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Abstract

Improving the performance of C programs has been a topic of great interest for many years. Both
hardware technology and compiler optimization research has been applied in an effort to make C programs
execute faster. In many application domains, the C++ language is replacing C as the programming
language of choice. In this paper, we measure the empirical behavior of a group of significant C and
C++ programs and attempt to identify and quantify behavioral differences between them. Our goal
is to determine whether optimization technology that has been successful for C programs will also be
successful in C++ programs. We furthermore identify behavioral characteristics of C++ programs that
suggest optimizations that should be applied in those programs. Our results show that C++ programs
exhibit behavior that is significantly different than C programs. These results should be of interest
to compiler writers and architecture designers who are designing systems to execute object-oriented
programs.

1 Introduction

The design of computer architecture is typically driven by the needs of various programs and programming
languages. A significant amount of research, both in compiler optimization and in architecture design
has been conducted with the specific goal of improving the performance of existing conventional programs
[13, 49]. Early studies of program behavior [2, 10, 15, 29] guided the architectural design, and the importance
of measurement and simulation has permeated architectural design philosophy [22]. In particular, the
Berkeley and Stanford RISC were guided by studies of C and FORTRAN programs [27]. More recent
studies have used the SPEC program suite. This set of programs, widely used to benchmark new hardware
platforms and compiler implementations, consists of a mixture of C and FORTRAN programs [45, 46].

More recently, object-oriented programming, and specifically the language C++, has become widely-
used and is replacing procedural languages such as C in a number of application areas including user-
interfaces, data structure libraries, scientific computing [14] and even operating systems [6]. While the C++
language is a superset of C, additional features provided in the language support a programming style that
is very different from that of C. Before conducting the research reported in this paper, our hypothesis was
that C++ programs would exhibit behaviors measurably different than C programs; this paper confirms that
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hypothesis. In this paper, we seek to quantify these differences and identify how existing hardware and
software optimizations that support C will also support C++.

Hardware designers and optimizing compiler writers can use information about how programs behave
to exploit that behavior effectively. For example, register windows were included in the RISC architecture
because it was observed that C programs tended to use a small set of stack frames for long periods of time.
Such quantitative measurements of program behavior are of great value to compiler writers and hardware
designers. We have measured the behavior of ten large C++ programs and ten large C programs, including
the programs provided in the SPECint92 benchmark suite. We measured the dynamic execution of the
programs, including function size, basic block size, instructions between conditional branches, call stack
depth, use of indirect function calls, use of memory operations, and measurements of cache locality. To
highlight differences between C and C++ programs, we break down our measurements into subcategories,
such as comparing behavior in methods versus non-methods.

Our results indicate that the C and C++ programs we measured behave significantly differently in almost
every aspect of behavior. Furthermore, the differences indicate whether or not hardware and software
optimizations that have been effective for C programs will also be effective for C++ programs. We also
conclude that new optimizations, not even considered as necessary in C programs, are appropriate for C++
programs. Hardware designers and compiler writers can use our results to construct a new generation of
systems that execute C++ programs significantly more efficiently. Section 2 describes related work in the
area of program behavior measurement. Section 3 describes the tools we used to collect our measurements
and the programs that we measured. Section 4 includes the basic data that we gathered as well as our
interpretation of it, while Section 5 discusses the implications of our results. Finally, we summarize our
conclusions in Section 6.

2 Background

In this section, we describe related work investigating the empirical behavior of programs. This work falls
roughly into two categories: measurements of different aspects of program behavior and measurements of
instruction set usage on particular architectures.

2.1 Program Behavior Measurement

There have been a large numbers of studies of various aspects of the behavior of different kinds of programs.
Knuth measured both static and dynamic behavior of a large collection of Fortran programs[29]. Among
other things, he concluded that programmers had poor intuition about what parts of their programs were
the most time-consuming, and that execution profiles would significantly help programmings improve the
performance of their programs.

Much of the work in the area of program behavior measurement prior to 1984 is summarized in Weicker’s
paper describing the Dhrystone benchmark[53]. Weicker used these results to create a small benchmark
program, Dhrystone, that was intended to simulate the average systems program behavior reported in
previous work. In 1988, Weicker updated the Dhrystone benchmark, creating version 2.0, which is the
version of Dhrystone that we measure.

Since 1984, measurements of a number of aspects of program behavior have appeared. The SPEC
benchmark suite [45, 46], used in recent years to compare the performance of new computer architectures,
has been investigated both in terms of instruction set usage[9, 19] and cache locality [39] (both of these
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studies used what is now called the SPECmark89 suite). We mention these measurements because our
measurements include the SPECint92 programs, and can be compared directly with these previous results.

While other work in this area has concentrated on the behavior of programs written in a single language[2,
15], our focus is on comparing the relative behavior of programs written in C and C++, two closely-related
languages. In particular, we are interested in measuring aspects of behavior that might be exploited either
with better hardware or with aggressive software optimizations.

2.2 Instruction Set Architecture Measurement

Another area of related work is the measurement of instruction set architectures. This practice is commonly
used by architecture designers to understand how the features of the hardware are being used. Clark and
Levi report on instruction set use in the VAX-11/780 [8] and conclude that different programs use different
parts of the large VAX instruction set. Weicek investigates how six compilers use the VAX-11 instruction
set [54]. Similarly, Sweet reports on the static instruction set usage of the Mesa instruction set [48] and
McDaniel reports the dynamic instruction set usage in Mesa [34]. All of these analyses were conducted
to give architecture designers insight into how to improve the next-generation architecture. This approach
to architecture design has become so familiar that the method can now be found described in the popular
textbook, “Computer Architecture: A Quantitative Approach” [22].

More recently, published measurements of this kind have concentrated on the SPEC benchmark programs
(e.g., [9]). Because the SPEC benchmarks are widely used to compare system performance of workstations,
compiler writers and architects study these and similar programs in detail. Modifying compilers or archi-
tectures using information from the SPEC suite will lead to good SPEC performance, but may not improve
C++ programs. For example, prior to the introduction of the SPEC program suite, many manufacturers
used the original Dhrystone program to compare system performance. Numerous compiler optimizations,
primarily optimizing string operations that occur frequently in the Dhrystone program, were implemented;
these optimizations greatly benefited Dhrystone performance, but did not dramatically improve programs
with different behavior.

Our measurements include aspects of instruction set usage that indicate what differences hardware
designers will see between C and C++ programs. Furthermore, the C++ programs we have collected could
serve as an initial set of C++ benchmarks in the same way that the SPECint92 and SPECfp92 benchmarks
are currently used.

3 Methods

In this section, we describe the methods used to collect the data presented in the next section. Specifically,
we describe the programs measured, the tools used to collect the measurements, and the format of the data
presented.

3.1 The Application Programs

We have measured ten large C++ programs, ten large C programs, and the DHRYSTONE2 benchmark.
The C programs include all of those present in the SPECint92 benchmark suite. This large program suite
precluded investigating additional programs, such as the FORTRAN programs in the SPECfp92 benchmark
suite; other studies provide such comparisons [9, 24]. The function of these programs and the input datasets
we used are described in Tables 1 and 2.
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CFRONT The AT&T C++ to C conversion program, version 2.0. The input used was the file groff.c, provided
as part of the GNU troff implementation, after being preprocessed with cpp.

CONGRESS Interpreter for a PROLOG-like language. The input was one of the examples distributed with CONGRESS

for configuration management.
DOC Interactive text formatter, based on the InterViews 3.1 library. The input involved interactively browsing

a 10-page document; as such, none of the editing capabilities of the program were used.
DUMP Dump scans a Persi/Reprise [41] representation of a C++ program, converting it into a textual form.
GROFF Groff Version 1.7 — A version of the “ditroff” text formatter. The first input was a collection of manual

pages and the second was a 10-page paper. The inputs used were the same given to DITROFF.
IDRAW Interactive structured graphics editor, based on the InterViews 2.6 library. The input involved drawing

and editing a simple figure.
MORPHER Structured graphics “morphing” demonstration, based on the InterViews 3.1 library. The input was a

morphed “running man” example distributed with the program.
RT An advanced ray tracing program from Indiana University, featuring extensive use of C++ templates.
RTSH Ray Tracing Shell – An interactive ray tracing environment, with a TCL/TK user interface and a C++

graphics library. The input was a small ray traced image distributed with the program.
IDL Sample backend for the Interface Definition Language system distributed by the Object Management

Group. Input was a sample IDL specification for the Fresco graphics library.

Table 1: General information about the C++ programs.

DITROFF C version of the “ditroff” text formatter. The first input was a collection of manual pages and the
second was a 10-page paper. The inputs used were the same given to GROFF.

XDVI Interactive DVI file previewer (patchlevel 11). The input was an interactive session in which a
10-page document was viewed forwards and backwards.

XFIG Another interactive structured graphics editor (version 2.1.1). The input involved drawing and editing
a simple figure.

XTEX Another interactive DVI previewer (version 2.18.5). The input was an interactive session in which a
10-page document (the same used for XDVI) was viewed forwards and backwards.

026.COMPRESS A file compression program, version 4.0, that uses adaptive Lempel-Ziv coding. The test input
required compressing a one million byte file.

023.EQNTOTT A translator from a logic formula to a truth table, version 9. The input was the file int pri 3.eqn.
008.ESPRESSO A logic optimization program, version 2.3, that minimizes boolean functions. The input file is an

example provided with the release code (cps.in).
022.LI A Lisp interpreter that is an adaptation of XLISP 1.6 written by David Michael Betz. The input

measured was a solution to the N-queens problem where N=6.
072.SC A spreadsheet program, version 6.1. The input involved cursor movement, data entries, file handling,

and some computation.
085.GCC A benchmark version of the GNU C Compiler, version 1.35. The measurements presented show

only the execution of the “cc1” phase of the compiler. The input used was a preprocessed 4832-line
file (1stmt.i).

DHRYSTONE2 Version 2.0 of a small synthetic benchmark program intended to mimic the observed behavior of
systems programs. The program does not require input.

