
Fast 3D Inhomogeneous Radiative Transfer Model

Incorporating Aspherical Frozen Hydrometeors with

Application to Precipitation Locking

by

Kun Zhang

B.S., Beijing University of Aeronautics and Astronautics,

Beijing, China, 1997

M.S., University of Florida, Gainesville, Florida, U.S.A., 2000

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical, Computer, and Energy Engineering

2019



This thesis entitled:
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors

with Application to Precipitation Locking
written by Kun Zhang

has been approved for the Department of Electrical, Computer, and Energy Engineering

Prof. Albin J. Gasiewski

Prof. Dejan Filipovic

Prof. Julie Lundquist

Dr. Alexander Voronovich

Dr. Kwo-Sen Kuo

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii
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Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors

with Application to Precipitation Locking

Thesis directed by Prof. Albin J. Gasiewski

A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model incor-

porating aspherical frozen hydrometeors based on the NASA/GSFC OpenSSP database is presented

to study 3-dimensional (3D) effects of horizontal inhomogeneous clouds on computed microwave

radiances and facilitate satellite radiance assimilation over horizontally inhomogeneous weather

conditions. HI-UMRT provides a coupled two-Stokes parameter numerical radiance solution of the

3D radiative transfer equation by embedding the existing 1D UMRT algorithm into an iterative

perturbation scheme. The horizontal derivatives in radiances of lower perturbation order are treated

as the source functions of the azimuthal harmonic perturbation radiative transfer equations that are

readily solved by the planar-stratified 1D UMRT algorithm.

The 1D UMRT algorithm requires symmetry of the transition matrix for the discretized planar-

stratified radiative transfer equation to realize numerically stable and accurate matrix operations as

required by the discrete-ordinate eigenanalysis method. In this thesis, the necessary block-diagonal

structure of the full Stokes matrix for randomly oriented OpenSSP aspherical hydrometeors is

shown to be maintained, albeit with small asymmetric deviations which introduce small asymmetric

components into the transition matrix that are negligible for most passive microwave remote sensing

applications. An upper bound of the brightness temperature error calculated by neglecting the

asymmetric components of the transition matrix under even extreme atmospheric conditions is

shown to be small. Hence the OpenSSP hydrometeor database can be reliably used within the

UMRT model.

Block-diagonal Stokes matrix elements along with other single-scattering parameters of

OpenSSP hydrometeors were subsequently used in radiative simulations of multi-stream dual-
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polarization radiances for a simulated hurricane event to demonstrate the inherent numerical

stability and utility of the extended 1D UMRT algorithm. An intercomparison of computed

upwelling radiances for a multiphase distribution of aspherical OpenSSP hydrometeors versus a

mass-equivalent Mie hydrometeor polydispersion for key sensing frequencies from 10 to 874 GHz

shows the considerable impact of complex (versus simple spherical) hydrometeors on predicted

microwave radiances.

Further, a numerical performance assessment shows that the increase in computing time for

the 3D HI-UMRT model relative to the 1D UMRT model is moderate since (i) the computationally

efficient UMRT engine is applied only to the perturbation equations with non-trivial solutions,

and (ii) the layer parameters for the 1D solution are reused for all higher perturbation orders.

Numerical simulations using HI-UMRT based on 3D cloud profiles simulated by the WRF numerical

weather model illustrate the convergence of the iterative perturbation series. An intercomparison of

top-of-atmosphere brightness temperature images for HI-UMRT versus the planar-stratified UMRT

model illustrates the considerable impact of cloud horizontal inhomogeneities on computed upwelling

microwave radiances.

The microwave radiances simulated using UMRT at 118 and 183 GHz based on the Orbital

Micro Systems Inc. Global Earth Monitoring System (GEMS) CubeSat constellation concept have

been used in an all-weather microwave data assimilation scheme to facilitate precipitation locking of

hydrometeor state variables in severe weather. The capability of first frame precipitation locking

can be achieved based on constrained extended Kalman filtering (XKF), statistical estimation of

a flow-dependent background error covariance matrix, and appropriate update of state variables

using nonlinear iterative method. Preliminary simulation results demonstrate the potential for

assimilating both thermodynamic and hydrometeor variables in first-frame locking iterations.
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Chapter 1

Introduction

The National Research Council (NRC) during the Decadal Survey (DS) [1] in 2007 identified

the Precipitation and All-weather Temperature and Humidity (PATH) as one of the ten critical Earth

science missions. The PATH mission identified the use of a microwave array spectrometer to provide

all-weather temperature and humidity sounding with spatial resolution comparable to AMSU-A/B

(i.e. ∼15-30 km) and at ∼15-30 minutes temporal resolution for improved forecasting of hurricanes

and severe storms. At least three candidates of geostationary microwave array spectrometer concepts

(i.e. the GEostationary Microwave observatory (GEM) [116], the Geostationary Synthetic Thinned

Aperture Radiometer (GeoSTAR) [77], and the Geostationary Interferometric Microwave Sounder

(GIMS) [80]) have been recognized to make such high spatio-temporal observations achievable,

albeit at costs in the range of $200-600 million [45, 139]. Due to recent advances in microwave

receiver and filter technology, the concept of a low-Earth orbiting (LEO) constellation of ∼30-50

CubeSat small satellites with payload consisting of cross-track scanning microwave spectrometers

using sounding channels at both the 118.7503 GHz oxygen line and the 183.310 GHz water vapor

line has been identified as an alternative cost effective means of achieving these observation goals

[94]. This constellation is being developed by Orbital Micro Systems Inc., and is called the Global

Earth Monitoring Systems (GEMS).

While the specific hardware implementation of GEMS is to be determined, the observed

microwave data at such high spatio-temporal resolution provide the potential for precipitation locking

of large individual precipitation cells in numerical weather prediction (NWP) models under conditions
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of rapidly evolving mesoscale convection and widely varying cloud opacity. Precipitation locking is

analogous to the process underlying a phase-locked loop (PLL) wherein linear phase differencing is

achieved only when the oscillator and signal phases remain within the same cycle [40]. Similarly,

stable linear NWP model updates can be achieved provided that the cloud and precipitation state

does not de-correlate between satellite observations. This potential of precipitation locking is being

explored in this thesis at the University of Colorado at Boulder in an all-weather microwave radiances

assimilation system called precipitation assimilation system (PAS) [139]. Figure 1.1 illustrates the

schematic diagram of the precipitation locking algorithm based on short-term NWP models and

extended Kalman filtering (XKF). To facilitate precipitation locking, it is recognized that at least

Figure 1.1: Precipitation locking simulation system under development at Center for Environmental
Technology (CET) at University of Colorado at Boulder.

five modules in the simulation system are required to be implemented with an extended capability.

These modules are: 1) computationally efficient and accurate radiative transfer model with the

capability to provide the sensitivity functions (Jacobians) that describe the tangent linear response

of each observable (e.g. brightness temperature, TB) to each atmospheric variable, 2) high-temporal
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observation data simulations based on a passive microwave sensor constellation or geostationary

imager/sounder concept, 3) estimation of a priori error covariance matrices for all thermodynamic

and hydrometeor state variables for first-frame locking, 4) atmospheric state vector update based

on constrained extended Kalman filtering (XKF), and 5) continual estimation of background error

covariance matrices for all variables for continuous assimilation.

The existing one-dimensional (1D) Unified Microwave Radiative Transfer (UMRT) model

[122, 127] developed at the Center for Environmental Technology (CET) at University of Colorado

at Boulder (CU) offers several advantages to meet the needs of the precipitation locking simulator.

The UMRT algorithm provides a fast layer-adding dual-polarization solution to the differential

radiative transfer equation in a planar-stratified multilayer medium under all single-scattering albedo

conditions along with a fast Jacobian calculation that reuses previously computed matrix operators.

Importantly, the UMRT model takes advantage of the transition matrix symmetry of the radiative

transfer equation based on spherical scattering hydrometeors to realize unconditional numerical

stability and computational efficiency for all matrix operations required by the discrete-ordinate

eigenanalysis method [118, 91, 127]. In this thesis, the UMRT model was extended by incorporating

complex hydrometeors to extend the applicability of UMRT over a wide range of aspherical ice

hydrometeor habits and frequencies from 10 GHz to ∼1 THz.

Microwave dual-polarization sounding and imaging data from spaceborne atmospheric sensors

such as the Tropical Rainfall Measuring Mission (TRMM) [64] and the Global Precipitation

Measurement (GPM) mission [25] are widely used in both precipitation retrieval algorithms (e.g.,

for nowcasting) and in microwave radiance assimilation methods for optimal update of numerical

weather prediction models. It has been shown that both sounding and window channels above ∼90

GHz are sensitive to scattering by frozen hydrometeors [41, 36], and exhibit significant polarization

differences from ice clouds at moderate off-nadir (e.g. at 53◦) viewing angles [26, 114]. For these

reasons, the Ice Cloud Imager (ICI) instrument for MetOp-SG [16, 9] is being developed for ice

cloud parameter retrievals using 12 dual-polarized channels from 183 GHz to 664 GHz and conical

scanning at 53◦ incidence. At the same time, CubeSat-based small satellites are being developed
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to demonstrate the potential of ice cloud measurements using a submillimeter-wave radiometer

operating at 670 GHz. The small satellite constellation concept has been identified as a cost effective

means to provide global severe weather observations with high spatio-temporal resolution for 4D-Var

assimilation [139] and is being demonstrated in the MicroMAS [11] and PolarCube [94] temperature

sounding cross-track radiometer missions at 118.75 GHz.

Radiative transfer models for cirrus parameter retrieval algorithms have been developed

for cirrus clouds composed of aspherical ice crystals with multiple shapes and size distributions.

Brightness temperature depressions caused by non-zero ice water path (IWP) at 85.5, 157, 220

and 340 GHz for cirrus clouds containing five habits of ice crystals was studied by Evans and

Stephens [32, 33]. The study was extended to 880 GHz for scattering properties of cirrus clouds

using models with additional ice crystal shapes, size distributions and atmospheric profiles, along

with the development of a Bayesian retrieval algorithm for cirrus cloud IWP and mean particle size

[34]. The performance of the retrieval algorithm was later evaluated based on airborne flights of the

Submillimeter-Wave Cloud Ice Radiometer (SWCIR) [35] and the Compact Scanning Submillimeter

Imaging Radiometer (CoSSIR) [36]. Concurrently, the Atmospheric Radiative Transfer Simulator

(ARTS) code developed by Emde et al. [26] was used to study microwave radiances over cirrus

clouds comprising spheroids of varying aspect ratio at off-nadir viewing angles.

The radiative impact of aspherical frozen hydrometeors in severe weather (e.g. hurricanes)

radiance modeling was also investigated by comparing the computed brightness temperatures with

observations from four instruments (e.g., the High Altitude Monolithic Microwave Integrated Circuit

Scanning Radiometer (HAMSR)) on the NASA ER-2 aircraft [113]. A single ice crystal habit of

a bullet rosette shape was chosen to represent frozen cloud hydrometeors. Comparisons of the

resultant brightness temperatures based on either this aspherical habit or Mie spheres suggested that

multiple habits and size distributions of aspherical hydrometeors are needed for accurate simulations

of upwelling radiances. A similar case study on stratiform snowfall [93] based on aspherical ice

crystals and snow aggregates presented in the OpenSSP database [68] showed general consistency

between observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)
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and computed upwelling radiances at 165.50 GHz and nadir viewing for radar retrieved profiles of

observed precipitation during the Midlatitude Continental Convective Clouds Experiment (MC3E).

In this thesis, the UMRT model is first extended by incorporating aspherical frozen hydrometeor

information derived from the OpenSSP database, which provides relevant geophysical frozen

hydrometeor data for a variety of pristine ice crystals and snow aggregates of widely varying sizes

[68]. Based on the morphological structures of those particles, the single-scattering parameters at

key passive sensing frequencies between 10 and 874 GHz are calculated using the Discrete Dipole

Approximation code (DDSCAT v7.3.1) [24]. DDSCAT is an open-source software package. It

was compiled at CU CET and modified to calculate the extinction, absorption, and scattering

efficiency along with the full (4× 4) Stokes matrix for 203 selected hydrometeor habits with random

orientations. This extended UMRT model addresses a fundamental requirement of near-symmetry of

the DRTE transition matrix to ensure that the model maintains the properties of numerical stability

and computational efficiency for randomly oriented aspherical hydrometeors [140]. Upon the proof of

this transition matrix property, the extended UMRT model is used to simulate microwave radiances

at the top of the atmosphere over hurricane Sandy (2012) based on atmospheric profiles simulated

using the Weather Research and Forecasting (WRF v3.5) model. The resulting top-of-atmosphere

brightness temperatures are compared with the analogous results for mass-equivalent Mie spheres for

quantitative assessment of the impact of aspherical frozen hydrometeors on the simulated microwave

radiances.

One of the challenges in assimilating all-weather satellite microwave data into numerical

weather prediction (NWP) models is to rapidly and accurately compute radiation fields over clouds

and precipitation [7, 135]. However, real clouds exhibit strong radiative variations in both the

horizontal and vertical directions [130]. These three-dimensional (3D) radiative effects have been

observed in optical and infrared cloud parameter retrievals (e.g. cloud optical thickness) by statistical

analysis of uncertainties in one-dimensional (1D) retrievals [128, 129, 130]. The 3D effects of clouds

in the microwave range have similarly been observed in estimating rain rates over water surfaces using

satellite microwave observations [81]. By comparing brightness temperature differences between 3D
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and 1D radiative transfer models, it has been shown that horizontally homogeneous cloud models

(i.e. 1D planar-stratified radiative transfer models) underestimate retrieved rain rates [81].

A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based on

the existing 1D UMRT model was developed in this thesis to facilitate forward radiative simulations

for 3D inhomogeneous clouds in severe weather (e.g. hurricanes). The HI-UMRT model provides a

3D analytic radiative transfer solution by embedding a planar-stratified 1D UMRT algorithm for the

first two Stokes parameters [122, 127] within a horizontally inhomogeneous iterative perturbation

scheme. The solution to the 3D radiative transfer equation using 1D UMRT can be found by

perturbation theory applied to the azimuthal harmonics of the radiation field, where the horizontal

gradients of radiances of lower order perturbations are treated as source functions of the equation.

The UMRT engine is subsequently used to solve each azimuthal harmonic and iterative perturbation

equation starting from the zeroth order. During each successive order of iteration, the basic UMRT

radiative parameters (e.g. emission, reflection, and transmission matrices) need to be computed only

once for each 1D vertical profile, and are subsequently reused for all azimuthal and perturbation

series corrections. The necessary number of perturbation iterations can be determined based

on the required precision of the computed upwelling microwave radiances. The converged 3D

HI-UMRT simulations of the top-of-atmosphere brightness temperature images compared with

the corresponding 1D UMRT results show that the accuracy of radiative transfer computations

can be considerably improved by correcting for the error caused by neglecting horizontal cloud

inhomogeneities.

Observing system simulation experiments (OSSEs) of CubeSat constellation microwave

observations are required to demonstrate the basic features of the constellation concept and

provide experimental data for facilitating the systematic development of the precipitation locking

concept in many aspects. To this end, efforts have been carried out to simulate upwelling microwave

radiances based on NWP atmosphere state reanalyses as would be observed by a constellation of

small passive microwave satellites. The GEMS system under development is selected to provide the

necessary simulation parameters. GEMS utilizes ∼30-50 PolarCube-based small satellites deployed
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in multiple orbital planes (e.g. the GPS orbit with inclination 55◦ or NASA A-train orbit with

inclination 98.14◦) to achieve sub-hourly revisit times. A mesoscale severe weather event (e.g.

hurricane Sandy, 2012) in the North American Mesoscale (NAM) model reanalysis is selected as the

primary case study of simulations in this thesis. The WRF model is a mesoscale numerical weather

prediction system designed to serve both atmospheric research and operational forecasting needs

[59]. The output of WRF model runs sampled at 5 km in space and at 30 minutes in time provides

a series of atmospheric state inputs to the radiative transfer model (e.g. UMRT) used to compute

top-of-atmosphere brightness temperature imagery. The observed antenna temperatures based on

the PolarCube specifications [94] were further simulated by considering randomized orbit geometry,

received polarization vector rotation, antenna beam patterns, and the designed channel passband

responses. A two-dimensional antenna temperature scan image of Sandy was constructed during

the overflight of a single GEMS satellite. Repetition of this simulation process for other satellites

which overflew the event every 15 minutes was used to generate a sequence of microwave images of

hurricane Sandy at the representative time intervals.

Previous studies using the MM5 model [45] have shown that cloud ice parameters in the NWP

model can be adjusted iteratively close to the true state using unconstrained extended Kalman

filtering, thus markedly causing the innovation field to decrease. However, thermodynamic variables

(e.g. temperature and water vapor content), which are less directly observable, diverged during these

first-frame observation iterations. In order to engage precipitation locking a means of stabilizing

the first-frame update process for both thermodynamic and hydrometeor state variables by adding

inequality constraints to the extended Kalman filter gains [39] and use of an appropriate a priori

state variable error covariance matrix is essential. The technique of Kalman filtering with inequality

constraints has been used for turbofan engine health estimation [110], where it has been shown that

the variance of constrained estimates is smaller than unconstrained estimates with the average error

reduced by 50%.

Also essential to the precipitation locking process is the need to generate accurate estimates of

the background error covariance matrices for both thermodynamic (e.g. temperature, water vapor)
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and hydrometeor (e.g., rain, cloud liquid water, cloud ice, snow, and graupel density) variables.

The background error covariance matrix plays a central role in meteorological variational data

assimilation systems based on passive microwave satellite data and iterative extended Kalman

filtering [5]. The atmospheric state variable statistics embodied in this matrix impact the Kalman

gain significantly, and incorrect error statistics can result in instabilities that amplify noise among

unobservable prognostic modes. This thesis focuses on the development of flow-dependent error

covariances for thermodynamic and hydrometeor variables, which can be assumed to be Brownian

processes whose error covariances grow linearly with time. Under the Brownian assumption the

covariance matrix is developed from increments in the forecast state variables, which are themselves

jointly Gaussian for short enough time periods.

The thesis is organized as follows. Section 2 describes single-scattering parameters of

aspherical atmosphere hydrometeors computed using DDSCAT v7.3.1 code and compared with

those of presumed spherical hydrometeors computed based on Mie theory. Section 3 discussed

the simulation efforts of multi-stream dual-polarized microwave radiances using the 1D UMRT

algorithm incorporating the OpenSSP aspherical hydrometeor database. The degree of transition

matrix symmetry based on aspherical OpenSSP hydrometeors is examined in this section along with

a theoretical analysis of transition matrix perturbations introduced by the arbitrary geometrical

structure of OpenSSP hydrometeors. Sections 4 and 5 present the new 3D HI-UMRT algorithm

based on an iterative perturbation scheme using the existing 1D UMRT engine. The computation

efficiency and theoretical computing time are discussed using the continuous form of the differential

radiative transfer equation. The angular and spatial discretization of the radiative transfer equation is

provided along with the numerical solution for terms of the azimuthal harmonic iterative perturbation

series. Numerical simulations are performed to demonstrate the convergent perturbation corrections

and further evaluate the 3D radiative effects by comparing the simulated upwelling brightness

temperature imagery for 3D HI-UMRT versus the planar-stratified 1D UMRT model. Section 6

focuses on the development of a precipitation locking simulation system along with an introduction to

the concept of precipitation locking. The simulation results of high-temporal resolution observations
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based on the proposed GEMS constellation were used to demonstrate precipitation locking for

the first observation frame. The Brownian-based estimation of flow-dependent background error

covariance matrices is also discussed in this section with some preliminary results. Conclusions and

future work discussion are provided in the last section.



Chapter 2

Microwave Single-Scattering Parameters of Atmospheric Hydrometeors

In passive atmospheric remote sensing the electromagnetic energy radiated from the Earth’s

atmosphere [123] is precisely measured. The radiation field observed from the top of the atmosphere

is sensitive to both thermodynamic and hydrometeor parameters such as pressure, temperature,

water vapor, and cloud hydrometeor content [62, 41]. Hydrometeors suspended or falling in the

atmosphere are water particles that can be in solid, liquid, or mixed (liquid and solid) phases.

Atmospheric hydrometeors can be characterized by their microphysical properties, such as maximum

dimension, fractional volume, morphological structure, orientation, and permittivity [123]. In

numerical weather prediction (NWP) models, microphysical parameterizations [37, 98] are used to

classify hydrometeors into five categories: 1) non-precipitating cloud liquid droplets with radius

less than ∼50 µm, 2) precipitating rain of radius less than ∼5 mm, 3) cloud ice of maximum

dimensions less than ∼1 mm and exhibiting a variety of morphological structures (e.g. plates,

dendrites, columns, needles, etc.), 4) snow of size between ∼1 mm and ∼10 mm with complex

aggregation structures, and 5) graupel of size typically less than ∼10 mm.

Within the microwave frequency range, cloud hydrometeors affect electromagnetic propagation

by absorbing and scattering radiation along with the background gases that primarily absorb (e.g.

oxygen and water vapor). Absorbing hydrometeors also emit microwaves due to the local thermal

equilibrium between hydrometeors and the surrounding atmosphere [41]. The absorption, scattering,

and emission by cloud hydrometeors can considerably impact microwave brightness measurements

made at atmospheric sounding frequencies. Observations of brightness temperature can be used to
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determine cloud and precipitation properties via either retrieval or radiance assimilation schemes

[41, 84, 59].

In order to model microwave radiance fields propagating through clouds, the radiative single-

scattering properties of individual hydrometeors need to be determined. The properties are based on

presumed particle geometries, dielectric constitution, and the ambient thermodynamic temperature

[68, 41]. The single-scattering parameters which are important for passive remote sensing can be

organized into two groups: 1) scalar quantities which represent the total power loss from the incident

radiation field due to the scattering and/or absorption by particles [123], including the extinction

cross section (σe), the scattering cross section (σs), and the absorption cross section (σa), and 2)

matrix quantities which are angularly-dependent and relate the scattered radiation field to the

incident field. The scattering function matrix (F ), a complex 2× 2 matrix, is a key element of the

radiative transfer theory since nearly all quantities required by the differential radiative transfer

equation can be expressed in terms of this complex matrix. For example, the real 4×4 Stokes matrix

(L) is derived from the scattering function matrix using the definition of Stokes parameters of the

radiation field. Another commonly used single-scattering parameter is the asymmetry parameter

(g) calculated based on the scattering function matrix. The asymmetry parameter represents the

amount of power scattered into the forward versus backward directions.

In this chapter, the numerical calculation of single-scattering parameters for both simple Mie

spheres and complex aspherical hydrometeors are discussed. Mie theory provides a closed-form

series solution leading to all necessary radiative parameters for spherical hydrometeors. However,

numerical methods are required for general aspherical particles. The Discrete Dipole Approximation

(DDA) algorithm [24] is one commonly used numerical method that can be applied to aspherical

frozen hydrometeors such as those defined within the OpenSSP hydrometeor database [68]. Scalar

extinction, scattering and absorption efficiencies for selected general hydrometeor shapes and for

random orientations were computed using DDSCAT v7.3.1 at key passive sensing frequencies from

10 to 874 GHz. These calculations extended the maximum frequencies of scattering and absorption

properties considered within the current OpenSSP database. The random orientation-averaged
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full Stokes matrices for these selected OpenSSP hydrometeors were also computed using DDSCAT

v7.3.1, averaging over 6,156 different particle orientations. These scalar efficiencies are useful because

they are independent of propagation direction and polarization of the incident wave [90].

2.1 Simple Mie Spheres

The electromagnetic field perturbed by a dielectric sphere has been well studied beginning

with the work of Mie (1906, 1908), later clarified by Stratton [119]. In Mie theory, vector spherical

mode (VSM) expansions [125, 12, 41] of the incident, internal, and scattered fields are expressed to

arbitrary precision. All unknown VSM expansion coefficients are determined by applying boundary

conditions at the spherical particle radius. The VSM coefficients for the scattered fields are commonly

known as the Mie coefficients:

an = − jn(mx) [xjn(x)]′ − jn(x) [mxjn(mx)]′

jn(mx) [xhn(x)]′ − hn(x) [mxjn(mx)]′
(2.1)

bn = − jn(x) [mxjn(mx)]′ −m2jn(mx) [xjn(x)]′

hn(x) [mxjn(mx)]′ −m2jn(mx) [xhn(x)]′
(2.2)

where jn(·) is the spherical Bessel function of first kind, hn(·) is the spherical Hankel function of

first kind (corresponding to outwardly propagating spherical waves), and [·]′ denotes differentiation

with respect to the parameter x. In practice, Mie coefficients are computable using recursive series

formulae [12, 90]. The parameter x is the electrical size of the sphere, which is the ratio of sphere

circumference to wavelength.

x ,
πD

λ
(2.3)

where D is the sphere diameter, and λ is the wavelength. The parameter m is the complex refractive

index of the sphere:

m ,

√
εs
ε

(2.4)

where εs and ε are the dielectric constant of the sphere and the background medium (respectively).

Applying Mie theory to spherical hydrometeors, the scalar extinction efficiency ηe, scattering
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efficiency ηs, and absorption efficiency ηa [12, 41] are defined and computed as:

ηe(x,m) ,
σe

πD2/4
=

2

x2

nmax∑
n=1

(2n+ 1)Re{an + bn} (2.5)

ηs(x,m) ,
σs

πD2/4
=

2

x2

nmax∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
(2.6)

ηa(x,m) ,
σa

πD2/4
= ηe(x,m)− ηs(x,m) (2.7)

where the efficiencies are normalized by the sphere’s physical cross-section [12]. The maximum

truncation order nmax is commonly determined by nmax = round(x + 4x
1
3 + 2) [41]. It can be

shown that the scattering cross section computed using Mie theory becomes equal to the Rayleigh

scattering cross section for dielectric spheres with small radii. The Rayleigh-Mie transition occurs

for hydrometeor diameters D ' 0.1λ/π.

