
Visualizing Random Walks on
Supercharacter Theories for

Uppertriangular Unipotent Matrices

Justin Willson

Defended on April 1, 2019

Thesis Advisor and Honors Council Representative:
Nathaniel Thiem, Department of Mathematics

Thesis Committee:
Richard Green, Department of Mathematics

Joshua Grochow, Department of Computer Science

1 Introduction

The conjugacy classes of some finite groups are provably wild in the sense that there is no general
solution to finding their conjugacy classes other than brute force. This makes using character theory
to study the group difficult as such methods are aided by an understanding of the conjugacy classes.
In order to surmount this difficulty, Diaconis and Isaacs developed the theory of supercharacters in
[1]. Constructing a supercharacter theory for a finite group has the effect of gluing conjugacy classes
together into superclasses in order to make the structure of the group easier to understand. This
gluing also has the effect of infusing the group with interesting combinatorial properties that can be
visualized as familiar object. We can also perform a random walk on the supercharacter theory in
order to further study a group.

In this paper, we will apply these methods both to the subgroup of uppertriangular unipotent
matrices of the form (

Idm A
0 Idn

)
,

where A is an arbitrary m×n matrix, and to the group of uppertriangular matrices as a whole. One
supercharacter theory will be represented by matchings and the other will be represented by Dyck
paths. We will construct probability functions for the supercharacter theories in order to perform
random walks on them. Further, we will animate these walks in order to better understand them.

The author would like to thank the 2017 CU Math Department REU for the funding to begin
this work.

2 Preliminaries

In order to begin, we must define the objects we will be studying as well as the tools we will be
using.

2.1 Uppertriangular Unipotent Matrices

The group of unipotent uppertriangular matrices have been proven to have a wild conjugacy class
structure. This makes them a perfect candidate to analyze using a supercharacter theory.

Definition 2.1.1. The group of uppertriangular unipotent matrices UT (n,Fq) over a finite field Fq
with q elements is the subgroup of GL(n,Fq) defined by

UT (n,Fq) = {g ∈ GL(n,Fq) | (g − id)ij 6= 0 implies i < j}.

Informally, the group of uppertriangular unipotent matrices, UT (n,Fq) is the set of uppertrian-
gular matrices with ones along the diagonal and arbitrary elements of Fq above the diagonal.

2.2 Supercharacter Theory

A supercharacter theory of a finite group G is a coarsening of the character theory of G, that combines
the conjugacy classes of G into superclasses. In the same way a character function is constant on
conjugacy classes, a supercharacter is constant on superclasses.

Definition 2.2.1. A supercharacter theory (Cl,Ch) of a finite group G is a partition, Cl, of G and
a set of supercharacters Ch, such that

1

1. The number of blocks in Cl is the same as the number of characters in Ch.

2. Each block in Cl is a union of conjugacy classes.

3. The characters in Ch are constant on the blocks of Cl. That is, if φ ∈ Ch, and g and h are
group elements in the same block of Cl, then φ(g) = φ(h).

4. Each irreducible character of G is the constituent of exactly one element in Ch.

The blocks of Cl are called superclasses.

While it is not generally true that one can associate each supercharacter to a superclass, because
of the examples we will be working with in this paper, such an association can be made. In this case,
we will associate each superclass, A, to a supercharacter χA. Since supercharacters are constant on
superclasses, it is sufficient to define χA(B) for every superclass B in order to define a supercharacter.
In order to simplify our calculations, we will also frequently consider functions

χA

χA(1)

where 1 denotes the superclass of the identity.

2.3 Group Walk

In order to study a probability function, it can be useful to associate it to group walk. A famous
example of this is to associate methods of shuffling a deck of cards to a group walk on the symmetric
group.

Definition 2.3.1. Given a group G and probability function pr : G → Q, a group walk of length
n is a sequence (gi)

n
i=0 of group elements such that g0 is the identity element in the group and

gi = gi−1hi where hi is an element of G that was chosen based on the probability function, pr.

Its helpful to visualize the group as a set of point and the group walk as a particle moving from
point to point.

The structure of a group walk is heavily influenced by the choice of probability function. If the
function does not have support on a set of generators for the group, then it will not be possible
to walk to every group element during a walk. On the other hand, if the probability function has
support on too many group elements, the walk will be too chaotic or converge too quickly to the
uniform distribution. The following example highlights this fact.

Example 2.3.2. Let G = Z5 × Z5 and define three probability functions, pr1, pr2, and pr3, as
follows

pr1(g) =

{
1 if g = (1, 0)

0 else
pr2(g) =

1

25
pr3(g) =

{
1
4 if g ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}
0 else

.

In order to analyze the group walks generated by each of the probability functions, we can
visualize our group as a 5× 5 grid, with the first coordinate representing the x-axis and the second
coordinate representing the y-axis. If we walk on G using pr1, our group walk is always the same
and looks like stepping along the x-axis of our visualization. In contrast, if we use pr2, that is, the
probability function where each element has an equal likelihood of being chosen, then our walk would
bounce around the grid at random. Finally, if we do a walk with the third probability function,

2

we see a walk where at each point in the walk, we have an equal likelihood of moving up, down,
left, or right. Intuitively, we expect this walk to stay “near” the origin, but occasionally venture
out and reach points “farther” away. The walk generated by pr3, unlike the walk generated by pr2,
has enough structure that we can reason about what will happen at each step in the walk while not
having so much structure as to be predetermined in the way pr1 was.

We can extend the definition of a group walk to a walk on superclasses in order to study the
structure of a given supercharacter theory.

Definition 2.3.3. Let G be a group, (Cl,Ch) be a supercharacter theory on G and let pr : G→ Q
be a probability function such that pr(g) = pr(h) for any g and h in the same block of Cl. A
superclass walk of length n is a sequence of superclasses determined by identifying each element of
a group walk generated by pr with its corresponding superclass.

In this case, rather than a particle moving from group element to group element, we have a
particle moving from superclass to superclass.

2.4 Eigenvalues for a Group Walk

Given a probability function and a supercharacter theory, we can compute eigenvalues for the as-
sociated walk. Each row A of the supercharacter table is an eigenvector for the probability matrix
(pr(B,C)) where B and C are superclasses and pr(B,C) is the probability of going from B to C
during the supercharacter walk. The eigenvalues for these eigenvectors can be computed with the
formula

|G|〈pr, χA〉
χA(1)

,

as shown in [2], where pr is the probability function, χA is the character function corresponding to
the row A, and 〈−,−〉 is the character inner product. In doing this calculation, it is sufficient to
have a formula for

χA(B)

χA(1)

since we can write our eigenvalue formula as

|G|〈pr,
χA

χA(1)
〉.

3 Matching Supercharacter Theory

We can define a supercharacter theory on block matrices of the form(
Idm A

0 Idn

)
by associating each matrix to a matching which can be represented by non-attacking rooks on a
chessboard. We can then visualize each matching as a point in m dimensions in order to visualize a
walk on this supercharacter theory.

3

3.1 Matchings and the Point Presentation

Definition 3.1.1. An m × n matching is a subset M of {1, . . . ,m} × {1, . . . , n} such that no two
distinct elements of M share a first or second component. That is if (i, j) and (k, l) are in M with
i = k or j = l, then (i, j) = (k, l).

Because we are limited by m and n the pigeon-hole principle tells us that |M | ≤ min(m,n).
Further, we can represent a matching, M , as a grid of numbers with a 1 in the ith row and jth

column for each (i, j) in M .

Example 3.1.2.

If M is the 3× 4 matching given by {(1, 3), (3, 4)}, then we can represent M as

1

1

.

