spread metrics are (a) σ and (b) CoV, calculated using 

monthly mean WSs of 37 years. 

 

4.5 Discussion  

When using statistically robust and resistant variability metrics, stronger correlations 

between variabilities of WS and energy production emerge. Statistically, robust methods do not 

assume or require any underlying WS distributions, and resistant methods are insensitive to WS 

extremes. Of all methods, three robust and resistant metrics, RCoV, MAD divided by trimean 

and IQR divided by median, result in the largest three 𝑟’s in Table 4.3 and Table 4.5, suggesting 

them as the most useful metrics to quantify long-term variability. Depending on the 

meteorological-data availability, WS characteristics, and terrain complexity, different methods 

are appropriate in different conditions. Nevertheless, robust and resistant methods are the most 

applicable to connect WS variability with energy-generation variability, and RCoV is the best 

one among all.  

Overall, of all methods, RCoV consistently yields the strongest correlations in WS and 

energy variabilities with reasonable asymptote periods (Table 4.3 and Table 4.5), even after 
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accounting for random standard errors and modifying the R2 and 𝑟 thresholds (Table 4.6). In 

addition, assessing WS RCoV with 90% statistical confidence requires 10 ±3 years of monthly 

WS means (Figure 4.11 and Table 4.8), which exceeds the asymptote periods of 2 to 6 years to 

yield strong WS and energy-production correlations (Table 4.5). Even though different locations 

require various spans of data (Figure 4.12a), the average of the resultant RCoVs using 10 years 

of WSs leads to nearly identical spatial distributions (Figure 4.12b). Therefore, to effectively 

quantify WS variability and thus to adequately derive energy-generation variability, we 

recommend using the RCoV with 10 years of monthly mean WSs.  

Annual-mean data are inadequate in relating WS and energy-production IAVs as well as 

in representing WS IAVs. We cannot determine the minimum years of data to sufficiently relate 

WS and energy IAVs because their correlations decline with the length of data available (Figure 

4.9). Moreover, the coarse time resolution of annual averages smooths out fluctuations of smaller 

time scales. In other words, generalizing a year of WS records with one number omits the signals 

from microscale gusts to synoptic-scale fronts, resulting in smaller magnitude of spread metric 

results (Figure 4.8 and Table 4.2). Yearly mean WSs also possess different distribution 

characteristics, such as skewness and kurtosis, compared to those of finer temporal resolutions 

(Lee et al., 2018). Decades of WS data is also necessary to compute RCoV and represent IAV 

(Figure 4.13a), and the resultant features of IAV (Figure 4.13b) differ from those calculated via 

monthly mean WSs (Figure 4.12b). For instance, the low IAVs in the Appalachians (Figure 

4.13b) contradict with the pattern of high monthly mean WS RCoVs in mountainous areas 

(Figure 4.12b) as well as the findings in past research (Gunturu and Schlosser, 2012; Hamlington 

et al., 2015). Moreover, some of the grid points require more than 37 years of yearly mean data 

to calculate WS RCoV with statistical confidence (Figure 4.11 and Table 4.8). Although RCoV 
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does not yield the strongest 37-year 𝑟  in relating WS and energy IAVs, readers should be 

cautious when using a limited length of annual-mean WS records to derive IAVs. In short, to 

effectively assess the long-term variability of wind-farm productivity, one should use WSs finer 

than yearly mean data.  

Regions with ample wind resources and low variability favor and rationalize wind-energy 

developments, coinciding the locations of many existing wind farms in the CONUS (Figure 

4.12d). Wind farms in the Plains and parts of the upper Midwest benefit from the above-average 

WSs and the below-average WS RCoVs. Other regions, such as segments in the Columbia River 

region and the Carolinas, also have strong, consistent winds in the long run. The Northeast and 

the Appalachians is relatively unfavorable for supplying stable onshore wind energy, whereas the 

area east of Cape Cod in Massachusetts and sections along the West Coast exhibit promising 

offshore wind resource. Wind-farm developers should account for wind resource as well as its 

long-term variability in repowering existing turbines and building new wind farms.  

Furthermore, mathematically, a normalized spread metric, namely a spread statistic 

divided by an average metric, is more useful than solely a spread metric in assessing variability. 