Similarly, the non-zero elements of the complex scattering function matrix of a sphere using

the linear polarization basis (v for the vertical polarization and h for the horizontal polarization)

can be expressed in terms of Mie coefficients [125, 12]:

fvv(Θ) =
−j
k

nmax∑
n=1

2n+ 1

n(n+ 1)
[anπn(cos Θ) + bnτn(cos Θ)] (2.8)

fhh(Θ) =
−j
k

nmax∑
n=1

2n+ 1

n(n+ 1)
[anτn(cos Θ) + bnπn(cos Θ)] (2.9)

where k is the wavenumber in vacuum, and Θ denotes the forward scattering angle spanned by the

propagation vectors of the incident and scattered fields. The angle-dependent functions πn and τn

are defined by upward recursion as:

πn(Θ) =
2n− 1

n− 1
cos Θπn−1 −

n

n− 1
πn−2 (2.10)

τn(Θ) = n cos Θπn − (n+ 1)πn−1 (2.11)

with π0 = 0 and π1 = 1. The Stokes matrix of a sphere using the modified Stokes parameter
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representation [Iv, Ih, U, V ]T can be computed as:

L(Θ) =



|fvv(Θ)|2 0 0 0

0 |fhh(Θ)|2 0 0

0 0 Re{fvv(Θ)f∗hh(Θ)} −Im{fvv(Θ)f∗hh(Θ)}

0 0 Im{fvv(Θ)f∗hh(Θ)} Re{fvv(Θ)f∗hh(Θ)}


(2.12)

Note that for spheres only four independent real-valued elements are present in (2.12), and that the

sub-spaces [Iv, Ih] and [U, V ] are decoupled. The decoupled block-diagonal structure of the Stokes

matrix for spheres facilitates numerical microwave radiative transfer modeling, as will be discussed

in the next chapter.

The above calculations of the radiative parameters (2.5) - (2.12) are based on Mie coefficients,

which depend highly on the electrical size x and the complex refractive index m of the sphere. In

this thesis, the complex dielectric constant of water droplets (e.g. cloud liquid water and rain) is

calculated with the Debye model as defined in the atmospheric Millimeter-Wave Propagation Model

(MPM) (1985) by Liebe [75]. Other commonly used models for computing the complex permittivity

of liquid water include the Klein-Swift model (1977) [61] and the Meissner-Wentz model (2004) [86].

However, for consistency with previous works [41, 127] the MPM model is used in this thesis. The

ice refractive index for microwave frequencies is obtained based on Warren and Brandt’s model

(2008) of optical constants of ice calculated at a single temperature of 266 Kelvin [132]. Finally, the

complex dielectric constant for hydrometeors composed of ice, water, and air (e.g. graupel or wet

snow) is calculated based on the dielectric mixing theory described by Sadiku (1985) [104].

2.2 Complex Aspherical Hydrometeors

Real hydrometeors exhibit falling, advecting, convecting, and dynamically evolving motion in

clouds. The morphological structure of atmospheric hydrometeors varies dramatically in real cloud

processes. For example, the shape of precipitating rain droplets are slightly oblate due to viscous

forces. Cloud ice crystals naturally grow into a variety of aspherical forms with facets and branches
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based on the diffusion of water vapor and anisotropic attachment [99, 47]. These ice crystals also

collide during motion within a cloud and in doing so can form larger aggregates.

2.2.1 Database of Geometrically Symmetric Frozen Hydrometeors

The geometrical structure of hydrometeors plays a key role in remote sensing measurements

and has a significant impact on cloud and precipitation property retrieval, particularly when the

hydrometeor size is comparable to or greater than the wavelength of the electromagnetic field (i.e.

electrically large particles). This impact has been widely studied for backscattering and extinction

by aspherical ice and snow particles [71, 54, 95, 13, 124]. The results of these studies have motivated

the modeling of complex ice and snow particles according to their ice crystal habits, which depend

on aggregation, riming, and melting history.

Four publicly released databases are available for modeling aspherical but symmetric ice

crystals, generating aggregates, and calculating the single-scattering parameters of individual

particles. It should be noted that these databases model pristine ice crystals as aspherical symmetric

particles in idealized habits with multiple-fold symmetry, and include (for example) hexagonal

columns, hexagonal plates, and multi-bullet rosettes. These databases are:

(1) Icepart-mod: polarimetric scattering database for ice particles at microwave frequencies

(http://www.arm.gov/data/data-sources/icepart-mod-120/) [13, 83]

(2) SCATDB: scattering database for ice crystals and aggregates by Liu et al.

(http://cirrus.met.fsu.edu/research/scatdb.html) [79, 92]

(3) Database of microwave single-scattering properties of falling snow

(http://helios.fmi.fi/˜tyynelaj/database.html) [124]

(4) ARTS microwave single-scattering properties database

(https://zenodo.org/record/1175589) [30]

The discrete dipole approximation (DDA) method is commonly used to calculate the scattering

http://www.arm.gov/data/data-sources/icepart-mod-120/
http://cirrus.met.fsu.edu/research/scatdb.html
http://helios.fmi.fi/~tyynelaj/database.html
https://zenodo.org/record/1175589
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properties of the ice and snow particles in the above databases, with the exception of the icepart-

mod database which uses both the DDA algorithm and the generalized multi-particle Mie method

(GMM) [134]. Note that two different open-source implementations of the DDA algorithm exists,

1) the Amsterdam DDA (ADDA) [137] used in the ARTS database, and 2) the Discrete Dipole

Approximation Code (DDSCAT) [24] as used in Liu’s database.

2.2.2 OpenSSP Database of Ice and Snow Particles with Asymmetric Geometry

Realistic ice particle geometries, rather than purely pristine shapes, are required to model

diverse ice habits. Since radiative extinction by electrically large ice particles is highly geometry

dependent [48, 74], the OpenSSP database of microwave single-scattering parameters of aspherical

and asymmetric ice hydrometeors has been generated and released by Kuo et al. at NASA/GSFC

(https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp) [68]. The OpenSSP ice

crystals are simulated based on a three-dimensional physical model [47] to represent the natural

diffusional growth of pristine ice crystals in clouds. The OpenSSP asymmetric snow particles are

subsequently generated by simulating the natural aggregation of these pristine ice crystals of various

sizes.

At the time of this writing, the OpenSSP database contained nearly 10,000 samples of

simulated frozen hydrometeors categorized into 20 habits of pristine ice crystals and 9 families of

snow aggregates based on commonly observed cloud ice habits (e.g., dendrites, needles, and plates).

Using a dot to represent a particular habit with its effective spherical volume-equivalent radius, the

entire OpenSSP frozen hydrometeor population is illustrated in Figure 2.1.

The DDSCAT v7.1 software package was used by NASA/GSFC to calculate the single-

scattering parameters of OpenSSP frozen hydrometeors. Partial Stokes matrices (e.g. six elements

only) at fifteen frequencies up to 190 GHz along with scalar efficiencies (e.g. Qext, Qsca, and Qabs)

were provided in the OpenSSP database (see [68]). These calculated quantities were extended for

this thesis as described below.

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp
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Figure 2.1: Population of aspherical frozen hydrometeor habits and sizes in the current (ca. 2018)
OpenSSP database.

2.3 Extension of Scattering Parameters for Selected OpenSSP Hydrometeors

For this study of microwave radiative transfer through clouds, efforts were made to augment the

OpenSSP database in two aspects. First, the extension of single-scattering parameters to frequencies

beyond 190 GHz corresponding to important sensing channels (see Table 2.1) on both current

and future missions (e.g., the ICI mission, the Geosynchronous Microwave (GEM) sounder/imager

[120], the Orbital Micro Systems (OMS) Global Earth Monitoring Systems (GEMS) constellation,

and NASA airborne CoSSIR campaigns [36]) was done. Second, the full (4× 4) Stokes matrix for

randomly-oriented selected representative OpenSSP hydrometeors was computed.

Table 2.2 identifies several of the 203 selected snow aggregates and ice pristine crystals for
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Table 2.1: List of frequencies included in this study.

Frequency (GHz)

OpenSSP
Database

3.00, 5.00, 10.66, 13.61, 18.71, 23.82, 35.53, 89.06, 94.07, 150.10,
165.62, 176.42, 180.43, 186.43, 190.43

Added by
This Study

10.65, 23.80, 36.50, 52.80, 54.40, 56.92, 57.07, 89.00, 113.75,
115.75, 117.25, 117.65, 118.05, 118.35, 166.31, 176.31, 178.31,
180.31, 181.66, 182.41, 315.65, 321.65, 323.65, 371.20, 420.76,

440.80, 445.00, 446.60, 659.80, 874.00

this study. Although these shapes comprise only a small portion of the entire database (i.e. ∼3% of

the total number of samples), this selection is representative of the entire population of OpenSSP

habits, including all of the nine families of snow aggregates with inscribing sphere (i.e., maximum)

diameter Dmax up to 6,000 µm and four of the most commonly observed ice crystal habits with

Dmax up to 8,000 µm. The maximum diameters of particles are stored in the OpenSSP database

along with other geometrical properties (e.g., liquid volume-equivalent radius). The minimum value

of Dmax for any habit is the smallest size of that particle habit in the database. The maximum value

of Dmax used in this study was chosen based on the computational time needed for the discrete

dipole approximation (DDA) algorithm at the highest frequency (874 GHz). The increment ∆Dmax

in Dmax for any habit was selected to be the discretized archival size for simulated particle growth

using the self-collection algorithm [68].

In order to maintain the accuracy of the DDA algorithm, DDSCAT v7.3.1 requires that

|m|kd < 0.5 [24], where m is the complex refractive index of ice at frequency of interest, k is the

free space wave number, and d is the interdipole distance of a simulated OpenSSP hydrometeor.

Accordingly, the spatial-averaged interdipole distance of ∼50 µm as specified in the current OpenSSP

database was used for the calculations at frequencies below 200 GHz. A smaller interdipole distance

of ∼16.7 µm was needed for frequencies above 200 GHz. This finer interdipole distance was selected

to meet the accuracy requirement of DDSCAT v7.3.1 for frequencies up to ∼800 GHz. At the

highest frequency of 874 GHz, the interdipole distance requirement was barely satisfied resulting in

some minor loss of accuracy in computing the scattering function matrix.
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Table 2.2: Selected snow aggregates (ap-) and ice pristine crystals (p-) with varying range of
maximum diameters Dmax. An interdipole distance of ∼50 µm is used for frequencies below 200
GHz and ∼17 µm for 300 GHz up to 874 GHz in DDSCAT v7.3.1.

OpenSSP
Habit

Identifier

Sample
Depiction

Description
Min.
Dmax

(µm)

Max.
Dmax

(µm)

Avg.
∆Dmax

(µm)

#
Particles

ap-04 Dendrite with facets 324 2530 ∼700 4

ap-13 Fern dendrite 260 3396 ∼250 14

ap-14 Classic dendrite 270 5863 ∼350 19

ap-16 Star-shaped dendrite 260 5011 ∼300 18

ap-29 Needle 1012 5066 ∼1000 24

ap-19
Dendrite with broadening

arms
287 3338 ∼150 5

ap-44
Dendrite with broadening

arms
273 3941 ∼200 25

ap-46
Dendrite with broadening

arms
324 6189 ∼250 27

ap-43 Sandwich plate 353 3434 ∼200 18

p-14 Classic dendrite 250 8100 ∼800 11

p-19
Dendrite with broadening

arms
223 4510 ∼350 13

p-31 Solid column 206 2018 ∼150 13

p-43 Sandwich plate 250 3950 ∼350 12

2.3.1 Discrete Dipole Approximation Code (DDSCAT v7.3.1)

DDSCAT v7.3.1 [24] was compiled and installed on the CU ”Summit” research supercomputer

with message passing interface (MPI) enabled to perform parallel computations of the single-
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scattering parameters (e.g. extinction efficiency, scattering efficiency, absorption efficiency and full

Stokes matrix) for all selected ice and snow particles at the selected frequencies (see Tables 2.1 and

2.2). DDSCAT v7.3.1 computes the orientational average of these scattering parameters for each

randomly-oriented particle.

Three input files are mandatory for executing DDSCAT v7.3.1 for OpenSSP hydrometeors:

1) a target file shape.dat specifying the target geometry with the location and composition

of each dipole, 2) an external file (e.g. ior-266K.dat) containing the ice refractive index as

a function of frequency, 3) a parameter file ddscat.par providing all necessary parameters

to run the core program ddscat. The target files can be obtained from the OpenSSP database

(https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp) by request. The file for the

ice refractive index was created based on the Warren and Brandt revised model [132] (see Appendix

A for the dielectric constant of ice between 10 and 1000 GHz).

The sample parameter file ddscat.par attached in the DDSCAT v7.3.1 software package

was modified to meet the requirements for DDSCAT outputs in this study. A key modification is to

change the number of output Stokes matrix elements to 9, including all upper triangle elements except

LV V , so that the full Stokes matrix of a randomly-oriented particle can be obtained [125]. Note

that the Stokes matrix element LV V defined using the Stokes parameter representation [I,Q, U, V ]T

can be computed [12]:

LV V = LUU + (LII − LQQ) (2.13)

An example of the modification of the parameter file is shown in Appendix A.

2.3.2 Full Stokes Matrix of Randomly-Oriented OpenSSP Hydrometeors

The random orientation-averaged full Stokes matrices 〈L〉o(Θ) for selected OpenSSP hydro-

meteors were computed using DDSCAT v7.3.1 by averaging over 6,156 different particle orientations.

These orientations considered 18× 19× 18 samples over the three Eulerian angles (β,Θ,Φ). Figure

2.2 shows comparisons of the random orientation-averaged Stokes matrix elements 〈Lvv〉o and 〈Lhh〉o

for four families of snow aggregates (i.e. classic dendrite, dendrite with broadening arms, needles,

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp
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Figure 2.2: Random orientation-averaged Stokes matrix elements 〈Lvv〉o and 〈Lhh〉o compared with
Lvv and Lhh of mass-equivalent spherical ice particle respectively as a function of forward scattering
angle Θ at 659.8 GHz for: (a) aggregates of classic dendrites (ap-14) with Dmax = 2002µm versus
ice spheres of 902µm in diameter, (b) aggregates of dendrites with broadening arms (ap-19) with
Dmax = 1810µm versus ice spheres of 751µm in diameter, (c) aggregates of needles (ap-29) with
Dmax = 1645µm versus ice spheres of 648µm in diameter and (d) aggregates of sandwich plates
(ap-43) with Dmax = 1951µm versus ice spheres of 757µm in diameter.

and ”sandwich” plates) at 659.8 GHz versus Lvv and Lhh for the mass-equivalent Mie ice spheres.

The intrinsic densities of the ice spheres are identical to the solid portions of the OpenSSP snow

aggregates, and are constant ice densities with ρh = 0.9167 g/cm3. The comparisons exhibit good

general agreement in angular variation trend, although the ice spheres exhibit deep scattering

resonances at several forward scattering angles, and are generally (though not always) of smaller

scattering value. The comparisons reveal approximately one order of magnitude stronger forward

scattering within Θ . 25◦ for the aspherical snow aggregates than the mass-equivalent frozen

spheres, and approximately one order of magnitude less at backscattering angles Θ & 160◦.

Figure 2.3 shows similar examples for four habits of ice pristine crystals at 659.8 GHz. Solid
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columns are a more commonly observed habit than needles in ice clouds [51, 52, 36, 70, 78] and are

chosen along with dendrites and plates to represent cloud ice. According to Schmitt and Heymsfield

[106], a Dmax of ∼400 µm is a typical transition size between simple ice crystals and complex

aggregates. Therefore, slightly smaller size pristine ice crystals than this transition size are used for

comparisons.

Figure 2.3: Similar to Figure 2.2, but for four habits of ice pristine crystals at 659.8 GHz, (a) classic
dendrites (p-14) with Dmax = 354µm versus ice spheres of 267µm in diameter, (b) dendrites with
broadening arms (p-19) with Dmax = 403µm versus ice spheres of 278µm in diameter, (c) solid
columns (p-31) with Dmax = 353µm versus ice spheres of 301µm in diameter and (d) sandwich
plates (p-43) with Dmax = 403µm versus ice spheres of 216µm in diameter.

From Figure 2.3, the element 〈Lvv〉o for crystals with planar morphology exhibits a strong

depression in scattering at 90◦. This is not observed for randomly oriented column-like ice crystals

of habit p-31. Both aspherical ice crystals and the mass-equivalent Mie spheres exhibit the same

order of magnitude of forward scattering within Θ . 25◦ due to the smaller particle diameter than

the wavelength at 659.8 GHz, where it is expected that the morphological structure of aspherical
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ice particles would have small impact on forward scattering within this Rayleigh regime. At

backscattering angles Θ & 160◦, aspherical ice particles exhibit slightly smaller scattering than

Mie spheres except for the orientation-averaged plate shaped ice crystals of habit p-43, where

approximately one order of magnitude stronger backscattering is exhibited.

2.3.3 Scalar Radiative Efficiencies of Randomly-Oriented OpenSSP Hydrometeors

Figure 2.4: Random orientation-averaged single-scattering parameters of (a) extinction efficiency
(Qext), (b) absorption efficiency (Qabs), (c) scattering efficiency (Qsca), and (d) backscattering
efficiency (Qbk) as a function of maximum diameter Dmax at 874 GHz for four habits of snow
aggregates. These efficiencies are normalized by the hydrometeor effective area of an equal-volume
sphere (see Equation 2.14).

DDSCAT v7.3.1 was also used to compute scalar extinction, scattering, and absorption

efficiencies for the selected hydrometeors. These efficiencies Qext, Qsca, and Qabs are defined by
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Figure 2.5: Similar to Figure 2.4, but for four habits of ice pristine crystals, (a) extinction efficiency
(Qext), (b) absorption efficiency (Qabs), (c) scattering efficiency (Qsca), and (d) backscattering
efficiency (Qbk). These efficiencies are normalized by the hydrometeor effective area of an equal-
volume sphere (see Equation 2.14).

Draine and Flatau [24] in the DDSCAT v7.3.1 code as:

Qsca = σsca/πa
2
eff

Qabs = σabs/πa
2
eff

Qext = Qsca +Qabs (2.14)

where σsca is the scattering cross section, σabs is the absorption cross section and aeff is the effective

radius of an equal-volume sphere. Note that the efficiencies in (2.14) are normalized using the

effective area of an equal-volume sphere. Thus, multiplying the efficiencies by the hydrometeor

effective area (also calculated using DDSCAT v7.3.1 code) yields respective scalar coefficients. Figure

2.4 shows the efficiencies as a function of the maximum diameter at 874 GHz for the same four

families of snow aggregates, and Figure 2.5 shows analogous efficiencies for the same four habits
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of ice crystals. At submillimeter-wavelength, the scattering efficiency of an orientation-averaged

plate-like ice crystal (including needles) or snow aggregate increases monotonically with Dmax and

is typically ∼10 times larger than the corresponding absorption efficiency. Thus, in general, a

single-scattering ice particle albedo close to unity is to be expected. However, we note that the

scattering efficiency of a column-like ice crystal (e.g. habit p-31) exhibits only small variations

between 500 µm and 2,000 µm size, while the absorption efficiency increases faster than that of

plate-like ice crystals. The corresponding single-scattering hydrometeor albedo is thus significantly

less than unity for column-like ice crystals relative to aggregates or larger dendrites and plates.



Chapter 3

The Planar-Stratified 1D UMRT Model Incorporating Aspherical

Hydrometeors

It has been shown that the 1D UMRT model maintains unconditional numerical stability and

computational efficiency for plane-parallel multilayer clouds composed of spherical polydispersive

hydrometeors [122]. Extending UMRT to incorporate randomly-oriented aspherical hydrometeor

scattering matrices requires: 1) a proof of transition matrix symmetry as required by the UMRT

algorithm, and 2) explicit specification of particle size distributions and phase matrices for multiple

habits of aspherical hydrometeors. In this chapter, we first discuss UMRT transition matrix

symmetry in the context of the use of the aspherical OpenSSP hydrometeor database. The required

transition matrix symmetry is shown to be fulfilled because any OpenSSP Stokes matrix exhibits

the necessary block-diagonal structure, albeit with small asymmetric deviations which are negligible

for most remote sensing applications. A gamma size distribution for OpenSSP frozen hydrometeors

and comparable exponential size distribution for Mie spheres are determined based on the law of

mass conservation. A new method for estimating ice habit probabilities based on the principle of

maximum entropy is also developed. Finally, simulation results for dual-polarized multi-stream

microwave radiances using the extended UMRT model are presented along with an intercomparison

of brightness temperature imagery computed for Mie spherical particles versus aspherical OpenSSP

hydrometeors at frequencies from 10 to ∼1 THz.
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3.1 Planar-Stratified Radiative Transfer Model

3.1.1 Radiative Transfer Equation

The differential radiative transfer equation describes the propagation of polarimetric radiation

fields in an arbitrary medium. For a sparse medium (e.g. the atmosphere) under incoherent addition

of Stokes parameters and local thermodynamic equilibrium, the radiation field is governed by:

dI

ds
, ŝ · ∇I = −κe(r, ŝ) · I(r, ŝ) + κa(r, ŝ) ·B(f, T (r)) +

∫∫
4π

P (r, ŝ, ŝ′) · I(r, ŝ′)dΩ′ (3.1)

where κe is the extinction matrix that describes the attenuation rates in coherent wave propagation

due to absorption and scattering, κa is the absorption vector for both the scatterers and the

background medium, B(f, T (r)) is the Planck function at thermodynamic temperature T and

frequency f , and P (r, ŝ, ŝ′) is the scattering phase matrix coupling the radiation field from direction

ŝ′ into the direction ŝ [123, 41]. The radiation field I in (3.1) can be represented by a four-element

modified Stokes vector defined as:

I(r, ŝ, f) =



Iv

Ih

U

V


,

1

η



〈|Ev|2〉

〈|Eh|2〉

2Re〈EvE∗h〉

2Im〈EvE∗h〉


(

W

m2 − sr−Hz

)
(3.2)

where Iv and Ih are the specific intensities of the vertically and horizontally polarized electromagnetic

fields Ev and Eh (respectively), and η is the wave impedance.

The general radiative transfer equation (3.1) cannot be solved analytically for several reasons

[84]. First, the equation is in a mixed integro-differential form. Second, only the incident radiances

are known at each boundary, but the scattered radiances remain unknown. Third, the solution

of the RT equation exists in a five dimensional space of four coupled radiation components, that

is, three independent spatial variables to determine the position r and two angular variables to

determine the propagation direction ŝ for each of the four Stokes parameters.

Methods for finding either the deterministic solution or the statistical solution of the RT
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equation (3.1) were developed by Chandrasekhar [18] with additional methods applicable to terrestrial

plane-parallel atmospheres, followed by Ishimaru, 1978 [57], van de Hulst, 1980 [125], Tsang et al.,

1985 [123], Gasiewski, 1993 [41], Matzler 2006 [90], Marshak and Davis 2006 [84], and Stamnes et

al., 2015 [117].

3.1.2 The Unified Microwave Radiative Transfer (UMRT) Model

The UMRT algorithm developed by Tian and Gasiewski [122] provides a fast and numerically

stable solution to the 1D radiative transfer equation for the first two Stokes parameters based on the

planar-stratified approximation with the azimuthal symmetry, where a horizontally homogeneous

medium with sparse dielectric spheres is assumed for the atmosphere. The radiation field in the

radiative transfer equation is represented by the first two Stokes parameters (i.e. Iv and Ih), which

are functions of elevation angle θ, height z and frequency f . The elevation angle θ is the angle of

the propagation direction defined relative to the zenith direction. Applying the Rayleigh-Jean’s

approximation, the 1D radiative transfer equation for the UMRT model can be simplified as:

cos θ
dTB(z, θ, f)

dz
= −κe(z, θ)TB(z, θ, f) + κa(z, θ)T (z) +

∫ π

0
P
′
(z, θ, θ′, f)TB(z, π − θ′, f) sin θ′dθ′

(3.3)

where T (z) is the temperature at height z, and TB is the brightness temperature vector and related

to the radiation field by:

TB ,
λ2I

K
=
λ2

K

 Iv

Ih

 (Kelvin) (3.4)

where λ is the wavelength and K is Boltzmann’s constant (i.e. 1.38× 10−23 Joule/Kelvin). The

matrix P
′
(z, θ, θ′, f) is the azimuthally reduced 2× 2 phase matrix:

P
′
(z, θ, θ′, f) ,

∫ 2π

0
P (z, θ, θ′,∆φ, f)d∆φ (3.5)

The above differential radiative transfer equation (DRTE) is most effectively solved for

meteorological applications using a discrete set of upwelling and downwelling radiation streams.

Before the discretization of the DRTE over a set of quadrature angles the key elements of the DRTE
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(i.e. κe, κa, and P ) must be determined based on the single-scattering parameters of Mie spheres

and the spherical particle size distributions.

Two well-known particle size distributions are commonly used to model the size statistics

of Mie spheres. Liquid hydrometeors have been shown to closely follow the Marshall-Palmer size

distribution function [85]:

n(D) = Noe
−ΛD where


No = 8× 103 (m−3 ·mm−1)

Λ = 4.1R−0.21 (mm−1)

(3.6)

where R is the rain rate in mm/hr. Snowflakes have been shown to closely follow the Sekhon-

Srivastava (SS) size distribution function [107]:

n(D) = Noe
−ΛD where


No = 2.50× 103R−0.94 (m−3 ·mm−1)

Λ = 2.29R−0.45 (mm−1)

(3.7)

where R is the liquid equivalent precipitation rate in mm/hr. An exponential size distribution

function can be used for spherical graupel with a fixed number density No and a variable mean

particle size to account for the total graupel mass content of a cloud layer [103, 121].

For spherical particles the extinction matrix κe is diagonal with identical elements of the scalar

extinction coefficient [123]. The absorption vector κa is reduced to the scale absorption coefficient.

These scalar coefficients including the scattering coefficient κs are determined as:

κe =

∫ ∞
0

ηe

(
πD

λ
,m

)
πD2

4
n(D)dD (3.8)

κs =

∫ ∞
0

ηs

(
πD

λ
,m

)
πD2

4
n(D)dD (3.9)

κa = κe − κs (3.10)

where D is the diameter of a sphere, and the efficiencies ηe and ηs are calculated by (2.5) and (2.6).