We call this presentation of a matching the rook presentation, because it demonstrates a second
understanding of m× n matchings as a way of placing rooks on an m× n chessboard such that no
two rooks attack each other. If two rooks were to attack each other, then they would have the same
first or second component and therefore they would not represent a valid matching. In light of this
understanding, we call the 1s in the diagram rooks. This presentation is very useful as it gives us a
method to count the number of possible matchings.

Lemma 3.1.3. Assume that n ≤ m. The number of m× n matchings is

1 +

n∑
k=1

(
n

k

)
(m)(m− 1) . . . (m− (k − 1)).

Proof. First, there is exactly one way to place no rooks on the chessboard. If we do place rooks on
the board, we can place k of them for each 1 ≤ k ≤ n. Then, for each k, we choose k rows to place
rooks in. Next, we have m choices of where to place the rook in the first row, then (m− 1) choices
for the second, and so on up until the kth rook for which we have (m− (k − 1)) choices. Thus our
final count is

1 +

n∑
k=1

(
n

k

)
(m)(m− 1) . . . (m− (k − 1)).

Now, one problem with the rook presentation of a matching is that it cannot represent all possible
matchings at once. This makes it more difficult to see the structure of the superclasses. A solution
to this problem is to convert an m × n matching into an m-dimensional lattice point. To do this,
we will create an m-tuple, (x1, . . . xm) from a matching M . For each element (i, j) of a matching M
we let xi = j. If there is no element corresponding to some xi, we take xi = 0.

Example 3.1.4. Let M be the 3× 4 matching given by {(1, 3), (3, 4)}, then we can represent M as
the point (3, 0, 4).

We will call this presentation the point presentation of a matching. With the point presentation,
we can display all possible matchings simultaneously.

4

Example 3.1.5. The set of all 2× 5 matchings looks like

.

Notice how there are no points on the diagonal as such a point would represent a matching with
two rooks in the same column.

This new visualization shows us another possible way of counting the number of possible m× n
matchings. Looking at Example 3.1.5, we see we can count the number of 2 × n matchings by
looking at the square of lattice points and then subtracting the diagonal not including the origin.
This yields the formula (n + 1)2 − n. Moving to the 3-dimensional case, we find planes of missing
points rather than a line. Here, we see that simply subtracting the planes is not sufficient to count
the number of possible matchings, as if we do, we subtract the diagonal too many times. In this
instance, our formula is given by (n+ 1)3−3n(n+ 1) + 2n. We can generalize this method of adding
and subtracting various dimensional hyperplanes, but in order to do this, we need to define a poset.

Definition 3.1.6. A poset, or partially ordered set, is a set P with a binary relation ≤ that is
reflexive, antisymmetric, and transitive.

Example 3.1.7. Let Pm be the poset of partitions of {1, . . . ,m} where a partition p is less than a
partition r if p is coarser than r. In this case let 1̂ represent the finest partition. We can visualize
P3 as

{{1}, {2}, {3}} = 1̂

{{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}}

{1, 2, 3}

where an element higher in the diagram is larger than all the elements below it.

With this definition, we are prepared to give a novel method of counting the number of valid
matchings.

Theorem 3.1.8. Let m ≤ n and let Pm be defined as in example 3.1.7. Then the number of valid
m× n matchings is given by ∑

p a partition of
{1,...,m}

µ(p, 1̂)nγ(p)(n+ 1)σ(p),

5

where µ is the Möbius function on Pm, γ(p) is the number of non-singleton blocks of p, and σ(p) is
the number of singleton blocks of p.

Proof. We will say that a point (x1, . . . , xm) satisfies the partition p if xi and xj are equal and
non-zero whenever i and j are in the same block of p. A point represents an invalid matching if it
satisfies any partition other than 1̂. This is because if a point, (x1, . . . , xm), satisfies a partition with
any non-singular blocks, it has some xi equal to some xj with i 6= j. Based on how we construct
a point from a matching, the point would not represent a valid matching. For a more concrete
example, notice that all the points that are missing in example 3.1.5 satisfy the partition {{1, 2}}
and all the points that are present only satisfy the partition {{1}, {2}}.

So, our goal will be to count all the points that only satisfy the finest partition, 1̂. To that end,
define f(p) to be the number of points that satisfy p and no coarser partition. Then, f(1̂) is the
number of partitions that only satisfy 1̂ as there are no finer partitions. Next, we define

g(p) =
∑
r≤p

f(r).

Then, g(p) represents the number of points that satisfy p as every point that satisfies p only satisfies
p or satisfies some other minimal partition less that p. We also see that

g(p) = nγ(p)(n+ 1)σ(p),

as there are n choices for each non-singleton block and n+ 1 choices for each singleton block. Thus,
by Möbius inversion, we see that

f(1̂) =
∑

p a partition of
{1,...,m}

µ(p, 1̂)g(p) =
∑

p a partition of
{1,...,m}

µ(p, 1̂)nγ(p)(n+ 1)σ(p).

This counting argument gives us some insight into the geometry of the point presentation. We
see a generalization of the image in example 3.1.5, where the points that represent valid fillings are
separated by hyperplanes of empty space that are enumerated by set partitions. In this generalized
case, for an m × n matching we have an m dimensional hypercube of lattice points that has side
lengths of n+1. This hypercube is ”missing” hyperplanes of dimension m−1 which are enumerated
by by the set of partitions of m with m − 1 blocks. The intersections of these hyperplanes are
enumerated by the number of partitions that have m − 2 blocks and so on until the partition with
exactly one block. We also see that the shape of these intersections is dependent on the size of the
blocks of the corresponding partition. More precisely, we see the size of the intersection corresponding
to the partition p is nγ(p)(n+ 1)σ(p).

3.2 Matching Supercharacter Theory

There exists a supercharacter theory on the subgroup of UT (m+n,Fq) composed of block matrices
of the form (

Idm A
0 Idn

)
whose superclasses are indexed by the set of m × n matchings. We will call this subgroup Mnm.
This supercharacter theory was first defined in [3]. However, the point presentation allows us to
more effectively visualize a group walk in order to get an understanding of it.

In order to construct this supercharacter theory, we must begin by defining some notation.

6

Definition 3.2.1. If A is an m × n matrix over a field Fq, let A[i,j] denote the submatrix of A
formed by all entries below and to the left of the entry Aij . If Aij is not a valid entry, i.e. one of i or
j is greater than m or n respectively, or one of them is less than 0, then we take the empty matrix.

The following example illustrates this notation.

Example 3.2.2. Let

A =

1 2 3
4 5 6
7 8 9

 ,

then

A[1,2] =

1 2
4 5
7 8

 and A[3,3] =
(
7 8 9

)
.

With this notation, we are able to convert a matrix into a matching. The matrix A is represented
by the matching consisting of the (i, j) that satisfy

rank(A[i,j])− rank(A[i+1,j])− rank(A[i,j−1]) + rank(A[i+1,j−1]) = 1.

In order to understand this conversion, its helpful to look at a few examples.

Example 3.2.3. Working over F5, if

A =

(
0 1
1 0

)
,

then, as we would expect based on the visual appearance of A, the corresponding matching is

1

1

.

If

B =

(
1 2
1 2

)
,

then the corresponding matching is

1 .

The equivalence relation on block matrices of the form(
Idm A

0 Idn

)
generated by identifying A with its representation as a matching defines the superclasses for our
supercharacter theory. Because the group Mmn is abelian, these superclasses trivially fulfill the
requirement of being unions of conjugacy classes. According to [3], if N and M are matchings
representing a superclass, then

χN (M)

χN (1)
=


1

qnstN
M (1−q)|N∩M|

if no rook of N is directly above or
directly to the right of a rook of M

0 otherwise

7

where nstNM is the number of pairings of a rook in N with a rook in M that is below and to the right
of the rook in N and |N ∩M | is the number of rooks that are in the same position of both M and
N . Again, it is helpful to give an example to illustrate this formula.

