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Abstract  

Circadian rhythms are maintained through the self-regulatory, oscillatory molecular clock, which 

includes Per1, Per2, and Bmal1 clock genes, among others. Disruptions to clock gene expression have 

been associated with numerous disorders including major depressive disorder, anxiety disorders, and 

bipolar disorders. The molecular clock has been well characterized in the hypothalamic suprachiasmatic 

nucleus (SCN), the master clock of the body. Many peripheral tissues and extra-SCN brain regions have 

also been shown to express these core clock genes rhythmically, but as the SCN has few direct 

projections to extra-hypothalamic regions, the question remains as to how the SCN communicates to 

extra-SCN molecular clocks. Glucocorticoids (CORT) are a promising candidate by which the SCN 

signals to other brain and body regions, as glucocorticoid receptors (GR) are found ubiquitously 

throughout the body, with the notable exception of the SCN. Furthermore, CORT is released in a 

circadian manner, with peak plasma levels occurring at the beginning of the animal’s active phase. 

Interestingly, there is a hypersensitive glucocorticoid response element (GRE) in the promoter region of 

the Per1 gene, which may be a mechanism by which CORT can modulate the molecular clock. We 

compared clock gene expression in mice that had a conditional forebrain glucocorticoid receptor knockout 

(FBGRKO) to expression in GR floxed mice (control genotype comparison) to determine the necessity of 

GRs in diurnal core clock gene expression. FBGRKO (C57BL/6 pure strain of the T29-1 founder line 

containing Cre+ recombinase transgene) mice have been previously well characterized to have 

disruptions in GR expression in the forebrain including the hippocampus (HPC), amygdala (AMY), cortex, 

and nucleus accumbens, while the central nucleus of the amygdala (CEA) had a 50% deletion and the 

paraventricular nucleus (PVN) was not affected. Mice were sacrificed under basal conditions in the light 

phase (zeitgeber time, ZT, 1.5) or dark phase (ZT13). In situ hybridization was used to measure mRNA 

expression. Our results show there is a time of day difference for Per1, Per2, and Bmal1 clock genes 

mRNA expression in the SCN and for Per1 and Bmal1 mRNA in the PVN. Only Bmal1 mRNA showed a 

time of day difference in subregions of the prefrontal cortex (PFC; anterior cingulate, prelimbic, infralimbic, 

ventral orbital), insula, subregions of the HPC (CA1, CA3, supra dentate gyrus, infra dentate gyrus), and 

subregions of the AMY (central, basolateral, medial). Per1 mRNA expression had a significant time of day 

effect only in the medial amygdala, and Per2 mRNA only in CA3. CA1 of the hippocampus did not show 

time of day differences for any clock gene investigated. The lack of a time of day effect in some brain 

regions may be due to the limited temporal resolution of the brain samples (only 2 time-points). There 

were no genotype differences for all brain regions examined. These results are expected in the SCN and 

PVN, as hypothalamic GRs would not be affected by the FBGRKO. The lack of a genotype effect in the 

HPC, AMY, PFC, and insula may be due to some phenotypic sparing of GR expression in those brain 

regions. It is also possible that CORT is not necessary for diurnal clock gene expression in these tissues 

or other possible mechanisms have been upregulated to compensate for the lack of GRs. CORT may 

also modulate the diurnal rhythm of Per1, Per2, and Bmal1 mRNA in the forebrain regions through a 

series of neuronal projections that had spared GR expression. 
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Introduction 

Core clock gene expression underlies circadian rhythms in the master clock of the body, the 

suprachiasmatic nucleus (SCN), and extra-SCN tissues (Amir et al., 2004; Angeles-Castellanos et al., 2007; 

Masubuchi et al., 2000; Girotti et al., 2009; Chun et al., 2015). Glucocorticoid receptors (GRs) are found 

ubiquitously throughout the brain and body with the notable exception of the SCN. One of the core 

clock genes, Per1, has a glucocorticoid response element (GRE) in its promoter region where GRs bind 

after being activated by glucocorticoids (Yamamoto et al., 2005; So et al., 2009). The GRE in Per1’s 

promoter region may be a way in which glucocorticoids can entrain the molecular clock in extra-SCN 

tissue without disrupting the master clock functioning. In this study, mice had a forebrain-specific 

glucocorticoid receptor 

knockout. We hypothesized that 

Per1 mRNA expression would be 

altered, which will influence the 

expression of other core clock 

genes in the forebrain, leading to 

a disrupted molecular clock in 

these brain regions. Core clock 

gene mRNA expression was then 

analyzed in SCN and extra-SCN 

brain tissues to investigate the 

necessity of GRs in regulating the 

molecular clock. 

 

 

Figure 1. A few examples of mechanisms that oscillate in a circadian 

manner in humans. 

https://lookfordiagnosis.com/mesh_info.php?term=circadian+rhythm&l

ang=1 
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Regulation of circadian rhythms and clock gene expression 

Circadian rhythms are essential in coordinating the proper timing of physiology and behavior 

(Hastings et al., 2003). Many aspects of physiology and behavior, including sleeping, eating, temperature 

regulation, and hormone secretion, have circadian rhythms (Figure 1). These rhythms oscillate in a 

circadian fashion, meaning they follow a 24-hour cycle. In humans, the circadian clock promotes 

sleeping during the night and being active during the day. Disruptions to these circadian rhythms, such 

as shifted or blunted cycles of body temperature, sleep/wake, blood pressure, and pulse, have been 

associated with many mood and anxiety disorders, including major depressive disorder, bipolar disorder, 

panic disorder, general anxiety disorder, post-traumatic stress disorder (PTSD), and seasonal affective 

disorder (Bunney et al., 2000; Atkinson et al., 1975; Kripke et al., 1978; Souetre et al., 1989). 

Circadian rhythms are regulated by a few core clock genes that comprise the internal molecular 

clock. The molecular clock operates through a series of transcription and translation mechanisms of 

these core clock genes. This internal clock has a positive regulatory arm composed of Brain and Muscle 

Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT)-like protein-1 (Bmal1) and Circadian Locomotor 

Output Cycles Kaput (Clock) or Neuronal Per-Arnt-Sim (PAS) Domain Protein 2 (Npas2), a homolog to 

Clock. The negative regulatory arm consists of Period (Per) 1, 2, 3, and Cryptochrome (Cry) 1 and 2. Gene 

products from the positive arm enhance the transcription of the negative arm genes and the protein 

products of the negative arm inhibit their own transcription. As seen in Figure 2, BMAL1/CLOCK proteins 

dimerize in the nucleus of a cell, which serves as the transcription factor that binds to an Enhancer Box 

(E-Box), a DNA sequence within the promoter region of the clock genes of the negative arm, Per1, 2, 3, 
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and Cry1 and 2. Per and Cry mRNA are 

then brought into the cytosol where 

they are translated into proteins. 

PER/CRY proteins dimerize and enter 

the nucleus of the cell. Inside the 

nucleus, PER/CRY dimers inhibit the 

dimerization of BMAL1 and 

CLOCK/NPAS2 proteins, resulting in 

decreased transcription of the Per and 

Cry mRNA (Griffin et al., 1999; Kume et 

al., 1999; Shearman et al., 2000a). This creates a self-regulatory transcription and translation feedback 

loop system that approximates 24 hours to complete one cycle of activity. 

24 hour basal clock gene expression has been well studied in the SCN and research is growing 

for extra-SCN central and peripheral tissues (Amir et al., 2004; Angeles-Castellanos et al., 2007; 

Masubuchi et al., 2000; Girotti et al., 2009; Chun et al., 2015). Per1/2 and Bmal1 mRNA expression tends 

to be antiphasic to each other in most brain and body regions, meaning that when one gene is at its 

peak levels, the other is at its trough levels (Girotti et al., 2009). Furthermore, mRNA expression in the 

SCN tends to be antiphasic to most other brain and body regions in nocturnal rodents. For example, the 

acrophase of Per1 mRNA in the SCN occurs at zeitgeber time (ZT) 4, while Per1 mRNA in the 

paraventricular nucleus (PVN) is at its trough. In circadian research time is referred to in zeitgeber time 

(ZT). For a 12:12 hour light:dark cycle, ZT0 is the time when lights are turned on, and ZT12 is the time 

Figure 2. Self-regulatory negative and positive feedback 

loops comprised of the core clock genes: Bmal1, 

Clock/Npas1, Per, and Cry. 
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when lights are turned off. Similarly, 

when Bmal1 mRNA peaks in the SCN 

at ZT16, it is at its trough in the PVN 

(Figure 3). Interestingly, basal clock 

gene expression of Per2 mRNA in the 

central nucleus of the amygdala 

(CEA) seems to be in phase, rather 

than antiphasic like the PVN, with 

the SCN in rats (Chun et al., 2015; 

Harbour et al. 2013). The CEA is the 

only extra-SCN tissue that is known 

to have the same phase relationship 

as the SCN which may be due to the 

fact that they are both comprised 

predominantly of GABAergic neurons (Sun and Cassell 1993; Sun et al., 1994; Wagner et al., 1997). 

