HYPACK: A Software Package for Hyperbolic and Elliptic
Equations in Two Space Dimensions

John Gary

CU-CS-076-75 December 1975

* Revised July 1976

‘C%ijniversity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Version 1

HYPACK: A software package for hyperbolic
and elliptic equations in two space
dimensions

by

John Gary
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

TR #CU-CS-076-75 December 1975
Revised July 1976

Contents -

1. Introduction
2. The Basic Equations
3. Use of the package.
The mesh.
User supplied coefficient routines.
The hyperbolic boundary conditions.
Boundary conditions for the elliptic equation.
Options which control the choice of the numerical method.
Setting initial conditions.
Modification of array dimensions.
The control of output.
The input parameters.
4. Some additional examples (not yet completed).
4.1. A varticity-stream function model
(periodic boundaries).
4.2 A shallow water equation model
(nonperiodic boundaries).

1. Introduction. This is a preliminary deseription of a FORTRAN
program package for the solution of a system of hyperbolic equations
coupled with a single elliptic equation. The system is restricted to
Cartesian coordinates (x,y) on a rectangular domain (Xz<X<Xp,Ya<¥<¥p).
The equations are allowed to contain parabolic terms (i.e., 3%u/sx2 and
32u/3y?), however we assume the diffusion terms are small so that the
proper boundary conditions are hyperbolic (except for the single elliptic
variable). An arbitrary number of hyperbolic variables (>1) are allowed,
however there can be at most one elliptic variable. The elliptic variable
may be absent. Periodic boundary conditions are allowed in either the x
or y direction, or in both directions. If one variable is

periodic, all variables must be periodic. In the non-periodic case the
user can set the time derivative of the hyperbolic variables at the
boundary in a separate boundary subroutine. This is intended to allow
use of the characteristics of the hyperbolic system in the definition

of the boundary conditions. This is described later. It is somewhat
complicated. However we feel the user must have control of the boundary
conditons, this cannot be completely automated.in two dimensions. The
boundary conditions are a difficult problem for hyperbolic equations.
Their treatment is a central part of the package.

The elliptic equation is solved by the package of Adams, Swartztrauber,
and Sweet which uses a direct method of second order accuracy combined
with deferred corrections to yield a fourth order finite difference method.
This allows periodic, Dirichlet or Neuman conditions on each pair of
opposite sides.

The spatial derivatives (Ux’Uy’Uxx?ny’Uyy) in the hyperbolic equa-
tions, and on the right side of the elliptic equations, are replaced
by finite differences, of either second order (three point) or fourth
order (five point) accuracy. In addition the user is allowed to include

4)

a diffusion term which is a five point approximation of -(eXUX4 + syUy
where the user supplies the constants‘sX and 7.

This spatial discretization produces a semi discrete "method: of
Tines" approximation; that is, a system of ordinary differential equations.

This system is solved by either a fourth order Runge-Kutta-Fehlberg [1]

method or a second order leapfrog. Both methods are adapted to handle

data contained in LCM (or ECS) rather than central memory. Thus our
package can effectively use ECS on the CDC 6000 series or LCM on the

CDC 7600. We will ewentually adapt the code to handle problems contained in
central memory. Eventually we will adapt the package to run problems

whose data is disk contained, but this is a more difficult problem.

The output routines presently produce tables of array values,
and contour plots.

It is difficult to write a package, especially in two or three
dimensions, which can handle a significant percentage of problems without
some modification. Even after the restriction to Cartesian coordinates
on a rectangle, modifications may be required. Therefore, we have attempted
to break the program into subroutine modules corresponding to the functions
which the user is likely to want to modify. Development of the proper
modules is going to require some experiment. This development is going to
be "tuned" for atmospheric models, especially vorticity-stream function
models, anelastic cloud models, perhaps some types of ocean models, and
perhaps some types of Tee wave and eventually primitive equation models.

