
SCALABLE SOFTWARE CONTROL OF MILLION-ELEMENT
CYBER-PHYSICAL SYSTEMS USING A GRAPHICS PROCESSING UNIT

by
VELJKO KRUNIC

B.S., University of Colorado, 2000
M.S., University of Colorado, 2003

A thesis submitted to the Faculty of the Graduate School of the
University of Colorado in partial fulfillment

of the requirement for the degree of
Doctor of Philosophy

Department of Computer Science
2010

Copyright © 2010 Veljko Krunic, All Rights Reserved. See Appendix B for License on this work.

This thesis entitled:

Scalable Software Control of Million-Element Cyber-Physical Systems
Using a Graphics Processing Unit

written by Veljko Krunic

has been approved for the Department of Computer Science

Associate Professor Richard Han, Advisor

Professor Clayton H. Lewis

Assistant Professor Adjunct Willem Schreuder

Professor Yung-Cheng Lee

Randolph Ware, PhD

Date__________________

The final copy of this thesis has been examined by the signatories, and we
Find that both the content and the form meet acceptable presentation standards

Of scholarly work in the above mentioned discipline.

 !

Krunic, Veljko (Ph.D., Computer Science)

Scalable Software Control of Million-Element Cyber-Physical Systems Using a Graphics
Processing Unit

Thesis directed by Associate Professor Richard Han

Abstract
Cyber-Physical Systems consisting of hundreds of thousands of elements are

emerging, with even bigger systems likely to emerge in the immediate future. However,

in order for emerging and reasonably anticipated systems to be practical, the software

control of million-element Cyber-Physical Systems needs to be addressed.

This PhD thesis describes the software control algorithms necessary for the

realization of million-element Cyber-Physical Systems. This work will show that

Graphics Processing Unit (GPU) based control of such Cyber-Physical Systems

provides significant benefits, both in the form of fast control of large numbers of

elements, as well as in terms of providing a viable and scalable option by using

inexpensive, off-the-shelf hardware. GPU control will be shown to be particularly well

suited for the combination of the virtual environment with the manipulation of the

physical shape of the environment in which the user resides.

The main contributions of this PhD thesis consist of novel algorithms that utilize

existing off-the-shelf GPUs to control the Constrained Motion Cyber-Physical Systems

comprised of multi million element systems, and demonstrate the feasibility and

scalability of such control algorithms. It will be shown how both control and coordination

of the elements can be achieved, while at the same time accounting for the physical

limitations of the Cyber-Physical System elements. The approach presented here

 ! iii

results in the ability to control the position of the actuation elements in Cyber-Physical

Systems, as well as additional physical attributes of the system such as temperature,

perceived elasticity of the actuating elements, slipperiness of the ground in large scale

systems, etc. We describe how to further extend our approach to deal with existing

Cyber-Physical Systems like catoms/Claytronics [1], [2], CirculaFloor [3] and MEMS-

based tactile devices, as well as describe an approach to addressing the physical safety

of the user in large scale Cyber-Physical Systems.

 ! iv

Za moju baku, koja vise nije sa nama.

I za ostatak moje porodice, svugde u Svetu.

Vasoj ljubavi i podrsci dugujem sve svoje uspehe.

Dedicated to my grandma who is no longer with us.

And to the rest of my family all over the world.

Your love and support made my success possible.

 !

Acknowledgments
I was lucky to benefit from the expertise, help, insight and patience of many

people while I worked on this PhD thesis. I would like to thank the following people,

without whom this work wouldnʼt be possible in its present form:

1. I would like to thank my wife Marija Krunic for love and understanding during

the long process of the obtaining my PhD and the much more important

process of living and enjoying life.

2. I am grateful for a lot of invaluable feedback from Professor Clayton Lewis. I

found that in multiple situations where I needed help in scoping and

understanding broader implications of my doctoral work, his suggestions, help

and experience helped me find the right track. He suggested that further uses

of the software control algorithms originally developed for PRE should be

investigated in other areas, and that helped me expand the scope of this work

from its initial PRE/Holodeck focus to what it is today. Furthermore, he provided

many invaluable suggestions in the areas of the HCI and psychophysics

research, that relate to the assistive uses of this technology, and he also

provided many other suggestions about the PhD studies process. Finally, he

challenged me to consider further work in the area once this thesis has been

completed.

3. Professor Willem Schreuder provided help and expertise in many areas of this

work, and I strongly benefited from his insight, experience and knowledge. He

was the first one to point out similarities between the approach used for the

 ! vi

calculation of the moxel position and shadow buffer algorithm. He suggested

that multiple output channels (moxel displacement, heat, etc) should be

investigated in relation to PRE and proposed use of the OpenGL render buffer.

He also advised me to consider feedback from the physical systems in my

algorithms as well as to investigate mechanism(s) for directly accessing data

that are already on the graphics card with a combination of OpenCL and

OpenGL. He further suggested that I should consider overlapping surfaces

when combining catoms and moxels, proposed limiting the surface of the

rendering to only the area immediately around the user in combining moxels

and CirculaFloor, proposed that “halfway up” failed moxels could be addressed

by the raising of other moxels and proposed “relaxing” moxels below the user in

the case that user is falling as a safety measure. Furthermore, he provided

many suggestions related to both the style of this document as well as the

substance of work described, and he challenged me to think about potential

future research areas. I am grateful for the experience and insight he shared

with me during multiple brainstorming sessions we had. His help was crucial in

identifying areas for possible improvement and shaping this work to its current

form.

4. Professor Yung-Cheng Lee acted as a liaison in working with his students

involved with building a physical assistive device [4]. His help was crucial in

steering me toward MEMS devices and applying my work to this area. He had

many suggestions in the area of the physical characteristics of MEMS devices.

Furthermore, he provided the insight that the ability to perceive the texture of

 ! vii

the image will be very useful even for people who are not visually disabled (e.g.

ability to touch the display and feel the texture of the physical object on the

image) and pointed me to TeslaTouch [5]. Finally, he suggested that I should

consider adopting my algorithms to account for power consumption of the

mechanical system.

5. Professor Steven Oullette helped me on short notice with the review and

interpretation of the data collected during the performance test. That helped me

understand the implications of the data, not only from the perspective of the

benchmark, but also from the perspective of the statistical process control. He

helped me understand the nature of the data (including the fact that we are

dealing with more than one distribution) and he also pointed out what type of

statistics are appropriate to calculate from the data we have, as well as what

type of graphs will be the most appropriate representation for those data.

Furthermore, his looking at the data from the perspective of the statistical

process control helped me understand why these are more appropriate forms

of data representation to use. I found his help invaluable and appreciate his

time and willingness to help me on the short notice given.

6. Along with my advisor, Professor Richard Han, I had published original papers

describing PRE [6], [7]. That work provided an outline of the corresponding

algorithms that are expanded on in this document. He provided many

suggestions in relation to the organization and presentation of material in this

document, suggested writing an overview of the problem domain and

 ! viii

contributions that is now in Chapter 4. He also pointed to median filter being

related to one of the steps in how this work addresses moxels stuck in down

position. Finally he provided help in grammatical and organizational correction

of Abstract and Chapter 1 of this document and many other suggestions related

to the style of this document.

7. Randolph Ware, PhD provided many suggestions relating to the practical

applications of the PRE/Holodeck environment and challenged me to better

understand broader implications of the use cases that I investigate in this PhD

thesis. He pointed me towards carbon nanotubes as an area in which my work

could be applicable and provided other suggestions relating to this document.

8. I would like to thank to Professor Kevin Shaub for consultation regarding

Shapiro-Wilk exponential test.

9. Professor Hiroo Iwata pointed me to the CirculaFloor Project after learning

about PRE/Holodeck and responded to questions regarding current use of the

vertical dimension in CirculaFloor.

10.Professor Dale Lawrence proposed the term “moxel” after hearing about our

PRE/Holodeck idea.

 ! ix

Contents

..Chapter 1 - Introduction! 1

..1.1 Our Contribution! 8

...Chapter 2 - Related Work! 15

.................2.1 Related Work in the Area of Physical Environment Deformation and Manipulation! 15

..2.1.1 Macro Scale Environments ! 16

...2.1.2 Portable Scale Environments! 23

...2.2 Related Work in the Area of Software Algorithms! 27

...............Chapter 3 - Requirements of the Software For Controlling Constrained Motion CPS! 35

...Chapter 4 - Overview of the Contributions by This Thesis! 41

..4.1 System Description And Research Considerations ! 44

..4.2 Engineering Consideration! 51

..................................Chapter 5 - GPU Based Control of Large Scale Constrained Motion PRE! 53

...........................5.1 GPU Based Control of the Moxel Displacement in Constrained Motion PRE! 58

......................5.1.1 Use of the Z Buffer for Displacement Calculation in Constrained Motion PRE! 59

.........5.1.2 Use of the Fragment Shader for Adaptation to the Physical Limitations of the Moxels! 62

......................................5.1.3 Adoption of the Fragment Shader for Moxel Imperfection Handling! 66

..........................5.2 Integration of the Proposed Algorithm with the Existing Rendering Pipelines ! 71

...5.3 Slipperiness of the Terrain in PRE! 75

......................................5.4 Controlling Additional Physical Properties Using Proposed Approach! 77

...5.5 MEMS Based Tactile Devices! 79

.............Chapter 6 - HoloSim, Implementation of Algorithms for the Constrained Motion PRE! 87

..6.1 Measured Performance in HoloSim ! 92

...Chapter 7 - Beyond Pure Moxel Based System! 101

...7.1 CirculaFloor and Moxels ! 101

.................7.2 Extension of the Proposed Approach to Systems Combining MEMS and Moxels! 109

 ! x

..7.2.1 Tactile Dithering Acceleration Using GPU! 111

...7.2.2 MEMS Tactile Systems for General Population! 114

..7.3 Catoms Integration! 116

...7.4 Aliasing in Moxel Based Systems ! 124

..7.5 Physical Safety of User in Holodeck System ! 129

..7.5.1 Addressing Moxels Stuck in the Up Position! 131

..7.5.2 Addressing Groups of Moxels Stuck in Down Position! 134

..7.5.3 Addressing Moxels Near the User Position! 143

...7.5.4 Implications for Safe Geometry ! 148

...7.6 Software Control of Integrated Physical Systems ! 150

..Chapter 8 - Uses of GPU In CPS Beyond Moxel Position Control! 154

..8.1 Relation of the Proposed Approach to OpenCL and CUDA! 154

..8.2 Geometry Shader Use! 156

...8.3 Transfer of Results From the GPU ! 158

...8.4 GPU Use for Addressing Physical Feedback of the System! 160

..8.5 GPU Use for Decimation for the Purpose of Visualization! 162

...8.6 GPU Use for Power Saving In Mechanical Device! 167

...Chapter 9 - Future Work! 170

..9.1 Mobile Systems as Assistive Technology! 170

..9.2 Automated Tactile Translation for Haptic Systems! 175

..9.3 Other Areas for Future Research! 176

...References! 181

..Appendix A - Licenses For the Software! 200

..A.1 Apple Examples! 200

...A.2 COLLADA DOM ! 202

..A.3 Boost C++ Libraries! 205

...A.4 LibZ! 206

..A.5 Apache Xerces-C++ XML Parser! 207

 ! xi

..A.6 CPPUnit! 212

..A.7 OCUnit! 222

...A.8 Doxygen! 223

...A.9 ColladaDOM Use Example! 224

..Appendix B - License For This Thesis! 225

..Appendix C - HoloSim License! 232

 ! xii

Tables
...Table 1. Performance results! 95

 ! xiii

Figures
..Figure 1. A Microelectromechanical Systems!2

..Figure 2. Catoms Forming Shape!2

..Figure 3. Opening ceremony at Beijing Olympics!4

..Figure 4. PinPoint Toy!5

..Figure 5. Catoms forming 3D shape! ..17

..Figure 6. CirculaFloor! ..20

....................................Figure 7. Soldier on omni-directional treadmill, inside of CAVE environment! ..22

..Figure 8. Refreshable Braille terminal! ..23

..Figure 9. Overview of the problem domain addressed by this thesis! ..43

..Figure 10. GPU Based Control of the PRE! ..54

...Figure 11. Simplified version of the programmable GPU! ..56

..Figure 12. Physically Rendered Environment! ..58

...Figure 13. Viewport Position while calculating moxel position! ..59

..Figure 14. One curve describing physical limitations of the moxel! ..62

...Figure 15. Example of the physical shape that canʼt be rendered in PRE! ..71

..Figure 16. Moxel capable of simulating slipperiness.! ..75

.....................................Figure 17. Michelangelloʼs David rendered using Floyd-Steinberg dithering! ..84

...Figure 18. HoloSim, a simulator of the PRE.! ..88

...Figure 19. HoloSim software scope! ..90

...Figure 20. Moxel rendering rate! ..96

..Figure 21. Moxel rendering latency! ..97

....................................Figure 22. Mapping of the calculated moxel coordinates to the CirculaFloor! 102

...Figure 23. Z coordinate handling in moxelated CirculaFloor! 106

...Figure 24. One possible tactile dithering pattern ! 111

..Figure 25. Combining catoms and moxels! 118

...Figure 26. Simplification of the moxel based geometry! 125

...Figure 27. Low resolution simplification! 127

...Figure 28. Moxels that are stuck in the “up” position! 131

..Figure 29. Failure of the set of closely grouped moxels! 134

...Figure 30. Addressing groups of moxels stuck in down position! 138

..Figure 31. Failure patterns of moxels! 139

...Figure 32. Marching detection regions! 140

..Figure 33. Moxels affected by the user! 144

..Figure 34. Moxels in user path! 146

 ! xiv

..Figure 35. Large scale obstacles in Holodeck environment! 148

..Figure 36. Flowchart of the Holodeck! 151

...Figure 37. Combination of the Holodeck with the catoms environment! 152

...Figure 38. Control of the bistate capable MEMS system! 153

 ! xv

Chapter 1 - Introduction
We are moving toward a world that offers an artificially generated, dynamic

environment in which we will be able to control the physical shape of such environment

in real-time. Our vision for Cyber-Physical Systems is that it will be possible to combine

computer graphics and immersive virtual environments with morphing physical

environments that deform in concert with the virtual environment. That would enable the

user to produce a movement in the computer generated environment and perceive

physical objects through the morphing physical environment. One of the major

challenges in achieving that vision is software control of the millions of elements

comprising larger Cyber-Physical Systems.

Systems of a similar nature have been recently proposed, and include systems

such as MEMS [8] on the microscale, as well as Dynamic Physical Rendering (DPR) or

Catoms [1] and PRE [7], [6] on the larger scale. Figure 1 shows an example of a MEMS

system, and Figure 2 depicts an example of a Catom [1] based system.

 Copyright © 2010 Veljko Krunic, All Rights Reserved! 1

Figure 1. A Microelectromechanical System (MEMS) based force sensors [9].

Figure 2. Catoms Forming Shape (the authorʼs illustration).

 ! 2

One particularly interesting class of Cyber-Physical Systems is the Constrained

Motion Physically Rendered Environment characterized by elements limited to up and

down, one dimensional movement. The algorithms that will be presented in this thesis

are particularly well suited for this class of Constrained Motion Cyber-Physical Systems.

The first example of the aforementioned system is the authorʼs earlier work

integrating virtual environments with the ability to perform physical deformation of the

environment in which the user is standing [6], [7]. This work proposed a Physically

Rendered Environment (PRE) or “Holodeck”1, a system capable of showing realistic

impressions of a combination of the physical and virtual environment. That system could

be combined with additional systems like CirculaFloor2 [10] or treadmills [11], [12] in

order to provide the user with an environment featuring the illusion of infinite physical

space .

Figure 3 shows the opening ceremony at the Beijing Olympics in which a

human powered PRE-like system was used:

 ! 3

1The Holodeck name was chosen based on the science fiction television show“Star Trek the
Next Generation”. Although such a system is obviously not practical today, the ability to combine virtual
environments with physical environment deformation could be considered related and was why we had
chosen that name in our earlier work [6], [7].

2 The author would like to thank to Professor Hiroo Iwata for pointing me to the CirculaFloor
after learning about our PRE work.

Figure 3. Opening ceremony at Beijing Olympics [13].

The second example of such Constrained Motion Cyber-Physical Systems

consists of portable systems. Figure 4 shows a PinPoint toy (see e.g. [14], a vendor)

that consists of a set of needles that are free to move only in the up/down direction. If a

user presses his hand into the needles on one side of the toy, the needles raise on the

opposite side in the approximate 3D shape of the hand, as shown in the figure below.

This device has inspired multiple systems including Digital Clay [15], [16], [17] and the

authorʼs earlier work [7], [6].

 ! 4

Figure 4. PinPoint Toy {Pin Art/Pin Point Toy} showing a picture of a toy
chopper.

Another related example consists of tactile and MEMS based assistive devices

[18], [19] for people with visual disabilities, allowing them to perceive text as well as

computer generated graphics. Furthermore, applications of these devices include

sensory substitution, which is advantageous for both visually impaired users and users

with normal vision [20].

A further example of the portable sized system is the BrailleEye [4], [21]

portable assistive device system for people with visual disabilities. This system is

currently being developed in the Mechanical Engineering Department at CU Boulder.

Finally, and to highlight the importance of the ability to scale software control to

massive numbers of elements in Cyber-Physical Systems, recent work shows that

carbon nanotubes could be constructed in, what is essentially a Constrained Motion, 1D

system3 [22].

 ! 5

3 The author would like to thank Randolph Ware, PhD for pointing out carbon nanotubes and
how they could potentially be related to this project.

As mentioned in our previous work [7], [6], we call each of the actuating

elements in these classes of Constrained Motion systems “moxels”, 4 short for moving

pixels5. By augmenting this “moxel based” motion with computer controlled actuation of

the moxels in real time, a system becomes capable of rendering different environmental

elements such as dynamic surfaces, terrains, and even forms of motion. Within the

space of a designated room, a deformation of the ground, walls, and ceiling, as created

by moxels, would simultaneously create an entire 3D environment with the user being

able to stand and move.

The previous systems offer a large potential for significant research advances,

as well as a large potential to significantly impact the world around us. Portable MEMS

based Constrained Motion PREs like BrailleEye [4], [21] combined with the computer

control of deformation will allow us to present tactile rendering of images and videos

(including real-time videos of the surrounding area) to the users. This enables

significant assistance to visually impaired users at a very reasonable price6.

Furthermore, combining the Holodeck, PRE (in possible additional combination

with the CirculaFloor [3]) with complementary technology such as virtual or augmented

reality, (e.g. immersive graphics visualization via projection and/or head-mounted

 ! 6

4 The author would like to thank to Professor Dale Lawrence for coining the term moxel for a
moving pixel after hearing our idea.

5 Note that there is no consensus in the community on what to call these moving elements - we
used the term moxel in our previous papers ([6], [7] and continue to use that term in this paper. Other
terms proposed include RGBH (H standing for height in the moving element that could present RGB
color) as proposed in [23], taxel as in [24], [25], haptcel [26]. Another term for the concept of movable
elements is tactile pin arrays, a term used by [27].

6 Current budget for BrailleEye project, including prototype building, is below $1,000. The final
device, when mass produced, is likely to be substantially cheaper.

helmet displays) [28], would further enhance the user experience of “being there” and is

believed to be the next step in the evolution of computer graphics. The ability of the

computer to control physical deformation of the terrain was one of the early visions of

computer graphics pioneers [29].

 ! 7

1.1 Our Contribution

With the clear importance of the previous hardware technologies shown, the

key question remains: do we currently have the problem of software control of Cyber-

Physical Systems resolved?

To answer that question, we must first start by asking: how many elements do

these systems have? To get some feeling of the scale of the system, letʼs consider a

couple of examples:

1. Suppose that a moxel in a PRE is 1cm by 1cm and that the size of the room is

10m by 10m meaning that we would need 1M moxels just for the floor.

2. Suppose that MEMS element is 0.5mm by 0.5mm in size. The entire Kindle DX

device is about 264mm by 182mm (10.4 inches by 7.2 inches) [30]. If that

device surface is modeled as a MEMS system with elements on the scale of

0.5mm, the system would require 192,121 elements7. Note that 0.5mm was

chosen as it is a good a resolution allowing a user the ability to discriminate in a

tactile manner between two disjoint points [31], [32], and that for presenting

different texture feelings of the surface, we might need significantly higher

moxel densities8.

 ! 8

7 Due to the approximate nature of the calculation, in other parts of this thesis and the fact that
Kindle DX is just one portable device (with the best format for the portable devices still being open
questions) when referring to the number of moxels needed to cover the surface of Kindle DX, we would
use an approximation of 200,000 moxels of the size 0.5 mm x 0.5 mm per moxel and 50,000 moxels of
the size 1 mm x 1 mm per moxel.

8 Humans can differentiate surface period changes on the order of as little as 20-40 µm [28],
meaning that we might need to control much higher moxel densities even for MEMS based systems.

These examples clearly show that to provide software control of PRE and

MEMS devices of such reasonable sizes, we would need the ability to control system on

a scale of hundreds of thousands or even millions of elements (e.g. the Digital Clay

prototype [33] demonstrates a physical system that, although built on the scale of 5x5

uses technologies, would allow for building on a 1,000x1,000 scale of linear actuators).

The ability to control even a significantly larger number of elements is beneficial, as in

the previous discussion we didnʼt account for the frequency of the image change nor for

the fact that even smaller element size/larger surface areas might be beneficial. So the

question of the best approach to the software control is clearly non-trivial.

This PhD thesis will show that software control of million-element moxel based

Cyber-Physical Systems could be achieved using commodity hardware and that it could

easily be scaled to size needed by practical hardware systems. That capability is

important as there is little point in building these types of systems unless we have a way

to provide software to control them.

For that software control to be implemented, it is important to notice that the

number of moxels involved approaches and in some cases exceeds the number of

pixels on the computer screen. In addition, per-moxel calculations are required as we

not only need to calculate the position of the moxel, but account for its physical

limitations in order to control it properly.

Trends in computer graphics have clearly shown that when such numbers of

elements are involved, GPUs offer a significant speed advantage compared to CPUs as

 ! 9

long as the control problem can be formulated in a way that utilizes an existing GPUʼs

hardware rendering pipeline [34], [35], [36], [37].

In fact, trends in the last two decades and especially in the last few years

clearly show that for problems that are well suited for GPUs, the GPU provides a

significant performance advantage over the CPU, and that GPU based computing is

challenging CPU based solutions in a large number of areas:

1. GPUs have been used for general purpose computing in systems including

physical simulations (like boiling, convection, dendritic ice crystal growth, fluid

flow problems, finite differences, spring mass dynamics, cloth simulation),

signal and image processing, image segmentation, computer vision,

Constructive Solid Geometry, databases and data mining (as surveyed by [38]).

2. The current state of heterogenous computing is surveyed in [39]. According to

that survey, GPUs provide significantly higher computation and memory

bandwidth performance advantages over CPUs. For example, single precision

peak performance of AMDʼs FireStream 9270 is 1200 GFLOPS, NVIDIAʼs Tesla

C1060's is 936 GFLOPS and Intelʼs Core i7-965 Quad Extremeʼs single point

peak performance is only 102.4 GFLOPS. Furthermore, GPUs are leading

ahead of CPUs (and other heterogeneous computing solutions like FPGA and

CBEA) in floating point performance, memory access speed (counting access

to accelerator memory), GFLOPS per watt, and MFLOPS per dollar [39].

 ! 10

3. The scientific community generally believes in the strength of GPUs for general

purpose computing. Even the examples of the work that could be considered

somewhat dissenting from the belief that GPUs are much faster than CPU still

conclude that for throughput computational kernels NVIDIA GTX280 still beats

Intel Core i7 960 2.5 times on average. The authors reached this conclusion

after performing extensive optimization of the computing kernels on both CPU

and GPU [40]9.

4. GPUs are well suited for applications operating on data streams but they are

suffering from expensive synchronization [39]. Compared to other

heterogenous computing solutions (FPGA, CBEA), GPUs are an attractive

solution for computing with significant advantages in highly parallel problems10.

