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As the concentrating solar power industry competes to develop a less-expensive parabolic

trough collector, assurance is needed that new parabolic trough collectors maintain accurate optical

alignment. Previous optical characterization techniques are either too slow, ill-suited for field

testing, or do not allow the collector to be tested in realistic orientations. The Observer method

presented here enables the rapid optical characterization of parabolic trough collectors in any

orientation in the field.

The Observer method directly measures the combined optical angular errors in the reflector

surface shape and the absorber position, which can be separated into its two components: reflector

surface slope and absorber misalignment. The data acquisition requires the placement of pho-

togrammetry targets on and around the collector. Multiple photographs of the absorber and its

reflection are taken with a digital camera from different angles with respect to the collector. The

images are processed to determine the camera location of each image using photogrammetry bun-

dle analysis. The absorber and its reflection are found in the photographs using image-processing

techniques.

A Monte Carlo uncertainty model was developed to determine the uncertainty in the Observer

measurements. The uncertainty was estimated for a wide array of measurement test scenarios to

demonstrate the user’s control over the measurement uncertainty. To validate the Observer method,

the absorber alignment technique was compared to traditional photogrammetry; the absorber posi-

tion measured with the two methods compared with a root-mean-square difference of 1.5 mm in the

transverse direction and 0.86 mm along the optical axis. The reflector surface slope error measure-

ment was compared to both VSHOT and SOFAST, two well-established optical characterization



iv

tools, by measuring a single reflector panel in the laboratory. The VSHOT and SOFAST mea-

surements agreed with the Observer with a root-mean-square difference of 1.6 mrad and 2.1 mrad,

respectively. In the field, the Observer method’s capability to test collectors in any orientation was

demonstrated by mounting the camera on a radio-controlled helicopter and measuring a collector

oriented at 90◦ above the horizon. The absorber measurement capability was demonstrated in the

field for a collector facing both horizontally and vertically.
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Chapter 1

Introduction

The development of renewable energy sources around the world has soared over the last

decade in response to evidence linking climate change with the burning of fossil fuels. As the price

of photovoltaics (PV) continues to drop, the concentrating solar power (CSP) industry is striving to

achieve major cost reductions to be competitive with PV. By capturing solar thermal energy instead

of solar electric energy as PV does, CSP lends itself to efficient, less expensive thermal storage.

Therefore, CSP is often attractive to utility companies looking to shift solar energy production in

the afternoon to provide electricity during the evening hours. The parabolic trough is one type of

CSP technology that has been operating in the Mojave Desert since the 1980s.

A parabolic trough collector has a parabolic-shaped reflector that concentrates solar energy

onto a cylindrical receiver absorber located at the parabola’s focal line. In the last decade, many

companies have been developing new parabolic trough designs and building utility-scale parabolic

trough power plants in the United States. The construction of a parabolic trough power plant

represents a significant investment because the majority of the cost is paid up front. However,

the fuel itself, solar energy, is free. Investors and utilities want assurances that the trough will

perform as advertised. As companies strive to reduce material, construction, and installation costs

of their parabolic trough collectors, performance losses associated with those cost reductions would

greatly impact the levelized cost of electricity. Thus, it is essential that parabolic trough collectors

maintain high efficiencies in spite of cost reductions.

As one aspect of the collector performance, the solar intercept factor provides a metric for the
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geometric alignment of a parabolic trough. An efficient parabolic trough must have a reflector that

conforms closely to an ideal parabola with the receiver absorber located at its focal line. The surface

profile of the reflector and the alignment of the absorber, which both contribute to the intercept

factor, can be difficult to measure especially after installation in the field, due to the large scale and

the uncontrolled field environment. However, the conformation of these components to design is

often highly dependent on the installation process so that the conformation cannot necessarily be

measured in the laboratory and assumed applicable for field installations. Therefore, it is essential

for the parabolic trough industry to have access to a tool capable of measuring the reflector surface

profile and absorber alignment because of the affect of optical alignment on the intercept factor.

The Distant Observer technique originally outlined by Wood in 1981 [41] as a qualitative

analysis has been adapted and developed into a quantitative analysis presented herein as the Ob-

server method. The Observer method provides the means to measure the optical alignment of a

parabolic trough solar collector in the field. The research presented here demonstrates the ability

to measure both the reflector surface profile and the absorber alignment independently, as well as

the combined effects of both. The method is flexible enough to be used for both high-accuracy

research and development applications, as well as lower-accuracy multi-collector surveys. Using a

radio-controlled helicopter platform, the collector can be tested in any orientation, thus providing

the means to perform a gravity-loading analysis on the collector optical alignment.
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Background

2.1 Parabolic Trough Solar Collector

A parabolic trough is a type of concentrating solar thermal technology. Concentrating solar

power (CSP) uses a reflector to focus direct-normal solar radiation onto a receiver. The conventional

solar trough tracks the sun during the day by rotating about a single axis. Typical collectors track

the sun from east to west by rotating about a north-south axis. A reflective surface formed in the

shape of a parabola focuses solar rays onto a cylindrical receiver located at the focal line. The

receiver comprises an absorber tube surrounded by a glass envelope. A vacuum is drawn in the

annulus between these two tubes to minimize heat losses to the environment.

Figure 2.1: Parabolic trough cross-section Figure 2.2: Receiver cross-section (enlarged)

A heat transfer fluid (HTF), typically oil, is pumped through the absorber tube and heated

by the sun’s concentrated energy. The heated HTF is then used to either produce electricity with
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a typical Rankine steam turbine power cycle or provide direct heat for industrial processes or hot

water. For electricity generation, the HTF is heated to over 350◦C. The main attraction of CSP is

its high compatibility with thermal storage. Plants without storage tanks inherently have about 30

minutes of built-in storage due to the thermal mass of the system. New plants are being designed

with six or more hours of thermal storage to extend electricity production into evening peak hours.

2.1.1 Parabolic Trough Design

The base unit of a parabolic trough field is a solar collector assembly (SCA). An SCA com-

prises parabolic trough modules (usually 6-12); each module is designed with a complete stand-alone

frame. The modules are mounted together and controlled by the same tracking drive. Multiple

SCAs are then connected in series to form an entire row along which fluid is pumped. The classic

parabolic trough design can be seen in the Luz LS-2 and LS-3 collectors, whose dimensions are

specified in Table 2.1 The reflector consists of four curved glass mirror sections across the aperture

and five (seven) mirror sections along the length for the LS-2 (LS-3) design. Each mirror panel

has four mounting points on the back that attach to the frame. Figure 2.3 shows an LS-3 module

during assembly. Two of the mirror panels, as well as the receiver and supports, have not yet been

installed.

Figure 2.3: Luz LS-3 collector module under construction
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Table 2.1: Dimensions of Luz LS-2 and LS-3 [10]

Type LS-2 LS-3

Aperture width (wap) 5 m 5.76 m
Length (lc) 7.89 m 11.9 m

Focal length (f) 1.49 m 1.71 m
Absorber diameter (Da) 70 mm 70 mm

2.1.2 Parabolic Trough Power Plant

In a typical parabolic trough power plant with thermal storage, an oil HTF is pumped

through the solar trough field to be heated by the sun. Some of the oil is used to create steam,

which runs a steam turbine and produces electricity. The remaining oil is run through a heat

exchanger with a molten salt HTF that is being moved from a cold tank to a hot tank. After the

sun goes down, molten salt is moved from the hot to cold tank, exchanging heat with the oil along

the way. The oil is used to produce more steam to continue electricity production after the sun

goes down. Figure 2.4 shows a schematic of a typical parabolic trough power plant with two-tank

Figure 2.4: Parabolic trough power plant schematic [16]

thermal storage. Alternatives on this model are currently under development. One alternative is

to use molten salt directly in the field; however, molten salt has a high freezing point requiring a

robust freeze-protection system. Other alternatives include different thermal storage media.
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2.1.3 Operating Parabolic Trough Facilities

The Solar Energy Generating Systems (SEGS) were constructed in California’s Mojave Desert

during the 1980s. The facilities comprise nine individual parabolic trough power plants with a

total installed capacity of 354 megawatts (MW). The SEGS plants are still operational and provide

electricity to the grid. After the completion of the SEGS plants, there was a 15-year period during

which no CSP plants were constructed in the United States. This was due to both natural gas

prices declining and the government tax incentives for electricity produced from solar power not

being renewed. In 2006, Arizona Public Services completed a 1-MW parabolic trough installation

in Saguaro, AZ. The Saguaro power plant runs on an organic Rankine cycle, rather than the

traditional Rankine-steam cycle used in the SEGS plants. In 2007, Nevada Solar One, a 64-MW

plant, began operation in Boulder City, NV. Abengoa Solar’s 280-MW Solana plant is currently

under construction. Additional plants are operational or under development around the world,

including dozens of plants in Spain [35].

2.1.4 Solar Resource

As sunlight travels through the earth’s atmosphere, some of it reaches the earth’s surface

directly (direct-normal [or beam] radiation), and the rest of it (diffuse radiation) is absorbed,

scattered, and reflected by particles in the atmosphere. The sum of beam and diffuse radiation is

called the total global solar radiation. CSP technologies use direct-normal solar radiation and are

thus only practical in regions with high values thereof. Land with an annual average of at least 6.75

kWh/m2/day is considered to have high economic potential for CSP [21]. In the United States,

this level of direct-normal solar resource is found exclusively in the southwest (Fig. 2.5).

2.2 Performance

The efficiency of a concentrating solar collector varies with the level of direct-normal solar

radiation and the absorber temperature. However, due to the difficulty in measuring the absorber



7

Figure 2.5: Direct-normal solar resource in the southwestern United States [21]

temperature directly, the efficiency is usually expressed as a function of the heat transfer fluid

temperature (Thtf) minus the ambient temperature at which the receiver was tested, as shown in

Fig. 2.6 [20]. The y-intercept of the efficiency curves in Fig. 2.6 is the optical efficiency (ηo) at

Figure 2.6: Parabolic trough efficiency curve for different levels of direct-normal solar radiation [20]

normal incidence, which occurs when there are no heat losses. The optical efficiency at normal

incidence is the product of the intercept factor, γ, mirror reflectance, ρ, glass transmittance, τ , and
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absorber absorptance, α:

ηo = γρτα (2.1)

The reflectance, transmittance, and absorptance are material properties that can be measured in

a laboratory. However, the intercept factor is a geometric quantity that characterizes the total

geometric accuracy of the system and is defined as the fraction of solar energy reflected off the

concentrator that is intercepted by the absorber tube with perfect transmittance through the glass

envelope. The intercept factor depends on the reflector surface profile, absorber alignment, tracking

error, mirror specularity, and the sun shape.

2.2.1 Reflector Surface Profile

The reflector surface profile is usually referred to as the reflector slope and indicates how well

the concentrator conforms to an ideal parabola. It is common for solar mirrors to exhibit some

degree of aberrations on a scale larger than the roughness or specularity of the mirror surface [19].

Mirror aberrations consist of striations created during the reflector manufacturing process, as well

as warping imposed when the mirror is bonded to another material and any other distortions that

cause the reflector to focus at a location other than the design focal line. Reflector surface slope

errors may also appear on a larger scale if segmented reflectors are not well aligned relative to one

another. Figure 2.7 shows exaggerated reflector slope errors. Reflector slope errors may change

with the orientation of the collector due to changing gravity loads. Thus, it is important to specify

the orientation in which the reflector slope errors are measured. Ideally, reflector slope errors should

be measured with the collector positioned straight up because the most energy is collected around

this orientation.

Figure 2.7: Exaggerated reflector slope errors shown in red with the ideal parabolic shape in black
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2.2.2 Absorber Alignment

The absorber alignment describes how close the center of the absorber is to the focal line of

the parabolic concentrator. Figure 2.8 shows a misaligned absorber. Receivers are typically about

four meters long, supported at their ends by tube supports extending from the vertex of the trough.

It is common for the absorber to sag from the weight of the heat transfer fluid. As with reflector

alignment, absorber alignment is also dependent on the collector orientation. Absorbers may be

more inclined to sag in a particular direction, causing increased errors at certain times of the day.

Figure 2.8: Absorber misalignment and associated missing reflected rays

2.2.3 Tracking Error

The tracking error refers to the difference between the sun’s position and the direction that

the trough is pointing. Typical tracking algorithms adjust the trough’s position incrementally by

overshooting the sun’s position by a couple milliradians and then waiting until the sun has passed

the position at which the trough is pointing before moving again (see Fig. 2.10). Solar trackers

are designed to maintain the difference between the trough and solar positions small enough that

solar energy is not missing the absorber; however, over time, tracking accuracy may decrease.

Additionally, tracking twist may occur because several modules are rotated with a single drive

mechanism. Those modules immediately next to the drive may be tracking more accurately than

those located further away from the drive.
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Figure 2.9: Exaggerated tracking error Figure 2.10: Typical tracking algorithm

2.2.4 Reflector Specularity

A perfectly specular mirror would reflect an incoming ray as a single reflected ray. Reflection

from a real mirror results in a reflected ray that is distributed across a specified cone angle. A

Gaussian distribution is typically used to represent the intensity distribution of a reflected ray due

to non-perfect reflector specularity. Figure 2.11 illustrates the concept of reflector specularity.

Figure 2.11: The concept of reflector specularity

2.2.5 Sunshape

The sun is not a point source of energy; its intensity is distributed across a finite cone angle.

As sunlight travels through the earth’s atmosphere, interactions with large particles cause forward

scattering that forms the solar aureole (the circumsolar region). Figure 2.12 illustrates the solar
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disk and solar aureole. The average solar intensity distribution as a function of the angle of the

rays measured by Neumann et al. [24] is shown in Fig. 2.13.

Figure 2.12: The solar disk and solar aureole Figure 2.13: Averaged solar profiles [24]



Chapter 3

Purpose

In this chapter, I will present my research objectives and provide an overview of the method

selected to achieve those objectives. I will then supply the motivation for this work, including the

inadequacies of current optical characterization techniques for parabolic trough collectors, as well

as the recent surge in industry growth and the direct link between optical performance and levelized

cost of electricity. Finally, I will present an overview of likely uses for the presented method.

3.1 Research Objectives

The objective of this research is to develop the capability to characterize the optical alignment

of a parabolic trough collector in the field, under normal operating conditions, and on a reasonable

time scale. The optical alignment comprises both the absorber position and the reflector surface

slope. The objective is to determine the individual contributing errors due to absorber misalignment

and reflector slope, as well as the combined effect on the collector intercept factor. Testing in

the field requires transportability of the test equipment, as well as flexibility of the method for

uncontrolled outdoor lighting conditions. Normal operating conditions mean that the collectors can

be measured in any orientation that is at least 10◦ above the horizon. Finally, the measurement

must be fast enough to provide real-time results to support the research and development of new

collector designs; measuring a single collector in less than an hour including setup time is desireable.
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3.2 The Observer Method

The Observer method, first outlined by Wood as the Distant Observer in 1981 [41], was

selected as the most promising means to test the optical performance of parabolic trough solar

collectors in the field. In this method, a series of digital photographs is taken with a camera oriented

at different angles with respect to the optical axis of the collector. By analyzing the reflected image

of the absorber, the combined reflector slope errors and absorber alignment errors can be quantified.

The absorber position will be measured using a triangulation technique specifically developed to

complement the Observer method. Once the absorber position is known, the reflector slope errors

can be separated from the absorber alignment errors. This method requires minimal equipment and

time. An aerial vantage point allows the collector to be tested in any orientation. This technique

aims to replace slower, more expensive tools that are ill-suited for outdoor testing.

3.3 Motivation

3.3.1 Inadequacies of Previous Techniques

Previous methods for characterization of the collector optical alignment are too slow, ill-suited

for field testing, or limit the collector orientation during testing. Previous techniques focus almost

exclusively on measuring the reflector surface slope error while ignoring the equal importance of

absorber alignment. There is no prior practical measurement technique for measuring the absorber

alignment with the collector positioned in any orientation. Table 3.1 summarizes some currently

available parabolic trough optical alignment measurement tools and their limitations. VSHOT

(Video Scanning Hartmann Optical Test) is a laser scanning tool, photogrammetry is a general

position measurement technique, SOFAST (Sandia Optical Fringe Analysis Slope Tool) is a fringe-

reflection tool, and TARMES (Trough Absorber Reflection Measurement System) is an absorber-

reflection tool.
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Table 3.1: Reflector slope error measurement tools

Tool Application Time scale Orientations Absorber Method Source

VSHOT Laboratory1 2-5 hours 0◦ Not applicable [38]

Photogrammetry Field and Lab. 1 day Any Targets on receiver [26]

SOFAST Laboratory 5 minutes 0◦ Not applicable [1]

TARMES Field 30 minutes 0◦ Laser distance meter [36]

Observer Field and Lab. 15 minutes Any Triangulation -

The state-of-the-art tool prior to the Observer is TARMES [36], which uses the reflected

absorber image similarly to the Observer. However, TARMES requires that the collector is oriented

at 0◦ facing the horizon with the camera positioned at a distance of at least 100 times the collector

focal length. Therefore, TARMES is unable to measure the optical alignment at normal operating

orientations or as a function of the collector orientation. TARMES uses a laser distance meter to

measure the absorber position, which requires multiple measurements along the absorber length

to accurately characterize absorber sag. The difficulty of positioning the laser distance meter to

measure the absorber position along the optical axis is not addressed; neither are the complications

of laser-probing a highly absorptive surface through the receiver glass. Improvements to TARMES

are currently under development in a tool called Qfly, which allows a collector to be measured in any

orientation [27]. The preliminary presentation of Qfly suggests that this technique is quite similar to

the Observer method presented here; however, the lack of substantive information published about

Qfly prohibits a direct comparison. Specifically, Prahl et al. fail to mention how they measure the

absorber location or any details related to finding the camera positions or location of the absorber

reflection.

The Observer method improves on the TARMES technique in three distinct ways. First, a

robust, absorber alignment measurement technique is introduced that allows the absorber position

to be measured with the collector in any orientation using a camera. No contact is required with the

absorber or receiver glass, and the absorber position is measured along its entire length. Second, a

1 A field VSHOT tool does exist, but it is largely impractical because testing can only be performed at night, only
a column of data across the collector aperture can be taken at a time, and the field system has never been validated.

2 TOPCAT essentially only measures reflector slope error at one point on each mirror panel; all of the other tools
measure the reflector slope error at a much higher spatial resolution.
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collector can be measured in any orientation with the camera positioned as close as a few meters to

measure a single reflector panel in the laboratory, as far as 30+ m to measure multiple collectors in

the field, or anywhere in between to accommodate most testing environments. Finally, a collector

need not be rotated during the measurement. A stationary collector can be measured to ensure

that the collector shape does not change during the measurement. This allows prototype collectors

not installed with a tracking system to be measured with the Observer method.

3.3.2 Industry Development

The Observer tool aims to meet the research and development (R&D) needs of a growing

industry. After a couple decades of stagnation, the CSP industry has undergone substantial de-

velopment. In the past couple years, many projects have entered the contracting, design, and

construction phases. Parabolic trough power plants are under construction around the world in

Spain, Algeria, Morocco, Italy, Egypt, Chile, India, Italy, and the United States. Spain, in partic-

ular, has a significant number of plants operating or under development due to aggressive feed-in

tariffs. The power plants in Spain are being designed and built with at least 6 hours of thermal

storage. The next major project in the United States is the 280-MW Solana plant, which is under

development by Abengoa Solar for Arizona Public Service and is currently under construction.

CSP companies are competing to develop a new, low-cost parabolic trough collector. Inno-

vative designs include alternative reflectors and collector frames. New reflector panels are being

developed from metal, instead of glass, with special reflective coatings or highly polished surfaces.

Collector frames are being modified to reduce material and installation costs. With all of this new

development and innovation in CSP, the research and development teams need a technique to assess

the optical alignment of their parabolic trough collectors that can provide immediate feedback on

the alignment of prototype collector modules installed in the field.
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3.3.3 Economics

As the competition to produce a low-cost parabolic trough collector continues, the effect of

collector performance on the cost of electricity cannot be overemphasized. The optical intercept

factor has a significant impact on the levelized cost of electricity (LCOE). If the cost of the collector

is reduced by 10%, the LCOE decreases by about 2%; however, if the intercept factor decreases by

10%, the LCOE increases by 7%. 1 A reduction in the intercept factor directly affects the amount of

solar-thermal energy gained by the absorber. Thus, it is absolutely imperative that cost reductions

in the parabolic trough collector do not result in reductions in the optical intercept factor. The

Observer method provides the means to verify that new less-expensive collectors maintain accurate

optical alignment.

3.3.4 Applications of the Observer Tool

R&D support

Because many new collectors are being designed, industry requires a means to quickly test

prototype collectors. Current optical characterization tools are too slow or designed for indoor

measurements of single reflector panels. The Observer tool would provide a means by which

industry could test the optical alignment of full collector modules in both indoor and outdoor

environments. Testing can be performed on a time scale of 15-30 minutes per module. During the

collector development phase, the Observer can be used to measure the optical implications of

physical adjustments to the collector with real-time feedback.

Effects of gravity loading

There is little experimental work measuring the optical effects of gravity loading on parabolic

collectors. As the collector orientation changes throughout the day, the gravitational loading also

changes. The effect that orientation plays on the optical performance is of interest in improving

current trough designs and developing new designs. Because the Observer tool can measure the

1 These cost figures are based on simulations run with the System Advisor Model (SAM), a performance and
finance model for renewable energy technology developed at NREL that is publicly available [25].
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optical alignment in any orientation, a collector can be tested in multiple orientations to

determine if its optical alignment changes due to changing gravitational loads.