2. The basic equations. The system of equations which the package
is set up to solve is the following.

8__ aj 89_
— = — bt (XYW, W W W W) (1)
ot 9X oy KTV IIXXIERY Y
226 5 22)
ax(x)— + bx(x)— + cx(x) + ay(y)— + by(y)—+ cy(y)¢
ax? ax ay? By
= S(x]ylt,g_,y,x,gy,gxx,gxy,yw)

The solution can be specified at the boundary (¢ = o(x,y)), or a
derivative condition can be specified (¢X *yqe = o(x,y), or

¢y vy = o(x,y) where y; are constant. The variables are the
following.

u = (ija--eauM)T f= (flw"fM)T

ﬁ = (—uj..B“ﬁ ' ’uM 9¢> 9_ = (gl 2. ’gM)T

ug = U'-i(xm)’at) r= (hla-":hM)T (3)
ff = f'(XxY:t’w_) g = g-i(xﬂ‘y’t’.vi)

ry = ors (XYt W, W sy W yy)

The system of hyperbolic equations is converted to a system of
ordinary differential equations (a semi-discrete approximation) by the
"method of Tines." The spatial derivatives are replaced by finite dif-
ferences using one sided differences near the boundary and making certain
modifications for the boundary conditions. To illustrate the method con-
sider the single equation in one space dimension
i.e. Ug = -Uyx

u(x,0) = sin(x)

u(o,t) = -sin(t)

o<x<1

o<t
whose solution is u(x,t) = sin(x-t). Suppose the mesh is X; = (i-1)Aax
where 1<i<NX. Using second order difference approximations in the interior
and first order at the boundary, the ODE system is

e M U e O T515NX~1
dt 28X
E{—l_jj; _ .o '!—U_l l ,i\ = NX
dt Ax
du_
—2 = - cos(t)

Note that the time derivative of U at the inflow boundary is obtained by
differentiation of the boundary cond1t10n U (t) = =sin(t). The time
derivative at the outflow is obtained from a one sided difference. At an
outflow boundary, that is one where the characteristic Ties on the inside
of the domain, no boundary condition should be imposed. This package will
compute the time derivative at both boundaries using one sided difference
approximations. The user must then supply a routine called HPBDY to
correct the time derivative of the "inflow" variables. Generally the
variables are not characteristic variables which means that we cannot .
speak of "inflow" and "outflow" variables. We will discuss this compli-
cation later.

It is convenient to have a differential equation for each variable,
therefore we differentiate the boundary condition although this is not
absolutely necessary [2]. Later we will supply other ODE solvers such
as the variable order Adams integrator due to Shampine [3]. We will pro~
vide additional details in the next section.

3. The use of the package. The user must supply subroutines to
evaluate the functions f,g,r and s, and the coefficients ax(x),
cay(y)s...ey(y). Not all of these functions need be called -

"flags" are supplied to suppress the subroutine calls for the unused
functions. In this case, dummy functions must be supplied in order to
Toad the program package.

The mesh. The mesh must be a rectangle with equally spaced mesh
points in each direction. The user supplies the input parameters
XA,XB,YA,YB,NXPTS, and NYPTS. The mesh points are

XA + (i-1)*(XB-XA)/(NXPTS-1)
YA + (3-1)*(YB-YA)/(NYPTS-1)

K
Y5

The user supplies parameters MHPEQN and MELEQN which determine the
number of hyperbolic variables (M in equations (3) above) and MELEQN
which indicates the presence of an elliptic variable. The restrictions
are O<MELEQN<1 and 1<MHPEQN<NWQ. For the definition of NWQ see the section
on "array specification" below.