Moreover, a normalized spread metric should always be presented with the corresponding 

averaging metric. For example, RCoV and CoV between WS and energy production yield larger 

𝑟’s than MAD and σ (Table 4.3 and Table 4.5), and the 𝑟’s between WS RCoV and WS CoV are 

also higher than the same WS comparisons involving MAD and σ (Figure 4.6). For σ, which is 

the root-mean-square of the deviation from the mean, is not statistically robust or resistant, and 1 

σ represents that the uncertainty is 18.3% from the mean. Hence, CoV, or the σ divided by the 

mean, is the respective normalized uncertainty metric to σ. For instance, the WS CoVs of both 

the OR and TX sites are about 0.13 (Table 4.2), implying the σ is 13% from the mean. In 
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contrast, using RCoV, or the MAD divided by the median, is a robust and outlier-resistant metric 

of normalized uncertainty. For example, the WS RCoVs of the OR and TX sites are 0.08 and 

0.09 respectively (Table 4.2), indicating the MADs are 8% and 9% from their median WSs. Even 

though RCoV is not as commonly used and is not as intuitive as σ or CoV, RCoV is unrestricted 

by any assumptions of the underlying distribution of WS. Overall, to correctly and effectively 

use the normalized spread metrics, both the normalized spread metric and the average value need 

to be stated clearly in pairs. In other words, a statement of “variability is 2%” oversimplifies the 

statistics of uncertainty quantification. Therefore, we recommend presenting both the RCoV and 

the median of a time series together in estimating variability.  

Distribution diagnostics, on top of the variability metrics, are also effective in identifying 

the characteristics of wind-energy production at a location. We examine a few distribution 

parameters that result in strong WS-energy correlations, including kurtosis and YKI (Table 4.4 

and Table 4.5). Both metrics assess the degree of deviations from a Gaussian distribution. For 

instance, we confirm the monthly and yearly mean WS distributions of the OR and TX sites are 

not perfectly Gaussian because of their non-zero kurtosis and skewness values (Table 4.2), as 

well as their portions of data within 1 σ. Moreover, a multi-modal or an asymmetrical WS 

distribution (Figure 4.3c and d) also implies a non-Gaussian energy-production distribution. 

Generally, Gaussian distribution is invalid for WSs across averaging time scales (Lee et al., 

2018). Hence, understanding the underlying distribution of wind resources can validate the 

applications and the legitimacy of Gaussian statistics, especially in quantifying the P50, and the 

associated losses and uncertainties in wind energy.  
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4.6 Conclusion 

Because WS variability is a crucial component in assessing overall uncertainty of P50, 

this chapter highlights the importance of using rigorous methods to estimate inter-annual and 

long-term variability. To search for the suitable ways to quantify this uncertainty under different 

conditions, we investigate 27 combinations of spread metrics over hundreds of wind farms in the 

US, with closer examination of two geographically-distinct sites. We evaluate the methods for 

statistical robustness to non-Gaussian distributions and statistical resistance to extreme values, in 

contrast to the common practice of using only σ. We calculate variabilities using the monthly 

mean WSs from the MERRA-2 reanalysis dataset and the wind-farm monthly net energy 

productions from the EIA. We find that within the CONUS, statistically robust and resistant 

methods predict variabilities more accurately, in which the WS variabilities and energy-

production variabilities produce strong correlations.  

We recommend RCoV to quantify variabilities of wind resource and energy production. 

RCoV, defined as the median of absolute deviation from median divided by the median, is a 

statistically robust and resistant spread metric. This metric yields strong correlations consistently 

in various sensitivity tests via different correlation coefficients. In other words, using RCoV, a 

wind farm with high WS fluctuations also possesses high variations in wind-energy generations 

and vice versa, whereas other metrics do not translate that relationship as effectively. Contrary to 

the custom of displaying uncertainty in one percentage value, we advise users to assess both the 

RCoV and the median in estimating the variability. Moreover, depending on the location, on 

average 10 ±3 years of monthly mean WS data is necessary to compute WS RCoV with 90% 

statistical confidence, where the resultant RCoV deviates within 10% of the long-term RCoV. 
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RCoV, as a normalized spread metric, also leads to a more accurate depiction of WS variabilities 

than σ, a simple spread metric.  