With all of the above taken into consideration, GPU based implementation is a

natural choice for addressing our highly parallelizable control problem. It will be shown

in this thesis that we can use existing GPU hardware without any need to modify it, and

in a way that easily scales to the control of a million moxels per second.

The main contributions of this PhD are:

 ! 11

9 It is worth noting that the team that published [40] has authors who are all associated with
Intel Throughput Computing Lab and Intel Architecture Group of Intel Corporation, and that based on that,
authors should be considered experts on how to perform CPU based optimizations. Tests performed
included both kernels that are better suited for the CPU than GPU and vice versa. Although the
conclusion was that “This puts CPU and GPU roughly in the same performance ballpark for throughput
computing”, the fact that even dissenting work is acknowledging the advantage of GPUs still shows that
GPU has matured as a platform for general purpose computing. Finally, note that moxel calculation is
much closer to a rendering problem and that as such, it is much better suited for the GPU than problems
investigated in the paper.

10 Like the one of the control of a large number of moxel systems - authorʼs emphasis.

1. Recognition that GPUs can be used to solve an important class of problems

concerning software control of million-element Constrained Motion Cyber-

Physical Systems.

2. Algorithms are devised for using existing GPUs for the control of the PRE type

of environment, specifically the calculation of the physical position of the

moxels using a Z buffer [41], [34], and for using the fragment shaders for

controlling the physical characteristics of each moxel.

3. For the group of algorithms mentioned in the previous point, we have

developed a simulator of the PRE and demonstrated the viability and scalability

of the algorithms to millions of moxels.

4. An extension of the proposed approach was described for a range of systems,

including CirculaFloor [3], Catoms [1] and MEMS based systems.

5. This thesis describes how to address physical characteristics of the individual

moxels in the range of cases, including physical characteristics of the moxels,

manufacturing process variability and addressing most common moxel failures.

In terms of the scope of this PhD, we:

1. Constructed a simulator of the Physically Rendered Environment that uses

GPU along with Z buffer algorithm [41], [34] to control moxel based systems.

 ! 12

2. It is demonstrated through the simulator that our algorithms scale to controlling

millions of actuated elements per second using a simple model of a moxelʼs

physical characteristics, on commodity class hardware.

3. This thesis describes how system can take the physical characteristics of the

actuation elements into account when calculating the positions of the elements.

The fragment shader was used for controlling moxels based on the piecewise

linear response curve.

4. In addition to the previous points that were all demonstrated on the simulator, in

this PhD thesis it is also shown how GPU control can be extended to the wide

range of systems including CirculaFloor [10], Catoms [1], and MEMS based

assistive technologies [4]. Furthermore, we show how GPU based control could

be extended to address multiple scenarios related to the physical safety of the

user in the large scale system. Note that these particular extensions are not yet

implemented as a part of the simulator11.

Finally, although the scope of this PhD is limited to software, the software

proposed here is necessary for achieving hardware scaling. Once both software and

hardware systems are completed, there is significant potential for future expansions on

both the software and hardware side. Such expansions would most likely be in areas of

software control, HCI aspects of tactile based assistive technologies, sensory

substitution, and the combination of Cyber-Physical Systems with virtual

 ! 13

11 The reason is that implementation on the simulator of those algorithms was outside of the
scope of the original thesis proposal. Furthermore, there is no significant concern about viability of their
implementation on the GPU so it can be argued that implementation of them on simulator would
represent more engineering then research contribution.

environments12. It is reasonable to expect that all of these areas would have significant

research potential.

 ! 14

12 Many examples of such works are discussed throughout the rest of this thesis.

Chapter 2 - Related Work
There are two broad groups of work related to this PhD thesis:

1. Work related to the hardware, which benefits from the approach proposed in

this section and could be considered a motivational application for our

algorithms.

2. Work related to the use of the GPU and software for the control of the physical

systems consisting of millions of elements.

The following sections will provide more detail relating to these categories of

work.

2.1 Related Work in the Area of Physical Environment Deformation
and Manipulation

The Cyber-Physical Systems presented in this section benefit from the

approach taken in this PhD thesis, and, as such could be considered motivational for

our work and are some of the use cases for the proposed algorithms.

This work can be further divided in two groups:

1. Work related to the actuation and deformation of the environment in which the

user is physically located. These are macro scale systems.

2. Work related to providing tactile feedback to the users. Main examples of these

are tactile systems, in particular the assistive technologies for the visually

impaired persons.

 ! 15

2.1.1 Macro Scale Environments

Macro scale environments are hardware environments large enough to

accommodate the user within them. They are related to the vision of the convergence of

robotics, vision and computer graphics for the creation of the fully immersive

environment for the user, as described in [42] and some implementation examples,

challenges and ideas are described in [11], [43], [44], [45], [10], [46], [47], [6], [7] and

[48]. This section expands on the most related of the works enumerated above.

On the hardware side, the first example of the Cyber-Physical System used as

motivation for this thesis is our earlier work - Holodeck PRE [6], [7] that proposed a

large scale moxel based Cyber-Physical System controlled by the GPU (currently

implemented as a HoloSim simulator). Algorithms presented in this thesis are directly

related and applicable within a PRE based environment.

Intel's Dynamic Physical Rendering (DPR)/catoms/Claytronics [49], [2], [50],

[51] is a vision of using small physical elements (e.g. small balls) called catoms, to

create arbitrary 3D shapes as seen in Figure 5. The vision of physical balls is expected

to be practical by 2012 [1], with a previous physical system being the significantly larger

Planar Catom V7 [52], [1] and current catom-based physical systems based on the

1mm x 10mm cylinder [53].

 ! 16

Figure 5. Catoms forming 3D shape (the authorʼs illustration based on
{Geller, 2009, Communications of the ACM}).

Catoms [54], [1]/Claytronics [2] are able to orient among themselves in arbitrary

positions towards each other. The DPR concept is similar to micro-robot ensembles and

programmable matter [54].

On the software control side, work on catomʼs control is in its early stages and

is unclear just how fast these software algorithms are, when it comes to rendering of a

large number of catoms. Note that catom's vision is based on the decentralized software

control but it is fair to say that there is no total consensus among researchers that

decentralized software control is the best approach for controlling large scale systems

[1]13.

 ! 17

13 Furthermore, as [1] is pointing out, for catoms to be useful they have to perform some
function on the larger scale (e.g. what do bodies made of catoms do) - and if that is the case, then we
would need to have a central control somewhere in the system. We submit that the computer that is
responsible for providing central control would likely already be equipped with the GPU, and that makes
ability to use it an interesting research question.

In order to address the problem of coordination of a large number of catoms,

some of the latest efforts were based on the hierarchical software control of catoms

where a large number of catoms are treated as a group [55] as well as anatomical/

biological inspired control schemas where catoms emulate anatomical structures

(bones, muscles) [56]. The experimental results of [55] have shown the ability to control

modules consisting of few thousand catoms. However, it is unclear how these schemas

would behave when trying to control millions of catoms and [56] still considers emulation

of the complete body an open question. Considering these issues, it is fair to say that

software control of the system on a scale of millions of catoms is a research question

yet to be fully addressed.

Related work in the area of self-reconfigurable systems consisting of large

number of robotic elements [57] states that new algorithms will be required for the

proper control of large systems, and that, although algorithms for handling million

element systems were developed under ideal conditions, significant challenges remain

in the area of software control of systems using large number of robotic elements: work

that demonstrates coordination of number of elements on the order of 421,875 elements

[58] shows that a system consisting of a cube with 75 elements needs 10,345

timestamps14. Furthermore, the object was significantly changed even while moving on

the flat ground.

 ! 18

14 Within a timestamp, each element had a chance to move so that, after completing all
timestamps, the end result is movement of the cube equivalent to 74 element diameters.

In addition, the number of catoms needed to simulate a surface is significantly

larger than the number of moxels15.

The relation between the catoms and PRE is summarized in the authorʼs earlier

work [6], , which notes that PREʼs ability to quickly render large surfaces makes it a

good compliment for the DPR, as PRE could be used to render ground plane while DPR

is used to render objects that couldnʼt be easily represented with moxels.

Similarly, the authorʼs earlier work [7] states:

“Ideal environment is likely to use the Holodeck approach for ground areas, and
DPR approach for smaller and more complex objects in the room.”

Another related work is CirculaFloor [3]. From the authorʼs previous work [7]:

“CirculaFloor [10] is a locomotion interface that uses a set of movable tiles to
achieve an omni-directional motion while providing the illusion of infinite
distance. CirculaFloor simulates only flat surfaces, so PRE and CirculaFloor are
complements. Combining a moxel-based surface with the tiles of CirculaFloor
allows for the extension of the PRE which is capable of simulating unlimited
environments.”

Software algorithms presented in this PhD are able to directly control a

Holodeck environment and here we present how a Holodeck type of the environment

could be combined with catoms [1] and CirculaFloor environments.

 ! 19

15 Moxels are covering only surface ground plane with mechanical elements while catoms are
covering a complete surface and in some instances the inside of the object they model. Some proposals
for use of moxel might even result in covering the inside of the volume in order to provide, for example, a
complete and anatomically correct model of the human body [56].

Tile A

Tile B

Tile C

Figure 6. CirculaFloor (the authorʼs conceptual illustration based on [10]).
Note that circulation mechanism and number of tiles in current CirculaFloor is
different, and that previous picture is used for the illustration purposes. See

[3] and [10] for details.

Virtual reality systems combine physical objects with computer generated

imaging [28]. Many concepts from virtual reality such as helmet-based split-view

immersive environments [28], are quite complementary with the vision of physically

rendered environments. Depending on the application, we envisioned that users

navigating through a PRE could be equipped with helmet-mounted immersive displays,

 ! 20

and the terrain around the user would change in real time in order to conform to what

the user is seeing.

Omnidirectional Treadmills [12], [59] and the Torus Treadmill for Infinite Floor

[60] allow for user movement in all directions while simulating a floor surface of an

unlimited size, but are limited to the a surface only. Related work includes treadmills that

can angle themselves such as Sarcos [11]. They relate to PRE as they provide similar

functionality, but inherently PRE provides for better control of the local slope and greater

freedom of movement (as some of the approaches for the simulation of the local slope

use tethering of the user at torso and applying force on him to simulate slope) [43], [61],

[62].

In regards to virtual reality, the related system, is SGIʼs CAVE [63]. Although it

allows for a very impressive virtual 3D environment, it is unable to physically deform

terrain to conform to the environment pictured - you see stairs and they might look

“almost real”, but donʼt try to step on them.

Omnidirectional treadmills can be combined with SGIʼs CAVE system, though

this combination is limited to the simulation of flat surfaces. Attempts to simulate sloped

surfaces tethered users to the environment [61], [62] and, as such, obviously limited

user mobility. PRE type environments are a natural complement to these systems.

 ! 21

Figure 7. Soldier on an omni-directional treadmill, inside of CAVE [64].

 ! 22

2.1.2 Portable Scale Environments

Portable scale environments are used mostly in the areas of the assistive

technologies and sensory substitution. The idea is to partially substitute a sense of sight

with the sense of touch, by manipulating the surface of small scale (and sometimes

portable) devices.

The best known example of this kind of work is a Braille enabled terminal [65],

like the one seen in Figure 8. Although in use for a significant period of time, these

terminals have limited number of moving elements, are limited to showing only text and

cannot show graphics.

!

Figure 8. Refreshable Braille terminal [66].

Braille terminals are just one example of tactile displays. Tactile displays use

mechanical, electrical and thermal stimuli of the skin, and are implemented with static or

 ! 23

vibrating pins, focused ultrasound, electrical stimulation, surface acoustic waves and

other techniques [18], [67], [68].

Furthermore, most of the work in the tactile feedback field was related to the

haptic display of a static image, with the bulk of the work being done in the area of

haptic devices as opposed to surface texture change [69], and a recent study of the field

acknowledges that it is still in the early stages of development [70]. Moreover, there has

been little work done so far on what will be the equivalent of animation (in the computer

graphics sense), and the work done is limited to low density actuators [71], [72], [20],

[24]. Some examples of work done on defining “tactile language” are given in [67], [73].

There is previous work done on automating tactile image translation [74], [75],

[76] but that work focuses on simplification of the images for low resolution displays

(and [74] is helping the tactile specialists in creating images and as such is not oriented

toward real time processing of the images).

Although, historically, these devices feature low resolution, this is not due to

human inability to distinguish finer resolutions but due to limitations in technology.

Humans are able to discriminate fine grained texture elements on a sub-millimeter scale

with the fingertip [77] as well as tip of the tongue [32] (there are systems that stimulate

the tongue surface so as to reflect the image captured by the video camera).

Some examples of the expansion of Braille terminals to higher number of pins

are tabletop surfaces based on rod actuation like Digital Clay [78], [79], [17]. Another

group of related work are systems that combines video projector with the matrix of rods

 ! 24

that actuates canvas surface - FEELEX [80], MATRIX [81], Northrop Grumanʼs

TableTerrain [82], [83] and Relief [84], [85]. The number of moxel-like moving elements

in such a system could be very large, with [33] suggesting that proposed manufacturing

methods used for 5x5 prototype developed could be extended to arrays with 1M

elements.

Consequently, there is a need for actuation and control of a large number of

elements. Recent advances in the area of MEMS devices [86], [67], [87] pave the way

for the future development of hardware capable of providing sensitivity approaching

discrimination thresholds of the tip of the finger or the tongue. One example of such a

system is BrailleEye [4], [21] currently being developed in the Mechanical Engineering

department at CU Boulder. At the moment, most of the tactile systems are still in the

development process and are limited to few tens of pins [18]. However, as we show,

based on the reasonable surface size and human touch threshold, this situation is

transitory and number of elements is likely to significantly increase in the future.

Another method for tactile feedback based on electrovibration was proposed in

[5]. The authors used electrovibration to simulate the feeling of friction as sensed by a

sliding finger. In regards to hardware implementation, this system offers advantages

over the MEMS based systems due to its reliability and uniformity of the presentation of

the tactile feedback, although it has the disadvantage of not being able to stimulate a

stationary finger and having a somewhat smaller magnitude of tactile sensation it could

render [5]. However, from the software control system point of view, this system is very

 ! 25

similar to the MEMS based system and provides similar motivational advantages for our

work to MEMS systems.

In addition to the assistive uses of those technologies, tactile interfaces are also

useful for normal-sighted users. One very common use case is related to the rise of

touch-screen phones like the iPhone [88], featuring virtual keyboards. Their users could

benefit from tactile feedback, and work is currently being done on dynamic displays that

are able to provide tactile feedback by physical deformation of the screen surface [89]

or electrovibration of the screen [5]. It is reasonable to assume that as users will be able

to see the display changing, even higher rate (frequency) of change of the tactile screen

will be needed during tactile reconfiguration, as tactile display would need to match the

visual display.

Although carbon nanotubes are still an active area of fundamental research,

carbon nanotubes could be considered Constrained Motion, 1D system [22], [90]. At the

nanoscale, we will need to control of even higher number of elements.

Thus, we have a clear need and trend toward increasing both spatial resolution

and frequency of movement of the elements in the refreshable displays, and we

currently do not have a definitive answer on software approach that should be used for

the controlling of these devices in the future. This PhD thesis is addressing that gap by

providing software algorithms for highly scalable control of millions of elements, using

commodity hardware.

 ! 26

2.2 Related Work in the Area of Software Algorithms

The general trend in the last few decades is toward implementation of graphics

rendering engines that use GPUs [34], [35]. This is caused by the fact that GPUs are

optimized for computer graphics related calculations, and are much faster than CPUs

on graphics intensive tasks. As an additional positive effect, GPUs are cheap and

ubiquitous in modern personal computers, appearing even in consumer electronics such

as smartphones like e.g. iPhone [88], with the 3G S version supporting OpenGL ES 2.0

and programmable shaders [91], [92], [93].

Programmable GPUs have been used for acceleration of rendering of computer

graphics for a number of years, and many practical uses were discussed in e.g. [36],

[35] and others. On a related note, GPUs were used for computation of images in the

volumetric displays [94], [95], with an interesting use case being the planning of

radiation therapies [96].

In addition to rendering support, GPUs were used for a wide variety of general

computation related tasks with some examples being volumetric rendering, fast fluid

dynamics simulation, ultrasound visualization [97], flow simulation, option pricing [98],

image correction in scan-beam projectors [99] and an acceleration of the reliability

analysis of MEMS devices and simulation of electromagnetic wave propagation [100].

Although widely used to accelerate rendering speeds and general computation,

GPUs have not been used as often in relation to robotic control, and even when used it

 ! 27

has been mostly for computation and vision recognition as opposed to the direct control

and coordination of a large number of robotic devices. Examples of the use of the GPU

in these areas include ultrasound image analysis and control of a robotic arm (as

proposed in [101] and implemented in [102] and [103]), proposal to use GPU for

computation related to the shape recognition [104], solving of the kinetic equations

[105], as well as proposed use for the speedup of the Constrained Motion planning

equations [106].

Still, with all of the previous work, there was little work done on the coordination

of the large number of mechanical elements using GPU. Our earlier work [6], [7]

describes algorithms allowing the use of the GPU for the software control of the

Holodeck/PRE like systems. Earlier work on the Digital Clay system briefly mentions

possibility of the GPU use [79], and later work on Relief system used GPU [85].

Work in this PhD thesis features implementation and enhancement of the

author's previous proposals as outlined in my earlier work [7], [6]. This thesis specifically

investigates the problem of software control of PRE and MEMS based Constrained

Motion Cyber-Physical Systems, shows viability and scalability of the previously

proposed ideas and extends those ideas to a number of different systems like catoms

[1], CirculaFloor [10] and MEMS [21] based devices. Finally, we propose extensions on

how to deal with some of the expected moxel failure patterns in the PRE type of the

environment.

On the software side, algorithms proposed in the author's previous work [6], [7]

and modifications made in this thesis are significant contributions in the area of

 ! 28

application of GPU on the control on the Cyber-Physical Systems. Furthermore,

observation of the particular suitability of the commodity, relatively inexpensive GPU

hardware to the range of the million elements Constrained Motion Cyber-Physical

Systems is also an important contribution.

Before we discuss differences between the most related work in the area of the

software algorithms in detail, we would like to highlight that, compared to all other work

by other the authors (including my previous work), there is a unique contribution of the

work presented in this thesis that is, to my knowledge, the only body of work at this

point in time to cover, in the context of the Cyber-Physical Systems, the following topics:

1. Addressing the range of systems from tabletop to room sized systems, while

being primarily based on the combination of the Z-buffer and the fragment

shader calculation of the position of the moxels.

2. Addressing the integration of the moxel based system with a diverse range of

systems including catoms/Claytronics [1], [2], CirculaFloor [3] and MEMS based

multistate and bistate devices, using GPU.

3. Expanding on the physical limitations of the moxels that could be per moxel

specific, vary from moxel to moxel to account for limitations of the

manufacturing system, and account for physical characteristics of moxels in

which position of one moxel affects other neighborhood moxels, as well as

dynamically account for multiple failure modes in the moxel actuation

mechanisms.

 ! 29

4. Present some early results on the physical safety of the users in room-sized

systems.

5. Finally, focus on scalability of the software control of large number of element

mechanical systems using GPU hardware.

Noted below are works related to what is presented in this thesis as pertains to

the area of software algorithms:

1. The authorʼs earlier work [6], [7] proposed a combination of orthogonal

projection and Z-buffer readout, as well as the use of the fragment shader for

taking into account physical characteristics of the moxels in the context of the

large scale moxel based physical environment. This PhD thesis extends that

work by providing further details on implementation of the proposed techniques,

proof of feasibility and scalability of the proposed software control concepts, as

well as all of the elements identified in the previous part as unique to this thesis.

2. Shadow Mapping [107] has similarities with our idea of using Z buffer with

respect to the idea of the manipulation of the camera position and use of the

depth buffer for the test, but our work is different with the respect to requiring

matching pixel in the rendering resolution to the size of the moxel, area of the

application (device control), extendability on the display surfaces that are not

fixed in space (we can combine with movable surfaces like CirculaFloor [10] or

catoms [1]). Furthermore, our basic Z buffer based control needs only a single

 ! 30

rendering pass as opposed to two rendering passes that Shadow Mapping

requires.

3. Digital Clay [16], [78] actuates vertical arrays of pins for haptic feedback and

would qualify as a Constrained Motion Cyber-Physical System as defined in

this thesis. That work briefly mentions the possibility of use of the Z-buffer for

the calculation of the vertical arrays positions as one of possible research

direction they investigated in the project [79]. This thesis expands by providing

how exactly an implementation of the Z-buffer control will be achieved, using

GPU to much greater extent than previous Digital Clay related work proposed

[16], [78], and also by taking into account the physical characteristics of the

mechanical elements on GPU, using the fragment shader, and addressing

imperfections in the fabrication process. In addition, all elements previously

identified as unique to this thesis are also different from Digital Clay.

4. Distance Fields [108] are a volumetric representation of the distance of a point

in space to 3D objects, and [109] discuss use of the GPU for the calculation of

discrete values in the distance field using Z-buffer for the purpose of fast

distance queries. Some related work on the distance field calculations includes

[110] and [111]. Although these works have similarities with and are a further

extension of Z-buffer based distance calculation from the ground plane

proposed in our earlier work [6], they are working in completely different domain

addressing proximity queries from geometric objects. Furthermore, aside from

 ! 31

the use of the Z buffer, all other already described considerations that make this

work different than e.g. Shadow Buffer [107] apply to Distance Fields, too.

5. The authorʼs earlier work [6], [7] proposed combination of the orthogonal

projection and Z-buffer readout, as well as the use of the fragment shader for

taking into account the general concept of physical characteristics of the

moxels. Later work on Relief [84] is another example of the 3D pin actuation

system. [85] proposes a similar mechanism to the one we are using here for

camera positioning and Z buffer readout mechanism and applies shaders to

account for the limited travel of actuation rod. Relief [85] uses multiple output

channels (e.g. color channels to signal that a rod is out of the range of motion).

This thesis expands on the approach proposed in [85] for passing an actuator

height map for addressing differences in the physical position between

calculated and actual position of the actuation elements in respect to GPU

based reaction to the physical feedback on the moxel system. However, we

allow for the more general case of reacting on any physical characteristic of the

moxel, as well as account for moxel manufacturing variations. Similarly, the

approach we are using for the control of the multiple output channels could be

considered a generalization of the communication of the rod being out of the

range of motion proposed in [85] to controlling other properties of the physical

system using GPU output. Beyond those similarities, there are many

differences - to start with, this thesis focuses on GPU use for the acceleration of

large scale software control of moxel like systems with high moxel density,

while [84] is a tabletop system with limited moxel density. Furthermore, all the

 ! 32

elements identified in this chapter as unique to this thesis differ from the Relief

system.

6. There are some similarities with volumetric displays in the sense that they

calculate the image from many different positions [94], [95]. However, while

they use many perspectives similar to that of the viewer of the image, we are

using a rendering perspective that is very different than the one of the user, and

we are oriented toward mechanical device control as opposed to volumetric

image display on an optical device and we donʼt need to render anything but

the geometry of the image (so there is no need for e.g. texture application, fog

display etc). Furthermore, while they are proposing a full new graphics

language for integration in the graphic pipeline [95], we are proposing

integration in the rendering pipeline using AOP [112], [113] and limited program

modification. Finally, all other previously mentioned differences with e.g. Digital

Clay system would apply to this case, too.

7. Finally, there are similarities with MATRIX [81] in the recognition that systems

using moxels would benefit from the non-CPU based control. MATRIX uses

FPGA [81], while we propose use of the GPU for our software control.

8. Digital Clay and Relief are further expansion on the range of prior work

including project FEELEX [80]. All differences between our work and Digital

Clay and Relief already described apply to those systems, too.

 ! 33

This thesis presents a software approach that addresses important practical

problems in the field, while showing viability of use of the well known and broadly

available commodity hardware in the form of the GPU. Furthermore, the body of related

work in the field shows that this work is addressing problems related to the broader

community..

 ! 34

Chapter 3 - Requirements of the Software For
Controlling Constrained Motion CPS

There is significant use for computer controlled deformable physical surfaces

consisting of large numbers of movable elements.