Example 3.2.4. If N is the filling

1

1

1

.

and M is the filling

1

1

1 .

then, nstNM = 2 because the rook in the fifth row and second column of M is below and to the right
of two different rooks in N . We also see that |N ∩M | = 1 because there is exactly one rook that is
in the same position in both fillings. Hence,

χN (M)

χN (1)
=

1

q2(1− q)
.

3.3 Matching Supercharacter Theory Walk

In order to perform a walk on Mmn, we need to define a probability function on the group. For
this, it is sufficient to define a probability function to choose an m × n matrix A. In order to keep
our walk from being too complex, we will construct a probability function that only has support on
matrices of rank less than or equal to one. That is, the matrices represented by a matching with
at most one rook. In order to choose such a matrix A, we will randomly choose a column vector v
in Fmq and a row vector w in Fnq . Then we will take A = vw to be their product as matrices. As a
probability function, this method yields

pr(a) =


qm+qn−1
qm+n if rank(a) = 0
q−1
qm+n if rank(a) = 1

0 else

.

Thus we have all the components necessary to perform a random walk on the matching su-
percharacter theory. First, we can visualize how frequently our walk lands on each superclass by
performing a walk and scaling the size of the points so that the points we land on are larger. The
following image is the result for a walk of length 100000 on 2×5 the matching supercharacter theory.

8

.

This image gives a nice view of the walk as a whole. We see that we rarely reach superclasses with
only one 1. We also see that we spend the most time at the matching which corresponds to the point
(1, 2). Further, we can animate the walk using the code in Appendix A. The following images depict
the path taken by two different random walks of length 10000 on the 2× 5 matching supercharacter
theory over F5.

Notice how the two walks have a very similar structure towards the center of the image, but vary
much more towards the edges. Combining this information with our heat map diagram, we see that
our walk tends to stay near matchings with two rooks towards the left of the rook diagram and only
rarely moves to a diagram with only one rook or two rooks towards the right of the diagram.

Further research into this supercharacter theory could include analyzing the meaning of the
character formula with respect to the point presentation of a matching. Because this superchar-
acter theory has an analog in other subgroups of UT (n,Fq) represented by placing rooks on non-
rectangular chessboards, we could also explore how these supercharacter theories look under the
point presentation.

9

4 Dyck Paths and their Supercharacter Theory

The Dyck path supercharacter theory was defined and first studied in [3]. Here, we will construct
a probability function for the supercharacter theory as well as a coarser supercharacter theory, the
Dagger Dyck path supercharacter theory, that more closely resembles the probability function we
define.

4.1 Dyck Paths

A Dyck path is an object from combinatorics that consists of a series of up and down steps in the
2D-plane that starts at (0, 0), ends at (2n, 0) and does not pass below the x-axis. More formally:

Definition 4.1.1. A Dyck path of length m is a sequence (dn)2mn=1 of length 2m of elements from
the set {1,−1} such that for any 0 < n ≤ 2m

n∑
i=1

di ≥ 0.

Another important definition is that of a valley.

Definition 4.1.2. A Dyck path, (dn)2nn=1, of length n has a valley at i if di = −1 and di+1 = 1.

Now, this sequence can be turned into a path in the plane by starting at (0, 0) and connecting
the points (m,

∑m
i=1 di). In this case, a valley is a point where the path transitions from going down

to going up, but we can make this definition more formal by looking at the sequence associated
with the Dyck path. Alternatively, we can draw this path on an n × n unipotent uppertriangular
matrix by drawing the matrix in a grid and calling the upper left hand corner of the matrix (0, 0)
and letting positive entries in the Dyck path move right and negative entries move down.

Example 4.1.3. The Dyck path given by the sequence {1, 1,−1,−1, 1, 1,−1,−1} can be drawn on
a matrix as follows.

1

0

0

0

0

1

0

0

2

3

1

0

0

2

0

1 .

This creates a partition of the entries of the matrix above the diagonal into those above the path
and those below it.

Our goal will be to draw such a Dyck path on a unipotent uppertriangular matrix, M , without
recourse to the sequential definition and so that the lowest and farthest to the left of the nonzero
non-diagonal entries are in the valleys of the Dyck path. To this end, we notice that we can describe
a Dyck path of length n by describing its valleys and we construct the abstract notion of a valley as
a partition of the horizon.

Definition 4.1.4. The horizon of size m is the set

horiz(m) = {(i, j) | 1 ≤ i, j ≤ m, (m− i) + j ≥ m}.

The horizon represents the set of entries of a matrix above and including the diagonal. We can
now define a valley, which corresponds to a partition of the horizon.

10

Definition 4.1.5. An element (i, j) in horiz(m) is a potential valley if (m− i) + j ≥ m+ 1.

Each potential valley, (i, j) corresponds to the partition of the horizon into the sky and the
mountainside (mtns) given by

sky((i, j)) = {(k, l) | 1 ≤ k, l ≤ m, l ≤ i, k ≥ j}
mtns((i, j)) = horiz(m) \ sky((i, j)).

See example 4.1.9 for a concrete demonstration of the horizon and of valleys.
We are now ready to define a Dyck path on a matrix.

Definition 4.1.6. A Dyck path of D length m is a set of potential valleys val(D) such that no two
distinct (i, j) and (k, l) in val(D) satisfy (i, j) ∈ sky((k, l)).

The sky of a Dyck path D is the union of the skys of its valleys. That is

sky(D) =
⋃

(i,j)∈val(D)

sky((i, j)).

Next, the mountainside of D is everything in the horizon of M that is not in the sky of D. From
De Morgan’s law, this is equivalent to

mtns(D) =
⋂

(i,j)∈val(D)

mtns((i, j)).

Note that the empty set defines a valid Dyck path and corresponds to the situation where the
entire horizon is in the mountainside.

Finally, we must define a peak of a Dyck path D.

Definition 4.1.7. A Dyck path D has a peak at (i, j) in mtns(D) if the only entry (k, l) with l ≤ i
and k ≥ j that is in the mountainside is (i, j) itself.

With this definition, we can impose a Dyck path on a matrix. To do this, we have to define
which entries of a matrix M in UT (m,Fq) are valleys.

Definition 4.1.8. A M in UT (m,Fq) has a valley at (i, j) if Mij is the lowest left non-zero non-
diagonal entry in its column and the leftmost non-zero non-diagonal entry in its row. We will denote
the collection of all valleys of M by val(M).

Let D denote the Dyck path generated by val(M), then,

sky(M) = sky(D)

mtns(M) = mtns(D)

peaks(M) = peaks(D).

In order to illustrate these definitions, we provide the following example.

Example 4.1.9. Working over F5, let

M =


1 0 0 0 4 0
0 1 2 3 3 0
0 0 1 3 0 3
0 0 0 1 2 1
0 0 0 0 1 0
0 0 0 0 0 1

 .

11

Then, we see we can partition the matrix as
1 0 0 0 4 0
0 1 2 3 3 0
0 0 1 3 0 3
0 0 0 1 2 1
0 0 0 0 1 0
0 0 0 0 0 1


where the red spaces are the mountainside and the blue spaces are the sky, while the dark blue
spaces represent valleys and the dark red spaces represent peaks. Everything that is not colored is
not a part of the horizon. We can see the Dyck path more clearly in the following diagram

1

0

0

0

0

0

0

1

0

0

0

0

0

2

1

0

0

0

4

2

3

1

0

0

0

3

0

2

1

0

0

0

3

1

0

1 .

4.2 Dyck Path Supercharacter Theories

We will define two supercharacters on UT (m,Fq). The first will have its superclasses indexed by
Dyck paths and the second will be a coarsening of the first where we glue together the superclasses
represented by a Dyck path and its reflection.