Whether this distinction has a functional significance and whether it is comparable in mice is yet to be 

determined.  

The SCN of the hypothalamus is the master clock of the body and is believed to control the 

body’s main circadian rhythm and communicate with peripheral brain and body regions about how and 

when to oscillate. The SCN is the primary region essential for receiving light input from the external 

environment and relaying this information to the rest of the body. Light is sensed by rods and cones in 

the retinas of the eyes and proceeds through the retinohypothalamic tract towards the SCN, where it 

serves as a strong entrainment factor (Figure 4; Ueyama et al., 1999). Melanopsin, a photopigment 

expressed in retinal ganglion cells in the retina of the eye directly project photic input to the SCN 

Figure 3.  Per1 and Bmal1 basal clock gene expression in the 

SCN and PVN in male rats. Antiphasic relationships exist 

between Per1 and Bmal1 mRNA, as well as between the SCN 

and extra-SCN tissue (adapted from Chun et al., 2015). 
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synchronizing the period and phase of the circadian clock to the environment. Melanopsin 

photoreception has the ability to entrain circadian rhythms in mice lacking rods and cones, the primary 

visual photoreceptors in the eyes (Gooley et al., 2001; Warren et al., 2006). Retinal ganglion cells are 

primarily glutamatergic and act on AMPA/kainite receptors creating a response to light (Zhang et al., 

2008; Wong et al., 2007). Thus, glutamatergic signaling from melanopsin in the retinal ganglion cells is 

believed to be one of the primary photopigment candidates that entrain the circadian clock to the 

light:dark cycle, especially in 

the absence of rods and 

cones. In the SCN, light has a 

significant impact on the 

body’s natural circadian 

rhythms making it one of the 

most influential zeitgebers 

(time givers) to the molecular 

clock. Clock gene expression 

in the SCN has been well characterized, and light has been shown to be capable of resetting the 

circadian clock in the SCN by inducing Per1 and Per2 mRNA expression most potently during the dark 

phase (Oishi et al., 1998; Amir et al., 2004; Angeles-Castellanos et al., 2007; Masubuchi et al., 2000; 

Girotti et al., 2009; Chun et al., 2015; Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 

1997). 

Disruptions to the molecular clock have been associated with mood and anxiety disorders, and 

may underlie the alterations in circadian rhythms associated with these disorders (Bunney et al., 2008; Li 

et al., 2013). For example, Johansson et al. (2003) found that Npas2 may be associated with the 

development of seasonal affective disorder. Additionally, Benedetti et al. (2003) found that a single 

42 K.E. van Esseveldt et al. / Brain Research Reviews 33 (2000) 34 –77

Fig. 4. Longitudinal view of the rat brain, illustrating the input pathways to the suprachiasmatic nucleus (SCN) from the retina (retino-hypothalamic tract,

RHT) and from the intergeniculate leaflet (IGL) of the lateral geniculate nucleus (LGN) (geniculo-hypothalamic tract, GHT), and the main output

pathways to the subparaventricular zone of the hypothalamus (sPVz), dorsomedial nucleus of the hypothalamus (DMH) and paraventricular nucleus of the

thalamus (PVT).

shell neurons. Thus, the reported segregation in input and rhythm [70,168,202]. The role of melatonin in circadian

output pathways of the core and shell enables the SCN to behavior varies among species and no uniform global view

differentially modulate the output neurons projecting to can be given. For instance in hamsters the hormone

different target areas. Whether the core and shell dich- mediates seasonal variation in reproductive behavior

otomy described in the rat represents a general mammalian [126,279], in human it has a role as ‘sleep-promoting

plan for the organization of the SCN remains to be seen. hormone’ [396,408,409].

Functional studies have to some extent confirmed a role Second best described are the pathways controlling

of VP in signalling circadian rhythm to the SCN target corticosterone plasma rhythms [46]. Several routes of

areas via its efferent projections, but there is relatively control seem incorporated: direct synaptic contacts of SCN

little evidence that VIP serves a similar role. However, as neurons on the corticotroph releasing factor(CRF)-produc-

several transmitters in particular GABA (see Section 2.2.1) ing neurons of the PVN and an indirect input on these

are colocalized in the SCN neurons containing VP and VIP, neurons via the DMH. In both instances the release of

the release of a particular cocktail of colocalized transmit- adrenocorticotrophic hormone (ACTH) from the anterior

ters might be more crucial to the signalling role of the lobe of the pituitary may be controlled in a rhythmic

SCN efferents, than just the presence of VP or VIP only. fashion leading to rhythmic production and release of

SCN projections to the sPVz, the MPN, the PVN and the corticosterone from the adrenal. In addition however, a

DMH, may allow the SCN to modulate many neuroen- multisynaptic pathway via the PVN and the intermediola-

docrine and autonomic functions [46]. teral column neurons of the spinal cord to the adrenal

Circadian neuroendocrine control pathways have been exists as demonstrated by transneuronal virus tracing from

proposed for melatonin, corticosteron and the gona- the adrenal [47]. The functional significance of this SCN-

dotrophins. The best described of these is a multisynaptic adrenal connection was demonstrated by a light-induced

pathway by which the SCN controls the diurnal synthesis fast decrease in plasma corticosterone that could not

and secretion of the pineal hormone melatonin. Through a related to a decrease in ACTH, and was not observed in

multisynaptic pathway, consisting of a GABAergic projec- SCNX rat. VP and VP antagonists delivered by reversed

tion from the SCN to PVN [168], projections from the microdialysis in the rat DMH indeed revealed a pro-

PVN to the intermediolateral column of the spinal cord, nounced inhibitory role of SCN-derived VP for the circa-

and further connections to the superior cervical ganglion, dian activity of the hypothalamus–pituitary–adrenal axis,

the SCN influences melatonin secretion from the pineal but also to the existence of an as yet unidentified stimulat-

gland. Melatonin can feedback by inhibition of SCN ory factor [169,170].

neuronal firing [219,313] and can entrain the phase of the The VIPergic neurons of the SCN synapses in a gender-

Figure 4. Light from the external environment enters into the eye 

through the retina and passes through the retinohypothalamic tract 

(RHT) to the SCN (source for sagittal brain slice). 
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nucleotide polymorphism (SNP) in the flanking region of Clock has a higher association with bipolar 

episodes and greater insomnia. Schizophrenia, alcoholism, and bipolar disorder may all be associated 

with SNPs in Bmal1 and Per3 genes (Nievergelt et al., 2006; Mansour et al., 2006). Further, in rodent 

studies, disruptions to normal clock gene expression have been associated with impaired cognition and 

emotional function (Takahashi et al., 2008; Garcia et al., 2000; McClung et al., 2007; Rawashdeh et al., 

2014). These negative implications from disrupted clock gene expression show that normal, rhythmic 

clock gene expression is essential for maintaining mental health. 

 

Role of glucocorticoids and their receptors 

Glucocorticoids (CORT) are steroid hormones that fluctuate in a circadian manner with peak 

blood plasma levels of CORT occurring upon the beginning of the animal’s active phase. In addition to 

circadian drive, CORT, cortisol in humans and corticosterone in rodents, also responds to stress and is 

the end product of the hypothalamic-pituitary-adrenal (HPA) axis, which is the body’s hormonal stress 

response system. When the body receives a stressor, brain regions that are part of the limbic system 

(hippocampus, amygdala) and the prefrontal cortex receive input of the stress stimuli and then signal to 

the PVN of the hypothalamus (Herman et al., 2005). The PVN reacts to the stimulus by releasing 

corticotropin releasing hormone (CRH) which acts on the anterior pituitary gland. The anterior pituitary 

gland then releases adrenocorticotropic hormone (ACTH) which acts on the adrenal cortex of the 

adrenal gland to synthesize and release CORT. CORT enters the bloodstream, then negatively feeds back 

onto the HPA axis, thereby decreasing the release of CRH from the PVN and ACTH from the anterior 

pituitary, ultimately limiting its own future immediate release (Figure 5). 
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CORT is an important 

hormone in the body with various 

effects including glucose 

regulation, lipid metabolism, 

immune activity, stress response, 

learning, and memory (Kassel and 

Herrlich 2007; Popoli et al., 2011; 

Chung et al., 2011). It has been 

reported that CORT may have a 

wide range of effects because 

glucocorticoid receptors (GRs) are 

found ubiquitously throughout the 

brain and body, with the notable 

exception of the SCN (Reul and De 

Kloet 1985; Morimoto et al., 1996; Rosenfeld et al., 1988; Rosenfeld et al., 1993; Balsalobre et al., 2000). 

Under basal conditions, circulating CORT levels are low during the inactive phase and peak upon the 

beginning of the animal’s active phase. Humans, for example, have low CORT at night and peak levels in 

the morning, around the time they wake. Many rodents, including rats and mice, are nocturnal animals 

and therefore have peak CORT levels at the onset of the dark phase and trough CORT levels during their 

light phase. Disruptions in the CORT circadian rhythm and hypersecretion of CORT have been associated 

with major depressive disorder, bipolar disorder, Cushing syndrome, diabetes, obesity, Alzheimer’s 

disease, and metabolic syndrome (Daban et al., 2005; Chung et al., 2011; Dickmeis T, 2009; Herichova et 

al., 2005; Cermakian et al, 2011; Tahira et al., 2011). 