Installation quality control

Because many collectors are being designed to be nonadjustable, correct installation is key to

future performance. During construction of a plant, the Observer tool could be used to quickly

check a few collectors in each row after installation to ensure that everything is properly aligned.

An error found in any row could save considerable time and effort if identified and corrected

before installing additional rows. The Observer tool would provide a guarantee for all invested

parties that the collectors are being installed accurately.

Troubleshooting

At parabolic trough power plants, there are typically temperature measurement devices

monitoring the inlet and outlet temperature of the HTF to each loop in the field. If temperature

measurements indicate a drop in performance of a particular loop in the solar field, the Observer

tool would be able to quickly identify if the drop in performance were due to optical

misalignments or rule out optical misalignments as the cause.

Full-field performance evaluation

The Observer tool could be used to take sample measurements of collector optical alignment

throughout an entire solar collector field. Statistical analysis would then be used to estimate the

intercept factor for the entire solar field, providing the operators, investors, and utilities with an

accurate performance assessment.
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Previous Work

Optical testing has a long history dating back to the development of the first optical devices.

However, due to the large scale of parabolic trough collectors, only a small range of traditional op-

tical techniques can be applied. A review of traditional optical testing can be found in Appendix A.

Of the many optical testing methods, there are five main techniques currently applied to measure

the optical alignment of solar collectors: laser scanning, photogrammetry, fringe reflection, flux

measurement, and reflected-absorber image analysis.

Laser scanning takes data one point at a time and is too slow and ill-suited for field work.

Photogrammetry allows optical characterization of collectors in all orientations; however, the setup

is too time-intensive for field work. Photogrammetry also measures the reflector position instead

of the reflector slope, which is of greater interest. Fringe reflection is the fastest technique and

provides high-resolution, high-accuracy data; however, for parabolic troughs, it is ill-suited for

field testing because of the need for a large screen on which to project sinusoidal patterns. Flux

measurement attempts to measure the solar flux at the absorber, which could provide the most

accurate information; however, the size and shape of a cylindrical receiver as well as the difficulty in

accessing the absorber, limits the use of flux measurement. The work most relevant to this research

falls under the reflected-absorber image analysis category. Prior work using the reflected-absorber

image technique is described below, along with the main differences from the Observer method.

Additional information on the techniques of laser scanning, photogrammetry, fringe reflection, and

flux measurement is located in Appendix A.
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4.1 Distant Observer Method

It was first recognized in 1981 by Wood [41] that a great deal of information could be as-

certained by analyzing the reflection of the absorber in a parabolic trough concentrator. Just as

parallel rays from the sun are reflected off a parabolic trough onto the absorber, so are the lines of

sight from an observer reflected onto the absorber tube. Thus, an observer aligned with the optical

axis of the collector sees an enlarged image of the absorber on the reflective surface. Wood’s method

uses the shape of this reflected image to ascertain information about the optical performance of the

collector by introducing the concept of an acceptance window (see Section 5.1).

Wood’s method examines theoretical one-dimensional slices across the aperture of the col-

lector observed from different incidence angles with respect to the collector optical axis. Wood

proposed photographing a field of collectors from a sufficiently far distance such that the rays from

the camera could be assumed parallel. At this far distance, he proposed using an airplane to quickly

determine the overall optical alignment of a full collector field. However, the limitations of camera

resolution and the difficulty and expense involved in obtaining an aerial platform in 1981 prevented

Wood from performing any experiments at sufficiently far distances.

Wood’s observations of how the acceptance window changes based on collector optical align-

ments form the foundation for the Observer method presented here; however, his proposal to place

the observer at a far distance from the collector is unnecessary and introduces further complications.

By locating the camera (observer) close to the collector, the uncertainty in the optical alignment

measurements is minimized. The term Observer method is used to give credit to Wood’s original

idea; the term Distant is dropped to de-emphasize the idea that the observer must be located far

from the collector.

4.2 TOPCAT

Diver et al. at Sandia National Laboratories used Wood’s Distant Observer method to perform

a qualitative alignment of the mirror facets of a single LS-2 module [8]. Digital photographs of the
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collector were taken from the ground 460 meters away while washers were added to the mounting

points on each mirror to correct its alignment. The alignment was adjusted until the reflected

image of the absorber tube filled each mirror facet as fully as possible. Figure 4.1 shows the

Distant Observer image before and after alignment.

Figure 4.1: Sandia National Laboratories Distant Observer method: before alignment (left) and
after alignment (right) [8]

Diver et al. have also developed an up-close alignment tool: Theoretical Overlay Photographic

Collector Alignment Technique (TOPCAT) [8]. This method uses Wood’s theory that information

about the mirror alignment can be obtained from close-up photography of a parabolic collector.

Sandia has designed a mast on which five cameras are spaced vertically. The collector is first aimed

facing the horizon. One camera is aligned at the collector vertex and the other four cameras are each

aligned with one of the mirror facets on a classic parabolic collector. Each camera simultaneously

takes a photograph of the reflected absorber image in its respective mirror facet. The center camera

is used to produce an ideal theoretical position for the reflected absorber image in each of the four

mirrors. The other four cameras photograph the actual position of the reflected absorber image in

each mirror. A prescription is then calculated to determine how many washers should be added

to each of the mounting points to match the actual to the theoretical reflected absorber image by

tilting the mirror. The camera apparatus is mounted on a truck that can drive along the rows of

collectors to determine mirror alignment diagnostics and prescriptions for each collector.

TOPCAT assumes that the absorber is located at the focal point of the collector and attempts

to align the mirrors to the absorber. Likewise, it does not measure the slope errors across a mirror
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facet, but rather, measures the slope error at a single point on each mirror panel and asssumes a

constant slope error across each mirror panel. TOPCAT can only be used to measure alignment for

the classic segmented-mirror collector and cannot be applied to the new generation of collectors that

use a single sheet of metal across the aperture as the reflector. The collectors must be characterized

in the horizon-facing position, which is not representative of typical operating conditions.

4.3 TARMES and Qfly

Ulmer et al. at the German Aerospace Center1 (DLR) have successfully implemented a quan-

titative variation of Wood’s method to measure slope errors of parabolic troughs from the reflected

absorber image [36]. TARMES (Trough Absorber Reflection Measurement System) takes a series

of high-resolution digital photographs from the ground as the collector is rotated. The absorber

position is measured with a laser distance meter. The results provide the reflector slope errors for

a full collector and have been compared to photogrammetry results. In this method, the camera is

located on a tripod 100 focal lengths from the collector (about 150 meters for typical geometries).

The collector is then rotated about 5◦ to cover the entire acceptance angle while a series of digital

photographs is taken. Figure 4.2 shows photographs taken by DLR of the collector with the re-

flected image of the absorber visible. Ulmer et al. acknowledge that “the measurements are limited

to horizontal collector position and unobstructed line of sight from a large distance” [36].

TARMES requires a long unobstructed line of sight, which limits the field environment in

which collectors can be measured. The ground-based measurement from such a long distance limits

the collector orientation to a single position at 0◦ facing the horizon. Also, the collector must be

rotated to perform the measurement; so, prototype collectors that are not installed with a tracking

mechanism cannot be tested.

QFly is an extension of DLR’s TARMES that is under development. QFly operates using

a radio-controlled helicopter that moves across a stationary parabolic collector [27]. The camera

is located using photogrammetry by placing coded photogrammetric targets around the collector.

1 DLR has licensed this technology to the spin-off company CSP Services
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Figure 4.2: Photographs from DLR’s absorber reflection method [36]

A commercial photogrammetry package is used to find the coded targets and the corners of the

collector to determine the relative orientation of the camera and the collector. QFly has been

demonstrated to measure a single parabolic collector and compared to TARMES and photogram-

metry with the camera located 30 m above the collector. The method used to locate the absorber

is not disclosed by the authors nor are any details regarding the photogrammetry camera location

technique and identification of the absorber reflection. Although this method appears to be similar

to the Observer method, the lack of details that have been published regarding QFly prohibits

a direct comparison. The main observeable difference between the Observer method and QFly

is the absorber location method demonstrated in the Observer method. Furthermore, the QFly

measurement system appears to be intended as a commercial service endeavor, which signficantly

limits publication, access, and collaboration regarding this work.

4.4 VISField

VISfield (Visual Inspection System Field) is a field optical characterization tool developed by

ENEA (National Agency for New Technologies, Energy, and Sustainable Economic Development),

an R&D facility sponsored by the Italian government [23]. Similar to TARMES, VISfield uses the
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location of the image reflection of the absorber to determine the reflector slope errors. VISfield

is designed to use a vertically extending mast that scans the camera across the lower half of the

collector aperture. The collector must be stationary and positioned in a horizontal orientation.

VISfield is designed to measure a 12-m-long collector from 13 m away. The vertical extent of the

mast limits the measurement to the bottom half of the collector, which must then be rotated 180◦

to measure the other half.

The absorber is first aligned to the collector using optical sighting to align each receiver

support with the edges of the inner reflector panels. Once the absorber is aligned, the combined

errors due to reflector surface slope and absorber position are measured. VISField cannot measure

the absorber position, but instead attempts to minimize errors due to absorber misalignment and is

thus unable to separate the angular errors due to reflector surface slope and absorber misalignment.

As with the other tools, VISField limits the orientation of the collector to 0◦, facing the horizon.

Because VISField can only measure the bottom half of the collector, the top half of any collector

that is unable to rotate a full 180◦ cannot be tested. Tracking mechanisms rarely allow for a full

180◦ rotation from horizon to horizon because no energy is collected in these positions. Typically,

the collector can only be horizontally oriented in one direction, which enables a stow position to

protect the collectors during high winds.

4.5 Summary

There are currently available techniques to measure the reflector slope errors of parabolic

reflectors using digital photography of the reflected absorber image. In the past couple years,

using the reflection of the absorber has become one of the most popular techniques for optical

characterization of parabolic troughs. However, all of these techniques except QFly require the

collector to be measured in an atypical orienation facing the horizon. The Observer method allows

the collector to be measured in any orientation, providing a more realistic measurement and creating

the ability to measure the effects of collector orienation on optical alignment.

The Observer method includes a novel technique to measure the absorber alignment that
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improves on the absorber position measurements presented here and which can also be excecuted

with the collector in any orientation. Likewise, the Observer method emphasizes the equal impor-

tance of absorber position errors compared to reflector surface slope errors. Previous techniques

focus exclusively on the reflector slope errors. Finally, the technique used to perform an Observer

measurement is presented here in full so that this work can be expanded and improved on in the

future.



Chapter 5

Theory

The Observer method is based on the principles of the idealized domain of geometric optics.

The large scale of parabolic trough collectors relative to the wavelengths of visible light allows us

to neglect the effects of diffraction. The principle of reversibility provides that light rays emanating

from the sun that are reflected off the concentrator onto the receiver absorber will follow the same

path as light rays traveling from the absorber reflecting off the concentrator back to a distant

observer. In theory, a very distant observer aligned with the sun would see what the sun sees if the

sun were a point source of energy: an enlarged image of the absorber in the reflector. In practice,

the sun has a finite shape, and for the rays entering an observing camera to mimic parallel rays from

the sun, the camera must be placed so far from the collector as to make this approach currently

unfeasible. However, the same principles can be applied to a camera placed much closer to the

collector if the angle of the camera relative to the collector is known. For the Observer method,

photographs showing the reflection of the absorber are used to measure transverse errors (along

the curvature of the parabola) in both the reflector surface slope and the absorber position.

In this chapter, the theory behind the Observer measurement principles will be explained.

The Observer method is only capable of measuring errors in the direction of reflector curvature. The

effects of unknown errors along the length of the collector (longitudinal errors) will be presented.

The absorber alignment measurement technique that will be used to separate the effects of reflector

slope error and absorber position is described. The information obtained from an Observer mea-

surement can be used to calculate the collector intercept factor using one of two methods detailed
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here. Finally, the photogrammetry theory required to locate the camera positions and remove lens

distortion from the images will be summarized.

5.1 Reflector-Absorber Angles

The Observer method measures the combined angular errors due to reflector surface shape and

absorber position termed the reflector-absorber angles. The theory behind measuring the reflector-

absorber angles, absorber alignment, and reflector surface slope errors is presented here.

5.1.1 Ideal Collector

The surface of an ideal parabolic trough collector is represented as a parabola with focal

length (f). The parabola is given by

Z(X) =
X2

4f
. (5.1)

The absorber is represented as a cylinder with diameter Da, and is ideally located along the focal

line of the parabola. The focal line lies parallel to the Y-axis, which is often referred to as the

longitudinal direction and is constrained by the collector length (lc). The transverse direction lies

parallel to the X-axis and is constrained by the width of the collector aperture (wap). The optical

axis of the collector lies along the Z-axis with the vertex of the collector located at the origin of

the coordinate system.

The surface slopes of an ideal parabolic trough in the transverse and longitudinal directions

are found by taking the partial derivatives of the parabola with respect to X and Y. The surface

normal of an ideal parabola, ~nideal, is found directly from the surface slope and is written as:

~nideal =


− ∂Z
∂X

− ∂Z
∂Y

1

 =


−X

2f

0

1

 . (5.2)

The direction of a ray reflected from an ideal parabolic collector is found using Snell’s Law:

r̂r = r̂i − 2(r̂i · n̂)n̂, (5.3)
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where r̂i is the unit incident ray, n̂ is the unit surface normal, and r̂r is the unit reflected ray.

Figure 5.1 shows a diagram of Snell’s Law in vector form. By substituting the ideal surface normal

Figure 5.1: Diagram of Snell’s Law of reflection

into Eqn. 5.3, it can be shown that all incident rays parallel to the optical axis will be reflected

through the focal line of the collector. For a distant observer located at infinity, all incident rays

from the observer will be parallel. The angle of the observer with respect to the optical axis of

the collector is denoted Φc and referred to as the camera angle. If the observer is aligned with

the optical axis of the collector (Φc = 0), the absorber reflection will fill the entire aperture. For

small, non-zero camera angles, the reflected rays will still be intercepted by the absorber due to its

finite diameter; however, as the camera angle increases, rays reflected from the collector rims will

begin to miss the absorber because the rim is the farthest distance from the focal point. Thus, the

absorber reflection will begin to shrink, but it will always be centered at the vertex of the collector.

Figure 5.2 shows the incident rays from a distant observer at two different camera angles.

The maximum angular deviation of an incident ray that will be intercepted by an absorber

is referred to as the angular acceptance function, ὰ. The angular acceptance function depends on

the position across the aperture, X, and can be calculated from the collector geometry with

ὰ(X) = 2 sin−1

 Da/2√
(Z − Za)2 + (X −Xa)2

 , (5.4)

where (Xa, Za) is the location of the absorber relative to the collector vertex, and Da is its di-
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Figure 5.2: Ray trace of a perfect collector for a distant observer with the absorber reflection shown
on the collector in red

ameter [2]. Figure 5.3 shows a plot of the angular acceptance function often called the collector

acceptance window. The centerline of the acceptance window is the incidence angle of a ray that

will be reflected through the center of the absorber. For this ideal case, all rays parallel to the

optical axis will be reflected through the center of the absorber, so the centerline is equal to zero.

The outer lines are equal to ±ὰ/2. For a reflector with perfect specularity, all incident rays within

this acceptance window will be intercepted by the absorber. The acceptance window is narrower at

the rims of the collector because the distance between the absorber and reflector is greatest here.

Figure 5.3: Acceptance window of a perfect LS-2 parabolic collector with absorber aligned at the
focal point
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5.1.2 Reflector Surface Errors

Errors in the reflector surface profile are traditionally modeled as angular errors in the surface

slope relative to the ideal parabola and are termed slope errors. A slope error is defined as the

difference between the angle of measured reflector surface slope and the angle of the slope of the ideal

parabola [39]. Reflector slope errors are defined both in the transverse and longitudinal directions;

however, because transverse slope errors are of significantly more importance than longitudinal

slope errors, only transverse errors will be considered here. The effect of longitudinal errors will be

explored in Section 5.2. The term reflector slope error will be used synonymously with transverse

slope error.

An error in the angle of the reflector slope is equivalent to the error in the reflector surface

normal. The surface normal at a point on the reflector with slope error θr in the transverse direction

can be found by rotating the ideal surface normal about the Y-axis:

~n =


cos θr 0 sin θr

0 1 0

− sin θr 0 cos θr

~nideal. (5.5)

Likewise, by Snell’s Law, the angle of an incident ray relative to the optical axis that will reflect

off a point on the collector with surface normal error, θr, and pass through the focal point of the

collector is equal to 2θr. Figure 5.4 shows the relationship between the incident ray, reflector surface

normal, and reflected ray. For a distant observer, the camera angle for which rays will be reflected

through the focal point is equal to 2θr. Thus, the centerline of a collector acceptance window for a

perfectly aligned absorber is equal to 2θr. Figure 5.5 shows the acceptance window for a reflector

with surface slope errors.



30

Figure 5.4: Graphical representation of a reflector surface slope error using ray tracing

Figure 5.5: Acceptance window of reflector with surface slope errors θr = sin (2X) sin (20X) mrad
and a perfectly aligned absorber

5.1.3 Absorber Misalignment

Errors in the absorber position are traditionally modeled as offsets from the collector focal

point:

∆Xa = Xa − 0

∆Za = Za − f,
(5.6)

where (Xa, Za) is the location of the absorber relative to the collector vertex. However, absorber

position can also be represented as a set of effective slope errors. The benefit of representing

absorber misalignment as effective slope errors is that they can then be combined directly with
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reflector surface slope errors. The effective slope error at a point on the collector is equal to half

of the incidence angle required for an incident ray to be reflected from an ideal parabola and pass

through the center of the absorber instead of the focal point, as shown in Fig. 5.6. The effective

Figure 5.6: Depiction of absorber misalignment represented with effective slope error

surface normal is the surface normal required for an incident ray parallel to the optical axis to be

reflected through the center of the absorber instead of the focal point. The effective slope errors

(θa) due to absorber position (Xa, Za) are calculated with

θa(X) =
1

2

[
tan−1

(
X −Xa

Z − Za

)
− tan−1

(
X − 0

Z − f

)]
, (5.7)

where Z is a function of X given by the ideal parabola, Eqn 5.1. The camera angle of a distant

observer for which rays will be reflected and pass through the center of the absorber is 2θa. Fig-

ure 5.7 shows the collector acceptance windows for three absorber misalignments. The centerlines

of these acceptance windows are equal to 2θa.

5.1.4 Reflector-Absorber Angles

The reflector surface slope errors and effective slope errors can be combined directly to get

the total error due to both rotation of the reflector surface normal and displacement of the absorber

from the focal point. Figure 5.8 shows the concept of combining slope errors and absorber positions

into a single angular error term.
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Figure 5.7: Acceptance windows for absorber misalignments of ∆Xa = 5 mm (left), ∆Za = −10
mm (center), and the combination of ∆Xa = 5 mm and ∆Za = −10 mm (right)

Figure 5.8: Depiction of absorber alignment error combined with reflector slope error

The angular combination of reflector slope errors and absorber position will be termed

reflector-absorber angles, abbreviated as r-a angles. A reflector-absorber angle, θra, is the rota-

tion of the ideal surface normal required at a point on the collector with slope error, θr, so that

an incident ray parallel to the optical axis will pass through the center of the absorber located at

(Xa, Za). The incidence angle of a ray relative to the optical axis that will be reflected and pass

through the center of the absorber is equal to twice the reflector-absorber angle. Figure 5.9 shows

three acceptance windows for the r-a angles due to the combination of reflector slope errors and

absorber misalignments.
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Figure 5.9: Acceptance windows for reflector slope errors θr = sin (2X) sin (20X) mrad and absorber
misalignments of ∆Xa = 5 mm (left), ∆Za = −10 mm (center), and the combination of ∆Xa = 5
mm and ∆Za = −10 mm (right)

5.1.5 R-A Angles Measured by an Observer

Practical application of this method requires that the observer is not located at infinity. As

the observer approaches the collector, rays from the observer to the collector are no longer parallel.

The camera angle is no longer constant across the collector aperture, but is a function of the

aperture position because of parallax. Figure 5.10 shows the change in camera angle across the

collector aperture.

Figure 5.10: Changing camera angle across the aperture for a close observer

The camera angle (Φc(X)) can be calculated for an observer located at (Xc, Yc, Zc) with

Φc(X) = tan−1

(
Xc −X
Zc − Z

)
, (5.8)
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where Z can be defined in terms of X as given in Eqn. 5.1. For the observer to be far enough away

that it can be approximated as a distant observer located at infinity, we must assume that the

incident rays are parallel. That means that Φc cannot change significantly across the aperture of

the collector. The change in camera angle can be written as

Φc(wap/2)− Φc(−wap/2) <
1

2
θε, (5.9)

where θε is the maximum allowable error in the reflector-absorber angle measurement. For a 5-

m-aperture collector and an allowable error of 2 mrad, the observer must be 5 km away from the

collector. At this extreme distance, it is currently infeasible to measure the angle of the observer

with respect to the collector with sufficient accuracy. We must, therefore, take into account the

change in camera angle across the collector aperture. Likewise, the observer can be positioned close

to the collector to allow for measurement in confined spaces.

As seen from a close observer, the absorber reflection will no longer be centered at the vertex

of the collector; its location will depend on the position of the observer. Figure 5.11 shows incident

and reflected rays from a close observer, as well as the location of the absorber reflection on the

reflector.

Figure 5.11: Ray-trace diagrams for a close observer located at two different angles with respect to
the optical axis of the collector
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The angle of incident rays that will be reflected through the absorber can still be plotted

for a close observer; however, because the camera angle is no longer constant across the collector,

they are now plotted as a function of the camera angle with respect to the vertex of the collector.