The reduced phase matrix P
′
(z, θ, θ′, f) can be determined by the steps in Figure 3.1. The modified

Stokes matrix as a function of incident and scattering angles is obtained by pre- and post-rotation of

the polarization basis of Stokes matrix L(Θ) (2.12) computed within forward scattering coordinates
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Figure 3.1: Calculation of the reduced phase matrix for spherical particle polydispersions.

(see Appendix B for details). In this study, we use Reinser’s microphysical model for hydrometeors

with five categories (i.e., cloud liquid, rain, cloud ice, snow, and graupel). The total effective

radiative parameters in the RT equation (3.3) are the sum of the respective calculations for each of

the five categories.

The UMRT radiative transfer equation is discretized using an arbitrary number of up- and

down-welling streams. The UMRT algorithm provides a level-centric planar-stratified multi-stream

forward RT solution along with a fast top-of-atmosphere Jacobian calculation by reusing the layer

matrix operators computed in forward RT calculations [122]. One of the key features of the UMRT

algorithm is that it takes advantage of the symmetric properties of the reduced Mie phase matrix

for dual-polarization radiances to realize unconditional numerical stability and high computational

efficiency for all matrix operations required by the discrete-ordinate eigenanalysis method [118].

3.1.3 Generic Method of Incorporation Aspherical Hydrometeors into RT Model

Determining the radiative parameters of aspherical hydrometeor polydispersions is the first

task for calculating forward microwave radiances using a radiative transfer model. In general, the

extinction matrix for aspherical particles is no longer a diagonal matrix. Also, in general, the

elements of the absorption vector are non-zero. The phase matrix can be obtained based on an

ensemble averaged Stokes matrix over particle sizes, habits, and prescribed orientation distributions

[123].

A generic routine for the extinction matrix, absorption vector, and the phase matrix for

aspherical particles has been discussed by Tsang et al. [123], where the complex 2× 2 scattering

function matrix of a single scatterer is first required to be determined using techniques for calculation
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of scattered and internal electromagnetic fields from arbitrarily shaped finite object (e.g. DDA [24],

GMM [134], and FDTD [66] etc.). The expression of the scattering function matrix F (θ, φ, θ′, φ′) in

the vertical-horizontal polarization basis can be written as:

F (θ, φ, θ′, φ′) =

 fvv(θ, φ, θ
′, φ′) fvh(θ, φ, θ′, φ′)

fhv(θ, φ, θ
′, φ′) fvv(θ, φ, θ

′, φ′)

 (3.11)

where (θ′, φ′) are the incident directions and (θ, φ) are the scattering directions.

For a monodispersion of aspherical particles, the extinction matrix can subsequently be

determined using the coherent wave propagation theory with Foldy’s approximation:

κe =



−2Re{Mvv} 0 −Re{Mvh} −Im{Mvh}

0 −2Re{Mhh} −Re{Mhv} Im{Mhv}

−2Re{Mhv} −2Re{Mvh} −(Re{Mvv}+Re{Mhh}) (Im{Mvv} − Im{Mhh})

2Im{Mhv} −2Im{Mvh} −(Im{Mvv} − Im{Mhh}) −(Re{Mvv}+Re{Mhh})


(3.12)

where

Mjl =
i2πno
k
〈fjl(θ′, φ′, θ′, φ′)〉o j, l = v, h (3.13)

with no is the number of particles per unit volume, k is the wavenumber in vacuum, and

〈fjl(θ′, φ′, θ′, φ′)〉o denotes the ensemble average over the orientation and size distribution of the

particles [123], and i =
√
−1. Similarly, the phase matrix can be calculated by multiplying the

ensemble averaged Stokes matrix with no:

P (θ, φ, θ′, φ′) = n0〈L(θ, φ, θ′, φ′)〉o (3.14)
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where

〈L
(
θ, φ, θ′, φ′

)
〉o =

〈|fvv|2〉o 〈|fvh|2〉o 〈Re{fvvf∗vh}〉o 〈−Im{fvvf∗vh}〉o

〈|fhv|2〉o 〈|fhh|2〉o 〈Re{fhvf∗hh}〉o 〈−Im{fhvf∗hh}〉o

〈2Re{fvvf∗hv}〉o 〈2Re{fvhf∗hh}〉o 〈Re{fvvf∗hh + fvhf
∗
hv}〉o 〈−Im{fvvf∗hh − fvhf∗hv}〉o

〈2Im{fvvf∗hv}〉o 〈2Im{fvhf∗hh}〉o 〈Im{fvvf∗hh + fvhf
∗
hv}〉o 〈Re{fvvf∗hh − fvhf∗hv}〉o


(3.15)

Finally, the absorption vector can be determined using (3.12) and (3.14):

κa =



κe11 −
∫

[P11 + P21] dΩs

κe22 −
∫

[P12 + P22] dΩs

2κe13 + 2κe23 − 2
∫

[P13 + P23] dΩs

−2κe14 − 2κe24 + 2
∫

[P14 + P24] dΩs


(3.16)

where κeij and Pij are the (ij)th element of the extinction matrix and phase matrix.

3.2 UMRT Transition Matrix Symmetry

The symmetry of the transition matrix of the one-dimensional discrete ordinate DRTE is

based on phase matrix reciprocity, as considered in the discrete-ordinate matrix-operator method

developed by Nakajima and Tanaka [91] and summarized by Stamnes [118]. This method improves

the computational stability of the radiative transfer solution but introduces rounding errors in the

approximation of the symmetric transition matrices. These early works also failed to theoretically

address the matrix inversion instability in the discrete-ordinate eigenanalysis method implementation

for high albedo cloud layers. The transition matrix of the normalized DRTE in the DOTLRT and

UMRT framework [127, 122] addresses this numerical instability for planar-stratified multilayer

media composed of spherical scatterers. The transition matrix is implicitly defined as the following
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4M × 4M square matrix.

d

dz



uv

uh

vv

vh


︸ ︷︷ ︸

4M×1

=

 −U −D

D U


︸ ︷︷ ︸

4M×4M



uv

uh

vv

vh


︸ ︷︷ ︸

4M×1

+



f

f

−f

−f


︸ ︷︷ ︸

4M×1

(3.17)

where uv and uh are the vectors of the normalized upwelling (+) radiation streams for vertical

(subscript v) and horizontal (subscript h) polarization, vv and vh are (similarly) the vectors of the

downwelling (−) streams, M is the number of radiation streams between zenith and the horizon, and

f is the source term representing thermal emission from the medium of interest. The submatrices

U and D of the transition matrix are shown in (3.18) and (3.19) respectively, and constructed by

using the elements of the azimuthally averaged reduced Mie phase matrix and the scalar extinction

coefficient κe:

U =



g11P
++
vv11 · · · g1MP

++
vv1M g11P

++
vh11 · · · g1MP

++
vh1M

...
. . .

...
...

. . .
...

gM1P
++
vvM1 · · · gMMP

++
vvMM gM1P

++
vhM1 · · · gMMP

++
vhMM

g11P
++
hv11 · · · g1MP

++
hv1M g11P

++
hh11 · · · g1MP

++
hh1M

...
. . .

...
...

. . .
...

gM1P
++
hvM1 · · · gMMP

++
hvMM gM1P

++
hhM1 · · · gMMP

++
hhMM



+



κe
µ1
· · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · κe
µM

0 · · · 0

0 · · · 0 κe
µ1
· · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · κe
µM


(3.18)
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D =



g11P
+−
vv11 · · · g1MP

+−
vv1M g11P

+−
vh11 · · · g1MP

+−
vh1M

...
. . .

...
...

. . .
...

gM1P
+−
vvM1 · · · gMMP

+−
vvMM gM1P

+−
vhM1 · · · gMMP

+−
vhMM

g11P
+−
hv11 · · · g1MP

+−
hv1M g11P

+−
hh11 · · · g1MP

+−
hh1M

...
. . .

...
...

. . .
...

gM1P
+−
hvM1 · · · gMMP

+−
hvMM gM1P

+−
hhM1 · · · gMMP

+−
hhMM


(3.19)

where the reduced Mie phase matrix elements are defined as:

P++
αβji = Pαβ(+µj ,+µi)

P+−
αβji = Pαβ(+µj ,−µi)

P−+
αβji = Pαβ(−µj ,+µi)

P−−αβji = Pαβ(−µj ,−µi)

j = 1, 2, · · · ,M i = 1, 2, · · · ,M (3.20)

where α and β denote either vertical (v) or horizontal (h) polarization, the subscripts i and j are

the indexes of those radiation streams which coincide with the Gauss-Legendre quadrature angles,

µj = cos θj is the cosine of the jth scattered quadrature angle, and µi is the cosine of the ith incident

quadrature angle. The normalization factors are computed as gji = −
√

γjγi
µjµi

, where γj and γi are

the Christoffel weights.

Provided that the extinction coefficient is greater than or equal to the corresponding scattering

coefficient which is always the case for passive lossy media, it was shown [122] that the subblock

sum and difference U +D and U −D matrices are both symmetric and positive definite for the first

two coupled Stokes parameters (i.e., v and h) for Mie spherical scatterers. The study by Tian and

Gasiewski was based on the discrete ordinate tangent linear radiative transfer model (DOTLRT)

developed by Voronovich et al. [127] for a single polarization. By applying analytic factorization of

the symmetric and positive definite matrices an inherently stable and computationally accurate

radiative transfer solution to compute dual-polarization multi-stream reflectivity and transmissivity
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matrices of each vertically stacked slab resulted.

3.2.1 Requirements of Transition Matrix Symmetry

The transition matrix subblock sum and difference (SBSD) symmetry in the UMRT framework,

including symmetry of the subblock matrices U and D, requires that the elements of the reduced

phase matrix satisfy two sets of symmetric relationships:

P++
αβji = P−−αβji, P+−

αβji = P−+
αβji (3.21)

P++
αβji = P++

βαij , P+−
αβji = P−+

βαij (3.22)

The relationship (3.21) requires that the reduced phase matrix elements remain unchanged by

inversion of the signs of µi and µj . Relationship (3.22) requires that the phase matrix elements also

remain unchanged by permutation of both angular indexes and polarizations.

The UMRT model was developed for planar-stratified multilayer media and requires only the

vertical and horizontal polarized Stokes parameters to represent the radiation field. The reduced

phase matrix based on a multiphase distribution of aspherical hydrometeors can be related to the

Stokes matrix of a single hydrometeor by:

P (θs, θi) =

Ns∑
is=1

pis

∫ ∞
0
〈L〉o(θs, θi;D, is)n(D, is)dD (3.23)

where θi is the incident angle, θs is the scattering angle, is is an index denoting hydrometeor habit,

Ns is the total number of habits considered, pis is the probability of hydrometeor habit is, 〈·〉o

denotes an average over random orientations, 〈L〉o(θs, θi;D, is) is the reduced orientation-averaged

Stokes matrix of a single hydrometeor with maximum diameter D and habit index of is, and n(D, is)

are particle size distributions (PSDs) of each habit is.

It is evident from (3.23) that the requirements of transition matrix SBSD symmetry (3.21)

and (3.22) can be rewritten in terms of the discretized Stokes matrix elements of any OpenSSP



36

hydrometeor as shown in (3.24) and (3.25) as:

L++
αβji = L−−αβji, L+−

αβji = L−+
αβji (3.24)

L++
αβji = L++

βαij , L+−
αβji = L−+

βαij (3.25)

where

L++
αβji = 〈Lαβ〉o(+µj ,+µi)

L+−
αβji = 〈Lαβ〉o(+µj ,−µi)

L−+
αβji = 〈Lαβ〉o(−µj ,+µi)

L−−αβji = 〈Lαβ〉o(−µj ,−µi)

j = 1, 2, · · · ,M i = 1, 2, · · · ,M

α, β = v or h (3.26)

3.2.2 Transition Matrix Symmetry Based on OpenSSP Hydrometeors

Consider first a Stokes matrix in the block-diagonal form for a randomly oriented particle

with at least one plane of symmetry [18, 125, 89, 90, 88, 117]:

〈L〉o(Θ) =



〈Lvv〉o 〈Lvh〉o 0 0

〈Lvh〉o 〈Lhh〉o 0 0

0 0 〈LUU 〉o 〈LUV 〉o

0 0 −〈LUV 〉o 〈LV V 〉o


(3.27)

where we use the modified Stokes vector representation [Iv, Ih, U, V ]T and Θ is the forward scattering

angle as illustrated in Figure B.1. The off-diagonal zero values follow from the presumed single

plane of symmetry. It can be shown (see Appendix B) that the transition matrix SBSD symmetry

requirements (3.24) and (3.25) are fulfilled by any Stokes matrix in the above block-diagonal form

(3.27).

Consider now aspherical hydrometeors with random orientations but without the requirement

of any necessary planes of symmetry. Such hydrometeors are well represented in the OpenSSP
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database. For a simulated OpenSSP snow aggregate of any size, there is in general a lack of an

intrinsic plane of symmetry due to the randomness in the self-collection particle growth model

[68]. The corresponding Stokes matrix 〈L〉o(Θ) exhibits small but fundamental nonzero elements in

the off-diagonal 2× 2 submatrix blocks which introduce an asymmetric component into the SBSD

matrices of the transition matrix (3.17). In order to analyze this asymmetric component, the Stokes

matrix 〈L〉o(θs, θi) can be decomposed into two parts, one symmetric matrix 〈L〉o,sym(θs, θi) that

meets the requirements of (3.24) and (3.25), and the other asymmetric matrix 〈L〉o,asym(θs, θi) that

does not but can be treated as a perturbation matrix in the DRTE (3.17) due to its small valued

elements:

〈L〉o(θs, θi) = 〈L〉o,sym(θs, θi) + 〈L〉o,asym(θs, θi)

=

∫ 2π

0
R(−i2)〈L〉o,sym(Θ)R(−i1)d∆φ

+

∫ 2π

0
R(−i2)〈L〉o,asym(Θ)R(−i1)d∆φ (3.28)

where R(−i1,2) is the rotation matrix defined in (B.1) and

〈L〉o,sym(Θ) =

〈Lvv〉o 〈Lvh〉o 0 0

〈Lvh〉o 〈Lhh〉o 0 0

0 0 〈LUU 〉o 〈LUV 〉o

0 0 −〈LUV 〉o 〈LV V 〉o


(3.29)

〈L〉o,asym(Θ) =

0 0 〈LvU 〉o 〈LvV 〉o

0 0 〈LhU 〉o 〈LhV 〉o

−2〈LvU 〉o −2〈LhU 〉o 0 0

2〈LvV 〉o 2〈LhV 〉o 0 0


(3.30)
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As discussed in Section 2, the random orientation-averaged full Stokes matrix 〈L〉o(Θ) of 203

selected OpenSSP hydrometeors was calculated using DDSCAT v7.3.1 at key passive remote sensing

frequencies from 10 to 874 GHz and averaging over 6,156 particle orientations. Applying (3.28),

the matrices 〈L〉o,sym(θs, θi) and 〈L〉o,asym(θs, θi) were calculated for the selected hydrometeors and

frequencies of this thesis. It was found that the first 2×2 matrix subblock elements of 〈L〉o,asym(θs, θi)

are typically four orders of magnitude smaller than the corresponding elements of 〈L〉o,sym(θs, θi) for

any of the OpenSSP hydrometeors selected for use in this study. It is thus reasonable to treat the

asymmetric component of the Stokes matrix as a small perturbation to the symmetric component.

In addition, a numerical calculation of the entrywise ratios of the first 2×2 matrix subblock elements

of 〈L〉o,asym(θs, θi) and 〈L〉o,sym(θs, θi) was performed. By averaging over 1,008 scattering function

matrix calculations at discrete orientations on selected snow aggregates, it was shown that the

mean entrywise ratios due to non-zero elements of 〈L〉o,asym(θs, θi) are limited to < 4× 10−4 (see

Appendix C).

3.2.3 Theoretical Analysis of Transition Matrix Perturbation

The impact of the asymmetric component 〈L〉o,asym(θs, θi) of the orientation-averaged Stokes

matrix on the DRTE solution can be bounded for the selected OpenSSP hydrometeors through

a perturbation analysis of the transition matrix. Taking both 〈L〉o,sym(θs, θi) and 〈L〉o,asym(θs, θi)

from (3.28) into (3.23) and constructing the transition matrix for aspherical hydrometeors, the

DRTE (3.17) can be rewritten as:
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d

dz



uv

uh

vv

vh


︸ ︷︷ ︸

4M×1

=


 −U −D

D U


︸ ︷︷ ︸

4M×4M

+

 E1 E2

E3 E4


︸ ︷︷ ︸

4M×4M





uv

uh

vv

vh


︸ ︷︷ ︸

4M×1

+



f

f

−f

−f


︸ ︷︷ ︸

4M×1

=
(
T sym + T asym

)


uv

uh

vv

vh


︸ ︷︷ ︸

4M×1

+



f

f

−f

−f


︸ ︷︷ ︸

4M×1

(3.31)

where T sym is constructed out of the symmetric component of Stoke matrix 〈L〉o,sym(θs, θi)

and T asym is constructed out of the asymmetric component 〈L〉o,asym(θs, θi). The sub-matrices E1

through E4 are small block elements of T asym. Note that the 4M diagonal elements of T asym are

zero.

Applying (3.31) to a planar-stratified layer of aspherical hydrometeors, the dual-polarized

radiation streams at the top of the layer can be obtained using the matrix exponential operator by:

uv(z)

uh(z)

vv(z)

vh(z)


= e

(
T sym+Tasym

)
z



uv(0)

uh(0)

vv(0)

vh(0)


+ C

= e

(
T sym+Tasym

)
z
X(0) + C (3.32)

X(0) ,



uv(0)

uh(0)

vv(0)

vh(0)


(3.33)
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where C is a constant vector determined by the source vector of (3.31), and X(0) is a set of layer

bottom radiation streams (i.e. lower boundary conditions at z = 0).

Thus, for an arbitrary set of layer bottom radiation streams X(0), the worst case impact

of neglecting T asym on the radiative solution is now determinable. To quantize this error caused

by neglecting 〈L〉o,asym(θs, θi), we examine how the matrix exponential e

(
T sym+Tasym

)
z

is affected

by the perturbation matrix T asym. This problem has been well studied [126, 100, 60], where the

perturbation bounds for a scalar error function φ(z) that is directly applicable to the above transition

matrix perturbation problem (3.32) were found:

φ(z) ,

∥∥∥∥e(T sym+Tasym
)
z − eT symz

∥∥∥∥∥∥∥eT symz∥∥∥ ≤ z ·
∥∥∥T asym∥∥∥ · e(µ(T sym)−α(T sym)+

∥∥∥Tasym∥∥∥)z
(3.34)

where ‖·‖ denotes the below-defined 2-norm of a square matrix, µ(T sym) is the log norm of

T sym with respect to the 2-norm, and α(T sym) is defined using the maximum eigenvalue of T sym.

Following [126], these quantities in (3.34) are explicitly defined as:∥∥∥T asym∥∥∥ = max{|λ| |λ2 ∈ Eigenvalues of

(
T
†
asymT asym

)
}

µ(T sym) = max{µ|µ ∈ Eigenvalues of

(
(T
†
sym + T sym)/2

)
}

α(T sym) = max{Re(λ)|λ ∈ Eigenvalues of T sym} (3.35)

where † denotes the Hermitian transpose.

Without the loss of generality, consider a unitary vector of radiation streams Xi(0). The

radiative error introduced by the perturbation matrix T asym is thus computed using Xi(0) as:

E(z) =

(
e

(
T sym+Tasym

)
z − eT symz

)
Xi(0) (3.36)

The maximum root square energy eigenvector error is defined below and coincides with the

numerator of the function φ(z):

max

(√
E†E

)
=

∥∥∥∥e(T sym+Tasym
)
z − eT symz

∥∥∥∥ (3.37)
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Thus, the maximum root square fractional error can be defined using φ(z) and Xi(0) as:

φ′(z) =
φ(z)

∥∥∥eT symz∥∥∥√
X
†
i (0)

(
eT symz

)† (
eT symz

)
Xi(0)

(3.38)

Since the perturbation matrix T asym has only a small influence on the eigenvectors and

eigenvalues of T sym [46], the maximum root square fractional error φ′(z) is approximately equal to

φ(z). Therefore, the upper bound of φ(z) can be interpreted as the maximum relative root mean

square (RMS) error of the radiation solution at z introduced by the asymmetric component of the

transition matrix T asym for any initial values of radiation at z = 0.

As an example, the upper bound of the function φ(z) is calculated for selected OpenSSP

snow aggregates at five sensing frequencies greater than 180 GHz under several atmospheric cloud

hydrometeor habits for a cloud thickness of 1 km, a constant temperature at 260 K, and with ice

water content for any given type of OpenSSP snow hydrometeor set to 1 g/m3. The OpenSSP

hydrometeor particle size distribution used is discussed in Section 3. The upper bound of φ(z)

varies with OpenSSP hydrometeor type and frequency as shown in Figure 3.2. It is evident that

the perturbation bound (i.e. maximum relative error) of the radiation solution is always less than

0.01% for frequencies below 420 GHz. This error is doubled at 659.8 GHz and reaches maximum of

∼ 0.1% at 874 GHz. Furthermore, the error depends heavily on the morphological structure of snow

particles at the two highest frequencies. Nevertheless, the small relative error value (i.e. < 0.1%)

introduced by the asymmetric transition matrix T asym has little impact for the first two Stokes

parameters on the overall radiative transfer solution for any of the habits studied (e.g., < 0.3 K

deviation from the nominal terrestrial temperature of 300 K). We note that this impact might not

be negligible for the third and fourth Stokes parameters, which are often relevant at the 0.1 K and

lower level of error [96].

Therefore, the random orientation-averaged Stokes matrix of an OpenSSP aspherical hydro-

meteor exhibits the block-diagonal structure for use in UMRT as shown in (3.27) with negligible

off-diagonal block matrices. The block-diagonal form of the symmetric Stokes matrix thus accurately
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Figure 3.2: Perturbation bound for a scalar function φ(z) used to determine relative errors of
radiative transfer solutions introduced by asymmetric component of the transition matrix for
OpenSSP snow aggregates. The perturbation bound varies with frequencies and snow particle types.

fulfills the transition matrix SBSD symmetry requirements for the UMRT model incorporating

aspherical frozen hydrometeors based on the OpenSSP database for the first two Stokes parameters.

3.3 Incorporation of OpenSSP Aspherical Hydrometeors

In this study, cloud liquid water, rain and graupel are assumed to have spherical shapes and

their single-scattering parameters were calculated based on Mie scattering [41]. Cloud liquid water

and rain droplets follow the Marshall-Palmer particle size distributions [85], and exponential size

distributions are used for graupel with a fixed number density and a variable mean particle size

to account for the total graupel mass content of a cloud layer [103, 121]. The cloud ice and snow

hydrometeors are represented by multi-habit mixtures of randomly oriented aspherical OpenSSP

hydrometeors. Warren and Brandt’s model of the ice refractive index for microwave frequencies is
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used in the OpenSSP database as well as in the UMRT Mie scattering calculations for a spherical

shaped particle.

3.3.1 Gamma Function Distribution of Particle Size

In this study, a gamma particle size distribution function [53, 41] is used for cloud ice and

snow. The general form is:

n(D, is) = NoisD
µ(T )e−λ(T )D (3.39)

where D is the maximum diameter of a frozen hydrometeor, is is habit index, Nois is (as discussed

by Heymsfield et al. [53]) the intercept, µ(T ) is the dispersion, and λ(T ) is the slope of the gamma

distribution. The dispersion and slope are expressed as functions of temperature T and obtained by

log-normal fitting to in-situ observed data. The fitted results used in the Heymsfield et al. study

are:

µ(T ) =


−14.09− 0.248T, T < −61◦C,

−0.59− 0.030T, T ≥ −61◦C,

(3.40)

λ(T ) =


9.88e−0.060T , T < −58◦C,

0.75e−0.1057T , T ≥ −58◦C,

(3.41)

and are independent of habit. By applying the above gamma distribution in (3.23), the phase matrix

can be written as

P (θs, θi) =

Ns∑
is=1

pisNois

∫ ∞
0
〈L〉o(θs, θi;D, is)Dµ(T )e−λ(T )DdD (3.42)

where Ns is the number of particle habits (e.g. Ns = 20 for all OpenSSP pristine ice crystals and

Ns = 9 for all OpenSSP snow aggregates). The intercept for each particle habit Nois along with the

probability of the specific frozen hydrometeor habit pis need to be specified based on two constraints:

i) conservation of mass consistent with the bulk ice density ρf in g/m3 (3.43) and ii) unitarity of

particle probabilities (3.44), where

ρf =

Ns∑
is=1

pisNois

∫ ∞
0

Dµ(T )e−λ(T )Dm(D, is)dD (3.43)
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Ns∑
is=1

pis = 1 (3.44)

In the above m(D, is) is the specific mass of particle habit is and maximum diameter D which

is derived from characteristic morphological records in the OpenSSP database. In this work the

bulk density is obtained from the WRF model for a layer of clouds. Assuming that pis = 1 for

a given habit, the first constraint is used to determine each corresponding Nois . However, the

actual pis values deserve careful consideration. Although ice habit mixture models [8, 78] developed

from in-situ observed data are available, these models do not distinguish between dendrites and

plates, thus they cannot be readily used to determine pis values. Furthermore, an equal probability

assumption (i.e. pis = 1/Ns) is not consistent with in-situ observations [8].

Instead, in this thesis, the frozen habit probabilities pis are set to be random variables with

uniform distributions between zero and one then normalized to satisfy (3.44) while maintaining

consistency with (3.43). By this procedure the simulated upwelling radiances are statistical quantities

due to the randomness of the underlying microphysical probability distribution. The statistics of the

computed radiances are then obtained by calculating the histogram of brightness temperatures over

the simulation domain. The resulting statistical data are discussed in the following two sections.

Physics of the time history of the distribution extend beyond the scope of this paper. We note that

both time dynamic and distribution entropy of cloud ice are being separately studied [136].