Table 2: General information about the C programs.
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Program Size (KBytes) Total Instr Total Func Calls Total I-Calls Compiled with

CFRONT 518 11,495,850 156,139 7 ATT C++
CONGRESS 2184 152,658,254 5,250,042 342,265 GNU C++
DOC 2469 406,673,840 9,476,005 5,310,058 GNU C++
DUMP 956 107,690,479 2,378,279 199,576 GNU C++
GROFF-1 1184 46,415,030 935,541 205,479 GNU C++
GROFF-2 1184 63,637,380 1,393,762 304,940 GNU C++
IDRAW 4250 184,930,642 4,307,713 1,490,459 GNU C++
MORPHER 2432 52,131,590 1,077,765 425,071 GNU C++
RT 1595 192,734,302 5,333,576 730,647 ATT C++
RTSH 3422 822,050,947 16,506,024 5,547,702 GNU C++

DITROFF-1 1487 52,686,831 676,656 8,491 GNU CC
DITROFF-2 1487 110,076,123 1,471,485 77 GNU CC
XDVI 1009 17,401,146 74,770 1,421 GNU CC
XFIG 1549 22,600,322 136,711 6,181 GNU CC
XTEX 1236 21,898,393 102,930 3,939 GNU CC
026.COMPRESS 67 94,345,259 251,333 2 GNU CC
008.ESPRESSO 295 604,811,607 1,903,209 84,755 GNU CC
023.EQNTOTT 102 1,426,572,207 4,012,030 3,215,051 GNU CC
022.LI 181 279,475,999 6,542,081 180,133 GNU CC
072.SC 281 1,017,786,477 10,634,338 282,938 GNU CC
085.GCC 974 137,821,007 1,355,551 80,812 GNU CC

DHRYSTONE2 56 6,362,520 172,020 3 GNU CC
IDL 1416 151,418,823 5,763,166 2,991,272 DEC C++

Table 3: Information about Program Executions. Total I-Calls indicates the number of indirect function
calls executed in the program. Programs compiled with GNU C++ and GNU CC were compiled with
version 2.3.3 of the compiler. IDL was compiled with version 1.2 of the DEC C++ compiler. In all cases,
optimization was enabled (-O). All measurements were conducted on a MIPS-based DECstation 5000/240
workstation.

We sought large programs, both in terms of source code size and in terms of executable size; where
possible, we selected programs that were in widespread use and familiar to a broad audience of users. We
sought programs about which other measurement studies had been conducted; the SPECint92 programs met
this requirement. We sought programs written in both C and C++ that provide similar functionality. For
example, we measure DITROFF, a troff processor written in C, and GROFF, a troff processor written in C++.
In this particular case, the input files provided to both programs were exactly the same. Other C and C++
programs are also paired in the same way— XFIG (C) and IDRAW (C++) are picture drawing programs, XDVI

(C), XTEX (C), and DOC (C++) are document previewers (DOC was used in this way, although it also has
editor capabilities), and 085.GCC (C) and CFRONT (C++) are translators. We also included programs written
using an object-oriented style in the C language (XTEX). Finally, we sought C++ programs representing
a range of object-oriented programming styles. Because we are familiar with the origin and history of
development of many of the C++ programs we measured, we have insight into the programming style used
in them.

Information about the program executions we measured is provided in Table 3. Note that in the cases of
DITROFF and GROFF, information about two runs with different inputs is presented both here and throughout
the paper. We include these results to give an indication of the sensitivity of our measurements to different
input sets.

With the information presented in Table 3, some important characteristics of the test programs already
become apparent. The most important observation is that CFRONT, while written in C++, makes only 7
indirect function calls. From this behavior we immediately conclude that no virtual methods are defined
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in CFRONT, and thus the program makes no use of dynamic dispatch, an important characteristic of the
object-oriented paradigm. This conclusion leads us to believe that CFRONT does not take advantage of many
of the benefits of the object-oriented paradigm, and thus is closer in behavior to C programs than to C++
programs. Other measurements of CFRONT, presented later, confirm this observation. One explanation of
this behavior is that CFRONT was used to bootstrap a C++ translator, and as such, it was to the developers
advantage to use only a subset of the full set of C++ features in the translator. As a result, when presenting
summaries of the C++ programs, we include two means (or medians): one that includes CFRONT and one
that does not.

Of the other C++ programs, we should note that DOC, IDRAW, and MORPHER are all interactive X-windows
applications implemented using the InterViews class library [32]. InterViews is a large class library that
has evolved and changed with the evolution of C++ itself. We note that Mark Linton, the designer of
InterViews, has been a very active user of C++ for many years and has been instrumental in shaping the
design of the language. He is also very familiar with the features provided and the InterViews library
reflects this knowledge. IDRAW is an early InterViews program, implemented with version 2.6 of the library.
In InterViews 2.6, graphical objects were larger, encompassing more functionality in each object. In the
later InterViews 3.1, the larger graphical objects were replaced by small “glyphs”—these simple objects are
composed to form more complex objects. For example, rather than provide a single “button” object with
multiple parameters to define the button, the user creates a drawable object and “wraps” it with an object
that handles input events. In this library, software reuse is encouraged by constructing small objects and
composing them. Thus, programs such as DOC and MORPHER have considerable “software reuse” since each
primitive object can be composed for a variety of functions.

Interestingly, the table also shows that 023.EQNTOTT, a C program, performs a very large number of
indirect function calls. This behavior is explained by the fact that the main computation of 023.EQNTOTT

is sorting (about 95% of the execution time is spent in the library routine qsort). The function used to
compare two values in the qsort routine is passed as an argument to qsort and called indirectly.

3.2 Tools and Metrics

In the next section, we present results including average function size, average basic block size, percentage
of stores and loads, and others. Measurements presented are of the dynamic execution of the programs and
were collected using a modified version of QPT, a program operation trace generator [30]. The instrumented
programs were executed on a DECstation 5000/240 workstation with 112 megabytes of memory.

With QPT, we are able to identify all the function calls, basic block transitions, instruction fetches, data
loads and stores, and other operations that occur during program execution. With modifications, we are also
able to determine when indirect function calls occur and the target function of the indirect call. We identify
and distinguish when C++ functions, C++ methods, and C functions are being invoked. A C++ function
is a function compiled by the C++ compiler, while a C function is compiled by a conventional C compiler.
C++ methods are functions associated with objects. This information allows us to classify behavior such as
basic block size by the type of function in which the basic block occurs. We break down our measurements
in this way throughout this paper.

The cache performance measurements we report were obtained using a modified version of the Tycho
all-associativity cache simulator [23, 24]. Our modification involved making the stand-alone program into
a callable library so that it could be linked with the instrumented executable. Tycho allows us to measure
the performance of caches with different associativities simultaneously; we simulated direct-mapped caches
with 32-byte cache lines.
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 20.9 79.1 47.5 52.5 44.4 55.6 0.0 100.0 100.0
CONGRESS 29.4 70.6 55.2 44.8 61.1 38.9 6.5 93.5 100.0
DOC 5.6 94.4 75.0 25.0 94.0 6.0 56.0 44.0 100.0
DUMP 28.0 72.0 53.8 46.3 46.3 53.7 8.4 91.6 100.0
GROFF-1 23.1 76.9 61.5 38.5 63.5 36.5 22.0 78.0 100.0
GROFF-2 15.7 84.3 61.2 38.8 68.6 31.4 23.3 76.7 100.0
IDRAW 13.2 86.8 57.6 42.4 80.6 19.4 34.6 65.4 100.0
MORPHER 16.6 83.4 63.1 36.9 80.4 19.6 39.4 60.6 100.0
RT 3.8 96.2 80.4 19.6 79.3 20.6 13.7 86.3 100.0
RTSH 31.3 68.7 63.3 36.7 68.7 31.3 33.6 66.4 100.0

DITROFF-1 100.0 50.1 49.9 100.0 1.2 98.8 100.0
DITROFF-2 100.0 59.5 40.5 100.0 0.0 100.0 100.0
XDVI 100.0 74.6 25.4 100.0 1.9 98.1 100.0
XFIG 100.0 66.3 33.6 100.0 4.5 95.5 100.0
XTEX 100.0 69.9 30.1 100.0 3.8 96.2 100.0
026.COMPRESS 100.0 99.9 0.1 100.0 100.0 100.0
008.ESPRESSO 100.0 83.6 16.4 100.0 4.5 95.5 100.0
023.EQNTOTT 100.0 91.6 8.4 100.0 80.1 19.9 100.0
022.LI 100.0 50.7 49.3 100.0 2.7 97.3 100.0
072.SC 100.0 46.6 53.4 100.0 2.3 97.7 100.0
085.GCC 100.0 61.8 38.2 100.0 6.0 94.0 100.0

DHRYSTONE2 100.0 76.6 23.4 100.0 100.0 100.0
IDL 100.0 75.6 24.4 100.0 51.9 48.1 100.0
C++ Mean 18.7 81.3 61.9 38.1 69.0 31.0 23.9 76.1 100.0
C Mean 100.0 0.0 70.0 30.0 0.0 100.0 10.6 89.4 100.0
C++ w/o cfront 18.4 81.6 63.7 36.3 72.0 28.0 26.9 73.1 100.0

Table 4: Percentage of Invocations

Because our measurements are of dynamic program execution and we do not perform a static analysis of
the program, we are unable to determine which functions in a program are leaf functions (i.e., do not contain
any function calls). Instead, we are only able to determine which functions do not make any function calls
for a particular input dataset, and we call these functions terminal functions to distinguish them from leaf
functions. Clearly the leaf functions are a subset of the terminal functions.

3.3 Explanation of the Data Presented

In the next section, results of measurements of the application programs are presented in a uniform way.
Because the tables are quite complex, we describe their format in some detail here. To understand this
format, consider Table 4, which shows how the function calls in the applications can be classified. Each
table contains one row per program measured, with the C++ programs appearing first and the C programs
under them. The SPECint92 programs are separated from the other C programs and numbered. At the bottom
of the tables, measurements of the DHRYSTONE2 benchmark, the mean of the C++ program measurements,
and the mean of the C program measurements are presented in separate rows. A row at the bottom shows the
C++ mean without including the CFRONT application. While rows appear for two separate inputs of GROFF

and DITROFF, only the average of the two inputs is included in the final C and C++ means.
Each row of the table is divided into nine columns (after the first column, which is the program name).