Figure 5. Representative image of negative feedback loops 

controlled by hypothalamic-pituitary-adrenal axis. CRH is 

released from the PVN of the hypothalamus which acts on the 

anterior pituitary to release ACTH. ACTH then acts on the 

adrenal cortex of the adrenal gland to release CORT. CORT can 

feedback and inhibit CRH release from the hypothalamus and 

ACTH release from the anterior pituitary. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCKKY1fm-rsgCFYiZiAodBUAHfA&url=https://en.wikipedia.org/wiki/Hypothalamic%E2%80%93pituitary%E2%80%93adrenal_axis&psig=AFQjCNENcFNS1MAqtOyuiADoYEF_0vfo0Q&ust=1444243069971543
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCKKY1fm-rsgCFYiZiAodBUAHfA&url=https://en.wikipedia.org/wiki/Hypothalamic%E2%80%93pituitary%E2%80%93adrenal_axis&psig=AFQjCNENcFNS1MAqtOyuiADoYEF_0vfo0Q&ust=1444243069971543
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In most extra-SCN brain regions and peripheral tissues, Per1 mRNA peaks in the middle of the 

animal’s active phase. Rats, for example, have peak Per1 mRNA levels around ZT16, depending on the 

region of interest. Interestingly, there is a molecular connection between CORT and the Per1 gene. The 

SCN has few direct projections to other brain and body regions, whereas GR is expressed throughout the 

brain and periphery. Due to this molecular connection between CORT and the Per1 gene, and the fact 

that diurnal CORT circulation is under the control of the SCN, CORT should be considered a candidate 

secondary entrainer (Buijs et al., 1993). As seen in Figure 6, CORT binds to a glucocorticoid receptor (GR) 

which dimerizes and binds to a glucocorticoid response element (GRE). There is a GRE in the promoter 

region of the Per1 gene which may be the path by which CORT acts to induce Per1 mRNA expression, 

thereby entraining the molecular clock (Yamamoto et al., 2005; So et al., 2009). Considering that GRs are 

found throughout the brain and body, CORT may be a regulator of clock gene expression without 

affecting the SCN.  

 

 

 

Figure 6. Representative image showing the binding of CORT to GRs which dimerize and bind 

to a GRE. The GRE is in the promoter region of Per1 which is a clock gene that is also induced 

by the positive components of Bmal1 and Clock/Npas2.  Image adapted from Yamamoto et al., 

2005. 
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Experimental design and study goals 

Transgenic mice were bred to test the functionality of CORT, through GRs, as a regulatory 

entrainment factor of clock gene expression from the SCN to other brain and body regions. The breeder 

mice were created using a Cre recombinase and loxP system specifically using the CaMKIIα promoter. 

The loxP system is a molecular technique used to flank a specific region of DNA by inserting the loxP 

DNA sequence into the genome of embryonic stem cells. As the embryonic stem cells develop, the gene 

that is flanked by the loxP sites is then referred to as being “floxed”. Once a sequence of the genome is 

floxed, the Cre recombinase recognizes these sequences and cuts at the loxP sites, thereby deleting or 

inverting the portion of the DNA enclosed by the loxP sites (Figure 7; Tsein et al., 1996; Lamont, K.).  

The CaMKIIα promoter used in these mice is important because previous studies have 

demonstrated that the actions of CaMKIIα are restricted to the forebrain thereby creating a gene 

manipulation that is forebrain-specific (Mayford et al., 1995, 1996a, 1996b). In the mice used for this 

Figure 7. Mechanism for Cre recombinase and loxP system. The gene of interest (GR) is 

floxed by two loxP sites. Cre will then cut at the loxP sites, excising the gene of interest. 

Image adapted from Lamont, K. 
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https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNbxgqDZpsgCFcq8gAodRTsP9Q&url=http://www.clipartpanda.com/categories/scissors-coloring-pages&bvm=bv.104317490,d.eXY&psig=AFQjCNE3GHcdBvL9B1l2mzbwAAW0u93S3A&ust=1443975238986964
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNbxgqDZpsgCFcq8gAodRTsP9Q&url=http://www.clipartpanda.com/categories/scissors-coloring-pages&bvm=bv.104317490,d.eXY&psig=AFQjCNE3GHcdBvL9B1l2mzbwAAW0u93S3A&ust=1443975238986964
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study, DNA for the GR exon 2 is floxed and the Cre recombinase and CaMKIIα promoter (CaMKIIα-Cre) 

transgene ultimately deletes the GR exon 2 from the forebrain (Figure 8). Thus, mice that have a 

forebrain-specific knockout of glucocorticoid receptors were created and used for the current 

investigation to determine whether GRs are necessary for core clock gene expression. The mice that 

were GR floxed but lack the CaMKIIα-Cre transgene will be referred to as the “floxed” mice in this study 

Figure 8. Representative image of FBGRKO mice. GR floxed female is crossed with GR 

floxed male hemizygous for the CaMKIIα-Cre transgene (represented by the single 

CaMKIIα-Cre transgene in image). Offspring are GR floxed or GR floxed with CaMKIIα-

Cre transgene (FBGRKO). The offspring are homozygous for the CaMKIIα-Cre transgene 

which creates the complete GR knockout (represented by the two CaMKIIα-Cre 

transgenes in image).  

CaMKIIα promoter Cre 

GR loxP loxP GR loxP loxP 

FBGRKO 

CaMKIIα promoter Cre 

GR loxP loxP 

CaMKIIα promoter Cre 

GR loxP loxP 

Floxed 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJLAnv7Ik8gCFQZQkgodRNMDVg&url=http://www.clker.com/clipart-black-and-white-mouse.html&bvm=bv.103627116,d.aWw&psig=AFQjCNH3obyHIKzWS2Riq610tXpBdf2q-Q&ust=1443318065968955
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJLAnv7Ik8gCFQZQkgodRNMDVg&url=http://www.clker.com/clipart-black-and-white-mouse.html&bvm=bv.103627116,d.aWw&psig=AFQjCNH3obyHIKzWS2Riq610tXpBdf2q-Q&ust=1443318065968955
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJLAnv7Ik8gCFQZQkgodRNMDVg&url=http://www.clker.com/clipart-black-and-white-mouse.html&bvm=bv.103627116,d.aWw&psig=AFQjCNH3obyHIKzWS2Riq610tXpBdf2q-Q&ust=1443318065968955
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJLAnv7Ik8gCFQZQkgodRNMDVg&url=http://www.clker.com/clipart-black-and-white-mouse.html&bvm=bv.103627116,d.aWw&psig=AFQjCNH3obyHIKzWS2Riq610tXpBdf2q-Q&ust=1443318065968955
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCIf0_IbMk8gCFUYMkgodWxgL4g&url=https://en.wikipedia.org/wiki/Female&bvm=bv.103627116,d.aWw&psig=AFQjCNH-w2Ylx8VPCViMV3YjaBMH6kwTMA&ust=1443318903605042
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and will serve as the controls, while those that contained both the GR floxed region and the CaMKIIα-

Cre transgene will be referred to as the forebrain glucocorticoid receptor knockout (FBGRKO) mice. 

The CaMKIIα-Cre transgene is ideal for this study as it is not fully active until 3 weeks of age. This 

makes it a good mechanism for manipulation because it reduces the possibilities of developmental 

defects or compensatory mechanisms caused by the early stage gene knockout (Tsien et al., 1996). The 

initial expression of CaMKIIα mRNA begins postnatally in the forebrain and floxed GR regions are 

progressively deleted from age 3-6 months in the hippocampus (HPC), prefrontal cortex (PFC), and some 

subregions of the amygdala (AMY) (Burgin et al., 1990). The hippocampus, cerebral cortex, striatum, 

nucleus accumbens, and dentate gyrus had nearly a complete deletion of GRs. The CEA had a 50% 

deletion of GRs while the basolateral nucleus and medial nucleus of the amygdala had a nearly complete 

deletion. The PVN and SCN were not affected because they do not express CaMKIIα (Vincent et al., 

2013; Boyle et al., 2005; Kolber et al., 2008). This knockout of glucocorticoid receptors in the forebrain 

was specific to pyramidal cells which are primarily glutamatergic neurons and therefore, mostly 

excitatory cells (https://www.jax.org/strain/005359’).  