On the micro scale, there is a significant potential for the use of devices that

have similar characteristics to Constrained Motion PREs in the field of assistive and

tactile display technology [114], [8], [31], [86], [72], [115], [116], [117].

In particular:

1. MEMS based screens could be used as assistive technology, allowing a person

with vision impairment to perceive 3D depth and shape. Combining such a

system with a video camera would allow us to render graphics and even video

in a way that a visually impaired user could perceive. One such system uses a

tactile system to stimulate userʼs torso based on the image from the video

camera [73]. Furthermore, there is a project currently in progress in Mechanical

Engineering department of CU Boulder that is developing a MEMS based

screen, with plans to use some of the software algorithms proposed by the

author in one of its future implementations [21].

2. Utility of tactile systems is not limited to assistance of visually impaired users.

Tactile systems could be used in combination with touchscreen phones [89] to

provide tactile feedback to normal-sighted users. There are many other uses in

which tactile systems are beneficial. Such tactile feedback was found useful

 ! 35

even for users without any disability - [118] evaluates tactile cueing to helping

soldiers doing navigation in challenging environments and quotes examples of

the tactile feedback used by pilots under high-G force [119] and astronaut

training [120].

On the larger scale, deformation of the terrain on which the user stands is even

more intriguing. In our earlier work on PRE [6], [7]) we proposed combination of the

physical deformation of the terrain with a helmet on the user's head [28] which is used

to provide a computer graphics generated environment. In that combination the user

sees computer synthesized image, and feels under his feet the computer controlled

deformable terrain.

That will be the next logical step in the evolution of virtual environments, and

would allow for the following use cases (following use cases are adopted from the

authorʼs earlier work [6], [7]):

1. In the flight simulations, it is possible for the instructor to setup a scenario that

is too difficult, dangerous or expensive to in a the real plane [121]. An

environment like this could allow for the equivalent scenarios like “a soldier is

fighting in the cave, and just as he sees the enemy, he slips on his right foot”.

2. It is possible to train search and rescue personnel and civilians in building

evacuation in the case of fire. Our approach would allow much more immersion

then previous work [122] (which was using virtual environments and

omnidirectional treadmill alone) would allow for.

 ! 36

3. The system is opening the possibility of distributed training in which multiple

systems of this kind are networked, providing an impression that all team

members are at the same location. This is very intriguing possibility for the next

step in telepresence research.

4. Once this system is possible to create at a reasonable price, it will be a

breakthrough in the entertainment world as it would allow very high levels of

physical interaction within the game world virtual environment. Success of the

platforms like Nintendo's Wii [123] are showing that there is a strong interest in

video entertainment that would involve certain levels of physical activity.

These examples illustrate a variety of exciting applications of PREs. For them

to happen, software control of the potentially million element Constrained Motion PRE

needs to be resolved.

In order to address such a system, the software control system needs to have

the following properties:

1. It needs to be able to control millions of elements per second. For example, if

the diameter of the rod is 1 mm, it needs to control 10,000 moxels per square

meter, leading to the millions of moxels required just to cover the floor surface.

2. It needs to offer precise local control of each moxel, taking its physical

properties into account. For example, how fast can the moxel start or stop?

How to account for moxelʼs inertia? How about other physical parameters?

 ! 37

3. Integration with virtual environments should be possible, so that the same or at

least a similar description of the environment could be used for both graphical

rendering and physical control of the system.

4. If the hardware has the ability to simulate slipperiness of the terrain on which

the user is standing, the software should have the ability to control that

slipperiness.

5. The approach taken with the software algorithms should be applicable to a wide

range of the Constrained Motion PREs.

6. Latency must be appropriate for the calculation of the position of the elements

in the physical system16.

7. The proposed approach should be applicable not only to desktop and server

computer systems, but also to consumer electronics such as smartphones,

allowing devices such as smartphones to be used as computer control devices

for the assistive technology solutions.

This PhD thesis proposes a novel software approach allowing for the control of

Constrained Motion PRE systems using common of the shelf hardware, namely GPU. It

will show that:

 ! 38

16 Appropriate latency clearly depends of the physical system used. Later chapters would
discuss latency, as well as relation of GPU and real time systems.

1. Our algorithms allow common, off the shelf GPU, present in almost every

modern desktop system and becoming increasingly common in smartphones

such as iPhone [93] to be used to control Constrained Motion PRE systems.

2. Said algorithms do not require any modifications of the existing GPU hardware,

meaning there will be no expenses necessary for the design and fabrication of

the modified GPUs.

3. Said algorithms are able to calculate the position of hundreds of thousands and

even millions of moxel elements per second on commodity class desktop

hardware.

As is demonstrated by this work and other work quoted in the related work

section, coordination of the million elements systems is not a simple problem. Due to

the large number of elements involved, doing that coordination at an interactive rate is,

while accounting for the physical properties of the moxel, a computationally intensive

operation.

There is a definitive analogy between Holodeck/PRE and computer graphics.

The GPU is more efficient in per-pixel calculations than the CPU - there is little doubt

that the historical direction of graphics related calculation is moving toward specialized

hardware in the form of the GPU [34], [36], [35], [28], [124], [37]. We will show that GPU

based control of the PRE and MEMS based systems would provide significant benefits

in the form of the fast control of the large number of elements, using relatively

inexpensive, off the shelf hardware.

 ! 39

To summarize, the PRE as envisioned in [6], [7] will be capable of the following

features:

• Computer-controlled rendering of arbitrary physical surfaces on a grid of

moxels

• Control executed in real time

• With realistic tactile feedback and visual feedback

• Able to support the weight of a user standing, walking or running in

designated environment

Although Holodeck/PRE will be used as a primary motivator of the GPU based

software control, GPU is in no way limited to the Holodeck like system. The scope of

this PhD thesis will be limited to the software control in Holodeck, but here we will show

that there is a generalization of the software algorithms used on the other systems like

CirculaFloor/Holodeck crossover [10], [6], [7], assistive technologies [86], [8], [125], etc.

 ! 40

Chapter 4 - Overview of the Contributions by This
Thesis

The work that was performed as a part of this PhD research falls into two

categories:

1. Algorithms and methods for the scalable software control of multimillion and

larger Cyber-Physical Systems. As a part of it, it will be described how these

algorithms and methods could be applied on the multiple classes of the Cyber-

Physical Systems including large scale Constrained Motion Cyber-Physical

Systems, MEMS based tactile technologies and integration with systems like

CirculaFloor [3].

2. Demonstrates that proposed approaches to calculation of the moxel position in

the Z buffer and accounting for physical response curve are highly scalable and

capable of controlling multimillion elements Constrained Motion Cyber-Physical

Systems. In order to do that, a simulator of the Constrained Motion cyber

physical system, HoloSim, was developed.

Simulator was developed because of the fact that previously mentioned Cyber-

Physical Systems are expected to be expensive (as in the case of Holodeck

environment), and in some cases (like BrailleEye [21]) are still in process of being

developed. This necessitates that problems of the software control of such environment

must be resolved prior to building a physical environment.

 ! 41

Although we have simulator of the physical environment, that simulator

demonstrates all techniques necessary for the control of the physical environment and

is performing range of calculation necessary for the control of the full scale physical

environment17. In that respect, from the perspective of the software control of the

physical environment, the simulator goes beyond the level of complexity required from

the software needed to control a physical system if one was already in existence. This is

so, since the simulator requires all parameters necessary to control physical systemʼs

element position in addition to functionality particular to the simulation and visualization

of the position in the physical system that wouldnʼt be necessary if we had physical

system.

Considering hardware interface for the control of the physical system,

standards like DVI [126] that are allowing very high control bandwidth of millions of

discrete electronic elements (in this case, pixels) are widely used. That demonstrates

that communication with the hardware is not a difficult engineering problem18.

The diagram in Figure 9 shows all elements of the problem domain that this

work is addressing. Shaded parts are the parts that required performance

demonstration in order to prove scalability and due to that were addressed both in the

 ! 42

17 Calculations performed are limited on calculation of the position of the elements in the
environment, as that is the scope of this PhD work. Some physical environment might require additional
software and firmware that is dependent of the environment that is necessary for the physical
implementation of the environment. As this will beimplementation specific, simulator didnʼt covered them.

18 At least for any system that is having moxel densities comparable with the pixel densities of
the modern displays, and systems of that size already are multimillion elements even on relatively small
sizes. It is possible that there could be challenges related to the control if we are to go above currently
available pixel densities (especially in the area of nanotechnology), but these are challenges in the area
of the mechanical and electrical engineering. Finally, although DVI was mentioned as one way to get data
out of the tactile system, as discussed later in the document, it is not the only (or even the best) way.

text of the thesis and the simulator. Non-shaded parts are addressed in the text of this

thesis.

Moxels Stuck in
Up position

Moxels Stuck in
Down Position

Use Existing
GPU hardware

Catoms
Integration

CirculaFloor
Mapping

Safety on the Level
of 3D Model

Malfunctioning
Moxels

Safety
Issues

Geometry Mapping

Potentially Once Per Output Channel

Rendering of the Final
image

Moxel Decimation

Statistics Counting

Moxel Calculation
on GPU

Ground Floor
Handling AOP HandlingChange in Existing

Rendering Engines

Geometry Filtering

Fragment Shader Moxel Imperfection
Handling

Moxel Physical
Characteristics

Mapping

Moxel Imperfection
Mapping

Aliasing
HandlingCamera Positioning

MEMS
related
filtering

Tactile Dithering

Additional
channels:

Slipperiness
Heat

Electrical impulses
Sonic

Figure 9. Overview of the problem domain addressed by this thesis. Non-
shaded areas are addressed in the text of the PhD this and shaded areas are

addressed in text of the PhD thesis and prototyped in HoloSim.

 ! 43

As a part of the original vision of earlier work on PRE [6], [7], we believe that

the following capabilities should be present in the final software system controlling PRE-

type environments:

1. It should allow for the reuse of the 3D model definitions that might already exist

for the purpose of the computer graphics visualization of the environment, so

that most of the work that went into the defining 3D models is usable both for

the computer graphics based visualization, as well as for the physical rendering

of that environment in the physical system [7].

2. It should be capable of integration with systems like catoms [1], CirculaFloor [3]

and MEMS based systems, while at the same time taking into consideration

physical imperfections of the system as well as addressing various moxel

failures.

4.1 System Description And Research Considerations

We will now provide a brief overview of the elements in Figure 9, in order to

present a brief outline of the system. Subsequent sections will expand on parts of the

system much further.

Geometry Mapping - In order to be able to reuse existing 3D models, the first

step that needs to be performed is to take the 3D geometry description from the 3D

world coordinates (in the OpenGL sense [124]) and transform them into the format that

is appropriate for the physical rendering. That is achieved by mapping the existing 3D

 ! 44

world description on the ground plane around user (in the case of the large scale

systems) or on the user viewport (in the case of the MEMS systems).

Change in Existing Rendering Engines - We must ask: how can existing

rendering engines be changed so that they incorporate Holodeck in their pipeline?

Some of the techniques that could be used in this respect were discussed in the

authorʼs previous work [6] including the point that the techniques used in the modern

rendering engines that result in different visual output from the basic 3D model (like

Bump Mapping and Displacement Mapping) would require modification on the level of

the Holodeck system.

Ground Floor Handling - in the 3D graphic with output on 2D display, it is

customary to remove parts of the picture that are behind user. [124], [34]. This is a

perfectly reasonable approach for the visualization purposes, but as pointed out by the

author's earlier work [6] for the PRE purposes this technique become very problematic if

user decides to step back in a large scale physical environment. This implies that while

rendering, OpenGL clipping planes must be set in a position that encompasses the area

immediately behind the user when drawing a scene into the Holodeck based

environment, and that the position of the culling planes is function of both user position

and predicted maximum speed of user movement.

AOP Calculation - Is there a way to depend on the existing OpenGL libraries

without having access to the source code? Although a “wrapper” OpenGL library could

be written, another proposed option is that combination with the AspectC++ [112]

compiler would allow for the AOP based [113] approach to be implemented. This allows

 ! 45

for a better architecture in which we can intercept every call, and not require that calls

have to be proxied, as discussed in the authorʼs previous work [6], [7]. This is especially

important because OpenGL is not a trivial specification, and even “thin proxy” on top of

the OpenGL would be a significantly bigger chunk of work than AOP based interception

CirculaFloor Mapping - would address mapping of the existing techniques that

are designed for a static array of the moxels in limited 2D space into CirculaFloor

system [10], [3] that is designed to simulate infinite space. In order to successfully

perform those operations, it is important to account for the fact that moxel based system

suffers from the limited range of motion in Z coordinate too. Thus, the challenge was to

devise a system that not only uses GPU to calculate static position of the moxel in the

room, yet allow for XY movement to map that calculation to the dynamically moving

system of CirculaFloor, while at the same time not losing scalability properties of the

system. That requires that mapping happens completely on the GPU. Furthermore, a

system had to be devised that would allow presentation of the infinite height in the

limited 3D space, in effect requiring re-centering of the users in Z coordinate, again

while performing only GPU based calculation.

Geometry Filtering - challenge here is which parts of the 3D model geometry

are to be mapped into the Holodeck based system? For example, transparent polygons

shouldnʼt be presented to the Holodeck system, nor any polygon representing material

the user is not able to stand on. This would likely require combination of per geometric

primitive work (e.g. checking alpha channel value for primitive) and some modifications

 ! 46

in the Rendering Engine (in order to allow to programmer to tag particular polygons as

“not to be displayed” in Holodeck if e.g. structure is too weak to support user's weight).

Camera Positioning - how to position camera in a way that does not require

change in the existing GPU accelerators, while allowing for the massively scalable

computation of the moxel positions? Furthermore, the challenge is to accomplish this

without requiring complete redoing of existing 3D geometry models, as well as how to

minimize changes in the rendering engine. These issues are addressed by adopting

new algorithm that is in its complexity and approach similar to the Shadow Buffer [107],

but is applied in the field of the robotic calculation.

Moxel Calculation on GPU - it is necessary to fit in the constraint of the GPU -

e.g. map our work in the way that inputs are processable on GPU (which is what we did

in camera positioning) and that outputs are meaningful outside of the GPU. This

requires matching combination of previously described work in camera positioning and

matching moxel calculation granularity to the output moxel resolution.

Moxel Decimation - In order to allow for the real time speed of visualization (in

addition to the real time calculation that system is already allowing), it is necessary to

simplify existing output once per-moxel calculation was complete. Please note that this

step is required only in the simulation - if we are controlling real physical system, this

task wouldnʼt be required. This part was not hard to implement, but it is interesting that

visualization of even very simplified system takes much more time then calculation of

the final system many times its size and that some aliasing effects related to the PRE

control were uncovered during this process.

 ! 47

Statistics Counting - In order to demonstrate that this system has reached its

performance goals, there was a need to implement performance statistics based

counting. There was no scientific challenge here but this part of the system was

required in order to validate research results. Furthermore, with the imperfection of the

computer clock, we had to implemented engineering system that, as a part of the build

process, measures performance and clock resolution and fails the build if required

performance parameters are not met.

Tactile Dithering - In the case of control of the MEMS system, what is the best

way to present “tactile textures” of the material, and how to scale it on the very large

number of moxels that are needed to simulate fine grained surface? This issue has two

components - how to provide dithering fast (which will be described as a part of this

PhD work) and what is the best dithering pattern (which is HCI topic that requires tests

on the physical system and is outside of the scope of this PhD work).

Moxel Imperfection Handling - Moxels are physical systems, subjects to

manufacturing defects. As a part of the BrailleEye [21], variations as large as 50% were

noticed in the volume of the thermal element used for the control of the particular

moxels, which would imply very high variability of the control signals necessary for two

moxels to reach same position. Similar problems (although likely of somewhat lesser

magnitude) are expected in larger scale systems. Software control must be able to

account for the physical imperfection of the moxel while staying in the confines of the

GPU. This was addressed by making modifications of the per-moxel fragment shader.

 ! 48

Moxel Physical Characteristics Mapping - In addition to the aforementioned

imperfections, moxels posses physical characteristics that have to be taken into account

when we are addressing their positioning. Challenge is how to run per-moxel calculation

without having to do it on CPU. This was addressed by using the fragment shader.

The Fragment Shader - has to take into account all of the previous per moxel

based phenomena.

MEMS Related Filtering - Challenge here is how to present a surface that

allows for the best discrimination using only a sense of touch, while allowing finer

grained elements to preserve surface feel. Some basic techniques [75], [76] that lend

itself to the GPU based acceleration will be discussed. With that being said, the

challenge identified here can provide ample opportunities for the further research in HCI

area once MEMS based hardware is available.

Additional Channels - GPU have limited output capabilities on per-moxel

basis (e.g. they are limited on the color and Z-buffer per pixel info). There is a whole

array of methods that could be used for communication with the user, including but not

limited to mechanical, electical, vibrotactile and heat related [18], [89], [24], systems like

tactons that combine rhythm and tactile response to convey information [127], [128] as

well as effects like slipperiness in large scale systems [7]. How could we provide output

on the multiple channels using only limited capabilities of the GPU? Here, we propose

an approach that is a generalization of the approach used in [85].

 ! 49

Aliasing Handling - working with a discrete system, as is the case here,raises

questions about aliasing in both spatial and temporal domain. Most of the anti-aliasing

work in literature was concentrated on effects of the aliasing in the signal processing,

sound, image and visual animation [34], [129], [130]. This brings the question: do same

principles translate to the micro and macro scale of the PRE based systems? Although

final resolution of that question is definitely in the area for further research and outside

of the scope of this PhD thesis, we can demonstrate that macro scale systems may

require different approaches than the antialiasing techniques used in image processing.

Physical Safety - this topic is relevant to the large scale PRE since there is an

unavoidable amount of failed moxels in a system of this size. The thesis explores the

issue of how some of the anticipated moxel failure modes including moxels stuck in the

fully retracted and partially extended position could be addressed, as well as what are

safety implications of the 3D geometry used in the large scale Holodeck type of the

environment.

Catoms Integration - physical environment based exclusively on the moxel

actuation cannot present 3D shapes that could not be described with the 2D discrete

function. However, mechanism for the combination of the moxel and catom based

environments in the presence of the GPU based control of the moxel environment was

devised.

 ! 50

4.2 Engineering Consideration

In addition to all of the previous scientific considerations, the simulator of the

system was a significant amount of work on the engineering side. This section will

briefly describe what work was done on the engineering side of this project:

1. HoloSim extensively uses unit testing [131] and test driven development [132].

It is setup in such a way that as a part of every build a set of tests is run and if

those tests fail, build fails.

2. Performance goals are included as a part of each unit test (e.g. as a part of

build, program would test that performance goals stated in the PhD thesis

proposal were met and fail if not).

3. Program is written on OS X in XCode. Portability on the iPhone 3GS and later

appears relatively simple to accomplish, but has not been done yet. This might

be relevant if we are to use this software later in a mobile scenario.

4. Open source libraries were used when available for the supporting tasks, but

code relevant to the demonstration of core contributions of this PhD thesis is

not using third party libraries (except the ones that are shipped as a part of OS

like OpenGL library, math library, GUI library etc). Open source libraries were

used to reduce the burden of mundane tasks only (e.g. loading Collada [133]

models).

 ! 51

5. The code is fully documented and automated generation of documentation is

part of the build process. This was done by using an automated documentation

generation tool [134].

6. High level architecture was accomplished by using MVC (Model View

Controller) design pattern [135], with the separate model classes responsible

for calculation and decimation of the moxel based model.

Overall, HoloSim is designed, implemented and documented using the best

current engineering practices in the industry.

 ! 52

Chapter 5 - GPU Based Control of Large Scale
Constrained Motion PRE

Software control of the Holodeck PRE will be done by employing high-level

system architecture described in the authorʼs earlier work [6], [7] depicted in Figure 10.

The architecture is based on utilizing the capabilities of the GPU for dual purpose -

graphics rendering (on the left side of the picture) and moxel control (on the right side of

the picture). 3D Model data describes the surface being used by both pipelines.

Software algorithms proposed for calculation of the moxel position using Z buffer and

the fragment shader were tested in simulation, and simulation was used as a means to

prototype and test various concepts prior to building complex and expensive hardware.

We will describ a simulation environment in a separate section.

 ! 53

3D
Model

GPU for PRE
Control

GPU for
Rendering

PRE

Renders

Controls

Surface
Deformation

Same 3D
Model

Same
Model

Figure 10. GPU Based Control of the PRE. Used [136] for helmet picture.

The authorʼs earlier work [7] states that:

“The system begins by creating a 3D model in software of the environment to
be rendered. The 3D model must contain physical characteristics of surfaces
being modeled, including shape, texture and slipperiness. From the 3D model,

 ! 54

we extract the sequence of actions needed to render the physical surfaces in
the environment.

From the same 3D model, we can generate both graphical images that are
shown within the users helmet-mounted display as well as corresponding
physical terrains that are rendered within the PRE, thereby providing an even
deeper sense of immersion. Thus, two coordinated rendering paths emerge
from the same core 3D model.”

The system creates an immersive environment [7] by presenting an image to

the user wearing a virtual helmet [28], and at the same time deforming terrain under the

userʼs feet in order to conform to the same terrain image that user sees. We have

shown in this thesis that we can use existing programs that generate 3D images and

modify them to control Holodeck system's ground deformation and slipperiness of the

terrain.

The example in Figure 10 demonstrates deformation of only one plane, e.g. the

ground plane, but the concept is straightforward to extend to deforming other edges of

the room besides the floor, e.g. ceiling and walls. Thus, the physical rendering engine

may be drawing as many as six different surfaces (floor, ceiling and walls in the room).

Figure 11 takes a deeper look at how our software uses a typical GPUʼs

rendering pipeline. We are able to use elements of that pipeline for the GPU based

control of the Constrained Motion PRE.

 ! 55

HoloSim

GPU

Readout from
Z buffer and

display

Z Buffer Frame
Buffer

Fragment
Shader

RasterizationVertex
Shader

Geometry
Processing

OpenGL
API

File

HoloSim Uses
same GPU

for calculation
and visualization

HoloSim
control
code

Figure 11. Simplified version of how our software, HoloSim uses
programmable pipeline available in most modern GPUs. Only relevant stages

of the OpenGL pipeline areshown (the authorʼs illustration based on [137]).
Green color identifies buffers used, cyan identifies code and olive are relevant

stages in the OpenGL pipeline.

Most of the elements of the previous graphics pipeline are hardware

accelerated on modern GPUs [138], [35], [36]. This thesis shows that we are able to use

most of the elements of the graphic pipeline without requiring any functionality that is

not already a part of the existing rendering pipeline:

 ! 56

1. By the appropriate transformation of the viewport (described in detail in the next

chapter) we are able to use all elements of the existing graphic pipeline prior to

the Fragment Shader in the same way any prior rendering engine will be using

them.

2. The fragment shader allows us to run SIMD [139] style parallel programs that

will be executed on a per-pixel basis. We will use this functionality in the next

chapter to account for the physical characteristics of the movable element.

3. All elements of the rendering pipeline after the fragment shader will be used

without any changes, as in any other graphics program.

4. At the end of the frame being rendered, we read the content of the Z buffer of

the rendered image, and use it in the next section.

Although at first glance you might consider using OpenCL [140] and CUDA

[141] for the calculation of the moxel positions we will show that a more natural

approach manipulates a viewport directly and as such eliminates a need for, or benefit

from, OpenCL and CUDA due to its ability to directly control and access Z buffer.

 ! 57

5.1 GPU Based Control of the Moxel Displacement in Constrained
Motion PRE

When it comes to software algorithms, this project is basing the basic

calculation algorithm on the approach taken in the authorʼs earlier work [7], [6].

In the following discussion, lets assume for simplicityʼs sake that there is one

planar plate on the floor, and that its pins are perpendicular to the plate, rising up from

the floor as shown in Figure 12.

Figure 12. Physically Rendered Environment.