The first eight of these columns break down the data into four pairs of two alternatives. The final column
presents the overall value for the program without a breakdown. For example, Table 4 shows what kinds
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of functions are being called in the test programs. The four pairs of columns in the table represent the
following comparisons:

Columns 2–3 A comparison of behavior in functions and methods defined in C++ versus functions defined
in C. C functions are often called by C++ functions because C++ programs often use C libraries.
We distinguish C++ methods and functions from C functions by looking at the function name. This
comparison is not meaningful in the C programs, which obviously do not invoke C++ functions. From
the table, we see that approximately 80% of all function invocations in C++ programs are made to
C++ methods and functions, while the other 20% are made to C functions.

Columns 4–5 A comparison of behavior in terminal (Term) versus non-terminal (N-Term) functions. From
the table, we see that in C++ programs, an average of 62% of calls are made to terminal functions,
whereas in C, an average of 70% of calls are made to terminal functions.

Columns 6–7 A comparison of behavior in methods (Meth) versus non-methods (N-Meth). Again, since
C programs do not contain methods, this distinction is not meaningful in those programs. From the
table, we see that in C++ programs, an average of 69% of all function calls are made to methods.
Furthermore, in some programs, such as DOC, this percentage is much higher (i.e., 94%). CFRONT

also performs significantly fewer method calls (44%) than the average for C++ programs.

Columns 8–9 A comparison of behavior in functions invoked indirectly versus directly. For the most part,
C programs do not perform many indirect function calls, so these columns are mostly of interest in
the C++ programs. From the table, we see that on average 24% of all function calls in C++ programs
are indirect, whereas in C only 10.6% of all calls are indirect. Furthermore, we see that the C average
is heavily influence by the 023.EQNTOTT benchmark, which we have already mentioned. We also see
that CFRONT is an unusual C++ program, performing essentially no indirect function calls.

The DHRYSTONE2 benchmark program is included in our results to show how well it emulates the
behavior of either the C or C++ programs that we measured. Note that another C++ program, IDL, appears
at the bottom of each table. We include IDL there because we are currently unable to distinguish method
calls, C++ function calls and C function calls in IDL (due to its being compiled by the DEC C++ compiler).
As a result, the C versus C++ columns and Method versus Non-Method columns are not correct for IDL. For
this reason, we also do not include IDL in the C++ Mean row. Nevertheless, all other measures of execution
in IDL are correct and we include it to provide data from an additional C++ program.

To provide more insight into the specific behavior of the C++ programs, we include Table 5, which
presents the fraction of method calls (top line of three), C++ function calls (second line of three), and C
function calls (third line of three) in each of the C++ applications. Note that the table indicates the percentage
of calls from a particular type of function. For example, in CFRONT the table shows that of all calls from
methods (versus non-methods), 65.8% of these calls were made to other C++ methods. The table once again
illustrates that DOC, IDRAW, and MORPHER are the most “method-intensive” C++ programs, while CFRONT

is the least.

4 Results

Throughout this section we have intentionally resisted the urge to only present the summary information
(i.e., C and C++ means) because we believe it is important for the reader to be able to consider the behavior
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT

3.3
0.5

96.2

48.8
38.3
12.9

44.4
34.7
20.9

65.8
22.9
11.3

33.4
40.7
25.8 100.0

44.4
34.7
20.9

44.4
34.7
20.9

CONGRESS

100.0

69.2
10.8
20.0

61.1
9.6

29.4

66.8
11.6
21.6

43.0
3.2

53.8

87.1
1.7

11.3

58.5
10.4
31.2

61.1
9.6

29.4

DOC

0.8

99.2

96.4
0.5
3.1

94.0
0.5
5.6

96.5
0.4
3.1

44.6
1.3

54.2

98.2
0.4
1.4

83.2
0.5

16.3

94.0
0.5
5.6

DUMP

0.0

100.0

54.7
30.5
14.8

46.3
25.8
28.0

55.2
35.5
9.3

26.4
4.1

69.5

63.5
18.0
18.5

43.7
26.9
29.4

46.3
25.8
28.0

GROFF-1
0.1

99.9

70.4
14.9
14.7

63.5
13.4
23.1

72.4
9.1

18.5

51.9
19.0
29.1

81.7
6.1

12.2

58.9
15.2
25.9

63.5
13.4
23.1

GROFF-2
0.1

99.9

72.5
16.6
10.9

68.6
15.7
15.7

73.7
9.9

16.4

61.4
23.8
14.7

83.3
8.7
8.1

64.7
17.6
17.7

68.6
15.7
15.7

IDRAW

0.0
4.3

95.6

86.7
6.3
6.9

80.6
6.2

13.2

88.4
4.7
6.9

17.3
18.7
64.0

85.6
6.5
7.9

75.7
5.9

18.4

80.6
6.2

13.2

MORPHER

0.0
0.1

99.9

88.7
3.3
8.0

80.4
3.0

16.6

87.7
3.4
8.9

47.9
1.2

50.9

87.5
6.1
6.4

75.3
0.8

23.9

80.4
3.0

16.6

RT

96.5
2.5
1.1

75.3
20.2

4.5

79.3
16.8

3.8

74.7
20.8
4.5

94.7
3.5
1.8

91.6
3.8
4.6

78.0
18.3
3.8

79.3
16.8

3.8

RTSH

100.0

74.2

25.8

68.7

31.3

74.2

25.8
0.0

100.0

78.2

21.8

63.2
0.0

36.8

68.7

31.3

Table 5: Percent of Method Calls, C++ Function Calls and C Function Calls
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 72.3 74.0 47.5 97.3 66.2 79.5 37.0 73.6 73.6
CONGRESS 23.3 31.5 23.6 35.8 33.6 21.9 20.5 29.7 29.1
DOC 71.8 41.2 30.5 80.1 40.5 80.8 49.5 34.6 42.9
DUMP 99.5 24.2 43.0 48.0 25.1 62.7 30.7 46.6 45.3
GROFF-1 54.1 48.3 39.2 66.3 44.5 58.5 27.9 55.7 49.6
GROFF-2 40.9 44.6 34.5 59.1 39.9 53.0 27.5 49.0 44.0
IDRAW 67.0 39.3 36.2 52.1 33.4 82.7 30.1 49.7 42.9
MORPHER 115.4 35.0 41.9 59.5 33.3 110.0 36.0 56.4 48.4
RT 294.0 25.9 17.0 114.7 23.9 83.2 23.9 38.1 36.1
RTSH 26.5 60.4 40.8 65.3 60.4 26.5 25.7 62.0 49.8

DITROFF-1 74.1 61.7 86.6 74.1 49.6 74.4 74.1
DITROFF-2 74.6 53.6 105.4 74.6 46.8 74.6 74.6
XDVI 232.4 259.6 152.3 232.4 176.2 233.5 232.4
XFIG 165.2 183.3 129.4 165.2 59.8 170.2 165.2
XTEX 212.6 243.6 140.7 212.6 96.8 217.2 212.6
026.COMPRESS 375.3 102.4 245087.0 375.3 35.3 375.3 375.3
008.ESPRESSO 317.8 187.5 984.0 317.8 62.6 329.7 317.8
023.EQNTOTT 355.6 366.9 232.7 355.6 397.3 187.1 355.6
022.LI 42.0 41.4 42.7 42.0 17.5 42.7 42.0
072.SC 97.8 69.5 122.4 97.8 18.7 99.6 97.8
085.GCC 101.7 44.8 193.6 101.7 21.1 106.8 101.7

DHRYSTONE2 37.0 27.5 68.1 37.0 46.0 37.0 37.0
IDL 26.3 10.2 12.7 68.5 26.3 37.7 13.9 26.3
C++ Mean 90.8 42.0 35.3 68.4 39.8 67.0 31.2 49.2 46.1
C Mean 197.5 0.0 155.7 24718.1 0.0 197.5 93.4 183.7 197.5
C++ w/o cfront 93.1 38.0 33.7 64.8 36.5 65.5 30.5 46.2 42.7

Table 6: Mean Number of Instructions per Invocation

of individual programs as this information can be valuable as well. For example, we believe that the DOC

program represents the C++ application written in the most “object-oriented” style, and so readers may be
interested in drawing conclusions based on the behavior of that program alone.

4.1 Dynamic Function Size

In this section, we investigate the average size in instructions of the functions (or methods) called by each
program. Note that we report a dynamic measure of function size, where the number of instructions executed
for each function is counted each time it is called. Function size is important because small functions have
proportionally greater fixed function call overhead (i.e., saving registers, setting up arguments, etc). and
so will benefit more from optimizations like inlining. Also, as we will see, function size probably has a
significant effect on instruction cache performance.

Table 6 contains these data. The table shows the size of terminal functions versus non-terminals,
methods versus non-methods, etc. The most significant result to notice in the table is that, dynamically,
C++ functions and methods are much shorter than C functions (an average of 46.1 instructions versus 197.5
instructions). In fact, when the C functions in C++ programs are not counted (the C++ column of the C++
Mean), we see that the average size of C++ functions and methods is only 42.0 instructions, almost five
times smaller than the average C function. Because it is always useful to consider only the C++ functions
and methods and not count the C functions that are part of the C++ program, we will repeatedly refer the
the C++ column of the C++ Mean row as the exclusive C++ mean.