We investigated the FBGRKO effect on clock gene expression on many brain regions including 

the SCN, PVN, AMY, HPC, PFC, and insula. The SCN is essential to investigate because it is the master 

clock of circadian rhythms in the brain and body. The SCN is one of the only known regions in the brain 

and body that lacks GRs (Balsalobre et al., 2000). Therefore, with the FBGRKO manipulation, we 

expected to see no changes in clock gene expression in the SCN between the FBGRKO and floxed mice 

because this region already lacks GRs. We do expect a time of day difference in the clock gene 

expression in the SCN of the animals sacrificed in the morning compared to the evening, because Per1, 

Per2, and Bmal1 mRNA all have robust rhythms in the SCN. The PVN is the head of the HPA axis, and 

thus has an important role in CORT production. Since the PVN does not express CaMKIIα, we also did not 

expect to see any effects from the FBGRKO manipulations. However, we expected to see significant 

https://www.jax.org/strain/005359
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effects in all other regions that received a knockout of GRs. Subregions of the AMY (central nucleus of 

the amygdala (CEA), basolateral nucleus of the amygdala (BLA), medial nucleus of the amygdala (MEA)), 

subregions of the HPC (CA1, CA3, superior blade of the dentate gyrus (Supra DG), inferior blade of the 

dentate gyrus (Infra DG)), subregions of the PFC (anterior cingulate (AC), prelimbic (PL), infralimbic (IL), 

ventral orbital (VO)), and insula were analyzed for this study because of their essential role in stress, 

emotion, learning, and memory (Rawashdeh et al., 2014; Buijs et al., 1993; Herman et al., 2005; Logan et 

al., 2015; McClung et al., 2007). These brain regions are important in the exploration of the role of GRs 

on the molecular clock under basal conditions because they are known to have robust rhythmicity in 

clock gene expression and therefore we expect to see a time of day difference between the animals 

sacrificed in the morning and the evening for all clock genes examined. Many psychiatric disorders 

associated with disruptions in circadian rhythms and stress are also associated with disruptions in 

function and activity of these brain regions. Human postmortem subjects with major depressive disorder 

show altered core clock gene diurnal rhythms in extra-SCN brain regions including the PFC, HPC, AMY, 

and nucleus accumbens, and chronic stress can disrupt normal clock gene expression in many relevant 

brain areas (Li et al., 2013; Logan et al., 2015). We hypothesized that the knockout of GRs in these brain 

regions would alter clock genes mRNA expression in the AMY, HPC, PFC, and insula due to the disruption 

of CORT’s ability to bind to GRs.  

This study investigated Per1, Per2, and Bmal1 mRNA clock gene expression in SCN and extra-SCN 

tissues of FBGRKO and floxed mice sacrificed at ZT1.5 or ZT13 to investigate the necessity of GRs for 

differences in clock gene expression. These genes were examined in order to see clock gene expression 

in both the positive and negative components of the molecular clock after the FBGRKO manipulation. 

Due to the given sacrifice times of the animals, a significant time of day effect is expected in some but 

not all of the tissues investigated because the peak and trough times of these genes are not all at the 

sacrifice times of ZT1.5 and ZT13 in all the examined tissues. Although we do expect to see a significant 
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difference in clock gene expression between the FBGRKO and floxed mice for all clock genes examined, 

we hypothesize that due to the knockout of GRs in the forebrain, the GRE will not be able to induce Per1 

clock gene expression, which will then affect the feedback onto the other core clock genes and alter the 

rhythms of clock gene expression in the forebrain. Furthermore, comparing findings of the present study 

to previous reports of rats will help broaden the knowledge of core clock gene expression in mice. This 

study provides an initial understanding of the role of GRs in diurnal core clock gene expression in mice. 

 

Materials and Methods 

The following were completed by Dr. Jacobson’s lab 

Animals 

The initial transgenic mice used to breed the mice for the current study were characterized and 

provided by Dr. Louis Muglia (Cincinnati, Ohio) and given to Dr. Lauren Jacobson (Albany, NY). Dr. 

Jacobson’s lab then bred the mice for the current study, sacrificed the animals, froze the brain tissue, 

and delivered them to Dr. Spencer’s lab (Boulder, CO) where clock gene expression was analyzed. All 

animal use was approved by the Institutional Animal Care and Use Committee of Albany Medical College 

and followed the standards of the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals (Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research 

Council, 2010) and European Commission Directive 2010/63/EU. Male mice were from the T-29 founder 

line aged ~2-5 months at time of experimentation were group-housed on 12:12 hour light:dark cycles 

(lights on at 06:30) with ad libitum access to rodent chow and water. Animals were individually housed 

24 hours before experimental testing to reduce disturbances during testing. FBGRKO and floxed mice 

were littermate- or age-matched for all experiments. 
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Forebrain Glucocorticoid Receptor Knockout Mice  

 Calcium calmodulin kinase II α (CaMKIIα) is a gene that is selectively expressed in glutamatergic 

neurons in the forebrain of mice. T-29 mice are transgenic for the Cre recombinase gene under control 

of the CaMKIIα gene promoter. Therefore, since CaMKIIα gene expression is specific for the forebrain, 

the excision actions of Cre recombinase also only occur in the forebrain.  C57BL/6 female mice 

homozygous for the floxed GR exon 2 (provided by Dr. Louis Muglia, University of Cincinnati; Brewer et 

al., 2003) were crossed with C57BL/6 male mice from the T-29-1 founder line with the CaMKIIα-Cre 

transgene under CaMKIIα promoter control (Jackson Laboratories stock number 005359; Bar Harbor, 

ME; Vincent et al., 2013). This breeding resulted in C57BL/6 floxed GR mice which were either Cre+ 

(FBGRKO) or Cre- (floxed GR) mice (Figure 8). The Cre+ (FBGRKO) mice littermates had a forebrain-

specific disruption of GR that has been documented in previous reports (Vincent et al., 2013; Boyle et 

al., 2005; Kolber et al., 2008; Brewer et al., 2003; Tsein et al., 1996; https://www.jax.org/strain/005359.; 

http://www.informatics.jax.org/allele/MGI:4946944?recomRibbon=open). 

 Tail DNA was obtained (Invitrogen PureLink Genomic DNA kit; Carlsbad, CA) and screened by 

Polymerase Chain Reaction (PCR) for the presence or absence of the Cre recombinase transgene and for 

homozygosity of the floxed GR allele (Vincent et al., 2013). 

 

Tissue Collection 

 Animals were taken from their home cage and individually housed for 24 hours prior to sacrifice. 

38 animals were taken from these cages and immediately sacrificed at 1.5 hours after lights on (ZT1.5) 

or at 1 hour after lights off (ZT13). Number of animals in each condition combination of genotype and 

sacrifice time ranged from 7-10. Brains were then extracted and fresh-frozen in molds with Optimal 

https://www.jax.org/strain/005359
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Cutting Temperature (OCT) compound and stored frozen at -70o C until further use. Frozen brains were 

shipped to the University of Colorado Boulder for subsequent processing. 

 

The following were completed by Dr. Spencer’s lab 

Processing the mice brains 

 Coronal sections (12µm thick) were cut at -24o C using a cryostat (Leica CM 1850) at the levels of 

the prefrontal cortex (Bregma ~1.98 to 1.54 mm anterior to Bregma), suprachiasmatic nucleus (Bregma 

~0.34 to 0.94mm posterior to Bregma), paraventricular nucleus (Bregma ~0.7 to 0.94 mm posterior to 

Bregma), and hippocampus and amygdala (Bregma ~1.34 to 2.06mm posterior to Bregma). The Paxinos 

and Franklin (second edition, 2001) Mouse Brain Atlas was used for guidance. Brain slices were thaw-

mounted on Colorfrost Plus microscope glass slides where they were then stored at -70o C until use in 

assays.  

 

In Situ Hybridization  

 In situ hybridization protocols used a radiolabeled riboprobe which was complementary to the 

mRNA for the gene of interest. The riboprobe binds to the gene of interest and the radioactively labeled 

nucleotide in the probe shows how much of that gene is being expressed. This two-day assay was 

performed as previously described by Girotti et al. (2009) and Ginsberg et al. (2003). Briefly, the 

hybridization buffer was mixed with the previously made 35S radiolabeled riboprobe (specific to the gene 

of interest) using a series of incubations at 37 o C and further separated in a G50/50 sephadex column. 

Glass slides were taken from storage in -70o C and put immediately into 4% paraformaldehyde (PFA) in 

phosphate buffer and then washed in 2 x standard sodium citrate buffer (SSC). Slides were then placed 
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in a solution containing 0.1M triethanolamine (TEA) and 0.25M acetic anhydride and dehydrated in 

increasing levels of ethanol before being allowed to air dry. Once slides were dry, 98 µl of the 

probe/hybridization buffer combination were pipetted onto each slide and coverslipped, giving each 

slide ~1,000,000 counts of radioactivity. Slides were incubated for 16-22 hours overnight in trays 

containing a 50% formamide humidified atmosphere at 54 o C.  

 The second day of the in situ hybridization involved floating off the coverslips from the slides in 

each tray using 2 x SSC, then incubating slides in a 200 µg/mL RNAse solution (cat No. R5503; Sigma, St. 

Louis, MO) for 1 hour at 37 o C. Slides were then rinsed with decreasing concentrations of SSC washes 

(2x, 1x, 0.5x, 0.1x) and then incubated for an hour in 0.1 x SSC at 65 o C. Slides were dehydrated in 

increasing levels of ethanol and allowed to air dry before being exposed to x-ray film for 2-4 weeks. 