Finally, the upper limit of integration in (3.42) needs to be determined. This limit can be

based on the transition size of ice particles from simple crystals to complex aggregates [106] and the

maximum sizes of aggregates based upon the underlying OpenSSP growth model. According to

Schmitt and Heymsfield [106], complex aggregates occur in ice clouds when crystals grow 3.3± 0.9

times larger than the transition size Dt. This transition size can be modeled as a function of

temperature T as:

Dt = 1.69T + 235 (3.45)

where T is in ◦C and Dt is in µm. For snow aggregates, the upper integration limits in (3.42) are
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the maximum diameters provided in Table 2.2.

3.3.2 Conservation of Mass in WRF-based Simulations

The intensified hurricane Sandy on October 29, 2012 over the north Atlantic Ocean was

selected as the target severe weather event in this study. The WRF model was initialized with a

1500× 1500 km simulation domain discretized into 5 km horizontal grid spacing with 60 vertical

levels. Using the high-resolution North American Mesoscale (NAM) gridded reanalysis data as

initial and boundary conditions the WRF model provided state vector forecasts of Sandy over 24

hours and generated the atmospheric vertical profiles of the prognostic variables of temperature,

water vapor along with five bulk hydrometeor densities. The bulk densities of cloud ice and snow

are used as key parameters for providing the mass conservation constraint in the simulations and

assuring mass-equivalent comparisons of radiative transfer results for aspherical hydrometeors and

spherical particles according to:

ρf = ρsphere =

∫ ∞
0

πD3ρh
6

Nhe
−ΛhDdD (3.46)

where ρf is defined in (3.43), ρh is the volume averaged density of two types of spherical frozen

particles for which ρh = 9.167× 10−4g/mm3 for cloud ice and ρh = 2.5× 10−4g/mm3 for snow [121].

The quantities Nh and Λh are parameters of an exponential size distribution, and D is the diameter

of a sphere. For spherical cloud ice particles, a constant mean particle size of Λh = 50 mm−1 is

assumed and Nh is obtained by imposing (3.46). For spherical snow particles, a constant intercept

of Nh = 8000 mm−4 is used [103, 121] and Λh is imposed by (3.46). By (3.46), the bulk densities of

multiple habits of aspherical frozen hydrometeors are thus equal to the bulk densities of analogous

spherical particle polydispersion at any layer of a vertical profile.

3.3.3 Maximum Entropy Principle for Ice Habit Probabilities Estimation

Rather than being treated as uniformly distributed random variables, the estimation of

ice habit probabilities pis in (3.42) based on the maximum entropy principle is considered. The
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principle of maximum entropy can be applied to any physical system and aims to find the best

distribution that maximizes the number of partitions among all possible system states [102]. This

general physically-based principle has been considered in determining the hydrometeor particle size

distributions by Yano et al. [136], where the preliminary analysis identifies the hydrometeor mass

as the best candidate variable restricted by the laws of conservation of total hydrometeor mass

and total vertical flux as the physical constraints to the particle size distribution function. The

maximum entropy principle is applicable to the problem of determining ice habit probabilities pis

since the various ice habits are specified by OpenSSP hydrometeor database along with the mass of

each OpenSSP particle.

Consider a layer of ice clouds composed of multiple habits of OpenSSP frozen hydrometeors.

The entropy of the cloud layer can be defined conveniently using ice habit probabilities pis :

H(pis) = −
Ns∑
is=1

pis ln

(
1

pis

)
(3.47)

where Ns is the number habits of ice particles, and pis can be interpreted as the probability of

occupancy in the is habit. Without any constraint, pis = 1/Ns to achieve the maximum entropy.

Now, one physical constraint can be introduced to the ice particles in the cloud layer based

on the law of mass conservation:

ρf =

Ns∑
is=1

N ′ois

∫ ∞
0

Dµ(T )e−λ(T )Dm(D, is)dD (3.48)

where ρf is the bulk ice density of the cloud layer in g/m3 and is obtained from the WRF model

simulation as discussed in (3.43), and N ′ois is the number of ice particles in the is habit per unit

volume. The number density N ′ois can be determined based on the total ice concentration model

developed by Heymsfield et al. [53]:

pisNt(T ) =

∫ ∞
0

n(D, is)dD = N ′ois
Γ (µ+ 1)

λµ+1
(3.49)

where Nt(T ) is the total ice concentration per liter in clouds parameterized by temperature T , and

Nt(T ) =


27, T ≤ −60◦C,

3.304e−0.04607T , T > −60◦C,

(3.50)
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The number density N ′ois is subsequently calculated as:

N ′ois = pis
Ntλ

µ+1

Γ(µ+ 1)
(3.51)

Bringing (3.51) into (3.48), the constraint based on the law of mass conservation is rewritten as:

ρf =

Ns∑
is=1

pis
Ntλ

µ+1

Γ(µ+ 1)

∫ ∞
0

Dµe−λDm(D, is)dD

=

Ns∑
is=1

pisρis (3.52)

where the parameters ρf and T are obtained by WRF, the parameters of the size distribution

function are determined by the temperature T , and the particle mass m(D, is) can be found from

the OpenSSP database. Thus, the quantity ρis on the right hand of (3.52) is known for each habit

is.

The ice habit probabilities pis can be found using Lagrange multipliers [102] so that the

cloud layer entropy H(pis) is maximized. The Lagrangian function L along with two Lagrangian

multipliers α and β is defined as:

L = H(pis) + (α− 1)

(
Ns∑
is=1

pis − 1

)
+ β

(
Ns∑
is=1

pisρis − ρf

)
(3.53)

It has been shown that if α, β, and each pis are found so that L is maximized, then the same values

of pis also maximize the entropy H(pis) subject to the constraint (3.52). The procedure to find the

solution can be found in either the text by Rosenkrantz [102] or Penfield’s lecture notes at MIT

(http://www-mtl.mit.edu/Courses/6.050/notes/). The ice habit probabilities pis based

on the principle of maximum entropy are then found as:

pis = e−α−βρis (3.54)

where

α = ln

(
Ns∑
is=1

e−βρis

)
(3.55)

and β is the solution of the fundamental equation below:

f(β) =

Ns∑
is=1

(ρis − ρf ) e−β(ρis−ρf) = 0 (3.56)

http://www-mtl.mit.edu/Courses/6.050/notes/
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The computational difficulty associated with the maximum entropy principle usually resides in

finding the solution of the equation f(β) = 0 when multiple physical constraints exist.

This method for estimating pis based on the maximum entropy principle was not used for the

subsequent simulations of microwave radiances for two reasons: 1) the parameters obtained from

three independent sources (i.e., WRF, OpenSSP database, and Heymsfield’s PSDs) might violate

mass conservation (3.52) when ρf is less than the smallest ρis or greater than the largest ρis , and

2) only one physical constraint is considered in the problem, which may not be sufficient for the

optimal estimation of pis . However, this method is worthy of a separate and more in-depth study in

the future.

3.4 Analysis of Dual-Polarized Microwave Radiances using 1D UMRT

Many Earth observation missions focusing on the measurement of ice cloud or snowfall mass

choose a view angle of approximately 53◦, and receive linear vertical and horizontal polarizations

(e.g., GPM operating at 52.8◦ incidence angle [114], ICI using a nominal incidence angle of 53◦

[9], and the CoSSIR airborne instrument performing a conical scan at 50◦ during the CRYSTAL

FACE mission [36]). Those missions utilize a wide range of atmospheric sounding/imaging channels

from 10 to 874 GHz. Accordingly, broadband simulations of dual polarization radiances were

carried out using the UMRT model incorporating aspherical OpenSSP hydrometeors to facilitate the

development of microwave radiance assimilation and ice cloud retrieval algorithms using upcoming

submillimeter-wave observation data (e.g., from the ICI mission).

The computed upwelling brightness temperatures in vertical (TBV ) polarization at 53◦ view

angle covering the entire area of intensified hurricane Sandy and at frequencies aligned with ICI

channels plus 874 GHz are shown on the left column of Figure 3.3 and Figure 3.4. We see that

brightness temperatures are as low as 180 Kelvin near hurricane rain bands at 315.65 GHz. The

bulk scattering of ice and snow hydrometeors within clouds at 5 - 6 km altitude causes strong

reflection of the cold cosmic background temperature [114, 62] to produce these effects. Similar

cold brightness temperatures near rain bands are observed at 874 GHz owing to the high scattering
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Figure 3.3: Simulations of dual-polarization brightness temperature imagery over hurricane Sandy at
53◦ view, the conical scanning angle selected by multiple microwave satellite missions (e.g. ICI). Left
column: Vertical polarization brightness temperatures TBV at 315.65, 321.65, 323.65, and 440.8 GHz,
respectively. Middle column: Brightness temperature differences between vertical and horizontal
polarization ∆TB,V-H at the same respective frequencies to the left. Right column: Histogram of
∆TB,V-H with mean and standard deviation.

efficiency of the aspherical OpenSSP hydrometeors (Figures 2.4 and 2.5).

The brightness temperature differences between vertical and horizontal polarization ∆TB,V−H =

TBV − TBH at 53◦ viewing angle are shown in the middle column of Figure 3.3 and Figure 3.4

along with the histogram of ∆TB,V−H in the right column. The statistical mean of ∆TB,V−H over
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Figure 3.4: Similar to Figure 3.3, but simulations at frequencies of 445.0, 446.6, 659.8, and 874 GHz.
The ∆TB,V-H histogram exhibits a strong peak at 2-3 Kelvin for the two highest frequencies.

the entire simulation domain shows good agreement with the maximum ∆TB,V−H across a wide

range of sensing channels. The maximum difference ∆TB,V−H of ∼4 Kelvin reveals that the vertical

polarized radiances are more sensitive to the complex structure of ice and snow particles. The two

window channels of 659.8 GHz and 874 GHz exhibit a ∼2 Kelvin histogram mean in ∆TB,V−H .

Such differences are considerable in microwave radiance assimilation practice.

Figure 3.5 (a) summarizes the maximum and mean value of ∆TB,V−H for a broad range of

sensing channels between 10 and 874 GHz for the Sandy simulation. The maximum ∆TB,V−H
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Figure 3.5: Statistics of ∆TB,V-H on top of hurricane Sandy across key microwave frequencies
between 10 and 874 GHz. (a) The maximum (curve with square markers) and the mean (curve with
error bars) in the presence of bulk aspherical hydrometeors. Both curves are consistent. The error
bars indicate half of the standard deviations. (b) Comparison of the maximum ∆TB,V-H between
aspherical hydrometeors (solid line) and a mass-equivalent polydispersion of Mie spheres (dashed
line).

of more than 10 K observed in the window channels below 166.31 GHz is due to the significant

impact of ocean surface reflectivity on linear polarized microwave radiances. For simplicity, the

simulations assume a specular ocean surface as a lower boundary condition. The corresponding

Fresnel surface reflection coefficient for the vertical polarization is much smaller than that of the

horizontal polarization at 53◦ incidence, thus resulting in generally warmer brightness temperatures

for the vertical polarization. On the other hand, the few K values of the maximum ∆TB,V−H at

higher frequencies (e.g., ≥ 183 GHz) show the impact of cloud aspherical frozen hydrometeors on

polarimetric microwave radiances. At these higher frequencies the influence of the ocean surface on

the upwelling brightness temperature is attenuated by cloud and strong water vapor absorption.

An intercomparison of the maximum ∆TB,V−H based on aspherical hydrometeors and mass-

equivalent polydispersions of ice spheres (Figure 3.5 (b)) illustrates that the simplified spherical

hydrometeor model produce milli-Kelvin level polarimetric brightness temperature differences for

sounding channels near 183 GHz and above. However, the complex physical structure of aspherical
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hydrometeors results in appreciable polarization differences and is expected to impact applications

of dual-polarimetric microwave radiances at frequencies above 183 GHz in, for example, ICI ice

cloud mass and mean size property retrievals [9].

3.5 Analysis of Multi-stream Microwave Radiances using 1D UMRT

The impact of using aspherical hydrometeors on forward multi-stream radiance calculations

can be quantitatively assessed by comparing simulated upwelling radiances for a multiple habit

mixture of aspherical OpenSSP hydrometeors against a polydispersion of mass-equivalent Mie

spheres. Using the WRF-based atmospheric states for hurricane Sandy and simulating microwave

imagery in the vertical polarization observed from space, this intercomparison provides statistical

assessment of brightness temperatures at discrete stream angles and frequencies. For practical

purposes, the comparison is performed at eight discrete stream angles between nadir and the horizon.

The simulations provide insights into microwave radiance assimilation and ice cloud parameter

retrieval using, for example, cross-track scanning radiometer data.

Figure 3.6 shows the statistics of simulated multi-stream brightness temperature differences

∆TBV,Mie-DDA , TBV,Mie − TBV,DDA for Mie spherical particles relative to aspherical OpenSSP

hydrometeors at four different frequencies over the Sandy simulation. The sounding channel at

315.65 GHz is most affected by the complex structure of frozen hydrometeors, wherein the maximum

∆TBV,Mie-DDA reaches 50 - 60 K at all view angles. The three window channels at 420.763, 659.8

and 874 GHz are also considerably sensitive to aspherical hydrometeors with maximum brightness

temperature differences of ∼40 K at most off-nadir viewing angles. Furthermore, the maximum

impact of OpenSSP aspherical hydrometeors on brightness temperatures at 659.8 GHz occurs at

viewing angles greater than 14◦ with up to 15 - 20 Kelvin differences. In contrast, the minimum

impact at 420.763 GHz occurs at the largest viewing angle 84◦ with more than 20 Kelvin depression.

Repeating the procedure for the key microwave sensing frequencies studied in this thesis, a summary

of maximum ∆TBV,Mie-DDA corrections at discrete viewing angles and frequencies is shown in Figure

3.7. The impact of bulk aspherical frozen hydrometeors on the computed upwelling radiances
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Figure 3.6: Statistics of ∆TBV,Mie-DDA for selected viewing angles at (a) 315.65 GHz, (b) 420.763
GHz, (c) 659.8 GHz, and (d) 874.0 GHz. The curves with square markers show maximum brightness
temperature differences and the curves with error bars show the mean differences. Error bars
indicate difference standard deviations.

compared to polydispersive Mie spheres varies with frequency and view angle.
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Figure 3.7: Similar to Figure 3.6, but the maximum ∆TBV,Mie-DDA is shown with respect to both
key microwave remote sensing frequency from 10 to 874 GHz and discrete viewing angles between
zenith and the horizon.



Chapter 4

Fast 3D Inhomogeneous Radiative Transfer Model

In this chapter, the existing 3D radiative transfer (RT) models are reviewed based on the

fundamental solution methods of either (i) statistical or (ii) deterministic differential RT equation

solutions. The new 3D Horizontally Inhomogeneous Unified Microwave Radiative Transfer (HI-

UMRT) model of this thesis provides a deterministic solution of the 3D radiative transfer equation

using an iterative perturbation scheme based on the 1D UMRT algorithm. The required number of

1D UMRT calculations is determined based on the number of perturbation iterations required for

three dimensions. The numerical perturbation solution of the RT equation in azimuthal harmonics

is obtained based on the angular and spatial discretization of the Stokes vector. The convergence

criterion of the perturbation series is discussed at the end of this chapter.

4.1 Review of Existing 3D Radiative Transfer Models

For all-weather assimilation of satellite microwave radiances into NWP models [84, 6], 3D

cloud radiation fields are necessary to be rapidly and accurately computed. Both passive remote

sensing retrieval algorithms and microwave radiance assimilation methods require computationally

efficient radiative transfer models which limit radiative errors caused by horizontal inhomogeneities

[29]. However, few 3D models have been extensively studied using radiative transfer model

intercomparisons, for example, those undertaken by the International Polarized Radiative Transfer

(IPRT) working group of the International Radiation Commission (IRC) [28, 29]. According to

the recent IPRT report, nearly all of these numerical 3D models (e.g. 3DMCPOL [20], MSCART
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[131], and MYSTIC [27]) are based on the Monte Carlo solution method. However, Monte Carlo

methods are generally less efficient and accurate than deterministic numerical methods in repetitive

operational usage, such as in radiance assimilation [31].

The sole deterministic numerical method studied in IPRT intercomparisons is the spherical

harmonics discrete ordinate method (SHDOM) [31], which is widely used within the optical and

infrared communities [84]. SHDOM is based on solving the integral form of the 3D discrete radiative

transfer equation (DRTE) using Picard iteration which models the radiation streams along discrete

angles through a 3D spatial grid [69]. Spherical harmonics are chosen to represent the source

function of the DRTE for efficient computation purposes. Some drawbacks of the SHDOM method

are: (i) the algorithm lacks a fast and efficient Jacobian computation for microwave radiance

assimilation, and (ii) slow convergence occurs within opaque and/or high albedo scattering media.

These difficulties have precluded the application of SHDOM to high albedo 3D clouds with strong

horizontal variability.

Other techniques to solve the 3D radiative transfer equation include an iterative discrete

ordinate method, which is applicable to low albedo cloud layers but without a Jacobian solution.

This method is used within the 3D polarized Atmospheric Radiative Transfer Simulator (ARTS)

[26]. Radiative perturbation theory based on solving both the plane-parallel 1D radiative transfer

equation and the associated adjoint transport equation has been discussed where the horizontal

variability along with the Green’s function for the transport operator treated as a perturbation

of the Dyson equation [141, 14]. Although this perturbation-based method provides a means for

the solution of radiative transfer through 3D inhomogeneous clouds, this method fails to derive an

explicit Green’s function solution, thus making the computational accuracy and efficiency unspecified

[73, 14, 15].
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4.2 Horizontal Perturbation Series

4.2.1 Iterative Perturbation Scheme

The microwave radiation fields within 3D inhomogeneous clouds such as hurricane rain bands

and convective towers can be represented by a Stokes vector I(x, y, z, θ, φ) as a function of location

(i.e. x, y, z in Cartesian coordinates), elevation angle θ, and azimuth angle φ. The HI-UMRT model

uses a new means to solve the radiative transfer equation in a 3D medium by embedding the 1D

UMRT algorithm into an iterative perturbation scheme, where higher order 1D radiative transfer

equations perturbed by the horizontal derivatives in radiances of lower order correct accumulatively

the zeroth order 1D UMRT result. The radiation fields are governed by the 3D differential radiative

transfer equation:

dI

ds
, cos θ

∂I(x, y, z, θ, φ)

∂z
+ sin θ cosφ

∂I(x, y, z, θ, φ)

∂x
+ sin θ sinφ

∂I(x, y, z, θ, φ)

∂y

= −κe (x, y, z, θ) I(x, y, z, θ, φ) + κa (x, y, z, θ)B(f, T (x, y, z))

+

2π∫
0

π∫
0

P (x, y, z, θ, θ′, φ, φ′) · I(x, y, z, θ′, φ′) sin θ′dθ′dφ′ (4.1)

where κe is the extinction matrix, κa is the absorption vector, P is the phase matrix coupling the

incident radiation field propagating in the direction of (θ′, φ′) with the scattered field propagating in

(θ, φ), and B(f, T ) is the Planck function of thermal spectral radiance at thermodynamic temperature

T and frequency f .

The Stokes vector I(x, y, z, θ, φ) in (4.1) is an azimuthal periodic function with a period of

2π. It can thus be represented by an azimuthal harmonic series based on a Fourier expansion. By

harmonic balancing, the 3D differential radiative transfer equation (4.1) is thus decomposed into a

series of azimuthal harmonic differential equations (4.2), (4.3), and (4.4).

cos θ
∂I0c

∂z
= −κe(x, y, z, θ)I0c + κa(x, y, z, θ)B(f, T (x, y, z))

+

∫ π

0
P (x, y, z, θ, θ′)I0c(x, y, z, θ

′) sin θ′dθ′

− sin θ
∂I1c

∂x
− sin θ

∂I1s

∂y
(4.2)
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cos θ
∂Imc
∂z

= −κe(x, y, z, θ)Imc

+

∫ π

0
Pm(x, y, z, θ, θ′) · Imc(x, y, z, θ′) sin θ′dθ′

−1

2
sin θ

∂

∂x

(
I(m+1)c + I(m−1)c

)
−1

2
sin θ

∂

∂y

(
I(m+1)s − I(m−1)s

)
,

m = 1, 2, · · · (4.3)

cos θ
∂Ims
∂z

= −κe(x, y, z, θ)Ims

+

∫ π

0
Pm(x, y, z, θ, θ′) · Ims(x, y, z, θ′) sin θ′dθ′

−1

2
sin θ

∂

∂x

(
I(m+1)s + I(m−1)s

)
−1

2
sin θ

∂

∂y

(
I(m−1)c − I(m+1)c

)
,

m = 1, 2, · · · (4.4)

where m is the order of each azimuthal harmonic, and Imc and Ims are the cosine and sine harmonics

(respectively). Pm(x, y, z, θ, θ′) is the mth azimuthal cosine harmonic phase matrix defined as:

Pm(x, y, z, θ, θ′) =

∫ 2π

0
P (x, y, z, θ, θ′,∆φ) cos(m∆φ)d∆φ,

∆φ = φ− φ′ (4.5)

For either spherical or randomly oriented aspherical hydrometeors, the phase matrix P is an even

function of ∆φ = φ− φ′. Accordingly, there is no need for a sine harmonic in this decomposition.

In the case of oriented particles, the phase matrix will not in general be an even function of ∆φ,

necessitating the introduction of a mth azimuthal since harmonic phase matrix.

Note that horizontal derivatives of radiances in azimuthal harmonics of order (m+ 1) and

(m− 1) are treated as source functions in (4.3) and (4.4). The zeroth order azimuthal harmonic

equation (4.2) has a source function comprised of the atmospheric thermal emission and horizontal
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derivatives of the first order azimuthal harmonics I1c and I1s. To accommodate the coupling of the

azimuthal harmonic derivatives, we seek a perturbation series solutions of the form:

Imc(x, y, z, θ) =
∞∑
n=0

I
(n)
mc(x, y, z, θ) (4.6)

Ims(x, y, z, θ) =

∞∑
n=0

I
(n)
ms(x, y, z, θ) (4.7)

where n is the perturbation order. By the above approach, it is presumed that the horizontal

derivatives of each of the azimuthal harmonic radiances introduce relatively small changes to the

1D planar-stratified solution. Applying perturbation theory to the azimuthal harmonic differential

radiative transfer equations (4.2) - (4.4), we obtain a perturbation series of equations for the sine

and cosine harmonic radiances that depend on both m and n:

1) m = 0, n = 0

cos θ
∂I

(0)
0c

∂z
= −κeI

(0)
0c + κaB +

∫ π

0
P · I(0)

0c sin θ′dθ′ (4.8)

2) m = 0, n > 0

cos θ
∂I

(n)
0c

∂z
= −κeI

(n)
0c +

∫ π

0
P · I(n)

0c sin θ′dθ′

− sin θ
∂

∂x
I

(n−1)
1c − sin θ

∂

∂y
I

(n−1)
1s (4.9)

3) m > 0, n = 0

cos θ
∂I

(0)
mc

∂z
= −κeI

(0)
mc +

∫ π

0
Pm · I

(0)
mc sin θ′dθ′ (4.10)

cos θ
∂I

(0)
ms

∂z
= −κeI

(0)
ms +

∫ π

0
Pm · I

(0)
ms sin θ′dθ′ (4.11)
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4) m > 0, n > 0

cos θ
∂I

(n)
mc

∂z
= −κeI

(n)
mc +

∫ π

0
Pm · I

(n)
mc sin θ′dθ′

−1

2
sin θ

∂

∂x

(
I

(n−1)
(m+1)c + I

(n−1)
(m−1)c

)
−1

2
sin θ

∂

∂y

(
I

(n−1)
(m+1)s − I

(n−1)
(m−1)s

)
(4.12)

cos θ
∂I

(n)
ms

∂z
= −κeI

(n)
ms +

∫ π

0
Pm · I

(n)
ms sin θ′dθ′

−1

2
sin θ

∂

∂x

(
I

(n−1)
(m+1)s + I

(n−1)
(m−1)s

)
−1

2
sin θ

∂

∂y

(
I

(n−1)
(m−1)c − I

(n−1)
(m+1)c

)
(4.13)

The boundary condition at the top-of-atmosphere can be modeled as the downward propagating

radiance field at a constant cosmic background temperature Tcb = 2.73 K. Accordingly, the azimuthal

harmonic upper boundary conditions for radiances I
(n)
mc and I

(n)
ms are zero for m > 0 or n > 0. At

the surface z = 0, the upwelling radiance field comprises the surface reflected and emitted radiation.

The boundary condition is in general governed by:

I(x, y, 0, µ, φ) =

∫ 2π

0

∫ 1

0
γ(x, y, µ, µ′, φ, φ′)I(x, y, 0,−µ′, φ′)dµ′dφ′

+ es(x, y, 0, µ, φ)B(Ts) (4.14)

where µ = cos θ, B(Ts) is the Planck function vector at the surface thermodynamic temperature

Ts, and γ(x, y, µ, µ′, φ, φ′) is the surface bistatic scattering matrix whose elements are functions of

incident direction (µ′, φ′), scattered direction (µ, φ), and polarization. The surface emissivity matrix

es is defined based on the Kirchoff law:

es(x, y, 0, µ, φ) = I −
∫ 2π

0

∫ 1

0
γ(x, y, µ, µ′, φ, φ′)dµ′dφ′ (4.15)

where I is an identity matrix.

For simplicity, a specular ocean surface for all calculations is assumed in this study. Accordingly,

the surface bistatic scattering function matrix is azimuthally independent and expressed using the
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Fresnel reflection coefficients R(µ):

γ(x, y, µ, µ′, φ, φ′) = µ
∣∣∣R(µ)

∣∣∣2 δ(µ− µ′)δ(φ− φ′) (4.16)

Thus, the lower boundary condition can be formulated as:

I(x, y, 0, µ, φ) = µ
∣∣∣R(µ)

∣∣∣2 I(x, y, 0,−µ, φ) +

(
I − µ

∣∣∣R(θ)
∣∣∣2)B(Ts) (4.17)

Applying the azimuthal harmonic balancing, the lower boundary conditions corresponding to the

sine and cosine harmonic perturbation RT equations (4.8) - (4.13) are:

I
(0)
0c (x, y, 0, µ) = µ

∣∣∣R(µ)
∣∣∣2 I(0)

0c (x, y, 0,−µ) +

(
I − µ

∣∣∣R(µ)
∣∣∣2)B(Ts)

I
(n)
mc(x, y, 0, µ) = µ

∣∣∣R(µ)
∣∣∣2 I(n)

mc(x, y, 0,−µ)

I
(n)
ms(x, y, 0, µ) = µ

∣∣∣R(µ)
∣∣∣2 I(n)

ms(x, y, 0,−µ) (4.18)

The HI-UMRT algorithm begins with the zeroth order perturbation equation (4.8), which is a

1D planar-stratified radiative transfer equation readily solved using the existing UMRT numerical

engine. HI-UMRT then proceeds to solve equations (4.9 - 4.13) for higher order of azimuthal

harmonics and perturbations by repetitive use of this engine.