With this method, each camera angle (Φc(0)) represents a different observer position. The resulting

plot appears as a tilted version of the acceptance window. To convert the tilted plot into a true

acceptance window, the incident rays must be plotted vs. the camera angle with respect to the

location of the absorber reflection (Φc(X)) instead of the vertex. Figure 5.12 shows the angles of

incident rays from a close observer that are intercepted by the reflector for a perfect parabola and

absorber alignment (absorber-reflection plot) and the acceptance window created from that plot.

As can be seen, the acceptance window created from a close observer is identical to the acceptance

window created from a distant observer (Fig. 5.3).

Figure 5.12: An absorber-reflection plot showing the incidence angles from a close observer that
will be reflected to pass through the absorber for a perfect parabola and absorber alignment (left)
and the acceptance window created from that observer (right)

The reflector-absorber angles can, thus, be measured with a camera (observer) located close

to the collector. The camera angle at the center of the absorber reflection is equal to 2θra, as shown

in Fig. 5.8, and can be calculated with

θra(X) = θr(X) + θa(X) =
1

2
tan−1

(
Xc −X
Zc − Z

)
, (5.10)

where (Xc, Zc) is the observer (camera) position, and (X,Z) is the center of the absorber reflection
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on the parabola. The r-a angle is, therefore, a function of the observer location and the location of

the center of the absorber reflection. A series of photographs taken from different camera positions

is used to create an acceptance window for the collector. Thus, the essence of the Observer method

is locating the camera and the center of the absorber reflection in each photograph. The camera

location is found using photogrammetry and the center of the absorber reflection is found using

image processing.

5.2 Longitudinal Errors

Due to the linear concentration of parabolic trough collectors, the Observer method is unable

to measure longitudinal slope errors independently of transverse slope errors. Photographs of the

reflected image of the absorber provide no information about where along the length of the absorber

the reflected ray is intercepted. Large longitudinal slope errors can cause errors in the measurement

of the reflector-absorber angles and, by extension, in the transverse slope errors. The longitudinal

angle between a point on the collector and the camera is referred to as the longitudinal incidence

angle of the camera. As the longitudinal incidence angle is reduced, the measurement error in the

reflector-absorber angles as a result of unknown longitudinal slope errors is minimized. When there

are large longitudinal slope errors, it is preferential, therefore, to locate the camera close to a zero

longitudinal incidence angle; however, due to the finite length of the collector, the longitudinal

incidence angle at the ends of the collector will always be non zero.

To illustrate the effect of longitudinal slope errors, Fig. 5.13 shows a photograph of the

absorber reflection at difference longitudinal incidence angles on several different reflector panels.

The reflection of the absorber becomes more wavy for the collectors farther from the camera. The

wavy reflection is typically indicative of transverse slope errors so that one would assume the mirrors

farthest from the camera have much larger transverse slope errors than those reflectors closer to

the camera. However, because the reflectors farther from the camera were photographed at higher

longitudinal incidence angles, the wavy reflection is caused by longitudinal slope errors. This was

verified by observing that the absorber reflection for the farthest mirrors no longer appeared wavy
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when viewed at a zero longitudinal incidence angle.

Figure 5.13: A row of parabolic collectors showing that longitudinal slope errors can appear as
transverse slope errors when viewed at non-zero longitudinal incidence angles

To explore the effect of longitudinal slope errors on Observer measurements of r-a angles, a

simple model was constructed. An LS-2 type geometry collector with normal random distributions

of longitudinal slope errors (2σ = 3, 5, and 7 mrad) was used to represent the range of typical lon-

gitudinal errors found on parabolic trough collectors. The corresponding error in the measurement

of r-a angles is determined from the difference in the transverse reflected angles off of surfaces with

and without longitudinal slope errors. The error in the measured r-a angle (θε) is equal to half the

difference of the transverse reflected angles:

θε =
1

2

[
tan−1

(
rx
rz

)
− tan−1

(
r0,x

r0,z

)]
, (5.11)

where ~r and ~r0 are the reflected rays with and without longitudinal errors, respectively.

For non-zero longitudinal incidence angles, the measurement error will always be greatest at

the rim of the reflector where the reflector transverse slope is the greatest. Figure 5.14 shows 2σ

values for the measurement error in the r-a angles for longitudinal incidence angles from 0◦ − 30◦.

For the average case of 2σ = 5 mrad, the incidence angle between the camera and any point on the

collector should be less than about 15◦ to limit the measurement errors to less than 0.5 mrad.
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Figure 5.14: Measurement errors in the r-a angles due to longitudinal slope errors

5.3 Absorber Alignment

The Observer method measures the reflector-absorber angles, which are the combination of

reflector slope errors and absorber position. To differentiate the two types of errors, the absorber

position must be measured independently; then, the effective slope errors can be subtracted from the

r-a angles to determine the reflector slope errors. The absorber location is found using triangulation.

Triangulation uses multiple angle measurements to find a geometric position. For the absorber

position measurement, a camera acts as the angle measurement device and multiple photographs

provide multiple angular measurements of the absorber.

To measure the angle between the optical axis of the collector and the absorber, a photograph

is used to find the location of the projection of the absorber onto a chosen plane. Although any

plane is acceptable, a plane parallel to the aperture and through the design focal line of the collector

(focal-line plane) is a logical choice given that we are interested in the position of the absorber

relative to the focal line. The location of the camera (Xc, Zc), location of the projection of the

absorber onto the focal-line plane (Xf , Zf), and location of the absorber (Xa, Za) are related by
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similar triangles:

Zc − Zf

Xc −Xf
=

Za − Zf

Xa −Xf
, (5.12)

as shown in Fig. 5.15. As with the r-a angle measurement, the camera location is found using

photogrammetry and the projection of the absorber is found using image processing. The two

remaining unknowns are the location of the absorber in two dimensions (Xa, Za). Two camera

locations will result in two different projections of the absorber, as shown in Fig. 5.15, that provide

a system of two equations with two unknowns that can be solved explicitly for the absorber location.

Taking more than two photographs allows for a least-squares solution, potentially improving the

accuracy of the measurement. The essence of this method thus reduces to the determination of the

location of the camera and the location of the projection of the absorber.

Figure 5.15: Relationship between the absorber location (Xa, Za), projection of the absorber onto
the focal-line plane (Xf , Zf), and camera position (Xc, Zc)

Instead, one might expect that the absorber position could be determined from the width

of the absorber reflection at different points across the aperture. Although the absorber reflection

width does change with absorber misalignment, the change is too small to be resolved. For an

LS-2 collector, an absorber misalignment of 3.5 cm results in a maximum change in the absorber

reflection width of 1.5 cm, which typically cannot be resolved due to the ambiguity of the absorber

reflection edge location in an image. The width of an image is much more difficult to measure than

the centerline because it requires finding both edges of the image. The centerline can be measured
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more accurately because the exact location of the edges is irrelevant.

5.4 Intercept Factor

The intercept factor is a common metric used to quantify the optical alignment of parabolic

trough collectors. The intercept factor of a parabolic trough collector is defined as the fraction

of solar energy reflected off the concentrator that is intercepted by the absorber tube for a glass

envelope with perfect transmittance. In this section, two methods will be presented for calculat-

ing the intercept factor from the reflector-absorber angles: beam-spread analysis and ray tracing.

Beam-spread analysis treats both the energy source (the sun) and optical errors as distributions

of angular deviations acting on an incident ray. The following derivation of intercept factor using

beam-spread analysis is summarized from Bendt and Rabl [2].

The total optical errors due to reflector slope error, absorber misalignment, reflector specu-

larity, and tracking error are represented with the angular error distribution E(θ), where θ is the

angle of an incident ray relative to the optical axis of the collector. The distribution of angular

deviations from the source caused by the finite shape of the sun and scattering as rays pass through

the atmosphere is called the sun shape and represented with Bsource(θ). It does not matter whether

an angular deviation of an incident ray occurs at the source or along the path to the absorber

caused by one of the aforementioned optical error sources. Therefore, the total optical errors can

be combined with the sun shape to produce an effective source. The effective source includes all

angular deviations. The distribution of this effective source is the effective beam spread (Beff(θ)).

The total optical errors are combined with the intensity distribution of the source by convolution.

The effective beam spread is calculated with

Beff(θ) =

∫ ∞
−∞

E(θ − θ′)Bsource(θ
′)dθ′. (5.13)

The total flux intercepted by the absorber (q) is found by multiplying the effective source by the

angular acceptance function (Eqn. 5.4) and integrating over all incident angles:

q =

∫ ∞
−∞

Beff(θ)ὰ(θ)dθ. (5.14)
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The intercept factor is the total flux intercepted by the absorber divided by the total incident flux

at the absorber (Ib) as written in

γ =
q

Ib
. (5.15)

The simple version of beam-spread analysis treats each optical error as a Gaussian distri-

bution [2]. The convolution of the distributions of optical error sources is simplified for Gaussian

distributions with

σ2
total = 4σ2

r + 4σ2
a + σ2

specularity + σ2
tracking, (5.16)

where σr, σa, σspecularity, σtracking, and σtotal are the standard deviations of the normal distributions,

respectively, of reflector slope error, effective slope errors due to absorber misalignment, reflector

specularity, tracking error, and the total optical error. Typically, Eqn. 5.16 is written without

the factor of 4 on the absorber errors because they are treated as position deviations instead of

effective slope errors. As clearly stated in [2], if one or more of the optical error sources cannot be

approximated with a Gaussian distribution, the simplified Eqn. 5.16 cannot be used to convolve

the optical error sources; instead, the error distributions from each source must be convolved

numerically. Zhu has recently expanded on the work of Bendt and Rabl by developing a MATLAB

suite of code that performs numeric convolution of the real distribution of combined reflector

slope errors and absorber position errors with the distribution of the source [42]. Like Bendt and

Rabl, Zhu treats the tracking error and reflector specularity as Gaussian distributions. Using the

measured distributions of reflector slope and absorber position greatly increases the accuracy of

the intercept factor.

Ray tracing is the other method frequently used to calculate the intercept factor [32], [37].

Ray tracing uses a number of incident rays with the same angular distribution as the source and

traces these rays through the reflector-absorber geometry to determine whether or not they are

intercepted by the absorber. Ray tracing often requires long computation time because of the need

to simulate a large number of rays to obtain a high precision; however, ray tracing can be very

accurate if enough rays are used. As in Zhu’s work, the reflector slope errors and absorber position
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are not approximated with Gaussian distributions. Ray tracing and beam-spread analysis with

numeric convolution of the reflector slope and absorber errors have been shown to be comparable

in accuracy; however, beam-spread analysis is significantly faster [42].

With either beam-spread analysis or ray tracing, the reflector-absorber angles measured with

the Observer technique can be input directly into the intercept factor calculation. For beam-spread

analysis, the reflector-absorber angles directly replace the distribution of combined slope errors and

absorber position without any loss of accuracy. In ray tracing, the reflector-absorber angles are

treated the same as reflector slope errors with the absorber positioned at the focal point. This

simplifies the ray-tracing geometry by allowing the effects of absorber misalignment to be included

without needing to change the geometry of the absorber relative to the collector.

5.5 Photogrammetry

Photogrammetry is the use of photography to measure geometric properties of objects. In

this research, the principles of photogrammetry are necessary to use the camera as a precision

measurement instrument. Background on the mathematical model of the camera, development

of the collinearity equations, and method of least-squares bundle adjustment are provided in this

section.

5.5.1 Camera Model

To use a camera as a measurement tool, it must be well characterized. Traditionally, cameras

are modeled using a perspective-center model to which both radial and tangential lens distortions

are applied. The perspective-center model is based on the principle of collinearity; that is, a point in

object space, the corresponding point in image space, and the perspective center of the camera all lie

on a straight line. Object space is the 3D space containing the objects that you are photographing,

and image space is the 2D image sensor in the camera. Figure 5.16 illustrates the perspective-

center camera model. The object point (X,Y, Z) is imaged by the real camera on the sensor at

point (x′, y′). This image point must be corrected by the lens distortion components (δx, δy) so that
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it is imaged by the perspective-center camera at point (x, y). The sensor size (sx× sy) is the width

and height of the image sensor. The perspective center is the point through which all straight lines

pass. The principal point (x0, y0) is the intersection of the image sensor and a line perpendicular

to the image sensor passing through the perspective center. The focal length (fc) is the normal

distance between the image sensor and the perspective center.

Figure 5.16: Perspective-center model of a camera

The lens distortion quantifies the deviation of rays from the ideal perspective-center model

in a real camera and is expressed as deviations (δx, δy) in the image plane. The primary types

of lens distortion are radial distortion and tangential distortion. Radial distortion accounts for

the majority of lens aberrations and has radial symmetry, whereas tangential distortion is mainly

caused by decentering or misalignment of lens elements. The image points are corrected for lens

distortion using Brown’s lens distortion model [5]. The radial distortion (δxr , δyr) is usually well

characterized with three coefficients (K1, K2, and K3):

δxr = x′(K1r
2 +K2r

4 +K3r
6)

δyr = y′(K1r
2 +K2r

4 +K3r
6),

(5.17)

where any point (x′, y′) on the image sensor can be described as

r =
√
x′2 + y′2. (5.18)
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The tangential distortion (δxt , δyt) is modeled with two coefficients (P1 and P2):

δxt = P1(r2 + 2x′2) + 2P2x
′y′

δyt = P2(r2 + 2y′2) + 2P1x
′y′.

(5.19)

The radial and tangential components of lens distortion are summed to determine the total distor-

tion displacement in each direction:

δx = δxr + δxt

δy = δyr + δyt .

(5.20)

To correct for lens distortion, the image point locations on a real camera are shifted by the total

distortion displacement values to determine their locations on a perspective-center camera.

x = x′ + δx

y = y′ + δy.

(5.21)

Therefore, a point in object space (X,Y, Z) will appear on the real camera’s sensor in image

space at (x′, y′), and it will appear on the perspective-center camera’s sensor at (x, y). Combining

Eqns. 5.17–5.21 yields the lens distortion equations:

x = x′ + x′(K1r
2 +K2r

4 +K3r
6) + P1(r2 + 2x′2) + 2P2x

′y′

y = y′ + y′(K1r
2 +K2r

4 +K3r
6) + P2(r2 + 2y′2) + 2P1x

′y′.

(5.22)

Conversion from image space of the perspective-center camera (x, y) to the real camera (x′, y′)

cannot be carried out explicitly because the lens distortion model is nonlinear in x′ and y′; therefore,

the Newton-Raphson method is used to convert target image locations of a perspective-center

camera to a real camera.

5.5.2 Development of the Collinearity Equations

In the perspective-center camera there is no lens distortion, and the rays all pass through

a single point (the perspective center) in the camera. With these assumptions, the relationship
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between the location of point j in object space (Xj , Yj , Zj) and the corresponding point in image

space (xi,j , yi,j) on photograph i can be described by a projective transformation:
Xj −Xci

Yj − Yci

Zj − Zci

 = λi,j


r11 r21 r31

r12 r22 r32

r13 r23 r33




xi,j − x0

yi,j − y0

−fc

 , (5.23)

where (Xci , Yci , Zci) is the camera location of photograph i, and λi,j is a scaling factor. Rearranging

Eqn. 5.23 yields 
xi,j − x0

yi,j − y0

−fc

 =
1

λi,j


r11 r12 r13

r21 r22 r23

r31 r32 r33




Xj −Xci

Yj − Yci

Zj − Zci

 . (5.24)

The rotation matrix R is defined as

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (5.25)

with components

r11 = cosφ cosκ

r12 = sinω sinφ cosκ+ cosω sinκ

r13 = − cosω sinφ cosκ+ sinω sinκ

r21 = − cosφ sinκ

r22 = − sinω sinφ sinκ+ cosω cosκ

r23 = cosω sinφ sinκ+ sinω cosκ

r31 = sinφ

r32 = − sinω cosφ

r33 = cosω cosφ.

The rotation matrix R is developed from three consecutive rotations performed about the Z-axis

(ω), X-axis (φ), and Y-axis (κ), in that order. Alias transformations (rotation of the coordinate

system) are used instead of alibi transformations (rotation of the vector). Likewise, the rotations

are accomplished with pre-multiplication of the rotation matrix.
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Dividing the first and second rows of Eqn. 5.24 by the third yields the well-known collinearity

equations. A more thorough derivation of the collinearity equations can be found in [40].

F = x− x0 = −fc
r11(X −Xc) + r12(Y − Yc) + r13(Z − Zc)

r31(X −Xc) + r32(Y − Yc) + r33(Z − Zc)

G = y − y0 = −fc
r21(X −Xc) + r22(Y − Yc) + r23(Z − Zc)

r31(X −Xc) + r32(Y − Yc) + r33(Z − Zc)
.

(5.26)

The camera location (Xc, Yc, Zc) and the Euler rotation angles (ω,φ,κ) comprise the external ori-

entation parameters. The focal length (fc) and principal point (x0, y0) comprise the internal ori-

entation parameters.

5.5.3 Linearization of Collinearity Equations

The collinearity equations are linearized to find the external orientation parameters and the

object point locations. The linearization is done using a first-order Taylor series approximation.

The Taylor series expansion is given as

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n. (5.27)

Removing all terms higher than first order leaves the approximation:

f(x) ≈ f(a) + f ′(a)(x− a). (5.28)

For a function of multiple variables, the first-order Taylor series approximation is

f(x, y, z, ...) ≈ f(xo, yo, zo) +
∂f

∂x
(x− xo) +

∂f

∂y
(y − yo) +

∂f

∂z
(z − zo). (5.29)
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Taylor expansion of the collinearity equations is written as

F = x− x0 ≈ F 0+

(
∂F

∂Xc

)0

(Xc −X0
c ) +

(
∂F

∂Yc

)0

(Yc − Y 0
c ) +

(
∂F

∂Zc

)0

(Zc − Z0
c )

+

(
∂F

∂ω

)0

(ω − ω0) +

(
∂F

∂φ

)0

(φ− φ0) +

(
∂F

∂κ

)0

(κ− κ0)

+

(
∂F

∂X

)0

(X −X0) +

(
∂F

∂Y

)0

(Y − Y 0) +

(
∂F

∂Z

)0

(Z − Z0)

G = x− x0 ≈ G0+

(
∂G

∂Xc

)0

(Xc −X0
c ) +

(
∂G

∂Yc

)0

(Yc − Y 0
c ) +

(
∂G

∂Zc

)0

(Zc − Z0
c )

+

(
∂G

∂ω

)0

(ω − ω0) +

(
∂G

∂φ

)0

(φ− φ0) +

(
∂G

∂κ

)0

(κ− κ0)

+

(
∂G

∂X

)0

(X −X0) +

(
∂G

∂Y

)0

(Y − Y 0) +

(
∂G

∂Z

)0

(Z − Z0),

(5.30)

where the superscript 0 denotes variables evaluated at the initial guess value. Initial guess values are

required for the external orientation parameters and object point locations because the collinearity

equations are non-linear. The initial guess values are iterated on using the least-squares bundle

adjustment described in Section 5.5.4.

5.5.4 Least-Squares Bundle Adjustment

A photogrammetric system of equations consists of a series of photographs taken of a set of

targets. The center of each target is represented by an object point. The location of the camera

for each photograph is described by the external orientation parameters. To solve the collinearity

equations for the external orientation parameters and the object point locations, an iterative least-

squares bundle adjustment is performed. Each photograph will be denoted with i and each object

point will be denoted with j. The system of two observation equations given in Eqn. 5.30 is

expressed in matrix form for a single point on a single photograph as
∂Fi,j

∂~ξi

∂Fi,j

∂~ζj
∂Gi,j

∂~ξi

∂Gi,j

∂~ζj


∆~ξi

∆~ζj

 =

(xi,j − x0)− Fi,j

(yi,j − y0)−Gi,j

 . (5.31)
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where ~ξ represents the external orientation parameters of the camera (Xc, Yc, Zc, ω, φ, κ) and ~ζ

represents the object point coordinates (X,Y, Z). The partial derivatives of F with respect to the

external orientation parameters are written with

∂F

∂~ξ
=

[
∂F

∂Xc

∂F

∂Yc

∂F

∂Zc

∂F

∂ω

∂F

∂φ

∂F

∂κ

]
, (5.32)

and the partial derivatives of F with respect to the object point coordinates are given as

∂F

∂~ζ
=

[
∂F

∂X

∂F

∂Y

∂F

∂Z

]
. (5.33)

We write adjustments to the external orientation parameters (∆~ξ) and adjustments to the object

point coordinates (∆~ζ) as

∆~ξ =



∆Xc

∆Yc

∆Zc

∆ωi

∆φi

∆κi


=



Xc −X0
c

Yc − Y 0
c

Zc − Z0
c

ω − ω0

φ− φ0

κ− κ0


∆~ζ =


∆X

∆Y

∆Z

 =


X −X0

Y − Y 0

Z − Z0

 . (5.34)

Each photograph introduces six unknowns: the external orientation parameters, which are

the camera location (Xc, Yc, Zc) and the Euler angle rotation of the camera (ω, φ, κ). Each object

point or target introduces three unknowns: the three point coordinates (X,Y, Z). Two observation

equations (the linearized collinearity equations) can be written for each point on each photograph.

For M photographs and N targets appearing in each photograph, there will be 6M+3N unknowns

and 2MN equations. There must be more equations than unknowns to have an over-determined

system and use the least-squares bundle adjustment. Additional equations may be written from

known geometric constraints. Constraint equations may specify one coordinate location of a target

(either X, Y , or Z), a distance between two targets, or another geometric quantity.