From the table, we also see that C++ methods are likely to be smaller than C++ non-methods (39.8 versus
67.0 instructions). Likewise, C and C++ terminal functions are likely to be smaller than non-terminals.
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 5.2 4.8 4.2 5.3 4.3 5.4 5.7 4.9 4.9
CONGRESS 4.2 5.9 4.7 6.0 5.9 4.3 5.8 5.3 5.3
DOC 4.0 6.3 5.1 7.3 6.2 4.4 6.5 5.2 6.0
DUMP 4.3 8.3 4.5 6.4 8.7 4.6 9.8 5.1 5.2
GROFF-1 4.1 5.7 4.7 5.8 5.8 4.5 5.4 5.2 5.2
GROFF-2 3.8 5.7 4.8 6.1 5.9 4.7 5.3 5.4 5.4
IDRAW 4.4 8.0 5.4 9.1 7.1 6.4 8.7 6.4 6.8
MORPHER 3.7 8.8 4.4 8.6 8.4 4.1 10.9 4.7 5.7
RT 6.7 9.7 6.6 10.2 10.0 7.2 10.4 8.3 8.5
RTSH 4.7 12.6 10.1 9.6 12.6 4.7 11.0 9.6 9.9

DITROFF-1 5.9 6.5 5.6 5.9 6.8 5.9 5.9
DITROFF-2 6.4 7.1 6.0 6.4 5.8 6.4 6.4
XDVI 3.6 3.4 5.1 3.6 6.0 3.6 3.6
XFIG 3.8 3.5 5.1 3.8 5.7 3.8 3.8
XTEX 3.9 3.6 5.2 3.9 5.3 3.8 3.9
026.COMPRESS 5.9 7.2 5.5 5.9 5.0 5.9 5.9
008.ESPRESSO 6.1 5.7 6.4 6.1 5.5 6.1 6.1
023.EQNTOTT 3.0 2.9 4.9 3.0 2.9 4.5 3.0
022.LI 5.8 5.6 6.0 5.8 6.5 5.8 5.8
072.SC 5.2 4.2 5.8 5.2 6.2 5.1 5.2
085.GCC 5.6 5.6 5.7 5.6 7.0 5.6 5.6

DHRYSTONE2 4.5 3.5 7.0 4.5 4.9 4.5 4.5
IDL 6.2 5.5 4.1 9.1 6.2 7.0 4.8 6.2
C++ Mean 4.6 7.8 5.5 7.6 7.7 5.1 8.2 6.1 6.4
C Mean 4.9 0.0 4.9 5.5 0.0 4.9 5.6 5.1 4.9
C++ w/o cfront 4.5 8.1 5.7 7.9 8.1 5.0 8.6 6.3 6.6

Table 7: Mean Number of Instructions per Basic Block

Some specific programs are also worthy of note. 026.COMPRESS performs the entire file compression within
a single non-terminal function, and as such the average instructions per non-terminal is much higher than
the other programs. Also, CFRONT displays appears more similar to C programs than C++ programs, with
a average of 73.6 instructions per invocation. The explanation for the smaller functions in C++ lies in
the object-oriented approach of implementing program functionality in class methods, where each method
performs a relatively small and specific function for the class. Decomposing a large program using this
approach appears to result in programs with invocations of many small functions.

4.2 Basic Block Size

Table 7 shows the dynamic mean of the number of instructions per basic block in the test programs.
Larger basic blocks offer more opportunity for architecture-specific optimizations, such as instruction
scheduling. In this case, we see that C++ programs tend to have significantly more instructions per basic
block than C programs. The difference between the C Mean (4.9 instructions) and the exclusive C++ mean
(7.8 instructions) is striking. Without CFRONT, the exclusive C++ mean is even higher (8.1 instructions).
The table also shows that basic blocks are more likely to be larger in methods (7.7 instructions) than in
non-methods (5.1 instructions). The table shows that functions called indirectly are likely to have more
instructions per basic than functions called directly (8.2 versus 6.1 instructions).

We believe the main reason for all of these observed behaviors is that dispatched methods often re-
place conditionals in object-oriented programs. Instead of testing conditionals to execute a sequence of
instructions, as is often done in procedural programs, object-oriented programs perform dynamic dispatch
to a method based on an object’s type. Furthermore, once a method is entered, the execution context is
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% of Instructions Percentage of Breaks Cond Branches
Program which are breaks %CB %IJ %UJ %PC %Ret %FT %T

CFRONT 19.12 69.80 0.00 14.53 7.10 7.10 52.67 47.33
DOC 17.22 69.30 7.58 3.62 5.95 13.53 39.65 60.35
GROFF 18.81 65.13 2.81 9.73 9.26 12.08 47.17 52.83
IDL 18.76 41.57 10.53 17.73 9.76 20.29 50.89 49.11
IDRAW 15.58 64.90 5.17 5.02 9.78 14.95 42.93 57.07
MORPHER 17.66 71.84 4.62 4.66 7.09 11.71 43.77 56.23
RTSH 10.72 59.41 6.29 3.13 12.43 18.73 40.04 59.96

DITROFF 16.68 71.01 0.10 12.92 7.93 8.02 26.59 73.41
XDVI 25.67 89.41 0.03 7.16 1.64 1.68 39.92 60.08
XFIG 24.35 88.05 0.11 6.88 2.37 2.49 40.10 59.90
XTEX 24.26 89.55 0.07 6.49 1.86 1.94 37.80 62.20
026.COMPRESS 15.57 79.92 0.00 16.66 1.71 1.71 50.73 49.27
008.ESPRESSO 14.87 94.04 0.09 1.73 2.02 2.12 39.74 60.26
023.EQNTOTT 24.53 95.59 1.02 2.10 0.14 1.16 34.36 65.64
022.LI 17.57 65.32 0.39 6.86 13.15 13.35 53.60 46.40
072.SC 18.21 83.53 0.16 3.33 5.59 5.75 42.92 57.08
085.GCC 16.44 78.89 0.36 6.77 5.62 5.98 41.41 58.59

C++ Mean 16.84 63.13 5.29 8.34 8.77 14.05 45.30 54.70
C Mean 19.82 83.53 0.23 7.09 4.20 4.42 40.72 59.28

Table 8: Percentage of breaks for each program. Note that not all the C++ programs are shown. The other
programs, DUMP, RT, and IDL have not been measured at this time.

completely determined, and, as a result, many methods contain straight-line code resulting in larger basic
blocks.

4.3 Breaks in Program Execution

In this section we investigate the frequency of different kinds of breaks in program control flow. These
results are related to the previous results showing the size of both basic blocks and functions. In Table 8, the
first column shows the percentage of branch instructions that cause a break in the control flow graph. The
last five columns decompose the number of branches into five classes: conditional branches (CB), indirect
jumps (IJ), unconditional branches (UB), procedure calls (PC) and procedure returns (Ret). The table
also shows what percentage of conditional branches fall through (FT) and what percentage of conditional
branches are taken (T). C programs tend to have more breaks in control flow (19.8%) than C++ programs
(16.9%). Also, the table shows that C++ programs execute 23 times more indirect jumps (5.29%) than C
programs (0.23%), probably due entirely to virtual function calls in C++. The actual ratio is probably higher
due to the fact that the 023.EQNTOTT C program executes an inordinate number of indirect function calls
from the sort routine.

Modern pipelined architectures rely on a predictable sequence of instructions; each type of break
in control can be predicted using different mechanisms. Mispredicting the direction of a branch or the
destination of an indirect call or return can stall the processor for 5-10 instruction cycles in modern
architectures. Conditional branch prediction has been studied by a number of researchers; Lilja [31],
McFarling [36] and Smith [42] present good surveys. Kaeli and Emma [26] showed that a hardware return
stack effectively predicted the destination of procedure returns. In related work, we [5] have shown that
indirect functions can be effectively predicted for C++ programs.

In Table 9, we first examine conditional branches because they are the most common type of branch.
Table 9 shows the average number of instructions between conditional branch instructions in the test
programs. From the table, we see the same relation between C and C++ that we saw when comparing basic
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 8.0 7.2 6.4 7.9 6.3 8.3 8.7 7.3 7.3
CONGRESS 6.5 9.1 7.5 9.1 9.1 6.8 10.5 8.2 8.3
DOC 5.1 9.0 7.4 9.8 9.0 5.6 8.7 7.9 8.4
DUMP 6.8 34.6 7.9 13.3 43.0 7.8 43.0 9.4 9.8
GROFF-1 5.7 8.6 6.7 8.6 8.6 6.6 8.4 7.5 7.6
GROFF-2 5.3 8.8 7.1 9.2 8.9 6.9 8.2 8.0 8.0
IDRAW 5.7 12.2 7.3 14.7 10.7 8.7 16.1 8.8 9.9
MORPHER 4.5 15.3 5.8 13.9 14.6 5.0 22.3 6.2 7.9
RT 10.1 18.0 12.0 16.5 21.5 10.6 21.3 14.0 14.5
RTSH 7.4 20.2 17.5 14.1 20.2 7.4 22.5 14.8 15.7

DITROFF-1 8.4 9.6 7.8 8.4 11.7 8.4 8.4
DITROFF-2 9.3 11.2 8.2 9.3 12.0 9.3 9.3
XDVI 4.4 4.1 6.9 4.4 7.6 4.3 4.4
XFIG 4.7 4.2 6.9 4.7 7.1 4.6 4.7
XTEX 4.6 4.3 6.8 4.6 6.3 4.6 4.6
026.COMPRESS 8.0 10.4 7.4 8.0 7.6 8.0 8.0
008.ESPRESSO 7.1 7.0 7.3 7.1 6.8 7.2 7.1
023.EQNTOTT 4.2 4.1 7.8 4.2 4.0 7.0 4.2
022.LI 8.6 8.1 9.3 8.6 12.2 8.6 8.6
072.SC 6.5 5.7 6.9 6.5 18.7 6.5 6.5
085.GCC 7.5 8.2 7.2 7.5 12.6 7.4 7.5

DHRYSTONE2 6.0 4.5 11.0 6.0 7.7 6.0 6.0
IDL 12.8 1443.0 11.1 14.0 12.8 13.4 11.2 12.8
C++ Mean 6.6 14.9 8.7 12.0 15.9 7.4 17.9 9.4 9.9
C Mean 6.4 0.0 6.6 7.4 0.0 6.4 9.5 6.7 6.4
C++ w/o cfront 6.4 15.9 9.0 12.6 17.1 7.3 19.1 9.6 10.3

Table 9: Mean number of instructions per Conditional Branch

block sizes. The exclusive C++ mean (14.9 instructions) is more than twice as large as the C mean (6.4),
again indicating that C++ programs tend to have fewer conditional branch (i.e., if-then-else) statements in
them. Other trends also follow those seen in the basic block size results. Specifically, we see that methods
tend to have many fewer conditional branches than non-methods and functions called indirectly tend to have
fewer conditional branches than functions called directly. In fact, virtual functions (i.e. C++ methods called
indirectly) have an average of 17.9 instructions per basic block and an average of only 31.3 instructions per
invocation, indicated the presence of less than 1 conditional branch per function on average.

In Table 10, we only examine conditional branches and indirect jumps. The table shows the average
number of instructions between these two types of unpredictable breaks in program control flow. We did
not consider returns in these two tables because returns can be very accurately predicted using an a return
stack [26], and pose few problems for modern architectures.