We begin by constructing the supercharacter theory associated to Dyck paths as it was defined
in [3].

Definition 4.2.1. The Dyck path supercharacter theory on UT (m,Fq) has superclasses given by
the sets of matrices that are represented by the same Dyck path. That is M and N are in the same
superclass if they have the same associated Dyck path. If λ is a Dyck path, then the supercharacter
function associated to λ is given by

χλ(M)

χλ(1)
=

{
1

1−q
|peaks(λ)∩val(M)|

if no valley of M is in the mountainside of λ

0 otherwise

where M is an element of UT (m,Fq). We will denote the set of superclasses by Cl and the set of
supercharacters by Ch.

Note that, in the definition, we can compare the valleys of M to the peaks of λ even though one
is a matrix and one is a Dyck path because they have the same underlying set. This also shows us
that the supercharacters are constant on the superclasses as their output only depends on the Dyck
path representing their input.

Constructing the second supercharacter theory will be more involved than the first as we will
be gluing together the superclasses and supercharacters from the Dyck path supercharacter theory.
The idea here is to combine the superclass represented by the Dyck path λ with its reflection.

Definition 4.2.2. If λ is a Dyck path of length m defined in terms of its valleys, then †λ is the
Dyck path whose valleys are

val(†λ) = {(m− j + 1,m− i+ 1) | (i, j) ∈ val(λ)}.

12

In this case, if λ were a Dyck path that was drawn on a matrix, then †λ would be the reflection
of λ across the antidiagonal. In order to apply this notion of reflection to matrices, we must define
a similar function (represented by the same symbol) that acts on matrices rather than Dyck paths.

Definition 4.2.3. We define the dagger function, †, as follows

† : UTn → UTn † (A) = w0

(
A−1

)T
w0,

where w0 is the antidiagonal matrix

w0 =

0 · · · 1
...

...
...

1 · · · 0


Note that because w0w0 = id, we see †(†(A)) = A.
The dagger function has the effect of flipping a matrix along the antidiagonal with some modifi-

cations to the entries caused by the inversion. The following example demonstrates this effect.

Example 4.2.4. Working over F5, we see

†


1 3 3 2
0 1 0 1
0 0 1 0
0 0 0 1

 =


1 0 4 1
0 1 0 2
0 0 1 2
0 0 0 1

 .

Looking at the example, we see that the dagger function flips the corresponding Dyck path. In
order to prove this fact, we prove the following theorem.

Theorem 4.2.5. If A is an element of UT (m,Fq) that has a valley at (i, j), then (m−j+1,m−i+1)
is a valley of †(A).

Proof. We start by proving the claim that if (i, j) is a valley of M and Mij = s, then (i, j) is a
valley of M−1 and M−1ij = −s. To do this, we begin by defining some notation. Let xab(s) be the
element of UT (m,Fq) that has ones along the diagonal, s in the ij entry and zeros everywhere else.
Next, we make three observations. First, we notice that xab(s)xab(t) = xab(s + t), and hence that
the inverse of xab(s) is xab(−s). Next, we notice that

xab(s)xcd(t)xab(s)
−1xcd(t)

−1 =


idm b 6= c or a 6= d

xad(st) b = c

xcb(−st) a = d

.

Finally, we notice that we can write M as the finite product

M =
∏

a<b≤m

xab(Mab)

so long as we sort the product lexicographical in a and reverse lexicographical in b. That is we
start with x1m(M1m) then x2m(M2m) and so on until we reach the bottom of the column. Then we
multiply by x2(m−1(M1(m−1)) and repeat the process until we’ve listed all the entries.

Now, when we invert M and apply the first and third observations, we see

M−1 =
∏

a<b≤m

xab(−Mab)

13

with the product done in the reverse order. In order to determine the entries of M−1ij , we just have
to get our product back in the order we described in the third observation using the commutator
rules from our second observation and the rule for combining the xab from our first observation to
deal with the side effects of reordering our product. The concern here is that when we pass one of
the xab by another, we will get some xabj(t) as a biproduct that will modify the entry at M−1ij and
thus have the potential to cancel it out and stop it from being a valley. We are also concerned that
we will get an xab that will cause M−1 to have a non-zero non-diagonal entry below or to the right
of the entry at (i, j). However, both of these are impossible as the result of passing one matrix by
another in our product can only result in the identity or an xab whose non-zero non-diagonal entry
is above or to the right of an existing entry. As M had a valley at (i, j), no non-zero non-diagonal
entry existed that was below or to the left of Mij . Therefore, M−1ij = −s and M−1 has a valley at
(i, j). This argument also show us that we cannot get any new valleys as that would require us to
multiply by a matrix with a non-zero entry in the mountainside of our matrix. Thus, we have shown
that M and M−1 have the same valleys.

Next, we claim that if A is in UT (m,Fq), then w0A
Tw0 is A flipped along the antidiagonal. That

is
Aij =

(
w0A

Tw0

)
m−j+1,m−i+1

.

To see this, notice that multiplication on the right by w0 flips a matrix horizontally, and multi-
plication on the left results in flipping the matrix vertically. This is because w0 represents the
corresponding series of elementary column and row operations. Thus, flipping horizontally, then
along the diagonal, then vertically corresponds to flipping along the antidiagonal.

Putting these two claims together, we have the proof of our theorem.

From this, we immediately see the following.

Corollary 4.2.6. If λ is the Dyck path corresponding to M , then †λ is the Dyck path corresponding
to †(M).

This corollary also gives us that there are the same number of matrices that correspond to λ as
there are matrices that correspond to †λ because †, being its own inverse, gives a bijection between
the two sets of matrices.

The last task we have to acomplish before we define our new supercharacter theory is to prove
the following lemma that will be helpful in showing our new supercharcter theory is in fact a
supercharacter theory.

Lemma 4.2.7. If λ is a Dyck path representing a superclass and M is an element of UT (m,Fq),
then

χλ(†(M))

χλ(1)
=
χ†λ(M)

χ†λ(1)

Proof. Looking at the character formula, we see

χλ(†(M))

χλ(1)
=

{
1

1−q
|peaks(λ)∩val(†(M))|

if no valley of †(M) is in the mountainside of λ

0 otherwise
.

Because of the flipping effect of the dagger function, we see that if no valley of †(M) is in the interior
of λ, then no valley of µ is in the interior of †λ and vice versa. Hence, if there is a valley of †(M) in
the interior of λ, then

χλ(†(M))

χλ(1)
= 0 =

χ†λ(M)

χ†λ(1)
.

14

Now if no valley of †(M) is in the interior of λ, then

χλ(†(M))

χλ(1)
=

1

1− q

|peaks(λ)∩val(†(M))|

=
1

1− q

|peaks(†λ)∩val(M)|

=
χ†λ(M)

χ†λ(1)
.

We are now ready to define a new supercharacter theory on uppertriangular unipotent matrices.

Definition 4.2.8. The Dagger Dyck Path supercharacter theory on UT (m,Fq) has superclasses
given by the unions of the sets λ ∪ †λ where λ and †λ are Dyck paths representing sets of matrices.
If M is an element of UT (m,Fq), then the supercharacter formulas for this supercharacter theory
are given by

χλ∪†λ(M)

χλ∪†λ(1)
=
χλ(M)

2χλ(1)
+
χ†λ(M)

2χ†λ(1)
,

where
χλ(M)

χλ(1)
and

χ†λ(M)

χ†λ(1)

are the supercharacter formulas for the Dyck path supercharacter theory. We will denote the set of
superclasses for this supercharacter theory by †Cl and the set of supercharacters by †Ch.