This iterative perturbation scheme with an inner loop for azimuthal harmonics and another

outer loop for perturbations is illustrated in Figure 4.1. At any given order of m and n, the

perturbation equation solution can be found using the 1D UMRT engine based on the predetermined

matrix operators κa, κe, P , and Pm and the horizontal derivatives of radiances of lower order. HI-

UMRT thus inherits the numerical stability and computational efficiency for all matrix operations

in its perturbation series iteration by use of UMRT.

The truncation of the azimuthal harmonic expansion should be comparable to that of the

elevation discretization. That is, the number of azimuthal harmonics Mφ should be equal to the

number of elevation streams 2Mθ. In this thesis, we use Mφ = 2Mθ = 16 for numerical studies.

This truncation scheme is analogous to that used in a standard finite spherical harmonic series

expansion. Otherwise, numerical divided differencing method is used to estimate the required

horizontal derivatives. A further discussion of discretization is in Section 4.3.
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Figure 4.1: A flowchart of the HI-UMRT algorithm based on the existing 1D UMRT engine embedded
within an iterative perturbation scheme.
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4.2.2 Perturbation Source Analysis

The azimuthal harmonic and perturbation series equations (4.8) - (4.13) are solved using

(respectively) the Planck function as a source for m = 0, n = 0 and the horizontal derivatives in

radiances of lower order as a source for m > 0 or n > 0. For m > 0 and n = 0, equations (4.10) -

(4.11) are sourceless and thus dissipative, being only excited at the surface and top-of-atmosphere

boundaries. The computing time for HI-UMRT is related to the maximum azimuthal harmonic

order Mφ and perturbation series order N used at truncation. However, not all azimuthal harmonic

and perturbation terms up to a given required order are necessary in the solution. As shown in

the perturbation source diagram of Figure 4.2, many such terms for isotropic surface and top-of-

atmosphere boundary conditions are zero and thus not necessary to be computed. Accordingly, the

required number of 1D UMRT calculations is determined:

L =


1
2(N + 1)(N + 2), 0 ≤ N ≤Mφ

1
2(Mφ + 1)(Mφ + 2) + (N −Mφ)Mφ, N > Mφ

(4.19)

For example, if Mφ = 2Mθ = 16 and N = 4, the required number of 1D UMRT engine iterations is

L = 15.

From Figure 4.2, the computational complexity of the HI-UMRT algorithm is determined

by considering only those non-trivial radiative transfer solution highlighted with a solid circle.

For simplicity, the analysis assumes that the lower boundary has an azimuth-independent surface

bistatic scattering function γ(θ, θ′) (e.g., specular calm ocean surface). The analysis is based on

a 2-dimensional grid (see Figure 4.2) with each node representing a radiative transfer solution

and its estimated horizontal gradients in a given azimuthal harmonic order m and perturbation

order n. More specifically, the origin node at (m = 0, n = 0) represents the 1D UMRT solution of

equation (4.8), the nodes along the two axes represent the solutions of (4.9) through (4.11), and all

other nodes are for the solutions of (4.12) and (4.13). If a solution is purely dissipative and has no

source at either boundary, then it is trivial and indicated by an empty circle. Otherwise, a node

with a solid circle indicates that the 1D UMRT engine is required to be executed and followed by
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Figure 4.2: HI-UMRT perturbation source diagram for illustration of non-trivial RT solutions under
the assumption of a specular surface as the lower boundary condition required calculations exist
only at non-trivial azimuthal harmonics of order m and perturbation order n.

horizontal gradient estimation. The azimuthal harmonic perturbation equations (4.9) through (4.13)

are coupled between adjacent perturbation orders. These coupling relations are illustrated using

arrows. An arrow connects a source node where the horizontal gradient of the radiative field is a

source function of the 1D equation but in one higher perturbation order. In general, each perturbed

node has two lower-order source nodes except for those for the zeroth order azimuthal harmonics

(i.e., m = 0). A perturbed node corresponds to a trivial radiative solution if the solutions of all

source nodes are trivial.

Using the aforementioned coupling perturbation source relationships, the series is solved
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beginning at the origin node of the grid where the 1D UMRT engine computes microwave radiances

propagating through a presumed planar-stratified but vertically inhomogeneous atmosphere satisfying

the requisite boundary conditions at the surface and cosmic background. Note that any higher

order azimuthal harmonics (e.g., m > 0) of thermal emission from a specular surface and constant

cosmic background radiation are zero, thus resulting in a series of trivial solutions of the radiative

equations (4.10) and (4.11). The above result is represented as a solid circle at origin and empty

circles along the azimuthal harmonic axis (i.e., the m axis).

The solution proceeds to the first perturbation order as follows. The horizontal derivative of

the non-trivial 1D UMRT solution at (m = 0, n = 0) becomes the source function of the equations

(4.12) and (4.13) with (m = 1, n = 1), where only a single non-trivial first order perturbation

solution exists. This result is represented using a solid circle at the grid point (m = 1, n = 1).

The perturbation source analysis for higher order perturbation solutions is repeated per Figure 4.2.

Figure 4.2 shows that the UMRT engine needs to repeat 15 times for computing the perturbation

corrections up to the forth order. Consistent with equation (4.19), this iterative process is comprised

of solving three equations with m = 0, and six sine harmonic and six cosine harmonic perturbation

equations with (m > 0, n > 0).

A theoretical flop-based computing time of the 1D UMRT engine was estimated to be ∼65 µsec

based on a 70 teraFLOPS (i.e., one trillion floating-point operations per second) supercomputer for a

cloudy vertical profile with 60 levels and 8 discrete radiation streams [139]. This time excludes setup

of the absorption vector, extinction matrix, and phase matrix and boundary condition variables.

Using the result of the above perturbation source analysis, the computing time of 3D HI-UMRT with

fourth-order perturbation corrections applied is thus ∼1 msec under the same atmospheric conditions.

Furthermore, the 3D HI-UMRT algorithm could compute the forward microwave radiances within

∼1 minute over a ∼1000×1000 km severe weather simulation domain with 5 km horizontal spacing.

This estimated computing time is comparable to that required for a satellite to acquire microwave

data during an overpass.
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4.3 HI-UMRT Numerical Solution

4.3.1 Angular Discretization of the Radiative Transfer Equations

The numerical solution of the discretized radiative transfer equations (4.12) and (4.13) is

derived, where the horizontal derivatives in radiances of lower order are considered as the source

function for higher order series terms. The brightness temperature vectors T
(n)
B,mc and T

(n)
B,ms based

on the Rayleigh-Jean’s approximation are used to represent the radiation fields in the azimuthal

harmonic perturbation series in I
(n)
mc and I

(n)
ms.

Consider first the cosine harmonics of the differential radiative transfer equation (4.12).

Discretizing (4.12) for the first two Stokes parameters
(
T

(n)
Bv,mc andT

(n)
Bh,mc

)
over a set of Gaussian

quadrature angles θi [127] and separating the upwelling (+) and downwelling (−) components, a set

of azimuthal harmonic coupled equations for m > 0 are obtained:

µi
∂T

+ (n)
Bvi,mc

∂z
= −κeT+ (n)

Bvi,mc

+

Mθ∑
j=1

γjP
++
mvvijT

+ (n)
Bvj,mc +

Mθ∑
j=1

γjP
+−
mvvijT

− (n)
Bvj,mc +

Mθ∑
j=1

γjP
++
mvhijT

+ (n)
Bhj,mc +

Mθ∑
j=1

γjP
+−
mvhijT

− (n)
Bhj,mc

−1

2
sin θi

∂

∂x

[
T

+ (n−1)
Bvi,(m+1)c + T

+ (n−1)
Bvi,(m−1)c

]
− 1

2
sin θi

∂

∂y

[
T

+ (n−1)
Bvi,(m+1)s − T

+ (n−1)
Bvi,(m−1)s

]
(4.20)

µi
∂T

+ (n)
Bhi,mc

∂z
= −κeT+ (n)

Bhi,mc

+

Mθ∑
j=1

γjP
++
mhvijT

+ (n)
Bvj,mc +

Mθ∑
j=1

γjP
+−
mhvijT

− (n)
Bvj,mc +

Mθ∑
j=1

γjP
++
mhhijT

+ (n)
Bhj,mc +

Mθ∑
j=1

γjP
+−
mhhijT

− (n)
Bhj,mc

−1

2
sin θi

∂

∂x

[
T

+ (n−1)
Bhi,(m+1)c + T

+ (n−1)
Bhi,(m−1)c

]
− 1

2
sin θi

∂

∂y

[
T

+ (n−1)
Bhi,(m+1)s − T

+ (n−1)
Bhi,(m−1)s

]
(4.21)

−µi
∂T
− (n)
Bvi,mc

∂z
= −κeT− (n)

Bvi,mc

+

Mθ∑
j=1

γjP
−+
mvvijT

+ (n)
Bvj,mc +

Mθ∑
j=1

γjP
−−
mvvijT

− (n)
Bvj,mc +

Mθ∑
j=1

γjP
−+
mvhijT

+ (n)
Bhj,mc +

Mθ∑
j=1

γjP
−−
mvhijT

− (n)
Bhj,mc

−1

2
sin θi

∂

∂x

[
T
− (n−1)
Bvi,(m+1)c + T

− (n−1)
Bvi,(m−1)c

]
− 1

2
sin θi

∂

∂y

[
T
− (n−1)
Bvi,(m+1)s − T

− (n−1)
Bvi,(m−1)s

]
(4.22)
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−µi
∂T
− (n)
Bhi,mc

∂z
= −κeT− (n)

Bhi,mc

+

Mθ∑
j=1

γjP
−+
mhvijT

+ (n)
Bvj,mc +

Mθ∑
j=1

γjP
−−
mhvijT

− (n)
Bvj,mc +

Mθ∑
j=1

γjP
−+
mhhijT

+ (n)
Bhj,mc +

Mθ∑
j=1

γjP
−−
mhhijT

− (n)
Bhj,mc

−1

2
sin θi

∂

∂x

[
T
− (n−1)
Bhi,(m+1)c + T

− (n−1)
Bhi,(m−1)c

]
− 1

2
sin θi

∂

∂y

[
T
− (n−1)
Bhi,(m+1)s − T

− (n−1)
Bhi,(m−1)s

]
(4.23)

where µi = cos θi, {θi} are the Gauss-Lobatto quadrature angles, and {γj} is the respective Christoffel

weights, Mθ is the number of elevation quadrature streams between zenith and the horizon (e.g.

Mθ = 8 in this thesis), and κe is a scalar extinction coefficient. The extinction coefficient includes

both gaseous absorption and hydrometeor absorption and scattering presuming randomly oriented

cloud particles.

The zeroth azimuthal harmonic Mie phase matrix has been proven to satisfy the requirements

of transition matrix symmetry [122]. It is straightforward to show that the mth azimuthal harmonic

Mie phase matrix exhibits the same symmetric properties:

P++
mαβij = P−−mαβij , P+−

mαβij = P−+
mαβij

P++
mαβij = P++

mβαji, P+−
mαβij = P−+

mβαji

α, β = v or h (4.24)

The above relationships show that the mth azimuthal harmonic Mie phase matrix elements remain

unchanged by either inversion of the signs of µi and µj or by permutation of both angular indexes

and polarizations. Based on the findings in chapter 3, the above symmetry relations also apply to

complex randomly oriented hydrometeors.

Applying the symmetry properties of (4.24) to the discretized radiative transfer equations

(4.20) - (4.23), along with defining a new scaled intensity variable set:

u
(n)
vi,mc =

√
µiγiT

+ (n)
Bvi,mc, u

(n)
hi,mc =

√
µiγiT

+ (n)
Bhi,mc

v
(n)
vi,mc =

√
µiγiT

− (n)
Bvi,mc, v

(n)
hi,mc =

√
µiγiT

− (n)
Bhi,mc (4.25)
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the matrix form of the discretized equations is obtained:

∂

∂z

 u
(n)
mc

v
(n)
mc


︸ ︷︷ ︸

4Mθ×1

=

 −Um −Dm

Dm Um


︸ ︷︷ ︸

4Mθ×4Mθ

 u
(n)
mc

v
(n)
mc

+

 f
(n)
1,mc

f
(n)
2,mc


︸ ︷︷ ︸

4Mθ×1

(4.26)

where

u(n)
mc ,

 u
(n)
v,mc

u
(n)
h,mc

 , v(n)
mc ,

 v
(n)
v,mc

v
(n)
h,mc

 , (4.27)

 −Um −Dm

Dm Um

 =



−Am0 −Cm0 −Bm0 −Dm0

−Em0 −Gm0 −Fm0 −Hm0

Bm0 Dm0 Am0 Cm0

Fm0 Hm0 Em0 Gm0


(4.28)

and the elements of submatrices Am0 through Gm0 are defined as:

Am0ij =
κe
µi
δij −

√
γiγj
µiµj

P++
mvvij Bm0ij = −

√
γiγj
µiµj

P+−
mvvij

Cm0ij = −
√
γiγj
µiµj

P++
mvhij Dm0ij = −

√
γiγj
µiµj

P+−
mvhij

Em0ij = −
√
γiγj
µiµj

P++
mhvij Fm0ij = −

√
γiγj
µiµj

P+−
mhvij

Gm0ij =
κe
µi
δij −

√
γiγj
µiµj

P++
mhhij Hm0ij = −

√
γiγj
µiµj

P+−
mhhij (4.29)

The source function vector for m > 0 in (4.26) is composed of the horizontal gradient of radiances

in low perturbation order. The elements of the vector are defined as:

f
(n)
1,mc = −Λ

∂

∂x

[
u

(n−1)
(m+1)c + u

(n−1)
(m−1)c

]
−Λ

∂

∂y

[
u

(n−1)
(m+1)s − u

(n−1)
(m−1)s

]
f

(n)
2,mc = +Λ

∂

∂x

[
v

(n−1)
(m+1)c + v

(n−1)
(m−1)c

]
+Λ

∂

∂y

[
v

(n−1)
(m+1)s − v

(n−1)
(m−1)s

]
(4.30)

where Λ is a 2Mθ×2Mθ diagonal matrix with the ith diagonal element Λii = 1
2 tan θi. The boundary

conditions simply become null for the higher order (i.e. m > 0) azimuthal harmonics of both cosmic

background radiation and specular surface thermal emission.
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The sine harmonics of the differential equation (4.13) can be discretized using the same process

as above, thus resulting in the same form of discretized equations as (4.26) except for the elements

of the source function vector:

f
(n)
1,ms = −Λ

∂

∂x

[
u

(n−1)
(m+1)s + u

(n−1)
(m−1)s

]
−Λ

∂

∂y

[
u

(n−1)
(m−1)c − u

(n−1)
(m+1)c

]
f

(n)
2,ms = +Λ

∂

∂x

[
v

(n−1)
(m+1)s + v

(n−1)
(m−1)s

]
+Λ

∂

∂y

[
v

(n−1)
(m−1)c − v

(n−1)
(m+1)c

]
(4.31)

Following the discussion of the UMRT and DOTLRT solutions in [122, 127], it is straightforward

to show that both matrices Am , Um + Dm and Bm , Um − Dm are symmetric and positive

definite for the first two coupled Stokes parameters. Note that Am and Bm are not the same as

Am0 and Bm0. The proof is based on the fact that the extinction coefficient is always greater than

or equal to the corresponding scattering coefficient for passive lossy media (e.g. atmosphere and

clouds).

4.3.2 Solution for 3D Spatially Inhomogeneous Sparse Media

The azimuthal harmonic discrete ordinates of the radiative transfer equations (e.g., 4.26) are

discretized in a spatial grid coinciding with that of a numerical weather model (e.g., WRF) where x

and y are horizontal coordinates and z is height. The atmosphere with 3D inhomogeneous clouds is

thus represented by non-overlapping cubic volumes seamlessly stacked along horizontal and vertical

coordinates of the 3D grid. Within each cubic volume the medium radiative properties (e.g. Am,

Bm, κa, and T ) are assumed constant. The horizontal spatial derivatives of the discretized radiation

fields are estimated using central finite differencing between adjacent grid nodes. The estimated

horizontal derivatives are also assumed to be constant in height (i.e. z-independent) within any

given layer but varying with quadrature stream angles. This assumption is made because each

individual volume is considered homogeneous so that the horizontal radiation transported between

adjacent volumes for a radiation stream can be modeled as constant in height. The overall solution



70

is thus obtained by first estimating the horizontal derivatives of the radiation fields and then using

the layer-adding method in a recursion to calculate the radiation fields propagating through the

vertically stacked volumes.

Figure 4.3: Calculation of the azimuthal harmonic reflection and transmission operators (rm, tm), and

the azimuthal harmonic perturbation self-radiation fields (u
(n)
m,∗, v

(n)
m,∗) for a horizontal inhomogeneous

layer with thickness h.

Figure (4.3) shows a single layer of horizontally inhomogeneous clouds divided into many

homogeneous cubic volumes. The volumetric scattering and absorption inside a volume are described

by the azimuthal harmonic reflection and transmission matrices (rm, tm). Suppose an external

radiation field of mth azimuthal harmonic um,e impinges upon the bottom of a cloud volume. In

this case, (rm, tm) are implicitly defined as:

um = tmum,e at z = h

vm = rmum,e at z = 0 (4.32)

Following UMRT [122], the azimuthal harmonic reflection and transmission matrices can be found

using the homogeneous solution of the equation (4.26) and written in terms of the sub-block sum



71

and difference matrices of the transition matrix, Am and Bm as:

tm = 2(cm +Bmsm + smAm + c
T
m)−1 , 2Q

−1

m

rm = Q
−1

m (cm +Bmsm − smAm − c
T
m) (4.33)

where

cm , cosh

(√
AmBmh

)
sm , sinh

(√
AmBmh

)(
AmBm

)− 1
2

(4.34)

Note that a numerical failure will usually happen to the matrix inversion Q
−1

m for highly opaque

and thick clouds due to ill-conditioning of Qm caused by hyperbolic function calculations. Instead,

analytic diagonalization and factorization of the symmetric and positive definite matrices Am and

Bm result in numerically stable matrix operations in calculating the azimuthal harmonic reflection

and transmission matrices (see equations 48-49 in [122]). This process of stabilization is described

in detail in [127].

Owing to thermal emission, an individual volume will generate 0th order azimuthal harmonic

self-radiation streams at the top and bottom surfaces. Due to the horizontal gradient in radiances

of low perturbation order, each individual volume might also generate the mth azimuthal harmonic

self-radiation streams at the top and bottom surfaces. Following the notation of UMRT, these

streams are denoted by the subscript ∗ (e.g. u
(n)
m,∗ and v

(n)
m,∗ in Figure 4.3). To solve for these

self-radiation streams, the inhomogeneous solution of the radiative transfer equation (4.26) needs to

be found by using the following shorthand notation for equation (4.26):

∂

∂z
W

(n)
mc = TmW

(n)
mc + F

(n)
mc (4.35)

where

W
n
mc ,

 u
(n)
mc

v
(n)
mc

 , Tm ,

 −Um −Dm

Dm Um



F
(n)
mc ,

 f
(n)
1,mc

f
(n)
2,mc


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The complete solution of the equation (4.35) can be found using the matrix exponential operator

and the integrating factor method [97], written as:

W
(n)
mc(z) = e(Tmz)W

(n)
mc(0) + e(Tmz)

∫ z

0
e(−Tmz′)F

(n)
mcdz

′ (4.36)

where W
(n)
mc(0) is the azimuthal harmonic perturbation radiation field at z = 0. The source term

F
(n)
m is comprised of horizontal derivatives in radiances of azimuthal harmonics (m+ 1) and (m− 1)

in the perturbation order (n− 1). Using the aforementioned assumption of the z-independence of

the horizontal derivatives, the inhomogeneous solution of equation (4.35) would be found as:

W
(n)
mc,inh(z) = −T

−1

m F
(n)
mc (4.37)

The relationship between the above inhomogeneous solution and the azimuthal harmonic perturbation

self-radiation fields can be established based on the same calculation as used in UMRT, thus expressed

as:

u
(n)
mc,∗(h) = u

(n)
mc,inh(h)− rmv(n)

mc,inh(h)− tu(n)
mc,inh(0)

v
(n)
mc,∗(0) = v

(n)
mc,inh(0)− rmu(n)

mc,inh(0)− tv(n)
mc,inh(h)

(4.38)

Finally, the horizontal derivative in radiances of cosine harmonics (subscript mc) and

perturbation order n required as part of the source function is estimated using the self-radiation

fields (u
(n)
mc,∗, v

(n)
mc,∗) based on the central differencing method as:

∂

∂x
u(n)
mc ≈

u
(n)
mc,∗(x+ ∆x, y, h)− u(n)

mc,∗(x−∆x, y, h)

2∆x

∂

∂y
u(n)
mc ≈

u
(n)
mc,∗(x, y + ∆y, h)− u(n)

mc,∗(x, y −∆y, h)

2∆y

∂

∂x
v(n)
mc ≈

v
(n)
mc,∗(x+ ∆x, y, 0)− v(n)

mc,∗(x−∆x, y, 0)

2∆x

∂

∂y
v(n)
mc ≈

v
(n)
mc,∗(x, y + ∆y, 0)− v(n)

mc,∗(x, y −∆y, 0)

2∆y

(4.39)
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The horizontal derivative of the sine harmonics can be estimated in an analogous manner using

(u
(n)
ms,∗, v

(n)
ms,∗) based on the central differencing method.

For a given azimuthal harmonic order m and perturbation order n, the total radiated and

reflected stream vectors for a multilayer inhomogeneous medium can be computed based on the

radiative solution of each horizontally inhomogeneous layer. These properties for an individual

cubic volume are the azimuthal harmonic reflection and transmission matrices (rm, tm) and the

azimuthal harmonic self-radiation vectors u
(n)
mc,∗, u

(n)
ms,∗, v

(n)
mc,∗, v

(n)
ms,∗ at the top and bottom surface of

the volume. The overall radiative properties of the vertically stacked volumes can thus be calculated

by upward recursion based on the lower and upper boundary conditions (see [122], eq. 57).

Note that when m = 0 and n = 0 as the initial step of the HI-UMRT framework, the

self-radiation fields (u
(0)
0c,∗, v

(0)
0c,∗) due to thermal emission are obtained using the existing 1D UMRT

algorithm. The horizontal gradients of the radiation fields u
(0)
0c , v

(0)
0c estimated using (4.39) construct

the source function of the radiative transfer equation (4.26) in the 1th azimuthal harmonics and the

1th perturbation order. After that, the iterative perturbations begin and follow the paths shown in

the perturbation source diagram (see Figure 4.2) till the convergence at the maximum perturbation

order N .

4.3.3 Convergence Criterion

HI-UMRT needs a sufficient number of perturbation iterations to achieve the required precision

in computed microwave radiance for practical applications. This precision is generally less than 2

K in brightness temperature. In general, the perturbation error caused by neglecting higher order

perturbation corrections than N depends on the degree of horizontal inhomogeneity of the medium.

For example, more iterations are expected over abrupt cloud edges than in stratiform clouds due to

the discontinuity in radiation across the cloud horizontal boundaries. In this study, the maximum

change of the brightness temperature at the observation level made by the nth order perturbation

correction is calculated and compared with a preset threshold in degrees Kelvin for terminating the

maximum perturbation iteration required for acceptable convergence. The maximum perturbation
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order N is determined using the condition below:

max
n=N
{T (n)

B − T
(n−1)
B } < 0.2 K (4.40)

where T
(n)
B is the brightness temperature vector at an observation level computed by the HI-UMRT

algorithm using the accumulated nth order perturbation corrections, and 0.2 K is (admittedly)

somewhat arbitrary.

In practice, an comparable empirical convergence relationship of the maximum brightness

temperature correction to the perturbation order can be found based on the numerical HI-UMRT

solution over a challenging simulation domain. If the maximum brightness temperature correction

decreases exponentially as the perturbation order increases, we can find an exponential function of

maximum TB correction by regression fitting the correction data to an exponential for the first 3

perturbation orders. Using this empirical relationship, the required perturbation order for achieving

a preset precision (e.g. < 0.2 K) can be determined after the 3rd order perturbation correction.

This method for assessing convergence is illustrated in Section 5.1.



Chapter 5

Simulations of Microwave Radiances using 3D HI-UMRT Model

The impact of cloud horizontal inhomogeneities on computed microwave radiances can be

assessed using radiative transfer simulations over clouds in severe weather, such as the intensified

hurricane Sandy (October 29th, 2012) event. Meaningful simulations of such mesoscale events can

be based on microphysical cloud profiles simulated using the Weather Research and Forecasting

(WRF v3.5) model. A selected simulation domain covers a 1000× 1000 km region over the Atlantic

Ocean and is discretized into 3D grids with 5 × 5 km horizontal spacing and 60 vertical levels.

This domain was selected to compute microwave radiances propagating through 3D inhomogeneous

clouds near rain bands, the hurricane eyewall region, and surrounding deep convective towers.