 

Densitometry 

 Autoradiographs are the brain images produced on the x-ray films by decay emissions of the 

radioactive 35S from the in situ hybridization assay. X-ray films were developed using an auto-developer 

(Konica Minolta Medical and Graphic, Inc.). Digitized brain images were obtained using a Northern Light 

lightbox model B95 (Imaging Res Inc., St. Catharines, Ontario, Canada) and a Sony CCD video camera 

model XC-ST70 fitted with a Navitar 7000 zoom lens (Rochester, NY) connected to an LG3-01 frame 

grabber (Scion Corp., Frederick, MD) inside a Dell Dimension 500, and captured with Scion Image beta 

rel. 4.0.2. Images were opened in ImageJ64 (NIH shareware), where the specific brain regions of interest 

for both hemispheres were selected for quantification based upon anatomical landmarks using a circular 

outline and converted into uncalibrated optical densities. Regions of interest include the 

suprachiasmatic nucleus (SCN), paraventricular nucleus (PVN), agranular insular cortex (insula), 

subregions of the prefrontal cortex: anterior cingulate (AC), prelimbic (PL), infralimbic (IL), ventral orbital 
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(VO), subregions of the hippocampus: CA1, CA3, superior blade of the dentate gyrus (Supra DG), inferior 

blade of the dentate gyrus (Infra DG), and subregions of the amygdala: central nucleus (CEA), basolateral 

nucleus (BLA), and medial nucleus (MEA). Regions of interest were determined using the Paxinos and 

Franklin (second edition, 2001) Mouse Brain Atlas.   

 

Statistical Analysis 

 Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS, Mac 

version 21, 2012). Two-way analyses of variance (ANOVA) were performed to determine if there were 

significant main effects of time of day (ZT1.5 vs. ZT13) or genotype (FBGRKO vs. floxed) and significant 

interactions for each brain region and gene of interest. Significance was set at p<.05. Fischer’s least 

significant difference (FLSD) post hoc analysis was then completed for brain regions of each gene 

showing significant differences. 
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Table 1. Statistical analysis of Per1, Per2, and Bmal1 mRNA expression comparing genotype 
(FBGRKO vs floxed) and time of day (ZT1.5 vs ZT13) differences throughout the brain.  

 

 

Two-way analysis of variance results for main effect of genotype, time of day, and interaction, *p<0.05, 

**p≤0.001. SCN – suprachiasmatic nucleus, PVN – paraventricular nucleus, CEA – central nucleus of the 

amygdala, BLA – basolateral nucleus of the amygdala, MEA – medial nucleus of the amygdala, Supra DG – 

superior blade of the dentate gyrus, Infra DG – inferior blade of the dentate gyrus, AC – anterior cingulate, 

PL – prelimbic, IL – infralimbic, VO – ventral orbital, insula – agranular insular cortex 

Results 
 

 

Brain region Gene of interest Genotype ZT Interaction 

SCN Per1 F(1,32)=0.01 F(1,32)=4.33* F(1,32)=0.00 

 Per2 F(1,33)=0.02 F(1,33)=96.81** F(1,33)=0.83 

 Bmal1 F(1,33)=1.02 F(1,33)=7.47* F(1,33)=0.14 

PVN Per1 F(1,32)=0.54 F(1,32)=46.67** F(1,32)=0.01 

 Per2 F(1,33)=0.03 F(1,33)=2.54 F(1,33)=0.53 

 Bmal1 F(1,33)=2.06 F(1,33)=23.75** F(1,33)=0.13 

CEA Per1 F(1,30)=0.00 F(1,30)=3.92 F(1,30)=0.56 

 Per2 F(1,33)=0.28 F(1,33)=0.11 F(1,33)=0.71 

 Bmal1 F(1,32)=0.28 F(1,32)=12.71** F(1,32)=0.10 

BLA Per1 F(1,30)=0.37 F(1,30)=3.24 F(1,30)=0.37 

 Per2 F(1,33)=0.00 F(1,33)=0.14 F(1,33)=0.16 

 Bmal1 F(1,32)=0.09 F(1,32)=16.24** F(1,32)=0.00 

MEA Per1 F(1,30)=0.00 F(1,30)=5.19* F(1,30)=0.54 

 Per2 F(1,33)=0.48 F(1,33)=0.14 F(1,33)=0.70 

 Bmal1 F(1,32)=0.76 F(1,32)=12.70** F(1,32)=0.12 

CA1 Per1 F(1,30)=0.64 F(1,30)=0.41 F(1,30)=0.40 

 Per2 F(1,32)=0.01 F(1,32)=1.47 F(1,32)=0.47 

 Bmal1 F(1,32)=0.40 F(1,32)=2.55 F(1,32)=0.30 

CA3 Per1 F(1,30)=0.11 F(1,30)=0.02 F(1,30)=0.41 

 Per2 F(1,32)=0.00 F(1,32)=5.87* F(1,32)=0.38 

 Bmal1 F(1,32)=1.37 F(1,32)=8.72* F(1,32)=1.42 

Supra DG Per1 F(1,30)=0.02 F(1,30)=0.12 F(1,30)=0.03 

 Per2 F(1,32)=0.01 F(1,32)=1.25 F(1,32)=0.24 

 Bmal1 F(1,32)=0.42 F(1,32)=5.80* F(1,32)=0.02 

Infra DG Per1 F(1,30)=0.14 F(1,30)=0.81 F(1,30)=0.12 

 Per2 F(1,32)=0.02 F(1,32)=0.87 F(1,32)=1.03 

 Bmal1 F(1,32)=0.54 F(1,32)=7.56* F(1,32)=0.17 

AC Per1 F(1,32)=1.69 F(1,32)=0.00 F(1,32)=0.29 

 Per2  F(1,32)=0.58 F(1,32)=1.23 F(1,32)=0.30 

 Bmal1 F(1,33)=0.33 F(1,33)=16.66** F(1,33)=0.23 

PL Per1 F(1,32)=0.63 F(1,32)=0.45 F(1,32)=0.02 

 Per2 F(1,32)=0.27 F(1,32)=0.25 F(1,32)=0.15 

 Bmal1 F(1,33)=0.13 F(1,33)=8.12* F(1,33)=0.48 

IL Per1 F(1,32)=1.13 F(1,32)=1.32 F(1,32)=0.22 

 Per2 F(1,32)=0.58 F(1,32)=0.00 F(1,32)=0.02 

 Bmal1 F(1,33)=0.04 F(1,33)=5.37* F(1,33)=0.07 

VO Per1  F(1,32)=1.64 F(1,32)=0.48 F(1,32)=0.74 

 Per2 F(1,32)=1.23 F(1,32)=0.42 F(1,32)=0.39 

 Bmal1 F(1,33)=0.50 F(1,33)=36.21** F(1,33)=0.41 

Insula Per1 F(1,32)=1.56 F(1,32)=0.23 F(1,32)=0.16 

 Per2 F(1,32)=0.26 F(1,32)=0.07 F(1,32)=0.00 

 Bmal1 F(1,33)=1.09 F(1,33)=26.86** F(1,33)=1.99 
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Figure 9. Representative images of the SCN. (A) Paxinos and Franklin Mouse Brain Atlas image 
highlights the SCN. (B) Representative autoradiographs for Per1, Per2, and Bmal1 mRNA clock 
genes at the level of the SCN at ZT1.5 and ZT13 for both floxed and FBGRKO mice. 
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Mouse Brain Atlas image and representative autoradiographs at the level of the SCN for FBGRKO 

and floxed brains for all clock genes are shown in Figure 9. There were no significant genotype effects in 

the SCN for Per1, Per2, or Bmal1 mRNA. There was a significant time of day effect for Per1, Per2, and 

Bmal1 mRNA (Table 1). Post hoc analysis revealed ZT13 had higher optical density values than ZT1.5 in 

Per2 mRNA for both floxed (p=0.000) and FBGRKO (p=0.000) mice as well as in Bmal1 mRNA for floxed 

mice (p=0.030) (Figure 10).  
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Figure 10. Relative optical density levels for Per1, Per2, and Bmal1 mRNA clock gene expression in the 
SCN. *p<0.05 represents significant statistical difference from AM values. 
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Figure 11. Representative images of the PVN. (A) Paxinos and Franklin Mouse Brain Atlas 
image highlights the PVN. (B) Representative autoradiographs for Per1, Per2, and Bmal1 
mRNA clock genes at the level of the PVN at ZT1.5 and ZT13 for both floxed and FBGRKO 
mice. 
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Mouse Brain Atlas image and representative autoradiographs at the level of the PVN for 