Theorem 4.2.9. The Dagger Dyck Path supercharacter theory on UT (m,Fq) is a supercharacter
theory.

Proof. We must show that this is in fact a supercharacter theory. Criteria 1, 2, and 4 of definition
2.2.1 follow from the fact that Dyck paths define a valid supercharacter theory. Thus, we must show
that our character functions are constant on conjugacy classes. Because the character function for
Dyck paths is constant on the Dyck path superclasses, we only have to show that if g is represented
by the Dyck path µ and h is represented by †µ, then

χλ∪†λ(g)

χλ∪†λ(1)
=
χλ∪†λ(h)

χλ∪†λ(1)

for each supercharacter. To see this, observe

χλ∪†λ(g)

χλ∪†λ(1)
=

χλ(g)

2χλ(1)
+

χ†λ(g)

2χ†λ(1)

=
χ†λ(†(g))

2χ†λ(1)
+
χλ(†(g))

2χλ(1)

=
χ†λ(h)

2χ†λ(1)
+

χλ(h)

2χλ(1)

=
χλ∪†λ(h)

χλ∪†λ(1)
.

Thus, our supercharacters are constant on superclasses and so we have defined a valid superchar-
acter theory.

15

4.3 Dyck Path Supercharacter Theory Walks

In order to construct a walk on the Dyck path and Dagger Dyck path supercharacter theories, we
need to construct a probability function. As we discussed earlier, when developing a probability
function, it is helpful to limit its support in order to make the walk less chaotic. In our case, we
will limit the support of our probability function to the superclasses represented by Dyck Paths that
only have one valley.

Our probability function on UT (m,Fq) will come from picking a random column vector in Fmq ,
choosing a point to split it, turning one part into a row vector, and then multiplying the two
components together.

Example 4.3.1. Working over F4
3, say we chose to split

0
1
1
2


at index 2, then we would get

0
1
0
0

(0 0 1 2
)

=


0 0 0 0
0 0 1 2
0 0 0 0
0 0 0 0

 .

However, if we split it at the 0 index, we would get
0
0
0
0

(0 1 1 2
)

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

We will weight the probability of splitting at an index, i with 0 ≤ i ≤ m, so that the probability
is relative to qmin(i,m−i). That is, the probability of choosing index i is given by

qmin(i,m−i)∑m
k=0 q

min(k,m−k) .

This makes it more likely for us to choose superclasses whose valleys are towards the center and
further allows us to distinguish our superclasses from each other.

Theorem 4.3.2. Working with m ×m matrices over Fq and using this process, the probability of
choosing an element of a superclass represented by the Dyck path λ, is given by

pr(λ) =


∑m

k=0 q
min(k,m−k)(qk+qm−k−1)

qm
∑m

k=0 q
min(k,m−k) if λ has no valleys

(q−1)2qiqm−j−1∑j−1
k=i q

min(k,m−k)

qm
∑m

k=0 q
min(k,m−k) if λ has exactly one valley at (i, j)

0 otherwise

.

Proof. This process always yields a rank 1 or rank 0 matrix as it is formed by multiplying two
matrices that are at most rank 1. So, it is impossible to choose a matrix with more than one valley.

16

Next, there are qm vectors we can choose and
∑m
k=0 q

min(k,m−k) ways to choose a point to split at,
so the total number of choices is given by

qm
m∑
k=0

qmin(k,m−k).

Next, we count the number of ways our multiplication can result in the zero matrix. From our
process, it is possible for any split to result in a multiplication that yields the zero matrix. The
only thing that has to happen is for all the entries above or below the split to be zero. So, if we
split at index k, in order to get the zero matrix, either all k entries above the split are zero or all
m − k entries below the split are zero. There are qm−k vectors that satisfy the first condition and
qk vectors that satisfy the second. However, the zero vector satisfies both, so we have over counted
it by 1. Thus the total number of ways of getting the zero matrix is

m∑
k=0

qmin(k,m−k)(qk + qm−k − 1).

So, the probability of choosing the zero matrix, that is the only matrix with no valleys, is∑m
k=0 q

min(k,m−k)(qk + qm−k − 1)

qm
∑m
k=0 q

min(k,m−k) .

Next, we determine the probability of choosing a matrix with a valley at (i, j). For this we notice
that we can get such a matrix by splitting at any point between i and j− 1 so long as all the entries
between these two indexes are zero. It is also necessary that the ith entry and the jth entry be
nonzero. For any choice of a split between i and j − 1, there are (q − 1)2 ways to choose the ith

and jth entry. Then there are qi ways of choosing the entries above the ith, and qm−j−1 ways of
choosing the entries below the jth. All the entries in between are fixed. Thus the total number of
ways of getting a matrix with a valley at (i, j) is

(q − 1)2qiqm−j−1
j−1∑
k=i

qmin(k,m−k).

Thus, the probability of choosing such a matrix is

(q − 1)2qiqm−j−1
∑j−1
k=i q

min(k,m−k)

qm
∑m
k=0 q

min(k,m−k) .

This probability function is cumbersome, but we can simplify it using the q version of a number.

Definition 4.3.3. The q-version of an integer n is given by

[n] = 1 + q + q2 + . . .+ qn−1 =
qn − 1

q − 1
.

In order to familiarize ourselves with this notation, we will prove a lemma that will be helpful
later when we show this probability function is constant on superclasses.

17

Lemma 4.3.4. If m is even and i < m
2 < j − 1, then[m

2
− i+ 1

]
qi +

[
j − m

2
− 1
]
qm−j+1 =

[m
2
− i
]
qi +

[
j − m

2

]
qm−j+1.

Proof. We apply the definition of the q-version of an integer to get the following equality.[m
2
− i+ 1

]
qi +

[
j − m

2
− 1
]
qm−j+1 =

(
1 + . . .+ q

m
2 −i
)
qi +

(
qj−

m
2 −2 + . . .+ 1

)
qm−j+1

=
(
qi + . . .+ q

m
2 −1 + q

m
2

)
+
(
q

m
2 −1 + . . .+ qm−j+1

)
=
(
qi + . . .+ q

m
2 −1

)
+
(
q

m
2 + q

m
2 −1 + . . .+ qm−j+1

)
=
(
1 + . . .+ q

m
2 −i−1

)
qi +

(
qj−

m
2 −1 + . . .+ 1

)
qm−j+1

=
[m

2
− i
]
qi +

[
j − m

2

]
qm−j+1

Another useful expression for our simplification is the q − binomial

Definition 4.3.5. The q-binomial is given by[
n

m

]
=

m−1∏
k=0

qn−k − 1

qk+1 − 1
.

Notice that if m = 1, we have [
n

1

]
= [n].

Using this new notation, we are able to reduce our probability function to something more
manageable.

Theorem 4.3.6. Working with m×m matrices over Fq and using the process described, the prob-
ability of choosing an element of a superclass represented by the Dyck path λ is given by

pr(λ) =



q
m
2 −2[m

2]+2
(
[
m
2

+1

2]−q[
m
2
2]
)

qm
(
2[m

2]−q
m
2

) if λ has no valleys

(q−1)qiqm−j−1(qj−qi)
qm
(
2[m

2]−q
m
2

) if λ has exactly one valley at (i, j)
and i < j ≤ m

2
(q−1)qiqm−j−1(q

m
2 −qi+q

m
2

+1−qm−j+1)

qm
(
2[m

2]−q
m
2

) if λ has exactly one valley at (i, j)
and i < m

2 < j
(q−1)qiqm−j−1(qm−i+1−qm−j+1)

qm
(
2[m

2]−q
m
2

) if λ has exactly one valley at (i, j)
and m

2 ≤ i < j

0 otherwise

18

if m is even. If m is odd, the probability is given by

pr(λ) =



qm−[m+1
2]+[

m
2
2]−q[

m+1
2
2]

qm[m+1
2]

if λ has no valleys

(q−1)qiqm−j−1(qj−qi)
qm(2[m+1

2])
if λ has exactly one valley at (i, j)
and i < j ≤ m

2

(q−1)qiqm−j−1(q
m+1

2 −qi+q
m+1

2 −qm−j+1)

qm(2[m+1
2])

if λ has exactly one valley at (i, j)
and i < m+1

2 < j
(q−1)qiqm−j−1(qm−i+1−qm−j+1)

qm(2[m+1
2])

if λ has exactly one valley at (i, j)
and m

2 ≤ i < j

0 otherwise

.