Additionally, we can characterize the distributions of wind resources and wind-energy 

productions adequately via RCoV and other distribution diagnostics. The relatively low monthly 

mean WS RCoVs in the central U.S. indicate stable long-term wind resources, and its overall 

spatial distribution in the CONUS agrees with the findings from past research. Other distribution 

diagnostics, such as kurtosis and skewness, also result in high correlations between monthly 

mean WS and energy generation, and thus they are considered useful in representing energy-

production characteristics.  

Furthermore, readers should avoid calculating IAVs using annual-mean data because the 

long-term correlations between the WS and energy-production IAVs are weak. Hence, we cannot 

determine the minimum length of annual-mean data required for satisfactory results. Although 

the concept of IAV has been essential in determining the AEP in the WRA process, annual-mean 

WSs mask the signals of finer temporal scales and thus lead to unreliable representations of long-

term variability.  

Future work includes expanding the current analysis using high-resolution WS and 

energy-production data to assess finer-scale variations. With data of different temporal scales, 

the autocorrelation of wind resources and its relationship with long-term energy-production 

variations can also be quantified. We can also assess the influence of climatic cycles and 

seasonal monsoon patterns of WS on energy production as well. Furthermore, applying the 

concept of RCoV to quantify the uncertainty of P50 and assist financial decisions will be 

beneficial to the industry.  
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4.7 Data availability  

The MERRA-2 data and the EIA data used in this chapter are publicly available at 

disc.sci.gsfc.nasa.gov/ and www.eia.gov/renewable.  
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Chapter 5 

5. CONCLUSION 

 

欲窮千里目，更上一層樓。 

(Advance to another level to see a thousand miles further.) 

– 王之渙  

 

This dissertation covers three different topics on wind-energy meteorology. Specifically, 

the previous chapters include the exploration on the evening evolution of wind-turbine wakes 

and their interactions with power production, the validation of the power-production predictions 

of the Weather Research and Forecasting (WRF) model with observations, and the assessment of 

a statistically robust process to evaluate the long-term variability of wind resources.  

First, I characterize the evening transition of wakes caused by a single turbine and a wind 

farm using observations and the wind farm parameterization (WFP) scheme in the WRF model. 

When the evening atmosphere changes from unstable to stable, the turbine-induced wind-speed 

(WS) deficit and turbulence enhancement become more prominent after sunset. The wake also 

primarily locates within the rotor layer during and after the evening transition (ET). Therefore, 

the overall wind-power production decreases in the case study. Wind-farm operators should 

account for and incorporate these wake changes in the evening into the optimization control 

processes to maximize power production.  

Next, I evaluate the skill of the WRF WFP scheme on power production in range of WSs, 

wind directions (WDs), and stability conditions during a period of summertime low-level jets 
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(LLJs). Performing simulations on wind and power generation with a fine vertical grid of about 

12 m is recommended. Even though the WFP overstates wake losses and thus underestimates 

power production in a windy, non-turbulent, and stable atmosphere, predicting power via the 

WFP is far more accurate than that without it. Ultimately, improving the WFP performance 

requires better predictions of ambient winds.  

Finally, I search for the best approach to represent the long-term variability of wind 

resource and energy production. The Robust Coefficient of Variation (RCoV), as a statistically 

robust and resistant metric, is the optimal method to assess WS variability as well as to relate WS 

and wind-energy-production variabilities. Future wind-energy developments should focus on 

regions with strong winds and low WS RCoVs, such as the Plains and the Upper Midwest in the 

U.S. In contrast to the common practices in the industry, evaluating the inter-annual variabilities 

(IAVs) of wind resources with annual-mean values oversimplifies the small-scale WS 

fluctuations and hence is inferior.  

After all, in accordance to the nature of research in combining “re” and “search”, this 

work triggers more and deeper explorations. In addition to enhancing our understanding of 

atmosphere-related uncertainties in wind energy, this dissertation aims to bring positive influence 

on the community and push the industry forward. For example, the WRF modeling work 

mentioned above helps to promote and publicize the use of the mesoscale numerical weather 

prediction (NWP) model in the wind-energy sector. The applications of the WRF WFP span 

from wind resource assessment (WRA) to operational forecasting. Proving the value of the WFP 

suggests that such numerical parameterization for other weather-dependent renewable 

technologies such as utility scale solar farms can also be feasible and useful. After all, the WFP 
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validation paves a foundation for further tests of the WFP onto complex terrain, during extreme 

weather conditions, or in wind farms of irregular shapes.  

