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A two-photon transition in cold Rb atoms will be probed with a phase-coherent wide bandwidth femtosec-
ond laser comb. Frequency domain analysis yields a high-resolution picture where phase coherence among
various transition pathways through different intermediate states produces interference effects on the reso-
nantly enhanced transition probability. This result is supported by the time domain Ramsey interference effect.
The two-photon transition spectrum is analyzed in terms of the pulse repetition rate and carrier frequency
offset, leading to a cold-atom-based frequency stabilization scheme for both degrees of freedom of the fem-
tosecond laser.
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The recent rapid progress in the generation of wide band-
width optical combs based on Kerr-lens mode-locked femto-
second~fs! lasers have created many dramatic possibilities.
The field of optical frequency metrology has been revolu-
tionized with the capability of a single-step phase-coherent
frequency bridge across several hundred THz@1,2#, leading
to precision optical frequency measurements@1,2# and a di-
rect link between optical and microwave standards@2#. For
the ultrafast science, the recent work on stabilization of the
relative phase between the pulse envelope and the optical
carrier@3# should lead to more exquisite control of the pulse
shape and timing, opening the door for many interesting ex-
periments in the area of extreme nonlinear optics and coher-
ent control.

Such a remarkable measurement capability has arrived at
a time when optical frequency standards based on a single
ion or cold atoms are emerging as potentially the most stable
clocks of any sort@4#. Although not an ultimate choice for an
optical clock system, the two-photon transition of Rb atoms
at 778 nm presents an attractive alternative@5#. However, our
motivation to study the Rb two-photon transition with a fre-
quency comb generated from a fs laser~fs comb! has a much
broader reach than the mere improvement of the current cw-
laser based two-photon system. In this Rapid Communica-
tion we will show how a phase-coherent wide-bandwidth
optical comb induces the desired multipath quantum interfer-
ence effect for a resonantly enhanced two-photon transition
rate. The analysis is carried out in both the frequency and the
time domains to illustrate the novel aspect of phase-coherent
pulses with a wide bandwidth that covers all the relevant
intermediate states. We will discuss the consequence of these
results in terms of the absolute control of both degrees of
freedom of the fs comb, namely the comb spacing and the
carrier offset frequency. The multipulse interference in the
time domain gives an interesting variation and generalization
of the two-pulse based temporal coherent control of the
excited-state wave packet@6#.

Doppler-free two-photon spectroscopy is carried out usu-
ally with two equal-frequency cw-laser beams propagating in
opposite directions@7#. The two-photon transition rate can be
resonantly enhanced via the intermediate states with two dif-
ferent laser frequencies@8# or accelerated atomic beams@9#,
with a small residual Doppler effect. High-resolution
Ramsey-type two-photon spectroscopy using pulsed light has
also been demonstrated@10#, with the recent extension to the
cold atoms@11#. The unique feature of the present work is
that the wide bandwidth optical comb allows all relevant
intermediate states to resonantly participate in the two-
photon excitation process, permitting the phase coherence
among different comb components to induce a stronger tran-
sition rate through quantum interference.

Figure 1~a! shows the relevant87Rb energy levels in-
volved in the two-photon transition from the ground state
5S1/2 to the excited state 5D3/2. The dipole-allowed interme-
diate states, 5P3/2 and 5P1/2, lie ;2 nm and 17 nm below
the virtual level, respectively. Also shown is a regularly
spaced comb of optical frequencies around 800 nm. The
comb frequency spacing~D! is equal to the inverse of the
pulse round-trip time~T! inside the cavity. The uniformity of
D has been demonstrated at a level of 1310217 @1#. The
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FIG. 1. ~a! Schematic of the relevant energy levels of the87Rb
atom. ~b! Sequence of mode-locked pulses. The carrier-envelope
phase shiftDQ is shown.
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frequency of any comb line can thus be expressed as an
integer multiple ofD plus an offset frequencyd that arises
from a difference in phase (vp) and group (vg) velocities of
the pulses in the laser cavity. A 10-fs laser has a sufficient
bandwidth to have comb components line up with corre-
sponding hyperfine states of 5P3/2 and 5P1/2 to resonantly
enhance the two-photon transition. This multipath quantum
interference can be controlled by the tuning of mode spacing
and carrier offset frequency, leading to a scheme of simulta-
neous stabilization of bothD and d, and thereby the entire
comb. The frequency domain analysis is complemented per-
fectly by the time domain multipulse Ramsey interference
picture, as illustrated in Fig. 1~b!, where the carrier-envelope
phase shiftDU is also shown.