 ! 58

5.1.1 Use of the Z Buffer for Displacement Calculation in Constrained Motion PRE

The authorʼs earlier work [7] proposes an outline of the algorithm for moxel

control, where the viewport is positioned so that the combination of camera position and

resolution, in which every moxel matches one pixel, allows us to read moxel

displacement directly from the Z-buffer19.

That situation is shown in Figure 13. Looking at the plate from above, Figure 12

shows similarity with the array of the pixels on the computer screen. This brings the

following observation, as elaborated in Figure 13:

Parallel Projection

Rendered Scene

Ground Plane

Camera

Figure 13. Viewport Position while calculating moxel position in PRE using
GPU.

 ! 59

19 Note that it is possible to position camera both above and below the scene, and that moxel
displacement would depend both on how we interpret Z buffer value as well as the behavior of the
fragment shader - whether smaller or larger value of the Z occupies Z buffer after the test.

Suppose that we render an angled plane in the room, as shown in Figure 13 -

the user point of view.

Now, letʼs look from the point of view #2, with the orthographic projection on the

plate, with the viewer positioned above the plate.

Algorithm Moxel Position Calculation:

1. Suppose that we consider plate position to be at the screen

position, and the resolution is set so that there is one to one

cor respondence between each moxe l and (non-

supersampled) pixel.

2. If the previous assumptions are met, then rendering of the

plane and reading back the Z-buffer for each pixel would

determine how much each moxel needs to rise.

3. The vertical distance that moxel needs to move should be

equal to the value in the Z-buffer which corresponds to the XY

position of the moxel.

An important outcome of these observations is the fact that they allow us to use

hardware acceleration available in conventional GPUs to calculate the moxel position,

as well as standard APIs like OpenGL [124], [124] for controlling these calculations.

 ! 60

We will use the frame buffer and render buffer functionalities in OpenGL [37] for

rendering the image using this algorithm20.

With a simple visual scene a typical GPU easily reaches 70Hz resolutions on a

million pixels (and earlier works in computer graphics field [37], [138], [36], [35], [34]

shows it to be much more efficient for this purpose than the CPU), the GPU is ideally

suited for the software control of the large number of moxels.

In order to export results of the calculation from the GPU, we are using

OpenGL renderbuffer extension and readout from the OpenGL framebuffer object21.

 ! 61

20 Benefit of this approach is that it allows us to set buffer resolution independent of the current
display hardware, but is otherwise identical to the normal OpenGL output to the display.

21 Author would like to thank to Professor Willem Schreuder for suggestion to use this
functionality.

5.1.2 Use of the Fragment Shader for Adaptation to the Physical Limitations of the
Moxels

As noted in the authorʼs earlier work [7], each moxel is a physical entity, and as

such, subject to physical laws of inertia that can be accounted for in the fragment

shader. Suppose that moxel has a response curve for its position shown on Figure 14.

For the calculation of the final position, we could use GPU.

But what about intermediate positions? What if we for example have a

response curve for the moxel speed like on Figure 14? How can we calculate

intermediate positions of the moxels?

Time

Po
si
tio
n

Figure 14. One example of the response curve describing physical limitations
of the moxel position over time. Picture is modification of the figure from the

authorʼs earlier work [7]

 ! 62

The authorʼs earlier work [6] proposes use of the pixel (fragment) shader

present in modern GPUs and performing quantization of the function (presented in the

Figure 14) into a texture22 and passing the texture to the fragment shader with a uniform

variable representing the interpolation step that we want the fragment shader to

perform. From [6]:

“The fragment shader would then perform the necessary interpolation, store the
intermediate position of the moxel in the color buffer or intermediate texture (in
the situation that we need to account for the intermediate position in the
successive shader iteration), and actuate the moxel with the appropriate
displacement.”

Previous procedure addresses correcting for the physical limitations of the

moxel. Note that (as it will be explained in the section “The Fragment Shader Adoption

for Moxel Imperfection Handling”) the procedure can be modified to account for the

physical limitation of the individual moxel too (e.g. to address manufacturing variation

between different moxels). Furthermore, it is possible to combine previously described

approach with the information about current position of the moxel (as for example height

map of current height info as described in [85]) or external forces applied to moxel (e.g.

from the actuation mechanism as in [33], [16], [78], [17]) to have moxel texture take into

account moxelʼs previous position, physical characteristics of the moxel, manufacturing

variability, user position and external forces in the fragment shader calculation. This

allows us to address general physical characteristic of a single moxel completely on the

GPU.

 ! 63

22 Although originally 1D texture was proposed, packing 1D arrays in 2D texture better utilizes
GPU texture caches [38].

In addition to addressing the position of a single moxel, it is important to note

that sometimes there are issues with cross-talk of the moxels, in which actuation of one

moxel could cause surrounding moxels to be actuated (similar to crosstalk issues

described in [17] and [142]). Although the individual fragment shader canʼt account for

cross-talk, rendering of the moxel positions to the intermediate texture allows for a

subsequent rendering pass in which we use the fragment shader again on the texture to

account for the position of the surrounding moxels in the gather step [38]23.

In effect, to address cross-talk issues, we use multiple rendering passes, in

which the first rendering pass renders to a texture and subsequent rendering passes

read that texture and process it as an image processing operation, similar to e.g.

blurring operation in computer graphics [143], [129], and we could use similar approach

to processing including derivatives of the pyramidal methods described in [143] to

address relation between closely spaced moxels among which blurring did occur.

Note that as this is a GPU localized operation, it would also account for the

concerns about CPU impact of this correction in software mentioned in [17].

At the moment, we believe there are no significant quantization issues in

relation to the positions of the moxels in Z direction, and, if they exist, they are more

likely to be artifact of the mechanical implementation of the system chosen than its

software control.

 ! 64

23 Although not implemented in the current simulator.

Further sections describe various other aspects of the software control on the

GPU. Per the scope of this PhD research project defined at the time of the thesis

proposal, algorithms proposed in the subsequent sections were not included in

HoloSim.

 ! 65

5.1.3 Adoption of the Fragment Shader for Moxel Imperfection Handling

When working with physical systems, we have to take into account the fact that

there might be variations between the moxels that are results of the manufacturing

process. As just one of the examples, when the prototype of the BrailleEye project was

made at CU Boulder [21], differences between the amount of thermal element used to

power individual moxels had variation as high as 50% (in this case as a result of the

drilling tolerances). Although improvement of the manufacturing process is certainly an

interesting topic, the fact remains that there is always some variability present in

manufacturing of physical objects24. Furthermore, from the perspective of the whole

integrated system, if differences between moxels could be compensated for with the

software, we will be able to tolerate higher variability in the manufacturing process.

In order to control for moxel imperfection, we will assume that:

1. It is possible to determine moxel imperfections on per moxel basis (e.g. during

physical system's calibration test).

2. That information about moxel imperfection was collected for every moxel in the

system.

3. That information about moxel imperfection could be described as an array of

numbers, e.g. X = [X0, X1, ... , XN].

4. That it is possible to correct for the moxel imperfection knowing that set of

numbers from the previous point.

 ! 66

24 Well known effect in any manufacturing operations. See e.g. [144] for the descriptions of this
effect.

As an example, if we have varying mass of moxels that are controlled by an

electrical motor, it is possible that the motor would have to be run with higher power for

a moxel that has larger mass in order to achieve same acceleration as the moxel that

has smaller mass.

In order to address imperfection, we need to pass information about moxel

imperfections to the fragment shader, so that it can reconstruct the information and

address it. In the general case, we would need to pass an array of the values

corresponding to each moxel to completely describe its behavior (e.g. moxel could have

a problem only in particular vertical intervals, and we would need to pass those intervals

and nature of the limitation info). As moxels are a 2D structure and we need to pass 1D

array to each, we have a 3D structure that needs to be passed to the fragment shader

unit.

There are multiple ways to describe this structure. If the length of the arrays to

be passed to the moxel is similar across the moxels, then we could use 3D texture (see

e.g. [37] for description of 3D textures) in combination with the fragment shader. With

the previous approach in mind, the following algorithm will be used:

Algorithm Moxel Imperfection Mapper:

1. Setup a 3D texture in which XY plane will be of the same size

as moxel field

2. Set Z coordinate of the texture to be equal to N + 1, where N

is maximum of cardinality of set X across all the moxels.

 ! 67

3. For each moxel at X, Y fill up 3D textureʼs Z dimension in the

format of ZF = [Code, X0, X1, ... , XN] where

a. Code discriminates how to interpret the remaining numbers

in array (e.g. if some imperfections could be described with

only one number and other imperfections could be

described with two numbers, then we can have a code as 1

and 2 for previously enumerated moxels).

b. X0, X1, ... XN is array describing moxel imperfections.

4. In the fragment shader during moxel calculation, sample the

3D texture at the XY coordinates corresponding to the moxel

coordinates in order to extract imperfection information

corresponding to each moxel.

5. Use the fragment shader to compensate for the physical

moxel imperfections based on the previous information.

Previous algorithm would work for situations when the size of the moxel field in

XY direction could be represented with the 3D textures. If hardware capabilities donʼt

allow for the creation of the 3D texture that is of the same size as moxel field size in XY

direction, we have two approaches:

1. Use multitexturing capabilities to bind multiple 3D textures [37]. This will be

helpful. However, the maximum number of textures is still limited so we could

 ! 68

still run into the problem that the moxel field is larger then what texturing

capabilities would allow addressing in a single pass on the fragment shader.

2. Use multiple rendering passes - have one pass render only portion of the moxel

field that is big enough to fit in texture space we have, then second pass

address adjacent part of the moxel field.

3. Employ different packaging form - e.g. store imperfection arrays consecutively

in the 2D texture, and have another 2D texture that is holding indexes to the

first texture (this is based on the handling of the sparse data structures, as

described in [145] and [38]). This is preferred solution when length of the arrays

could vary a lot 25.

Clearly, which one of the previous approaches we chose would determine

whether it is possible to address moxel imperfections in a single pass or in multiple

passes. If we need a single pass to correct moxel imperfections, the question is: should

we combine that correction with the moxel calculation step, so that we need in total a

single pass to calculate moxel positions and correct for imperfections?

When making that decision, the following has to be considered:

1. There are clearly considerations with the capabilities of the graphics cards -

e.g. if we are to combine two passes that need textures in single pass, then we

 ! 69

25 This approach inspired by the multiple levels of the texture presented in the Pyramidal Array
approach [143] and gather approach [38] for splitting info in various positions in the texture . The fragment
shader reads array as “subimage” that is part 2D texture.

would reduce total number of textures that each pass can use26. So

engineering considerations might impose that we have a separate pass here.

2. Correction of imperfections has to be the last point in the moxel calculation

pipeline because moxel imperfections have to be taken into account after the

program has finished all the calculations for the moxel position. If we already

need to have multiple passes for other reasons27, we might be able to combine

moxel imperfection correction as last pass (or consider combining it with the

last pass in the pipeline).

The reason why moxel imperfection correction has to be the last point in the

pipeline is that moxel imperfection potentially has to take into account all the things that

moxel does. So if we apply moxel imperfection correction and then have a subsequent

rendering pass that modifies moxel position, then previous moxel imperfection

corrections might be invalidated.

As previously noted, it is possible that we might need to address cross-talk

between moxels in which position of one moxel impacts nearby moxel positions [17],

and additional rendering pass on the texture of rendered moxels would allow us to do

that.

 ! 70

26 As max number of textures is typically limited. See [37] for details.

27 We would discuss reasons why additional passes might be needed elsewhere in this thesis,
when we describe full software pipeline for the moxel based systems.

5.2 Integration of the Proposed Algorithm with the Existing Rendering
Pipelines

As discussed in the authorʼs earlier work [6], [7], once we know how to render a

given surface in Holodeck, the question remains how do we know what surface to

render? In a broader content of simulation, Holodeck is simulating physical ground in

the context of a bigger simulation environment, where Holodeck simulates ground

planes and the image of the remainder of environment is displayed to the user.

Could we integrate generation of the terrain image with the control of the terrain

that the user is standing on, whilst using the same code to control both? Is it possible to

reuse Holodeck with existing graphics program so that Holodeck shows the userʼs

perspective from the ground plane?

One additional problem to account for is that some objects residing on the

ground plane, e.g. the ball in Figure 15, could not be easily rendered in the Holodeck

environment, as noted in our earlier work [6]. If the top surface of the ball is rendered

using the Z-Buffer method, then we would fill in the shaded area in the gap beneath the

ball.

This area can't
be empty in the

moxel based
environment

Figure 15. Example of the physical shape that canʼt be rendered in PRE.

 ! 71

In some use cases like e.g. combat simulations, it is likely that the user might

try to take cover with the area directly above him protected. Although this might be

partially addressable by providing moxel system in which moxels are both on the ceiling

and the floor, this will not work on all surfaces as it allows us a maximum of two z buffer

values per any area in the XY plane and remains a consideration in use cases such as

combat simulations28.

Another related problem is that some objects (e.g. grass or bushes) could be

on the ground, but we could not stand on them - the userʼs weight is supported by the

ground in the outside environment, not by the grass on that ground [6].

That is, the problem is how to effectively distinguish the ground plane from the

objects on the ground plane. Based on our earlier work [6], for this to be done, we need

the help of the programmer, who must annotate the OpenGL program so that we know

which geometry parts are the ground plane only, and which ones are not.

We believe the modifications needed to help us distinguish between the ground

plane and objects resting on its surface are simple. In fixed OpenGL pipeline (without

changing geometry description in vertex shaders), we need to add just two API

commands that would identify the beginning and the end of the code section within

which all rendered geometry will be considered to be part of the ground plane. Only

these OpenGL commands will be physically rendered into the Holodeck's ground

 ! 72

28 See later section on combination with catoms for description of how this problem could be
resolved in the system that is combining catoms and PRE type of the environment. The author would like
to thank to the Professor Willem Schreuder for pointing use case of the combat simulations to me.

geometry. An example would resemble the following (example repeated from the

authorʼs earlier work [6]):

// ... draw elements that are not part of the ground plane ...
DrawBall();

// All subsequent drawing will appear on both the screen and in physical Holodeck
hglGroundBegin();

// ... all geometric objects that are part of the Holodeck's ground plane ...

// Drawings following this command would not appear in the Holodeck, but only on the screen
hglGroundEnd();

So, how do we render the picture shown in Figure 15? As is apparent, in the

Holodeck environment, this situation cannot be rendered correctly. As discussed in our

earlier work [6], by providing the ability to the programmer to control what is part of the

ground plane and what is not, we could declare the ball to be a part of the ground plane

(in which case the shaded area will be incorrectly rendered). Or we can declare that the

ball is not a part of the ground plane (so only the ground plane is rendered, and we

ignore the physical representation of the ball or simulate it with a separate haptic

interface). In effect, Holodeck would draw only those surfaces that could be represented

by 2D functions.

It is an interesting question, how to best intercept OpenGL calls between

hglGroundBegin() and hglGroundEnd(). One possibility is to use wrapper library around

OpenGL calls, so that it would intercept OpenGL calls and send them to both the

Holodeck and graphics screen. Another possibility presented in the author's earlier work

[6] is to use AOP [113], [112] to get the same effect. In effect, we would consider

 ! 73

HoloSim to be a cross-cutting concern for the visualization, and we would use AOP

advise to centralize in one place in the code interception of the OpenGL based calls,

and use one pointcut to “select” all OpenGL calls to be advised with the previous advise.

 ! 74

 5.3 Slipperiness of the Terrain in PRE

Let's take a closer look at a single moxel, as detailed in Figure 16. The authorʼs

earlier work [6], [7] sets a basic outline for the capabilities of a moxel, by proposing that

we equip the top of the moxel with a surface whose coefficient of friction can be varied

(e.g. ball with the brake), so that we can control both slipperiness and the height of the

surface, allowing for the simulation of the slippery terrains like e.g. inside of a cave.

Ball

V

Br
ak

e

Si
de

 W
al

l

Si
de

 W
al

l

Figure 16. Moxel capable of simulating slipperiness. Image reused from the
authorʼs earlier work [6].

The authorʼs earlier work [7] points out that we need more information to control

slipperiness of the terrain, as information about slipperiness is not presented to

 ! 75

OpenGL and proposes use of the fragment shader to vary slipperiness of each ball on

top of each moxel in accordance with the value of a “slip texture” for that moxel.

Slipperiness of the terrain is obviously scene specific but the fragment shader

portion of the slipperiness calculation is not, so the same shader could be used for all

the user programs. As a result, the user program would need to be modified to pass

additional texture information for each surface on which the user is standing. This is

typically not a problem unless the number of already used textures is limited by the

texturing capabilities of the card.

As discussed in our earlier work [6], our approach is to require the program to

be modified to provide surface slipperiness information. That information could be

passed in the form of the coefficients of frictions in a texture map equivalent, that would

then be used by the Holodeck's fragment shader. In the long run, we could modify

material libraries in the modeling packages typically used by artists to specify a look and

feel of objects [146] (which typically include multiple texture maps). The modifications

could be extended to include a slipperiness map of the surface, too. This is somewhat

similar to the concept of the library of the haptic recordings that is mentioned as one

alternative for haptic rendering by [42].

 ! 76

5.4 Controlling Additional Physical Properties Using Proposed
Approach

Slipperiness is just one example of the additional physical properties that can

be beneficial for the user immersion. There are many others:

1. By modifying the elasticity of the terrain on which the user is standing we could

simulate the sensation of being on concrete or sand. This relates to the

perceived elasticity of the moxel. GaitMaster [44] proposed varying resistance

on the pedals user is standing on to provide impression of moving over different

virtual terrains, and we are proposing extension of this approach to moxel

based systems.

2. Temperature of the moxel surface.

3. If the users skin is in direct contact with the moxel, additional tactile feedback

can be provided by the means of tactile, electrical, vibration or ultra-sound

stimulation [18], [67], [68].

The above examples could be calculated using a similar approach already

outlined for the calculation of the slipperiness. The question is how to provide additional

outputs in our framework, as each of the aforementioned could have values coming

from the analog scale.

Our solution here is to remember that in addition to the Z-Buffer information,

each pixel of the GPU would have RGBA information with 8 bits per channel, in effect

allowing us to output 32 bits per pixel.

 ! 77

We could divide these 32 bits among the values that need to be outputted - e.g.

if there are two values that could be outputted, we can allocate 16 bits to each, ignoring

the color channel (R, G, B, A) boundaries and providing 16 bit quantized output per

channel. Obviously, the more channels we have, the less quantization levels would exist

per channel.

 ! 78

5.5 MEMS Based Tactile Devices

Previously enumerated approaches could be used for the control of MEMS

based screens in situations where we are rendering the user interface elements or

computer generated images.

In addition, in situations where a visually impaired user needs to perceive a

large number of pixels all at the same time (e.g. by touching MEMS based screen), it is

possible to show not only computer generated images, but graphics and video streams

[114]. The combination of the display of the graphics and video streams goes far beyond

the ability to present only Braille based alphabet [147], because it allows the visually

impaired person to perceive not only text but graphics as well (one similar system

projecting video image on the torso is described in [73]).

In the case of tactile displays, it is beneficial to be able to control a large

number of MEMS elements.

1. Human skin is very sensitive to the difference of the small surface structures

with point discrimination threshold (TPDT) of 2-3mm at the fingertips, and

7-10mm at the palm of our hands. Experiments were conducted [117], [116]

indicating that gratings with a period of 0.7mm to 1mm could be distinguished

with 75% correct level when the difference between the periods is in 5%-10%

range.

2. Work was done on sliding surface over immobilized hand and it was found that

perceivable differences in the period along longitudinal direction of 0.64-0.8 mm

 ! 79

and that frequency discrimination thresholds for the vibrotactile displays will be

ranging from 16.5 Hz to 20.0 Hz (100 Hz standard) [77].

3. Furthermore, [31] suggest that spacing of less than TPDT/2 is necessary for the

device to be able to produce any tactile feeling (under conditions when

positioning of the hand could be precisely controlled). It is likely that even

higher spatial resolutions will be needed if the position of the hand could not be

precisely controlled.

4. Previous work investigates elements with a diameter of 0.5mm, with 250Hz

movement frequency for presenting texture feedback [86], [68].

5. Previous examples indicate that MEMS systems with elements smaller than

1mm in diameter are likely to be needed in at least some circumstances for the

realistic presentation of tactile surfaces.

6. On the tip of the human tongue, spatial resolution is shown to vary between

individuals in the range between 0.254mm-0.762mm [32].

7. Experiments performed by [115] and by measuring neurological responses in

the anesthetized non-human primates [148] indicate that if humans are allowed

to move their fingers across a surface, they can perceive differences in the

spatial distance between 0.65mm raised dots of only 20-40 microns (measured

by threshold of distance that is needed to achieve 75% correct discrimination

between two surfaces with different frequencies)!

 ! 80

8. A survey of various studies of tactile discrimination done in [27] concludes that

the threshold for the vertical indentation for amplitude in vibration for four types

of receptors in our skin varies in the range of 0.01 to 40 microns, for the

sensitivity of the receptor occupying various frequency ranges from 1 to

1,000Hz and highest peak sensitivity in RAII (PC) type of receptors being at

250 Hz. Other studies showed vertical sensitivity in 1-3 microns with different

experimental setup and associated frequency range [149].

9. Touch has much lower bandwidth than sight (four orders of magnitude below

sight), with about 100 bits per second but is about five times faster then sight

[18]. Consequently, although we need to control significant number of moxels

prior to touch and might need to control high frequencies of the vibration, for the

purely assistive technology uses with users that are unable to see, refresh rate

bandwidth while user is “scanning” doesnʼt need to be high, provided that

latency of the page refresh allows for the complete page change prior to

repeated touch29.

10. In order to benefit from the economy of scale, assistive technologies should be

useful for sighted users, too.

Taking all of the above into account, an argument could be made for MEMS

elements as small as 20 microns in diameter, but we will be conservative in our estimate

and assume they need to be 500 microns to 1mm in size. Even with that assumption,

 ! 81

29 Ideal interface for visually impaired people proposed in [24] has 76,800 elements on the size
of 32cm x 24cm and refresh rate below 10s. However, for people with the normal sight we would need
much higher refresh rate, as well as to take into account not only single point discrimination threshold but
also surface period discrimination threshold as demonstrated by [115].

there is a need to control ~50,000 to ~200,000 MEMS elements (for MEMS elements

varying between 0.5mm and 1mm in diameter) in order to cover surface of the size of

Kindle DX (including both screen and enclosure) with these elements [30].30

Large surfaces that could be touched with both hands have an advantage in

recognition of haptic images [25]. In the past, there have been attempts to provide a

small tactile surface that could show a tactile picture to one finger, and combine it with a

tablet that uses a pen and the other hand to point to a particular location in the picture.

So far researchers have found that users have significant problems with shape

recognition in those scenarios [25]:

“The aggregation process is too difficult for them in comparison with haptic
images: for taxel-based information only a small part of the digit skin is involved
in the reconstruction process, while for haptic images all the hand is used.”

In the frequency domain, it is unclear how often elements need to refresh the

picture. Blind users need substantial time to inspect a single picture [24], while sighted

users would expect that tactile picture be synchronized with the visual picture. With

16.5-20Hz vibration discrimination thresholds, it is reasonable to assume that 20Hz

should be a lower bound of frequency with which we need to refresh the display if we

are to use vibrotactile feedback for blind users. Additionally, tactile displays that are

logical extension of the Dynamic Displays [89] and TeslaTouch [5] idea (which are to be

used by sighted users to get tactile feedback on a touchscreen phone) might need even

higher refreshment frequencies.

 ! 82

30 Author would like to thank to Professor Clayton Lewis for pointing him toward Psychophisical
research in relation to this project.

Alternatively, it is possible that some systems might combine vibrations and

displays in the same system, necessitating calculation and control of both displacement

and vibration in our system.

This goes to show that we need an ability to provide software control at the

rates of the hundreds of thousands and possibly even millions of elements per second

even with very conservative set of assumptions. Those assumptions being, we need to

reach only 0.5mm moxel size and the very modest frequency of 20Hz.