Moreover, determining the best approach to quantify the financial risk of the P50 is a 

logical next step. The RCoV is ideal to assess WS variability, yet whether the metric works as 

well to estimate the spread between P50, P90 and P99 (the estimate thresholds of AEP of a wind 

farm that are expected to exceed 50%, 90%, and 99% over its lifetime) in dollar terms remains 

uncertain. In contrast to the direct relationship between WS and wind energy, more independent 

variables affect the variabilities of energy productions and energy prices: energy prices fluctuate 

according to market changes; wind farms have customized power purchase agreements with 

utilities; curtailment compensations are complex and case-specific. Nonetheless, the industry 

needs to improve beyond using standard deviations (σ’s) to represent uncertainties, and 

extending the application of statistically robust and resistant metrics to the financial side will be 

meaningful.  

Additionally, the wind-energy industry should consider other energy sources as 

complements than competitors. In the end, the wind community is competing with itself. Given 

decades of wind, power and other operational data, we should aim to bring the current renewable 

energy production to the next level: lower the pre-construction cost, simplify the WRA process, 

reduce the wholesale price, optimize wind-farm layout, maximize the annual energy production 

(AEP), reduce the need of maintenance, and minimize production uncertainty. Since wind energy 

is a keystone in our sustainable future, the industry needs to make the most out of academic 

research when moving forward and making innovations.  

Take the power curve as an example. From WRA to operations, the industry uses the 

power curves (Figure 1.1) provided by the manufacturers and assumes little uncertainty about 



155 

 

them. Even the WRF WFP derives power outputs using theoretical power curves as inputs. The 

power curve undoubtedly serves as a basis for most wind-energy research. In reality, wind-power 

production does not increase linearly with WS, and in operation the WS-power data scatter all 

around. In other words, wind turbines often under- and over-perform. The industry needs to 

understand how meteorological factors other than WS, such as turbulence and atmospheric 

stability, correlate with power production. Thus, constructing a multi-variate relationship 

between meteorological variables and power generation is extremely impactful.  

The incompetence of presuming a smooth and simple power curve in wind-energy 

research leads to another question: the role of uncertainty propagation. For example, according to 

Lorenz’s Chaos Theory, researchers should assess the impacts of input uncertainties when they 

use numerical models. For example, the uncertainty in the boundary conditions of the WRF 

model magnifies the uncertainty in the output WSs. Furthermore, evaluating and validating our 

analyses becomes necessary for bookkeeping in the age of reproducible research. However, the 

industry seems to underestimate the magnification of input uncertainties. Therefore, we should 

also grow from a deterministic approach to a probabilistic mindset.  

Along the same line, statistics and data science continue to reshape the industry gradually 

when we collect more data every day. Not only should researchers not abuse statistics, the 

industry should also beware the weaknesses of the Gaussian distribution. The Central Limit 

Theorem requires a large sample size to validate a Gaussian distribution, and hence making the 

Gaussian assumption inadequate at times. Additionally, the knowledge about past events actually 

limits our ability in quantifying variabilities, especially those in the future, and blindsides 

analysts during extreme events. For example, forecasting the intensity of ramp events or 
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predicting the wind resource months ahead of time remains challenging. Improved models 

definitely continue to assist us, and understanding their limitations is equally important.  

One future exploration should focus on the repowering of existing wind turbines. With 

the enormous number of aging turbines around the world, repowering gains growing attention 

and momentum. Topics about repowering include revising the WRA, extending the agreements 

between stakeholders, updating the wind-farm optimization with new turbines, recycling of old 

turbines, etc. We can always improve from the past, and repowering offers the best chance to 

apply what we have learned. Given the ocean of operational data the industry has collected, 

owner-operators should harvest the maximum amount of energy by installing more reliable and 

powerful turbines. The whole industry can learn the lessons and take actions better than the first 

attempts. Moreover, the repowering process extends the production cycle and proves that the 

wind-energy industry can stay dynamic and innovative. After all, repowering inevitably 

determines the future directions of the maturing wind-energy industry.  
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EPILOGUE 

 

Education is what remains after one has forgotten what one has learned in school. 

– Albert Einstein  

 

Oh, “Ph.D.”, such a fancy title.  