To study the dramatic enhancement of the two-photon
transition rateGg f by the resonant intermediate states and the
subsequent interference among different paths, we calculate
Gg f analytically in both frequency and time domains using
the time-dependent second-order perturbation theory. The
perturbative part of the Hamiltonian isHI52mE(t), where
m is the electric dipole moment andE(t) is the applied elec-
tric field. For the transition of 5S1/2F952→5D3/2F52, we
have five participating intermediate states, namely, 5P1/2F8
51,2 and 5P3/2F851,2,3. We denoteucg&, ucm& (m51
25), anduc f& as the ground state, five intermediate states,
and the final excited state, respectively.m1 and m2 are the
dipole moments associated withucg&→ucm& and ucm&
→uc f&. We note in passing that, for the case of polarization-
gradient cooled Rb atoms, the first-order Doppler shift can
be neglected, since its magnitude~;100 kHz! is much
smaller than the natural linewidths of the intermediate states
~;6 MHz!.

For the frequency domain analysis, we express the spec-
trum of the electric fieldE(t) of the fs comb as

E~ t !5 1
2 (

n
En exp@2 i ~v r1n2pD!t#1c.c. , ~1!

wherev r52p(NrD1d) is a reference frequency, andNr is
an integer. The atomic wave function can be expressed as
uC(t)&5(mCm(t)ucm&exp(2iEmt/\) in terms of the slowly
varying probability amplitudesCm(t) of atomic statesucm&
of energyEm , with m covering all relevant states. We set
Cm(t)5Cm

(0)(t)1Cm
(1)(t)1Cm

(2)(t)1¯ , with the initial con-
dition Cm

(0)(0)5dmg . The interaction between the atoms and
the electric field induces

~d/dt1pgm!Cm
~k11!

52 i /\(
n

^cmuHI ucn&exp~ ivnmt !Cm
~k! ,

wherevnm5(Em2En)/\ is the frequency of the transition
ucn&→ucm&. gm are the corresponding decay terms. The
second-order excited-state probability amplitudeCf

(2)(t) can
be obtained as

Cf
~2!~ t !55(

p
(

q

exp$2 i @vg f2~p1q!2pD24pd#t%

i @vg f2~p1q!2pD24pd#1pg f

3(
m

b1b2

i @vgm22p~pD1d!#1pgm
, ~2!

where b1(2)5m1(2)E0/2\ is the Rabi frequency associated
with the transition ucg&→ucm& (ucm&→uc f&). The two-
photon transition rate isGg f5g f uCf

(2)(t)u2, whereg f is the
natural linewidth of the excited stateuc f&. Gg f has two reso-
nance denominators. One originates from energy conserva-
tion of the two-photon transition where the sum of the two
comb frequencies matchesvg f ; the other results from the
single-photon resonance ofucg&→ucm&. The linewidths of
the two resonances areg f andgm , respectively. Each inter-
mediate state provides a resonant pathway and they add co-
herently to yield the total transition rateGg f , owing to the
fact that different comb components are phase coherent.