An object point constraint equation is incorporated into the least-squares bundle adjustment

by simply setting the object point coordinate equal to its constraint. For an object point with
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known X-coordinate location (Xp), we write the constraint equation as[
1

] [
∆Xj

]
=

[
X0
j −Xp

]
, (5.35)

which is in the same form as Eqn. 5.31 and can be added to the matrix and solved simultaneously

with the collinearity equations. Similar equations can be written for known Y- and Z-coordinate

locations. A distance constraint equation is written as

C = dj1,j2 =

√
(Xj1 −Xj2)2 + (Yj1 − Yj2)2 + (Zj1 − Zj2)2, (5.36)

where j1 and j2 are two object points used in the distance constraint, and dj1,j2 is the measured

distance between these two points. A distance constraint is linearized with a first-order Taylor

series approximation:

[(
∂C

∂~ζj1

)0 (
∂C

∂~ζj2

)0]∆~ζj1

∆~ζj2

 =

[
d2
j1,j2
− C0

]
(5.37)

and can be directly incorporated into the least-squares bundle adjustment.

All of the observation equations and constraint equations are combined into a single system

of equations written as

B∆ = ε, (5.38)

where the matrix B contains the partial derivatives of the observation and constraint equations;

∆ represents the corrections to the external orientation parameters and the object point locations;

and ε is the vector of residuals. The goal is to minimize the residuals ε through an iterative process.

The normal matrix is formulated as

N = BTB, (5.39)

and the correction vector ∆ is calculated with

∆ = N (−1)
(
BT ε

)
. (5.40)

The initial guess values for the external orientation parameters and object point locations denoted
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with 0 are adjusted as ~ξ
~ζ

 =

~ξ0

~ζ0

+ ∆. (5.41)

The new approximations to the external orientation parameters and object point locations are

used to re-calculate the B matrix and ε vector of residuals to get a new correction vector, ∆. This

iterative process is repeated until convergence is achieved. The Manual of Photogrammetry 4th

ed. [40] provides a more complete description, including how to populate the B matrix containing

the partial derivatives, as well as an efficient computing algorithm for sparse matrices when each

object point is only imaged in a few of the photographs.

5.6 Summary

The photogrammetry theory presented here provides the foundation for the reflector-absorber

angles and absorber alignment measurements. Using photogrammetry to find the camera locations,

the r-a angles and absorber position can be found from images taken by a close observer. The

r-a angles may be used directly in beam-spread analysis or ray tracing to determine the collector

intercept factor. In the next chapter, the implementation of the Observer method will be presented.



Chapter 6

Method

The Observer method requires two basic steps: data acquisition and image analysis. The

measurement setup required before data acquisition is limited to the target setup. The data ac-

quisition involves taking multiple photographs of the collector from different camera locations and

calibrating the camera. For image analysis, the photogrammetry-camera-location technique used

for all measurements is presented, followed by the image analysis required to find the absorber

reflection and absorber for the r-a angle and absorber alignment measurements, respectively. The

method is summarized with the practical considerations necessary to obtain high-quality data.

6.1 Data Acquisition

Before taking images of the collector, the test setup requires the placement or identification

of targets on or around the collector. Targets are identifiable features that can be seen in multiple

photographs and serve as reference points used to locate the camera relative to the collector. We

classify targets as either intentional targets or natural targets. Intentional targets are designed

for maximum accuracy and must be mounted on and around the collector before data collection

begins. Natural targets are distinguishable features found already on or near the collector that

can be used for photogrammetric purposes; natural targets typically result in lower accuracy but

reduce setup time. The work contained herein is limited to intentional targets; however, if a robust

algorithm is developed for finding natural targets, it can simply be substituted for the intentional

target centroiding algorithm used here.
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6.1.1 Targets

Intentional targets are designed to maximize the accuracy in the target locations in image

space. Spheres are traditionally considered the most accurate intentional targets because the pro-

jection of a sphere into image space will be a circle no matter what angle the photograph is taken

from. However, spheres make poor targets in outdoor natural lighting conditions because of the

uneven distribution of light and shadow on the sphere. For uncontrolled lighting, a solid black circle

mounted on a white background makes an excellent target. The black target should be constructed

out of special light-absorbing flocked black paper to prevent uneven reflection of light off of the

target. When using circular targets, careful attention must be paid to the size of the target; if

the targets are too small, accuracy suffers due to poorly resolved target images. If the target size

is too large, centroiding error is introduced by the elliptical shape of the targets in the images,

as shown in Fig. 6.1 [9], and the nonlinearity of the lens distortion equations. The black circular

target images should span about 5–10 pixels.

Figure 6.1: Illustration of the centroid error resulting from over-sized targets

Four targets should be placed on the corners of the collector section that is to be measured.

These targets should be visible in every photograph. If an entire collector module will be measured

in one test, the corner targets are placed on the corners of that module. If instead only a single

reflector panel will be measured, the targets should be placed at the corners of the reflector panel.
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Typically, the Observer method is used to measure an entire collector aperture from rim to rim.

The collector length that can be measured in one test will depend on the field of view of the camera.

Figure 6.2 shows recommended target placement when the camera field of view does not include

the entire collector length. The corner targets are labeled 1 to 4.

Figure 6.2: Target placement when measuring a portion of the collector length

Placing targets in addition to the four corner targets will increase the measurement accuracy.

To maintain an easy setup, additional targets can be placed along the rims of the collector, as shown

on Fig. 6.2. For most collector designs, the collector can be rotated to make the rims accessible

from the ground, which makes placing targets along the rims straightforward.1 Extra targets may

also be placed on the ground around the collector.

After the targets are placed, the distance measurements along the collector length between

corner targets should be taken. In Fig. 6.2, the distance between targets 1 and 2 and the distance

between targets 3 and 4 should be measured. Additional distances can be measured to improve the

measurement accuracy. A laser distance meter is recommended to measure these distances.

1 If increased accuracy is desired, an alternative, custom target layout could be developed to maximize accuracy
in exchange for a longer, more difficult setup process.



54

6.1.2 Images

Once the targets are placed, photographs of the parabolic trough solar collector are taken

with the camera at different angles with respect to the optical axis of the collector. The collector

must have some type of cylindrical absorber to create a reflected image; if a receiver absorber is not

installed with the collector, and the reflector slope is the main focus of the test, a dummy absorber

may be mounted in place of the actual receiver. In general, each photograph should show the

entire collector module and absorber, although with special considerations a single reflector panel

may be tested in the laboratory. The photographs should begin with the reflection of the absorber

not visible in the collector. As the angle of the camera with respect to the collector changes, the

reflection of the absorber should appear on the edge of the aperture and move across the entire

aperture until it is no longer visible. Ideally, the angles at which the photographs are taken should

be evenly spaced.

There are two options for obtaining the required images: move the camera across the aperture

of the stationary collector or hold the camera stationary and rotate the collector. Because collectors

are designed to track the sun on a single axis throughout the day, most installed collectors will

have this rotational capability. The disadvantage of rotating the collector is that the receiver

supports and frame may change shape due to changing gravitational loads as the collector rotates.

Additionally, it is difficult to evaluate the collector in an orientation near 90◦ (facing straight up)

because the stationary camera must be positioned directly above the collector at a sufficient distance

to image the entire collector. When maximum accuracy is required and when evaluating the effects

of gravitational loading, it is recommended to evaluate a stationary collector using a moving camera.

Moving the camera across the aperture of the collector can be challenging; methods to achieve this,

along with recommended camera specifications, are presented in Section 6.6. Figure 6.3 shows a

sample of images taken for a measurement of the reflector-absorber angles.
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Figure 6.3: Sample images taken for reflector-absorber angles measurement
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6.2 Camera Location

The camera location for each image in the series is found using photogrammetry least-squares

bundle adjustment as described in Section 5.5. To use photogrammetry, the camera must be

calibrated and the target images found in each photograph.

6.2.1 Camera Calibration

The camera may be calibrated before or after the collector images are taken. A complete

camera calibration quantifies the ratio of the focal length to the sensor size, the principal point of

the camera, and the radial and tangential lens distortion coefficients. Specifications provided by

the camera manufacturer for sensor size and focal length are approximations and should not be

used in calculations; these values should always be determined with a camera calibration. For the

maximum possible accuracy, the calibration should be performed on the same scale and at the same

distance as the measurement photographs of the collector. If this is not feasible, the calibration

should be performed at a sufficient distance so that the camera can be focused at infinity. This

ensures that the focal length of the camera does not change between the calibration and collector

measurement.

There are many software packages that can be used to perform a camera calibration. For

the Observer method, we have used both a camera calibration toolbox for MATLAB developed by

CalTech, which is available online [3] and a commercial software package, PhotoModeler [17]. Both

of these software packages supply a calibration grid template that should be printed as large as

possible (usually 1 m2). Photographs of the grid are taken from all sides and the software package is

used to analyze the images and produces a camera calibration. The advantage of the PhotoModeler

software is that the geometry of the calibration target need not be known, but can be calculated

during the calibration process using bundle adjustment; however, this may lead to a less accurate

camera calibration than when using a known calibration grid. Other commercial photogrammetry

software packages exist that are capable of performing camera calibrations, but experience with the
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Observer method is limited to the previously mentioned options. Specific guidelines for the camera

calibration are provided with each software package.

6.2.2 Target Image Centroiding

The location of each target image is approximated by finding the centroid of the black circular

target image in each photograph. A two-step target centroid process was developed to minimize

the amount of user input required. The algorithm begins with user input locations for each target

in the first image. The image is cropped to a square region surrounding the target image with size

specified by the user. The size of the square region of interest should be large enough to include the

entire target with a buffer of about 5–10 pixels around the target. To find the target locations in

each subsequent image, the first step is to track the target region from one image to the next. The

pixel intensity across the square region including the target is compared with an equal-sized region

in the following image that is located within some user-defined distance of the target centroid in

the previous image. The location of the square region in the following image is determined as that

which minimizes the sum of the absolute value of the difference in pixel intensity with the square

region in the previous image. This first step provides a good estimate of the target location in each

photograph.

The second step in this process accurately defines the target centroid location. We have

developed a contour analysis method that provides a good compromise between accuracy and

speed. First, a set of contour lines across the target region are calculated. The contour lines are

then filtered using several criteria that increase the likelihood that the contour line lies around the

edge of the target. The contour line must be a closed circuit beginning and ending at the same

location, and the length of the contour line is restricted relative to the size of the target region.

Each contour line that conforms to these filters is then fit with an ellipse using a simple linear

least-squares algorithm.2 All of the real ellipses produced from the contour lines are then filtered

2 The linear least-squares ellipse fit was originally compared to a non-linear least-squares ellipse fit. The difference
in centroid location for the two methods is on the order of 10−3 pixels for this application; thus, the linear method
was chosen for speed.
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by comparing the contour length to the circumference of the ellipse to determine if the contour line

is close enough to an ellipse to be included in the final centroid estimate. The centroid is finally

determined by averaging the center of all the remaining best-fit ellipses. Figure 6.4 shows an image

of a target that is about 20 pixels in diameter (larger than ideal for illustrative purposes). The

contour lines are overlaid on the image in blue, and the ellipses fit to those contour lines appear in

red. The averaged center of the ellipses is shown as a white dot.

Figure 6.4: Image of intentional target with overlaid contour lines in blue and ellipses in red

6.2.3 Photogrammetry Bundle Adjustment

Once the camera is calibrated and the target image locations found, photogrammetry bundle

adjustment is used to find the camera locations. The collector is used to establish the reference

coordinate system. A parabolic trough collector is defined by its length (lc), aperture width (wap),

and focal length (f). By carefully placing targets relative to known geometric locations on the

collector (i.e., the rim, vertex, ends of the collector), constraint equations can be used to provide

coordinate locations for those targets.

A minimum of seven constraint equations and three targets are required to define the orien-

tation of the coordinate system. Three constraints define the origin or translation of the coordinate

system, three constraints define the axes or rotation, and the seventh constraint defines the scal-

ing. For example, if targets are placed on the collector corners as shown in Fig. 6.5, targets 1, 2,

and 3 can be used to define the coordinate system. In this case, three constraint equations are
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written for z-coordinates, Z1 = Z2 = Z3 = (wap/2)2/(4f); two constraint equations are written for

x-coordinates, X1 = X2 = wap/2; one constraint equation is written for a y-coordinate, Y1 = −lc/2;

and one constraint equation is written for the distance between points 1 and 2, d12 = lc. Using

these constraints, the coordinate system is referenced to a plane across the aperture of the collec-

tor. However, this method leaves the coordinate system very susceptible to errors in the placement

of these three targets. An error in the z-placement of a single target will tend to tilt the entire

coordinate system. To improve the accuracy of the location of the coordinate system relative to the

collector, additional constraint equations should be used along with additional targets, if possible.

Figure 6.5: Schematic of parabolic collector with targets placed on the corners and along the rims

Targets are placed on the corners and rims of the collector as shown on Fig. 6.5. The

location of the collector rims is typically known quite accurately based on the collector design

with Xrim = ±wap/2 and Zrim = wap
2/(4f). Constraint equations in X and Z can be written

for each target placed along the rim. The result is that the reference plane across the aperture

of the collector becomes a least-squares, best-fit plane through all of the targets. Two additional

constraint equations are written for y-coordinates at one end of the collector (Y1 = Y3 = −lc/2),

and two distance constraints are written for the collector length along each rim (d12 = d34 = lc). No

constraint equations are written for additional targets placed on the ground around the collector

unless their positions relative to the collector are known.

To determine the number of photographs required to provide an over-determined system of

equations for a specific number of targets, we assume that constraints provide seven equations.
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Although, a couple dozen or more constraint equations may actually be written, for the proposed

setup, constraint equations in excess of seven only provide increased accuracy for the original seven

constraints defining the coordinate system. For M photographs and N targets appearing in each

photograph, there will be 6M + 3N unknowns and 2MN + 7 equations. A minimum of four

targets are needed regardless of the number of photographs. When using four targets, at least

three photographs are required. If six or more targets are used, a minimum of two photographs

can be used. For the r-a angle measurement, there will always be many more photographs than

required for the photogrammetry bundle adjustment; however, if the absorber alignment is being

measured independently of the r-a angles, care should be taken to ensure that the minimum number

of photographs is met.

6.3 Reflector-Absorber Angles

To measure the reflector-absorber angles, the camera location must be determined as de-

scribed above, and the location of the absorber reflection must found on the collector. To find the

location of the absorber reflection on the collector, the reflector must be identified in each photo-

graph. The extent of the reflector that is being measured constitutes the region of interest on each

photograph. All image information outside of the region of interest can be discarded. Within the

region of interest, the location of the absorber reflection for a series of photographs can be used

to create an absorber reflection plot, as shown for a perfect collector in Fig. 5.12 and described

in Section 5.1.5. The reflector-absorber angles can then be calculated from the absorber reflection

plot.

6.3.1 Region of Interest

Instead of using traditional image-processing techniques such as edge finding or blob anal-

ysis to locate the region of interest designated by the reflector, the reflector is located using the

collinearity equations. The reflector surface is assumed to conform to the design parabola. Because

the target constraints were developed from that design parabola, the camera location found using
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photogrammetry is referenced to the vertex of the design parabola. Points on the design parabola

are calculated with

Z =
X2

4f
. (6.1)

The surface of the design parabola in object space is discretized with a uniform grid of points, as

shown in Fig. 6.6. This grid of points will be the points at which the r-a angles are measured. If

Figure 6.6: Uniform grid of points discretizing the design parabolic collector

the r-a angles are to be measured with maximum spatial resolution, the grid should be fine enough

to sample every pixel in the original photograph. Spatial resolution is the distance between the

intersection points on the parabola of rays from two adjacent pixels and will be explained in more

detail in Chapter 7.

The location of the reflector in image space is found by substituting the point locations shown

in Fig. 6.6 into the collinearity equations (Eqn. 5.26) to find the corresponding image points for a

perspective-center camera (x, y). The image points are converted to the real camera sensor using

the lens distortion model 5.22. Points in image space are then converted to pixels (xI, yI) by simply
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scaling and shifting them:

xI =
(
x′ +

sx

2

)(Nx

sx

)
yI =

(
y′ − sy

2

)(
−Ny

sy

)
,

(6.2)

where Nx and Ny are the number of pixels across the sensor width and height, respectively, and sx

and sy are the width and height of the image sensor. Note that the conversion from image space

to pixels for the height of the sensor is flipped because an image is defined with pixel (1,1) in the

top left corner. Once the location of the reflector surface is found in pixels, it can be superimposed

on the photograph, as shown in Fig. 6.7.

Figure 6.7: A photograph with the uniform grid
of points across the reflector surface superimposed
on it

Figure 6.8: Parallax-corrected image of the re-
flector surface with a single slice along the col-
lector length highlighted in yellow

A new image is created that includes only the reflector region of interest by interpolating the

intensity values of the original photograph at the point locations on the reflector. In doing so, the

image of the reflector that is created has been corrected for the effect of parallax. The location

of each pixel in this image corresponds to a location on the parabolic reflector. Figure 6.8 shows

the image of the reflector. The reflection of the absorber can be seen clearly near the bottom of

the collector with its centerline highlighted in red. The reflection of the radio-controlled helicopter

used to take the photograph can also be seen in the image just above the receiver.
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6.3.2 Absorber-Reflection Plot

An absorber-reflection plot shows the location of the absorber reflection in all of the images for

a single position along the longitudinal axis of the collector (referred to as a slice). To characterize

the entire region of interest, absorber-reflection plots are created for each position along the collector

length. The number of slices is equal to the number of points along the Y-axis on the uniform grid.

The yellow rectangle in Fig. 6.8 highlights a single slice along the collector length. An absorber-

reflection plot is created by taking that same slice from each photograph and combining them into

a single image, as shown in Fig. 6.9. The x-axis on top shows that about 400 photographs were

used to create this absorber-reflection plot.

Figure 6.9: Absorber-reflection plot for a single slice along the collector length (highlighted in
yellow in Fig. 6.8) for all camera positions with the center of the absorber reflection superimposed
in red

The r-a angles are determined from Eqn. 6.3 originally presented in Section 5.1.5:

θra(X) =
1

2
tan−1

(
Xc −X
Zc − Z

)
, (6.3)
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where X and Z are points on the design parabola at which the absorber reflection appears for a

corresponding camera location (Xc, Zc). The camera locations for each photograph, i, were found

using photogrammetry (Xc,i, Zc,i). The photograph number i(X) at which the absorber reflection

appears at point X on the parabola is given by the centerline of the absorber reflection shown in

red. Because the camera positions are located close together, the camera position (Xc,i, Zc,i) can

be found for non-integer values of i by interpolating between the known camera positions.

6.3.3 Absorber-Reflection Centerline

The centerline of the absorber reflection in each absorber-reflection plot is found using a set

of contour lines. The difficulty required to find the absorber-reflection centerline depends on what

else the collector is reflecting in each image. On a clear day with no clouds and the collector aimed

vertically at the sky, the background reflection will be blue sky, as shown in Fig. 6.9. For these

images, finding the absorber-reflection centerline is straightforward. The black absorber labeled in

Fig. 6.9 is removed and replaced with white using blob analysis so that it does not interfere with

the absorber reflection. Contour lines are then calculated using a marching-squares algorithm for

a set of user-defined intensity levels that are based on the image exposure. It is not crucial that

the contour lines mark the edge of the absorber reflection, but only that they are equidistant from

the absorber-reflection centerline. Figure 6.10 shows an absorber-reflection plot with the absorber

blocked out in white and eleven contour lines. In some places, the contour lines are so close together

that only the top contour line in red can be seen. From these contour lines, a single contour line

on each side of the absorber is selected to represent the edges of the absorber reflection. These

two contour lines are selected based on the steepest gradient of image intensity across multiple

contour levels and then averaged at each point on the aperture to determine the absorber-reflection

centerline.

If the collector is aimed at the horizon and the background reflection includes shadows and

objects on the ground, the absorber reflection can be more difficult to locate. The procedure is the

same as described above; however, there will most likely be false edges detected in the background
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Figure 6.10: Absorber-reflection plot with contour lines superimposed

reflection. In this case, filters are used to remove any false edges. Filters that have proved useful

in identifying the correct contour lines include the size of the contour line and the position and

angle of the contour line across the image. Additional filters are created as needed for specific sets

of images. Once a set of effective filters is identified for a single absorber-reflection plot, it can

typically be applied to all of the absorber-reflection plots created during that test. Figure 6.11

shows an absorber-reflection plot with background reflection of both sky and ground. Shadows on

the ground make it more difficult to find the centerline of the absorber reflection near the collector

vertex as highlighted in red.

6.4 Absorber Alignment

Once the reflector-absorber angles are measured, more specific error information can be ob-

tained by measuring the absorber location and then subtracting the effective slope errors from

the r-a angles to determine the reflector surface slope errors. This novel absorber alignment mea-

surement technique was developed specifically for the Observer method; however, it can be used
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Figure 6.11: Absorber-reflection plot with noisy background reflection including shadows on the
ground

independently or in conjunction with measurement of the r-a angles. The absorber alignment is

measured by taking at least two photographs from opposite sides of the aperture of the entire col-

lector, including the absorber. The camera locations are found using photogrammetry as described

in Section 6.2. Each photograph of the absorber can then be used to measure the location of the

projection of the absorber onto the focal-line plane.

6.4.1 Measurement Setup

The camera should be positioned at about 45◦ angles from the optical axis of the collector

at its vertex. The photographs should be taken such that the collector fills as much of the image

as possible. A minimum of two photographs, one from each side of the aperture, should be taken

as shown in Fig. 6.12.