The user supplies parameters NHXBDY and NHYBDY which determine the
type of the boundary condition. If NHXBDY=0 then the boundary condition
along the sides x=XA and x=XB are periodic, that is um(k;y) = um(x+P,y)
for all variables, where P = XB-XA is the period. =
In the case NHXBDY=1, the user supplies a subroutine to set the boundary
conditions for the hyperbolic variables. This is discussed in the
section below on "boundary conditions". The meaning of NHYBDY is similar.
The parameters NEXBDY and NEYBDY are used to set boundary conditions for
the elliptic variable ¢ as discussed below. If the boundary conditions are
periodic (NHXBDY=0) .then the values U(1,d) and U(NXPTS,J) are equal. Thus
the code computes the solution for U(I,J) with 1<I<NX where

| NXPTS if NHXBDY#0

n

NX
/[NXPTS-1 if NHXBDY=0

User supplied coefficient routines. The subroutines to compute the

functions f,g,r and s are written in the following format. The names are
- FN

- GN

- RN

- SN

The calling sequences are

FN(J,Y,T,U,F,NWX,NWQ)

GN(J,Y,T,U,F,NUX,NWQ)

RN(J,Y,T,U,UX,UY,UXX, UXY,UYY,F, NWX,NWQ)

SN(J,Y,T,U,UX,UY,UXX, UXY,UYY,G,NWX,NWQ)

The input arguments U,UX,UY,UXX,uUxy,UYY and output argument F are variable
dimensioned arrays and must appear in a DIMENSION statement in these sub-
routines with the dimension (NWX,NWQ). The array U(I,M) contains the
variables (hyperbolic and elliptic) along one line of the mesh. Along the
line the index is J and the ordinate is Y. The value of the time is T.
The routine FN must take the input parameters (J,Y,T,U,NWX,NWQ) and compute
the value of the function F(I,M) which is the function f in equation (1).
For the input arrays U,UX,...UYY the range of the subscript M is 1<M<MEQN

v |3 ko |-

where MEQN = MHPEQN + MELEQN is the total number of variables. These

arrays are all indexed by (I,M) where 1<I<NX. The first partial derivative
with respect to x of each unknown is computed by the package using a

finite difference formula along the entire Tine with the given value of

J and Y. The result is placed in the array UX and is then available

within the RN and SN subroutines. A similar statement holds for the arrays
UY,UXX, UXY, and UYY. One sided differences are used near the boundary. For
the output F(I,M) we have 1<I<NX and T<M<MHPEQN. The right side of the
Poisson equation for ¢ is a scaler, so the dimension of the result G for

SN is G(NWX).

The terms fx and gy in equation (1) are included so that nonlinear
terms can be written in conservation form. Otherwise the method of Tines
integration may be unstable [4]. The functions f and g are evaluated and
then the derivatives f, and g, are approximated by a finite difference of
second or fourth order depending on the parameter NORDER.

There is a labeled COMMON block which the user may use in these
routines namely,

COMMON/ FNCOM/NX,NY, XA, XB,YA,YB,DLX,DLY ,NCASE
Here DLX and DLY are the mesh increments

DLX = (XB-XA)/(NXPTS-1)

DLX = (YB-YA)/(NYPTS-1)
The parameter NCASE 1is read in at the start of each run. It is not used
by the software package, but is included for the user's convenience in
selecting different cases.

it

]

As an example, suppose we have the following equation for a single
unknown

1]

» -.5%((u%), + (uP)y) + sin(t)
In this case MHPEQN = 1 and MELEQN = 0. Then the routine might be

SUBROUTINE FN(J,Y,T,U,F,NWX,NWQ)
COMMON/FNCOM/NX., NY,XA NB YA,YB,DLX, DLY‘NCASE
DIMENSION U(NWX,NWQ), F(NWX NNQ)

up = -uu, - uu,, + sin(t)

DO 10 T = 1,NX
10 F(T,1) = =.B5*U(I,1)**2
‘ RETURN

END

The same code will do for 6N, The subroutine RN is given below.

SUBROUTINE RN(J,Y,T,U,UX,UY,UXX,UYY,F ,NWX ,NWQ)
COMMON/FNCOM/NX ,NY , XA, XB, YA, YB,DLX ,DLY ,NCASE
DIMENSION U(NWX,NWQ) ,UX(NWX,NWQ) ,UY (NWX,NWQ),
X UXX(NWX,NWQ) ,UYY (NWX,NWQ)
SINT = SIN(T)
DO 10 I=1,NX
10 F(I,1) = SINT
RETURN
END

The parameters ISFN,ISGN,ISRN are "flags" to indicate that the routines
FN, GN and RN are used. If ISFN = 0 the routine FN is not called,
although a "dummy" routine with that name must be present in order to
load the program package. In the above example ISFN = ISGN = ISRN = 1.
The same equation could be solved with ISFN = ISGN = 0, and

ISRN = T with the following RN.