A proof of these equalites can be found in Appendix C. Even though this presentation of the
probability function looks more complicated, it makes it easier to see the distinction between a Dyck
path of odd length and a Dyck path of even length. This new presentation also makes it easy to
confirm that our probability function is symmetric. That is if a matrix represented by λ has the same
probability of being chosen as a matrix represented by †λ. This symmetry is why we defined the
Dagger Dyck path supercharacter theory in the first place as we would like our probability functions
to distinguish between superclasses. Thus, we define a probability function for the Dagger Dyck
path supercharacter theory as

†pr(λ ∪ †λ) =

{
pr(λ) if λ = †λ
pr(λ) + pr(†λ) otherwise

.

Note that
pr(λ) + pr(†λ) = 2pr(λ)

as the two probabilities are the same.
Using this probability function, we can animate the Dyck Path Walk using the code in Appendix

B. From this animation, we learn a lot about the walk. We see that it tends towards the Dyck
path that follows the diagonal, starting by removing a big chunk from the middle and then slowly
diminishing the rest of the mountainside.

4.4 Eigenvalues for the Dyck Path Supercharacter Walk

We are now prepared to compute the eigenvalues for the Dyck path supercharacter theory. First,
we recall our character formula

χλ(µ)

χλ(1)
=

{
1

1−q
|peaks(λ)∩val(µ)|

if no valley of µ is in the interior of λ

0 otherwise
.

With this and the probability function computed in theorem 4.3.6, we are ready to compute the
eigenvalue for a given supercharacter

|G|〈pr,
χY

χY (1)
〉 =

∑
µ∈Ch

pr(µ)
χλ(µ)

χλ(1)

19

Because our probability function is 0 unless µ has zero or one valleys, we can rewrite our sum as

pr(1)
χλ(1)

χλ(1)
+
∑
µ∈Cl1

pr(µ)
χλ(µ)

χλ(1)
= pr(1) +

∑
µ∈Cl1

pr(µ)
χλ(µ)

χλ(1)

where Cl1 represents the set of superclasses in Cl with exactly one valley. Similarly, because µ can
only have one valley, the eigenvalue can be written

χλ(µ)

χλ(1)
=


1 if the valley of µ is in the sky of λ
1

1−q if the valley of µ intersects a peak of λ

0 if the valley of µ is in the interior of λ

.

Now, if we say that µ ∈ sky(λ) if µ has a valley in the sky of λ, that µ ∈ peaks(λ) if µ has a
valley at a peak of λ, and that µ ∈ mtns(λ) if it has a valley in the interior of λ. Here mtns stands
for mountainside and the sky(λ) includes the valleys of λ. These partitions allow us to write our
eigenvalue formula as

pr(1) +
∑

µ∈Cl1∩sky(λ)

pr(µ) +
∑

µ∈Cl1∩peaks(λ)

pr(µ)

1− q
.

Now that we have a formula that gives us eigenvalues, we will compute a few examples.

Example 4.4.1. Let λ be the superclass represented by a Dyck path with exactly one valley in the
upper right hand corner. That is a Dyck path with a valley at (1,m). Then in order to compute the
corresponding eigenvalue, we need to find all the superclasses in Cl1 that are represented by a Dyck
path that has a valley in the sky of λ and those that have a valley at one of the peaks of λ. The
only Dyck path whose valley is in the sky of λ is λ itself. There are two Dyck paths with a valley
that intersects one of the peaks of λ, the one which has a valley at (1,m − 1) and the one with a
valley at (2,m). If m is odd and greater than 1, we see our eigenvalue is given by

eλ =
qm −

[
m+1
2

]
+
∑m+1

2

k=0 q
2k

qm
[
m+1
2

] +
(q − 1)q1q−1

(
2q

m+1
2 − 2q1

)
2qm

[
m+1
2

]
−
q1q0

(
2q

m+1
2 − q2 − q1

)
2qm

[
m+1
2

] −
q2q−1

(
2q

m+1
2 − q1 − q2

)
2qm

[
m+1
2

]
=
qm −

[
m+1
2

]
+
∑m+1

2

k=0 q
2k

qm
[
m+1
2

] +
(q − 1)

(
q

m+1
2 − q

)
qm
[
m+1
2

]
−
q
(

2q
m+1

2 − q1 − q2
)

qm
[
m+1
2

]
=
qm −

[
m+1
2

]
+
∑m+1

2

k=0 q
2k − q[

m+1
2] − q[

m+1
2]+1 + q + q3

qm
[
m+1
2

]
=
qm −

[
m+1
2 + 2

]
+
∑m+1

2

k=0 q
2k + q + q3

qm
[
m+1
2

]
.

20

Example 4.4.2. Let λ be the Dyck path that runs along the diagonal with exactly one peak at
(1, 2). Then the corresponding eigenvalue is given by

pr(1) +
∑

µ∈Cl1∩sky(λ)

pr(µ) +
∑

µ∈Cl1∩peaks(λ)

pr(µ)

1− q
.

Notice how every element in Cl1 has its valley in the sky of λ except the one whose valley intersects
the peak of λ. Call this element α. Adding and subtracting the probability for α from our sum, we
see we have all the elements of our probability function, which sum to 1. If m is odd we get

eλ = pr(1) + pr(α)− pr(α)

+
∑

µ∈Cl1∩sky(λ)

pr(µ) +
∑

µ∈Cl1∩peaks(λ)

pr(µ)

1− q

= 1−
(q − 1)qm

(
q2 − q1

)
2qm

[
m+1
2

] −
qm
(
q2 − q1

)
2qm

[
m+1
2

]
= 1− q3 − q2

2
[
m+1
2

] .
If m is even, then the calculation proceeds in the same manner, just with a slightly different denom-
inator. In this case, the eigenvalue is

eλ = 1− q3 − q2

2
[
m
2

]
− qm

2

.

Conjecture 4.4.3. The eigenvalue computed in example 4.4.2 is the largest eigenvalue not equal to
1 for the Dyck path supercharacter theory walk.

21

References

[1] Persi Diaconis and I. M. Isaacs. Supercharacters and superclasses for algebra groups. Trans.
Amer. Math. Soc, 360(5):2359–2392, 2008.

[2] Nathaniel Thiem. Notes on rook random walks. Unpublished Notes, 2018.

[3] Nathaniel Thiem. Supercharacter theories of type a unipotent radicals and unipotent polytopes.
Algebraic Combinatorics, (1):23–45, 2018.