In the time domain, the train of (N11) mode-locked
pulses can be represented by

E~ t !5(
l 50

N

El exp@2~ t2 lT !2/2t2#

3exp@2 ivc~ t2 lT !2 i l DQ#, ~3!

with DQ5vcT(12vg /vp)52pd/D1n2p. Herevc is the
carrier frequency, andl andn are integers. During the time
periods oflT2t/2 to lT1t/2, one pulse, with its sufficiently
wide bandwidth, drives the probability amplitudes of all in-
termediate statesCm

(1)(t) with the first-order perturbation and
of the final stateCf

(2)(t) with the second-order perturbation.
In between two pulses, the atomic states evolve freely ac-

FIG. 2. Gg f as a function ofD andd, calculated from the ana-
lytical expressions obtained in frequency domain~a! and in time
domain~b!. The values ofD0 andd0 are 100 MHz and 15.69 MHz,
respectively, for both~a! and ~b!. The pulse width is 10 fs for~b!.
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cording to the unperturbed HamiltonianH0 along with the
appropriate decay rates. The next pulse, with the correspond-
ing phase shifts, will continue to build the atomic probability
amplitudes in a coherent fashion. This process will of course
reach a state of equilibrium since the excited state has a
lifetime of 1/(2pg f). To reach an analytical solution, we
simplify the pulse shape to be square. AfterN11 pulses, the
probability amplitudeCf

(2)(t) is

Cf
~2!~NT!5Cf

~2!~t !(
l 50

N

e2pg f ~N2 l !Tei ~vg f24pd!lT

1 (
m51

5

b2St~m f !(
l 51

N

Cm~ lT !

3e2pg f ~N2 l !Tei ~vm f22pd!lT, ~4!

with

Cf
~2!~t !5 (

m51

5

b1b2@St~g f !2St~m f !#
1

vgm2vc
,

Cm~ lT !5b1St~gm! (
n50

l 21

e2pgm~ l 2n!Tei ~vgm22pd!nT,

where

St~v !5 i
sin@~vv2svc!t/2#

~vv2svc!/2
.

In the last expression,s51 for v5gm,m f and s52 for v
5g f . It is interesting to note that the phase terms in Eq.~4!
depend explicitly on the carrier-envelope phase shiftDQ
(52pd/D1n2p), but not on the carrier frequencyvc ,
which has an effect only on the relative signal size.

The measured values of the Rb transition frequencies, hy-
perfine intervals, and decay rates are used in the present cal-
culation@12#. Figure 2 shows a typicalGg f as a function ofD
andd, with curve~a! calculated from the frequency domain
@Eq. ~2!# and ~b! calculated from the time domain@Eq. ~4!#.
In the frequency domain calculation, the frequency coverage
of the comb lines used in the calculation far exceeds the
hyperfine splittings among the intermediate states. Also the
number of pulses used for the time domain calculation is
larger than necessary to reach the steady state.~See Fig. 3.!
The agreement between the two approaches is perfect, with
both graphs generated around the same nominal values of
D05100 MHz andd0515.69 MHz. The resonance width as-
sociated withD ~with a fixedd! is determined primarily from
the two-photon resonance condition and is on the order of
g f /(vg f/2pD). The resonance width associated withd is
roughly on the order ofg f (300 kHz).

To show the effect of multicomb line contributions, we
plot in Figs. 3~a! and 3~b! the growth ofGg f vs the number of
participating comb lines. The calculation is performed in the
frequency domain. Figure 3~a! shows a hypothetical case
where we use only one intermediate state to avoid quantum
interference. We can see that the main contribution to the

signal comes from the first comb pair with one component
tuned near ucg&→ucm& and the other tuned nearucm&
→uc f&. This is understandable considering that the comb
spacingD ~;100 MHz! is much larger thangm (5 MHz).
When we include all five intermediate states, the ‘‘satura-
tion’’ curve shown in Fig. 3~b! is less smooth, with the in-
terference among different pathways contributing to a sud-
den change of the signal size. Still, only about ten comb lines
need to be included for the final signal size. Figures 3~c! and
3~d! illustrate the evolution of the time domain interference
effect as we plot the resonance linewidth and size with re-
spect to the increasing pulse numbers. Clearly the Ramsey
interference enhances the frequency resolution as more
pulses participate, with the final linewidth limited basically
by g f itself @Fig. 3~c! and its inset#, after 200 pulses or so.
The signal size also reaches a stable value after a similar
number of pulses@Fig. 3~d!#. The number of pulses needed
to reach equilibrium is on the order of the ratio of the excited
state lifetime over the pulse repetition periodT. The band-
width issue of the comb can be explored with the original
Gaussian pulse shape in Eq.~3!. We find that for a pulse of
constant energy, the signal size remains unchanged when the
pulse widtht increases, till about 30 fs, where the bandwidth
becomes too small to cover the intermediate states and the
signal size starts to decrease. In the calculation for Fig. 2,t is
10 fs.