SUBROUTINE RN(J,Y,T,U,UX,UY,UXX,UYY,F,NWX,NWQ)

COMMON /FNCOM/NX,NY ,XA,XB,YA,YB,DLX,DLY ,NCASE

DIMENSION U(NWX,NWQ) ,UX(NWX,NWQ),UY (NWX,NWQ),

X UXX (NWX ,NWQ) ,UYY (NWX,NWQ)
SINT = SIN(T)

DO 10 I = T1,NX
10 F(I,1) = <U(I,1)*(UX(I,1) + UY(I,1)) + SINT

RETURN

END

Additional flags are included to control the computation of the
finite differences UX,UY,UXX,UXY, and UYY. If the parameters ISRUX,ISRUY,
ISRUXX, ISRUYY vanish, then the corresponding finite difference is not
computed, instead the derivative array is a "dummy" array. Similar
parameters ISSUX,... are used with the SN routine. These flags are
included to avoid needless computation of the finite differences.

The hyperbolic boundary conditions. The hyperbolic boundary condi-
tions are set by the user supplied routine HPBDY and the parameters
NHXBDY and NHYBDY. If NHXBDY = 0, then a periodic boundary condition is
used in the x-direction. The periodicity condition is used to compute
the finite difference approximations to the derivatives instead of the one
sided differences near the boundaries. In the nonperiodic case the routine
HPBDY allows the user to adjust the time derivatives at the boundary. The

argument list for HPBDY is
HPBDY (JBDY,J,Y,T,U,DTU,NWX,NWQ)

This routine is called once along each horizontal Tine; that is, once

for each value of J and Y. The parameters JBDY and Y are redundant
parameters included for convenience only. If the horizontal line is a
boundary 1ine (J=1 or J=NY)_£hen JBDY=2, otherwise JBDY=1. Thus JBDY

can be used in a computed GOTO within the HPBDY routine. The parameters

U and DTU are variable dimensioned arrays. The solution variables along
the mesh Tine are contained in the array U(I,M) where 1<I<NX and 1<M<MEQN.
The time derivative of these variables at the time T for each mesh point

is held in the array DTU(I,M). These time derivatives are computed using
one sided difference approximations to approximate spatial derivatives. A1l
these arguments are input parameters. The time derivative can be corrected
at the boundary in accordance with the boundary conditions. If JBDY=1, then
the boundary points are at I=1 and I=NX. If JBDY=2, then the entire hori-
zontal line consists of boundary points.

To see how the boundary conditions might be converted into a
correction on the time derivative consider the following examples. First
the single equation
Uy = —ux—uy
with the boundary conditions

u(o,y,t) = sin(y-2t) at x=XA=0

u(x,0,t) = sin(x-2t) at y=YA=0
In this case the HPBDY routine is obtained by differentiation of the
above boundary condition. This HPBDY routine might be

SUBROUTINE HPBDY(JBDY,J,Y,T,U,DTU,NWX,NWQ)
COMMON/ FNCOM/NX, NY , XA, XB,YA,YB,DLX,DLY ,NCASE
DIMENSION U(NWX,NWQ),DTU(NWX,NWQ)
GOT0(10,50) ,JBDY
C SET THE LOWER BOUNDARY LINE AT X=0 (JBDY=1)
10 DTU(1,1)=-2.*COS(Y-2.*T)
RETURN
C SET THE LOWER BOUNDARY LINE AT Y=0 (JBDY=2)
50 IF(J.GT.1)RETURN
DO 60 I=1,NX
X=XA+(I-1)*DLX
60 DTU(I,1)=-2.*COS(X-2.*T)
RETURN -
END

Note that we only correct at the "inflow" points along the left and
lower boundary. At the other boundaryfpoints the time derivative obtained
from one sided differences is used.