FBGRKO and floxed brains for all clock genes are shown in Figure 11. There were no significant genotype 

effects in the PVN for Per1, Per2, or Bmal1 mRNA. However, there was a significant time of day effect 

for Per1 and Bmal1 mRNA, but not Per2 mRNA. Post hoc analysis revealed that Per1 mRNA had higher 

clock gene expression at ZT13 for both floxed (p=0.000) and FBGRKO (p=0.000) mice while Bmal1 mRNA 

had higher clock gene expression in the PVN at ZT1.5 for both floxed (p=0.001) and FBGRKO (p=0.004) 

mice (Figure 12).  
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Figure 12. Relative optical density levels for Per1, Per2, and Bmal1 mRNA clock gene expression in the 
PVN. *p<0.05 represents significant statistical difference from AM values. 
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Limbic System 

Right hemisphere of subregions of the hippocampus (CA1, CA3, Supra DG, Infra DG) and 

amygdala (CEA, BLA, MEA) are highlighted in the Paxinos and Franklin Mouse Brain Atlas image of Figure 

13A with representative images from each time and gene in Figure 13B. 
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Figure 13. Representative images of subregions of the HPC and AMY. (A) Paxinos and 
Franklin Mouse Brain Atlas images of the HPC and AMY. Lines define right hemisphere 
regions of the HPC: CA1 (top), CA3 (middle, right), Supra DG (middle, left), and Infra DG 
(bottom).  Circles define right hemisphere regions of the AMY: CEA (top), BLA (right), MEA 
(left). (B) Representative autoradiographs for Per1, Per2, and Bmal1 mRNA clock genes at 
the level of the HPC and AMY at ZT1.5 and ZT13 for both floxed and FBGRKO mice. 
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Amygdala  

There were no significant genotype differences for Per1, Per2, or Bmal1 clock gene mRNA 

expression in the CEA, BLA, or MEA. Bmal1 mRNA, however, did show a significant time of day effect in 

the CEA, BLA, and MEA. Per1 mRNA also had a significant time of day effect in the MEA and showed a 

trend in the CEA. Post hoc analysis revealed that Bmal1 mRNA levels were higher at ZT1.5 than ZT13 for 

both floxed (p=0.007) and FBGRKO (p=0.035) mice in the CEA, floxed (p=0.005) and FBGRKO (p=0.011) 

mice in the BLA, and floxed (p=0.007) and FBGRKO (p=0.036) mice in the MEA (Figure 14). 

 

Hippocampus 

There were no significant genotype effects for Per1, Per2, or Bmal1 mRNA. The CA1 of the HPC 

showed no significant time of day differences for any of the clock genes examined. However, Bmal1 

mRNA had a significant time of day difference in the CA3, Supra DG, and Infra DG. The CA3 also had a 

significant time of day effect for Per2 mRNA. Post hoc analysis revealed that Per2 (p=0.048) and Bmal1 

(0.008) clock gene mRNA expression was significantly higher at ZT1.5 in the CA3 for FBGRKO mice. The 

Infra DG showed significantly higher Bmal1 clock gene mRNA expression at ZT1.5 than ZT13 in FBGRKO 

mice (Figure 15). The Supra DG showed similar results to the infra DG, but time of day effect did not 

reach significance (p=0.418) (data not shown). 
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Figure 14. Relative optical density for Per1, Per2, and Bmal1 mRNA clock gene expression for subregions of 
the AMY: CEA, BLA, and MEA. *p<0.05 represents significant statistical difference from AM values. 
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Figure 15. Relative optical density for Per1, Per2, and Bmal1 mRNA clock gene expression for subregions of the HPC: 
CA1, CA3, and Infra DG. *p<0.05 represents significant statistical difference from AM values. 
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Prefrontal Cortex and Insula 
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Figure 16. Representative images of subregions of the PFC and insula. (A) Paxinos and 
Franklin Mouse Brain Atlas images of PFC. Circles defining right hemisphere regions starting 
top left in counterclockwise direction: AC (top left), PL (middle left), IL (bottom left), VO 
(bottom right), and insula (top right). (B) Representative autoradiographic images taken for 
Per1, Per2, and Bmal1 mRNA clock genes at the level of the PFC at ZT1.5 and ZT13 for both 
floxed and FBGRKO mice. 
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Right hemisphere subregions of the PFC and insula are highlighted in the Mouse Brain Atlas 

image and representative autoradiographs at the level of the PFC for FBGRKO and floxed mouse brains 

for all clock genes are shown in Figure 16. There were no significant genotype differences in any 

subregion of the PFC (AC, PL, IL, VO) or insula. Bmal1 mRNA, however, had a significant time of day 

effect for all regions examined. Post hoc analysis revealed ZT1.5 had more Bmal1 mRNA clock gene 

expression than ZT13 in floxed mice in the AC (p=0.013), PL (p=0.015), VO (p<0.001), and insula 

(p=0.000), as well as in FBGRKO mice in the AC (p=0.004), VO (p=0.001), and insula (p=0.014) (Figure 17).  
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Figure 17. Relative optical density for Per1, Per2, and Bmal1 mRNA clock gene expression for subregions of the 
PFC: AC, PL, IL, VO and insula. *p<0.05 represents statistical difference from AM values. 
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Discussion 

 The SCN houses the master clock and synchronizes circadian rhythms throughout the brain and 

body. The SCN has few direct projections to other brain and body regions and it is still unknown how it 

communicates with extra-SCN clocks. CORT may play an essential role in entraining the molecular clock 

as there is a circadian rhythm of CORT under SCN-control, and GR is expressed throughout the brain and 

body. Furthermore, there is a GRE in the promoter region of the Per1 clock gene, which may be the 

mechanism in which CORT can entrain the molecular clock. With transgenic mice that had a forebrain-

specific glucocorticoid receptor knockout (FBGRKO), we were able to investigate the importance of GRs 

in entraining the molecular clock and inducing day-night differences in clock gene expression throughout 

the body. Analysis of in situ hybridization assays revealed no genotype differences between FBGRKO 

mice and floxed mice in Per1, Per2, and Bmal1 mRNA or in the SCN, PVN, AMY, HPC, PFC, and insula. 

However, there were significant time of day differences in Bmal1 mRNA expression for most brain 

regions examined. Results from this study, may allow us to better understand CORT’s role as an 

entrainment factor and possible compensatory mechanisms that may explain the lack of genotype effect 

between the FBGRKO and floxed mice. 

 

Time of Day Effects 

As hypothesized, there was a significant main effect of time for Per1, Per2, and Bmal1 mRNA in 

the SCN as well as for Per1 and Bmal1 mRNA in the PVN. Overall time of day trends in the data match 

those of previous studies seen in male rats and mice (Chun et al., 2015; Rath et al., 2014; Albrecht et al., 

1997; Shearman et al., 1997; Tei et al., 1997; Sun et al., 1997). In general, Per1 and Bmal1 mRNA 

expression in the SCN were antiphasic to each other, as well as antiphasic between the SCN and PVN. 

Although limited by only two time points, mRNA expression of the current study matched previous 
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reports of clock gene expression in mice and rats in the SCN in terms of acrophase (Rath et al., 2014; 

Albrecht et al., 1997; Bae et al., 2001; Sun et al., 1997; Hastings et al., 1999; Chun et al., 2015). Previous 

studies have shown that the SCN is the only notable brain region with rhythmic differences of gene 

expression between Per1 and Per2 genes (Chun et al., 2015; Albrecht et al., 1997; Bae et al., 2001). 

Specifically, Chun et al. (2015) found that, in rats, Per1 mRNA expression in the SCN peaks around ZT4 

and reaches trough values around ZT16 while Per2 mRNA expression peaks around ZT12 and troughs 

around ZT0. The present study shows a significant main effect of time for both Per1 and Per2 mRNA 

expression in the SCN; however, possibly due to this time of day difference, post hoc analysis only 

revealed a significant difference between ZT1.5 and ZT13 in the floxed and FBGRKO mice of Per2 mRNA. 

Therefore, mice appear to match previous results found in rats having differential timing in clock gene 

expression of Per1 and Per2 genes in the SCN. This study also supports previous results of diurnal 

differences in clock gene expression in SCN and extra-SCN tissues.  

Clock gene expression in the PVN of this study also closely match previously published data on 

clock gene expression in rats (Chun et al., 2015; Takahashi et al., 2001; Girotti et al., 2009). We found no 

significant time of day differences in Per2 expression in the PVN for either the floxed or FBGRKO mice. 

This finding is interesting as there was a significant time of day difference for both Per1 and Bmal1 

mRNA in floxed and FBGRKO in the PVN. Other studies have shown significant time of day differences in 

clock gene expression in the PVN with peak Per1 and Per2 mRNA levels around ZT12 and trough levels 

around ZT0. In contrast, it has been shown that Bmal1 mRNA peak levels in the PVN occur around ZT4 

and trough levels occur around ZT16 (Chun et al., 2015; Takahashi et al., 2001; Girotti et al., 2009). The 

HPC, AMY, PFC, and insula all showed similar clock gene mRNA expression to the PVN. All regions 

examined had significant time of day effects in the FBGRKO of Bmal1 mRNA except CA1, PL, and IL. 