The Reisner five-phase cloud model [98, 127] was used to simulate hydrometeor microphysical

states, wherein five spherical hydrometeor phases are assumed. Liquid hydrometeors follow the

Marshall-Palmer particle size distribution [85]. Exponential size distributions are applied to

frozen and mixed-phase hydrometeors with a fixed number density of particles and a variable

mean particle size to account for the total volumetric mass content of hydrometeors [103, 121]. For

spherical hydrometeors, the single-scattering parameters (e.g. scalar extinction coefficient, absorption

coefficient, and Stokes matrix) were calculated using Mie theory [41]. A total of 16 elevation angle

quadrature streams, (i.e., Mθ = 16), is used in the numerical examples. Based on the results from

chapter 4, the number of azimuthal harmonics is thus set to Mφ = 16. Note that the zeroth azimuthal

harmonic and perturbation equation is the 1D radiative transfer equation under the planar-stratified

assumption readily solvable using the 1D UMRT engine. The intercomparison of top-of-atmosphere
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brightness temperatures computed using 3D HI-UMRT and 1D UMRT can be used to show the

cumulative perturbation corrections to the planar-stratified radiative transfer solution. Frequencies

of 166.31 and 240.70 GHz were chosen for the HI-UMRT/UMRT intercomparisons because the

radiances at these frequencies are highly sensitive to cloud hydrometeor scattering and are strongly

absorbed by water vapor in the lower troposphere, thus isolating the impact of the Earth’s surface

reflection on the upwelling radiances.

In this chapter, numerical simulations are shown to illustrate the converged perturbation

corrections and further understand 3D cloud radiative effects by comparing simulated upwelling

brightness temperature imagery obtained using the 3D HI-UMRT algorithm to that obtained using

the planar-stratified 1D UMRT model.

5.1 Convergent Perturbation Series

The first performance test was designed to verify the convergence of the iterative perturbation

series used in the HI-UMRT model. Fig. 5.1 shows decreases in the maximum change of

brightness temperature computed by HI-UMRT at each increasing perturbation order. At any

given perturbation order n, HI-UMRT computes the upwelling brightness temperature as the

summation of the sine and cosine azimuthal harmonics which are obtained by adding up the

horizontal perturbation corrections up to nth lower order. The maximum change of top-of-atmosphere

brightness temperatures within eight elevation streams and two orthogonal linear polarizations

between perturbation order n and n − 1, (i.e., maximum {T (n)
B − T

(n−1)
B }) can readily be found.

After 15 perturbation iterations, the maximum brightness temperature corrections for the Sandy

event are reduced to ∼0.2 K for 166.31 GHz and ∼0.1 K for 240.70 GHz (see Fig. 5.1).

Two dashed curves are also plotted in Figure 5.1 to show the predicted rate of convergence

using nonlinear least-squares data fitting [19] applied to the data points computed using HI-UMRT

with lower perturbation order in the corresponding solid curve. This data fitting method has

been implemented using the curve fitting toolbox of the MATLAB software environment. The

required number of perturbation iterations in the HI-UMRT algorithm can be estimated based
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Figure 5.1: Relationship between the maximum perturbation correction and the perturbation order
for upwelling brightness temperature simulations for hurricane Sandy at 166.31 GHz and 240.70
GHz. The maximum TB change with the 15th order perturbation correction reaches the convergence
threshold of 0.2 K. The solid curve for the perturbation corrections computed using HI-UMRT and
the dashed curve for the predicted perturbation corrections.

on the brightness temperature corrections within the lower perturbation orders. For example at

166.31 GHz fifteen perturbation iterations are required to achieve < 0.2 K TB maximum correction

upon completing the 6th order perturbation iteration. Based on the perturbation source diagram

(see Figure 4.2) the 1D UMRT model thus needs to be repeated 0.5× 16× 17 = 136 times until

convergence. Equivalently, the computing time for convergence on a 70 teraFLOPS machine is ∼5

minutes for a 200× 200× 60 3D grid based on the theoretical computational complexity analysis in

Section 4.
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5.2 Azimuthally Dependent 3D Radiation Effects

The HI-UMRT radiative solution is the superposition of 3D iterative perturbation corrections

imposed on the 1D planar-stratified radiative solution. Thus, 3D radiation effects can be revealed

by subtracting 1D brightness temperatures from the corresponding converged HI-UMRT solution

for the entire simulation domain at the observation level of interest. These 3D radiation effects

depend on both elevation angle θ and azimuth angle φ.

Figure 5.2: Simulation of 3D radiative transfer through opaque and horizontally inhomogeneous
clouds in a simulation domain over hurricane Sandy 2012 at 166.31 GHz. The angular variables of
the radiative transfer equation are set to be θ = 50◦ and φ = 45◦. (a) 1D UMRT top-of-atmosphere
brightness temperature image obtained using HI-UMRT with m = 0 and n = 0; (b) 3D HI-UMRT
brightness temperature image computed up to 15th order perturbation corrections; (c) Difference
between 3D and 1D radiative transfer solution (i.e. (b)-(a)).
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Figure 5.2 shows a simulation of top-of-atmosphere brightness temperature image using

HI-UMRT with θ = 50◦, φ = 45◦ at 166.31 GHz. Panel (c) shows the difference between brightness

temperatures computed up to 15th order perturbation corrections (panel (b)) versus the 0th order

perturbation solution (panel (a)). The azimuthal angle of 45◦ is used to simulate radiation streams

propagating out of the image and being tilted toward the upper-right corner of the image (i.e.,toward

the northeast). The magnitude of the brightness temperature differences ∆TB within the simulation

domain falls in the range between -12 K and +10 K. Importantly, one stripe of positive ∆TB

always occurs in parallel with another stripe of negative ∆TB around the cloud edges of rain

bands or close to a hurricane eye wall. This positive and negative ∆TB coupling phenomenon

is caused by horizontal radiation transport within the underlying horizontally inhomogeneous

clouds. The 1D radiative transfer model (e.g. UMRT) under the planar-stratified assumption and

the independent-pixel approximation neglects these radiative interactions between adjacent cloud

columns, thus introducing biases in brightness temperatures at the locations of horizontal cloud

edges. In addition, the sign of the brightness temperature differences also indicates the direction of

the effective horizontal radiative transfer within the clouds. For example, the sign of the image in

panel (c) reverses for observations from φ = 225◦.

Note that the HI-UMRT algorithm provides the radiative solution in a 5-dimensional space

(i.e., 3 spatial variables plus 2 angular variables). Particularly, the 3D radiation field solutions

TB(x, y, z, θ, φ) vary with the azimuth angle φ. Thus, the brightness temperature differences

computed using 3D HI-UMRT versus 1D UMRT are expected to change with azimuth angle. Figure

5.3 illustrates the brightness temperature differences ∆TB simulated at four different azimuth

angles from φ = 0◦ through φ = 270◦ at 90◦ intervals. Although the positive and negative ∆TB

coupling phenomenon can be seen in all images with analogous magnitude, the coupled stripes are

found to turn 90◦ counterclockwise in successive images. That is, the stripes are perpendicular to

the azimuth angle. The spatial distribution of the coupled stripes also varies with the degree of

effective horizontal radiative transfer gradient. For example, positive or negative stripes of brightness

temperature differences (e.g. several Kelvin in absolute value) only appear at the tail of the large
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cyclonic cloud band in Figure 5.3 at azimuth angles φ = 90◦ and φ = 270◦.

Figure 5.3: Simulation of brightness temperature differences for the Sandy 2012 event between 3D
and 1D radiative transfer solutions at four different azimuth angles: (a) φ = 0◦, (b) φ = 90◦, (c)
φ = 180◦, (d) φ = 270◦.

Finally, Table 5.1 compares attributes of 3D HI-UMRT with those of 1D UMRT along with

the discrete-ordinate tangent linear radiative transfer (DOTLRT) model. The DOTLRT model

originates the development of numerically stable and unconditionally computationally efficient plane

parallel radiative transfer solution. The 3D HI-UMRT inherits all of the computational advantages

of 1D model and extends the radiative transfer solution to the 3D case based on azimuthal harmonics

of the radiation fields and an iterative perturbation series.
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Table 5.1: Evolution of 3D HI-UMRT originating from 1D discrete-ordinate tangent linear RT
(DOTLRT) model [127]

Attribute HI-UMRT UMRT DOTLRT

Fast, Stable
Analytic Matrix

Inversion
Yes Yes Yes

3D Atmospheric
Inhomogeneities

Perturbation series
and azimuthal

harmonics
No No

Fast Jacobian Yes Yes Yes

Phase Matrix
DDSCAT-based or

Reduced Mie or
DMRT (4x4)

Reduced Mie or
DMRT (4x4)

Reduced HG (2x2)

Media Sparse (and Dense)* Sparse and Dense Sparse

Polarization Dual-polarization Dual-polarization Single-polarization

Interface
Refraction /

Internal Reflection
(Yes)* Yes No

Radiation Stream
Interpolation

Yes, cubic spline Yes, cubic spline No

Layer Thermal
Emission

Approximation
Linear dependence Linear dependence Constant

Level/Layer
Centric

Level Level Layer

*Dense media surface emissivity extensions for complex surfaces
(e.g., snow, unisotropic wind driven oceans) are under development.



Chapter 6

Microwave Radiances Assimilation Scheme: Precipitation Locking

To improve numerical weather forecast accuracy, a numerical weather model with realistic

physical representation of the atmosphere and accurate knowledge of the atmospheric state vector

used as initial conditions are required [59]. Direct observations of atmospheric state variables

via in situ means such as sondes, aircraft, and weather stations can be used along satellite and

surface weather radar data to improve the accuracy of the state vector [3]. Spaceborne and airborne

observations based on remote sensing techniques are key sources of meteorological information,

especially over the oceans and southern hemisphere. The process of using all of these types of

observations for optimal atmospheric state vector update is known as data assimilation [105].

Methods of data assimilation have been developed over several decades, including the

first empirical-based analysis approach known as the successive correction method (SCM) [21].

Multivariate analysis methods based on statistical estimation theory were subsequently introduced

and have resulted in more accurate numerical weather model forecasts. Among these methods, the

technique known as “Optimal Interpolation” (OI) was developed based on a linearized minimum

mean square error (LMMSE) estimator to optimally correct the state vector using the criterion

of orthogonality of the innovations and the estimation error. Equivalently, three-dimensional

variational data assimilation (3D-VAR) was formulated based on the least mean squares solution

to minimize the cost function, which is based on both a background error covariance and an

observation error covariance matrix [82, 59]. The state vector in the cost function can be extended to

4-dimensions by considering the time evolution of the numerical weather model process. Accordingly,
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the 4-dimensional variational assimilation (4D-VAR) scheme has been used to handle arbitrary

observation times [72, 22, 59]. Modern data assimilation methods are based on either extended

Kalman filtering or ensemble Kalman filtering schemes that update the background error covariance

in each assimilation cycle [59].

6.1 Precipitation Locking Concept

The state vector update in a data assimilation cycle typically is made to only the thermodynamic

variables (e.g. temperature T , pressure p, air density ρ, water vapor density q, and wind vector

(u, v, w)) at each grid point (x, y, z) and at any given analysis time t . These variables follow a

complete set of seven governing equations for the atmosphere [59] based on the laws of conservation

of momentum, energy, dry air mass, and moisture in all forms. However, hydrometeor variables for

clouds and precipitation cells in numerical weather prediction (NWP) models can also be potentially

corrected by directly assimilating microwave radiance observations which have all of: (i) a wide range

of cloud penetrabilities, and (ii) high spatio-temporal resolution comparable to that of convective

scales. General algorithms for microwave data assimilation into NWP models that correct both

thermodynamic and hydrometeor variables are required to be developed with similar conservation

law constraints based on flow-dependent nonlinear observation operators and background error

covariance matrices. To this end, the concept of precipitation locking based on microwave radiances

assimilation focuses on optimal updates of both thermodynamic and hydrometeor state variables in

an NWP model:

x(x, y, z, t) = {T, q, ρc, ρr, ρi, ρs, ρg} (6.1)

where (ρc, ρr, ρi, ρs, ρg) are the bulk density in g/m3 for the five microphysical categories of

hydrometeors: 1) cloud liquid water, 2) rain droplets, 3) ice, 4) snow, and 5) graupel (respectively).

When both the NWP model hydrometeor and thermodynamic state variables are close enough

to the truth to permit linear state variable corrections it can be said that the model is “precipitation

locked”. Precipitation locking is analogous to the locking of a phase locked loop in that linear phase
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Figure 6.1: Precipitation locking simulation system under development at Center for Environmental
Technology (CET) at University of Colorado at Boulder.

differencing is used to drive the loop oscillator phase to remain close to that of the input signal [40].

Departure of the input signal and oscillator phases by more than typically ∼ π/3 radians results in

loss of lock and concomitant collapse of signal-to-noise ratio. Analogously, a precipitation-locked

NWP model requires both hydrometeor and thermodynamic state variables to be close to the

truth, thus permitting frequent linear corrections through the Kalman gain matrix to be applied to

innovations to maintain near-truth (see Figure 6.1). High temporal resolution satellite data would

be necessary to maintain precipitation lock along with the appropriate requisite sampling rate and

spatial resolution.

6.2 Simulations of High-temporal Resolution Observations

To date, satellites providing sub-hourly microwave observations with spatial resolution of

∼15-30 km over mesoscale weather systems in tropical and extratropical regions remain in the
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development stage for concept demonstration (e.g. CubeSat constellations of small satellites [11, 94]).

Observing system simulation experiments (OSSEs) are thus required to provide experimental data

for assisting both hardware development and subsequent efforts of assimilating microwave data

into NWP models. To this end, a sequence of microwave antenna temperature images of the

extratropical cyclone (hurricane) Sandy (2012) was simulated using the Weather Research and

Forecasting (WRF v3.5) model and the 1D UMRT model for a CubeSat constellation overflying the

event every 30 minutes. Simulations were carried out based on a standard WRF simulation domain

configuration, individual CubeSat radiometer specifications, and anticipated CubeSat constellation

orbit parameters.

The severe weather event in the simulation is hurricane Sandy during its intensification

between October 29th and 30th, 2012. The 3D cubic simulation domain was configured to have 337

staggered grid points in the east-west direction and 301 staggered grid points in the north-south

direction with 5 km horizontal spacing and 33 staggered vertical levels. The Weather Research

and Forecasting model (WRF v3.5.1) was used to generate a truth state sequence of atmosphere

prognostic variables (e.g. temperature, water vapor, and five-category hydrometeor densities) in the

simulation domain at intervals of 30 minutes.

The observation system specifications of the 3U PolarCube and Orbital Micro System’s

(OMS) GEMSO1a CubeSat radiometer [94] developed at CU CET were applied to these truth

radiance simulations. The PolarCube sensor (dubbed ”MiniRad”) uses a cross-track scanning total

power radiometer to be deployed in an orbit of ∼425 km altitude and providing a ∼900 km wide

swath. It operates at a center frequency of 118.75 GHz near the 1− oxygen absorption line with

8 sensing channels. The 3dB beam width at nadir is ∼2.3◦ and nadir footprint size ∼17 km. A

quadratically-tapered aperture is assumed for all channels. The resulting antenna gain pattern can

be described by [112]:

g(θ) = go

∣∣∣∣∣Jq+1(πDλ sin θ)(
πD
λ sin θ

)q+1

∣∣∣∣∣
2

(6.2)

where go is a normalization constant, Jn is the nth order Bessel function, q = 1 is the quadratic taper
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exponent, θ denotes the angle from boresight, D is the aperture diameter, and λ is the wavelength.

Since MiniRad uses cross-track scanning the linear polarization state of the antenna rotates with

scan angle (θs) and thus incorporates mixed horizontal and vertical components. The resulting

rotated linearly polarized antenna temperature measurement can be modeled as [133]:

TA(θs) = T vA cos2 θs + T hA sin2 θs (6.3)

The GEMS CubeSat constellation concept uses ∼50 CubeSat-based small satellites deployed

in multiple orbital planes, for example the International Space Station orbit with inclination of

57.6◦ or NASA A-train orbit with inclination of 98.14◦. Figure 6.2 illustrates that ∼15-30 minute

mean revisit times are achievable using a modest 36-satellite constellation [44]. Top-of-atmosphere

Figure 6.2: Sub-hourly repeat times for a 36-satellite CubeSat constellation [44].

brightness temperature TB images for cross-track viewing were simulated using the UMRT model

for four MiniRad channels with frequency offsets from the 1− O2 line center of 0.7 GHz, 1.1 GHz,

1.5 GHz and 2.1 GHz. The rotated linear polarization antenna temperature images (see Figure 6.3)

were subsequently computed by convolving the antenna gain patterns with the upwelling brightness

temperature imagery. Key features of Sandy are revealed in all four selected channels. The warm

core in the eye of the hurricane, the cold temperatures over the near-eyewall rain bands resulting
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Figure 6.3: Simulated rotated linear polarization antenna temperature images for four selected
MiniRad channels: (a) 118.05 GHz, (b) 117.65 GHz, (c) 117.25 GHz, (d) 116.65 GHz.

from strong scattering of dense cloud ice, and the thin cyclonic rain bands near the hurricane

eye match the corresponding features in the upwelling brightness temperature imagery. However,

the antenna temperature imagery is of coarser resolution compared to the simulation grid and

contains geometric distortions at large scan angles along with anticipated limb darkening [43]. These

differences between the brightness temperature and antenna temperature imagery are significant

for radiance assimilation purposes and properly accounted for through the use of an appropriate

instrument Jacobian, which describes the tangent linear response of instrument to the radiation

field.

A 50 element CubeSat fleet is capable of providing observed data within time intervals within
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which atmosphere state vector remains highly correlated. In order to illustrate this correlation,

brightness temperature images at 117.25 GHz over two hours at 30 minute intervals were simulated

(see Figure 6.4). It can be seen that the rain bands around the eyewall gradually develop over

Figure 6.4: Brightness temperature images computed within two hours at intervals of 30 minutes:
(a) 01:15:00, (b) 01:45:00, (c) 02:15:00, (d) 02:45:00.

this time interval. The correlation of strength and location of rain bands relative to the eyewall

between adjacent images is evident, although the entire hurricane event exhibits regular displacement

associated with the eyewall motion. The observed antenna temperature imagery reveals similar

correlations between observations, but at lower resolution, and with anticipated distortion and

limb darkening. Assimilation of the antenna temperature imagery at such short time intervals is

anticipated to ultimately permit improved eyewall tracking and intensity change forecasting.
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Figure 6.5: Innovations of 117.25 GHz channel. The observations were simulated based on two
PolarCube or GEMS satellites flying over Hurricane Sandy at (a) October 29th, 00:45:00 and (b)
October 29th, 01:15:00 on two different orbits.

The innovations, which are the differences in radiance between the MiniRad observations

and the predictions by the NWP model (see Figure 6.1), form the basic data elements used for

assimilation of the observations into the NWP model by minimizing a quadratic error function

and generating optimal linear state vector updates. The innovations in the 117.25 GHz channel

were computed at two assimilation times, October 29th 00:45:00 and October 29th 01:15:00 (see

Figure 6.5). At each time, MiniRad observations were computed based on the simulated true state

vectors in the NWP model. The true state vectors were subsequently perturbed by running the

NWP forecast with a 24-hour earlier time shift, i.e. the model forecasting proceeded using the state

vector at the analysis time of October 28th 00:00:00. The differences between what MiniRad would

observe and what the perturbed model predicted are significantly greater than the root-sum-square

combined instrument noise and NWP model error, particularly where the hydrometeors density

is high and rain band structure is deeply convective. These simulated innovations are up to ±40

Kelvin.

OSSEs in support of a low cost microwave imaging and sounding CubeSat constellation based

on the MiniRad sensor are being developed and demonstrated as part of this thesis at CU CET.

NWP simulations of the CubeSat fleet observation concept have been produced for assisting in the
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engineering development of an evolved array constellation satisfying observation requirements on a

global basis and for understanding the capabilities for short-term mesoscale forecasting using high

spatio-temporal resolution microwave observations. The NWP-based simulations are being used

to facilitate development and demonstration of precipitation locking using 30 minute microwave

observations. These simulations are now discussed.

6.3 First-Frame Locking

6.3.1 Primary Goals

Precipitation locking of thermodynamic and hydrometeor state variables cannot be achieved

spontaneously by the WRF model without properly assimilating observations at high spatio-

temporal resolution [45, 139]. The evolution of WRF model errors for hydrometeors and associated

thermodynamic variables (temperature, water vapor density, and wind velocity) can be modeled as

a stochastic Brownian process over limited time scales due to the inherently noisy and effectively

unobservable meteorological phenomena [109] that jointly influence these variables. Thus, the error

covariance of WRF thermodynamic and hydrometeor state parameters grows linearly in time based

on the joint Brownian process.

Extended Kalman filtering (XKF) advances data assimilation by recalculating the background

error covariance matrix using the tangent linear numerical weather model at each assimilation cycle

(e.g. at 6 hours intervals for current operational global models). However, beginning with only a

poor estimation of the atmosphere thermodynamic state, extended Kalman filtering can require

weeks of high performance computer processing to be able to provide the linear unbiased estimate

of the atmospheric state and associated background error covariance matrices [59]. Within this

transition period and for typical 6-hour assimilation cycles, atmosphere hydrometeor state variables

are fully de-correlated, thus precluding any linear update of hydrometeor state variables in the

model. Extended Kalman filtering thus requires more frequent observations to be assimilated for

accurate estimation of the general background error covariance matrix [87]. Moreover, due to the
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rapid evolution of clouds precipitation and short spatial scales any such general background error

covariance matrix would be highly time-dependent and localized. This feature of hydrometeor

variables significantly complicates optimal data assimilation at time and space scales required for

precipitation locking.

The simulated PATH data observed over Sandy at intervals of 30 minutes begin to meet the

above observation frequency requirement of extended Kalman filtering. The simulated observations

are most useful for a precipitation locking demonstration when 1) the simulated observed data

can be differenced with predictions of the observed radiances, and 2) the forecast state vector is

uncorrelated to the truth state at the first-frame assimilation time. The innovation field εi is thus

calculated by differencing simulated noise-corrupted truth radiances with WRF model observed

radiances (see Figure 6.1):

εi(x, y, θ, φ, f) = yi(x, y, θ, φ, f)− ŷi|i−1(x, y, θ, φ, f) (6.4)

where the innovation field varies with horizontal location (x, y), observation angles (θ, φ), frequency

f , and time step index.

The time index i = 1 corresponds to the presumed first-frame assimilation time 2012-10-29

06:00:00, at which time y1 is the vector of simulated truth radiances in antenna temperature based

on the North American Mesoscale (NAM) analyses at time index i = 1, and ŷ1|0 is the vector of

predicted radiances in antenna temperature computed based on the forecast state vector launched

from NAM analyses at the time index i = 0. The forecast NAM analysis is 24 hours before the

first-frame assimilation time (i.e. i = 0 corresponds to 2012-10-28 06:00:00) to ensure hydrometeor

state de-correlation. For rapidly evolving mesoscale weather (e.g. Sandy), the 24-hour time difference

for NAM analyses is long enough to ensure that the forecast state x̂1|0 and truth state x1 are

uncorrelated.

A total of 12 sounding/imaging channels centered at the 118.7503 GHz oxygen line and the

183.310 GHz water vapor line (see Table 6.1) are selected for the first-frame locking study. Gaussian

additive noise vector ny1 were added to the simulated observed data with the standard deviation
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Table 6.1: List of frequencies used for the precipitation locking study.

Center Frequency
(GHz)

Offset (MHz) Bandwidth (MHz)

118.7503
(oxygen line)

±0.4 200.0
±0.7 400.0
±1.1 400.0
±1.5 400.0
±3.0 1200.0
±5.0 2600.0

183.310 (water
vapor line)

±0.9 1500.0
±1.65 1500.0
±3.0 1500.0
±5.0 1500.0
±7.0 2000.0
±17.0 2000.0

calculated based on an assumed instrument noise figure of 3dB. Figure 6.6 illustrates the innovations

computed by differencing brightness temperature imagery between truth radiances y1 and predicted

radiances ŷ1|0 at selected observation channels and at nadir viewing angle (θ = 0◦). Note that

cross-track geometry, polarization rotates and beam convolution are neglected here. In other words,

the sensor observation simulation step in Figure 6.1 is skipped. The magnitude of innovations in

general increases with the transparency of the observation channel. For example, the maximum

absolute value of innovations reaches 60 Kelvin at 118.7503±5.0 GHz where the differences of

hydrometeor distribution in the lower troposphere between the truth and the forecast state cause

significant variations in observed brightness temperature. The state variable differences in a selected

atmospheric column are illustrated in Figure 6.7. It is shown that all state variables in the 24-hour

forecast deviate from the simulated truth. Small relative errors occur for the thermodynamic

variables T and q and large relative errors for hydrometeor bulk densities (e.g. cloud liquid water

density ρc and snow bulk density ρs).

The first-frame locking aims to optimally correct the state variable errors at the time of the

first arrival of available observations using nonlinear iterative statistical estimation for prognostic

variables. Three main goals in the first-frame locking are attempted simultaneously: 1) the
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Figure 6.6: Brightness temperature innovations of 12 selected channels at nadir viewing angle. (a)-(f)
sounding channels offset to the 118.7503 GHz oxygen absorption line center, (g) window channel at
166.31 GHz, and (h)-(l) sounding channels offset to the 183.310 GHz water vapor absorption line
center.

innovation fields in all selected channels are reduced to a minimum, 2) hydrometeor state variables

in atmospheric columns are updated to be close to the true state by use of the Kalman gain, and 3)

the process of thermodynamic variable update is effectively stabilized to avoid diverging from the
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Figure 6.7: Comparisons of the state variable between the truth and forecast in a selected atmospheric
column with the grid indexes (x = 175, y = 128) in the simulation domain: (a) temperature in
Kelvin, (b) water vapor bulk density in g/m3, and (c)-(g) the bulk density of hydrometeor in g/m3

of five microphysical phases.
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true state.