Next we consider an example of a system with two equations in which
the unknowns are not characteristic variables. The equations are

Bul) auz . aul
ot X oy (5)

ou

au Sul 2

2 _
5t 3% T 3y

The boundary conditions are periodic in the y direction, so that NHYBDY=0.
We will set the boundary conditions in the x-direction using the HPBDY
routine, thus NHXBDY=1. We can place these equations in diagonal or
characteristic form by the transformation

¢= U + =
U1+U2 s U1 .-U2

so that the equations are

T T)
ot sx ¥y
o (6)
29 3y 4 3y
ot X 3y

If the original system for (u1,u?) is written in the form

(o5
<

9
+B8

|
I
=
| @
X<
|12

Q
ct
<

then ¢ and ¢ are the linear combinations of U which yield the eigen-
vectors of A. At x=XA, the inflow characteristic is ¢ and the outflow ¢.
Suppose we wish to eliminate reflection. Then we should use the boundary
condition y=0 at x=XA. We need to translate this back into a condi-

tion on the time derivatives of Uy and Up- We have the time derivatives
of u]‘and U based on the use of one sided difference approximations in
the equation (5). These time derivatives are passed to the routine HPBDY
in the array DTU. At the boundary we impose the condition y=0 or dv -

dt
and use one sided differences in the approximation of %%w That is,

(7)

10

Here R1 is the d1fference approx1mat10n to auz/ax + 9u /ay, and R2
approximates au /3x + Bu /ay We can solve these equat1ons for the
derivatives of u1 and Us to obtain

: duT

1 n Y

g = 7 Ryt R,
du

2 = l_ ' \

= = 7 Ry tRy)

Instead of equation (7) we might consider the following system where one-
sided differences are used for the non-characteristic variable Uy

dug A diz o

dt dt dt 2
or .
(8)

_d_l:li-'R &:R

dt ~ ™2 dt 2

However, some experiments indicate that it may be better to use character-
istic variables in the boundary conditions as in (7) [2]. In this case the
HPBDY routine might be

SUBROUTINE HPBDY(JBDY,J,Y,U,DTU,NWX,NKG)
COMMON/ FNCOM/NX ,NY , XA, XB, YA YB, DLX DLY,NCASE
DIMENSION U(NWX, NWQ) DTU(NWX NWQ)

A1 = .5%(DTU(T, 1) + DTU(] 2)

DTU(1,1) = Al

DTU(1,2) = Al

Al = .5*(DTU(NX,1) - DTU(NX,2))
DTU(NX,]) = Al

DTU(NX,2) = -A1

RETURN

END

Note that the HPBDY routine is not called with JBDY=2 in this case because
the y-boundary condition is periodic. Also note that ¢ is the inflow
characteristic at the right boundary x=XB.

Boundary conditions for the elliptic equation. If MELEQN=1, then
an elliptic equation is solved for a diagnostic variable. The right side
of this equation is computed by the routine SN whose calling sequence is
the same as RN and is given above. The elliptic boundary conditions are
set by the subroutine ELBDY whose calling sequence is
ELBDY(JBDY,J,Y,T,U,UX,UY,UXX,UXY,UYY,UXA,UXB,UXI, NWX,NUQ)

11

This routine is .called once for each mesh 1ine (i.e., each value of J).
Thus it must define the e111ptic'boundary conditions on only one mesh

line per call. The variables JBDY,J,Y,T,U,UX,UY,UXX,UXY,UYY,NHX, AND NKQ
have the same meaning as in the routine HPBDY. The boundary conditions are
stored in UXA,UXB,UXI in a manner to be described below. The type of
boundary is determined by the parameters NEXBDY and NEYBDY. These values
are set as follows:

NEXEDY=0: periodic in x

=1: solution specified at x=XA and x=XB.

=2: solution specified at x=XA and a derivative condition at
x=XB, name]y-%% + Yyt = o(XB,y).
The values of p(XB,yj) are returned by ELBDY in the element
UBDY(NX). Note p(X]y) is defined only on the boundary.