Floxed mice also had significant time of day differences in Bmal1 mRNA in all regions except CA1, CA3, 
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Supra DG, Infra DG, and IL. Although there is a limited time of day effect in all brain regions outside of 

the hypothalamus, the results support previous reports of mRNA expression levels in extra-SCN tissues.  

It has been well established in rats that clock gene expression in the CEA and SCN are in phase 

with each other, an effect that has not been seen with any other brain regions (Chun et al., 2015, Amir 

et al., 2004,). Most extra-SCN brain regions are antiphasic to the SCN or have a shifted phase compared 

to the SCN. This is true for Per1, Per2, and Bmal1 mRNA and PER2 protein (Harbour et al., 2013; Lamont 

et al., 2005; Chun et al., 2015).  It has been speculated that this relationship of clock gene expression in 

the CEA and SCN may be due to the fact that both brain regions are comprised predominantly of 

GABAergic neurons but the functional importance is yet to be determined. Our results of clock gene 

expression in mice do not support the same conclusions as in rats. However, other studies in mice have 

reported results similar to those found in the current study (Moriya et al., 2015). The SCN and CEA 

appear to have different circadian timings, with Per1 and Per2 mRNA appearing out of phase and Bmal1 

mRNA expression appearing antiphasic between the SCN and CEA in these mice. The reasons behind the 

differences in results seen in mice versus rats are yet to be determined.  

Male rats have been shown to have a blunted circadian rhythm of core clock genes in the HPC 

compared to females (Chun et al., 2015). The HPC is comprised of the CA1, CA3, Supra DG and Infra DG. 

This blunting in rhythmicity of Per1, Per2, and Bmal1 mRNA in the HPC in male rats may also occur in 

male mice which could be a contributing factor to why there were only a few time of day differences in 

the HPC of mice in this study. There were no differences in overall mRNA levels between the floxed and 

FBGRKO mice at either ZT, but if male mice do have a blunted rhythm and there are only two time 

points to analyze, it would be very difficult to detect a genotype effect in rhythmicity. It is also very 

difficult to determine if there are any differences in clock gene expression, especially when the times we 

have are not the peak and trough levels of clock gene expression.  
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Overall, the time of day differences seen in the SCN, PVN, and other brain regions analyzed 

match previously reported clock gene expression; however, there is a significant limitation of the 

present study with having only two time of day points for reference. Having only two time points of 

reference, ZT1.5 and ZT13, is not optimal for investigating clock gene expression for several genes in the 

many regions of interest. ZT1.5 and ZT13 are not peak and trough times in which we would expect to 

see the maximal differences in gene expression for Per1 and Per2 mRNA. Bmal1 mRNA has an acrophase 

and trough at times closer to ZT1.5 and ZT13 which is why we saw more significant time of day 

differences between clock gene expression for Bmal1 mRNA compared to Per1 and Per2 mRNA in many 

brain regions (Chun et al., 2015; Bae et al., 2001; Moriya et al., 2015). Previous studies have shown that 

in nocturnal rodents Bmal1 mRNA peaks around ZT0 in most extra-SCN tissues and troughs around ZT12, 

while Per1 and Per2 mRNA peak around ZT16 and trough around ZT4 (Chun et al., 2015; Moriya et al., 

2015). The times of day in the present study, ZT1.5 and ZT13, are much closer to the peak and trough 

times of Bmal1 mRNA than either Per gene. Given this, the time of day differences seen in the Bmal1 

mRNA results are likely seen near peak and trough mRNA expression levels increasing the likelihood of 

noticing a time of day effect. In contrast, Per1 and Per2 mRNA may be in the middle of their rhythms 

and therefore at similar mRNA levels, making it difficult to observe any differences between the two 

times of day. With only two times for comparison, it is difficult to see changes in the rhythmicity of clock 

gene expression because it is nearly impossible to conclude blunted or shifted rhythms. Therefore, the 

lack of time of day effects in the Per1 and Per2 mRNA expression in SCN, PVN, AMY, HPC, PFC, and insula 

are explained by the limited temporal resolution.  
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Genotype Effects 

The SCN and PVN are both nuclei within the hypothalamus. This portion of the forebrain does 

not express CaMKIIα, and therefore is not subject to conditional GR knockout. Considering that the mice 

in the present study had a CaMKIIα promoter-dependent glucocorticoid receptor knockout, it is not 

surprising that we did not see a genotype effect in these regions. Earlier studies documented that there 

is no conditional knockout of GRs in the PVN and the SCN is one of the only known brain or body region 

that lacks GRs (Vincent et al., 2013; Balsalobre et al., 2000). Even if the FBGRKO did affect the 

hypothalamus, we would not expect to see a genotype effect in the SCN due to the fact that the SCN 

lacks GRs and would not be affected by this manipulation.  

Given that there are no GRs to bind to the GRE in the promoter region of the Per1 gene after the 

FBGRKO manipulation, we predicted Per1 mRNA expression may have been impaired, thereby 

potentially altering clock gene expression in the molecular clock. Thus, we expected to see differences in 

genotype between the FBGRKO and floxed mice in regions of the forebrain with the FBGRKO 

manipulation, suggesting that GRs may be involved in the synchronization of circadian rhythms from the 

SCN to extra-SCN tissues. The AMY, HPC, PFC, and insula are all forebrain regions and therefore the 

forebrain-specific glucocorticoid receptor knockout should act strongly on these areas, deleting all GRs. 

The CEA is an exception as it is documented to have only a 50% knockout of GRs, while most other brain 

regions had a nearly complete knockout. With this, we expected to see only a partial difference between 

the FBGRKO and floxed mice in the CEA from the FBGRKO manipulation. Surprisingly, we found no 

genotype effect in any brain region examined for any core clock gene analyzed. It is believed that CORT 

entrains the molecular clock by binding to GRs which dimerize and bind to a GRE in Per1’s promoter 

region. Therefore, we expected that the FBGRKO manipulation would have the greatest effect on Per1 

mRNA expression but other clock genes would also be impacted. In addition to the Per1 gene, recent 

studies have shown there is a GRE in the promoter region of other core clock genes, including Per2, 
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Bmal1, and Cry1. These findings suggest that other clock genes may be influenced by CORT; however, 

there is less evidence that these GREs are functional across a variety of tissues and conditions (Cheon et 

al., 2013; So et al., 2009; Reddy et al., 2007). The unexpected lack of significant genotype effects in 

FBGRKO mice requires further investigation to determine the role of GRs in the characterization of the 

molecular clock.  

The CEA is also a unique case, as it only has about a 50% deletion of GRs in the FBGRKO 

condition (Vincent et al., 2013). Given this, we expected only a partial genotype effect in the FBGRKO 

mice. However, similar to other brain areas, we saw no effects or even trends for a significant genotype 

effect in the CEA. The lack of a genotype effect seen in the CEA may be due to the fact that it only had a 

50% GR knockout in FBGRKO mice; however, considering the genotype and time of day effects seen in 

the CEA are similar to those found in the other forebrain regions, the expected partial knockout effect is 

likely irrelevant. 

The lack of genotype effect found in all brain regions for all clock genes examined may be due to 

a multitude of factors. First, it is possible that CORT does not play a role in the entrainment of the 

circadian clock. Other studies have investigated the effect of adrenalectomy (ADX) in rats. This 

procedure removes the adrenal glands, the main organ for releasing CORT, from the animal. This 

procedure is known to eliminate endogenous CORT. Under basal conditions, ADX rats have been shown 

to maintain core clock gene rhythmicity; however, the circadian rhythm of these clock genes was altered 

in a gene-specific manner in the SCN and subregions of the PFC (Woodruff, submitted). Another study 

has investigated the role of ADX rats maintained in constant dark conditions to eliminate the influence 

of light on the rhythm of the circadian clock. In the absence of light cues, rats housed in dark:dark 

conditions maintained a synchronized PER2 protein expression between the SCN and bed nucleus of the 

stria terminalis. Similar results were found between rats housed in dark:dark and blind rats (Amir et al., 

2004). The results of these studies show that even in the absence of CORT and light cues, the SCN is able 
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to maintain its circadian rhythm and continue to synchronize the rhythms of other extra-SCN and 

peripheral clocks. Thus, CORT may not be necessary for diurnal expression of core clock genes in all 

extra-SCN tissues.  