As we can feel much finer textures then TPDT/2 when the position of the hand

cannot be precisely controlled (as is the case for the proposed assistive devices), it is

likely that an even higher number of elements might be needed. This shows that there is

a strong benefit from software that can scale control of millions of elements per second.

In other words, assistive technologies strongly benefit from our proposed approach.

In order to present graphics as applied to tactile devices, we have used the

following approach:

1. We define displacement of the moxel as a function of color of its corresponding

pixel. The best mapping from color to the tactile pattern would likely depend on

the exact physical implementation of the mechanical system used for the tactile

rendering and as such is an area for the future research. There is a significant

body of research performed on the topic of the human perception of tactile

systems that HCI based research of the color mapping could build upon,

including [115], [67], [67], [127], [27], [150] and [24].

 ! 83

2. Due to the mechanical limitations of different devices, it would be beneficial if

we could deal with the situation where moxels have only a limited number of

states they could occupy (e.g. binary, “up” and “down”). This in turn could

become an issue when we want to map large number of colors in graphic

image to moxels.

Analogous problems were previously encountered in computer graphics, when

a color picture had to be shown on a monochrome screen [34]. The solution in that case

was dithering, where groups of black or white pixels are arranged in such a way that

they provide perception of shades of gray, as shown on Figure 17:

Figure 17. Michelangelloʼs David rendered using Floyd-Steinberg dithering
[151].

Inspired by that approach and haptic recordings as discussed in [42], we can

use dithering on a group of MEMS elements mapped to the single pixel in order to map

 ! 84

different colors. In effect, we are defining a function that maps the color of the pixel on

screen to the texture emulated by the group of the MEMS elements.

This dithering could be performed in the fragment shader in order to determine

the color of the pixel using the multiple fragment shader units which are available on the

GPU in parallel, ensuring massive scalability of the calculation approach. In effect, the

following approach will be taken:

1. The fragment shader program will be responsible for the calculation of the

MEMS element positions on a per element basis. In addition, it is likely that the

image enhancement algorithms such as edge detection, blurring and

segmentation will be beneficial for better tactile perception of the image [75].

GPU is capable of accelerating each one of these tasks.

2. Initial color image will be passed as the texture to the fragment shader.

Currently, it is unclear whether the current dithering algorithms accepted in

computer graphics offer the best approach to performing dithering on the picture.

Further HCI work will be needed in the future to make that determination. For the

purpose of this work, we are focusing only on the moxel software control and scalability

of that control. The question of most appropriate dithering algorithms for the touch is left

as an area for future research once we have available physical MEMS systems with fine

enough resolution.

Finally, note that the dithering based approach and displacement based

approach can be combined if the MEMS based device allows for more then two states

 ! 85

of the MEMS element, as for example the tactile devices presented in [71] are capable

of.

Software algorithms for GPU control of MEMS based systems will be described

in more details in the subsequent sections.

In relation to the MEMS based devices, it is interesting to note that there are

recently proposed alternatives in the form of systems using electrovibration to provide

the sensation of differing surface friction to the sliding finger, as described by [5].

Although these systems are very different from the MEMS based systems in the respect

to the physical implementation of the system, from the perspective of the software

control, they offer a number of similarities to the MEMS based systems:

1. Feeling of different surface frictions is just one example of the tactile

mechanism for transferring information to the human finger. Algorithms for the

MEMS based system could be easily adopted, as electrovibrational effects are

just another output channel.

2. Need to account for the different detection thresholds for different

electrovibration levels, as discussed in [5], is just another form of accounting for

the physical characteristics of the moxel. We discuss the particulars of the

moxel physical characteristics elsewhere in this document.

 ! 86

Chapter 6 - HoloSim, Implementation of Algorithms for
the Constrained Motion PRE

HoloSim software fulfills two distinctive roles:

• It is a proof of concept of the proposed algorithm for Algorithm Moxel

Position Calculation, that also takes into account physical limitations of the

moxel31.

• At the same time, as there is currently no physical prototype of the PRE

environment available, HoloSim performs the additional task of the

visualization of the results in such an environment.

As a result, HoloSim is not an environment simulator - it is actually a proof of

concept, as well as a mechanism for the visualization of the PRE environment. Figure

18 illustrates output from HoloSim, in which a throne is rendered inside of the PRE

environment32.

 ! 87

31 This is done using simple fragment shader that is using piece-wise linear function describing
one possible physical characteristic of the moxel.

32 Also, note that Moiré pattern would not exist in the real PRE environment. See later section
discussing aliasing in the moxel based environment for more details.

Figure 18. HoloSim, a simulator of the PRE.

HoloSim features following capabilities:

• Support for a subset of the Collada format [133], allowing 3D models to be

made in modeling programs33.

• Ability to calculate moxel positions on GPU using previously proposed

algorithm.

 ! 88

33 Collada is complex format, and it was not needed for the purpose of this project to support all
parts of it (e.g. HoloSim doesnʼt currently use normals, texturing or independent coordinate systems for
objects in Collada file). Supported functionality allowed use of Google SketchUp [152] for the definition of
the HoloSim models shown in this thesis.

• Ability to take physical characteristics of the moxel into account on the

fragment shader. For the purpose of the simulator, we are using the fragment

shader performing piecewise-linear moxel time/position control function.

• One channel output of the displacement over Z-buffer values.

• Visualization component that visualizes position of the moxels in the 3D

space. It also provides GUI for control of the viewport.

• Performs tracking and presentation of the moxel calculation statistics

• Simplifies visualization of a large number of moxels, by grouping multiple

moxels into the single visualized moxel34.

• Provides basic loading functionality for model description.

• HoloSim code is written in the C++, and GUI portion of the HoloSim is written

in Objective C, using Apple Cocoa framework.

• Although simulator currently works on Max OS X, majority of the non-GUI

code should be portable on iOS platforms supporting OpenGL ES 2.0,

including iPhone versions supporting OpenGL ES 2.035.

Note that although HoloSim simulates physical environment, the calculation

engine included in HoloSim would not need to change for the code to control e.g.

physical PRE. We would just need to replace output to the visualization portion of the

 ! 89

34 Position of single visualized moxel is based on the averaging position of the grouped moxels.

35 iPhone 3GS is the first version of the iPhone that supports OpenGL ES 2.0 [91], [92], [93].

HoloSim with output to the physical system. That means that HoloSim is, on the purely

software side, more complex then it will be if itʼs only purpose is controlling the physical

system, as we wouldnʼt need visualization, speed measurement and view control

functionality in the real physical system.

Figure 19 shows the difference between functionality available in the current

HoloSim and minimum functionality that will be needed if we are controlling real physical

system:

HoloSim

What is Needed if There is Hardware

Software

Calculation

Software

VisualizationCalculation

Speed Measurement

Hardware

Viewpoint Control

Figure 19. Current HoloSim required more software then will be needed if
there was hardware.

 ! 90

Current implementation of HoloSim is:

• Showing feasibility of the use of algorithm Moxel Position Calculation.

• Showing that it is feasible to take into account physical characteristics of the

moxels based on piecewise linear (time vs position) physical response curve.

• Showing that proposed algorithm could scale to support million elements and

larger Constrained Motion PREs.

• Providing infrastructure for the visualization, viewpoint control and moxel

calculation statistics tracking and measurement.

Following sections will expand on the results that were found in the HoloSim.

 ! 91

6.1 Measured Performance in HoloSim

In respect to the performance of the moxels, two components impact rendering

speed:

1. 3D scene complexity - number of polygons, as well as size and overdraw of

those polygons. This area is affected in absolutely the same way as classical Z

buffer algorithm, and as such the factors influencing it, as well as appropriate

ways to optimize it, are well understood in the computer graphics community. In

addition GPUs have already demonstrated in practice an ability to scale well in

the respect to the geometric complexity of visual scenes.

2. Scalability to the various number of moxels, for the given scene complexity.

This is the area that is directly related to control of the moxel based systems:

while we can control in software the complexity of the input 3D scene, we can't

really control number of moxels once the physical system has been produced.

Consequently, we have paid a special attention to this area.

All measurements were performed on a 15” MacBook Pro 2.66 GHz from early

2009 (Apple model identifier MacBook Pro 5,3), using NVIDIA GeForce 9600M GT

graphics card. At the time of purchase (March 2010), machine cost less then $2,000 36.

The goal of the test was the proof of the scalability of the proposed algorithms rather

 ! 92

36 Note that measurement was based on what was perceived as a “worst case of moxel
calculation” - e.g. we counted time needed to read back buffer as part of the moxel calculation, and
system was using GPU for both moxel calculation and visual drawing, necessitating saving and restoring
of the OpenGL state between moxel drawing. It is therefore likely that even higher performance then the
one presented here could be achieved. However, scope of this PhD thesis is just showing scalability and
feasibility of the approach, so we have setup conservative measurement characteristics based on the
close to worst case scenario described above.

than determining the maximum number of moxels that given configuration could

support. The test was set with a goal of ensuring that we are measuring the lower

bound of what is practical on the given commodity hardware.

The test was performed on a 1,680x1,050 external monitor, with the size of the

HoloSim viewing area of 733x555 pixels, and moxelʼs physical transfer function

consisting of three piece-wise linear segments determining moxel position vs timestamp

value used for the model deformation, with the model cyclically deformed. Screen saver/

screen blanking/Time Machine were disabled for the duration of the test, and all front

end applications except XCode, HoloSim and Terminal shut down. The test was

performed by loading a model that is deformable based on the value of the timestamp.

HoloSim was setup to automatically start rendering successive timestamps of the

model. We took 1,000 frames from each model starting with the second frame37.

Statistics and rate were calculated based on these frames, using moxels per second as

a unit of data.

The same graphics card was used for the purposes of the moxel calculation as

well as visualization in the HoloSim. Any time needed for the save/restore of the graphic

card state and read back of the Z buffer was included as a time needed to calculate

position of the moxels. No simplification of the moxels was done during these tests for

the purpose of the visual simplifications.

 ! 93

37 Initialization of the GPU data structures (e.g. render buffer) is performed in the first frame, so
the first frame is not representative of the system in a stable state and was therefore not included when
calculating statistics. The author would like to thank all of the PhD committee members, who pointed out
during the defense of this thesis that the first frame shouldnʼt be included when calculating statistics.

All of the previous measures taken assure that any bias in our tests would lean

toward moxel performance lower than what GPU is actually able to achieve for the

given scenario. We believe that this was appropriate for the goal of understanding

whether a proposed solution can scale and control the million element moxel based

system. We have chosen a fairly conservative approach to reporting our results and in

demonstrating scalability and viability of the approach38 rather than reporting only the

maximal performance that GPU based control will be capable of when controlling the

physical system.

HoloSim performance measurements were performed on a simple model from

the Google SketchUp. That model has 160 triangles in it.

 ! 94

38 As well as the fact that minimum performance level outlined as a goal for the PhD thesis was achieved.

Table below shows measurements performed for the moxel calculation speeds

based on the number of moxels:

Model Size
(moxels)

Sample
Mean

(Kmoxel/s)

Sample
Min

(Kmoxel/s)

Sample
Median

(Kmoxel/s)

Sample Max
(Kmoxel/s)

Sample
Average
Frame

Latency
(ms)

Median
Frame

Latency
(ms)

100
(10x10)

2,500
(50x50)

10,000
(100x100)

40,000
(200x200)

90,000
(300x300)

160,000
(400x400)

250,000
(500x500)

562,500
(750x750)

1,000,000
(1,000x1,000)

2,250,000
(1,500x1500)

4,000,000
(2,000x2,000)

6,250,000
(2,500x2,500)

9,000,000
(3,000x3,000)

155.37 4.22 162.07 202.84 0.960 0.617

3,943.63 90.74 4,051.86 4,940.71 0.906 0.617

14,993.54 719.01 15,408.32 18,552.88 0.715 0.649

9,465.64 2,998.05 9,013.07 62,992.13 4.377 4.438

20,146.25 6,818.70 20,179.37 96,670.25 4.678 4.460

41,252.59 4,885.50 27,605.30 141,718.33 6.840 5.796

48,072.03 10,324.18 43,576.78 161,290.32 5.872 5.737

79,826.95 16,234.23 83,475.55 168,766.88 7.484 6.739

93,884.89 32,000.00 100,811.69 180,505.42 11.536 9.920

136,572.45 59,272.92 138,491.41 181,393.10 16.909 16.247

146,108.45 42,028.73 149,664.19 181,669.54 27.833 26.727

158,623.97 46,074.80 163,479.90 181,490.84 39.728 38.231

160,173.07 105,682.18 162,971.15 181,865.94 56.432 55.225

Table 1. Performance results of rendering model versus various number of moxels. All

models had an equal number of moxels in the X and Y direction.

 ! 95

In the graphical form, results are shown on the graph below39:

Figure 20. Moxel rendering rate as a function of the number of moxels in a
model. Note that in order to fit all the measurements on it, graph is using

ordinal scale on the X axis, as opposed to linear or logarithmic scale.

 ! 96

39 Author would like to thank to Professor Steven Ouellette for help on how this data can be
analyzed if looked at from the perspective of the statistical process control.

Figure 21. Moxel rendering latency as a function of the number of moxels in a
model. Note that in order to fit all the measurements on it, graph is using

ordinal scale on the X axis, as opposed to linear or logarithmic scale.

 ! 97

As the figures show, HoloSim clearly demonstrates an ability to control millions

of physical elements per second, while taking physical characteristics of the moxels in

account 40. That being said, there are some additional things that could be noticed from

the previous graphs:

1. We are clearly exceeding rate of 500,000 moxels/second on all but the smallest

of models (10x10 moxel size) for which setup time heavily dominates calculation

time (and that are small enough that they could be easily controlled on both

GPU and CPU). From that perspective, it is clear that we are exceeding the goal

that was set at the time of the thesis proposal. Note that this is achieved with the

conservative approach to measurement (e.g. we are calculating OpenGL state

change and initialization of the OpenGL renderbuffer as a part of the moxel

calculation time).

2. Median of the latency of the frame rendering time is staying well within

interactive range even for the models holding millions of the moxels, with the

median of the latency of the 9M moxel model being 55.225 ms.

3. There is significant variation in the rate of moxel rendering between frames, as

well as couple of outliers in the first 1,000 frames.

a. Cause of those variations could be attributed to the impact of the state

changes between frames, in relation to the use of the same GPU for both

moxel calculation and visualization, as well as the associated cache

 ! 98

40 Note that maximum model tested was 9M moxels with the number of moxels per second
calculated based on the time it took to render 9M moxel model.

changes. Furthermore, it is possible that there are variations in the cache

behavior between frames.

b. We are using the same GPU for visualization and calculation. That means

that we are not only requiring frequent state changes, but that we are using

GPU resources (e.g. caches) for the purposes different than rendering, and

that furthermore we are alternating resource uses between two different

goals with different optimal policies. This increases variability41.

c. With that being said, definitive cause of the variation and factors impacting

interframe variation are related to the question of what are maximum rates

achievable on the particular GPU, and as such outside of the scope of this

work that was concerned with showing feasibility of the GPU use for the

purpose of the control of the large scale moxel systems.

Note that previous is GPU based performance on the given model for which

tests were performed. Statistical tests performed on the distribution didn't show

conformance to any well-known statistical distribution at the 95% confidence level. We

are likely dealing with a data sample that is not coming from a population that should be

described with the single distribution42. Consequently, statistical inference on what are

parameter values in population this data shouldnʼt be performed.

 ! 99

41 Again, we are measuring in the conservative way, with the goal of being able to show
feasibility of the control of at least 500,000 moxels/s. Consequently, our measurements are actually
overestimating frame rendering time. As such, peak rendering rates and best optimizations to achieve
those rates fall outside of the scope of this thesis.

42 One implication of this is that all given statistics are values in sample. Another is that box and
whisker is better representation of underlying data then e.g. average would be.

As we can see in the previous table, system performance depends on the

resolution of the moxel model, and highest results were achieved on the larger models.

Note that except for the smallest models that could be easily calculated on both CPU

and GPU, we are clearly reaching our goal of controlling millions of moxels per second.

Furthermore, frame rendering latency grows with the number of moxels in the model.

Average and median latency is 56.432 ms and 55.225 ms respectively, for the moxel

model including 9M moxels, which is certainly acceptable performance.

 ! 100

Chapter 7 - Beyond Pure Moxel Based System
It is possible to combine the previously described approaches with the larger

class of the Cyber-Physical Systems. This chapter will discuss combination of the moxel

based system with multiple Cyber-Physical Systems.

7.1 CirculaFloor and Moxels

CirculaFloor [10], [3] is a locomotion interface which uses a set of movable tiles

to provide an infinite walking surface while staying in a limited confined space, as shown

in Figure 6.

Infinite walking surface is provided by moving tiles in the opposite direction of

the movement of the user as shown on Figure 6, so that if user is moving forward to Tile

A, Tile B on which he is standing is moved backwards, keeping user in the same space.

At the same time, Tile C behind the user will be moved in front of him, allowing him to

step onto the next tile43.

Combination of the CirculaFloor [3] with the Holodeck type of environment

would allow simulation of an infinite surface not limited to flat surfaces [6], [7]. We can

now present techniques by which proposed algorithms can be extended to support of

CirculaFloor.

 ! 101

43 There are actually multiple possible circulation modes in the CirculaFloor. For the complete
description of circulation modes, see [10] and [3]. Figure 23 and description given here are showing
simplified conceptual picture, using only three tiles.

First step in the extension of the Algorithm Moxel Position Calculation needs

to map calculation of the moxel coordinates to the CirculaFloor tiles. In order to achieve

this, we propose a following approach as outlined in the Figure 22:

Ground Floor

Tile A

Tile B

X World

Y World

Y Tile A

Y Tile B

X Tile A

X Tile B

X0 a, Y0 a

X0 b, Y0 b

Figure 22. Mapping of the calculated moxel coordinates to the CirculaFloor.

Conceptually, for clarity of explanation, we will assume that we will perform a

moxel calculation on the whole ground plane which includes all the space where

CirculaFloor tiles are able to move. In effect, we are going to calculate position as if the

whole floor is covered with moxels. Then we will apply the following Affine

transformation between coordinates in the Tile Aʼs coordinate system and worldʼs

coordinate system44:

 ! 102

44 Although for the sake of clarity we decided to use non-matrix form, this translation could be
shown in the matrix form using homogenous coordinates [34].

Xworld = X0a + XTileA

Yworld = Y0a + YTileA

Position of the moxel in the local coordinate system of CirculaFloor tile is:

XTileA = Xworld - X0a

YTileA = Yworld - Y0a

Now that we know how to map global coordinate system to any single tile using

simple translation we can ensure that translation step will not have a high performance

impact.

However, there is one more correction needed to account for the physical delay

in raising the moxel on the tile. In the case where a tile is moving with some speed (Vx,

Vy), what has to be accounted for is that coordinates corresponding to the moxel on the

tile will be changing over the period of the time that moxel needs to move (as different

moxels on the moving time would correspond to the different moxels on the floor). We

will assume that the time interval is small enough that (Vx, Vy) could be considered

constant. Where this is not the case a similar approach could be easily extended by

taking any projected trajectory the user would take in that period of time.

For the sufficiently short moxel moving period Δt, we will assume that speed of

the movement of the tile (Vx, Vy) will be constant. Furthermore, we will be interested in

the final position of the tile at the end of movement. So transformation between position

of the origin of the coordinate system of the tile X0a (t0), Y0a (t0) at the time t0 when

moxel starts moving and time t1 when the moxel stops moving is:

X0a (t1) = X0a (t0) + Vx Δt

 ! 103

Y0a (t1) = Y0a (t0) + Vy Δt

Again, this step wouldnʼt have high performance impact as common term could

be calculated on per-tile basis once; we would need one addition and one multiplication

per moxel to find its final position.45

At this point, we have three possible approaches to addressing the calculation

of the moxel position. Which one is the most appropriate depends on the moxel

densities on the circulating floor tile:

1. We could have single GPU calculating position of the moxels across the whole

ground floor and mapping it to the particular tile occupying the space of the

pixel. This approach allows us to control system of the multiple tiles with the

single GPU, and is appropriate in the situations when the moxel densities are

such that whole room in which tiles are can be served using single GPU.

2. It is possible to dedicate GPU per tile, and to perform calculation only over the

space of the single tile. This approach is appropriate in the situation when

moxel densities are high (e.g. 1mm on 10m times 10m tile at 1 Hz requires

100M moxels/s).

3. Combination of the previous two approaches is possible46, in which we cover

area that is immediately around the CirculaFloor tile with calculation. This

 ! 104

45 Common term in this case wouldnʼt include Δt because different moxels would start from the
different positions, and consequently would need different times amounts to reach final position.

46 The author would like to thank to Professor Willem Schreuder for suggestion of the hybrid
method.

hybrid approach would work in situations when the room is much bigger than

the area immediately around the tile, but moxel density is not big enough to

warrant having single graphics card per CirculaFloor tile.

Proposed approach for calculation of moxel displacement in the XY plane takes

its inspiration from texture mapping [34], in which parts of the texture maps are mapped

to the flat polygon. In this case, we could consider that each tile in the CirculaFloor is

analogous to the texture, and that ground plane is analogous to the polygon on which

texture map is applied, with the further distinction that instead of calculating results

(output color) to apply to the ground floor (analogous to polygon in texture mapping), we

are calculating result (moxel displacement) to apply to tile in CirculaFloor (analogous to

mapped texture) and that we take user's movement into the account. Note that although

general approach is modeled based on the texture mapping, math used had to be

modified to fit our case.

Similar approach to what CirculaFloor is doing in the XY space to provide

impression of the infinite height achieved with the moxels that could be moved only

limited travel space could be done by adopting CirculaFloorʼs XY repositioning approach

to the Z coordinate, as shown on Figure 23.

 ! 105

Lower moxels
together to maximize

available movement range

Figure 23. Z coordinate handling in moxelated CirculaFloor.

In this approach, lowest coordinate in Z direction would determine how far we

need to raise a moxel, as the lowest moxel could stay at position 0 without being

extended. This is conceptually similar to the direction that an extension of CirculaFloor

47is using for moving a complete surface up and down in its “Stair stepper demo” as

reported by [155] and currently implemented for [154], with addition of ability to provide finer local

control of the surface because we can control individual moxel as opposed to controlling complete tile

surface.

Note that it is possible to include Z coordinate range normalization both on the

CirculaFloor tile itself, as well as on the GPU, by implementing additional reduce step,

 ! 106

47 The are no publications currently available for this extension in vertical dimension [153].
There is museum exhibition of the enhanced CirculaFloor device [154], as well as various reports on the
work [155].

as described in e.g. [97] and [156]48 with the reduction step on per-tile basis49.

Furthermore, the Z reduction step doesnʼt need to be run all the time - it could be

triggered on-demand, in the situation when we are running out of the moving range for

the rods in Z direction.

Note that although the proposed framework on the CirculaFloor would use

fewer moxels than if we were to take an approach in which a surface not modeled with

CirculaFloor is covered with the moxels, it doesnʼt eliminate need for the control of the

large number of moxels. Reason is that smaller tile allows us to reduce moxel size (e.g.

while at 100m x 100m field even with diameter of 1cm we would need 100M moxels, on

the 10m x 10m tile using 1mm diameter, we have the same number of moxels needed).

This only gets more demanding in the approaches in which the complete floor is

rendered, and tiles are then mapped based on result of the output from the floor.

Although combination of the CirculaFloor and moxels allows for the illusion of

the infinite surface and as such makes CirculaFloor important technology, CirculaFloor

canʼt avoid the same problems that any repositioning mechanism does, namely that it is

not possible to move user smoothly without user noticing that he has been

repositioned50. CirculaFloor canʼt provide stable walking surface to 22% of users [3].

 ! 107

48 Also, similar technique as to what we are describing could be implemented in OpenCL [140]
or CUDA [157], but as we are already need Z buffer related calculation, we decided to formulate this
problem in the form of the classical graphics calculation.

49 Interesting topic of the future research is could we use geometry shaders to help to this
process, as described in the [158]. However, at the current time Geometry Shaders are not likely to be
supported on all architectures that this work is potentially interested in (e.g. cell phones with low end
OpenGL support) so this work is not using them.