22

A Matching Walk Code

This code was written using the SageMath computer algebra system

1000 # The func t i on s in t h i s worksheed are only concerned with rook f i l l i n g s
#IE square f i l l i n g s with l im i t s o f a l l 1

1002 from sage . p l o t . l i n e import Line

1004 n = 5 #Number o f columns
f i e l d = GF(3)

1006

##
1008 ### Constants

m = 2 #number o f rows must be 2 f o r walk to work
1010 MS = MatrixSpace (f i e l d ,m, n , spar s e=Fal se)

##
1012 ### Helper Functions

de f Cvr (row) :
1014 #Fl ip s the rows o f our matrix so we can go up the rows in s t ead o f down

return m−1−row
1016

de f GetLowerLeftSubmatrix (mat , row , column) :
1018 r e turn mat [Cvr (row) :m, 0 : column+1]

1020 de f GetF i l l ingVa lue (mat , row , column) :
#we don ’ t do the conver s i on o f the row here because we want the 0 row to be the
bottom row and we did the conver s i on when f i l l i n g out the matrix

1022 i f column == 0 and row == 0 :
re turn GetLowerLeftSubmatrix (mat , row , column) . rank ()

1024 i f column == 0 :
re turn GetLowerLeftSubmatrix (mat , row , column) . rank () − GetLowerLeftSubmatrix

(mat , row−1, column) . rank ()
1026 i f row == 0 :

re turn GetLowerLeftSubmatrix (mat , row , column) . rank () − GetLowerLeftSubmatrix
(mat , row , column−1) . rank ()

1028

r e turn GetLowerLeftSubmatrix (mat , row , column) . rank () − GetLowerLeftSubmatrix (mat
, row−1, column) . rank () − GetLowerLeftSubmatrix (mat , row , column−1) . rank () +
GetLowerLeftSubmatrix (mat , row−1, column−1) . rank ()

1030

de f Ge tF i l l i n g (mat) :
1032 f i l l i n g = matrix (m, n)

f o r i in range (m) :
1034 f o r j in range (n) :

#have convert to go up the matrix to match the language o f the f i l l i n g s
1036 f i l l i n g [Cvr (i) , j] = GetF i l l ingVa lue (mat , i , j)

r e turn f i l l i n g
1038

de f MakeUTBlockMatrix (mat) :
1040 r e turn b lock matr ix ([[1 , mat] , [0 , 1]])

1042 de f GetULBlock (blockMat) :
r e turn blockMat [0 :m,m:]

1044

de f f i l l i n gToPo i n t (mat) :
1046 toReturn = () ;

f o r row in range (m) :
1048 x = 0

f o r c o l in range (n) :
1050 i f mat [Cvr (row)] [c o l] == 1 :

23

x = co l + 1
1052 toReturn += (x ,)

re turn toReturn
1054

de f GetRandomRankOne () :
1056 c o l = MatrixSpace (f i e l d ,m, 1 , spa r s e=Fal se) . random element ()

row = MatrixSpace (f i e l d , 1 , n , spar s e=Fal se) . random element ()
1058 r e turn co l ∗ row

1060 de f MakeWalk(l ength) :
p o i n tL i s t = []

1062 cur rent = MS. matrix (0)
po i n tL i s t . append (f i l l i n gToPo i n t (Ge tF i l l i n g (cur rent)))

1064 f o r i in range (l ength) :
toAdd = GetRandomRankOne ()

1066 cur rent = cur rent + toAdd
nextPoint = f i l l i n gToPo i n t (Ge tF i l l i n g (cur rent))

1068 po i n tL i s t . append (nextPoint)

1070 r e turn po i n tL i s t

1072 de f DrawFramesForLine (l i , ns , g , ∗∗ opt ions) :
r e su = []

1074 x1 , y1 = l i [0]
x2 , y2 = l i [1]

1076 dx = f l o a t (x2 − x1) / f l o a t (ns)
dy = f l o a t (y2 − y1) / f l o a t (ns)

1078 f o r i in range (ns) :
xx = x1 + (i +1)∗dx

1080 yy = y1 + (i +1)∗dy
resu . append (g + sage . p l o t . l i n e . l i n e ([(x1 , y1) , (xx , yy)] , ∗∗ opt ions))

1082

r e turn resu
1084

de f DrawFramesForCircle (point , ns , g , ∗∗ opt ions) :
1086 re su = []

f o r i in range (ns) :
1088 r = f l o a t (0 . 5) / f l o a t (i +1)

resu . append (g + c i r c l e (point , r , ∗∗ opt ions))
1090 r e turn resu

1092 #Main func t i on f o r animating walk
#The func t i on i s very slow because o f the ammount o f frames i t has to render

1094 de f GetFramesForWalk (l ength) :
p o i n tL i s t = MakeWalk(l ength)

1096 outLines = [[p o i n tL i s t [i] , p o i n tL i s t [i +1]] f o r i in range (l en (po i n tL i s t)−1)]

1098 g = Graphics ()
par t s = []

1100 f rames = []
f o r x in outLines :

1102 i f x [0] == x [1] :
frames = frames + DrawFramesForCircle (x [0] , 5 , g , r gbco l o r =(1 ,0 ,0))

1104 e l s e :
frames = frames + DrawFramesForLine (x , 5 , g , c o l o r=’ red ’)

1106 g+=sage . p l o t . l i n e . l i n e (x)
frames . append (g)

1108 r e turn frames

1110 animate (GetFramesForWalk (40) , xmin = 0 , xmax = n , ymin=0, ymax=n)

24

FillingWalk.py

B Dyck Path Walk Code

This code was written using the SageMath computer algebra system

1000 import random
import time

1002 #########################
#Se t t i n g s

1004 #m i s the s i z e o f the matrix
m = 8

1006 #q i s the s i z e o f the f i e l d , must be a prime power
q = 2

1008

#Constants
1010 f i e l d = GF(q)

MS = MatrixSpace (f i e l d ,m,m, spar s e=Fal se)
1012

#########################
1014 #Helper Funct ions

de f getFirstNonZero (row) :
1016 f o r i in range (m) :

i f row [0 , i] != 0 :
1018 r e turn i

r e turn 0
1020

de f getMat () :
1022 row = MatrixSpace (f i e l d , 1 ,m, spar s e=Fal se) . random element ()

row [0 , 0] = 0
1024 c o l = MatrixSpace (f i e l d ,m, 1 , spa r s e=Fal se) . random element ()

f o r i in range (getFirstNonZero (row) , m) :
1026 c o l [i , 0] = 0

return co l ∗row
1028

de f g e tSp l i tPo i n t () :
1030 count = 0

f o r i in range (m+1) :
1032 count+= q∗∗min(i ,m−i)

1034 randPoint = random . rand int (0 , count−1)
count = 0

1036 f o r i in range (m+1) :
count += q∗∗min(i ,m−i)

1038 i f randPoint < count :
r e turn i

1040 r e turn m

1042 de f getRandomOneValley () :
vect = MatrixSpace (f i e l d ,m, 1 , spa r s e=False) . random element ()

1044 s p l i t = ge tSp l i tPo i n t ()
row = matrix (f i e l d , 1 ,m)

1046 c o l = matrix (f i e l d ,m, 1)

1048 f o r i in range (s p l i t) :
c o l [i , 0] = vect [i , 0]

1050 f o r i in range (s p l i t , m) :

25

row [0 , i] = vect [i , 0]
1052

r e turn co l ∗row
1054

de f getSpot (mat) :
1056 f o r i in range (m) :

f o r j in range (m) :
1058 i f mat [m−i −1, j] != 0 :

toReturn = matrix (QQ,m,m, { (m−i −1, j) : 1})
1060 r e turn toReturn

re turn matrix (QQ,m,m)
1062

de f CalculateDenom () :
1064 count = 0

f o r i in range (m+1) :
1066 count+= q∗∗min(i ,m−i)

count ∗= q∗∗m
1068 r e turn count

1070 de f c a l c u l a t eP r ob ab i l i t y (i , j) :
count = 0

1072 f o r k in range (i , j) :
count += q∗∗(min (k ,m−k))