Many C++ programs use dynamic dispatch (“virtual functions”) rather than conditional logic (“if”).
Architecturally, this substitutes indirect function calls for conditional branches. We expect that some of the
difference in the number of instructions between conditional branches in C and C++ programs would be
reduced if indirect function calls are considered as well as conditional branches; from the table we see that
this is indeed the case. The average number of instructions per break is reduced in the exclusive C++ mean
from 14.9 instructions to 13.4, whereas the C mean remains the same at 6.4 instructions.

These results are confirmed by reconsidering Table 8. About 83% of the breaks in the C programs
arise from conditional branches, but these only comprise 63% of the breaks in the C++ programs. This
implies that handling indirect jumps and returns properly is increasingly important, since C++ is increasing
in popularity. Because indirect jumps are so frequent in C++, researchers are examining methods to reduce
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 8.0 7.2 6.4 1.0 6.3 8.3 8.7 7.3 7.3
CONGRESS 6.5 8.8 7.5 1.0 8.9 6.8 9.5 8.1 8.1
DOC 5.1 8.0 7.4 1.0 7.9 5.5 7.6 7.5 7.6
DUMP 6.8 29.6 7.9 1.0 37.4 7.7 35.3 9.3 9.7
GROFF-1 5.7 8.1 6.7 1.0 8.1 6.5 7.5 7.3 7.3
GROFF-2 5.3 8.4 7.1 1.0 8.4 6.8 7.4 7.8 7.7
IDRAW 5.6 10.9 7.3 1.0 9.5 8.6 12.3 8.4 9.1
MORPHER 4.5 12.7 5.8 1.0 12.5 4.9 17.2 6.0 7.4
RT 9.2 17.7 12.0 1.0 21.1 9.9 20.0 13.3 13.7
RTSH 7.4 17.4 17.5 1.0 17.4 7.4 15.4 14.0 14.2

DITROFF-1 8.4 9.6 1.0 8.4 11.7 8.4 8.4
DITROFF-2 9.3 11.2 1.0 9.3 12.0 9.3 9.3
XDVI 4.4 4.1 1.0 4.4 7.6 4.3 4.4
XFIG 4.7 4.2 1.0 4.7 7.0 4.6 4.7
XTEX 4.6 4.3 1.0 4.6 6.2 4.6 4.6
026.COMPRESS 8.0 10.4 1.0 8.0 7.6 8.0 8.0
008.ESPRESSO 7.1 7.0 1.0 7.1 6.8 7.1 7.1
023.EQNTOTT 4.1 4.1 1.0 4.1 4.0 6.1 4.1
022.LI 8.6 8.1 1.0 8.6 12.2 8.6 8.6
072.SC 6.5 5.7 1.0 6.5 18.7 6.4 6.5
085.GCC 7.4 8.2 1.0 7.4 12.6 7.4 7.4

DHRYSTONE2 6.0 4.5 1.0 6.0 7.7 6.0 6.0
IDL 10.2 1443.0 11.1 1.0 10.2 10.0 10.8 10.2
C++ Mean 6.5 13.4 8.7 1.0 14.4 7.3 14.8 9.0 9.4
C Mean 6.4 0.0 6.6 1.0 0.0 6.4 9.5 6.6 6.4
C++ w/o cfront 6.3 14.2 9.0 1.0 15.4 7.2 15.6 9.3 9.7

Table 10: Mean number of instructions per break in program (including indirect function calls and condi-
tional branches)

this overhead [5, 38]. The C++ language was designed to be very efficient, introducing additional costs only
when specific features (such as dynamic dispatch) were used. For example, careful design has produced a
numerical library that can be used from C++ that is as efficient as a related FORTRAN library [14], and
efficient operating systems have been written in C++ [6]. In many cases, C++ programers eschew ‘expensive’
features, such as dynamic dispatch to achieve this efficiency. We feel optimizatoins that eliminate or reduce
these costs will simplify software design in C++.

4.4 Call Stack Depth

We have measured the mean, median, and variance of the call stack depth of the applications as
well. Here, we present the median and interquartile range (i.e., 75th percentile minus 25th percentile).
Measurements of the mean, not presented here, show the same results; we included the median because our
variance metric uses the interquartile range, which is easier to relate to the median.

Table 11 shows the median call stack depth while Table 12 shows the interquartile range. Both of these
tables illustrate another striking difference between C and C++ programs. From the table of medians, we
see that the median call stack depth of the C++ programs averages 15.8 functions while that of C programs
is only 10.0 functions. The DOC and DUMP programs illustrate even more extreme cases of this behavior,
both being twice as deep as the mean of the C programs. Of course, the depth of the call stack is very
application and input dependent, and in the case of 022.LI, a Lisp interpreter solving the N-queens problem,
recursive invocations create a very deeply nested call stack in a C program as well. However, 022.LI appears
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 10 9 10 9 11 9 7 10 10
CONGRESS 19 18 19 18 18 19 19 19 19
DOC 18 20 18 29 20 18 10 30 20
DUMP 21 24 24 23 23 24 22 24 24
GROFF-1 14 10 11 10 10 13 9 11 11
GROFF-2 12 10 10 10 10 11 9 10 10
IDRAW 18 17 18 17 17 18 17 18 17
MORPHER 16 20 20 19 20 17 21 17 19
RT 7 8 8 6 8 8 7 8 8
RTSH 16 15 16 14 15 15 14 17 15

DITROFF-1 7 8 7 7 5 7 7
DITROFF-2 7 7 6 7 5 7 7
XDVI 14 15 14 14 11 14 14
XFIG 12 13 12 12 11 12 12
XTEX 15 15 15 15 13 15 15
026.COMPRESS 5 5 5 5 7 5 5
008.ESPRESSO 11 11 11 11 16 11 11
023.EQNTOTT 7 7 6 7 7 7 7
022.LI 41207 41158 41272 41207 41407 41205 41207
072.SC 8 8 7 8 10 8 8
085.GCC 11 11 10 11 12 11 11

DHRYSTONE2 4 4 5 4 6 4 4
IDL 14 6 14 14 14 14 14 14
C++ Mean 15.3 15.7 15.9 16.1 15.8 15.6 14.0 17.1 15.8
C Mean 10.0 10.3 9.6 10.0 10.2 10.0 10.0
C++ w/o cfront 16.0 16.5 16.7 17.0 16.4 16.4 14.9 17.9 16.6

Table 11: Median Call Stack Depth. 022.LI is not included in the mean because it is an extreme outlier.

to be quite uncharacteristic of the other C applications. We conclude that C++ program call stacks are likely
to be much deeper than C program call stacks. This behavior can again be explained by the use of smaller
functions composed with each other to implement a complex task and fewer opportunities for inline function
expansion.

The difference in the variance of the call stack depth between C and C++ programs is even more striking.
From Table 12 we see that the C++ interquartile range is 9.9 functions whereas the C interquartile range
is only 2.3 functions. As mentioned earlier, one motivation for the use of register window architectures
was that C programs displayed a relatively small variance in call stack depth. Our results confirm this
observation of C programs, but suggest that C++ programs will not benefit as much from such hardware.

4.5 Memory Operations

We measured and compared the frequency of memory operations in C and C++ programs, and the results
are provided in Table 13 (loads) and in Table 14 (stores). Modern computer architectures are sensitive to the
number of memory operations; hardware mechanisms such as caches seek to mask some of these problems.

The tables show the fraction of load and store instructions in the test programs. Again, we see significant
differences between the C and C++ programs in both tables. In particular, C++ performs a greater percentage
of loads (24.1% for the exclusive C++ mean versus 18.2% for the C mean) and a greater percentage of
stores (13.4% for the exclusive C++ mean versus 7.9% for the C mean). Adding these numbers together, we
see that C++ code in C++ programs perform greater than 10% more memory operations than C programs
performing equivalent tasks (37.5% versus 26.1%).
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 5 4 5 4 8 3 7 5 5
CONGRESS 8 9 9 8 9 8 12 8 8
DOC 20 32 29 26 32 21 21 25 32
DUMP 21 11 13 18 16 15 19 15 16
GROFF-1 5 5 5 5 5 5 5 5 5
GROFF-2 5 5 4 5 4 5 5 4 4
IDRAW 9 8 8 9 8 9 7 9 8
MORPHER 6 11 10 12 11 7 10 10 10
RT 1 1 0 1 1 0 2 1 1
RTSH 5 5 4 4 5 5 3 4 5

DITROFF-1 3 0 3 3 0 3 9 3 3
DITROFF-2 3 0 3 1 0 3 0 3 3
XDVI 2 0 2 3 0 2 3 2 2
XFIG 3 0 3 3 0 3 3 3 3
XTEX 5 0 5 6 0 5 7 5 5
026.COMPRESS 0 0 0 1 0 0 2 0 0
008.ESPRESSO 4 0 4 4 0 4 8 4 4
023.EQNTOTT 0 0 0 0 0 0 0 1 0
022.LI 41605 0 41639 41634 0 41605 41609 41607 41605
072.SC 1 0 1 1 0 1 3 1 1
085.GCC 3 0 3 2 0 3 2 3 3

DHRYSTONE2 1 0 1 1 0 1 0 1 1
IDL 4 1 3 3 0 4 4 4 4
C++ Mean 8.9 9.6 9.2 9.7 10.5 8.1 9.6 9.1 9.9
C Mean 2.3 0.0 2.3 2.4 0.0 2.3 3.6 2.4 2.3
C++ w/o cfront 9.4 10.3 9.7 10.4 10.8 8.8 9.9 9.6 10.6

Table 12: Variance (75% Quantile � 25% Quantile) Call Stack Depth. 022.LI is not included in the mean
because it is an extreme outlier.

We also see from the tables a higher fraction of memory operations in methods rather than non-methods,
and in functions called indirectly rather than directly. We feel that these results may be explained in several
ways. The most significant contribution to the high rate of memory operations is probably due to register
saves and restores across function calls. We have already seen that C++ has a much deeper call stack with
more variance than C and these characteristics are likely to result in many more register saves and restores.
This reason would also explain why the increased percentages of loads and stores observed in C++ are
roughly equal (i.e., 5.9% more loads and 4.5% more stores). Further additional loads may occur due to the
use of virtual functions, because functions called indirectly require additional memory references to load
the function address from the object’s dispatch table.