Honestly, I cannot care less about this new title. Looking back, the primary reason I 

chose to enter graduate school was: to deepen my understanding of atmospheric science. I was 

madly in love with the subject, and I still proudly am.  

Inevitably, graduate school is a long, lonely journey. In late August 2013, I started with 

being a student (taking classes and studying for the written comprehensive exam) and a teacher 

(teaching assistant for a weather laboratory class) at the same time. Then in May 2014, I began 

my research endeavor with calculating ogive functions using the Crop Wind Energy EXperiment 

2011 (CWEX-11) data. In the meantime, I served as the Lead Graduate Teacher of the Graduate 

Teaching Program for the Department of Atmospheric and Oceanic Sciences (ATOC) in 2014 

and 2015. Thanks to my collaborators at the Los Alamos National Laboratory (LANL), my first 

project changed from contrasting three case studies to focus on one case study in ET in the 

spring of 2015. In the fall of 2015, I used my ET study to complete my research comprehensive 

exam. In early 2016, I finally submitted the ET paper and experienced the bittersweet taste of 

publishing in a journal for the first time. My second project had fewer twists, while learning to 

use the WRF model and the WFP scheme was tough. Working on the WFP paper when interning 

at General Electric (GE) led to a productive summer in 2016. Starting from 2017, I transitioned 
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from mainly conducting independent research to collaborating with team members on the 

Performance, Risk, Uncertainty, and Finance, or PRUF, project at the National Renewable 

Energy Laboratory (NREL). And here I am, crafting the last chapter of my thesis in a cubicle of 

a national lab.  

Meaningful adventures take time. Over the years, I transitioned from MATrix 

LABoratory (also known as MATLAB), to Interactive Data Language (also known as IDL), to 

NCAR Command Language (also known as NCL), to Python, and I learned the pros and cons of 

each of them. I also participated in various campaign planning meetings, and the campaigns 

themselves, including the eXperimental Planetary boundary layer Instrumentation Assessment, 

or XPIA, at the Boundary Atmospheric Observatory (BAO) and the Wind Forecast Improvement 

Project 2, or WFIP2, in the Pacific Northwest, both through the Atmosphere to Electrons, or 

A2e, initiative of the Department of Energy. I learned how to inflate weather balloons and launch 

radiosondes by myself in the dark, and even set up and operate profiling LiDARs (Light 

Detection And Ranging), radiometers, surface flux stations, and tethered lifting system in 

suboptimal weather conditions. I was also privileged to present my work at numerous 

conferences, including a couple of American Meteorological Society (AMS) annual meetings, 

the AMS Symposium on Boundary Layers and Turbulence, the American Wind Energy 

Association (AWEA) Wind Resource & Project Energy Assessment Conference, the 

International Conference on Energy & Meteorology, the International Conference on Future 

Technologies in Wind Energy, LANL, and switchCU~. And of course, not all my efforts were 

fruitful and sweet. My analysis for the Lidar Uncertainty Measurement Experiment, or LUMEX, 

was never published. The BAO was closed and took down in 2017, and part of the Columbia 

Gorge was on fire earlier that year.  
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Overall, my graduate study was composed of infinite items on the to-do list, countless 

curses, thousands of emails, a lot of late nights, many (pushed-back) deadlines, some frustration, 

a few breakdowns, a handful of stress-free vacations, and a constant self-doubt: why am I doing 

this?  

As a wind-energy enthusiast, I must quote Bob Dylan: the answer, my friend, is blowing 

in the wind. Besides, the hottest fire makes the hardest steel. At the end of the day, I love 

atmospheric science, with all my heart.  

I am completely grateful to have such an amazing combination of family, friends, 

mentors and colleagues. I would not have survived otherwise. This long journey certainly 

contained no blood and no tears, and was full of laughter, experience, knowledge, insights, 

wisdom, and memories. I state the following with full confidence: my graduate study humbled 

me, and I have become a better person.  

A Ph.D. is simply a license to learn, and nothing else. In the ever-learning journey of life, 

at least I tried to prove my open mind, my eagerness to learn, and my persistence. An end is 

another beginning.  

Benjamin Franklin once said, “if you would not be forgotten, as soon as you are dead and 

rotten, either write things worth reading, or do things worth the writing.” I sincerely hope I did 

something worth writing, and I wrote something worth reading.  

Joseph C. Y. Lee 

12 April 2018 

Boulder, CO  
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