6.3.2 Assimilation Method: Extended Kalman Filtering

Extended Kalman filtering (XKF) is applicable to estimation and prediction of the state of any

nonlinear physical system with either a linear or nonlinear observation model. By linearizing both

physical process and the observation model, XKF provides a means of optimally updating physical

state variables and error covariance matrices based on the statistical linearized minimum mean

square error (LMMSE) estimator, which is also known as nonlinear iterative D-matrix estimator. For

the precipitation locking assimilation system, the WRF NWP model and the nonlinear observation

process associated with satellite microwave radiometry can be generalized in the following form:

xi+1 = A(xi) +B(xi)nxi (6.5)

yi = W (xi) + nyi (6.6)

where xi is the vector of atmospheric state variables defined in (6.1) with time index i, yi is the

vector of observed brightness temperatures defined in (6.4), B(xi) is the atmospheric process noise

matrix, and A(·) and W (·) are the governing nonlinear operators for the WRF forecast and the

observation model. Noise statistics can be defined using the model noise covariance matrix Rnxinxi

and the observation noise covariance matrix Rnyinyi :

〈nxintxi′ 〉 = Rnxinxi δii′ (6.7)

〈nyintyi′ 〉 = Rnyinyi δii′ (6.8)

〈xintxi′ 〉 = 〈xintyi′ 〉 = 0 (6.9)

where superscript t indicates the transpose of a vector.

At any assimilation time, the innovation field defined in (6.4) can be calculated based on the

observation equation (6.6):

εi = yi − ŷi|i−1 = W (xi) + nyi −W (x̂i|i−1) (6.10)
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The linearization of the observation equation is required for the LMMSE estimator to be applied.

The Taylor series expansion of W (xi) around the forecast state vector x̂i|i−1 is given by:

W (xi) = W (x̂i|i−1) +H(x̂i|i−1)(xi − x̂i|i−1) +O
(
(xi − x̂i|i−1)(xi − x̂i|i−1)t

)
(6.11)

where H(x̂i|i−1) is the Jacobian matrix of the observation system given the underlying atmospheric

state vector x̂i|i−1, and is defined as:

H(x̂i|i−1) =
(
DW

)
|x̂i|i−1

, H i|i−1, i.e., {Hjk} =

{
∂Wj

∂xk

∣∣∣∣
x̂i|i−1

}
(6.12)

Bringing (6.11) into (6.10) and neglecting higher order terms in the expansion, the innovation field

can be linearized as:

εi ≈ W (x̂i|i−1) +H i|i−1(xi − x̂i|i−1) + nyi −W (x̂i|i−1)

= H i|i−1(xi − x̂i|i−1) + nyi

= H i|i−1ei|i−1 + nyi (6.13)

where ei|i−1 , xi − x̂i|i−1 is the vector of background state vector errors. The linear relationship

between the innovation field and the vector of background errors allows the statistical LMMSE

estimator to be straightforwardly applied. In doing so, the atmospheric state vector can be optimally

estimated from the innovations via a linear inversion matrix D:

êi|i−1 = D εi =

(
Rei|i−1εi R

−1

εiεi

)
εi (6.14)

where ei|i−1 and εi both have zero means, Rei|i−1εi is the cross covariance of background errors and

innovations, Rεiεi is the auto-covariance of innovations. The matrix D = Rei|i−1εi R
−1

εiεi is obtained

using the criterion of orthogonality of the innovations and background errors. This result is based

on the weak form of the general orthogonality principle that is fundamental to statistical estimation

theory and is identical to multivariate linear least squares fit.

Using the linearized innovation field (6.13) and the noise characteristics (6.9), the covariance

matrices are determined as:

Rei|i−1εi ,

〈
ei|i−1

(
H i|i−1ei|i−1 + nyi

)t〉
=

〈
ei|i−1e

t
i|i−1

〉
H
t

i|i−1 (6.15)
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Rεiεi ,

〈(
H i|i−1ei|i−1 + nyi

)(
H i|i−1ei|i−1 + nyi

)t〉
= H i|i−1

〈
ei|i−1e

t
i|i−1

〉
H
t

i|i−1 +Rnyinyi (6.16)

Further, define the background error covariance matrix Rei|i−1ei|i−1
(also notated as the B matrix in

NWP data assimilation literature (e.g. [59, 3])):

Rei|i−1ei|i−1
,

〈
ei|i−1e

t
i|i−1

〉
=

〈(
xi − x̂i|i−1

) (
xi − x̂i|i−1

)t〉
(6.17)

Substituting the cross- and auto-covariance matrices (6.15) and (6.16) into (6.14), the optimal

correction to the state variable xi can be determined as:

x̂i = x̂i|i−1 +D
(
yi −W (x̂i|i−1)

)
D = Rei|i−1ei|i−1

H
t

i|i−1

(
H i|i−1Rei|i−1ei|i−1

H
t

i|i−1 +Rnyinyi

)−1

(6.18)

where D is the Kalman gain. The Kalman gain is completely determined by 3 components: 1) the

background error covariance matrix Rei|i−1ei|i−1
, 2) the observation Jacobian H i|i−1 given the WRF

forecast state vectors, and 3) the observation noise covariance matrix Rnyinyi . The observation

Jacobian can be quickly computed using radiative transfer models such as HI-UMRT, UMRT [122],

and DOTLRT [127], which include the tangent linear response of the observed brightness temperature

to multiphase hydrometeor bulk density parameters. The observation noise covariance is modeled

based on hardware design and operational parameters of the observation system. Importantly, the

matrix Rei|i−1ei|i−1
describing the statistical properties of the WRF model state error is a key element

in calculating the Kalman gain and subsequently determining the state vector correction x̂i in each

assimilation cycle. Instead of a static climatological background error covariance, a flow-dependent

background error covariance model [3] is critical to precipitation locking assimilation.

6.3.3 Background Error Covariance Modeling

A flow-dependent routine is required to estimate background error covariances for WRF

forecast state variables and to readily provide the needed background error covariance matrices

Rei|i−1ei|i−1
, Ree used in data assimilation. The size of the background error covariance matrix
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is typically on the order of 107 × 107 when all relevant atmospheric state variables in WRF 3D

grids over mesoscale sized weather systems are all considered. One way to deal with the large

size of Ree is to reduce the rank of a static background error covariance matrix via the control

variables transformation [38]. This method has been embodied in the WRF data assimilation

(WRFDA) system, which includes a stand-alone module (i.e. the genbe program) for the estimation

of background error covariance matrices for WRFDA. The basic structure of the matrix Ree in

WRFDA models is the statistics of only a few thermodynamic variables (e.g zonal wind, meridional

wind, pressure and potential temperature) [3]. Other control variables can be added to advance the

applicability of Ree [4]. However, hydrometeor state variables (e.g. ice water mass per unit volume,

cloud liquid mass per unit volume, etc) are not included in the structure of the background error

covariance matrix in WRFDA as of this writing, thus precluding the direct application of WRFDA

in precipitation locking.

As applicable in microwave precipitation assimilation, the structure of the matrix Ree is

comprised of seven variables (two thermodynamic and five hydrometeor state variables) that have

been defined in (6.1). The background error covariance matrix is highly flow-dependent especially

during convection, and neglect of this state dependency has shown to result in rapid error growth of

poorly observable prognostic variable modes [4]. In this thesis, a parameterized approach that is

an empirical flow-dependent 1D vertical error covariance matrix estimate has been developed to

facilitate precipitation locking via extended Kalman filtering method.

Consider an ensemble of cloud vertical profiles in NWP model reanalyses for mesoscale severe

weather (e.g. hurricanes). Each NWP vertical profile is defined as a single column of M elements

for both thermodynamic and cloud hydrometeor state variables at all vertical levels (e.g. M = 224

for a 32-level NWP profile). Based on the altitude-density model [42] which is a finite-parameter

precipitation cell model, each vertical cloud profile can be represented by a vector of 15 parameters:

H = (〈hi〉, σhi , ρhi) , i = [1, · · · , 5] (6.19)

where 〈hi〉 denotes the mean of the precipitation cell altitude, σhi denotes the standard deviation
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of the precipitation cell altitude, ρhi is the column integrated hydrometeor content of the ith

hydrometeor category for the cell, and i is the index of microphysical hydrometeor categories

including cloud liquid water, rain, cloud ice, snow and graupel [98].

The ensemble of vertical precipitation profiles can subsequently be classified into multiple

hydrometeor modes using clustering analysis methods such as the K-means algorithm [10]. Using K-

means, vertical profiles described using an altitude-density representation are optimally partitioned

into K clusters so that a metric distance between the vertical profile set and assigned cluster means

is minimized. Each cluster corresponds to a precipitation cell mode and should contain a number of

precipitation profiles greater than the size of the 1D background error covariance matrix to preclude

rank deficiency. Within each cluster, covariance of vertical state variables can be estimated using an

unbiased covariance matrix estimator. When the mean of the vertical profiles in a given cluster is

treated as the true state of the corresponding cell mode, the estimator should give a measure of the

background error covariance matrix for 1D vertical cloud variables given that cell is in that mode.

Figure 6.8: Sample precipitation cell modes, e.g. stratified and convective modes in a 15-dimensional
H-space for estimating the background error covariance matrix under flow-dependent conditions.
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The cell profile classification and covariance estimation method can be illustrated in Figure

6.8 for an idealized case with K = 2 (i.e. only stratified and convective cell modes). Each mode is

represented by a closed region in a 15-dimensional space with each point representing the mapping

from a vertical precipitation profile to the H-space. The cluster means of these two modes are

denoted as black cross markers with the mode representation vectors H i and Hj . The background

error covariance matrix of each mode is computed using the set of cell profiles in the K-means

classification. Given a total of N cell profiles in the convective cluster organized as a M ×N data

matrix Xi, the data variation matrix is δXi = Xi − 〈Xi〉c, where 〈·〉c is the column-wise mean

of Xi. An unbiased covariance matrix estimator for this cluster can now be used to compute a

covariance matrix
ˆ
Reei which we can roughly interpret as the background error covariance matrix

for the cluster as:

ˆ
Reei =

1

N − 1
δXiδX

t

i (6.20)

The above equation can similarly be used to compute
ˆ
Reej for the stratified cluster. For any vertical

profile which is not used in the classification, the flow-dependent 1D vertical background error

covariance matrix can be estimated by weighted interpolation between
ˆ
Reei and

ˆ
Reej :

ˆ
Ree =

dj
di + dj

ˆ
Reei +

di
di + dj

ˆ
Reej (6.21)

where di and dj are the metric distance between the interpolated point and the cluster centroids i

and j. This distance is defined as the norm of vector difference:

di =
∣∣H −H i

∣∣ , dj =
∣∣H −Hj

∣∣ (6.22)

In general, the number of clusters K can be expected to be significantly larger than 2. The

flow-dependent 1D vertical background error covariance matrix of any cloud profile can be determined

for any such K by inverse distance weighting with Shepard’s method [108]:

ˆ
Ree(H) =

K∑
k=1

wk(Hk)
ˆ
Reek

K∑
k=1

wk(Hk)

(6.23)
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where
ˆ
Ree(H) is the M ×M background error covariance matrix of the vertical cloud profile mapped

into the point H, and
ˆ
Reek is the background error covariance matrix of the cell mode k. The

inverse distance weighting function wk(Hk) is defined as:

wk(Hk) =
1

d(H,Hk)p
=

1∣∣H −Hk

∣∣p (6.24)

where d(H,Hk) is the Euclidean distance between the point H and the mode centroid Hk in H-space,

and the parameter p is a positive real number known as the power parameter. Larger values of p

result in greater weights for points closest to the interpolated point. We note that the choice of p

is somewhat arbitrary. However, following the methods used in the 2-dimensional version of this

problem (i.e. known as Kriging [2]), a power of proportional to the number of clusters is reasonable.

Accordingly, we use p = 2K in the inverse distance weighting calculation.

The above flow-dependent modeling of background error covariance was applied to NAM

model reanalyses of the hurricane Sandy at the analysis time 2012-10-29 00:00:00 (i.e., 6 hours

before the first-frame time). This state vector provided 264× 408 cloud profiles with 32 vertical

levels. These cloud profiles were partitioned into 20 clusters using the K-means algorithm based on

the altitude-density model. Figure 6.9 illustrates the horizontal distribution of cloud profile clusters

within the simulation domain over Sandy. Cloud profiles with the least amount of hydrometeor

content are classified into one cluster (i.e. the 10th cluster). Cloud profiles within rain bands are

divided into multiple clusters based on the altitude and density distribution of the cells.

Next, the background error covariance matrix of each cluster
ˆ
Reek , k = {1, · · · , 20} was

computed using (6.20). Figure 6.10 illustrates the structure of each 1D vertical background error

covariance matrix in the case study of Sandy. The resulting matrices are readily used in the Kalman

gain calculation by the inverse distance weighting interpolation.

6.3.4 Constrained Extended Kalman Filtering

In this section, constraints on the atmospheric state vectors are considered in the extended

Kalman filtering process in order to stabilize both thermodynamic and hydrometeor state variable
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Figure 6.9: Cloud vertical profiles in NAM reanalyses classified into 20 clusters using the K-means
algorithm based on the altitude-density model.

update. The atmospheric state vectors are optimally updated using the extended Kalman filtering

equations (6.18) based on estimated statistics of NWP model errors and observation errors. However,

since extended Kalman filtering is based on unconstrained Gaussian assumptions [59], the statistically

optimal update of state variables can become invalid because of the violation of natural constraints

on those variables (e.g. non-negative values of ice water content in the atmosphere).

Therefore, extended Kalman filtering with inequality constraints imposed on individual state

variables must be defined and applied in precipitation assimilation process. As discussed by Simon et

al. [110] and Zhang et al. [138], this problem can be formulated as a quadratic programming problem

[39] with linear inequality constraints. In the context of precipitation locking, the constrained
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Figure 6.10: Schematic diagram of the background error covariance matrix for cloud hydrometeor
variables at 32 vertical levels. Red squares on the diagonal represent variances and covariances
among multivariate states in the same level. Black squares along the off-diagonal are variances and
covariances between adjacent levels. The enlarged table illustrates variances and covariances of
seven state variables at a given level: temperature t, vapor density v, cloud water density c, rain
droplet density r, cloud ice density i, snow density s, and graupel density g.

optimization formulation under absolute fixed constraints after each state update can be expressed

as:

min
x

[
(x− x̂i)tR

−1

ei|iei|i
(x− x̂i)

]
subject to xlb ≤ x ≤ xub (6.25)

where x̂i is the corrected state vector with time index i defined in (6.18), and xlb and xub are vectors

of the lower bound and upper bound for the optimized state vector x. The matrix Rei|iei|i is the

analysis error covariance matrix which is defined in extended Kalman filtering [59] and can be

computed using matrix quantities in (6.18) as:

Rei|iei|i = Rei|i−1ei|i−1
−DH i|i−1Rei|i−1ei|i−1

(6.26)

Note that the corrected state vector x̂i at time index i can also be treated as the maximum a
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posteriori (MAP) estimate [138] given the observations at time index i and the prior state vector

statistics at time index (i− 1). Thus, the posterior state vector distribution can be reconstructed

using the Gaussian distribution function as:

f(x) =
1√

(2π)n
∣∣∣Rei|iei|i∣∣∣ exp{−1

2
(x− x̂i)tR

−1

ei|iei|i
(x− x̂i)} (6.27)

where superscript n denotes the size of state vector x. Therefore, the solution of the constrained

optimization in (6.25) is identical to the following optimization formulation:

max
x

f(x)

subject to xlb ≤ x ≤ xub (6.28)

The solutions of (6.25) or (6.28) are based on a hard-clipping process. The elements in the corrected

state vector x̂i are hard-clipped if they violate the lower or upper bound. These clipped elements

are set to corresponding element values in xlb or xub. Thus, the clipping action is equivalent to

adding equality constraints to the optimization problem as shown in either (6.25) or (6.28).

We can use the lower bound xlb to demonstrate this clipping process. Suppose the set {ic}

contains indexes of clipped elements and the set {iu} is the complement of the set {ic}. The

optimization with equality constraints (i.e., clipping) can be defined to maximize the following

conditional state vector distribution:

max
x({iu})

f(x({iu})|x({ic}) = xlb({ic})) (6.29)

The solution of the above optimization formula has been found [110, 138]:

x({iu}) = x̂i({iu}) +R12R
−1

22 (x({ic})− x̂i({ic}))

x({ic}) = xlb({ic}) (6.30)

where R12 and R22 are block sub-matrices of the permuted Rei|iei|i according to the index sets {ic}

and {iu}:

x′ =

 x({iu})

x({ic})

 =

 x1

x2

 (6.31)
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R
′
ei|iei|i

=

 R11 R12

R21 R22

 (6.32)

The general solution of the constrained optimization problem (6.25) can thus be found by clipping

the invalid state update to the lower or upper bounds and recalculating the state update for intact

state variables according to the near-optimal solution in (6.30). Note that the hard-clipping process

needs to be iteratively executed until all elements of x in (6.25) are under constraint.

In summary, the discussion of extended Kalman filtering, background error covariance modeling,

and inequality constraints imposed on the state vector update can be embodied in a comprehensive

flowchart for first-frame precipitation locking (see Figure 6.11). It has been shown [67] that iterative

state vector updates with scaling factors are necessary because of the nonlinear relationships between

observations and the underlying state variables. The vector of scaling factors diag(αii) can be

determined based on the degree of nonlinearity of the observation operator. The scaling factors are

introduced in each iteration to limit the step size in x̂n so that the tangent linear approximation to

W (·) is maintained.

6.3.5 Preliminary Results

The simulated antenna temperature TA images as shown in section 6.2 are the results of the

convolution between the antenna gain pattern and brightness temperature TB images simulated

using UMRT. The instrument Jacobians that describe the response of instrument (e.g. MiniRad)

to the radiation field are required in the overall observation system Jacobians to complete the

derivative chain rule for calculating the tangent linear response of instrument to the geophysical

state variables of interest. However, for simplicity, the extended Kalman filtering study in this

chapter uses the full resolution brightness temperature TB imagery with additive Gaussian noise as

equivalent observations for precipitation assimilation experiments.

For any given atmospheric vertical profile, two kinds of inequality constraints are imposed on

each individual state variable at all discrete levels: 1) lower bounds for all hydrometeor densities
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Figure 6.11: Schematic flowchart of constrained extended Kalman filtering used for iterative update
for atmospheric state vectors. Modified from Skofronick-Jackson [112].

(i.e. ρc > 0, ρr > 0, ρi > 0, ρs > 0, ρg > 0), and 2) upper and lower bounds for relative humidity (0

- 100%). As shown in Appendix (D.6) at a given level is determined by the water vapor density,

the temperature, and the saturation vapor pressure at that temperature. Therefore, the second

constraint simultaneously stabilizes both water vapor density and temperature by implicitly setting

lower and upper bounds. For any given vapor density, temperature should be maintained to be above

a minimum value so that the water vapor density will not condense out (i.e. the relative humidity

will not exceed 100%). For any given temperature, the vapor density is linearly related to the

relative humidity, thus forming both lower and upper bounds to the vapor density. When constraints

take effect, the violated variable is set to be the value of corresponding bound. One exception is

when the relative humidity is updated to exceed 100%, both temperature and vapor density are
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reset to be the values of first guess that is the WRF forecast based on the initial atmospheric state.

This adjustment is equivalent to specify steady-state variables during XKF iterations.

Figure 6.12: Residual TB innovations of 12 selected channels at nadir viewing angle after 20 XKF
iterates. (a)-(f) sounding channels offset to the 118.7503 GHz oxygen absorption line center, (g)
window channel at 166.31 GHz, and (h)-(l) sounding channels offset to the 183.310 GHz water vapor
absorption line center.

Figure 6.12 illustrates residual TB innovations after 20 iterations of the state update using
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extended Kalman filtering with the aforementioned constraints. Within each iterate, a scaling factor

α = 0.3 is applied to maintain a valid tangent linear update. In general, the innovations of all

channels within the scene under examination considerably decrease, even for the regions near rain

bands. In the worst case, the 118.35 GHz channel, which is sensitive to the scattering of cloud

ice in the upper troposphere, exhibits an innovation increase by a few Kelvin at the 20th iterate.

Inaccurate estimates of Jacobians for state variables at upper tropospheric levels might cause this

increase of innovation amplitude, in particular close to rain bands. The modeling error in the

background error covariance matrices might be another source of this problem.

The statistical convergence of the innovation field over the scene with XKF iteration count is

one of key criteria for assessing the performance of the XKF assimilation method. Figure 6.13 shows

the innovation mean, standard deviation, minimum and maximum calculated using all pixels over

the scene (see Figure 6.12) for each iteration and frequency. Except for the 118.35 GHz channel, the

statistical variation of the innovation fields is reduced with iteration count. The standard deviation

for nearly all channels is converged at the 20th iterate with different σTB values which are noticeably

smaller relative to the σTB of the initial innovation field.

As another key criterion, thermodynamic and hydrometeor state variables after 20 XKF

iterations are compared with both the simulated true state vector and the WRF forecast state vector

(i.e. the first guess) for assessing the locking status of the WRF model. Note that precipitation

locking is a highly flow-dependent assimilation process, thus the locking status depends on the

physical properties of the atmosphere vertical profiles. Usually, cloudy and clear sky condition are

two distinguishable states in data assimilation. In this thesis, we classify cloud vertical profiles into

two primary categories, thin clouds and thick clouds, by using the integrated cloud ice content in the

profile. One category of thin clouds includes profiles with integrated cloud ice content < 0.1 kg/m2

and the other includes profiles with integrated cloud ice content ≥ 0.1 kg/m2. This threshold

0.1 kg/m2 is somewhat arbitrarily selected based on the histogram of integrated cloud ice content

of profiles in the testing domains, whereby a roughly equal number of profiles is present in each

category.
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Figure 6.13: Statistics of the innovation variations with XKF iterations. Each figure shows mean,
standard deviation, minimum and maximum value of the innovations over the entire testing scene
for (a) - (l) sounding/imaging channels centered at 118.7503 GHz and 183.310 GHz. The standard
deviation of residual TB innovations after 20 iterations is shown in each sub-figure title.

The comparisons of atmospheric state variables between the truth, the first guess, and the

20th iterate thus proceeds within each of these two categories. Figure 6.14 shows comparisons of

atmospheric state variables between the mean truth, the mean first guess, and the mean and STD



110

of the 20th iterate for thin clouds. The statistical quantities are calculated based on vertical profiles

within the thin cloud category. In this case, the mean hydrometeor variables of the 20th iterate

overestimate the truth for all hydrometeor phases and perform even worse than the first guess on

average. The minimum values however are absolute zero, which is evidence that the constraints

with lower bounds imposed on hydrometeor densities take effect during XKF iterations. The mean

thermodynamic variables of the 20th iterate stay close to the mean truth with reasonably small

variance compared to the maximum. However, both minimum and maximum curve drift away from

the mean truth, which indicates that the XKF fails to correctly update temperature and water

vapor density at some points during iterations, thus resulting in large differences between the mean

and the maximum values (e.g. up to ∼70 K for temperature and ∼ 40 g/m3 for vapor density).

Figure 6.15 shows similar comparisons of atmospheric state variables for thick clouds. As

expected, the averaged hydrometeor profiles of the 20th iterate have estimates to the truth compared

to the first guess, in particular, for rain and cloud ice density. The mean thermodynamic variables

of the 20th iterate closely follow the trend of the mean truth as in the thin cloud case. However,

the minimum and maximum values have considerably smaller dynamic range relative to the case of

thin clouds. This smaller variation of minimum and maximum values shows that the constrained

XKF can effectively constrain the thermodynamic state update errors for thick clouds. Overall,

comparing Figures 6.14 and 6.15, the constrained XKF state variable updates for thick clouds exhibit

statistically smaller errors for both thermodynamic and hydrometeor variables. The improved results

using the XKF method for thick clouds is suspected to be due to better estimates of the hydrometeor

background error covariance using thick cloud profiles than was achieved for thin cloud profiles.

The degree of precipitation locking can also be quickly assessed by the state variable error

defined as the difference between an iterate state and the true state. Three scalar quantities of the

temperature error are defined: 1) the error of mean temperature from surface to 1 km height, 2) the

error of temperature at 500 mb, and 3) the error of temperature at 700 mb. The integrated vapor

mass content per unit area (i.e. in kg/m2) along with hydrometeor mass content per unit area are

also defined and used for precipitation locking assessment.
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Figure 6.16 shows the above defined variable errors after 20 XKF iterations over the scene of

hurricane Sandy. Exceptionally, large temperature errors (e.g., up to 60 K) simultaneously occur at

different pressure levels over a few small regions near rain bands. These errors reveal that iterate

temperature profiles in those regions diverge from the simulated true values. However, temperature

errors are relatively smaller over most of the scene area. A similar situation occurs for the integrated

vapor errors over the scene. For hydrometeor state variables, the constrained XKF is capable to

iteratively reduce the state error of the precipitation cells over the simulated scene, although the

state error grows larger (i.e., about ±10 kg/m2) for integrated cloud water and rain over a small

region of the scene. These large state errors show that the constraints used in the XKF algorithm

cannot alone stabilize the state update when a poor estimate of background error covariance is used.

Finally, statistics of prognostic variable errors are computed at each XKF iteration based on

atmospheric vertical profiles in the thin and thick cloud categories defined above. Figures 6.17 and

6.18 show the changing statistics of prognostic variable errors with XKF iteration for these thin

cloud and thick cloud category (respectively). The constrained XKF shows better statistical results

for thick clouds. For example, the mean error in integrated vapor content iteratively decreases

from ∼15 kg/m2 to ∼2 kg/m2 for the thick cloud case. However, the mean error increases by ∼10

kg/m2 for the thin cloud case. The maximum errors grow larger during XKF iterations for nearly

all prognostic variables because the XKF fails to update the state vector correctly for a small

number of profiles within the testing scene. Therefore, stabilizing the increasing errors for small

number prognostic variable profits becomes the major issue in achieving precipitation locking. As we

discussed before, an accurate estimate of a flow-dependent background error covariance matrix is

fundamental to the tasks of simultaneously decreasing both thermodynamic and hydrometeor state

variable errors.

6.4 Suggested Future Research on Precipitation Locking

The potential for locking the WRF model to the hydrometeor state using microwave satellite

observations over precipitation cells and heavy cloud features within rapidly evolving mesoscale
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convection such as hurricane rain bands and frontal boundaries requires three critical components

functioning efficiently and cooperatively: 1) background error covariance matrix providing the

flow-dependent joint error statistics for all hydrometeor and thermodynamic state variables, 2) fast

and accurate Jacobians describing the tangent linear relationship between the observed satellite

radiances and the atmospheric state, and 3) physically-based constraints imposed on prognostic

state variables so that the variable update suggested by the extended Kalman filter is stabilized and

maintains conservation laws. Although it was not fully quantified in this thesis, error statistics in

the forward radiative transfer model over clouds and precipitation are also anticipated to play a key

role in XKF stabilization.