While the results shown in Fig. 2 are informative, they are
hardly useful for frequency control of the fs comb. Clearly,
Fig. 2 provides only one constraint for bothD and d and
therefore we will not be able to control them independently.
The reason lies in the fact that we have chosen the zero
frequency as the reference point for both degrees of freedom
associated with the comb. In other words, the effects on the
comb frequency by the changes ofD and d are too similar
and so an orthogonalized control is difficult. This situation
can be remedied in practice. Optically one can adjust the
laser cavity such that the frequencyvp at which the cavity
dispersion is not sensitive~to first order! to a rotating mirror
lies abovevg f/2. In this case the frequencies of the comb

FIG. 3. ~a! Gg f vs the number of comb linesNc calculated in the
frequency domain. Only one intermediate state is considered.~b!
Same as~a!, except all five intermediate states are included.~c!
Dependence of the two-photon transition linewidthd1/2 on pulse
number (Np). ~d! Gg f vs pulse number (Np).
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components interacting with the intermediate states will be
shifted down with an increasingD, but up with an increasing
d, leading to a possible orthogonal control. Another approach
is to use electronic means to mix the control information for
both D and d such that two new orthogonal signals can be
generated. Mathematically, this orthogonalization process
amounts to a change of variables in Eq.~2!, which we now
rewrite as

Cf
~2!~ t !5

5

2p (
k

exp$24p id1t%

i ~22d1!1g f /2

3(
m

b1b2

i @vgm2vg f/222p~kD1d1!#1pgm
,

~5!

whered15d2mod(vg f/4pD). Figure 4 displays the reso-
nance picture againstd1 and D. We choose to show two
representative cases withD05101.851 871 MHz for~a! and
D05105 MHz for ~b!. Specific values ofD0 are sought to
have corresponding comb components tuned near a majority
of the five intermediate states. Furthermore, to have a maxi-
mum enhanced peak, detunings between the five intermedi-
ate states and their respective comb lines should all have the
same sign. The single peak in~a! shows an enhancedGg f ~by
3259 times, compared against a single-state resonance! due
to three constructively interfering states. Fig. 4~b! shows a
situation where no comb lines are tuned near the resonances
of intermediate states and yet constructive interference still
helps to enhance the signal. The resonance width associated
with D is on the order ofgm /@(vg f/22vgm)/2pD#. Simul-
taneous control of bothD and d is now clearly feasible.
Atom-based frequency stabilization of a fs laser provides
long-term stability and should be an attractive complement
to other approaches, including the locking ofD to a micro-
wave source@1,2#, the locking of a fs laser to an optical
cavity @13#, self-referencedf -2 f heterodyne locking@3#, and
a fs comb phase locked to an ultrastable cw laser@14#.

In summary, we show that the two-photon process can be
dramatically enhanced through the use of a phase-coherent fs
comb resonantly exciting stepwise transitions. Quantum in-
terference among different pathways leads to the desired in-
formation of the atomic structure, while providing an abso-
lute reference for a complete control of the fs laser. The
ultrahigh-resolution aspect of this approach can be under-
stood also from the time domain analysis where a series of
Ramsey-type atom-pulse interactions provide a long coher-
ent interrogation time.
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FIG. 4. Gg f as functions ofD andd1 @Eq. ~5!#. All parameters
are the same as in Fig. 2, exceptD05101.851 871 MHz for~a! and
D05105 MHz for ~b!.
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