It is also possible that GRs do not have a necessary role in the diurnal expression of core clock 

genes in extra-SCN tissues. The lack of a genotype effect seen between the FBGRKO and floxed mice 

suggest that GRs may not have a primary role in diurnal differences of core clock gene expression. If 

CORT, but not GRs, does have a necessary role in core clock gene expression, it is possible that CORT 

modulates diurnal rhythms of Per1, Per2, and Bmal1 mRNA in the forebrain regions through a series of 

non-GR mediated neuronal projections. For example, vasopressin is a clock-controlled gene that is 

released from the SCN in a circadian manner and is used as a measurement of circadian rhythms, 

especially in human studies (Kretschmannova et al., 2005; Van der Veen et al., 2005). Vasopressin has 

been shown to amplify circadian rhythms and may synchronize neurons in the SCN to the environment 

or each other (Liu et al., 2005; Kalsbeek et al., 2010). Liu et al., (2005) showed that human subjects 

exposed to CORT prior to death had a suppressed vasopressin gene expression in the SCN compared to 

subjects that were not exposed to CORT. Depressed subjects frequently show increased vasopressin 

while subjects with Alzheimer’s disease have decreased vasopressin. These studies suggest that CORT 

and vasopressin may be acting together in a mechanism that does not involve GRs to influence circadian 

rhythms and possibly clock gene expression. It is also possible that the effects of CORT act via GRs in 

brain regions that are not included in the forebrain. The dorsal raphe nuclei (DRN) is not a part of the 

forebrain but has strong serotonergic projections to the forebrain (Herman et al., 2005; Lowry et al., 

2002). CORT is necessary for diurnal activity in the DRN; therefore, the FBGRKO would have no effect on 

GR expression in the DRN allowing CORT to entrain the DRN via GRs. This entrainment signal would then 

project to the forebrain region and provide an entraining neural input (Lowry et al., 2002).  
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Another possible explanation for the lack of genotype differences in the present study is that 

other zeitgebers are strong enough to entrain the molecular clock even in the absence of GRs. 

Zeitgebers are external cues that may influence the molecular clock with food intake and light exposure 

being the most potent. Although the FBGRKO mice did not have GRs and therefore Per1 mRNA could not 

be induced by the binding of CORT, it is possible that eating and light exposure at the right time of day 

were strong enough factors to entrain the molecular clock. Food intake and light exposure at the 

appropriate circadian time may be enough to keep the molecular clock timing synchronized so that the 

FBGRKO effect was not substantial enough to have a detrimental impact. Mice in the current study were 

given food and water ad libitum but the 12:12 hour light:dark cycle may have been sufficient to entrain 

these mice to the correct circadian time. It would be interesting to see whether there would be a 

significant effect on FBGRKO animals kept in a dark:dark cycle with ad libitum and/or restricted feeding. 

Then, if food intake and light exposure were not present to maintain synchronization of the molecular 

clock, there may be a significant effect of the FBGRKO condition. Amir et al., (2004), showed that rats 

kept in constant darkness still maintained a rhythmic PER2 protein synchronization in the SCN 

suggesting that there are many possible zeitgebers that influence the molecular clock.  

Another theory to explain the lack of FBGRKO effect involves compensation by 

mineralocorticoids receptors (MRs). CORT has the ability to bind to both MRs and GRs, a process that 

may be influenced by the amount of circulating CORT. CORT has approximately a 10-fold higher affinity 

for MRs to which it binds under normal, basal conditions. MRs are the primary regulator of negative 

feedback to the HPA axis when CORT levels are low, such as during the early light phase in rodents when 

circadian rhythms are at their trough. GRs are the primary regulator of HPA axis activity when CORT 

levels are high, such as during the onset of the active phase. However, there is growing research 

showing the importance of MRs during peak times as well (Jacobson et al., 2005; Pace and Spencer, 

2005). One study shows that MRs may be necessary for feedback to the HPA axis during a mild stressor, 
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but not during a stressor that has a more robust CORT response (Pace and Spencer, 2005).  The initiation 

of the T-50 founder line of FBGRKO mice begins in the embryo of the offspring and thus, there may be 

sufficient time for the offspring to compensate for the lack of GRs. This compensation may be a 

characterization of the mice that is passed down in all future generations of FBGRKO mice. Initial 

characterization of the T-29-1 FBGRKO mice found that along with the decrease in GRs throughout the 

forebrain, there was an increase of MR mRNA expression in the dentate gyrus, CA1, and CA2 of the HPC, 

but not CA3 (Vincent et al., 2013). This increase in MR expression combined with the decrease in GR 

expression may have an essential role in the molecular outcomes when analyzing FBGRKO mice. Even in 

high CORT situations when CORT would naturally bind to GRs, the absence of GRs may encourage CORT 

to bind to MRs in order to continue the cascade of effects and avoid completely stopping the feedback 

process. Thus, when mice lack GRs as in the present study, it is possible that CORT always binds to MRs 

in order to maintain its effects. Interestingly, MRs also have the ability to bind to the GRE (Arriza et al., 

1987; Trapp et al., 1994; Fuller et al., 2000). Therefore, it is possible that even though GRs were knocked 

out of the FBGRKO mice, MRs may have established a compensatory mechanism to avoid the 

detrimental effects of not having GRs. To further investigate this, the current FBGRKO brains will 

undergo GR and MR in situ hybridization assays in order to validate the lack of GRs in the forebrain and 

the possible upregulation of MRs due to compensation.  

A final consideration when analyzing the results of these FBGRKO mice is that this knockout did 

not delete GR expression from every cell in the forebrain. CaMKIIα is a promoter that only affects 

pyramidal cells (https://www.jax.org/strain/005359). Pyramidal cells are primary glutamatergic cells; 

however, oligodendrocytes and GABAergic interneurons are other cells in the forebrain that express 

GRs. Serum and glucocorticoid regulating kinase 1 (Sgk1) is an enzyme that is highly GR mediated and is 

also influenced by CORT. Sgk1 expression is primarily found in white matter, such as oligodendrocytes, 

as well as the hippocampus (specifically CA3). An in situ hybridization assay has been completed for 
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(Sgk1) mRNA which will validate that the hippocampus was affected by the FBGRKO manipulation and to 

validate that oligodendrocytes were not affected by the FBGRKO. Results from this assay will elucidate 

the effects of the FBGRKO on other cell types in the forebrain and may help explain the lack of genotype 

effect seen in all tissues examined. Since there were no genotype differences from the FBGRKO, 

pyramidal cells may not be the primary regulator of core clock gene expression. Analysis of this tissue is 

still in process and it may provide insights towards discovering the functional impairments of the 

FBGRKO and the resulting consequences on various cell types.  

It would also be pertinent to investigate the FBGRKO effect in GABAergic interneurons. 

Considering that CaMKIIα mainly affects glutamatergic neurons and the resulting genotype effects were 

nonsignificant, clock gene expression may be primarily expressed in GABAergic neurons. Fluorescence in 

situ hybridization (FISH) protocols are commonly used to double label mRNA in one tissue. Future 

studies should use a FISH protocol to double label cells for GR and GAD65, a marker for GABAergic 

neurons, mRNA in order to see if they are expressed in the same cells. If GRs and GAD65 are expressed 

in the same cells, then GABAergic neurons may be the primary regulator of the role of GRs on core clock 

gene expression. This information will allow us to make stronger conclusions as to which cell types are 

the primary regulators of core clock gene expression. The lack of genotype effect from the FBGRKO 

manipulation could indicate that core clock gene expression in that pyramidal cells is entrained by 

neuronal input from other cell types that do express GR; and therefore, the FBGRKO was insufficient to 

have detrimental effects. Interneurons may express core clock genes even in the absence of GRs from 

pyramidal cells, which would suggest that interneurons may be the principle cell for coordinating core 

clock gene expression, even in pyramidal cells. If this is the case, CORT may still be important for 

entraining the molecular clock of GABAergic cells, and indirectly pyramidal cells.  The results of the FISH 

assay may reveal a genotype difference between the FBGRKO and floxed mice, which will provide more 

information on which cell types are necessary for CORT modulation of core clock gene expression. 
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Concluding Summary 

 We found no significant genotype differences between mice that had a conditional forebrain-

specific knockout of glucocorticoid receptors and control floxed mice that had no conditional knockout. 

We did find significant main effects of time, mostly in Bmal1 clock gene mRNA expression in many brain 

regions. With our limitations in temporal resolution, it is difficult to demonstrate alterations in circadian 

rhythm of Per1, Per2, and Bmal1 mRNA (e.g., phase shifting or blunted rhythm expression) in these 

brains regions. The similarities between core clock gene expression in mice and rats suggest there are 

robust rhythms that appear to be replicable between nocturnal species. The lack of effect of the 

FBGRKO in the AMY, HPC, PFC, and insula suggests many questions requiring further investigation. First, 

clock gene expression may be independent of CORT and/or GRs may not be necessary for circadian clock 

gene expression. Compensatory mechanisms to explain the lack of a genotype effect are also possible, 

including the upregulation and increased functional importance of MRs, effects of GR presence in non-

pyramidal cell types, and other zeitgebers. GR and MR in situ hybridizations will be completed to 

confirm the knockout of GRs and to investigate the possible upregulation of MRs. It is also possible that 

the FBGRKO mice had a knockout in a type of cell (e.g., pyramidal) that has no role in entraining the 

molecular clock. Therefore, the completion of the Sgk1 in situ hybridization and GR/GAD65 FISH assays 

will be an essential step in investigating which cells received the conditional FBGRKO and which other 

cells may be possible regulators of the molecular clock. Overall, this knowledge may lead to a better 

understanding of the entrainment of the molecular clock, which could be beneficial to those suffering 

from mood and psychiatric disorders that are associated with disrupted clock genes and an altered 

circadian clock. 
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