4.6 Dynamic Storage Allocation

In this section, we investigate the dynamic storage allocation performed by each of the test programs.
Table 15 records the number allocations and deallocations as well as the distribution of the size of objects
allocated. In previous work [18], we showed that memory allocation is a time consuming operation that is
easy to optimize, resulting in 5–15% performance improvements.

The table shows the absolute number of allocations (calls to malloc) and deallocations (calls to free)
performed by each test program, as well as the number of instructions between allocations or deallocations;
this metric is commonly used when modeling memory allocation algorithms [56]. The table also shows the
mean and median object size for each of the test programs.
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Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 20.4 20.3 19.6 20.7 22.5 18.9 19.1 20.3 20.3
CONGRESS 16.9 20.7 20.2 19.5 21.0 17.0 18.9 19.9 19.8
DOC 17.7 24.0 23.3 23.6 24.0 18.9 25.1 20.4 23.4
DUMP 21.3 22.4 19.9 23.6 21.9 21.7 23.9 21.6 21.7
GROFF-1 19.1 22.5 21.1 22.1 23.2 19.6 22.5 21.5 21.6
GROFF-2 18.2 22.7 21.6 22.4 23.6 19.4 22.1 22.1 22.1
IDRAW 17.9 23.3 18.7 25.4 23.9 19.3 29.2 19.9 22.1
MORPHER 16.5 26.4 19.8 25.7 25.5 18.8 29.2 19.7 22.5
RT 21.1 23.4 18.3 25.4 25.5 19.6 26.4 22.3 22.7
RTSH 11.0 33.8 30.8 29.1 33.8 11.0 30.2 29.9 30.0

DITROFF-1 18.8 18.8 18.7 18.8 16.4 18.8 18.8
DITROFF-2 19.1 20.3 18.2 19.1 15.1 19.1 19.1
XDVI 17.3 17.9 14.5 17.3 19.1 17.3 17.3
XFIG 18.4 17.9 19.5 18.4 21.3 18.3 18.4
XTEX 17.5 17.6 17.4 17.5 23.0 17.4 17.5
026.COMPRESS 17.3 19.3 16.6 17.3 17.0 17.3 17.3
008.ESPRESSO 17.9 16.4 19.5 17.9 24.5 17.9 17.9
023.EQNTOTT 14.6 14.6 15.5 14.6 14.3 17.6 14.6
022.LI 21.8 21.8 21.9 21.8 14.9 21.9 21.8
072.SC 19.2 17.6 20.1 19.2 18.5 19.2 19.2
085.GCC 18.7 22.3 17.4 18.7 23.1 18.7 18.7

DHRYSTONE2 24.5 26.8 21.5 24.5 15.9 24.5 24.5
IDL 28.9 9.8 26.1 30.4 28.9 28.5 29.9 28.9
C++ Mean 17.9 24.1 21.3 23.9 24.6 18.3 24.9 21.8 22.7
C Mean 18.2 0.0 18.5 18.1 0.0 18.2 19.1 18.5 18.2
C++ w/o cfront 17.6 24.6 21.6 24.3 24.9 18.2 25.7 21.9 23.0

Table 13: Percent of Loads

Program C C++ Term N-Term Meth N-Meth Indirect Direct All

CFRONT 14.1 11.3 13.6 11.2 13.1 11.1 20.6 11.9 11.9
CONGRESS 11.4 12.5 10.1 14.1 12.9 10.7 11.0 12.3 12.3
DOC 9.4 10.9 12.6 8.6 10.9 9.3 9.4 13.2 10.7
DUMP 12.2 15.1 10.9 15.8 15.6 12.6 13.6 13.3 13.3
GROFF-1 10.2 11.2 11.0 10.9 11.7 9.9 10.8 11.0 10.9
GROFF-2 8.4 11.8 11.4 11.2 12.5 9.4 10.5 11.4 11.3
IDRAW 16.1 13.4 11.8 16.0 11.8 17.6 15.4 13.5 14.0
MORPHER 8.0 13.4 9.9 12.9 13.2 8.9 15.1 9.7 11.3
RT 10.8 16.2 6.3 19.5 20.4 8.0 21.0 13.9 14.5
RTSH 9.0 15.8 13.7 15.7 15.8 9.0 20.1 13.5 14.7

DITROFF-1 8.8 8.5 8.9 8.8 13.6 8.7 8.8
DITROFF-2 9.2 9.3 9.2 9.2 13.5 9.2 9.2
XDVI 7.3 7.2 7.8 7.3 11.1 7.3 7.3
XFIG 7.8 7.3 9.1 7.8 8.2 7.8 7.8
XTEX 8.1 8.1 7.8 8.1 7.0 8.1 8.1
026.COMPRESS 8.0 13.9 5.7 8.0 20.8 8.0 8.0
008.ESPRESSO 4.2 5.5 2.9 4.2 4.2 4.2
023.EQNTOTT 0.8 0.6 3.8 0.8 7.6 0.8
022.LI 13.0 12.4 13.6 13.0 14.3 13.0 13.0
072.SC 9.0 4.9 11.0 9.0 16.4 8.9 9.0
085.GCC 11.9 16.6 10.2 11.9 11.1 11.9 11.9

DHRYSTONE2 11.2 7.8 15.5 11.2 21.0 11.2 11.2
IDL 10.6 9.8 8.1 12.0 10.6 10.4 11.2 10.6
C++ Mean 11.2 13.4 11.1 13.9 14.0 10.8 15.2 12.5 12.6
C Mean 7.9 0.0 8.6 8.1 0.0 7.9 10.2 8.6 7.9
C++ w/o cfront 10.8 13.6 10.8 14.2 14.1 10.7 14.5 12.6 12.7

Table 14: Percent of Stores
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Number of Alloc Size
Program Allocs Frees Mean Median Insns/Allocs Insns/Frees

CFRONT 4461.0 1860.0 65.8 16.0 2577.5 6180.6
CONGRESS 316375.0 295317.0 45.6 28.0 482.5 516.9
DOC 71633.0 49646.0 197.9 48.0 5677.2 8191.5
DUMP 37159.0 26580.0 86.7 20.0 2898.1 4051.6
GROFF-1 22396.0 8439.0 46.8 24.0 2072.5 5500.1
GROFF-2 36298.0 21817.0 45.7 24.0 2312.4 3847.3
IDRAW 46033.0 33695.0 68.7 20.0 4017.3 5488.4
MORPHER 15026.0 11121.0 48.7 28.0 3469.4 4687.7
RT 6058.0 3790.0 192.1 20.0 31814.8 50853.4
RTSH 1218519.0 1404348.0 15.9 10.0 674.6 585.4

DITROFF-1 2.0 2.0 4110.0 28.0 26343415.5 26343415.5
DITROFF-2 2.0 2.0 4110.0 28.0 55038061.5 55038061.5
XDVI 840.0 224.0 591.8 16.0 20715.7 77683.7
XFIG 3447.0 1278.0 87.9 16.0 6556.5 17684.1
XTEX 2625.0 901.0 292.9 16.0 8342.2 24304.5
026.COMPRESS 3.0 2.0 5464.0 8192.0 47172628.0 47172628.0
008.ESPRESSO 190252.0 190250.0 79.9 28.0 3179.0 3179.0
023.EQNTOTT 86.0 1.0 21115.0 40.0 16588048.9 1426572207.0
022.LI 30.0 2.0 2021.7 8.0 9315866.6 139737999.5
072.SC 6906.0 2421.0 39.5 40.0 142428.7 406283.6
085.GCC 1046.0 903.0 1347.8 40.0 131760.0 152625.7

DHRYSTONE2 4.0 2.0 4120.0 48.0 1590630.0 3181260.0
IDL 37702.0 1716.0 22.3 12.0 4016.2 88239.4
C++ Mean 193845.7 204609.4 85.3 23.8 5978.2 9469.9
C Mean 20523.7 19598.4 3515.1 842.4 11408026.4 165485533.4
C++ w/o cfront 217518.7 229953.1 87.7 24.8 6403.3 9881.1

Table 15: Information on Allocation and Deallocation of memory. Alloc Size shows the mean and median
size of the objects allocated in bytes.
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In the table we see that some programs, such as RTSH, deallocate memory more often than they allocate it.
As surprising as this may seem, some programs act this way due to the semantics of the Unix free operation,
which specifically allows NULL pointers to be passed to it. Some applications are not careful about what
values are passed to free, and sometimes pass NULL pointers unintentionally. These unintentional frees are
harmless from the point of view of correct execution, although they do waste machine cycles.

In the table, we again see striking differences between C and C++ programs. The C programs appear to
allocate far fewer objects than the C++ programs; the average number being an order of magnitude smaller
than that of the C++ programs. Again, we see two extreme outliers in the C programs, 026.COMPRESS and
DITROFF, that allocate only a handful of dynamic objects. These programs skew the mean of the instructions
per allocation measure; however, even if these programs are excluded it is clear that the average instructions
between allocations of the remaining programs is still significantly higher than that of the C++ programs.

While the frequency of allocation is clearly higher in C++, the relative size of allocated objects is
not as clear. The C++ mean object size is significantly smaller than the C mean, but the C mean is also
heavily influenced by programs such as 026.COMPRESS, 022.LI, and 023.EQNTOTT that allocate a few very
large objects and not many small objects. Likewise, the mean of the C medians are heavily influenced by
a few programs. Based on the specific programs, and not the mean, we see that the median object size
in C++ programs tends to be smaller than that of the C programs that also allocate many objects (e.g.,
008.ESPRESSO).

These results indicate that C++ programs allocate many more objects on the heap and those objects are
often small objects, in the range of 16 to 28 bytes in size. C programs often allocate very few heap objects
and the sizes of those objects can be quite large (e.g., 8192-byte objects used for buffered I/O).

An important conclusion to draw from this data is that efficient and correct dynamic storage allocation is
quite important in C++ programs. Also, because correct deallocation of objects is often hard (e.g., note the
extra frees in the RTSH program), C++ programs will benefit from forms of automatic storage management.
For example, the Interviews library (used by DOC, IDRAW, and MORPHER) provides automatic reference
counting for all Interviews objects. Conservative garbage collection algorithms have also been shown to be
effective for C and C++ programs [12, 55].