Among these requirements, the background error covariance matrix plays perhaps the most

important role in meteorological variational data assimilation systems based on passive microwave

satellite data and iterative extended Kalman filtering. The background error covariance must also

be flow-dependent and rapidly calculable over all relevant meteorological scenarios. To this end,

a Brownian-based background error covariance model for both hydrometeor and thermodynamic

variables is being developed at CU CET in collaboration with Dr. Jieying He of the Chinese

National Space Science Center. This model is based on the ”NMC method” under which the

prognostic variable state increments are small enough that both hydrometeor and thermodynamic

state variables can be assumed to be Brownian processes whose error covariances grow linearly

with time. Under the Brownian assumption the error covariance matrix can be developed from

increments in the forecast state variables, which are themselves jointly Gaussian for short enough

time periods. The research focuses on the appropriate time differences to be used to justify the

Brownian assumption for both hydrometeor (e.g., rain, cloud liquid water, cloud ice, snow, and

graupel density) and thermodynamic variables (e.g. temperature, water vapor) within the framework

of the WRF model. It specially addresses the determination of the proper scaling factor between

the time difference increments and the resulting background error covariance matrix.
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Figure 6.14: Comparisons of atmospheric state variables for thin clouds between the mean truth
(line with stars), the mean first guess (line with triangles), and the 20th iterate mean and STD
profiles (line with error bars), (a) temperature in Kelvin, (b) water vapor bulk density in g/m3,
(c)-(g) the bulk density of hydrometeor in g/m3 of five microphysical phases. The minimum and
maximum values of temperature and vapor density in the 20th iterate are shown in (a) and (b).
Only the minimum values of hydrometeor density in the 20th iterate are included in (c)-(g) for good
display.
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Figure 6.15: Similar to Figure 6.14, but comparisons of atmospheric state variables for thick clouds.
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Figure 6.16: Prognostic variable errors at the 20th iterate used for assessing the degree of precipitation
locking, (a) mean temperature error evaluated from surface to 1 km height, (b) temperature error at
500 mb, (c) temperature error at 700 mb, (d) integrated vapor content error in kg/m2, (e) integrated
cloud water path error in kg/m2, (f) integrated rain error in kg/m2, (g) integrated cloud ice path
error in kg/m2, (h) integrated snow path error in kg/m2, (i) integrated graupel path error in kg/m2.
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Figure 6.17: Statistics of prognostic variable errors changed during XKF iterate. Each figure shows
the error mean, standard deviation, minimum and maximum values calculated using atmospheric
profiles categorized as thin clouds. (a) mean temperature error evaluated from surface to 1 km
height, (b) temperature error at 500 mb, (c) temperature error at 750 mb, (d) integrated vapor
content error in g/m2, (e) integrated cloud water path error in g/m2, (f) integrated rain error
in g/m2, (g) integrated cloud ice path error in g/m2, (h) integrated snow path error in g/m2, (i)
integrated graupel path error in g/m2.
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Figure 6.18: Similar to Figure 6.17 but for statistics of prognostic variable errors calculated using
profiles of thick clouds.



Chapter 7

Conclusions

In this thesis, the UMRT model is applied to multilayer clouds composed of a wide variety of

aspherical OpenSSP hydrometeors under the approximation of transition matrix subblock sum and

difference [SBSD] symmetry. Within a two Stokes parameter framework, transition matrix SBSD

symmetry is imposed using the block-diagonal elements of the Stokes matrix for randomly oriented

frozen OpenSSP hydrometeors, thereby neglecting the asymmetric component of the transition

matrix caused by the arbitrary geometrical structure of these hydrometeors. An upper bound on

the brightness temperature errors incurred by neglecting the asymmetric component is shown to be

sufficiently small under even extreme atmospheric hydrometeor conditions for frequencies up to ∼1

THz. Hence, the OpenSSP complex hydrometeor database can be incorporated into the UMRT

framework for stable and efficient forward radiative simulations under all weather conditions for the

first two Stokes parameters.

For broadband simulations of microwave radiances using UMRT, a scattering function matrix

database based on the geometrical properties of OpenSSP hydrometeors was created using the

discrete dipole scattering code. The database was established for a small but representative portion

(e.g. 203 samples) of the complete aspherical OpenSSP hydrometeor database and is applicable at

key microwave frequencies from 10 GHz to 874 GHz. The maximum diameter (Dmax) of selected

hydrometeors for a given habit reaches ∼4,500 µm, which is similar to the maximum particle

dimensions used in previous studies of ice hydrometeor scattering.

Microwave radiance intercomparison simulations were carried out by alternately incorporating
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multi-habit aspherical OpenSSP hydrometeors and mass-equivalent ice spheres at key sensing

frequencies between 10 and 874 GHz. The resulting top-of-atmosphere brightness temperatures over

a WRF-based hurricane Sandy simulation were compared with respect to polarization, viewing angle,

and frequency. The statistics of brightness temperature images for such a severe weather event show

the considerable impact of aspherical frozen hydrometeors on computed forward radiances, where

the impact depends heavily on both frequency and viewing angle. For the sounding channels of the

upcoming ICI mission, simulated radiances exhibit high sensitivity to complex (versus spherical)

geometrical hydrometeor structure. The strong impact of aspherical hydrometeors can also be

found at off-nadir views for other channels above 300 GHz. These broadband simulations provide

quantitative statistics useful for improving the interpretation of ice cloud remote sensing observations.

The horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model has

been developed to solve the 3D radiative transfer equation using the existing 1D planar-stratified

UMRT model embedded in a convergent horizontal perturbation series. The iterative perturbation

begins with the 1D UMRT solution as an initial guess to the microwave radiation fields in a

3D inhomogeneous medium. This stable and accurate 1D numerical solution for multi-stream

and coupled dual-polarization microwave radiances plays a key role in a rapid convergence of the

perturbation series.

A perturbation source function analysis based on the decomposed azimuthal harmonic and

iterative perturbation equations was performed in order to identify the radiative equations with non-

trivial solutions based on the upper cold space and lower surface atmospheric boundary conditions.

With the assumption of an azimuthally-independent surface bistatic scattering function, such as

for a specular ocean surface, only a small portion of the decomposed equations have non-trivial

radiative transfer solution, thus reducing the number of 1D model executions in the perturbation

process and shortening the computing time for achieving the convergent threshold.

An intercomparison of upwelling brightness temperatures simulated using 3D HI-UMRT

and 1D UMRT shows considerable impact of cloud horizontal inhomogeneities on the computed

microwave radiances. This impact varies with the azimuth angle used in a simulation and becomes
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strong near cloud edges or over clouds with a high degree of horizontal inhomogeneity. The 3D

radiation effects due to medium horizontal inhomogeneities can be identified using the computed

brightness temperature difference images where coupled stripes of positive and negative differences

appear due to the effective horizontal radiation transport in clouds. These considerable 3D radiation

effects are expected to be of concern in passive remote sensing observations since the radiation fields

within the upwelling radiation of a sensing beam can not be treated as uniform over horizontally

inhomogeneous clouds.

The HI-UMRT model is applicable to forward microwave radiances simulation for a 3D

inhomogeneous medium and provides the 3D radiative solution with numerical stability and

computational efficiency to meet the operational requirements for either cloud property retrieval or

microwave radiances assimilation.

An important application of 3D HI-UMRT incorporating aspherical hydrometeors in microwave

radiances assimilation has been explored by first introducing the concept of precipitation locking.

The potential of locking the precipitation cells in NWP models is based on extended Kalman filtering

with accurate estimate of background error covariance and Jacobians. A background error covariance

model for cloud vertical profiles based on cluster classification and error covariance interpolation was

developed. The estimated background error covariances for 1D vertical atmospheric state variables

are used in first-frame locking experiments. Two types of inequality constraints are imposed on

the state variables during extended Kalman filtering iterations. The simulation results show the

potential of precipitation locking over the scene of simulated hurricane Sandy, where prognostic

variable errors simultaneously decrease with noticeable amount after 20 iterates of extended Kalman

filtering.



Bibliography

[1] R. Anthes and B. Moore, editors. Earth Science and Applications from Space: National
Imperatives for the Next Decade and Beyond. January 2007.

[2] Olena Babak and Clayton V. Deutsch. Statistical approach to inverse distance interpolation.
Stochastic Environmental Research and Risk Assessment, 23(5):543–553, July 2009.

[3] R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational
data assimilation. I: Characteristics and measurements of forecast error covariances. Quarterly
Journal of the Royal Meteorological Society, 134(637):1951–1970, October 2008.

[4] R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational
data assimilation. II: Modelling the forecast error covariance statistics. Quarterly Journal of
the Royal Meteorological Society, 134(637):1971–1996, October 2008.

[5] Peter Bartello and Herschel L. Mitchell. A continuous three-dimensional model of short-range
forecast error covariances. Tellus A: Dynamic Meteorology and Oceanography, 44(3):217–235,
January 1992.
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Appendix A

Example Input Files for DDSCAT v7.3.1

An external file ior-266K.dat is created to specify the refractive index of ice for OpenSSP

frozen hydrometeors based on the Warren and Brandt 2008 model [132]. This file is used in the

simulations of microwave radiances based on the OpenSSP database as well as in the UMRT Mie

scattering calculations for a spherical shaped ice particle. The file is constructed in three data

columns. Each data row contains the real and imaginary part of the complex refractive index of

ice at a discrete wavelength in microns. A portion of the file ior-266K.dat corresponding to the

microwave frequencies from 10 GHz to 1 THz (i.e. wavelength between ∼30,000 - 300 µm) is shown

below. DDSCAT v7.3.1 code performs linear interpolation for any microwave frequency not shown

in the table.

Wavelength(um) Re(n) Im(n)

3.000E + 002 1.7989 2.549E − 002

5.000E + 002 1.7908 1.405E − 002

1.300E + 003 1.7868 5.173E − 003

5.000E + 003 1.7861 1.337E − 003

1.900E + 004 1.7861 3.574E − 004

3.900E + 004 1.7861 1.839E − 004

A parameter file named ddscat.par is required for each execution of the program ddscat. The

file specifies the parameters for the discrete dipole algorithm, the initial memory allocation, the
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target geometry and composition, wavelength, the incident and scattered directions, and the target

orientations etc. An itemized explanation of this parameter file can be found in the user guide of

DDSCAT v7.3.1 (http://ddscat.wikidot.com/user-guide).

We have modified the parameter file so that DDSCAT v7.3.1 writes out the scattering

parameters as needed for: 1) dual-polarization, 2) each target orientation, 3) the orientational

average of 18 × 19 × 18 random orientations over three Eulerian angles, 4) nine upper triangle

elements of the Stokes matrix except S44 (following the Stokes matrix notation of Bohren and

Huffman [12]), and 5) the scattering plane at φ = 0. An example of modified portion of a ddscat.par

file is shown below.

’**** Define Incident Polarizations ****’

2 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)

’**** Specify which output files to write ****’

1 = IWRKSC (=0 to suppress, =1 to write ’.sca’ file for each target orient.

’**** Specify Target Rotations ****’

0.0 360.0 18 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

0.0 180.0 19 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

0.0 360.0 18 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)

’**** Select Elements of S Matrix to Print ****’

9 = NSMELTS = number of elements of S to print (not more than 9)

11 12 13 14 22 23 24 33 34 = indices ij of elements to print

’**** Specify Scattered Directions ****’

1 = NPLANES = number of scattering planes

0.0 0.0 180.0 1.0 = phi, thetamin, thetamax, dtheta (deg) for the plane

http://ddscat.wikidot.com/user-guide


Appendix B

Transition Matrix Symmetry Induced by Block-diagonal Stokes Matrix

Figure B.1: Geometry of the scattering problem by a single aspherical particle with random
orientations at origin. The incident wave propagates along k̂i defined by (θi, φi) and the scattered
wave along k̂s defined by (θs, φs) is considered. The forward scattering angle Θ is defined in a
scattering plane spanned by k̂i and k̂s. The polarization vectors of the incident and the scattered
wave in the scattering plan are drawn in red arrows.

The Stokes matrix in the block-diagonal form of (3.27) relates the incident and scattered
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radiations in the scattering plane of OAB shown in Figure B.1. In order to connect the incident

radiation Ii(θi, φi) to the scattered one Is(θs, φs), two rotation matrices are needed [89, 117]:

R(−i1) rotates the incident polarization components of (v̂i, ĥi) from the plane of OAZ to OAB

in the counter-clockwise direction with respect to an observer looking into k̂i and coincides with

the polarization components of (êθi , êφi); R(π − i2) = R(−i2) rotates the scattered polarization

components of (êθs , êφs) from OAB to OBZ in the clockwise direction with respect to an observer

looking into k̂s and aligns with (v̂s, ĥs).

R(−i1,2) =



cos2 i1,2 sin2 i1,2 0.5 sin 2i1,2 0

sin2 i1,2 cos2 i1,2 −0.5 sin 2i1,2 0

− sin(2i1,2) sin(2i1,2) cos(2i1,2) 0

0 0 0 1


(B.1)

where i1 is the spherical surface angle between OAZ and OAB, i2 is the spherical surface angle

between OAB and OBZ. The relation of Ii(θi, φi) and Is(θs, φs) can thus be found in (B.2).

Is(θs, φs) = 〈L〉o(θs, θi,∆φ)Ii(θi, φi)

= R(−i2)〈L〉o(Θ)R(−i1)Ii(θi, φi) (B.2)

where ∆φ = φi−φs, and Θ, i1, and i2 are functions of the incident and scattering angles (θs, θi,∆φ)

[89, 90, 117, 122],

cos Θ = cos θs cos θi + sin θs sin θi cos ∆φ

cos i1 =
− cos θs + cos θi cos Θ

sin θi sin Θ

cos i2 =
− cos θi + cos θs cos Θ

sin θs sin Θ
(B.3)

Applying the Stokes matrix (3.27) to (B.2) and integrating 〈L〉o(θs, θi,∆φ) with respect to

∆φ over 2π, two symmetric relations regarding the change of θi and θs are subsequently determined,

〈L〉o(−θs,−θi) = ∆34〈L〉o(θs, θi)∆34 (B.4)

〈L〉o(θi, θs) = C
−1

1 〈L〉To (θs, θi)C1 (B.5)
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where the superscript T denotes the matrix transpose,

C1 = diag{2, 2,−1, 1}, (B.6)

and

∆34 = diag{1, 1,−1,−1}. (B.7)

The relation of (B.4) shows that the first 2× 2 sub-matrix along the diagonal are unchanged to the

simultaneous change of the sign of θi and θs. The other relation of (B.5) shows that the diagonal

elements of 〈L〉o(θs, θi) are unaltered due to the interchange of θi and θs, and 〈Lvh〉o(θs, θi) =

〈Lhv〉o(θi, θs). Discretizing the relations of (B.4) and (B.5) into multiple quadrature angles and

considering the first two Stokes parameters, it’s straightforward to show that the transition matrix

symmetry requirements (3.24) and (3.25) are fulfilled.



137

Appendix C

Small Valued Asymmetric Components of the OpenSSP Stokes Matrix

A method based on DDSCAT v7.3.1 code implementation [24] is elaborated in this section for

directly calculating the complex 2× 2 scattering function matrix of a particle and then deriving

the full Stokes matrix, L(θs, φs, θi, φi;D, is, β,Θ,Φ), at a particular orientation determined by three

Eulerian angles β, Θ, and Φ. The method is developed to calculate the full Stokes matrix in a

single execution, not limited to the maximum of 9 elements as DDSCAT v7.3.1 does. Furthermore,

the method is applicable for averaging Stokes matrix elements over either uniform or preferential

orientation distribution. In this study, the method is used to provide an empirical validation that

the random orientation-averaged Stokes matrix of an arbitrary OpenSSP hydrometeor exhibits small

deviation from the required symmetry of (3.24) and (3.25) due to the relatively small value of the

asymmetric component 〈L〉o,asym(θs, θi) (3.28).

It has been found that DDSCAT code cannot directly estimate the full Stokes matrix of a

particle at a given orientation, L(θs, φs, θi, φi;D, is, β,Θ,Φ), defined in a primary coordinate system

as shown in Figure B.1, due to the restriction that the propagation direction of the incident wave

is fixed to be one of the coordinate axes in DDSCAT framework. In the primary coordinates, the

incident wave propagation direction and polarization vectors form an orthonormal system and are
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defined in (C.1). The orthonormal system of the scattered wave is defined similarly.

k̂i = sin θi cosφix̂+ sin θi sinφiŷ + cos θiẑ

ĥi =
k̂i × ẑ∣∣∣k̂i × ẑ∣∣∣ = sinφix̂− cosφiŷ

v̂i = ĥi × k̂i

= − cos θi cosφix̂− cos θi sinφiŷ + sin θiẑ (C.1)

The particle orientation is defined using three unit vectors (â1, â2, â3) described by three Eulerian

angles (β,Θ,Φ) [24].

â1 = cos Θx̂+ sin Θ cos Φŷ + sin Θ sin Φẑ

â2 = − sin Θ cosβx̂+ (cos Θ cos Φ cosβ − sin Φ sinβ)ŷ

+(cos Θ sin Φ cosβ + cos Φ sinβ)ẑ

â3 = sin Θ sinβx̂− (cos Θ cos Φ sinβ + sin Φ cosβ)ŷ

−(cos Θ sin Φ sinβ − cos Φ cosβ)ẑ (C.2)

It is recognized that DDSCAT solves the single-scattering problem in the coordinates of

(k̂i, v̂i, ĥi) shown in Figure C.1 (a) and computes the complex scattering function matrix in (C.3)

based on the coordinate-transformed particle orientation (β′,Θ′,Φ′) and the forward scattering

angles (θ′, φ′) as shown in (C.4) and (C.5), respectively.

 Es(r) · êθs

Es(r) · êφs

 =
e−jkr

r

 f̃θv f̃θh

f̃φv f̃φh


 Ei(r) · v̂i

Ei(r) · ĥi

 (C.3)

Θ′ = acos(â1 · k̂i)

Φ′ = atan2(â1 · ĥi, â1 · v̂i)

β′ = atan2(â3 · k̂i,−â2 · k̂i) (C.4)
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Figure C.1: Scattering coordinate system wherein DDSCAT computes complex scattering function
matrix. (a) Forward scattering angles (θ′, φ′) and the particle orientation (β′,Θ′,Φ′) are redefined
in a forward scattering coordinate system. (b) Transform of DDSCAT-based scattered electric fields
(dashed arrows) into the required scattered components in vertical and horizontal polarization.

θ′s = acos(k̂s · k̂i)

φ′s = atan2(k̂s · ĥi, k̂s · v̂i) (C.5)

The polarization unit vectors (êθs , êφs) of the scattered electric fields illustrated in Figure C.1 (b)

are further transformed into the vertical and horizontal polarization components (v̂s, ĥs) through a

transformation matrix found in (C.6). Es(r) · v̂s

Es(r) · ĥs

 =

 êθs · v̂s êφs · v̂s

êθs · ĥs êφs · ĥs


 Es(r) · êθs

Es(r) · êφs

 (C.6)

Bringing (C.3) into (C.6), the complex scattering function matrix F (θi, φi, θs, φs;β,Θ,Φ) relating

the incident electric field to the scattered field is found in (C.7). It is computed as a multiplication

of two matrices: the first is determined by the scattering geometry and the second is provided by
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DDSCAT.

F (θi, φi, θs, φs;β,Θ,Φ) =

 fvv fvh

fhv fhh

 =

 êθs · v̂s êφs · v̂s

êθs · ĥs êφs · ĥs


 f̃θv f̃θh

f̃φv f̃φh

 (C.7)

Applying (C.7) to the definitions of modified Stokes parameters, the Stokes matrix defined in the

primary coordinate system is obtained by:

L (θi, φi, θs, φs;β,Θ,Φ) =

|fvv|2 |fvh|2

|fhv|2 |fhh|2

2Re{fvvf∗hv} 2Re{fvhf∗hh}

2Im{fvvf∗hv} 2Im{fvhf∗hh}

Re{fvvf∗vh} −Im{fvvf∗vh}

Re{fhvf∗hh} −Im{fhvf∗hh}

Re{fvvf∗hh + fvhf
∗
hv} −Im{fvvf∗hh − fvhf∗hv}

Im{fvvf∗hh + fvhf
∗
hv} Re{fvvf∗hh − fvhf∗hv}



(C.8)

Finally, the reduced Stoke matrix as a function of (θs, θi) is obtained by averaging over all possible

orientations based on a specific orientation distribution, followed by azimuthal average over 2π.

For the case of random orientations, it’s straightforward to average Stokes matrix using composite

Simpson’s rule.

The above method was applied to 60 representative snow aggregates selected from the

OpenSSP database at a frequency of 118.75 GHz. For each selected aggregate, the Stokes matrix

L(θs, φs, θi, φi;D, is, β,Θ,Φ) is discretized over 16 Gauss-Legendre quadrature elevation angles, 24

uniformly-sampled azimuthal angles, and 1,008 discrete random orientations (i.e. uniformly sampled

over β, Θ, and Φ with 30◦ spacing). The degree of symmetry of orientation-averaged Stokes matrix is

evaluated by the fractional errors between two pairs of matrices (C.9) with simultaneous permutation
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of angular indexes and up-/down-welling indexes.

〈L〉o(θs, θi;D, is)
?
= 〈L〉To (θi, θs;D, is)

〈L〉o(θs, θi;D, is)
?
= 〈L〉o(π − θs, π − θi;D, is) (C.9)

Figure C.2: Mean fractional errors between the pairs of Stokes matrix elements with simultaneous
permutation of angular and up-/down-welling indexes.

Figure C.2 shows that the mean fractional errors over all possible permutations of 16 discrete

elevation angles are limited to < 4×10−4, which have general agreement with the analytic analysis of

Stokes matrix structure for OpenSSP hydrometeors in section 2.2. The impact of such small relative

errors on the computed dual-polarization radiances becomes negligible based on the transition

matrix perturbations analysis to the DRTE in (3.17).



Appendix D

Calculations of Atmospheric Prognostic Variables Based on WRF Simulations

The WRF v3.5 model is used to simulate atmospheric state vectors of intensified hurricane

Sandy over north Atlantic Ocean near the coastal area of New York City between October 28th,

2012 and October 30th, 2012. State variables in WRF outputs are defined on the C grid (see Figure

D.1) based on horizontal and vertical staggering [111].

Figure D.1: Horizontal and vertical grids of the WRF (known as the C grid) where thermodynamic
and hydrometeor state variables θij are defined at the center of the grid cell, and the components of
winds (Uij , Vij ,Wij) are defined along the normal cell face. ∆x and ∆y are the east-west resolution
and the north-south resolution of the grid (respectively). The vertical grid length ∆η is not a
constant and is specified in the WRF model initialization.

Prognostic variables of interest in this thesis are: 1)the level height in meters, 2) the level
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temperature in Kelvins, 3) Pressure in mb, 4) water vapor bulk density in g/m3, and 5) five-phase

hydrometeor bulk density in g/m3. These variables can be computed based on the WRF output

defined at the grid cell center (see Figure D.2).

Figure D.2: Atmospheric state variables defined at the center of the WRF grid cell. (a) height in
meters, (b) temperature in Kelvins, (c) pressure in mb, (d) relative humidity in %, (e) water vapor
density in g/m3, and (f) hydrometeor bulk density in g/m3.

The height of the grid cell center can be calculated using the base-state geopotential and
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perturbation geopotential defined at the upper and lower cell face:

hw(i, j, k) = (PHB(i, j, k) + PH(i, j, k)) /G

hθ(i, j, k) =
1

2
(hw(i, j, k) + hw(i, j, k + 1)) (D.1)

where PHB(i, j, k) is the base-state geopotential defined at variable locations with the variable

indices (i, j, k), PH(i, j, k) is the perturbation geopotential in the unit of m2/s2, and G is the

standard Earth’s gravity (i.e. 9.81m/s2). Note that the terrain height is calculated as hw(i, j, 0).

The temperature at the grid cell center can be calculated by:

Tθ(i, j, k) = θto

(
P

Po

)R/Cp
(D.2)

where θto is the potential temperature for air and P is the total pressure. Both quantities are

calculated by WRF. Po = 1000mb is the standard reference pressure, R = 287.0 J Kg−1K−1 is the

specific gas constant of dry air, and Cp is the specific heat capacity at a constant pressure.

The relative humidity RH is defined as the ratio of the vapor pressure e and the saturation

vapor pressure es(T ), which is determined by temperature T alone. The saturation vapor pressure

es(T ) can be estimated by the Goff-Gratch equation which is reliable in a range of -50◦ to 102◦

[101]. The saturation vapor pressure over liquid water esw is given by the Goff-Gratch equation:

log(esw) = −7.90298(373.16/T − 1) + 5.02808 log(373.16/T )

−1.3816× 10−7(1011.344(1−T/373.16)−1)

+8.1328× 10−3(10−3.49149(373.16/T−1) − 1) + log(1013.246) (D.3)

The corresponding saturation mixing ratio Qvs can thus be found as:

Qvs = ε
esw

P − esw
≈ 0.622

esw
P − esw

(D.4)

The relative humidity is obtained using the water vapor mixing ratio Qv calculated by WRF and

the saturation mixing ratio Qvs:

RH =
100Qv
Qvs

(D.5)
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The water vapor density ρv in g/m3 can be obtained as:

ρv =
RH esw
RvT

(D.6)

where Rv = 0.4615 J g−1K−1 is the individual gas constant for water vapor.

Finally, hydrometeor densities for cloud liquid water, rain, cloud ice, snow, and graupel can

be calculated as the ratio of hydrometeor mixing ratio and water vapor mixing ratio:

ρh =
Qh
Qv

ρv (D.7)

where Qh is the hydrometeor mixing ratio calculated by WRF for cloud Qcl, rain Qr, cloud ice Qi,

snow Qs and graupel Qg.