To position the camera at 45◦ angles to the collector, some means of elevating the camera

must be available. If the collector is oriented straight up at 90◦ from the horizon, the camera must

be elevated on each side of the aperture to reach an appropriate location. The most appropriate

equipment for positioning the camera will depend on the collector geometry and the environment

around the collector.
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Figure 6.12: Recommended camera positions for measuring the absorber alignment

Photographs taken during the measurement of the reflector-absorber angles may be able to

satisfy the requirement for the absorber measurement. The absorber must span a width of at least

35 pixels in each image to accurately locate the absorber (see Section 7.4). Likewise, to triangulate

the absorber position along the optical axis (Za), the angle between camera locations (Xc1 ,Zc1)

and (Xc2 ,Zc2) must be sufficiently large. Ideally, the angle between absorber photographs should

be 90◦ when possible.

6.4.2 Projection of the Absorber

If the camera location is known, the projection of the absorber onto the focal-line plane can

be measured in each photograph. The projection of the absorber onto the focal-line plane is carried

out in the same manner as locating the absorber reflection for the r-a angles. A uniform grid of

points is created across the plane at the focal line of the collector, perpendicular to the optical axis

(focal-line plane), as shown in Fig. 6.6. The parabolic trough reflector is also discretized; although

the reflector points are not used to find the absorber location, they are useful here as a visual guide.

As with the r-a angles measurement, the grid should be fine enough to sample every pixel across

the image of the absorber so that no information is lost.

As with the reflector, the point locations on the focal-line plane in image space for the

perspective-center camera are found by solving the collinearity equations explicitly. The image

points are then converted to a real camera using the lens distortion model. The image point

locations for the real camera are superimposed on each photograph. Figure 6.14 shows a photograph
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of a collector on which a uniform grid of points across the reflector and a uniform grid of points

across the focal-line plane are superimposed.

Figure 6.13: Uniform grid of points discretizing
the parabolic collector (blue) and the focal-line
plane (red)

Figure 6.14: Uniform grid of points across the
focal-line plane superimposed onto a photo-
graph of the collector (red)

Figure 6.15: Parallax-corrected photograph of the focal-line plane showing the absorber with con-
tour lines and the absorber centerline overlaid on it

The intensity value at the location of each point on the focal-line grid is determined using

linear interpolation based on the intensity values in the original photograph. Figure 6.15 shows the

resulting image of the absorber at the focal-line plane in which the location of the absorber directly

corresponds to the measured offset of the absorber projected onto the focal-line plane (Xf).

The centerline of the absorber image is found in the same manner as the absorber reflection

centerline was found using contour lines. Once the location of the centerline is known in pixels, it

can be directly converted to an offset from the focal line in millimeters because the image of the

absorber was created on a known uniform grid. To simplify processing, each photograph of the
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absorber is first filtered using blob analysis to remove gaps in the image of the absorber due to

the receiver supports. Contour lines are calculated at discrete intensity levels across the image and

then filtered to remove noise and false edges. Because there is much less intensity variation across

the absorber image than across the absorber reflection image, all of the remaining contour lines

are averaged to find the centerline of the absorber. Figure 6.15 shows the image of the absorber

overlaid with the final contour lines and the averaged centerline.

The absorber location (Xa, Za) at each point along the length of the collector is found by

substituting each camera position (Xc, Zc) and location of the absorber projection (Xf , Zf) into

Eqn. 5.12 to create a system of linear equations and then solving for the absorber position using

the least-squares method.

6.5 Reflector Slope Errors

The reflector surface slope errors can be calculated from the measured r-a angles and absorber

position with:

θr = θra − θa. (6.4)

Once the reflector slope errors are known, measurement error can be reduced by fitting a quadratic

surface to the reflector slope. This technique is used by other reflector surface slope measurement

tools including both VSHOT and SOFAST and is important when testing a single reflector panel

oriented arbitrarily in space. For a single panel, it is difficult to create a reference plane to the

design parabola using photogrammetry targets as is done for full collector modules. Likewise, the

shape of a single reflector panel that is not mounted on its intended frame may be largely unknown

because the frame is essential in creating the parabolic shape. To avoid measurement errors caused

by the unknown shape of the reflector panel, the slope errors are minimized by fitting a second-order

polynomial to the surface. The slope errors become the difference between the measured reflector

slope and the slope of the second-order polynomial. An iterative, least-squares method is used to

perform this fit, as described in Appendix B.
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This best-fit quadratic technique is useful in the laboratory when measuring a single reflector

panel whose shape is largely unknown. However, a simpler fitting technique can be applied when

the reflector shape is well known, but the targets cannot be placed accurately with respect to the

aperture plane of the collector. In this case, the measured slope errors can be fit to a parabolic

surface by rotating the parabolic collector about its longitudinal axis. A rotation of the entire

coordinate system about the longitudinal axis of the parabola will appear as a bias slope error.

To fit the reflector slope errors to the design parabolic surface rotated about the longitudinal axis,

the average slope error is calculated and subtracted from the reflector slope errors, resulting in the

best-fit slope errors based on the rotated design parabola.

Whichever fitting technique is used on the reflector surface slope errors, it is essential to

remember than no fitting should be performed directly on the reflector-absorber angles. Data fitting

should only be applied to reflector surface slope errors. Performing a quadratic best-fit on measured

r-a angles tends to remove most of the effective slope errors due to absorber misalignment, while

introducing erroneous errors at the corners of the collector. Even performing a simple rotational

fit about the longitudinal axis may remove errors due to absorber misalignment. An absorber

misalignment along the transverse axis causes a non-zero average of effective slope errors across the

entire collector that will contribute to a bias error in the r-a angles.

6.6 Practical Considerations

To use the Observer method in practice, several practical issues must be addressed. Posi-

tioning the camera relative to the collector is non-trivial. Several different mounting platforms

have been tested to determine their effectiveness; the lessons learned are presented here. Likewise,

general guidelines are presented here to aid in selecting a camera. Most importantly, care should

be taken with the types of camera lenses and sensors used for Observer measurements.
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6.6.1 General Camera Requirements

The main hardware requirement for Observer measurements is the digital camera. The

specific camera requirements vary greatly from application to application. For example, the type

of camera used for measuring a collector in the laboratory where the camera can be positioned

with high precision and measurement time can be extended may be quite different from a camera

used to measure multiple collectors from a radio-controlled helicopter in the field. However, there

are several requirements to keep in mind when selecting a camera, the most important of which

is a fixed-focal-length lens. It is imperative that the focal length of the lens not change between

photographs. If you are using a variable focal-length lens, the lens must be fixed at a single focal

length and maintain that focal length throughout the entire measurement, even when turning on

and off the camera. If the camera will be used for multiple applications in which different focal

lengths would be needed, a camera with interchangeable lenses should be selected. As a general

guideline, the shortest focal-length lens without obvious fish-eye distortion should be used. A wide-

angle lens allows a wider angle between photogrammetry targets visible in the camera’s field of view

(FOV), improving the accuracy of the camera location measurement, which is crucial to attaining

low measurement uncertainty. The Observer method has been implemented successfully with a

12-mm focal-length lens.

Equally as critical to the Observer method is the camera sensor. Ideally, a large-format sensor

should be used. Nikon and Canon typically use 23.6 × 15.6 mm and 22.2 × 14.8 mm sensors in their

digital single-lens reflex (DSLR) cameras, respectively. Using a large-format sensor contributes to

a wider FOV and tends to reduce noise. There are two types of digital camera sensors currently in

use: CCD (charge-coupled device) and CMOS (complementary-metal-oxide-semiconductor). Both

sensors have proven effective for the Observer method when taking still images; however, CMOS

sensors should generally not be used when taking images in video mode. When taking still images,

both sensor types use a global shutter; however, in video mode, a CCD sensor uses a global shutter,

whereas a CMOS sensor uses a rolling shutter. With a global shutter, the entire sensor is exposed at
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the same time. For low shutter speeds, rapid camera movement will cause blur in the image taken

with a global shutter. A rolling shutter exposes different portions of the sensor at different times.

Typically, the sensor is exposed from top to bottom by rolling the shutter across the sensor so that

only part of the sensor is exposed at any point in time. With a rolling shutter, camera movement

can result in stretch or compression of the images. Increasing the shutter speed on a video using a

rolling shutter will decrease the exposure time for each pixel; however, the extent to which it will

impact the time lag between exposing the first and last pixels on the sensor is held proprietary

by camera manufacturers. Experience has shown that a global shutter is always preferable to a

rolling shutter for the Observer measurement. For applications with a stationary camera and a

slowly rotating collector, a rolling shutter may be acceptable. Whenever the motion of the camera

or collector cannot be precisely controlled at a very slow, steady speed, rolling shutters should not

be used.

The resolution of the camera is another important considerations. The resolution of the

camera is the number of pixels across the height and width of an image. A higher resolution

camera will typically yield more accurate results for a fixed measurement setup. Specifically, the

accuracy in the absorber location measurement in the X-direction depends heavily on the image

resolution. When solving for the combination of slope error and absorber errors without need to

distinguish between the two types of errors, a lower resolution is acceptable. The impact of camera

resolution on measurement uncertainty is explored in detail in Chapter 7.

The frame rate of a camera is the number of images that can be acquired in one second.

The frame rate affects the speed at which the images can be acquired. For low frame rates, the

image acquisition time can be increased to obtain the same number of photographs as with a higher

frame rate so that the uncertainty is unchanged. The frame rate need only be considered if there

is no control over the speed of the camera motion or collector rotation or a particularly short

measurement time is required.
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6.6.2 Camera Mounting Platforms

The greatest flexibility in camera position was obtained by mounting the camera on a multi-

axis gimbal on a radio-controlled (R-C) helicopter. With a skilled pilot or sophisticated autopilot,

the helicopter can be maneuvered into any position with respect to the collector; the gimbal can

then be used to aim the camera at the collector. A stabilization platform on the helicopter greatly

reduces vibrations and improves image quality. Using way points, the helicopter can be programmed

to survey multiple collectors with minimum required operator control. Sophisticated autopilots

can also be used to maintain the orientation of the camera’s FOV relative to the collector and

maintain a constant camera height. Both a traditional single-rotor, gas-powered R-C helicopter

and a selection of smaller multi-rotor electric copters were successful in positioning the camera. The

larger, gas-powered, single-rotor helicopter operated more successfully in windy conditions and was

able to carry a larger payload for a longer flight time. Figure 6.16 shows a photograph of the most

successful R-C helicopter used. This helicopter was constructed and flown by Northwest Aero Pix.

The camera can be seen mounted below the helicopter and aimed at the ground.

Figure 6.16: Radio-controlled helicopter designed and flown by Northwest Aero Pix

Significant differences were experienced between R-C helicopters with and without stabiliza-
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tion platforms. Without a stabilization platform, the camera cannot be positioned so that the

collector fills the FOV because unpredictable motion of the helicopter would frequently move the

collector outside the FOV. In this case, the camera must be pointed straight down and no attempt

made to track the collector as the camera moves across the aperture. The collector can only fill less

than half of the FOV so that the collector remains visible as the camera scans across the collec-

tor. Additionally, a wide buffer is needed around the collector to ensure that the collector remains

visible. Figure 6.17 shows a collector relative to the FOV for a non-tracking and tracking camera.

A sophisticated autopilot and camera stabilization platform made it possible for the operator to

Figure 6.17: The camera’s field of view for a non-tracking and tracking camera

track the collector with the remote-controlled gimbal. The camera was thus positioned so that the

collector filled a much larger portion of its field of view. A small buffer is still required around

the collector to account for small unpredictable movements of the helicopter. Because targets are

mounted on the corners of the collector, filling the camera’s FOV with the collector increases the

accuracy of the camera location measurement and thus reduces uncertainty in the r-a angles.

Success was also achieved positioning the camera with a 50-ft extendable mast attached to

a truck hitch. The camera is mounted on the top of the mast in its retracted position about 9 ft

above the ground. A radio-controlled gimbal system with wireless image transfer is used to see the

camera’s FOV, make adjustments to the orientation of the camera, and take photographs. The

collector is oriented between 0◦ and 45◦ above the horizon, and the mast is deployed vertically while

taking photographs of the collector. There is a fairly high level of user involvement required to keep
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the camera pointed at the collector because the mast is not especially stable and tends to sway

even in low winds; however, with this system, the camera can be positioned so that the collector

fills a large portion of the camera’s field of view. Using the mast system, a single collector can

be surveyed in about 15 minutes. Unfortunately, the geometry of the setup limits the orientation

of collectors measured to less than 45◦ above the horizon. Figure 6.18 shows a photograph of the

mast in action.

Figure 6.18: Extendable mast with the camera mounted on a multi-axis gimbal taken at Xcel
Energy’s Cameo Power Plant

In the laboratory, the r-a angles were successfully measured by mounting the camera on a

vertical lift and scanning it across the aperture of a reflector panel. For a panel mounted with its

transverse axis parallel to the optical axis, the camera was mounted on a tripod with wheels and

scanned horizontally across the aperture. A more permanent measurement setup could be created

in the laboratory with a track system mounted on the ceiling that enabled smooth movement of

the camera across a reflector facing up. However, this setup has not yet been tested or imple-

mented. Other camera-mounting platforms that have been tested with less success are described

in Appendix C.



Chapter 7

Uncertainty Model

7.1 Overview

A detailed photograph generation and analysis code was developed to provide initial valida-

tion for the Observer method and to determine how the uncertainty depends on the test parameters.

The code generates photographs of the absorber and reflection of the absorber based on user-defined

camera parameters, collector design, and known absorber position and reflector slope errors. The

computer-generated photographs are then analyzed in the same manner that real photographs

would be analyzed to find the reflector-absorber angles, absorber alignment, and reflector slope

errors.

7.1.1 Photograph Generation

To generate a photograph, each pixel on the camera sensor is represented by a single ray.

The rays are traced from the sensor into a three-dimensional scene containing the camera, collector,

and absorber. Each ray is classified as either a hit or miss in each of the following categories:

(1) Hit/Miss the collector

(2) Hit/Miss the absorber directly

(3) Hit/Miss the absorber after reflection off the reflector.

A logical array is created equal to the size of the camera sensor in pixels for each of the above

categories. A complete photograph is created from the three arrays using simple logical arguments,
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such as a ray that misses the collector or hits the absorber directly cannot hit the absorber after

reflection.

Collector design

The collector is composed of a reflector and an absorber that are each defined independently

within the same coordinate system. The position of the reflector surface is represented with a

second-order polynomial. The slope of the reflector surface is described as a set of slope errors

applied to the partial derivatives of the quadratic surface. Because displacement errors between

the quadratic surface and the actual reflector shape have significantly smaller effects than slope de-

viations on the direction of reflected rays, this model provides a good description of the relationship

between incident and reflected rays. The general quadratic equation used to model the collector

surface is given in Eqn. 7.1:

Z(X,Y ) = aX2 + bXY + cX + dY 2 + fY + h (7.1)

with

|X| ≤ wap

2
and |Y | ≤ lc

2
,

where wap is the aperture width, and lc is the length of the collector. For an ideal parabola with

focal length (f), the coefficient, a, is equal to 1
4f and the other coefficients are all equal to zero.

Additional reflector surface slope errors θr and θr,long in the transverse and longitudinal directions,

respectively, are added to the reflector surface model to represent striations or dents commonly

found on reflectors.

The absorber is defined by the location of its centerline relative to the vertex of the collector

(Xa, Za) and its diameter (Da). At this time, only straight absorber tubes located parallel to the

focal line are modeled due to the added complexity of mathematically describing a rotated cylinder.

The receiver glass envelope is, likewise, defined by its centerline and inner and outer diameters, as

well as its index of refraction. The absorber is not necessarily concentric to the glass envelope.
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Camera parameters

The central-perspective model with radial and tangential lens distortion is used to describe

the camera (Section 5.5.1). The central-perspective model is defined by its sensor size, sx, sy, focal

length, fc, principal point, x0, y0, and lens distortion coefficients K1,K2,K3, P1, P2. The external

orientation parameters describing the camera location relative to the collector vertex, Xc, Yc, Zc,

and Euler angle rotation, ω, φ, κ, are provided for each photograph.

Generating rays

All of the rays traced from the camera can be treated as though they emanate from the

camera location. In image space, the camera location is represented by the perspective center of

the camera. The direction of a ray in object space originating from the camera (~rc) that corresponds

to image point (x, y) on a perspective-center camera is calculated with

~rc = −R−1


x

y

−fc

 , (7.2)

where R is the rotation matrix (Eqn. 5.25) calculated from the external orientation parameters of

the camera.

Intersection with reflector surface

An intersection point of an incident ray with the quadratic surface (Xt, Yt, Zt) is determined

by parameterizing in the direction of the incident ray from the camera as given in
Xt

Yt

Zt

 =


Xc

Yc

Zc

+ t~rc. (7.3)

The parameter, t, is found by substituting (Xt, Yt, Zt) in Eqn. 7.3 into (X,Y, Z) in Eqn. 7.1 and

solving for t, which yields a quadratic function of t for which the solution is the well-known quadratic
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equation:

t =
1

2A

(
−B ±

√
B2 − 4AC

)
(7.4)

with coefficients

A = arcx
2 + brcxrcy + crcy

2

B = 2aXcrcx + b
(
Xcrcy + Ycrcx

)
+ 2cYcrcy + drcx + grcy − rcz

C = aXc
2 + bXcYc + cYc

2 + dXc + gYc + h− Zc.

(7.5)

The parameter, t, is then substituted back into Eqn. 7.3 to find the intersection point (Xt, Yt, Zt).

In order for the ray to intersect the parabolic collector, the intersection point must lie within the

length and aperture constraints of the collector. Specifically, the following two conditions must be

satisfied:

|Xt| ≤
wap

2

|Yt| ≤
lc
2
.

Reflection

In this model, if a ray intersects the reflector surface of the collector, it is specularly reflected.

The incident ray, reflected ray, and surface normal are described by their unit vectors ~rc, ~rr, ~n,

respectively. The reflected ray is thus calculated using Snell’s Law (Eqn. 7.6):

~rr = ~rc − 2(~n · ~rc)~n. (7.6)

The ideal surface normal is found by taking the gradient of the quadratic surface (Eqn. 7.1) at

the intersection point (Xt, Yt, Zt). The gradient of the quadratic surface is given in Eqn. 7.7. The

surface normal including reflector slope errors, θr, is given in Eqn. 7.8:

∇ =

[
(2aX + bY + d) (bX + 2cY + g) 1

]
(7.7)

~n =

[
− tan

[
tan−1 (∇x)− θr

]
− tan

[
tan−1 (∇y)− θr,long

]
1

]
. (7.8)



80

Intersection with Absorber

To determine whether a ray intersects the absorber, the receiver glass and receiver absorber

are both modeled as perfect cylinders. An incident ray is traced through the receiver in multiple

steps:

(1) Intersection with outer edge of the glass

(2) Refraction through the glass envelope

(3) Intersection with the inner edge of the glass

(4) Refraction into the annulus between the absorber and glass envelope

(5) Intersection with the absorber.

Intersection with a Cylinder

The equation of a cylinder with diameter, Da, and center (Xa, Za) is given by

(X −Xa)
2 + (Z − Za)2 =

1

4
D2

a. (7.9)

To simplify the solution, two additional variables are defined:

∆X = Xa −X

∆Z = Za − Z.

Solving for the intersection point between a ray, ~r, and cylinder yields a distance of

t =
rx rz ∆X + r2

z ∆Z ± rz A
rz(r2

x + r2
z)

(7.10)

with

A =

√
r2
z(

1

4
D2

a −∆X2) + r2
x(

1

4
D2

a −∆Z2) + 2 rx rz ∆X ∆Z.

A solution of two distinct real roots for the distance (t) means that the ray intersects the cylinder

twice. The shorter distance is the first intersection point and the value of interest. For a single
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distinct real root, the ray is tangent to the cylinder. If the distance has a non-zero imaginary part,

the ray does not intersect the cylinder. The ray ~r in Eqn. 7.10 represents the incident ray and can

be a ray from the camera, a ray reflected from the collector, or a ray coming from either edge of

the glass envelope.

Refraction

A ray passing through the glass envelope is refracted at both glass interfaces. The ratio of

the index of refraction of the first medium to the index of refraction of the second medium is n12.

The incident ray, refracted ray, and surface normal are described by their unit vectors ~ri, ~rt, ~n,

respectively. The refracted ray is thus calculated using Eqn. 7.11:

~z = n12 (~ri − (~ri · ~n)~n)

~rt = ~z −
(√

1− |~z|2
)
~n.

(7.11)

7.1.2 Camera Location

To reduce processing time, targets are not included in the generated images. The camera

location is found independently of the generated images. The camera uncertainty includes errors in

the placement of targets, errors in the target image centroids, and errors in the camera calibration

parameters. The true target image locations for the perspective-center camera are determined with

the collinearity equations (Eqn. 5.26) based on the true camera and target locations. The target

image locations are converted to a real camera using the Newton-Raphson method to solve the

lens distortion equations (Eqns. 5.22). Random errors are added to the target image locations of

the real camera to represent image processing errors (centroiding errors for intentional targets).

The target image locations are then converted back to the perspective-center camera with random

errors included in the lens distortion coefficients.

Random errors are also applied to the distance and target coordinate constraints. Pho-

togrammetry bundle adjustment, as described in Section 5.5.4, is then used to find the camera

locations and target locations in object space. The calculated camera locations can be compared to
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the true camera locations to determine the error in camera location due to the combined effects of

target centroiding error, camera calibration error, constraint target placement error, and distance

measurement error.

7.1.3 Image Analysis

The computer-generated images are analyzed in the same manner that real images are ana-

lyzed. The absorber location is found by projecting a uniform grid of points along the focal-line

plane and locating the centerline of the absorber image in each photograph, as described in Sec-

tion 6.4. The reflector-absorber angles are found by projecting by a uniform grid of points onto

the reflector surface in each photograph and locating the reflection of the absorber, as described

in Section 6.3. The reflector slope errors are then found by subtracting the effective slope errors

(Eqn. 5.7) due to the absorber position from the reflector-absorber angles.