One interesting question that arises is why there is so much more heap allocation in C++ programs. There
are undoubtedly many reasons, but we summarize some possibilities here1. Perhaps the most important
reason is that object-oriented languages stress the creation of reusable components, which often return
heap-allocated objects as a result. While this kind of interface results in higher memory-usage, it reduces
the complexity of the interface because the lifetime of the objects created are not constrained. Trade-offs
between flexibility and memory efficiency have changed dramatically since C was first being used (and
many of the existing C libraries were written). Another important reason for differences may be historical.
C programs were originally constrained to execute in a very small address space and stack allocation was
very important in that environment. C++ is a newer language and machines no longer have the tight memory
constraints that machines in the 1970’s had. Furthermore, C++ programmers include C programmers, but
also include Lisp, Smalltalk, and other programmers of languages in which heap-allocation is very common.
Another important difference between C and C++ is the support the languages provide for heap-allocation.
Whereas in C, you are provided with a simple library interface, C++ supports allocation and deallocation
with both syntactic and semantic conveniences such as constructors, destructors, new, and delete.

1We would like to thank David Ungar, Eliot Moss, John Ellis, and Mario Wolczko for their thoughts on this matter.
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Program 4K 8K 16K 32K 64K 128K

CFRONT 9.15 6.22 4.10 2.04 0.99 0.59
CONGRESS 6.37 4.16 2.01 1.27 0.68 0.09
DOC 3.69 2.82 1.85 1.49 1.24 0.16
DUMP 8.01 6.31 3.84 2.06 0.96 0.53
GROFF-1 6.84 4.50 2.10 1.04 0.70 0.39
GROFF-2 7.58 4.81 2.95 1.49 0.86 0.16
IDRAW 5.60 3.95 2.19 1.13 0.65 0.40
MORPHER 4.14 2.88 1.89 1.02 0.45 0.22
RT 2.74 2.17 1.17 0.42 0.18 0.05
RTSH 4.92 3.93 3.16 1.24 0.81 0.02

DITROFF-1 8.27 3.08 1.55 0.62 0.12 0.00
DITROFF-2 7.79 3.79 2.20 0.92 0.25 0.00
XDVI 1.10 0.70 0.20 0.15 0.10 0.04
XFIG 1.93 1.33 0.79 0.48 0.30 0.16
XTEX 1.34 0.76 0.44 0.31 0.20 0.10
026.COMPRESS 0.00 0.00 0.00 0.00 0.00 0.00
008.ESPRESSO 0.45 0.21 0.06 0.02 0.01 0.00
023.EQNTOTT 0.24 0.00 0.00 0.00 0.00 0.00
022.LI 3.14 1.22 0.91 0.51 0.00 0.00
072.SC 1.54 1.00 0.33 0.11 0.01 0.00
085.GCC 5.77 3.58 2.19 1.09 0.65 0.32

DHRYSTONE2 0.12 0.01 0.01 0.01 0.01 0.01
IDL 9.32 2.55 0.47 0.32 0.13 0.04
C++ Avg 5.76 4.12 2.53 1.33 0.75 0.26
C Avg 2.35 1.22 0.68 0.34 0.15 0.06
C++ w/o cfront 5.34 3.86 2.33 1.24 0.72 0.22

Table 16: Miss rates (%) for direct mapped instruction cache

4.7 Cache Performance

In this section we investigate the instruction and data cache miss rates of the different test programs. In
all cases, we discuss the miss rates in direct-mapped caches ranging from 4 kilobytes to 128 kilobytes in
size. Because we used Tycho, an all-associativity cache simulator, we also measured caches with multi-way
associativity. The results of caches with greater associativity mirror those in direct-mapped cache and we
do not present those results.

4.7.1 Instruction Cache

The instruction (I) cache miss rate is a measure of the locality of reference of instruction fetches in a
program. Table 16 shows the instruction cache miss rates of the test programs in caches of different sizes.
The tables clearly show that the I-cache miss rate of C programs is usually significantly lower than that of
C++ programs for caches of all sizes. Based on the C and C++ means in the table, C++ programs require
I-caches that are approximately four times larger than C programs to achieve similar miss rates. Because
the text size of the executable is likely to affect the cache miss rate, one might surmise that the increase
in I-cache miss rate is correlated with the size of the executable. In fact, of the C programs with large
executables (1 megabyte or greater: includes DITROFF, XDVI, XTEX, and XFIG), only one (DITROFF) has an
I-cache miss rate near the average C++ miss rate. Srivastava [43] showed that C++ programs tend to contain
a considerable number of unreachable functions. This is caused by the language semantics and software
development environment. Each subclass that redefines a method must provide the body of that method in
the final program, unless it can be determined that the method will never be called. This information can
only be determined during program linking, and link-time optimizations are not commonly implemented.
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Program 4K 8K 16K 32K 64K 128K

CFRONT 10.81 6.77 4.08 2.37 1.54 1.01
CONGRESS 6.53 4.14 2.82 1.48 0.99 0.67
DOC 5.70 3.93 2.62 1.55 1.18 0.75
DUMP 4.29 2.43 1.41 0.94 0.71 0.55
GROFF-1 6.84 4.50 2.10 1.04 0.70 0.39
GROFF-2 8.82 6.35 2.52 1.50 0.71 0.39
IDRAW 6.63 4.39 2.73 1.96 1.04 0.43
MORPHER 5.17 2.94 1.89 1.22 0.87 0.38
RT 3.40 2.27 1.34 0.83 0.59 0.49
RTSH 5.85 3.70 1.81 1.23 0.97 0.13

DITROFF-1 5.12 2.88 1.25 0.08 0.01 0.01
DITROFF-2 3.89 3.18 2.38 0.07 0.00 0.00
XDVI 2.13 1.15 0.82 0.66 0.42 0.26
XFIG 3.76 2.33 1.40 0.99 0.48 0.28
XTEX 3.34 2.09 1.42 0.93 0.42 0.28
026.COMPRESS 17.58 15.88 14.44 12.82 10.66 7.68
008.ESPRESSO 6.71 4.92 2.28 1.16 0.40 0.11
023.EQNTOTT 6.06 5.19 4.66 4.17 3.62 2.81
022.LI 4.97 3.01 1.88 1.31 0.91 0.34
072.SC 10.74 8.78 7.68 6.45 5.63 5.20
085.GCC 8.19 5.28 3.19 2.09 1.29 0.54

DHRYSTONE2 1.78 0.89 0.01 0.01 0.01 0.01
IDL 5.32 4.25 3.07 2.05 1.01 0.39
C++ Avg 6.24 4.00 2.33 1.43 0.95 0.53
C Avg 6.80 5.17 3.96 3.07 2.38 1.75
C++ w/o cfront 5.67 3.65 2.12 1.31 0.88 0.47

Table 17: Miss rates (%) for directed mapped data cache

Initially, we felt the differences in miss rate might be attributed to sampling error. Programs that execute
for short periods of time suffer a disproportionate number of cold start cache misses. However, examining
programs that execute for similar durations dispels this hypothesis. For example, comparing Table 3 and
Table 16 shows that C programs that execute for a comparable number of instructions as C++ programs
have lower miss rates (e.g., compare XDVI, XFIG and DITROFF-1 with CFRONT, GROFF-1 and MORPHER).

A likely cause of the poor miss rates in C++ is the increased use of functional composition to perform
complex tasks; we have seen indications of this behavior in other data we have collected. Instead of
executing large monolithic functions to perform a task, as is often the case in C programs, C++ programs
tend to perform many calls to small functions. Thus, C++ programs benefit less from the spatial locality of
larger cache blocks, and suffer more from function call overhead. Note that this occurs even for applications
performing similar functions. For example, Table 16 shows that GROFF has a larger miss rate than DITROFF,
even though Table 3 shows that GROFF executes fewer instructions to accomplish the same task.

In fact, we feel the smaller function size of C++ programs, shown in Table 4.1, causes much of the
instruction cache miss rates. Instruction caches sizes range from 4Kb to 2Mb. Within a particular function,
it is unlikely that instruction references conflict for cache locations. By comparison, programs containing
many small functions, such as C++, may suffer more from instruction cache conflicts; for example, two
mutually recursive functions may be aligned to the same memory cache addresses and constantly displace
each other from the cache. Because C programs have larger functions, more work is done within a particular
function, leading to fewer conflicts.

4.7.2 Data Cache
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The data (D) cache miss rate is a measure of the locality of reference of a program’s access to data in
the stack, static data segment, and heap. Table 17 shows the data cache miss rates of the test programs in
caches of different sizes. In the data cache miss rates, we see much less differentiation between the C and
C++ programs. In small caches, the differences are negligible, while in large caches C programs appear to
have a higher miss rate (but see below). While the averages are quite similar, there are notable differences
between the C and C++ programs. First, it is important to note that two C programs, 026.COMPRESS and
072.SC, are significant outliers that strongly influence the mean, especially in the cases of larger caches.
If those programs are not included in the C mean, the C mean miss rate in a 128-kilobyte cache drops to
0.58%, which is close to the C++ mean (0.53%). Probably the most important difference between C and
C++ programs illustrated by the table is that there is a much higher variance in the data cache miss rate of the
C applications (ranging from 2.13% to 17.58% in a 4-kilobyte cache) than there is in the C++ applications,
where the miss rates range from 3.40% to 10.81% in the same size cache.

The applications based on the InterViews library commonly use reference counting to simplify the reuse
of specific object instances. For example, the DOC application is a document editor. The editor representation
of the word “foo” is two instances of information concerning specific letters (‘f’ and ‘o’) structured as a
linked list of three elements (forming ‘f’-‘o’-‘o’). This sharing reduces the amount of data needed, possibly
reducing the data cache miss rates. While other programs can employ the same mechanism, the object
oriented languages simplify such bookkeeping. Based on the lack of a significant difference between the
C and C++ means, it seems that the increased use of heap-allocated data in C++ appears not to result in a
significant increase in the data cache miss rate.