50 Because some acceleration is required in order to reposition a user - system is reacting on
the user movement with some finite delay.

Based on these findings, there is no reason to believe that adding moxels to

CirculaFloor would in any way improve userʼs perception of stability of the surface. This

is a part of the larger trend - similar systems reported a need for user training so that the

system could be used at all [12].

Consequently, though the proposed approach allows for the simulation of

infinite space within a confined space, moxel covered static surfaces would likely

provide better experience. However, this is a limitation of the CirculaFloor as a physical

surface and not in any way aggravated by the approach to the software control that we

have chosen to use here.

 ! 108

7.2 Extension of the Proposed Approach to Systems Combining
MEMS and Moxels

The proposed approach could be extended to small scale systems, e.g. tactile

displays [18]. These type of systems have significant usage in assisting visually

disabled people [24]. The also offer an interesting research direction as Dynamic

Displays [89] and TeslaTouch [5].

In each case, portion of tactile display could be considered to be 1D

Constrained Motion system (moxel). With regard to the mechanisms for the software

control, tactile displays can be divided, in relation to their hardware capabilities, into

displays capable of raising elements to multiple positions (e.g. fully down, quarter of the

way up, halfway up etc) and bimodal (on or off) displays. GPU based algorithms are

useful for both classes of dynamic displays.

For the tactile displays capable of multiple positions of the moxels, the

previously proposed algorithm for control of the Holodeck environment applies naturally

to the visualization of the 3D models, possibly with the additional transfer function (e.g.

function that transfers Z range in the physical model to the Z range available in the

MEMS based device). As previously demonstrated, this is a special case accounting for

the physical limitations of the moxels and could be addressed with the extension of the

proposed fragment shader/texture input algorithm we are using.

Meanwhile, for the tactile displays capable of only bimodal (on/off) state, GPU

supplies following capabilities:

 ! 109

1. Mapping of colors to the tactile texture would allow for representation of the

tactile feel of the color. Although best mapping is an area of further research in

respect to this thesis, some work related to this area is [67], [67], [127], [27],

[150] and [24].

2. For the visually impaired people GPU provides the ability to accelerate image

enhancement operations needed for the better tactile perception of the images

[75], [76]. There is significant previous work in the area of GPU acceleration of

image enhancement algorithms - one example [159] discusses use of the GPU

for image space transformation including edge and corner detection.

3. Previously proposed algorithms allow us to calculate the ideal height to which a

moxel should be raised; having this calculated we could use a combination of

tactile dithering and rounding of the position to represent height of the surface.

 ! 110

7.2.1 Tactile Dithering Acceleration Using GPU

In the case of tactile dithering acceleration, we use the GPU fragment shader to

quickly calculate position of the moxel in order to form dither pattern, based on the input

pattern.

For example, we can say that following dither pattern corresponds to the

particular color, as shown on the Figure 24:

Figure 24. One possible tactile dithering pattern using 4x4 moxel grid to
represent particular color.

If we have an input picture for which we want to represent tactile dithering

equivalent, we would need to map every pixel to the set of pixels (e.g. we map blue to

the 4x4 pixel pattern shown on the Figure 24). We would achieve this by using the

following multi-pass approach:

 ! 111

Algorithm Tactile Dithering with GPU:

1. In the first pass, we would generate the normal picture, but

instead of rendering it to the screen, we would render it to the

2D texture. Output of this pass is texture that has colors of the

particular pixels in the original color, without tactile dithering.

2. Then we would use that 2D texture as an input to the second

pass of he shader in which each pixel in the texture will be

mapped to the group of output moxels, with the color being

used as index in the second texture that is holding dithering

patterns for the color.

3. Using multitexturing capabilities of the GPU, we will be able to

provide tactile dithering in two passes.

Previous approach is inspired by the scatter/gather mapping step (as described

in [38] and Percentage-Closer Filtering [160], in which multipass render to textures is

used in order to emulate scatter step on the GPU, but is modified to be applicable to the

moxel based rendering for bistate capable moxels).

Although the previous approach is relatively straightforward to implement, there

is a limitation in relation to the maximum size of the textures, with many GPUs being

limited in the maximum texture size that they can support [37]. That in effect means that

the picture shown as a part of step 1 has to be of limited resolution (limited to the max

 ! 112

texture resolution). If we need to have a pre-dithered picture of higher resolution then

what fits in the maximum texture, we have couple of options to address it:

1. Use “reduce step” as described in [38] to scale resolution of the input picture (if

we donʼt need full resolution of the input picture).

2. Use multiple rendering targets in order to split the picture into a set of smaller

output images (one way to render to the multiple targets is using

EXT_framebuffer_object [161] or equivalent functionality of the later OpenGL

versions). Note that, due to the limit of the number of multiple rendering targets

supported, multiple passes might be required for the different parts of the

picture51.

 ! 113

51 Clearly, multiple rendering passes at the full resolution would slow down calculation. Number
of passes required would depend on the proportion of the max texture resolution and resolution of the
image that we want to render.

7.2.2 MEMS Tactile Systems for General Population

In addition to the clear benefit of tactile displays to visually impaired people,

tactile feedback has potential to be useful for the general user as well:

1. Dynamic displays [89] and TeslaTouch [5] are clearly useful to the general

population as they allow combination of the touch screen with the tactile

feedback.

2. Work on touching reverse surface of the phone to avoid situation in which user

fingers are obscuring the display and preventing precise selection52 of objects

on the screen [162]. Such a situation necessitates a tactile screen that is

refreshed with a similar rate to that with which we refresh a display.

Previous two use cases are interesting for the following reasons:

1. Users that are visually disabled do not require high refresh rates, due to the

limited speed with which this group of users can scan tactile display [75].

However, these users might need further image processing in order to better

comprehend picture (e.g. edge detection), which, as we pointed out previously,

could be implemented via GPU.

2. Furthermore, users that are sighted would require similar refresh rates as

current computer displays are providing as they would want to touch what they

see.

 ! 114

52 So called “fat finger” problem [162].

Combined with high pixel densities required if user is to “scan” with his finger

over surface (based on 20-40 microns period change being perceivable [115]), we

clearly need to be able to control number of moxels comparable with number of moxels

needed to control Holodeck based systems of large scale.

As an example, lets repeat our conservative estimate of the 200,000 moxels

(based on the moxel diameter of 0.5mm and Kindle DX size of surface) and lets assume

that they are controlled at 20Hz - this would require software control of 4M moxel/s. If

we are looking at control of the moxel elements 20 microns in size, we would need to

control billions of moxels/s (at 20 Hz and Kindle DX sized touch surface53). Clearly,

control of such high numbers of elements would tremendously benefit from the GPU.

One also must take in the account that the carbon nanotubes could be

considered essentially Constrained Motion, 1D system [22], [90]. At the nanoscale, we

might encounter the need to control even higher number of elements.

To conclude - there is clearly a need for control of a massive number of

mechanical elements when talking about MEMS devices. Here we could see how GPU

based approaches could be used for the calculation of the desired position.

 ! 115

53 Based on the external dimensions of the complete KindleDX device.

7.3 Catoms Integration

As shown in this thesis the advantage of moxel based systems is in their ability

to quickly control millions of elements, and in doing so approximate large areas. The

disadvantage of moxel based systems is that they are limited to showing only 2D

surfaces.

Catoms, [49] on the other hand, are able to represent arbitrary surfaces.

However, the work on software control of a large number of catom-like elements is still

in the early stage [55], [55], [56], [57], [58] and due to the challenges with the software

control, catoms are not well suited for the situations where we are in a need of

simulating large ground planes.

A combination of the Holodeck and catoms has the potential to combine the

best characteristics of both, with the catoms used for the simulation of the objects that

are not well approximated with the 2D functions (e.g. ball on the Figure 15) and the

HoloSim being used for the description of objects that are well approximated with the

2D functions.

Furthermore, the nature of previously proposed moxel algorithms could provide

information to the Catom control algorithms about the position of every moxel, which will

be needed in order to combine systems. In effect, we would calculate position of every

moxel and declare any area that is between fully retracted and current moxel position as

occupied.

 ! 116

This raises a question: how can we quickly determine which objects are

suitable for rendering in the HoloSim using moxels, and which objects would require

combination of the moxels and catoms for rendering?

In order to answer this question, lets suppose that we have set X = [X0, X1,

X2, ... XN] of objects with 3D geometry. What is needed is a GPU based algorithm that

allows us to quickly determine in which areas we have objects that are requiring

simulation using Catom based rendering.

In this example, as we look at the set of moxels, we first notice that we could

divide moxels based on what part of which distinct region of XY plane they occupy, as in

Figure 25. We would designate moxels that are in the shaded area as set C, and the

moxels that are in the white areas as the moxels in set H.

 ! 117

Not representable
with discrete 2D

function

Representable with discrete 2D function

Results in
multiple Z buffer

values

Figure 25. XY plane (lower part of the picture) could be divided in two distinct
areas,: one that cannot be represented by 2D discrete function (shaded area)

and the other that can be represented by discrete 2D function (white area).
This figure is based on the figure found in the author's earlier work [6].

 ! 118

Now, we will setup a multipass rendering algorithm which will allow us to use

GPU to determine whether a moxel belongs to the set C or set H.

Algorithm Calculating Catom and Moxels Regions:

1. Initially, set all Z buffer values to 0.

2. Render two output targets - Z buffer and output texture which

will indicate whether a moxel belongs to set C or set H.

3. Render all objects using Holodeck rendering algorithm.

a. A modification of the fragment shader checks the existing Z

buffer value, and if the value of Z buffer is not 0, we know

that an overwrite occurred.

b. The fragment shader indicates in the output texture

whether a moxel belongs to set C or set H54.

4. Now, we have a texture showing XY plane area moxels that

canʼt be represented with the moxels. Set new rendering pass

with following inputs:

a. Texture showing current value of the Z buffer

 ! 119

54 This approach assumes that if there is only single polygon above moxel, that polygon
represents ground plane. Variations on the approach are possible in which we decide minimum difference
in Z positions before we declare that something has to be rendered in catoms (so that for example very
thin “roofs” extending over building and consisting of only single polygon are not rendered in HoloSim nor
catoms).

b. Texture showing C or H belonging.

5. Have the fragment shader in that pass output Z buffer value

for the moxels that belong in set H and Zmin for the moxels that

belong to set C.

Now, we have successfully segmented the system into the areas where catoms

are needed and where only moxels are needed. We can still use moxels to represent

the height up to the ground plane, to further reduce number of catoms needed. In order

to do that, we would use following approach:

Algorithm for Catom and Moxel Rendering

1. Render ground plane, with CH texture and Z buffer values

from the previous pass as an input.

2. At moxels that are in C area, use the ground plane value for

the Z coordinate. In the other areas, use values of the Z buffer.

If there is no groundplane at the area, leave moxel down55.

The result of this algorithm is that moxels in the set C (area that canʼt be

represented with the Holodeck correctly) are still in their lowest position. We can use

catoms to fill up remaining holes occupied by moxels that belong to set C.

 ! 120

55 Net effect is that we would rise moxel up to the level of the groundplane but not higher in the
C area.

This algorithm is based on the implementation of the Z buffer in a

programmable pipeline as described in e.g. [37], but modified for the detection of the

overwrite and classification of the primitives based on the overwrite.

Note that backface culling [34] has to be disabled for this algorithm to work

correctly, as well as that techniques for rendering to more than one output textures and

“tiling” that textures as described in tactile dithering section of this work may need to be

done in order to render moxel spaces exceeding max texture size for the single texture.

Furthermore, note that in some cases, objects in computer graphics could be

overspecified (e.g. have some polygons inside of the object, as a results of the objects

consisting of intersecting parts that assemble in the whole object and count on the Z-

buffer to correctly render the object with intersection)56. In those situations, the previous

algorithm would have a tendency to expand C region to include those over-specified

objects, even if that region could be rendered only using moxels! Although this doesnʼt

impact correctness of the previous algorithm (in a sense that surfaces would be

correctly rendered), it does impact optimality (as catoms are used more often then

needed). In order to address this issue, one possibility is to limit or eliminate “inside”

polygons in the object.

Please note that upcoming Catom pass would significantly benefit from the

detection pass in which we detect which objects need to be rendered with it. We can

 ! 121

56 Author would like to thank to Professor Willem Schreuder for this insight and pointing out that
one solution is to make sure that all polygons describe only outside surfaces.

again perform this calculation on the GPU, using following approach on the fragment

shader57:

Algorithm Calculating Objects Using Catoms:

1. We will start by assuming that each object has Axis Aligned

Bounding Box (AABB) around it (AABB generation of them is

described in [163]).

2. Pass AABB as primitives, as well as H-C set membership

texture. Have color of the element represent object that we

want to identify.

3. Set output textures indexed by the index of the 3D objects

input, one representing objects that have moxels in C, and

another with the moxels in H.

4. For each AABB, pass H-C texture for it, mapped in a way that

would map AABB to the part of the H-C texture it is covering.

5. Have the fragment shader check H-C texture for the presence

of moxels in H or C. Mark output texture appropriately58.

 ! 122

57 Please note that in this particular situation, we can benefit from the stream model presented
in the OpenCL [140], [140] or CUDA [141], [157] too and that algorithm proposed here is general
algorithm appropriate even for the devices that are not having OpenCL/CUDA interfaces exposed (e.g.
some mobile platforms).

In conclusion, we show how catoms and HoloSim based environments could be

combined, how HoloSim could be modified to account for catoms, and how GPU based

calculation could achieve the aforementioned goals. The proposed approach could be

used for the combination with other non-catoms based systems that could show shapes

that canʼt be achieved with a moxel only system (e.g. joint arrays described in [164]

could potentially present those functions if arbitrary angle between joints is permitted).

 ! 123

7.4 Aliasing in Moxel Based Systems

As expected based on the fact that we are using a discrete system to represent

a broad range of shapes (and some of those shapes having components which

frequency domain representation would go above Nyquist frequency of the HoloSim

[130]), HoloSim exhibits aliasing behavior while representing series of shapes.

Figure 26 shows the same object (chair) reassembled at two different moxel

densities - picture on the right was obtained by downsampling picture on the left. We

used averaging (box filter) in order to determine height of the aggregated moxels on the

right side of the picture.

Please note that the Moiré pattern visible on the upper chair is result of the

aliasing artifacts in the visualization part of the HoloSim simulator, and not the fully

realistic representation of what user would see in the HoloSim59.

 ! 124

59 Although Moiré patterns could be seen even when observing with the naked eye, in the case
of the Holodeck environment, the user is expected to wear a VR helmet and watch a computer generated
image of the Holodeck environment, with computer visualization being responsible for the visual and
Holodeck being responsible for the tactile feedback. That is why it is not expected that visual Moiré will be
a problem in the real Holodeck, although it is quite possible that there will be some tactile equivalent of
the Moiré that we will need to take into account. That would require testing in the physical model of the
Holodeck, though.

Figure 26. Simplification of the moxel based geometry, done by averaging
height of the moxels in the area. Note how that results in “steps” on the chair

in the right side of the picture.

 ! 125

Before we continue with the details of this section, please note that the details

on aliasing phenomena about to be described here, lay outside of the scope of this

thesis work, and are described here in order to point to the potential for the future

research that exists in this area.

As it can be seen from that picture, “gradual moxel transition” between fully

erected moxels and the moxels on the floor provides a very unnaturally looking

representation of the chair60 .

Figure 27 clearly looks better. The surprising thing is that that picture was

obtained by rendering the chair in the lower resolution, and raising every moxel to the

position that the center of the moxel occupies. At least in this particular case, we might

be better off using an approach that is different then the approach typically used to

address aliasing in the computer graphics! In computer graphics antialiasing in effect

uses variation of the color intensity on the edges of the structure to soften visual

perception of the aliasing (the authorʼs description of the net effect of various anti-

aliasing methods that were described in [130]).

Previous example is not conclusive evidence that traditional anti-aliasing

methods wouldnʼt work in the Holodeck type of the environment - effectiveness of the

anti-aliasing depends of the resolution of the display and rendered geometry, and it is

possible that what is seen in this particular case canʼt be generalized61.

 ! 126

60 Maybe even potentially dangerous as there are more “bumps” to catch and trip the user.
However, final judgement on this topic would probably require testing of the physical prototype, so it is still
too early to make claim in this respect.

61 Author would like to thank to Professor Clayton Lewis for providing this insight.

Figure 27. Rendering of the chair on the left side of the Figure 26 in lower
resolution. GPU would choose height of the moxels based on the Z buffer value in the

center of the moxel.

The conclusion here is that further research might be needed to address the

issue of spatial aliasing in the physical Holodeck and that assumption shouldnʼt be

made that anti-aliasing techniques used in computer graphics are applicable to the

spatial Holodeck systems62. This, of course, is likely to apply to the hardware based

anti-aliasing mechanisms present on modern GPUs, too.

 ! 127

62 Similar research opportunity exists in the area of the tactile displays, and for some examples
of related work, see [165].

In addition to the aliasing in the spatial domain, there is a question of the

aliasing in the time domain in the Holodeck type of the systems. What if the required

frequency of the moxel movement exceeds possible physical frequency of the moxel

movement? Do time based anti-aliasing approaches from the other fields (e.g. computer

graphics) apply to HoloSim based environment?

The answer to previous questions is almost certainly “no”, at least not without

significant changes. The reason for that is that, in addition to user perception, we have

to take into account user safety. This is very different problem than anti-aliasing in the

field of computer graphics in which single pixel canʼt injure the user. The next section

will discuss issues of the userʼs physical safety in more details.

 ! 128

7.5 Physical Safety of User in Holodeck System

Holodeck is a large scale system in which the user can move. As we previously

demonstrated, it is expected that Holodeck could have millions of moxels in it. As

moxels are physical entities, when manufacturing millions of them, some of them will be

defective. Also, during use, some of the moxels may become defective.

Consequences of defective moxels vary, depending on the failure mode:

1. Moxels that are still movable, and whose physical characteristics for some

reason change (e.g. upper part of the moxel lost) could be addressed using

previously described the fragment shader algorithm for the moxel imperfection

handling as they could be considered just a special case of the moxel

imperfection with the unusually large variation compared to other moxels. This

type of moxels is not likely to represent safety hazard.

2. Individual moxels that are stuck in the lower position are not a serious safety

hazard. Their implications are likely to be limited to imperfect scene

representation.

3. Closely grouped moxels that are stuck in the lower position could form “holes”

in which usersʼ feet could fall. We would need to limit users access to those

area.

4. Moxels that are stuck in the “up” position represent obstacles, but more

worrisome individual moxels that are stuck in the upright position could injure a

 ! 129

user. We have to address presence of the individual “spikes” to prevent

impalement of the user.

5. Moxels that are immediately around user foot or in his path must not be moved

rapidly, as that could cause user to trip and fall as a result from moxels

moving63.

6. Moxels stuck in “halfway up” position are for the purposes of the physical safety

similar to the moxels that are stuck in the fully extended position64. If there is

only a few moxels that are stuck in the “halfway up” position and reduction in

the range is not too severe, it is possible to address this situation by collectively

rising the rest of the moxels to that level at which single moxel is stuck65.

We devised an approach that would allow us to address each one of the

previous situations that could affect physical safety of the user66. The advantage of

running safety algorithms on the level of moxel is that we could account for the moxel

failure on much more granular keel without introducing too many objects in simulator,

and that we could combine it with adaptive resolution/movement optimization.

 ! 130

63 Please note that there could be use cases in which we would purposely cause the user to fall
as a part of training (e.g. training soldiers to react on losing balance during firefight), but those use cases
are rare and would likely require some protective equipment for the user. We are limited here to
describing the more common case in which we want to prevent user from tripping.

64 Because a moxel stuck in the “halfway up” position is equivalent to a moxel that is stuck fully
up, but for which the range of travel is just half of the range of the travel of the original moxel.

65 The author would like to thank to Professor Willem Schreuder for this insight.

66 Please note that for the final evaluation of the effectiveness of the proposed approach,
experiments with real users in physically sized system are needed. This thesis work is limited t the
software work possible without having a physical system built (physical system is unlikely to be built if
there is no way to control it so control algorithms have to come first).

7.5.1 Addressing Moxels Stuck in the Up Position

Moxels that are stuck in the fully extended position would represent “spikes” on

which a user might injure himself. In order to address those spikes, we have to

“smother” the spike, as in Figure 28.

Figure 28. Addressing physical safety of the moxels that are stuck in the “up”
position. Side view is shown in the picture, but in 3D space moxels will be

risen in a radial pattern around the moxel that is stuck.

As we can see in the previous figure, the approach taken in addressing the

pixels stuck in extended position is to smooth the transition. One way to smooth the

transition is by using Gaussian blur (as described in e.g. [130]) around the stuck pixels.

We would use following algorithm to address pixels that are stuck in the upward

extended position:

 ! 131

Algorithm for Stuck Moxel Isolation:

1. Have 2D texture (safety texture) representing moxels stuck.

The value in the texture would represent the height on which a

moxel was stuck67.

2. Perform smoothing of the moxels around failed moxels. This is

done by applying Gaussian blur on the 2D texture, so that

moxels near the moxel that failed would get their

corresponding texels partially risen, as in Figure 28. The blur

operation could be achieved using CPU or GPU based

algorithms (e.g. [143]), and has to happen only once when the

moxel failure is detected.

3. In the fragment shader, have “safety texture” as an input to the

fragment shader during moxel position calculation. If the safety

texture indicates that the pixel should be elevated, elevate the

pixel to the maximum of Z-buffer input and safety texture input

for that pixel.

Note that in this approach, it is not a problem if the maximum texture size is

smaller than the number of moxels in the Holodeck, because for the blur type of

operations could have multiple moxels corresponding to the single texel, and raise all

those moxels together.

 ! 132

67 For the purpose of this approach, there will be no difference between addressing moxels that
failed half-way up and addressing moxels that failed in the fully extended position.

As proposed algorithms modify physical landscape, communication with the

visual engine will be beneficial so that user can be shown visual representation of the

obstacle.

Finally, note that the calculation and recalculation of the safety texture could be

performed while Holodeck is running. That means that it is possible to react on the

indication that new moxel failed in Holodeck without the need to take current Holodeck

session offline.

 ! 133

7.5.2 Addressing Groups of Moxels Stuck in Down Position

In the situation where we have a group of moxels stuck in the down position,

we have a danger of userʼs feet being trapped in the hole created. Similarly, if we have

a large number of failed moxels in a confined space, it is possible that they would

impact physical characteristics of the surface they represent by reducing strength of the

surface or by making the actually represented surface much different than what we are

expecting it to be, as in Figure 29. Because of this, we would treat any situation in which

more than some predefined percentage of the moxels fails in down position as a failed

region68.

Figure 29. Failure of the set of closely grouped moxels causes gradually
downward slopped surface to finish with the hole in it.

In order to address group of moxels that are stuck, we first need to identify

them. In order to do that, we would use following algorithm that could be implemented

on GPU:

 ! 134

68 Please note that probability of closely grouped moxels stuck in the down position depends
heavily of the hardware implementation used for the control of the moxels. If chance of having each
moxel fail is uniform across all the moxels, chance of large group of adjacent moxels failing is likely to be
small. However, if there is hardware implementation using common hardware elements in order to control
group of closely grouped moxels, then it is possible that whole group of moxels would fail.

Algorithm to Protect Stuck Moxels:

1. Define texture that maps to the whole Holodeck moxel grid,

with texel being marked with value 1 if there is a failed moxel

in the down position that corresponds to the moxel position in

the document.

2. Use reduce step [38] on the texture to count total number of

moxels that failed in the region69. Output of this reduce step is

new texture, where each texel corresponds to a group of

moxels, and value of the texel corresponds to the number of

moxels that failed in a given area.

3. If the number of failed moxels exceeds a threshold, declare

the whole region to be a "hole".

4. Repeat previous steps until the area of the hole is big enough

not to represent tripping hazard (e.g. much larger then user ʻs

feet). We would call this texture SL.