7.1.4 Application

The measurement uncertainty for a set of data acquired in the field or laboratory can be

calculated directly by inputing the model parameters directly from the measurement data. To

determine the uncertainty for a specific measurement, the measured r-a angles are used as the input

for generating photographs. Likewise, the camera positions and number of photographs for the

model are taken directly from the camera positions measured during the test. Using the measured

data in the uncertainty model provides not only a more accurate measurement uncertainty, but

also, gives the spatial variation of the measurement uncertainty across the collector due to the

possible nonuniformity of the camera positions.

7.2 Model Convergence

If there is no uncertainty, the output absorber position and r-a angles should approach the in-

put absorber position and r-a angles. Discrepancies between the inputs and outputs are a function of

the resolution of the computer-generated photographs and errors inherent in the Observer method.
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As the resolution of the photographs increases, the model should converge to a non-zero difference

between inputs and outputs. The remaining discrepancy between input and output absorber po-

sition and r-a angles is the error inherent in the Observer method. This error includes refraction

and longitudinal slope errors. Refraction is included during the image generation; however, the

Observer measurement cannot measure the location of the receiver glass relative to the absorber

and thus assumes there is no glass envelope. Likewise, longitudinal slope errors are included in

the image generation; however, the Observer method cannot distinguish between a surface slope

error in the longitudinal and transverse directions. The Observer measurement, therefore, includes

errors in the r-a angles due to unknown longitudinal slope errors, as described in Section 5.2. To

demonstrate the model convergence with zero uncertainty in the model parameters, a resolution

refinement study was performed.

7.2.1 Resolution

There are two components of resolution in the Observer method: spatial and angular reso-

lution. The spatial resolution is the spatial frequency along the collector or across the aperture in

object space of image pixels. Due to the effect of parallax, the spatial resolution is not constant;

however, it does not vary significantly across the collector aperture and can be well approximated

with its average for typical measurement setups. The spatial resolution will be represented by its

inverse, the linear distance between adjacent pixels in object space, which we will call the spatial

resolution indicator. The average spatial resolution indicator for the absorber measurement is ap-

proximated with ∆xabs, which is the average distance in the transverse direction at the focal line

between two adjacent pixels. The average spatial resolution indicator for the r-a angle measurement

is approximated with ∆xap, which is the average distance along the X-axis (Y=0, Z=0) between

two adjacent pixels. The average spatial resolution indicators are calculated with

∆xabs =
sy
fcNy

√
X2

c + (Zc − f)2 (7.12)

∆xap =
sy
fcNy

√
X2

c + Z2
c , (7.13)
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where the collector is defined by its focal length, f . The camera is located at (Xc, Zc). The camera

sensor height is sy, and there are Ny pixels across the sensor height. The camera lens focal length is

fc. The camera is oriented with the sensor height along the transverse axis of the collector and the

sensor width along the longitudinal axis of the collector. If the camera is rotated 90◦, the spatial

resolution indicators should be calculated with respect to the sensor width instead of height. The

average spatial resolution indicator along the Y-axis (∆yap) is also of importance to the r-a angle

measurement; however, because typical camera sensors have nearly square pixels, we assume that

∆xap ≈ ∆yap. Figure 7.1 shows the spatial resolution for the absorber position and r-a angle

measurements.

Figure 7.1: The concept of spatial resolution for the Observer method

The angular resolution only applies to the r-a angle measurement and is the angular frequency

of photographs. The angular resolution varies from one point on the collector to another as well as

between different photographs; however, these variations are small for typical measurement setups.

The angular resolution will be represented with its inverse, the difference in camera angles between

two consecutive photographs for a point on the collector, which we will call the angular resolution

indicator. The angular resolution indicator is approximated by its average, ∆Φc, found with

∆Φc =
1

M − 1

M−1∑
i=1

∣∣∣∣tan−1

(
Xc,i

Zc,i

)
− tan−1

(
Xc,i+1

Zc,i+1

)∣∣∣∣ , (7.14)

where i denotes a particular photograph, and M is the number of photographs. For a fixed mea-
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surement setup, the angular resolution is related to the number of photographs taken from one side

of the aperture to the other. As the number of photographs increases, the resolution is refined.

However, for different camera-collector distances, the number of photographs required to achieve

a desired angular resolution varies. Figure 7.2 shows the concept of angular resolution with the

angles approximated as ∆Φc. A camera located at a distance Zc,1 requires more photographs than

a camera located at a farther distance, Zc,2, to achieve the same angular resolution.

Figure 7.2: The concept of angular resolution for the Observer method

7.2.2 Absorber Alignment

To demonstrate convergence for the absorber alignment, the spatial resolution across the

absorber was increased from about ∆xap= 40 mm to 1 mm. This was equivalent to increasing the

camera resolution from (178× 268) pixels to (5696× 8576) pixels for the Nikon D300 camera with

20-mm lens positioned at (Xc, Zc) = (-7,7) m and (7,7) m. The collector geometry is an LS-2 with

the absorber offset 3 mm toward the rim (X) and 5 mm toward the vertex (Z). The receiver glass

is centered at the focal line so that the receiver absorber and glass are not concentric. Figure 7.3

shows the error in the calculated absorber position as a function of the image resolution. Comparing

the error in Xa to Za, it is obvious that the absorber position in X is significantly more dependent

on the spatial resolution than the absorber position in Z.



86

Figure 7.3: Convergence of the absorber position error for zero uncertainties

Instead of leveling out to a constant value, the error approaches zero. Therefore, we conclude

that the error due to the effects of refraction is less than or equal to the error in the absorber

measurement with the finest resolution. From Fig. 7.3, we see that the error in the absorber

measurement due to refraction is less than 0.1 mm in each direction. Changing the receiver absorber

and glass positions did not significantly change the results.

7.2.3 Reflector-Absorber Angles

As with the absorber position, increasing the angular and spatial resolutions for the r-a angles

will reduce the difference between the input and output r-a angles to a constant error. For the

r-a angles, this error is caused by both refraction and longitudinal slope errors. It was shown with

the absorber model results that the refraction has a very small effect; therefore, the majority of

the constant error in the r-a angles can be attributed to longitudinal slope errors. The ill effect

of longitudinal slope errors can be minimized by increasing the distance between the camera and

collector and positioning the camera near the center of the collector longitudinally, as described in

Section 5.2. To demonstrate this effect, the sinusoidal pattern of longitudinal errors:

θr,long = 0.005 sin
Y

10wap
sin

X

10wap
(7.15)
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shown in Fig. 7.4 is used with a constant 0-mrad transverse slope error. The error in r-a angle

measurement due to longitudinal slope errors is independent of the transverse slope errors.

Figure 7.4: Input longitudinal slope errors

Figure 7.5 shows the error in output r-a angles caused by the longitudinal slope errors for

camera distances of 20 m and 10 m. As expected, the errors in the r-a angles increase toward the

ends of the collector because the longitudinal incidence angle (the angle of the incident ray from

the camera along the longitudinal axis) increases away from the center of the collector. Likewise,

the error in r-a angles increases as the camera moves closer to the collector because, once again,

the longitudinal incidence angle increases.

To demonstrate model convergence for the r-a angles, the average spatial resolution was

increased by increasing the number of pixels in the images, and the average angular resolution was

increased by increasing the number of photographs. The camera distance is set to 15 m, and the

model uncertainties are set to zero. The absorber is offset from the vertex by 3 mm in X and 5 mm

in Z. A custom reflector transverse slope error map was created for this test using real, measured

data from a single reflector panel and repeating it in different orientations, as shown in Fig. 7.6.

This map represents high-frequency slope errors in the X- and Y-direction, the measurement of

which especially depends on the spatial and angular resolution of the data. The longitudinal slope

errors used are given in Fig. 7.4. The error in r-a angles is represented with the 0.95 error percentile,
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Figure 7.5: Error in the calculated r-a angles for zero uncertainties with longitudinal slope errors
given in Fig. 7.4 for camera distances of 20 m (left) and 10 m (right)

Figure 7.6: Input transverse slope errors

meaning that 95% of the differences between input and output r-a angles are below that value. This

reduces the impact of large errors that may occur due to slope error discontinuities at reflector edges.

Figures 7.7 and 7.8 show the error in r-a angles as a function of the spatial resolution indicator

and angular resolution indicator, respectively. The error levels off to about 0.2 mrad, which is due

to the longitudinal slope errors. For the case with zero longitudinal slope errors, the error in the

calculated r-a angles approaches zero.
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Figure 7.7: Convergence of the r-a angles er-
ror with constant angular resolution indicator of
0.8 mrad

Figure 7.8: Convergence of the r-a angles er-
ror with constant spatial resolution indicator of
2.3 mm

7.2.4 Experimental Data

In addition to the model results, a set of real data was used to demonstrate the effect of

angular resolution on the measurement of r-a angles. The data used here were taken with a

stationary camera mounted on the ground imaging a rotating collector. The collector rotated

smoothly so that the photographs are evenly spaced across the collector aperture. The data were

first analyzed using the full 950 photographs as the baseline case. The data were then analyzed

eight more times using only a fraction of the photographs for each analysis. Figure 7.9 shows

an absorber-reflection plot created with 950 photographs compared to an absorber-reflection plot

created with about 30 photographs.

As the number of photographs decreases, the angular resolution decreases and rapidly chang-

ing r-a angles across the aperture can no longer be resolved. For each resolution case, the maps

of r-a angles was compared to the highest resolution case to determine the normalized error in the

r-a angles due to decreased angular resolution. Figure 7.10 shows the normalized error for a 90%

confidence as a function of the angular resolution (left) and number of photographs (right). A 90%

confidence was used because the highest 10% of errors tend to be due to very large errors around

the mirror edges, which will typically be discounted as noise in the measurement.
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Figure 7.9: Absorber-reflection plots with high angular resolution (∆Φc ≈ 0.5 mrad) on the left
and low resolution (∆Φc ≈ 16 mrad) on the right

Figure 7.10: Normalized error in the r-a angles for a 90% confidence as a function of angular
resolution indicator (left) and number of photographs (right)

To accurately perform a similar study with the spatial resolution, multiple sets of data should

be taken with the camera set to different resolutions. The targets must be re-sized specifically for

each camera resolution. Due to the rather limited camera resolution settings, this study was not

performed. Instead, to demonstrate the concept of spatial resolution with real data, the data

set from the angular resolution study was used again. The camera locations were found using

the full-resolution images. The images were then uniformly sampled to decrease their resolution.

The reduced photographs were analyzed using the original camera locations. From an original
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resolution of 1280 × 720, the resolution was reduced to 640 × 360, 320 × 180, 160 × 90, and 80 ×

45. Figure 7.11 shows absorber-reflection plots with full and reduced resolution.

Figure 7.11: Absorber-reflection plots with high spatial resolution (∆xap ≈ 1 cm) on the left and
low spatial resolution (∆xap ≈ 15 cm) on the right

Figure 7.12: Normalized error in the r-a angles for a 90% confidence as a function of the spatial
resolution indicator

7.3 Model Parameters

To determine the uncertainty in the Observer measurement, non-zero error sources must be

included in the Monte Carlo uncertainty model. The error sources included in the uncertainty

model include the following:
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• Target coordinate constraints

• Distance constraints

• Camera focal length

• Camera principal point

• Camera lens distortion coefficients

• Target image locations

• Absorber image centerline

• Absorber-reflection image centerline.

Normal distributions of random error with average values µ = 0, and standard deviations, σ, are

specified for each uncertainty source.

Target coordinate constraint uncertainty accounts for discrepancies between the physical

target locations and the target coordinate constraint values. Target coordinate constraints are

typically based on the collector design. Errors between the collector design shape and the actual

collector shape are accounted for in the target coordinate constraint errors. Additionally, differences

between the assumed placement of the targets and the actual placement are included in this error

term. The target coordinate constraint uncertainty is highly dependent on the specific collector

being measured. Reflector position tolerances vary between manufacturers and even collectors.

Therefore, a range of target coordinate uncertainties are used in the model from σ = 1 mm to

σ = 10 mm.

The distance constraint uncertainty accounts for discrepancies between the physical distance

between two targets and the measured distance. If the distance constraint values are measured

with a laser distance meter or measuring tape, the distance constraint error should reflect the error

in that measurement device. State-of-the-art laser distance meters claim uncertainties of ±1.5 mm,

with additional errors arising from the placement of the laser distance meter with respect to the

target center. The distance constraint uncertainty is, therefore, approximated with σ = 3 mm.

Uncertainty in the camera calibration includes errors in the lens focal length, principal point,

and lens distortion coefficients. The camera calibration uncertainty includes errors in the cali-
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bration procedure, differences between the lens distortion model and the actual performance of

the camera, as well as changes in the lens between taking the calibration photographs and taking

the measurement photographs. Camera calibration uncertainty was estimated using the Caltech

MATLAB calibration toolbox. The uncertainty for the Nikon D300 with 20 mm focal-length lens

is estimated as σ = 3× 10−3 mm in the focal length, σ = 5× 10−3 mm in the principal point, and

σ = 1× 10−6, 1× 10−8, 2× 10−6, 3× 10−6 mm in K1, K2, P1, and P2, respectively. For this camera,

as is often the case, only two radial distortion coefficients were needed.

Target image location uncertainty is due to errors in the image centroiding algorithm for

intentional targets, as well as distortion of the target image. For appropriately sized intentional

circular targets and even lighting across the whole target image (no partial shadowing of the image),

the target image location uncertainty is estimated to be σ = 0.1 pixels [7].

Uncertainty in the centerline of the absorber image and the absorber image reflection account

for errors in the image processing algorithms used to find those centerlines. False edges found

with the contour algorithms that are not correctly filtered can result in errors in the centerline

location. Additionally, uneven lighting on the absorber or absorber reflection can result in errors

in the centerline location. Uncertainty in the absorber and absorber-reflection image centerlines is

estimated at σ = 1 pixel based on the author’s experience with the implemented algorithms.

There are several additional possible uncertainty sources that were not included in this model.

Positional errors in the reflector surface are treated exclusively as reflector slope errors. If the

reflector surface shape is largely unknown, deviations between the reflector position and its assumed

position may cause errors in the r-a angle measurements. If the absorber alignment is measured,

a surface fit can be applied to the reflector slope errors to minimize position errors; however, no

corrections can be made to the r-a angles if the absorber alignment is not measured. The bending of

rays due to changes in atmospheric refraction is also ignored. High temperatures near the receiver

and the ground in the desert affect the index of refraction, causing light rays to bend, which could

introduce errors in the r-a angle and absorber measurements. Finally, the absorber is assumed to

be stationary. In the field, fluid movement in the absorbers may cause vibrations, changing the
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absorber position over time.

7.4 Absorber Position Uncertainty

The image generation and analysis uncertainty model developed for the Observer method

was used to evaluate the uncertainty in the absorber alignment measurement. The camera used for

the uncertainty analysis is a Nikon D300 that takes high-resolution photographs at 4288 × 2848

pixels. The collector geometry is an LS-2. The absorber is offset 3 mm toward the rim (X) and

5 mm toward the vertex (Z). The receiver glass envelope is centered at the focal point. Targets

are located at the four corners of the collector, with additional targets added along the rims. A

total of twelve targets are used unless otherwise specified. Two photographs are taken at positions

(Xc, Zc) = (-7,7) m and (7,7) m aligned at the center of the collector along its length (Yc=0). With

a convergence criterion of 10−5 m, the uncertainty with a 95% confidence converged around 500

model runs.

The spatial resolution for the absorber alignment measurement is indicated with ∆xabs as

given in Eqn. 7.12, which is the linear distance between adjacent pixels along the focal-line plane

of the collector. As the spatial resolution increases the distance between pixels, (∆xabs) decreases,

reducing the uncertainty in the absorber alignment measurement because there are more pixels

across the absorber image. Figure 7.13 shows the uncertainty in absorber alignment measurement

as a function of the spatial resolution indicator. The spatial resolution was varied by changing the

number of pixels across the image sensor with all other variables held constant. From Fig. 7.13, we

recommend a minimum value of about ∆xabs = 2 mm for the absorber alignment measurement.

To understand the dependence of absorber position measurement on target placement accu-

racy, the target location uncertainty was varied from σ = 0 mm to σ = 10 mm while the other

uncertainty values were held constant. The uncertainty in the absorber measurement for a 95%

confidence is shown in Fig. 7.14. For this setup, to measure the absorber position within ±5 mm,

uncertainty in the target constraints should be less than σ = 8 mm.

To determine the effect that number of targets has on the absorber position uncertainty, the
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Figure 7.13: Uncertainty in the absorber alignment with changing camera resolution

target location uncertainty was set to σ = 5 mm, and the number of targets was varied between 6

and 20, with the additional targets spaced evenly along the rims. Figure 7.15 shows the uncertainty

in the absorber measurement for a 95% confidence. As expected, the absorber position uncertainty

decreases as the number of targets increases. This decrease in uncertainty is attained at the cost

of a longer setup time required to place additional targets.

Figure 7.14: Absorber position uncertainty with
95% confidence as a function of target con-
straint uncertainty σ

Figure 7.15: Absorber position uncertainty with
95% confidence as a function of number of pho-
togrammetry targets
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7.5 Reflector-Absorber Angle Uncertainty

To investigate the uncertainty in the r-a angle measurement, the same LS-2 parabolic trough

collector with the absorber positioned at (Xa, Za)=(3,-5) mm was used with the transverse and

longitudinal slope errors given in Figs. 7.4 and 7.6. The uncertainty values given in Section 7.3 are

used for the model parameters with the target coordinate constraint uncertainty set to σ = 5 mm

unless otherwise stated. The Prosillica GE1910C camera with resolution 1920 × 1080, which has

successfully been used with a R-C helicopter platform to measure r-a angles, was used unless

otherwise stated. As with the absorber alignment measurement, the uncertainty in the r-a angles

decreases as the number of targets is increased or the accuracy of the target coordinate constraints

is increased. Unlike the absorber alignment, the uncertainty in the r-a angles measurement depends

on several additional test parameters.

The uncertainty in the r-a angle measurement depends mainly on three test parameters: the

spatial resolution, angular resolution and camera-target angle. The angular and spatial resolutions

are both defined in Section 7.2. The camera-target angle (θct) is the angle between the camera and

the two widest targets in the transverse direction. If targets are only placed along the rims of the

collector, the camera-target angle can be calculated with

θct = 2 tan−1

(
wap

2(Zc − (wa/2)2/(4f)

)
, (7.16)

where wap is the aperture width, and Zc is the camera height. Figure 7.16 illustrates the camera-

target angle. The target spacing is the distance between targets 1 and 4 or 2 and 3.

As the camera-target angle increases, the camera positions can be measured more accurately,

reducing the r-a angle measurement uncertainty. Figure 7.17 shows the uncertainty in the r-a angles

with a constant angular resolution indicator of ∆Φc = 6.1 mrad and a constant spatial resolution

indicator of ∆xap = 8.4 mm. The camera-target angle is varied from 5◦–40◦ by changing the target

placement. Instead of positioning targets on the collector, the targets are positioned on the ground

to achieve the specified camera-target angle. For real measurements, targets should be placed on

the ground and on the collector with target coordinate constraints only written for those targets
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Figure 7.16: Illustration of the camera-target angle for targets placed on the rims of the collector
and on the ground

on the collector. It can be seen in Fig. 7.17 that to achieve maximum accuracy the camera-target

angle should be at least 20◦. Camera target angles lower than 10◦ should not be used due to the

resulting high uncertainty in the r-a angles.

Figure 7.17: Uncertainty in the r-a angles with constant angular and spatial resolutions using six
targets

The angular resolution is represented with ∆Φc given in Eqn. 7.14, which is the average

angular difference between consecutive photographs relative to the vertex of the collector. As

the angular resolution increases, by taking photographs closer together, the test parameter, ∆Φc,

decreases, which reduces the uncertainty in the r-a angle measurement. Figure 7.18 shows the
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uncertainty in r-a angles for a constant spatial resolution indicator of ∆xap = 8.4 mm and a

constant camera-target angle of 15◦. Examining Fig. 7.18, we see that ∆Φc ≤ 6 mrad is desireable

for minimum measurement uncertainty.

Figure 7.18: Uncertainty in the r-a angles with a constant spatial resolution and camera-target
angle using six targets

The spatial resolution is represented with ∆xap given in Eqn. 7.13, which is the linear distance

between adjacent pixel intersections with the X-Y plane at the vertex of the collector. Increasing

the spatial resolution decreases the test parameter ∆xap so that the collector image comprises more

pixels, reducing the r-a angle measurement uncertainty. Figure 7.19 shows the uncertainty in r-a

angles with a constant angular resolution indicator of ∆Φc= 6.1 mrad and a constant camera-

target angle of θct = 15◦. From this figure, we can see that the uncertainty begins to level off at

its minimum value around ∆xap = 2.5 cm. The measurement uncertainty in the r-a angles for the

recommended test parameter values of ∆xap = 2.5 cm, ∆Φc = 6 mrad, and θct = 20◦ is ±1 mrad

with a 95% confidence using 12 targets.

It is clear that to reduce measurement uncertainty in the r-a angles, the spatial resolution,

angular resolution, and camera-target angle should all be increased; unfortunately, these three test

parameters are each correlated to multiple test variables. The test variables that are controllable by

the operator include camera height, camera resolution, number of photographs, and target spacing.
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Figure 7.19: Uncertainty in the r-a angles with a constant angular resolution and camera-target
angle using six targets

Table 7.1 shows the correlations between the angular resolution, spatial resolution, camera-target

angle and the aforementioned test variables. To minimize the uncertainty in the r-a angles, the

camera resolution, number of photographs, and target spacing should all be maximized; however,

it is unclear how the camera height will affect the uncertainty.