4.8 Comments on the Dhrystone 2 Benchmark

In all of the previous tables, we include the results of measuring the DHRYSTONE2 systems programming
benchmark. In the previous discussion we failed to mention how the DHRYSTONE2 results relate to the C and
C++ programs that we measured and we summarize the relation here. Our conclusion is that DHRYSTONE2
fails to capture the behavior of the test programs in most of the metrics we have measured. In particular, in
DHRYSTONE2: the mean number of instructions per invocation is much smaller than the C or C++ means
(37 versus 197.5 versus 46.1); the mean number of instructions per basic block is smaller than the C or C++
means (4.5 versus 4.9 versus 6.1); the mean number of instructions per conditional branch (and program
breaks) is close to that of C (6.0 versus 6.4); the median call stack depth is far smaller than in C or C++
(4 versus 10.0 versus 15.8); the variance in the call stack depth is far smaller than in C or C++ (1 versus
2.3 versus 9.9); more loads and stores are executed (35.7%) than in the C programs (26.1%) (although the
DHRYSTONE2 mean is close to the C++ mean of 37.5%); almost no dynamic data is allocated, which is close
in behavior to some C programs but not all; and the data and instruction cache miss rates are much lower
than in actual programs.

Based on our measurements, it appears that DHRYSTONE2 captures the conditional statement behavior
of C programs reasonably well, but fails to capture other very important aspects of program behavior such
as fraction of memory operations, call stack depth, and function size.

5 Implications

Throughout the presentation of the our measurements in the previous section, we have discussed what
we believe are the reasons behind certain behavioral differences in C and C++ programs. In section, we
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hope to synthesize this material to illustrate the implications of these differences for compiler writers and
architecture designers.

In
�
4.1, we noted that more instructions were executed in functions in the C programs we measured

than in the C++ programs. Section 4.2 showed that C++ programs had larger basic blocks than C programs.
In

�
4.3 we noted that C++ programs had fewer conditional branches, but had significantly more indirect

jumps. In
�
3.1 and

�
4.7.1, we noted that C++ programs had larger load images. In short, C++ programs

tend to have shorter procedures that are often reached via indirect function calls, resulting in deeper and
more variable call stacks.

This combination of characteristics poses several challenges and opportunities for compilers and ar-
chitects. First, procedure inlining will be more promising, but more difficult to accomplish, due to the
larger number of indirect function calls and the difficultly of interprocedural data flow analysis in C++ [38].
Other studies [11] have shown that procedure inlining is problematic; it does not always improve program
performance. However, one attribute of procedure inlining is that it removes procedure calling overhead;
this overhead is obviously a larger percentage of small procedures. Thus, automated procedure inlining
decisions will benefit C++ programs more than C programs, because inlining C++ procedures will result
in less code expansion and there are more promising candidates for inlining. The most relevant work in
this area has been done for the Self language [7, 25]. In related work we found considerable opportunity
for similar optimizations for C++ programs [5]; in particular, we found that profile-directed multi-version
procedure inlining may perform very well. Here, dynamic type checks and inlined procedures would expand
the most frequently executed methods; some of these runtime checks may be eliminated by compile time
type analysis [38]. Procedure inlining reduces calling overhead and should also reduce the number of load
and store operations.

These observations also imply that traditional intraprocedural optimizations (often called “global opti-
mizations”) will be less effective for C++ programs than for C programs because C++ subroutines contain
fewer instructions. Traditional optimizations performed within a procedure, such as global register allo-
cation, constant propagation and the like will be slightly less effective. However, these must be balanced
against the slightly larger basic blocks found in C++ programs (

�
4.2). Larger basic blocks imply that

instruction scheduling will be simpler and that the importance of conditional branch prediction will de-
crease, because the cost of mispredicted branches can be amortized over a larger number of instructions.
In addition, in related work [4], we found that C++ programs tended to have more predictable conditional
branches; that is, traditional branch prediction mechanisms are more effective for a similar set of C++
programs. In part, this occurs because C++ programs tend to have fewer branches, reducing the demands
on extant resources. The benefits of substituting fewer branches for more indirect function calls is very
dependent on the underlying architecture; in fact, other work [5] attempts to reduce the number of indirect
functions, substituting conditional branches since existing architectures provide more architectural support
for conditional branches.

Despite the presence of branches that are easier to predict and slightly larger basic blocks, we feel it is
unlikely that C++ programs will benefit more than C programs from architectures offering instruction level
parallelism [40]. These architectures schedule several instructions concurrently. In VLIW architectures, the
compiler performs the scheduling [17, 40], while in superscalar architectures, the compiler and architecture
cooperate to schedule parallel instructions [33]. To take advantage of VLIW or superscalar techniques
in C++ programs, compilers must be able to analyze the target of dynamic method dispatches. Likewise,
architectures must be able to resolve the likely target of a method dispatch as early as possible. In either case,
the compiler or architecture require predictable control flow that occurs less frequently in C++ programs
than C programs.
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In
�
4.6, we found that C++ programs are more likely than C programs to dynamically allocate many

small objects on the heap. This implies that improvements to memory allocation, such as customizing
the memory allocator for the application [18], will be more effective for C++ programs. The negligible
difference in data cache performance shown in

�
4.7.2 implies that specific C++ optimizations for data cache

locality are not necessary. By comparison, optimizations for instruction caches [35, 37] and possibly virtual
memory systems [1, 3, 16, 20, 21] will be more important for C++ programs than for C programs.

One of the most notable observations from the programs we instrumented is that C++ programs have
deeper call stacks, with more variation in the call depth stack depth, than C programs. Procedure activation
and calling conventions are at the core of many architectural optimizations; for example, the Berkeley
RISC architecture proposed using rotating register windows, in part because that project relied on compiler
implementations that, although dated, were in wide use at the time. Later research [51, 47] indicated that
register windows were less advantageous when more sophisticated compile or link-time analysis could be
performed.

Initially, we felt that register windows would benefit C++ programs more than C programs, because
the complexity of interprocedural analysis in the presence of indirect function calls would reduce the
effectiveness of link-time optimizations [52, 44]. However, register window underflow and overflow are the
bane of register window implementations. When there are no more windows to allocate, existing windows
must be flushed; likewise, windows may need to be loaded from memory. Overflows and underflows
occur more frequently as the variance of the call stack depth increases; the actual impact on a particular
configuration depends on myriad options, such as the number of register windows, the spill policy and
the fill policy. Space limitations preclude pursuing this subject in more detail, but this is a topic of future
research. We feel that the ‘erratic’ behavior of C++ programs, coupled with the relatively short procedures
we recorded indicates that variable sized register windows [50], offering considerable more ‘windows’
containing a variable number of registers, will be increasingly promising.

Furthermore, even in the presence of register windows, link-time optimizations, such as those proposed
by Wall [51] and others will become more important. Object-oriented languages, such as C++, allow
programmers to extend the class hierarchy without affecting the functionality of previously compiled
procedures. This means that a programmer could use class ‘X’ and compile several modules using the
interface of class ‘X’. Some time later, class ‘Y’ could be declared as a subclass of ‘X’. The original
programs can operate on instances of class ‘X’ or class ‘Y’; yet, optimizations permitted by the use of class
‘Y’ will not be detected. In general, these optimizations can not be detected until program link time, when
all code bodies associated with a program are assembled. Only then is the complete class hierarchy visible
to the compiler, and only then can specific optimizations be considered. For example, all subclasses of class
‘X’ may inherit a particular method (say, “X::foo”). Even though there is only one method that may be
called, in the absence of information about the full class hierarchy, the compiler must encode calls to that
method using dynamic dispatch. However, a direct function call (or inlined function expansion) would be
possible, since any call to “foo” must call “X::foo”. In related work [5], we found that 31% of all indirect
function calls in similar C++ programs could be eliminating with simple link-time optimization.

In short, object-oriented languages, even those employing a modicum of object-oriented features such
as C++, will force program optimizers to perform more optimizations after the total program has been made
available, typically at link time. We feel that more link-time analysis allows C++ programs, and possibly
other statically typed object-oriented languages, to execute efficiently on architectures designed for ‘conven-
tional’ languages such as C and FORTRAN. In general, these optimizations also benefit programs written in
traditional languages, such as C or FORTRAN; however, their incremental benefit is less apparent in such
languages. By comparison, these optimizations will be essential for object-oriented languages. Not sur-
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prisingly, highly-optimizing compilers for object-oriented languages typically perform those optimizations
when the full program is available [7, 25].

Ideally, these optimizations will reduce the propensity for programmers using this emerging technology
to ‘micro-optimize’ their existing applications. For example, prior to the development of efficient register
scheduling algorithms, a number of computer languages, such as C, provided ‘hints’ to the compiler
to indicate what variables should be stored in registers [28]; often, programmer intuition is incorrect.
Similarly, we believe that the current design of languages such as C++ has been heavily influenced by the
extant compiler infrastructure; the dearth of systems using effective link-time optimizers led the language
designers to employ a series of ‘crutches’ that complicate the language design and the software engineering
process.

6 Summary

We collected and instrumented a number of programs in order to empirically quantify differences between
C and C++ programs. We measured a number of parameters interesting to compiler writers and computer
architects. Empirical studies of programs and programming languages are fraught with problems – how can
we analyze enough programs to produce meaningful results yet still manage the great quantity of generated
data.

With the caveat that the results we concluded may be dependent on the programs we measured, we feel
there are notable differences between C++ and C programs: C++ programs execute 32% fewer conditional
branches, C++ programs use approximately 23 times more indirect function calls, C++ functions are shorter
but have larger basic blocks, C++ programs tend to perform more procedure calls, C++ programs issue
10% more loads and stores than C programs, C++ programs have worse instruction cache locality and C++
programs allocate approximately 10 times more objects on the heap, and those objects are smaller than in C
programs.

We also measured the performance of the Dhrystone benchmark (version 2) and found it to be very
different in many ways than either the C or C++ programs.

Based on our measurements, we expect the following optimization or architectural features to per-
form worse in C++ than they do in C: local optimization (i.e., non-interprocedural), fixed-sized register
windows, interprocedural analysis (call chains are deeper and more indirect calls are made), and efficient
implementations of dynamic storage allocation.

Based on our measurements, we believe the following new approaches to optimizations or architectures
could be successful in improving C++ program performance: better interprocedural register allocation
techniques (to minimize register save/restore traffic), increased support for for indirect call prediction, and
support for automatic dynamic storage allocation (or garbage collection).
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