=3: derivative condition specified at x=XA and x=XB.

=4: derivative condition specified at x=XA and the solution
specified at x=XB.

The values of NEYBDY have a similar meaning.

The array UXI has dimension UXI(NWX). The parameter JBDY is redundant
just as it is for the HPBDY routine. If 1<J<NY, then JBDY=1. 1If j=1 or
J=NY, then JBDY=2. If JBDY=1, then the values at the boundary point x=XA
(either ¢(XA,Yj) or p(XA,Yj)) are placed in UXA. The boundary values at
x=XB are placed in UXB. If JBDY=2, then the boundary values along the J=1
or J=NY (¢(xi,y) or p(xi,y) where y=YA or y=YB) are placed in the array
UXI(I) where 1<I<NX. The boundary values at the endpoints are placed in
UXA and UXB. In the case of derivative boundary conditions these values
may be different from those in UXI(1) and UXI(NX). This rather clumsy
arrangement is necessary since the data required to compute the right side
of the elliptic equation is in LCM which requires this right side to be
computed one Tine at a time.

Options which control the choice of the numerical method. The user

can set the order of the finite difference approximations in space. If
NORDER=1 second order (3 point) approximations are used. If NORDER=2,
fourth order (5 point) approximations are used. It would be rather easy
to add a "Numerov" type of fourth order scheme. This might be more
effective than the fourth order explicit five point scheme.

12

At present there are two ODE solvers available in the package. Both
are designed to advance the time step by "mesh Tines" using mesh data
contained in LCM and thus differ slightly from the usual ODE solvers.

The parameter NTPODE controls this selection. If NTPODE=1 a Runge-Kutta-
Fehlberg ODE solver is used. If NTPODE=2 a second order (in time) fixed
time step leapfrog scheme is used. In this case the time step is set

by the user in DLTBGN.

The parameters DLTBGN, DLTMIN, and DLTMAX allow the user to set the
initial, minimum and maximum values of the time step used in the Runge-Kutta-
Fehlberg. The user can set the error tolerance parameters for the Runge-
Kutta-Fehlberg, one for each hyperbolic variable. These parameters are
the array EPSU(M) where 1<M<MHPEQN. The user must input an approximation
to the norm of the Mth prognostic variable in the array element SOLNMX(M).
This is used for scaling the error tolerance in the Runge-Kutta-Fehlberg

Stabilization of fourth order leapfrog. The leapfrog scheme when

used with fourth order spatial differences is unstable for a nonperiodic
boundary condition. If the flag NSTBBD is nonzero, then a stabilization
term of the form

n+1 n n-1
y(u.i - 2uy * o)

is used for i=1,2,NX-1, and NX. The factor STBBDY(M) is used to set y in
each equation. For the simple equation

Ut + CUX =0

this parameter (STBBDY(1)) should be set to c. Choice of the proper para-
meter for a system may require some experimentation.

Setting initial conditions. A subroutine USOLN must be provided by
the user to initialize the hyperbolic (prognostic) variables. The calling
sequence 1is \

USOLN(J,Y,T,U,NWX, NWQ)
The value of T for initialization will be TBGN. The routine should supply
the value of U along the Jth Tine at y=Y in the array U(I,M) where
- 1<I<NX, 1<M<MHPEQN.

13

For test purposes it is convenient to solve a system whose exact
solution is known. In this case the output routine OQUTU (which is called
by OUTTIM) will compute and print the error in the finite difference

solution. The user must write the routine USOLN to compute the exact

solution for any time t=T. For example, if MHPEQN=2 and MELEQN=1 and
the hyperbolic solution is u;(x,y,t) = sin(x+y-2t)
u2(x,y,t) = cos(x+y-2t)
and the elliptic solution is
o(X>¥,>t) = sin(x+y-t)
then the USOLN routine might be

SUBRQUTINE USOLN(J,Y,T,U,NHX,NWQ)
COMMON/FNCOM/NX,NY , XA XB,YA,YB,DLX,DLY, NCASE
DIMENSION U(NWX, NNQ)
DO 20 I=1,NX
X—XA+(I 1)*DLX
U(T,1)=SIN(X+Y-2.*T)
U(T,2)=C0OS(X+Y-2.%T)
20 U(I,3)=SIN(X+Y-T)
RETURN
END

The routine OUTU will compute the error if the parameter NEXACT is set
to NEXACT=1. If NEXACT=0 the error is not computed and USOLN will be
called only if T=TBGN and IRESTR=0.