Table 7.1: Correlations between test parameters and test variables

Angular Resolution Spatial Resolution Camera-Target Angle

Camera Height Direct Indirect Indirect

Camera Resolution - Direct -

Number of Photos Direct - -

Target Spacing - - Direct

7.5.1 Camera Height

The camera height affects the spatial resolution, angular resolution, and the camera-target

angle. Recall also that the longitudinal incidence angle of the camera is indirectly correlated to

the camera height so that as the camera height increases, the error due to longitudinal slope errors

decreases. To explore the effect of camera height, the camera height was varied from 15 to 35 m

above the collector with all other test variables held constant. At a height of 15 m, the collector
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almost completely fills the camera’s field of view, so that 15 m is the minimum camera height

for this test setup. A total of 50 photographs were generated. Four, six, and twelve targets were

used with four on the collector corners and the remainder evenly spaced along the collector rims.

Table 7.2 lists the camera heights modeled, along with their associated test parameters.

Table 7.2: Observer test parameters for sample camera heights

Camera Spatial Angular Camera-Target Longitudinal
Height Resolution Resolution Angle Incidence Angle
Zc [m] ∆Xap [mm] ∆Φc [mrad] θct Φlong

15 6.3 8.1 20.3◦ 16.0◦

20 8.4 6.1 15.0◦ 11.9◦

25 10.5 4.9 11.9◦ 9.5◦

30 12.6 4.1 9.9◦ 7.9◦

35 14.7 3.5 8.4◦ 6.7◦

Figure 7.20 shows the effect of camera height on the r-a angle measurement uncertainty.

As the camera height increases, the uncertainty does not vary significantly between 15 m and

22.5 m; afterwhich, the uncertainty increases as the camera height increases. From this plot, we

conclude that for low camera heights, the effects of increasing angular resolution and the reduction

in longitudinal incidence angle balance out the effects of decreasing spatial resolution and decreasing

camera-target angle; however, for high camera heights, the effect of decreasing spatial resolution and

decreasing camera-target angle dominate the uncertainty. In general, the camera height should be

minimized to reduce the measurement uncertainty in the r-a angles; however, for each test scenario,

there is a range of camera heights for which the uncertainty does not significantly change. This

range, as well as the ideal camera height that minimizes the uncertainty, can be found using the

uncertainty model for specific test scenarios.

To determine whether the effect of angular resolution or camera-target angle dominates the

r-a angle uncertainty as the camera height changes, the camera-target angle was held constant as

the camera height was changed from 15 to 35 m. To maintain a constant camera-target angle, the

layout of the targets was changed for each camera height. Six targets remained on the collector

with four on the corners and two centered on the rims. Six more targets were positioned on
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Figure 7.20: Uncertainty in the r-a angles for
the GE1910C camera with 50 photographs and
the specified number of targets placed on the
collector

Figure 7.21: Uncertainty in the r-a angles for a
constant camera-target angle of 20.3◦ where the
targets are placed to fill the image compared to
a changing camera-target angle where the tar-
gets are only placed on the collector

the ground around the collector so that the camera-target angle remained at θct = 20.3◦ for all

camera heights. Target coordinate constraints were only written for the targets on the collector.

The uncertainty in r-a angles for the constant camera-target angle was compared to the case with

twelve targets all located on the collector where the camera-target angle changes with the camera

height. The comparison is shown in Fig. 7.21. The uncertainty for the constant camera-target angle

is approximately constant between camera heights of 15 m and 35 m. From these results, we can

conclude that the dominant factor in the increase in r-a angle uncertainty with increasing camera

height for this measurement setup is the decreasing camera-target angle caused by only placing

targets on the collector. The effects of spatial resolution, angular resolution, and longitudinal

incidence angle due to changing camera height for this test scenario balance each other out. The

result is that the camera height can be changed across a wide range of heights without affecting the

r-a angle uncertainty as long as the targets are placed to maintain the same camera-target angle

at each camera height.
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7.5.2 Summary

To minimize the uncertainty in the reflector-absorber angles measurement, a large number

of targets should be used with the widest targets filling as much of the image as possible. A

wide-angle lens and large-format image sensor should be used to increase the camera’s field of

view, thus increasing the maximum allowed target spacing. The camera resolution and number

of photographs should both be maximized to increase the spatial and angular resolution of the

data. The camera can be placed across a range of heights above the collector without significantly

affecting the uncertainty as long as the targets are placed to fill as much of the image as possible.

However, to decrease the r-a angle uncertainty, it is more practical to place the camera at a lower

height and increase the number of photographs than to position the camera at a higher position

and increase the camera resolution because the operator typically has more control over the number

of photographs than the resolution of the camera. The recommended values for spatial resolution,

angular resolution, and camera target angle are ∆xap = 2.5 cm, ∆Φc = 6 mrad, and θct = 20◦,

respectively. The uncertainty in the reflector-absorber angles for the recommended test parameters

and 12 targets is ±1 mrad with a 95% confidence. However, if these test parameters are not

met, the measurement uncertainty can be calculated using the uncertainty model for each specific

measurement setup.
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Results

8.1 Validation

The Observer measurement of reflector surface slope errors and absorber position location

were validated independently. The reflector surface slope errors were compared to measurements

from two well-known laboratory optical characterization tools. Absorber position measurements

were compared to traditional photogrammetry.

8.1.1 Reflector Surface Slope Measurement

A tremendous effort was put forth to validate the Observer method for measuring reflector

slope errors. Typically, reflector surface slope tools are validated by measuring a highly accurate flat

reflector panel. This method is not applicable to the Observer technique because it relies on a curved

reflector with a focal point at which an absorber can be located to create a reflection. In the absence

of a highly accurate parabolic reflector, the Observer technique was compared to other surface

characterization tools for parabolic trough reflectors. Currently, the majority of reflector surface

slope characterization tools are based in Europe. There are no reliable field surface characterization

tools in the United States, so the validation was performed in the laboratory with a single reflector

panel. The two main laboratory tools available in the United States for surface characterization of

parabolic trough reflectors are VSHOT and SOFAST. Both VSHOT and SOFAST were designed

for point-focus reflectors and were adapted to test line-focus reflectors after the fact. VSHOT is a

much older tool, and due to the extensive setup and testing time it is becoming obsolete; however,
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SOFAST was not accessible until quite recently, so the Observer method was compared both to

VSHOT and SOFAST. The VSHOT comparison was performed first, before we obtained access to

SOFAST.

VSHOT Comparison

VSHOT is a scanning-laser optical measurement tool that was developed jointly by NREL and

Sandia around 1997 and has been used almost exclusively at NREL since [38]. VSHOT measures

reflector surface slope based on the known incident angle of a laser beam and the measured return

spot location of the reflected ray on a target. A quadratic surface is fit to the measured slope data

to find the reflector slope errors relative to a best-fit surface. The best-fit surface is anchored in

space based on a distance measurement from the target to the reflector panel. VSHOT requires

almost a full day for setup and testing of a single reflector panel. The reflector panel must be

located at a distance of about twice the reflector focal length from the target. Unfortunately, this

tight spacing required that the reflector panel be moved between the VSHOT measurement and

the Observer measurement.

A reflector panel was mounted on a large aluminum frame to be measured with both VSHOT

and the Observer. The panel was an inner panel from an LS-2 geometry collector with 1.57-m

length, 1.39-m aperture, and a design focal length of f = 1.49 m. A green, PVC tube with outer

diameter Da = 8.73 cm was used as a mock absorber. The tube was mounted horizontally near

the focal line of the reflector, and its position was measured using photogrammetry by placing

targets on and around the absorber. A Nikon D90 camera was mounted on a hand-operated lift.

The camera was raised vertically across the aperture of the reflector while taking a movie of the

absorber reflection. Care was taken to make sure the movement of the camera was extremely slow

and steady to minimize the effects of the rolling shutter. To confirm that the rolling shutter was not

contributing to measurement error, the reflector was measured by moving the camera in opposite

directions. The results agreed without a significant bias error. Figure 8.1 shows the reflector panel

setup for the comparison test between VSHOT and the Observer. Four targets near the corners of
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the reflector panel were used to find the camera location.

Figure 8.1: Laboratory setup for the Observer comparison with VSHOT

VSHOT measures both the longitudinal and transverse reflector slope errors and then fits a

Zernike polynomial to the measured slopes. The order of the Zernike polynomial can be designated

by the user. The slope errors are calculated from the difference between the measured slopes and the

gradients of the best-fit polynomial. For the comparison with the Observer, a second-order Zernike

polynomial was used. The reflector panel was aligned relative to VSHOT to minimize all of the

coefficients except the second-order X-coefficient, which contains the focal length in the transverse

direction. This process was intended to minimize the effects of longitudinal slope errors on the

best-fit polynomial, and thus, on the transverse slope errors relative to that polynomial. A similar

surface fit was applied to the Observer results, as described in Section 6.5 and Appendix B.1. The

transverse reflector slope errors measured with VSHOT and the Observer are shown in Fig. 8.2.

The root-mean-square (RMS) of the difference between the two measurement tools is 1.6 mrad.

The uncertainty in the Observer measurement calculated with the uncertainty model for a 95%

confidence is 2.9 mrad. For the uncertainty calculation, the uncertainty sources were set as specified

in Section 7.3, with the target coordinate constraint uncertainties set to σ = 3 mm.
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Figure 8.2: Reflector slope errors measured with the Observer (left) and VSHOT (right) of an LS-2
geometry inner reflector panel in the laboratory

SOFAST Comparison

SOFAST is a fringe reflection tool developed at Sandia National Laboratories originally for

the surface characterization of parabolic dish reflector facets [1]. SOFAST was adapted to test

parabolic trough reflector panels and was licensed to NREL for this purpose. There are currently

no publications describing the adaptations made for line-focusing collectors, and the uncertainty is

largely unknown. The SOFAST system in use at NREL consists of a 10 ft × 10 ft projector screen

onto which a series of sinusoidal fringe patterns are projected. A single parabolic trough reflector

facet is oriented in space so that a camera mounted next to the projector screen can image the

reflection of the fringes in the panel. Like VSHOT, SOFAST measures the reflector surface profile

independently in both the transverse and longitudinal directions, and a second-order polynomial is

fit to the surface. Unlike VSHOT, the best-fit polynomial is independent of the orientation of the

reflector panel. The orientation of the polynomial is determined by translating and rotating the

measured slopes in space to minimize the slope errors at a designated anchor point on the panel; the

polynomial in VSHOT is only translated, not rotated. Instead of depending on the orientation of

the panel, the best-fit polynomial is highly dependent on the system inputs including the locations

of the reflector panel corners, design focal length, and reference distance from the projector screen
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to the anchor point. However, the surface slope errors remain relatively unchanged regardless of

the system inputs. For this measurement scenario with a largely unknown single reflector facet,

the best-fit polynomial essentially absorbs any errors in the system inputs.

The Observer results were also fit to a second-order polynomial. The best-fit polynomial for

the Observer measurement likewise absorbs any errors in the system inputs, specifically the target

coordinate constraints and absorber position. The reflector slope errors remain unchanged across

a wide range of system inputs. Trusting that the best-fit polynomials absorb any system input

errors, the reflector slope errors from SOFAST and the Observer should show good agreement.

Small discrepancies between the measurements are to be expected because SOFAST measures

both the transverse and longitudinal errors, and its best-fit polynomial reflects both of those; the

Observer only measures and fits to the transverse errors.

A single inner panel from an LS-3 geometry collector was used with 1.7-m length, 1.62-m

aperture, and f = 1.71-m design focal length; however, the method in which the panel was mounted

significantly distorted the reflector panel, leaving the focal length largely unknown. The reflector

panel was mounted with its transverse axis parallel to the ground and then tilted slightly up toward

the SOFAST camera to accommodate the SOFAST measurement. The same mock absorber as in

the VSHOT comparison was used here except that this time it was mounted vertically because the

reflector panel was rotated 90◦. Once again, the absorber position was measured with photogram-

metry. For the Observer, a Nikon D300 camera was mounted on a wheeled tripod and scanned

horizontally across the aperture of the reflector panel while taking still images. Unfortunately, due

to the setup constraints, a 20-cm section along the bottom of the reflector could not be measured

with the Observer. Figure 8.3 shows the laboratory setup with the mock absorber and photogram-

metry targets. The four targets on the corners of the reflector panel were used to find the camera

location.

The reflector panel was not moved between the Observer and SOFAST tests; however, the

photogrammetry targets and absorber were removed before performing the SOFAST test. Figure 8.4

shows the reflector surface slope error maps measured by SOFAST and the Observer, respectively.
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The RMS of the difference between SOFAST and the Observer is 2.1 mrad. These discrepancies

can best be attributed to uncertainties in both tools, as well as the fact the SOFAST best-fit

polynomial also reflects measurement of the longitudinal errors. The uncertainty in the Observer

measurement for a 95% confidence is 3.7 mrad with the same model parameter uncertainty values

as in the VSHOT comparison.

Figure 8.3: Laboratory setup for the Observer comparison with SOFAST

Figure 8.4: The reflector slope error results measured with SOFAST (left) and the Observer (right)
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Discussion

The comparison of the Observer measurement with well-established optical characterization

tools VSHOT and SOFAST provides credibility to the Observer measurement. The RMS of the

difference between VSHOT and the Observer was slightly better at 1.6 mrad than the RMS of

the difference between SOFAST and the Observer at 2.1 mrad. One explanation for the larger

discrepancy with SOFAST is the larger uncertainty in that Observer measurement due to the test

setup. Another explanation for the better comparison with VSHOT is NREL’s many years of

experience with the tool. Particular care was taken in the mounting of the reflector panel measured

with VSHOT to obtain the most accurate measurement. On the other hand, NREL has acquired

SOFAST only within the past year and has very limited experience testing with this tool. Because

SOFAST was not developed at NREL and we do not have access to the raw code, we are largely

ignorant of how SOFAST incorporates user inputs into its measurement.

8.1.2 Absorber Alignment Measurement

To validate the absorber alignment measurement technique, an outdoor absorber test stand

was constructed to mimic the geometry of a parabolic trough collector. A 5-m × 8-m rectangle was

defined on the ground to represent the aperture plane of an LS-2 type collector. Three sections of

3-m-long steel pipe with an outer diameter of 73 mm were used to represent the 70-mm-diameter

absorber. Photogrammetry targets were placed approximately in a regular grid of six targets along

the length and four targets across the aperture. The test setup is shown in Fig. 8.5. The distance

between two corner targets along the length of the mock collector was measured using a Leica

Disto D5 laser distance meter with accuracy ±1.5 mm. A Nikon D300 was used with a 20-mm

fixed-focal-length-lens. The camera, mounted on an extendable mast, was used to take photographs

of the setup from both sides of the aperture.

To measure the absorber location using the proposed method, two photographs were taken,

one from each side of the aperture at a height of about 7 m and a horizontal distance of 7 m from
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Figure 8.5: Absorber alignment measurement test setup with targets and mock absorber

the absorber. The images were processed using only the 12 targets along the rims of the mock col-

lector. To validate this method, the absorber location was then measured using photogrammetry.

Fifteen additional targets were placed on top of the absorber aligned horizontally with the center

of the tube. A set of 20 to 40 photographs were taken from around the setup with the absorber

targets in place. A commercial photogrammetry packet, PhotoModeler, was used to process the

photographs and determine the location of each target on the absorber. The points along the ab-

sorber were then corrected by the absorber radius to account for the fact that they were placed on

top of the absorber instead of at its centerline. The uncertainty in the absorber target locations

found using photogrammetry is σ = 0.35 mm in X and σ = 0.40 mm in Z. Linear interpolation was

used to determine the location of the absorber between photogrammetry targets. The photogram-

metry results were compared to the absorber alignment measurement technique and show excellent

agreement.

The absorber location was measured in three different horizontal positions (Xa) and three

different vertical positions (Za). Figure 8.6 shows the absorber positions in the horizontal and

vertical dimensions for those tests in which the absorber was purposely displaced in that dimension.

The photogrammetry points are shown as dots connected by using linear interpolation between the

measured points. The solid lines represent the absorber alignment measurement results. For all five

test cases along the full length of the absorber, the absorber alignment method compares with the
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linear fit to photogrammetry points with a pooled standard deviation of ±1.5 mm in the horizontal

direction (X) and ±0.86 mm in the vertical direction (Z).

Figure 8.6: Absorber offset from focal line in the horizontal, X, (top) and vertical, Z, (bottom)
direction for three different horizontal positions (top) and three different vertical positions (bottom)
measured with photogrammetry (dots and dashed line) and the absorber alignment measurement
technique (solid line)

8.2 R-A Angle Measurement Repeatability

A single parabolic trough collector was tested in the field to demonstrate the reflector-

absorber angle measurement. The collector was oriented vertically (90◦ above the horizon). A

Prosilica GE1910C camera with custom micro-controller and high-speed datalogging software was

mounted on an R-C helicopter and flown horizontally across the aperture of the collector. The

purpose of this test was to demonstrate the capability to test a collector in the vertical orientation,

gain experience testing with an R-C helicopter, and demonstrate measurement repeatability under

different testing conditions. The measured r-a angles are confidential and are not published here.

The lightweight octo-copter used for this test did not have a stabilization platform, and the

motion of the R-C helicopter was strongly influenced by changing wind conditions. Therefore, the

height and flight path of the camera could not be precisely controlled. These tests were performed

on a partly cloudy day where the level of direct sunlight varied unpredictably between tests. To
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compensate for these variables, a number of targets were placed along the rims of the collector

and on the ground around the collector. The goal was to achieve multiple flights over the same

collector with at least four targets visible for each pass of the camera over the collector so that

measurement repeatability could be demonstrated. A total of five 5-minute flights were possible

with the required payload and available batteries. During each flight, the camera was scanned

back and forth across the collector multiple times. Five sets of measurement data were obtained

for this collector, as described in Table 8.1. The uncertainty in this table is the uncertainty in

the measured r-a angles with a 95% confidence as calculated with the uncertainty model using the

measured camera positions and target locations for each test run.

Table 8.1: Observer measurement sets taken from a radio-controlled helicopter

Run Camera Height [m] Targets Lighting Uncertainty [mrad]

1 6.8 4 bright 1.2

2 15.4 14 dark 0.5

3 8.5 6 dark 2.1

4 7.4 4 bright 3.4

5 8.5 5 bright 2.6

The five independent measurements of r-a angles were averaged to find the mean r-a angles

at each point on the collector, θra. Each measurement set was then compared to the average set.

The sample standard deviations for each point on the collector are calculated with

s =

√√√√1

4

5∑
i=1

(
θra,i − θra

)2
. (8.1)

The sample standard deviation is nearly uniform across the collector except near reflector panel

discontinuities where the variation was about 2–3 times greater. To examine the distribution of

σ, a cumulative probability plot is shown in Fig. 8.7. The sample standard deviation with a 90%

confidence removes large discrepencies near reflector panel discontinuities and was found to be 1.7

mrad. The average sample standard deviation across the entire collector for the five measurement

sets is 1.5 mrad. Despite large differences in camera height, number of targets used, and lighting

conditions, the Observer measurement of reflector-absorber angles shows good repeatibility.
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Figure 8.7: Cumulative probability of the sample standard deviations (s) of the r-a angles measured
in five different flights

8.3 Gravitational Effects on Absorber Position

The absorber alignment measurement technique can be applied in the field to measure the

absorber location of a collector in any orientation. To demonstrate the potential benefit of this tool

to the research and development of parabolic trough collectors, the absorber alignment measurement

technique was used in the field to measure the absorber location of a collector positioned in different

orientations. As the parabolic trough tracks the sun from east to west throughout the day, the

orientation of the collector frame and absorber with respect to gravity both change. The collector

must maintain a high level of optical alignment in any orientation. Although there is some prior

work using finite-element analysis to determine the effects of gravitational loading on reflector

slope errors [6], there is no mention of the effects of gravity and collector orientation on absorber

alignment.

For a perfectly stiff frame, receiver, and absorber, the absorber offset would not change

between different collector orientations; however, for a collector with some flexibility in the receiver

supports, we expect the absorber offset to be in the direction of gravity. Figure 8.8 shows three
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different collector orientations, along with exaggerated expected absorber misalignments due to

gravity (g).

The absorber alignment was measured for a prototype parabolic collector at its extreme po-

sitions: 0◦ (facing east), 90◦ (facing straight up), and 170◦ (facing west)1 . The absorber position

perpendicular to the optical axis (Xa) changed by a maximum of about 6 cm between 0◦ and

170◦, shown in Fig. 8.9. Likewise, the absorber position on the right side of the collector changed

considerably more than the left side, suggesting a particular problem with the receiver support

on the right. The absorber position along the optical axis (Za) did not change significantly be-

tween different collector orientations. The direction of these absorber misalignments conform to

expectations: for orientations of 0◦ and 170◦, the absorber shifts in the direction of gravity. There

are minimal changes in the absorber position along the optical axis due to the fixed length of the

receiver supports. These results show both the importance and value of measuring the absorber

alignment. Because the collector tested was a prototype, the stiffness of the frame and receiver

supports can be improved in future generations of the collector to prevent absorber misalignments.

1 The tracking mechanism prevented the collector from being positioned in a true west orientation of 180◦
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Figure 8.8: Gravitational loading and expected absorber misalignment for different collector orien-
tations

Figure 8.9: Absorber alignment perpendicular to the optical axis (X) for different collector orien-
tations



Chapter 9

Conclusions

The Observer method presented here enables the rapid optical characterization of parabolic

trough collectors in the field with the collector positioned in any orientation. This tool fills a

subtaintial gap in prior optical alignment measurement capabilities. The Observer method improves

on the previous state-of-the-art tool TARMES, which was unable to measure stationary collectors

as well as collectors oriented above 0◦. Likewise, TARMES required a direct line of sight from

the camera to the collector of 100 times the collector focal length, preventing TARMES from

measuring the majority of collectors in a solar field. The Observer method solves these three

limitations through the use of photogrammetry bundle adjustment to find the camera location.