1074 count ∗= (q−1)∗∗2 ∗ q∗∗(i) ∗ q∗∗(m−j−1)
re turn count

1076

de f getLowNonZ(mat , i) :
1078 f o r j in range (m) :

i f mat [m−j −1, i] != 0 :
1080 r e turn m−j−1

re turn −1
1082

de f MatToPath(mat) :
1084 lowNonZ = [0] ∗m

fo r i in range (m) :
1086 lowNonZ [i] = getLowNonZ(mat , i)

dp = [0] ∗ (2 ∗m)
1088 l o c a t i o n = 0

currentHe ight = −1
1090 f o r k in range (0 ,m) :

i f lowNonZ [k] > currentHe ight :
1092 l o c a t i o n += lowNonZ [k] − currentHe ight

currentHe ight = lowNonZ [k]
1094 dp [l o c a t i o n] = 1

l o c a t i o n+=1
1096 r e turn dp

1098 #Necessary to mult ip ly two Uppert r iangu lar unipotent matr i ce s
#as our f unc t i on s do not re turn matr i ce s with d iagona l s

1100 de f MultUtUp(m1, m2) :
idn = MS. i d en t i t y mat r i x ()

1102 r e turn (m1+idn) ∗(m2+idn) − idn

1104 #Pr int s the Dyck path f o r each matrix in a random walk
#timePerFrame i s in seconds

1106 de f DoWalk(length , timePerFrame) :
mat = MS. i d en t i t y mat r i x () − MS. i d en t i t y mat r i x ()

1108 f o r i in range (l ength) :
p r i n t (i)

1110 p = MatToPath(mat)

26

DyckWord(p) . p r e t t y p r i n t ()
1112 mat2 = getRandomOneValley ()

mat = MultUtUp(mat , mat2)
1114 time . s l e e p (timePerFrame)

c l e a r ()
1116 pr in t (”done”)

1118 #Pr int s the p r obab i l i t y o f choos ing a matrix with a va l l e y at that l o c a t i o n in the
matrix

de f P r i n tProbab i l i t y () :
1120 mat = MatrixSpace (RR,m,m, spar s e=Fal se) . i d en t i t y mat r i x () − MatrixSpace (RR,m,m,

spar s e=False) . i d en t i t y mat r i x ()
denom = CalculateDenom ()

1122 t o t a l = 0
f o r i in range (m) :

1124 f o r j in range (m) :
prob = ca l c u l a t eP r ob ab i l i t y (i +1, j +1)

1126 mat [i , j] = 100∗(prob / denom)
t o t a l+=prob/denom

1128 pr in t (mat . s t r (rep mapping=lambda x : s t r (x . n (d i g i t s =3))))
p r i n t (round (100∗ t o ta l , 3))

1130

DoWalk(120 , 0 . 25)
1132 Pr in tProbab i l i t y ()

DyckPathWalk.py

C Probability Reduction

In order to reduce the probability function we break it up into the case where m is even and the
case where m is odd. This is because when m is odd, the probability of splitting our vector achieves
its maximum value twice, while when m is even, it only achieves the maximal value once. That is,
when m is odd, there are two indexes where the probability of splitting there is m+1

2 , while when
m is even, there is only one index where the probability of splitting is m

2 . In each case, we have to
compute the denominator, the case where µ has no valleys, and the case where µ has a valley at i, j.
If µ has a valley at (i, j), then it further reduces into three cases: i < j ≤ m̄, i < m̄ < j, m̄ ≤ i < j,
where m̄ is m

2 if m is even and m+1
2 if m is odd.

We start with the case where m is odd.

• Denominator

qm
m∑
k=0

qmin(k,m−k) = qm

m+1
2∑

k=0

qk +

m∑
k=m+1

2 +1

qm−k


= 2qm

[
m+ 1

2

]

27

• µ has no valleys

m∑
k=0

qmin(k,m−k) (qk + qm−k − 1
)

=

m+1
2∑

k=0

qk
(
qk + qm−k − 1

)
+

m∑
k=m+1

2 +1

qm−k
(
qk + qm−k − 1

)

= 2

m+1
2∑

k=0

qk
(
qk + qm−k − 1

)
= 2qm − 2

[
m+ 1

2

]
+ 2

m+1
2∑

k=0

q2k

• µ has a valley and i < j ≤ m+1
2

(q − 1)2qiqm−j−1
j−1∑
k=i

qmin(k,m−k) = (q − 1)2qiqm−j−1 [j − i] qi

= (q − 1)qiqm−j−1
(
qj−i − 1

)
qi

= (q − 1)qiqm−j−1
(
qj − qi

)
• µ has a valley and i < m+1

2 < j

(q − 1)2qiqm−j−1
j−1∑
k=i

qmin(k,m−k) = (q − 1)2qiqm−j−1
([

m+ 1

2
− i
]
qi +

[
j − m+ 1

2

]
qm−j+1

)
= (q − 1)qiqm−j−1

((
q

m+1
2 −i − 1

)
qi +

(
qj−

m+1
2 − 1

)
qm−j+1

)
= (q − 1)qiqm−j−1

(
q

m+1
2 − qi + q

m+1
2 − qm−j+1

)
• µ has a valley and m+1

2 ≤ i < j

(q − 1)2qiqm−j−1
j−1∑
k=i

qmin(k,m−k) = (q − 1)2qiqm−j−1 [j − i] qm−j+1

= (q − 1)qiqm−j−1
(
qj−i − 1

)
qm−j+1

= (q − 1)qiqm−j−1
(
qm−i+1 − qm−j+1

)
Putting these pieces together, we get the probability function described for odd m in Theorem

4.3.6.
Next, we address the case where m is even. Note that the calculation is the same for the

numerator if i < j ≤ m
2 and m

2 ≤ i < j as it is in the corresponding case for an odd m. Because of
this we omit these cases.

28

• Denominator

qm
m∑
k=0

qmin(k,m−k) = qm

(
m∑
k=0

qmin(k,m−k) + q
m
2 − qm

2

)

= qm

 m
2∑

k=0

qk +

m∑
k=m

2

qm−k − qm
2


= qm

(
2
[m

2

]
− qm

2

)
• µ has no valleys

m∑
k=0

qmin(k,m−k) (qk + qm−k − 1
)

=

m
2∑

k=0

qk
(
qk + qm−k − 1

)
+

m∑
k=m

2

qm−k
(
qk + qm−k − 1

)
− qm

2

(
q

m
2 + q

m
2 − 1

)
= 2

m+1
2∑

k=0

qk
(
qk + qm−k − 1

)
− qm

2

(
q

m
2 + q

m
2 − 1

)
= 2qm − 2

[m
2

]
+ 2

m
2∑

k=0

q2k − 2qm + q
m
2

= q
m
2 − 2

[m
2

]
+ 2

m
2∑

k=0

q2k

• µ has a valley and i < m
2 < j

(q − 1)2qiqm−j−1
j−1∑
k=i

qmin(k,m−k) = (q − 1)2qiqm−j−1
([m

2
− i
]
qi +

[
j − m

2

]
qm−j+1

)
= (q − 1)qiqm−j−1

((
q

m
2 −i − 1

)
qi +

(
qj−

m
2 − 1

)
qm−j+1

)
= (q − 1)qiqm−j−1

(
q

m
2 +1 − qi + q

m
2 − qm−j+1

)
Finally, we can express

n−1∑
k=0

q2k

29

in terms of the q-binomial. This gives us the following equality[
n

2

]
− q
[
n− 1

2

]
=

1

(q − 1)2
(qn − 1)(qn−1 − 1)− q(qn−1 − 1)(qn−2 − 1)

[2]

=
1

(q − 1)2
(
q2n−1 − q2n−2 − q + 1

)
=

(q − 1)(q2n−2 − 1)

(q − 1)2[2]

=

(
(q2)n−1 − 1

)
q2 − 1

=

n−1∑
k=0

q2k.

30