Previous algorithm needs to be done only once a new moxel gets stuck in the

down position. Output from it is a texture representing regions in which moxels form

holes (step A on Figure 30). In that texture, texel will be active if they are representing

 ! 135

69 Author would like to thank to Professor Richard Han for pointing out that this is a similar
approach to median filter as described in e.g. [129].

region in which moxels failed as a hole. We now will do edge detection step on those

texture (on GPU, as described in e.g. [159]) and get boundary region in which we have

series of correctly working moxels.

Now, we would use that region of correctly functioning moxels to raise a "fence"

around the "holes" as shown in Figure 30, step C. However, we canʼt just raise fence as

square pattern around stuck moxels because corners of the square would represent

sharp points (only one moxel in diameter) that could injure the user. Instead, we need to

raise a circular fence around the moxels that failed. To achieve that, we would use the

following fragment shader algorithm:

Algorithm for Moxel Fence Builder:

1. Start in Step A from Figure 30, where SL texture is calculated.

2. For every moxel, sample circular area to determine if the

moxel is near enough to the failed moxels in SL texture that it

is part of the fence. It is considered near enough (red moxel in

Step B on the Figure 30) if there is any texel in SL texture

within radius R from the moxel that is marked as “failed

region” (grey moxels in SL texture in Figure 30)70.

 ! 136

70 Radius R is determined by the physical characteristics of the moxels so that it is large
enough that user could put a whole feet in or that it is large enough to impact user's stability (so that he
doesnʼt injure the foot if he steps on the fence) and that thickness of the fence is enough to prevent user
from accidentally stepping over it and entering problematic region in SL texture. Furthermore, parameters
would have to be chosen to ensure that fence is of some minimum radius, so that it doesn't represent
spike.

3. If moxel is in the “failed” region in SL texture (grey moxels in

Step B in Figure 30), leave it down. If it is in the boundary

region (red moxels in Step B on Figure 30), then raise it up.

4. Output of Step B in Figure 30 is which moxels should be down

if it is in failed region (grey pixels in Step B on Figure 30), and

up if it is part of the “fence” (red pixels in Step B on Figure 30).

5. However, as we have some moxels that really physically failed

and canʼt be controlled, we would really be able to control only

red and white pixels in Step C in Figure 30. Still, the result is

identical to the result calculated at the end of Step B of that

figure.

Previous algorithm is adaptation of the scatter/gather GPU algorithm described

in [38] and sampling of the texture map (fairly common operation in GPU programming,

see e.g. [37] for example)71, with the elements of the pyramid methods [143] (due to the

multilevel view of the areas of stuck moxels).

 ! 137

71 As sampling could be done on the texture of size smaller then the moxel field (Step A in the
Figure 30) demand on the texture memory bandwidth will be helped, and the chance of the SL texture
fitting in the texture cache is increased.

Conceptual Step - How downsampled
texture maps to moxel field and how it

influences moxels around it

STEP A

STEP BSTEP C

STUCK MOXELS

Figure 30. Addressing groups of moxels stuck in down position (grey color)
by raising “fence” moxels (red color). Note that steps B is conceptual - in step

C, non functional moxels canʼt be rised.

Please note that in this particular case it is not a problem if moxel field is larger

then the maximum texture size, as initial texture is just an input to the reduction step. If

maximum size of the texture is smaller then the moxel field size, we would simply have

 ! 138

initial texture where texel corresponds to the multiple moxels and is initialized with the

number of moxels that failed in the given area.

Previous algorithm has one problem - it can split the region in such a way that

we don't exceed threshold in two successive regions individually, but that the threshold

is exceeded in a region that is shared by two adjacent regions, as on the Figure 31:

Figure 31. It is possible that a group of failed moxels can be split between
adjacent regions so that it doesnʼt reach the threshold level in either of the

two regions, although the number of failed pixels would reach threshold if they
were part of a single region. Dotted line shows regions for threshold

comparison.

In order to address this problem, we have following options:

1. Have threshold setup in such a way that we avoid the problem. In effect, we are

adding a safety factor in thresholds by making thresholds smaller72.

 ! 139

72 This is the appropriate approach in situations when the chance of the moxels forming holes is
small enough that a decrease in threshold doesn't create many false positives. However, this approach is
heuristic in nature.

2. Use 2D approach inspired by Marching Cubes algorithm [166] in which we

perform series of the successive passes over texture that are shifted for one

pixel, as in Figure 32.

Figure 32. In order to ensure that large enough moxel group would always
trigger detection, we would “march” detection region so that it covers every

texel in the texture. Red, green and blue are three different regions we would
examine. Note that only some detection regions were shown on the picture
(there will be one detection region per every moxel that maps to the same

texel in SL texture).

We describe the approach from Figure 34 in more detail:

Algorithm for Square Walk:

1. Output of the algorithm is final texture of failed moxel zones

SL, as in the previous algorithm.

 ! 140

2. We would start by using previous algorithm and populating SL

in it.

3. Now, we would use step inspired by Marching Cubes

algorithm and shift the reduction region as shown in Figure 32.

That would result in shifted region corresponding to between

one and four texels in the final texture SL.

4. We would check in reduction step is threshold exceeded. If so,

we would mark all corresponding texels from the previous step

in the SL as failed.

5. Rest of the steps after construction of the SL would proceed

as in the previous algorithm.

Previous algorithm would require N additional passes, where N is the number

of moxels that fit in the texel in the SL. As this process needs to be repeated only when

a new moxel fails in the down position73, it is not expected that the time constraints will

be a problem74.

Again, as proposed algorithms modify the physical landscape, communication

with the visual engine will be beneficial so that user can be shown visual representation

of the obstacle.

 ! 141

73 Previously discussed considerations for the hardware being able to address "in session
failures" apply.

74 And if it is we have an approximate heuristic approach described in this section that we can
use to address the problem.

Finally, note that algorithms Algorithm for Failed Moxel Isolation and

Algorithm for Moxel Fence Builder could be combined, so that the area around a

moxel that failed in the partially up position could be fenced. In that approach, instead of

building a cone around failed moxel with Failed Moxel Isolation algorithm, we can

instead raise all moxels in the cone to their maximum extension, transforming “spike”

into the small hole.

The question of comparing and contrasting these two approaches to

addressing moxel failure is an interesting one. Building cone around failed moxels has

advantage of providing gradual slope that allows user to still use areas of the Holodeck

that have failed moxels. Fencing the areas with the failed moxels is likely to be safer in

the case of the arbitrary moxel failure pattern (e.g. enough moxels failed that stable

walk is impossible) and as such is a more conservative solution, but denies areas of the

Holodeck to the user. Optimal balance between these two approaches to addressing

failure of the moxel is outside of the scope of this thesis, though an interesting area for

future research.

 ! 142

7.5.3 Addressing Moxels Near the User Position

In the Holodeck environment, moving moxels near user position could

represent hazard to the user - we can cause the user to trip, as well as to lose balance.

Although some use cases in which this is beneficial were previously discussed, it is

generally a good thing to be aware of the user position and be able to modify moxel

movement accordingly.

It is clearly possible (but wasteful) to consider all moxels within particular

distance from user position potentially affected. Instead, we would propose an approach

that significantly reduces the number of potentially affected moxels we need to consider,

based on area user will walk into in the upcoming time interval.

The key observation in this approach is to notice that affected moxels come

from two sources:

1. Moxels near the current position of the user - where user is represented by the

terrain immediately around the user's legs and represents the requirement of

stable ground which shouldn't be rapidly moved as it can affect user balance.

2. Moxels that will be in the userʼs vicinity in the immediate future. In addition to

the current position of the user, direction and speed of the user movement are

important as they provide us a region in which the user is expected to arrive

soon. That region should be free of rapid movement of the moxels that could

make it significantly different in physical rendering than what the user sees

rendered on his visual channel. For the purpose of this discussion, we would

assume constant speed of user's movement in the timestamp.

 ! 143

Figure 33 is showing previously described regions, in relation to user

movement:

Direction of
 user's movement

Figure 33. User affects two groups of the moxels - those around him (blue
circle) and those that are near the path of his movement (red shape in the

picture).

Both of those regions could be addressed in the fragment shader in the respect

of limiting movement speed of the moxels. We would assume that moxel moving time is

low enough that we could assume that maximum velocity with which the user could

move in the direction of moxel is known, and notice that the problem of finding the

moxels belonging to the shaded area is analogous to finding moxels that are at the

center of the circle intersecting or touching line that is collinear with userʼs speed vector

 ! 144

(with the origin of the line in the userʼs current position), leading us to the following

algorithm to decide if a moxel is in the affected region:

Algorithm for Moxel Affected With User Movement:

1. Let tm represent maximum amount of time needed for moxel to

move to any position in the Z range from its current position.

2. Calculate an uniform variable line defined by the current

position of the user and where user will be after time period tm

(based on its current speed vector) has elapsed.

3. In the fragment shader, find whether the circle representing

the area occupied by the user (bounding circle for the user)

intersects the previously defined line75.

Previous calculations could be easily integrated in the fragment shader's

calculation of the moxel position by passing information about user movement as a

uniform variable to the shader76 and using previous calculations to determine if the

moxel is affected, and should we limit it's maximum movement speed.

In addition to the previous approach addressing stability of the ground in the

user movement path, we can address smoothness of the terrain in the region M

 ! 145

75 Intersection of the line and circle is well understood problem, and e.g. [167] describes one
implementation which computational complexity is appropriate for the implementation in the fragment
shader. Note that this approach is based on the assumption that user's path can be reasonably described
with the line. Some more complex paths could be problematic to intersect with the circle within the
fragment shader, but if that is the case, we could use bounding box around the path.

76 See [37] for the description of the uniform variables in shader.

(corresponding to region shaded in red) to avoid having clearly defined obstacles that

user can trip on, as on the Figure 34:

Direction of
 user's movement

Figure 34. Obstacle in the user path (shown in the grey color) can cause user
to trip. We can provide moxel level terrain smoothing to avoid tripping the

user.

To address that situation, we could have following algorithm run:

Algorithm to Detect Moxels Affected by User:

1. Let Hu be current height of the user legs in Z direction.

 ! 146

2. For every moxel in region M calculate height above Hu. This

could be done on the GPU on the fragment shader during the

moxel Z coordinate calculation.

3. For each moxel for which height differential exceeds threshold,

move that moxel to the height of Hu instead.

A combination of the previously described algorithms allows us to address

physical safety directly in front of user. But these algorithms are working on the scale of

the individual moxels and closely spaced groups of moxels and are not necessary

appropriate for addressing large scale artifacts in the 3D models represented in

Holodeck. The next section will talk about addressing those artifacts in more details.

 ! 147

7.5.4 Implications for Safe Geometry

Finally, it is clear that 3D models in which the user is moving have an impact on

user safety. If the model is showing sharp edges on the larger scale (e.g. as on the

Figure 35), although we can do moxel level processing operation to blunt edges, those

operations would have negative influence on edges that should remain sharp and are

not directly in the path of user (e.g. green objects on that figure).

Direction
of user's

movement

Figure 35. Obstacles in the user path (shown in the red) are more dangerous
because of the direction of userʼs movement. Although of the same

sharpness, green obstacles are not a problem because user is not moving
toward them.

This example shows that some artifacts couldn't be addressed by just looking

at the moxel scale - e.g. we would want to blunt the sharp edge the user is moving

 ! 148

toward without affecting steps on the stairs in the picture. Although some moxel level

safety mechanisms are helpful on the local level (as we saw in the previous section), it

is important to understand that physical environment safety is an issue that likely

couldn't be addressed in a fully automated way for every 3D environment. For example,

the angle of the stairs could impact physical safety, and is significantly easier to address

on the level of the 3D model than on the level of the individual moxels.

Another way to address physical safety of the user is to “relax” moxels that are

near user when/if we detect that the user is falling, in order to “soften” the fall77.

Modification of Algorithm for Moxel Affected With User Movement could be used to

determining affected areas.

The take away message here is that to address physical safety issues, we

need to review 3D models that are imported in Holodeck for physical safety, and that in

some situations change in the 3D models is likely to be required in order to ensure

physical safety78.

 ! 149

77 The author would like to thank to Professor Willem Schreuder for this insight.

78Although clearly outside of the scope of this work, there might be further research
opportunities in automating identification of the features of the 3D models that could represent safety
hazard for the user.

7.6 Software Control of Integrated Physical Systems

This section will present examples of the combination of the proposed

algorithms with the various systems mentioned in this thesis. Please note that all

diagrams are showing logical stages in the system, and that it is possible that some

stages will be combined so that for example two logical stages on the diagram are

implemented as a single pass on the GPU79.

 ! 150

79 How many rendering stages will be needed is primarily dependent on the GPUʼs hardware
capabilities (e.g. number of textures that could be combined in the single pass). As we are going to
control embedded systems (and would use known hardware for that control), these capabilities are known
in advance. Software design of the shaders so that we can easily vary number of rendering passes is one
possible area for future work.

Lets start with Figure 36, showing software control of a pure Holodeck

environment integrating all the elements previously discussed in this thesis, as shown in

the Figure 36.

Address Moxel
Imperfections

End

Communicate stuck
moxels to the 3D

Engine, so that they
could be visualized

Address Moxels
Stuck in Extended

Position

Address Moxel
Groups Stuck in
Fully Retracted

Position

Setup and Filter 3D
Geometry

Handle Ground
Plane

Setup Projection

Account for Moxel's
Physical

Characteristics

Calculate Moxel
Position

3D Engine
Invocation

Figure 36. Flowchart of the Holodeck. Please note that stages presented are
logical stages - some of the action steps could be combined in a single

rendering stage on GPU.

 ! 151

Figure 37 shows a flowchart for the combination of a Holodeck environment

with a catoms [49] based environment.

Determine Position
of the Moxels for
Combination with

Catoms

Calculate C-H
Textures

Address Moxel
Groups Stuck in
Fully Retracted

Position

Address Moxels
Stuck in Extended

Position

Address Moxel
Imperfections

Setup and Filter 3D
Geometry

Handle Ground
Plane

Setup Projection

Account for Moxel's
Physical

Characteristics

Calculate Moxel
Position

Communicate stuck
moxels to the 3D

Engine, so that they
could be visualized

Handoff to
catoms Control

System

3D Engine
Invocation

Figure 37. Flowchart of the pipeline for the combination of the Holodeck with
a catoms environment. Please note that stages presented are logical stages -
some of the action steps could be combined in the single rendering stage on

GPU.

 ! 152

Figure 38 shows a combination with a MEMS based system that is capable of

only bistate (up/down) positions:

Account for Moxel's
Physical

Characteristics

End

3D Engine
Invocation

Tactile Dithering

Calculate Moxel
Position

Edge Detection and
Image

Enhancement

Combine with CGI
Generated Images

and Text

Mapping Input
Video Image to

Moxel State
Position

Address Moxel
Imperfections

Figure 38. Flowchart of the pipeline for the control of the bistate capable
MEMS system. Please note that stages presented are logical stages - some
of the action steps could be combined in the single rendering stage on GPU.

 ! 153

Chapter 8 - Uses of GPU In CPS Beyond Moxel
Position Control

Previous chapters have shown that an OpenGL based approach to controlling

moxels is a viable and scalable approach to the control of tmoxel based systems. This

chapter will build on previous work to expand upon and discuss GPU use in the more

general context of robotic control.

8.1 Relation of the Proposed Approach to OpenCL and CUDA

In addition to the OpenGL based API, many modern GPUs can be programmed

using CUDA [157] or OpenCL [140] or even combination (as done by Appleʼs Grand

Central Dispatch [168]). OpenCL and CUDA represent stream based approaches to

data processing using GPU and represent memory hierarchy in a way that is more

familiar to programmers used to distributed and parallel systems.

Although these approaches are very well suited to general purpose

computation on the GPU, in the case of the Holodeck and moxel control, an OpenGL

based environment is much better suited because our problem domain maps naturally

to the use of the Z-Buffer based approach for the calculation of the moxel position. If we

were to use OpenCL or CUDA based approaches, we would have to reimplement Z-

Buffer logic on those approaches, and it is much more natural, elegant and likely faster

to use existing capabilities and combine Z buffer based position calculation with the

output using the Render Buffer extension, allowing us to render outputs in frame buffer

instead of the color buffer80 .

 ! 154

80 Author would like to thank to Professor Willem Schreuder for pointing me to the Render
Buffer based approach.

However, it is possible that some steps that were framed in the OpenGL based

formulation in this thesis could be implemented on a OpenCL/CUDA based platform. In

particular, scatter and reduce based steps [38] could be implemented in OpenCL and/or

CUDA based formulation.

 ! 155

8.2 Geometry Shader Use

The latest generations of graphics card have an additional shader unit – the

geometry shader - that is capable of producing [158] variable length output from the

shader. This section will briefly discuss some advantages of the use of geometry

shaders in the context of moxel based algorithms.

One of the main advantages of geometry shaders is that they are able to

implement efficient scatter operation [38] and variable length output on GPU [158].

In the past, in the area of general purpose computing on the GPU, some

examples of geometry shader use are computer vision (corner detection, Hough

transform) and histogram building [158]. In the context of moxel based systems, they

could be used for:

1. The more effective detection of the moxel regions that are stuck in the “down”

position by eliminating need for the reduction steps in the failure detection

algorithms - in effect, we would directly output fence geometry as a circle

around the region of stuck moxels81.

2. More effective building of the physical fences around failed moxels, instead of

use of the Algorithm for Moxel Fence Builder - we would not only “fence

failed moxels in” based on the fragment based calculation, but directly define

geometry of the “fence” in the geometry shader in the subsequent rendering

pass.

 ! 156

81 Clearly, similar approach would apply to the regions that are stuck in the up position (if we
are to build fence around them).

3. It remains an area for the further research which parts of the unsafe surface

geometry for the user on the level of the 3D geometry could be detected on the

level of the geometry shader.

4. As indicated in [158], geometry shaders could be used for minimizing the size

of the output from the GPU that should be read by the CPU (e.g. by outputting

to only small region of the framebuffer and reading only the portion of the frame

buffer, as explained in the [158]). This allows faster communication of

information about failed moxel regions.

 ! 157

8.3 Transfer of Results From the GPU

The question of the best mechanism for the transfer of the calculated data from

the GPU to the mechanical system would depend on the implementation of the

mechanical system used but is definitely an engineering as opposed to a fundamental

research problem. This is particularly important because the bandwidth of the data

transfer from the GPU to main memory is currently significantly lower than from the

GPU accelerator memory to the GPU itself [39], so repeated transfers from accelerator

to CPU memory would have an unnecessary performance impact82.

With the previous in mind, the following approaches for the transfer of the

calculated state are possible:

1. Highest read bandwidth with the smallest impact on the GPU performance

would likely be achieved if we use the mechanism that current GPUs are already

using, namely output of the color buffer to monitor (e.g. on DVI port [126]). This

approach has the significant disadvantage of requiring decoding of the signal on

the physical system side and is generally mentioned only to show that output is

possible at the full speed even with the current generation of GPU hardware.

Furthermore, this approach requires us to use resolutions that are supported by

the display hardware83.

 ! 158

82 Note that our performance tests were done with the readback of the rendered buffer from the
GPU and calculation on the CPU, so our results showing viability of the GPU based calculation of the
moxel position take this effect into account because the time to read Z buffer is included in the
performance measurement as part of the moxel calculation time.

83 The author wishes to thank to thank to Professor Willem Schreuder for this insight.

2. A more appropriate approach for systems consisting of a few million moxels

might include reading values from the graphics cards buffers and using network

(e.g. 10 Gigabit ethernet) for the transfer of the data [169], with possible

aggregation of the several ethernet links to achieve higher bandwidth [170].

3. As previously discussed, some parameters of the output (e.g. when we are not

needing to export position of all moxels but just few parameters like failed

moxels) could be communicated using geometry shader [158].

4. Finally, an interesting question is whether we could combine OpenCL/CUDA and

GPU based computation without requiring transfer back and forth to the main

memory84. This is likely possible on the level of existing hardware85, and there

are APIs in both OpenCL and CUDA that allow shared buffer between OpenGL

and CUDA 86 (see e.g. [157] and [171] for the details of the APIs). It will be an

interesting opportunity for future work to extend our framework so that we can

combine OpenGL and OpenCL based computation of the same model That way,

we would have ability to use OpenGL for the problems that are best formulated

in the context of computer graphics, and use OpenCL for the problems that are

better formulated in the context of the SIMD based processing.

 ! 159

84 Author would like to thank to Professor Willem Schreuder for challenging me to think more
about this question.

85 After all, we just need bits and bytes that are already in the memory of the accelerator card.

86 Note that CPU and GPU donʼt directly share memory even when this approach is used - any
transfer would still need to happen over bus and there is a need for the copy. That copy, although fast,
would be significantly slower then direct access of GPU to accelerator memory [39]. As a result, shared
buffers that minimize the need for data to be copied would help.

8.4 GPU Use for Addressing Physical Feedback of the System

Extension of the GPU to take into account physical feedback of the system is

certainly possible. Accounting for the userʼs feedback is a central theme of multiple

previous systems including [84], [85] and Digital Clay [15], [16], [17] systems which

allow userʼs manipulation of the surface based on the user force applied. The following

section will propose how some of the techniques already pioneered by these systems

could be extended to be used in the general case of reacting to any feedback on the

GPU.

Previous work in the literature shows how a height map of the current actuator

position could be passed to the system and used by the system (as discussed by [85]).

There is no reason to limit that technique only to the height map - we could pass any

feedback from the physical system as one of the input textures to the fragment shader,

and the fragment shader could account not only for physical characteristics of the moxel

in isolation, but of the physical characteristics of the moxel with the appropriate external

forces being applied to it.

Note that use of the GPU is not limited to addressing force feedback on the

level of the fragment shader - higher level integration with the rendering engine would

allow for the addressing of the physical forces on the system by modifying geometry

before we ever reach GPU - e.g. it would be possible to have a system in which the

user manipulates some elements of the system using physical force and modifies the

environment to account for that movement (one easy to foresee use case is user

 ! 160

pressing down on the moxel wall that would cause that moxel wall to move, as done by

the Relief [84], [85] and Digital Clay [15], [16], [17] systems).

Finally, it might be possible to use physical feedback of the system to the user

in order to address presentation of the environment. For example, somatogravic

illusions allow us to “trick” the body87 so that upward acceleration could be perceived as

linear and vice versa88, as experienced by pilots [172] and exploited in flight simulators

[173].

 ! 161

87 Author wishes to thank to Professor Willem Schreuder for pointing to similarity and relevance
of the somatogravic illusions.

88 However, note that this might require hard real time control (guarantee that mechanism
would always move by the particular deadline), and that additional mechanisms past the pure GPU
control might be needed to address hard-real time aspect of this problem, as discussed in the section
“GPUʼs Suitability for Various Areas of Use”.

8.5 GPU Use for Decimation for the Purpose of Visualization

Although in the current system we are doing decimation of the output of a large

number of moxels for the purpose of visualization on the CPU, it is possible to do

decimation of the existing moxels on the GPU by using reduce-like output [38]. The

GPU could be used to perform various image space transformations as described in

[143] and the extension of multiple digital image processing algorithms described in

[129] is likely possible on the GPU (e.g. [174] describes how image segmentation

algorithms could be implemented on the GPU).

With the previous being said, we need to keep in mind what is the possible

purpose of decimation:

1. In this work, decimation was used for the exclusive purpose of visualization so

that the demo of a system that calculates a large number of moxels is not

slowed down by the visualization component of the simulator. As this is not

fundamental work for our research, there was not much point in running it on the

GPU (and this functionality would likely not be needed on the full physical

system).

2. In the larger context, as previously pointed out, the question of the best anti-

aliasing methods for the moxel based system is still an open research question.

In this area, use of the GPU is likely to be beneficial, but as previously pointed

out, this area is outside of the scope of our research.

 ! 162

Based on the previous, we decided not to implement decimation of the moxels on

GPU in this version of the simulator.

 ! 163

8.6 GPU's Suitability for Various Areas of Use

Based on the results presented in the previous section, what can we conclude

about GPU use for the control of large scale moxel based systems? In which situations

does a GPU represent a better approach than CPU based control?