Modifications of array dimensions. The LCM data is accessed only in
the routines READWL and WRITWL. To increase the size of the mesh the user
must modify the declaration of the following variables which are contained
in blank COMMON.

W(NWX,NWQ,16), WE(NWEX,NWEY), WEK(NWEK).

In the COMMON declaration the user must replace NWX, NWEX, NWEY, and NWEK
by integer constants. The same integer constants must be used to set

these variables in the MAIN program. This blank COMMON declaration is also
found in the subroutines IODATA, ADVAN, OUTTIM, RELOAD, and SAVEIT. These
subroutines can be converted into main programs in different overlays if it
is necessary to overlay the package. These variables are transmitted to
the other routines as arguments in order to reduce the number of occur-
rences of this blank COMMON declaration.

14

In addition to the above three arrays, the following data arrays
are found in COMMON block /INPARM/.

EPSU(25), EXDIF(25), EYDIF(25), SOLNMX(25), KOUTIN(25),
KOUTSL(25), KOUTNS(25).

These arrays are used for data associated with each variable. Thus we
have the restriction MEQN < 25. If this restriction is violated, then
the user must increase the subscript range for these arrays in all the
/INPARM/ declarations.

The control of output. The variables can be output at the end of a

specified time step, or at certain specified times. There are three ways
in which output can be obtained. First an increment in time, TIMINC,
can be input. Then output will be obtained at TBGN + TININC, TBGN + 2.*TININC,
TBGN + 3.*TININC, . . . The variables to be printed are determine
the array KOUTIN(NWQ). If KOUTIN(M) # 0, then the Mth variable will be
output, where 1 < M < MEQN. If NUPRNT = 0, then none of the solution
arrays will be printed. If NUPLOT = 0 none will be plotted.
If KSLMAX > 0, then variables will be output at the times

TSLK(1), TSLK(2), . . . TSLK(KSLMAX) given by the array TSLK. Which
variables are output is governed by the array values KOUTSL(M) # O.
The value KSLMAX must satisfy KSLMAX < 25 unless the COMMON statements
are altered.

 The input parameters. The input data can be in one of four formats.

The first is NAMELIST input which is not standard Fortran and is not avail-
able on the NCAR system. The second is a short form of the input in which
as many variables as possible are set by default. The variables are read
by a standard formatted read, but they are placed on the card following
the name, for example, XA=+@.00000, XB=1.00000... . We hope this makes it
easier for the user to prepare the input. The third form is a long form
which includes all input parameters, about 60 in number. This provides the
experienced user with full flexibility. The fourth form allows a restart
from a "checkpoint" or "save" tape. This form has not yet been debugged.
The input format is described in more detail on the comment cards in
the program.

(1]

(2]

[3]

[4]

References

W. Enright, R. Bedet, I. Farkas, T. Hull, "Test Results in
Initial Value Methods for Non-stiff Ordinary Differential
Equations", Tech. Report 68, Dept. Computer Science, University
of Toronto (1974).

J. Gary, "Boundary Conditions for the Method of Lines Applied to
Hyperbolic Equations", Department of Computer Science Report,
University of Colorado, Boulder, Colorado 80302 (1975).

L. Shampine and M. Gordon, "Computer Solution of Ordinary
Differential Equations", W.H. Greeman, San Francisco.

J. Gary, "The Method of Lines Applied to a Simple Hyperbolic
Equation", Submitted to Journ. Comp. Phys. (1975).