For the Observer method, the camera can be placed at any reasonable distance from the collector

(10-40 m), as long as the the minimum spatial resolution, angular resolution, and camera-target

angle are statisfied.

A detailed Monte Carlo uncertainty model was developed to determine the uncertainty in

the Observer measurements. Using this model, the measurement uncertainty in reflector-absorber

angles was shown to depend on three key test parameters: the spatial and angular resolution of the

data, and the angle between the camera and the two widest targets (camera-target angle), which

should each be maximized to minimize measurement uncertainty. Recommended values of ∆xap =

2.5 cm, ∆Φc = 6 mrad, and θct = 20◦ provide guidelines to the user developing a test setup and

result in a measurement uncertainty of ±1 mrad with a 95% confidence. The uncertainty model

was used to show that the height of the camera above the collector can be freely varied without
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significantly impacting the measurement uncertainty as long as the targets are placed to maintain

the recommended camera-target angle. The uncertainty model allows the measurement uncertainty

for each specific testing scenario using the Observer method to be determined accurately.

The Observer method was validated by comparing the reflector surface slope errrors and

absorber position measurements to well-established and trusted tools. The reflector surface slope

errors measured with the Observer were compared to two traditional laboratory reflector slope error

measurement tools: VSHOT and SOFAST. The root-mean-square of the difference in reflector slope

error measurements was 1.6 mrad for comparison with VSHOT and 2.1 mrad for comparison with

SOFAST. The absorber alignment measurement was compared to traditional photogrammetry with

a root-mean-square difference of 1.5 mm and 0.86 mm for the X- and Z-components of the absorber

position, respectively.

The capabilities of the Observer method were demonstrated in the field on prototype parabolic

trough collectors. The reflector-absorber angles were measured with the collector oriented 90◦ above

the horizon by mounting the camera on a radio-controlled helicopter. The same collector was

measured five times with different camera heights, targets, and lighting conditions. The average

sample standard deviation from five measurements for all points on the collector was 1.5 mrad.

The absorber alignment measurement was demonstrated in the field by measuring the absorber

position as a function of collector orientation with the collector oriented at 0◦, 90◦, and 170◦.

The results show that the absorber position changed by over 6 cm in the X-direction between

the extreme collector orientations. This documentation of absorber position misalignment as a

function of orientation reinforces the benefit the Observer tool will bring to the concentrating

solar power industry. Overall, the Observer method enables a more accurate measurement of the

optical alignment of parabolic trough collectors by allowing collectors to be tested in the field after

installation and in all operating orientations.
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Appendix A

Extended Literature Review

Optical testing can be broadly classified into geometric testing, interferometry, and image

evaluation. Geometric testing measures surface slope errors or ray aberrations. Interferometry

requires coherent light and most commonly examines the interferrogram between a known wavefront

and a wavefront produced by the test object. Image evaluation examines the image produced by

the optical system directly for qualitative information or tests the resolution of the system. The

current application — testing the optical alignment of a parabolic troughs in the field — has been

successfully accomplished with geometric testing, hybrid techniques combining geometric testing

with pseudo-interferometry, and image evaluation.

A.1 Geometric Testing

Geometric tests can be used to determine surface slope errors or ray aberrations of an optical

system. For a simple focusing system such as the parabolic trough, geometric testing can be

performed in one of two ways. The first is to project certain rays of light onto the optical system

and then measure where they focus. The second method is to allow full illumination of the optical

element and observe the image at the focal point [4]. The two traditional geometric optical tests

that illustrate these methods are the Hartmann test [13] and the Foucault knife-edge test [12].

The Foucault knife-edge test is ideal for qualitative measurements of point-focus mirrors. A

knife edge is placed near the focus and moved through the image of a point source. The shadow

observed from behind the focus provides information about the mirror aberrations. For a perfectly
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spherical lens, the aperture will darken uniformly; nonuniform illumination is the result of aberra-

tions. The knife-edge test was used for over a century for quality testing of telescopes. The wire

test is a variation of the knife-edge test that uses a wire instead of a knife edge. This test is superior

for providing quantitative data.

The Hartmann test provides a quantitative measurement of surface slope directly. A screen

with a uniform grid of holes is placed in front of the test object. An image of the light reflected

through the holes is taken at the focal point of the concentrator. The location of the light spots

in the image can be used with the corresponding location of the holes in the screen to determine

the slope of the mirror at the hole locations. A modification of the Hartmann test — the Video

Scanning Hartmann Optical Test (VSHOT) — was developed by SunLab (a collaboration between

NREL and Sandia) for the optical characterization of point-focus solar collectors and subsequently

line — focus collectors including parabolic troughs [18]. A detailed description of this technique is

provided under the section on Laser Scanning in Appendix A.4.

A.2 Hybrid Techniques

The Ronchi test and moiré techniques use fringes that are not the result of interference.

These tests can both be performed with incoherent light. The Ronchi test passes light from a slit

through a grating placed near the focal point of the test object. The resulting image consists of

a fringe pattern that can be used for both qualitative and quantitative information about the test

object [4].

The moiré effect is a fringe pattern that is created when two grids of different spacing or

at different angles are superimposed. Although the original moiré technique requires two gratings

or fringes, a more recent technique — the fringe reflection method — has been developed to use

a single grating. The fringe reflection method has been applied to the optical characterization of

several types of CSP collectors [30]. A more detailed review of this method is provided in the

section Fringe Reflection in Appendix A.6.
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A.3 Applications to CSP

There are a vast number of optical testing methods available. However, very few of them are

applicable to CSP collectors due to the large size of the optic and the need for high spatial resolution

and quantitative information. There are five main techniques currently applied to measure the

optical alignment of parabolic troughs: laser scanning, photogrammetry, fringe reflection, flux

measurement, and reflected-absorber image analysis.

A.4 Laser Scanning

Laser scanning is the oldest technique used to characterize solar reflectors. Sandia National

Laboratories identified that surface contour errors could be measured independently of surface

roughness errors and then their effects combined. Surface contour errors can thus be characterized

as part of the intercept factor, and surface roughness errors can be characterized independently

as the surface reflectance. The first laser ray-trace system for measuring surface contour errors

of parabolic solar reflectors used a He-Ne laser. The laser was aimed at the test article, and the

location of the reflected ray was measured by a linear photo-potentiometer located at the design

focal length. The laser was mounted on a track allowing it to perform a horizontal scan of the

reflector. The reflector was displaced vertically and the procedure repeated to develop a 2D plot of

the surface of the test article. The next major laser ray-trace measurement system was developed

Figure A.1: Original scanning laser measurement system from Sandia National Laboratories [39]
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in the early 1990s. The Scanning Hartmann Optical Tester (SHOT) was developed by the Solar

Energy Research Institute (SERI) to characterize the optical surface of large-aperture solar dish

collectors [39]. The project was aimed toward characterizing parabolic-shaped dish reflectors with

diameters up to 15 m. Conventional measurement techniques for optical telescope systems were

not applicable because of the larger apertures of solar concentrating dishes (an order of magnitude

greater), and methods used for large radar and satellite antennas (although similarly sized optics)

were not applicable because the parabolic solar dish concentrator cannot be approximated as a

sphere. Other traditional mirror testing methods were not applicable because of the imprecision of

solar mirrors. Conventional methods for high-quality optical testing are designed to detect errors

two to four orders of magnitude less than those found in solar concentrators. Before selecting the

Scanning Hartmann method as the most appropriate measuring technique, other methods were

investigated, including the Distant Observer method. This method was ruled about because it

would require very large distances for large dishes and has limited slope resolution.

The original Hartmann technique uses a mask with a uniform grid of holes in front of the

optic. A point source of light is shined at the mask and the optic behind it. Light passes through

the holes in the mask, is reflected by the mirror, and returns through the holes onto a target placed

a distance of about twice the focal length of the test object from its vertex. The pattern of light

reflected onto the target allows one to characterize the shape of the mirror; however, for parabolic

dishes, which cannot be approximated as spherical, this method was modified to use a scanning

laser as the light source and no mask. The laser illuminates a single spot on the mirror at a time

so that this point on the mirror can be associated with the corresponding reflected laser spot on

the target. In this way, a uniform grid of points across the optic can be developed over a period of

time, which replicates the grid of points created by the mask at a single point in time.

The angle at which the laser beam hits the test article is known, as well as the distance

between the target and the vertex of the test article. By measuring the point on the target that

the reflected laser beam hits and assuming a shape for the optic, the slope of the surface at each

point can be calculated. During the data processing, the actual shape of the optic is calculated.
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A Zernike polynomial is fit to the measured data, and then the difference between the measured

slope and the derivative of the Zernike polynomial is calculated at each point to determine the

root-mean-square (RMS) slope error. The Zernike polynomial fit is then repeated until a minimum

RMS slope error is achieved. This provides the most accurate description of the surface.

The Video Scanning Hartmann Optical Test (VSHOT) was later developed by SunLab, a

collaboration between NREL and Sandia National Laboratories [18]. VSHOT is based heavily on

its namesake, SHOT, with the addition of a CCD video camera, as well as many other functional

improvements. VSHOT was adapted to characterize parabolic trough concentrators as research

focus shifted from point-focus concentrators to line-focus concentrators. NREL currently uses

the VSHOT system both in the laboratory and in the field to characterize prototype parabolic

mirrors developed by industry. VSHOT is considered the state of the art in laser scanning for the

characterization of parabolic trough solar reflectors.

A.5 Photogrammetry

Although the term “photogrammetry” was not coined until 1893 by Meydenbauer, pho-

togrammetry is in essence based on the principles of perspective that were first described by

Leonardo da Vinci in 1480. The geometric measurement of objects using photography began

at the same time as photography. In the mid 1800s, photogrammetry was used for both architec-

tural measurement and topographical mapping. In 1849, Laussedat was the first to attempt aerial

photography from a balloon. He was followed by Nadar, Fairman, and finally Cornele B. Adams

who patented his “Method for Photogrammetry,” which used aerial photographs taken in a balloon

from two different locations. The invention of the airplane, computer, and digital camera aided the

progression of photogrammetry to its current state [22].

Photogrammetry was first applied to the optical characterization of solar concentrators at

the Australian National University [34]. The goal was to measure the surface contour of a 400-m2

paraboloid dish concentrator. Additionally, a 5-m dish, a 3.5-m equilateral triangular mirror panel,

and a 30-cm curved mirror panel were measured. The 400-m2 dish was prepared with 162 targets
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spaced uniformly across the triangular panels comprising the dish. Six camera stations were selected

and four photographs taken at each station. The camera had to be positioned with a crane in order

to photograph the dish. The camera network was designed for self calibration. The accuracy

achieved for the big dish was 1:19,000. Accuracy improvements of 1:47,000 were achieved later

when measuring the EuroTrough space-frame structural support at the Platforma Solar de Almeŕıa.

The structure was measured to determine the effects of thermal expansion throughout the day.

Additionally, the mirror facets were measured to determine gravitational loading at different angular

positions [26].

Photogrammetry has since been applied to the optical characterization of both heliostats [29], [31]

and parabolic troughs [33], [11]. The major benefit of photogrammetry is its scale independence

and the ability to test collectors in any orientation; however, the main limitations of photogram-

metry are the extensive setup and the fact that slope is not measured directly. The setup requires

applying a grid of targets that the camera can automatically detect on the surface to be measured.

This is a very tedious task that can take up to a day for a single module, and the resolution depends

directly on the number of targets used. The photogrammetric method measures the location of the

surface at the target points. A surface is then fit to the point locations, and the slope is calculated

as the derivative of that surface. Because slope is the measurement of interest, obtaining the slope

from the point locations results in a less accurate measurement.

A.6 Fringe Reflection

The fringe reflection method or reflection grating method was developed to meet a demand

for measuring the curvature of free-form specular surfaces, especially in the automotive indus-

try [30]. Fringe reflection is derived from traditional moiré reflection but uses only one of two

gratings normally required for moiré techniques. The method was first applied to measure the

slopes of reflectors in CSP by the German institutes Fraunhofer ISE and BIAS [14]. Currently,

fringe reflection is used to characterize the reflector slope for both linear Fresnel collectors and

parabolic dishes [1].
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It is easily observed that the reflection of an object provides information about the reflective

surface in which it is viewed. For example, when looking at a reflection on a surface of water, the

reflection becomes distorted if the liquid’s surface is disturbed. Likewise, the door of a car or the

side of a building may reflect a distorted image because the reflective surface is not perfectly flat.

The fringe reflection technique uses this phenomenon by analyzing the image of a known object in

a reflective surface. This technique requires only a camera, the test object, and a monitor on which

a pattern can be displayed. The test object — a reflective surface — is placed where the reflected

pattern from the monitor will be visible in the camera. A sinusoidal fringe pattern, as shown in

Figure A.2, is used as the regular pattern. A photograph is taken of the test object showing the

Figure A.2: Example sinusoidal fringe pattern

reflected image of the fringe pattern. If each point on the test object can be associated with a phase

in the sinusoidal fringe, the slope of the test object can be determined at each point. There are

several techniques used to relate each point on the test object to its corresponding phase in the fringe

pattern. One technique is phase shifting, which is done by projecting four different fringe patterns

shifted 0◦, 90◦, 180◦, and 270◦. The phase φ at a point can then be determined by measuring

the intensity in each photograph at that point [15]. The phase can also be determined using the

Fourier Transform method as described in [28]. Determining the relationship between phase and

angle for a perfectly flat test object provides a calibration for the camera-monitor geometry, which

allows compensation for tilt in the setup as well as camera lens properties. Once the calibration is

determined, it can be applied to all future measurements if the system orientation is not changed.



Appendix B

Image Processing

B.1 Quadratic Surface Fit

A quadratic surface can be fit to the reflector surface slope errors to minimize the measure-

ment error. This method is used in the laboratory when the absorber position is measured and the

shape of the reflector is largely unknown. An iterative least-squares method to perform the fit is

given here.

The camera locations, (Xc, Yc, Zc), the directions of the incident rays from the camera (~rc),

and the location of the absorber (Xa, Za) are found during the measurement process and do not

change between iterations. The steps are as follows:

(1) Find the intersection points of the incident rays with the quadratic surface.

(2) Determine the ideal surface slope at those points.

(3) Calculate the absorber and camera angles.

(4) Calculate the measured slopes.

(5) Use a least-squares method to find a new quadratic surface.

A general quadratic equation is given in Eqn. B.1.

Z(X,Y ) = aX2 + bXY + cX + dY 2 + gY + h (B.1)
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Because the Observer method is only able to measure the reflector surface slope errors in the

transverse direction, the longitudinal slope is assumed to be equal to the partial derivative of the

surface in the longitudinal direction without any slope errors. The coefficients d and g are thus set

to the design values of zero. Likewise, the vertex of the reflector can be located at an arbitrary

location in space; we select h = 0 to set the vertex as the origin of our coordinate system. With

these simplifications the quadratic surface becomes

Z(X,Y ) = aX2 + bXY + cX. (B.2)

In Step 1, the intersection points of the incident rays from the camera with the quadratic surface

(Xt, Yt, Zt) are determined by parameterizing in the direction of the incident ray (~rc):
Xt

Yt

Zt

 =


Xc

Yc

Zc

+ t~rc. (B.3)

The parameter, t, is found by substituting (Xt, Yt, Zt) in Eqn. B.3 into (X,Y, Z) in Eqn. B.2 and

solving for t. For Step 2, the ideal slope is found by taking the partial derivative in the transverse

direction of the quadratic surface (Eqn. B.2) at the intersection points (Xt, Yt, Zt). Step 3 is to

find the absorber and camera angles. Figure B.1 depicts the relevant angles. The absorber angles

are the angles between the intersection points and the center of the absorber (θabsorber), which are

calculated with

θabsorber = tan−1

(
Xr −Xt

Zr − Zt

)
. (B.4)

The camera angles are the angles between the intersection points and the camera (θcamera) found

with

θcamera = tan−1

(
rc,x

rc,z

)
. (B.5)

In Step 4, the measured slope is calculated. The measured slope is related to the angle of the

measured surface normal (θnormal) with(
∂Z

∂X

)
m

= − tan (θnormal). (B.6)
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Figure B.1: Schematic of reflector, absorber, and relevant angles

By the law of reflection, the angle of the surface normal is equal to the average of the incident

(θcamera) and reflected (θabsorber) angles:

θnormal =
1

2
(θcamera + θabsorber). (B.7)

For Step 5, the coefficients of the best-fit quadratic surface are determined by minimizing the

absolute difference between the slope of the best-fit surface in the transverse direction (∂Z/∂X)

and the measured slope (∂Z/∂X)m. The error, E, is described with

E(a, b, c) =

n∑
i=1

[(
∂Z

∂X

)
i

− tan (θnormal)i

]2

=

n∑
i=1

[(2aXi + bYi + c)− tan (θnormal)i]
2. (B.8)

The least-squares problem is formulated by minimizing the error that occurs when its gradient is

equal to zero:

∇E = 2

n∑
i=1

[(2aXi + bYi + c)− tan (θnormal)i] [2Xi, Yi, 1] = 0. (B.9)

Expanding the vector multiplication above results in the following matrix equation:

∑n
i=1 4X2

i

∑n
i=1 2XiYi

∑n
i=1 2Xi

∑n
i=1 2XiYi

∑n
i=1 Y

2
i

∑n
i=1 Yi

∑n
i=1 2Xi

∑n
i=1 Yi

∑n
i=1 1





a

b

c


=



∑n
i=1Xi tan (θnormal)i

∑n
i=1 Yi tan (θnormal)i

∑n
i=1 tan (θnormal)i


. (B.10)
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Rewritting Eqn. B.10 as

Ak = Y, (B.11)

where k is the vector containing the three surface coefficients, a, b, and c, then the solution is found

by solving the linear least-squares problem with

k = (ATA)−1(ATY ). (B.12)

Using the new quadratic surface, steps 1-5 are repeated until the solution converges to a

final quadratic surface. Once the solution has converged, the slope errors relative to the best-fit

quadratic surface are found with

θe = tan−1

(
∂Z

∂X

)
− tan−1

(
∂Z

∂X

)
m

. (B.13)

B.1.1 Marching-Squares Algorithm

A built-in MATLAB function that uses a marching-squares algorithm is used to find contour

lines. The marching-squares algorithm begins by converting the gray-scale image to a binary images

using the contour level as the threshold. Figure B.2 demonstrates an example of this algorithm.

The blue and red dots represent the logical values corresponding to an intensity level above the

Figure B.2: Example of marching-squares algorithm used to define contours
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threshold and an intensity level below the threshold, respectively. A regular grid is created across

the image (numbered 1-16 in Fig. B.2). Each grid cell is then searched looking for one in which

the four corner values enclosing that square are not all equal; this square represents the beginning

of a contour line. The algorithm then marches around that square looking for two different logical

values on the same side of the square. A side with different end values shows where the contour

exits the cell. A more precise location on this exit edge is found by linearly interpolating between

the original gray-scale intensity values on the ends to find the location of the contour level value.

The square adjacent to the exit side is then chosen as the next square, and the algorithm marches

around this new square to determine where the contour exits. The contour is thus traced through

the image until it either reaches the border of the image or reconnects with itself. Any remaining

grid cells are then searched to find additional contour lines. In the example shown in Fig. B.2,

the contour-finding algorithm began in square 1 and traced the green contour line until it hit the

border of the image in square 11. The search resumed in square 2 and traced the purple contour

line through to square 12.

B.1.2 Ellipse Fit

The linear least-squares ellipse fit uses the general form of a quadratic equation given as

ax2 + 2bxy + cy2 + 2dx+ 2fy + g = 0. (B.14)

To formulate the traditional least squares problem, we divide Eqn. B.14 by a and subtract x2 from

both sides to yield

2
b

a
xy +

c

a
y2 + 2

d

a
x+ 2

f

a
y +

g

a
= −x2, (B.15)

where the prime denotes the original coefficient divided by a. The problem is now posed as

Xβ = Υ (B.16)

X = [xy y2 x y 1] (B.17)
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β =



b/a

c/a

d/a

e/a

f/a


(B.18)

Υ = −x2 (B.19)



Appendix C

Camera-Mounting Platforms

Camera-mounting platforms, in addition to the remote-controlled helicopter and extendable

mast, that were tested include: a full-size helicopter, remote-controlled airplanes (Fig. C.1), tethered

aerostat (Fig. C.2), and telescope (Fig. C.3). The full-size helicopter was extremely costly and

subject to large vibrations; a large helicopter is also limited in how close it can approach the

collectors. The remote-controlled airplane lacked the maneuverability and fine control of the remote-

controlled helicopter. The tethered aerostat was tested as a stationary camera platform to be used

with a rotating collector; however, it could not be placed accurately enough in a single location

because its position was strongly subject to the wind. Likewise, the aerostat moved significantly

and uncontrollably in typical weather conditions. A telescope was also tested as a stationary camera

platform to be used with a rotating collector, where the angle of the camera with respect to the

collector was measured using the collector’s tracking mechanism. The telescope proved useful for

qualitative measurements using Wood’s Distant Observer concept [41]; however, no attempt was

made to develop a quantitative measurement system, and there are few circumstances in which an

unobstructed line of sight on the ground between a telescope and collector is possible.
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Figure C.1: Remote-controlled airplane development platform

Figure C.2: Tethered aerostat development platform
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Figure C.3: Telescope development platform