There is no question that the raw power of the GPU in the terms of the memory

bandwidth and computational power is higher than for the CPU, and that as such GPUs

hold huge promise for computational class of problems. In the problems that lend

themselves to parallel processing, GPUs are clearly superior [39], [40], [174] to the

CPU. This works shows that problems of moxel controls fit clearly in that category, and

that furthermore GPUs are especially well suited to the control of moxel systems due to

the applicability of Z buffer based control to the calculation of the moxel position, and

general ability of the GPU to address areas of moxel position calculation and the ability

to address physical characteristics of the moxels.

Furthermore, we have shown that a GPU based approach to moxel control

extends naturally to combinations with systems like CirculaFloor [3], [10] and catoms

[49], [1] and that GPU based control is applicable to controlling multistate and bistate

MEMS based systems.

At the same time, this is early work on GPU based robotic control. There are

areas of control for which the GPU is not well suited, or needs further research in

applicability.

Those areas are:

 ! 164

1. Theory of scheduling of the hard real time control is well developed on the

CPU. For example, [175] and [176] allow us to prove the schedulability of a set

of tasks scheduled with a preemptive scheduler. On the contrary, the

mathematical framework for scheduling on the GPU is at best in the very early

stages of research and is currently limited to soft real time aspects [177], with

no work on hard real time, that the author is aware of. Consequently, in

systems in which not finishing computation by a particular deadline would result

in the catastrophic failure of the system or harm to the users, the GPU will be

need to be combined with traditional real-time capable control. In the case of

Constrained Motion Cyber-Physical Systems this problem doesn't inherently

present itself as we are not using moxels to actively balance the user, and the

only limitations are moxel hardware imposed89.

2. Similarly, in the problem domains that are dominated by the requirement for

minimal latency of movement, GPU latency characteristics are less well

understood then CPU latency characteristics90.

 ! 165

89 For all other issues, we can fallback to the anytime type of the algorithm in which we leave
moxel where it is if its position is still not calculated. For addressing limitations of the hardware of the
single moxel, on the level of movement of the single moxel, we could have GPU holds position calculation
of large number of moxels, and on the level of the moxel employ hard-real time control that might be
implemented by having microprocessor/custom hardware controlling just a hard-real time aspects of the
group of moxels. Again, this is limited only on the very small subset of hard-real time functionality if any is
needed for the individual moxel and could be done on the level of the individual moxels, still benefiting
from the scalable calculation of moxel position on the level of the whole system. Note that software
control system for the Digital Clay [16], [33] proposed layered system of the software control, with the rod
control layer being separate layer from the control of the calculation of the rod position and that such
system would work well for the hard real time constraints that could be addressed on the lower level of
software.

90 That is another way to say that hard real time domain is better understand on the CPU.

3. If massive synchronization among multiple moxels is needed, the GPU is at a

disadvantage to the CPU [39], [40]. So for the problems in which there is

asymmetry in the control system of the physical moxel implementation that

impose constraints like "moxel X must not be calculated before calculation of

the position of moxel Y is completed", a GPU based solution is less suitable

than CPU. Note that this is limited on the calculation - there is no problem if

control system imposes actuation constraint (e.g. refreshment in the scan lines

like approach proposed in [33] is completely acceptable).

Although previous problems are significant, they are today endemic in the

whole space of massive coordination of large numbers of robotic elements. It is unclear

how and if any of the work presented on algorithms for the movement of the large

swarms of elements (as in e.g. [58], [55] and [56]) could be extended to the hard real

time domain. For that matter, GPU based algorithms have the advantage of the ability to

understand position of every element of the system on the global level, so analysis of

e.g. stability of the user standing on the moxel surface as well as of the completion of

the whole frame prior to deadline is likely to be easier to perform than of the user

standing on a group of catoms that are not even under the central control91.

With the previous limitations in mind, it is fair to say that we have shown that

GPU based computing of the moxel position is viable alternative and a field offering very

interesting research options in the future.

 ! 166

91 Previous observation reflects negatively on the whole idea of the decentralized control, as it
likely or puts you in position that you have to impose limitations on the movement of the catoms as
proposed in [56] and [55] or force you to account for the impact of next move Catom is about to make on
the whole structure.

8.6 GPU Use for Power Saving In Mechanical Device

Among other physical characteristics of the moxel that could be taken into

account, power consumption of the moxel is particularly interesting for portable

systems92. An interesting thing about the power consumption is that it could be both a

local (per moxel) and a global phenomenon (multiple moxels among the picture).

On the local level, it is possible that different methods of actuation of the

moxels would have different power characteristics (e.g. faster actuation using more

power), and the previously described algorithm for determining the moxel zone that is

next to be encountered by the user is beneficial in calculating urgency with which a

moxel should be moved to achieve its final position.

On the global level, we have a question of how we could achieve minimal

energy expenditure for the transition between two moxel arrays states. This approaches

has both a spatial component (among all the moxels in the model) and time component

(frame to frame coherence) and it is an open research question how well GPUs would

map to those problems. As two states could be considered images, image comparison

algorithms between current and desired frame could be used for comparison of the

states on the GPU (similar to the proposal of comparison of the height maps proposed

in [85]) and as such would give us starting position for the energy minimization

algorithms that could be run on the GPU. With that being said, that research, while

interesting future research topic is outside of the scope of this PhD.

 ! 167

92 Author would like to thank to Professor Yung-Cheng Lee for the suggestion to look in the
power consumption further.

8.8 Adaptive Resolution and Distribution Among Multiple Users

There is a significant set of work in the computer graphics field dealing with

adaptive resolution rendering for the purpose of graphics acceleration - for some

examples of that work, see e.g. [178] and [179].

Extensions of that work, combined with the work presented in this thesis of

determining areas of the PRE that are going to be accessed by the user next allow us to

use adaptive resolution for moxel control, in which different resolutions are used to

calculate moxel positions in the immediate surrounding area around the users, while

calculating other moxel areas in lower resolution93.

Note that clearly this adaptive resolution scheme could be hierarchical, with

areas very close to the user needing highest resolution and areas further away needing

progressively lower resolutions, as a function of the distance from the user and

maximum moxel movement speed. This is an interesting extension for further research,

and as a basis for it we can use the following algorithm:

Algorithm Adaptive Resolution Moxel Calc:

1. Use Algorithm Moxel Affected With User Movement to

detect moxels affected by user movement, based on the

maximum time that the moxel would need to move from its

current position to any other position in the range.

 ! 168

93 Question might be asked why calculate position of the moxels in the area not in the proximity
of user at all, and the answer here is that approximate positioning of the moxels is likely to help them
reach target position earlier when user ultimately move in that area.

2. If we are controlling a Holodeck environment with multiple

users, then clearly previous calculation has to be done taking

into account every single user.

3. In the regions where we find that moxels are not affected by

the user(s), we can raise only a portion of the moxels, e.g.

every fourth or eight. (e.g. to affect line of sight and erect

obstacles between users). An approach similar to the one

described in Algorithm Tactile Dithering with GPU could be

used to provide dithering, based on the average height and

slope of the terrain that should be shown in the region.

Previous algorithm could be used to reduce power consumption of the system,

too. Note that although in its previous form algorithm was presented for use in the large

scale, Holodeck type of environment, the algorithm could be used to provide adaptive

resolution for a MEMS based tactile system - we would treat every finger as a user in

the previous algorithm and provide finer image to the fingers that are “scanning”, while

most of the screen is rendered in the lower resolution.

Finally, note that if adaptive resolution is used in a large scale system occupied

by the multiple users, we clearly have to consider position of every single user in an

area as an area where we should do high-res rendering.

 ! 169

Chapter 9 - Future Work
This PhD thesis addresses important practical problems of software control of

Constrained Motion Cyber-Physical System environments consisting of millions of

elements. Although this work is important to enable the construction and practical

applicability of those systems (and as such represents a tangible contribution) it is just

an early contribution in what is likely to be a field with very significant research potential.

9.1 Mobile Systems as Assistive Technology

The combination of MEMS based systems with a portable device opens a set of

interesting possibilities for larger use cases in which proposed MEMS based systems

could be used as assistive technology for users that are visually impaired. Although this

is an area of future work that goes outside of the scope of this thesis, it opens exciting

research possibilities that we will discuss in this chapter.

The current situation of assistive technologies for blind users is not

encouraging, with many of the devices that are on the market being rejected by blind

users due to their limitations and the need for better interfaces for communicating

presence of obstacles [180]. As an example, systems that use sound to indicate the

presence of an obstacle seen on the camera interfere with hearing [180], and overview

of the tactile pin arrays [27] quotes multiple tactile vision substitution systems like

Optacon that were using camera to present tactile image.

A key observation here is that for most manufacturing processes, the cost of

the unit produced decreases with bigger numbers of units being produced94. That

 ! 170

94 Because, among other things, fixed costs gets absorbed among larger amount of units.

means that assistive technology that is useful to sighted users will be cheaper than

technology that is useful for only visually impaired users. So if we can produce system

that is useful to the sighted users, it would eventually result in cheaper assistive

technology for the visually impaired users.

As discussed elsewhere in this dissertation, tactile screens for visually impaired

users could present graphics in a way that could be perceived only by touch. This is

clearly very useful to the people who are visually impaired, but is also useful to sighted

users for the following reasons:

1. Current touch screens do not lead themselves well to the touch typing or dialing

phone numbers without looking at them, so physical keyboards are still

beneficial95.

2. However, physical keyboards take additional space and are fixed, showing only

one set of keys. Virtual keyboards have the advantage of better using space

available96.

3. The previous point could be addressed with a combination of the tactile and

visual screen, and early works in that area are Dynamic Displays [89] and

TeslaTouch [5]. However, combining dynamically changing surface and display

is clearly more difficult then just providing dynamic surface by itself.

 ! 171

95 Blackberry Torch is is combining physical keyboard with the touchscreen [181].

96 E.g. Appleʼs iOS in some applications presents only numerical characters on keyboard for
numerical input, making space for every key much larger then it will bepossible if we were representing all
alphanumerical characters on the same space [182].

Furthermore, TeslaTouch is not capable of providing tactile feeling to a

stationary finger, and requires the finger to move [5].

4. However, combining MEMS based surface on the back of the phone, so that

user could touch reverse side of the phone to avoid occlusion of the display by

fingers e.g. having two touchscreens on front (LED based) and back (MEMS or

electrovibration based97 is clearly simpler to implement with currently available

technology. This is a modification of the ideas proposed in [162], [184], [185]

and [186] in which various mechanisms were used to help user manipulate

touchscreen by touching the back of the surface).

5. There is early work on organic user interfaces in which computers could take

any physical form. It is conceivable that they would have areas that lead to

feedback over actuation of moxel like systems described [187].

So we have use cases that lead us to believe that we might have touch phones

with MEMS based surfaces being mass produced at some point in the not too distant

future. Let's recapitulate how such a smartphone is likely to look:

1. It would have a tactile display on the back.

2. It will be equipped with a GPS chip98.

3. It would have GPU with a programmable graphical pipeline.

 ! 172

97 Author would like to thank to Professor Yung-Cheng Lee for sharing idea of touchscreen
being useful to the sighted users to feel textures of the surface.

98 At the time of this writing, many popular smart phones like current flagship models from Apple
[88], Motorola [183] and RIM [181] are equipped with the GPS.

4. It would have map information related to user position accessible.

5. It would have CPU, memory and wireless connection speed that are

comparable with the what desktop computers had a number of years ago.

In itself, none of the previous ideas and technologies are new or original.

However, technology is finally catching up to the point when all of the previous ideas are

likely to soon be available in a package of the size of a mobile phone. Taken together,

they provide significant potential for a visually impaired person, and are interesting

areas for future work.

So what can we do with such a system? Some of the capabilities of such

systems are already shown by products that use GPS and focus range information

available from the camera to determine what object the user is looking at and provide

virtual tour of it, as done in e.g. [189]).

We can combine that functionality with the use of the software algorithms

presented here to show output from camera on the tactile display on the back or torso

(one such system presenting output on the user's torso is discussed in [73]) or even on

the phone display itself, while at the same time using GPS position and rangefinder

information available from the camera. All of this without requiring hardware modification

of the device (smartphone with the tactile display) that we expect to become ubiquitous

and cheap at some point in future.

Furthermore, note that there is work in progress for MEMS based stimulation of

the retina in the blind users [114] and that it is still not clear what will be the best

 ! 173

software control of such devices. We submit that once MEMS based epiretinal

stimulation devices reach sufficient density of MEMS elements, GPU based control will

be relevant for them too.

This combination is an interesting area for future research. Its ultimate potential

is to be a useful substitute for guide dogs and as such, this vision could be considered

logical extension of the work already being done in smartphone based assistive

technologies, as discussed in work done by [190] on vibrotactile sensor on the back of

the phone and [73] for the combination of the camera with a wearable tactile feedback

display.

Furthermore, it is interesting to notice that benefits of the tactile displays exist

not only for the people with visual disabilities, but that tactile feedback is useful for

people who are able to see normally. It was already demonstrated that even people who

see normally benefit from the tactile feedback for touchscreen typing [191]. Note that

these benefits of touch are not limited to just sense substitution - sense of touch is

faster than sight, allows consecutive stimuli that are only 5ms apart [191] and tactile

GPS units were shown to significantly help navigation of soldiers in the challenging

navigation environments, while reducing workload for user [118]. Furthermore, various

locations were investigated for positioning tactile feedback devices (waist, ankle, wrist)

[192].

 ! 174

9.2 Automated Tactile Translation for Haptic Systems

Although one possibility of producing tactile images is by mapping existing

graphics image to the tactile device (e.g. as proposed in [73]). While this is the most

obvious approach for sensory substitution and a good value for people who are gifted

with normal sight (as it allows them to touch what they can see), there are indications

that for visually disabled people modification of the image leads to better recognition

performance:

1. Image manipulation based on image enhancement algorithms helps the people

who are visually disabled to better perceive the image [76], [75]. As mentioned

elsewhere in this thesis, GPUs are a good solution for those image

enhancement operations.

2. In addition to the pixel level simplification, there are indications that for the best

tactile perception of the images by visually impaired and blind users, haptic

drawing has to be different than just direct translation of the visual picture to the

haptic surface, and that changing the shape of the picture in a format that is

different then classical visual drawing helps to better perceive the image [193].

Combination of the previous factors indicates that there is significant advantage in

using GPU hardware for the processing of haptic images and that image level

operations definitely help. However, it might be necessary to do more than image

level operations for best presentation of the images to users that are unable to see

and those operations canʼt be performed in the image space or GPU alone, as they

 ! 175

require change at the level of the 3D model. These operations fall outside of the

scope of this work, but are mentioned for the sake of completeness of this work.

9.3 Other Areas for Future Research

Hardware devices consisting of millions of elements would have significant

transformational potential, in respect not only to research in one area, but

multidisciplinary research and ultimately the world around us:

1. Assistive, MEMS based technologies could restore part of the ability to perceive

graphics and images to users that are visually impaired.

2. Previous devices are not only limited to assistive technologies, but might allow

sensory substitution in general. E.g. can we provide tactile feedback to users

who are not visually disabled? E.g., can we get information to pilots or drivers

using not only sight and sound as we do today, but by e.g. changing tactile

feedback they get? Some early work in this area is [72] as well as work

summarized in [24].

3. Integration of assistive technology with mobile phones and applications that

provide location aware augmented reality (like [194], [189] and [195]) would

provide significant additional help to visually impaired people and could

potentially augment some of the functions of a guide dog.

4. Holodeck based PRE as well as related locomotion research that could be

combined with PRE (e.g. CirculaFloor [10]) will be nothing less than the next

step in the evolution of immersive environments, allowing us not only to see the

 ! 176

environment, but to physically move in it with minimal limitations on the type of

movement the user can do. This would bring us closer to the early visions of

computer graphics pioneers [29].

In order for previous visions to happen, much additional research will be

needed and would involve disciplines like Computer Science, Mechanical Engineering,

Electrical Engineering, Psychophysics and others.

Some examples of future work relating to Computer Science are (in the area of

portable Constrained Motion Cyber-Physical Systems):

1. HCI for tactile interfaces and work relating to MMHCI [196]. What is the best

way for the user to interact with a high resolution tactile interface?

2. What are the requirements of a smartphone based virtual layer [194], [189, 195]

for assistive use of visually impaired users? What other location aware services

could be presented to the users?

3. Work in the area that best presents information for sense substitution for users

that are not visually disabled, in order to enhance their situational awareness.

Could we provide tactile instruments to e.g. pilots that would provide tactile

feedback from the planeʼs instruments? Could we make the users feel slight

physical discomfort if instruments are indicating dangerous situations? What

are the best ways to do that? What are appropriate situations in which to use

these facilities? What are the best HCI approaches here? [118] evaluates tactile

 ! 177

based navigation in challenging environments and surveys some of the

previous uses of tactile feedback.

4. What are the best HCI approaches for Dynamic Displays [89] and TeslaTouch

[5] for users who are not visually impaired? How can we combine a GUI with

tactile interfaces once that (or similar) work progresses to the point that it is

able to physically deform individual pixel?

5. How do we control output from multiple tactile feedback channels (e.g.

mechanical, thermal, vibration, soundwave based)? Need for the mutliple

output channels is demonstrated with systems like tactons that combine

rhythm, roughness and location to convey tactile information [127], [128].

Note that benefits to the user of tactile feedback were demonstrated in a

number of applications for users that have perfectly normal health (e.g. [118] points to

the examples of the use of tactile feedback by pilots under high-G force and astronaut

orientation and reports results of soldier navigation in challenging environments). This

indicates that a potential area of further research is extending proposed GPU algorithms

in the area of the HCI interaction over touch.

Opportunities for the further research are equally exciting in the area of large

scale Constrained Motion Cyber-Physical Systems. These are just some examples:

1. Although we discussed some basic approaches to addressing user safety in a

Holodeck type of environment, the larger question of how to ensure the

physical safety of the users in the environment remains. Are all transformations

 ! 178

of the surfaces safe or are there limitations? What is the best way to enforce

those limitations?

2. Related to the previous, how can we address mechanical failure in the system

in a way that ensures physical safety of the user?

3. What is the best approach to providing immersion and tactile feedback? What

is appropriate slipperiness for icy cave versus sand beach? What is the

elasticity of the grass versus mud?

4. What is the best way to present realistic places in the Constrained Motion

environment?

5. What is the best approach for networking multiple PREs (in order to allow for

distributed training)?

6. What is the best way to address temporal aliasing problems and tactile aliasing

in a PRE?

Finally, when we are talking about large scale systems with many moving

elements, we have shown that the system could address tens of millions of moxel

calculations per second on commodity class hardware. However, even larger Cyber-

Physical Systems could be on the horizon - e.g. if we are talking about Carbon

Nanotubes based systems [22], then we might be talking about even larger numbers of

elements that need to be controlled.

 ! 179

Combination of the techniques proposed in this work with the techniques used

for the cluster rendering for the large screen displays [197] is an interesting area of

future work as it would allow us to control even larger systems.

In conclusion, this PhD thesis is addressing important problems, but is not a

self-contained work, that is an end in itself, with no potential for future work. Quite the

contrary, the area of software control of million element Cyber-Physical Systems is likely

to present many opportunities for further research in the years to come.

 ! 180

References
1. T. Geller: “Shaping the Future”, Communications of the ACM, 52, 2009, pp.

16-18.

2. S. C. Goldstein and T. Mowry: “Claytronics: A scalable basis for future robots”,
Robosphere, November, 2004, pp. 1-6.

3. H. Iwata, H. Yano, H. Fukushima and H. Noma: “CirculaFloor: A locomotion
Interface Using Circulation of Movable Tiles”, Proceedings of the IEEE Virtual
Reality Conference 2005 (VR 2005), Bon, Germany, 2005, pp. 223-230.

4. B. Britton, C. Rogers, M. Rodriguez and A.Moklestad: "BrailleEye", University
of Colorado Senior Project team working under direction of Professor Y.C. Lee,
2009.

5. O. Bau, I. Poupyrev, A. Israr and C. Harrison: “TeslaTouch- Electrovibration
for Touch Surfaces”, The 23rd Annual ACM Symposium on User Interface
Software and Technology (UIST 2010), New York, NY, 2010, pp. 283-292.

6. V. Krunic and R. Han: “Towards Physically Rendered Environments”, in 2007,
pp.1-12, University of Colorado at Boulder Technical Report CU-CS-1033-07,
available at http://www.cs.colorado.edu/department/publications/reports/docs/
CU-CS-1033-07.pdf, visited on October 1, 2007.

7. V. Krunic and R. Han: “Towards Cyber-Physical Holodeck Systems Via
Physically Rendered Environments (PRE's)”, Proceedings of the 2008 The 28th
International Conference on Distributed Computing Systems Workshops, 00,
2008, pp. 507-512.

8. E. Enikov, K. Lazarov and G. Gonzales: “Microelectrical Mechanical Systems
Actuator Array for Tactile Communication”, COMPUTERS HELPING
PEOPLE WITH SPECIAL NEEDS Lecture Notes in Computer Science,
2398/2002, 2002, pp. 245-259.

9. Doll JC, Harjee N, Klejwa N, Kwon R, Coulthard SM, Petzold B, Goodman
MB and Pruitt BL: “Creative Commons licensed image from article "SU-8
force sensing pillar arrays for biological measurements." in Lab Chip. 2009
May 21;9(10):1449-54, also available on Flickr URL http://www.flickr.com/
photos/jcdoll/3833701083/sizes/l/in/photostream/, visited on August 16, 2010.

10. H. Iwata, H. Yano, H. Fukushima and H. Noma: “CirculaFloor [locomotion
interface]”, Computer Graphics and Applications, IEEE, 25, 2005, pp. 64-67

 ! 181

http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-1033-07.pdf
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-1033-07.pdf
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-1033-07.pdf
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-1033-07.pdf
http://www.flickr.com/photos/jcdoll/3833701083/sizes/l/in/photostream/
http://www.flickr.com/photos/jcdoll/3833701083/sizes/l/in/photostream/
http://www.flickr.com/photos/jcdoll/3833701083/sizes/l/in/photostream/
http://www.flickr.com/photos/jcdoll/3833701083/sizes/l/in/photostream/

11. J. Hollerbach, Y. Xu, R. Christensen and S. Jacobsen: “Design Specifications
for the Second Generation Sarcos Treadport Locomotion Interface”, Haptics
Symposium, Proc. ASME Dynamic Systems and Control Division, Orlando,
Florida, 2000, pp. 1293-1298.

12. R. Darken, W. Cockayne and D. Carmein: “The Omni-Directional Treadmill:
a Locomotion Device for Virtual Worlds”, Proceedings of the 10th annual
ACM symposium on User interface software and technology, Banff, Alberta,
Canada, 1997, pp. 213-221.

13. Flickr user Mr eNil: “Image from Beijing Olympics Opening Ceremony
(Creative Commons licensed image)”, in Beijing, China, 2008, available at
http://www.flickr.com/photos/enil/2800434486/sizes/l/in/photostream/, visited
on September 18, 2010.

14. Dino Direct: “Pin Art/Pin Point Toy”, internet shopping site at http://
www.dinodirect.com/Pin-Point-Impression-Toy.html, visited on September
27, 2010.

15. J. Gargus, B. Kim, J. Rossignac, I. Llamas and J. R. a. Shaw: “Finger
sculpting with Digital Clay: 3D Shape Input and Output Through a Computer-
Controlled Real Surface (Technical Report)”, Technical Report GIT-
GVU-02-22 GVU Center and College of Computing Georgia Institute of
Technology, 2010, available at http://smartech.gatech.edu/bitstream/
1853/3285/1/02-22.pdf, visited on September 5, 2010.

16. H. Zhu and W. Book: “Control Concepts for Digital Clay”, Robot control
2003 (SYROCO'03): a proceedings volume from the 7th IFAC Symposium, 2,
Wrocław, Poland, 2003, pp. 347-352.

17. H. Zhu and W. Book: “Embedding and Multiplexing Large Scale Sensor
Arrays for Digital Clay”, Proceedings of ASME-IMECE ASME International
Mechanical Engineering Congress and Exposition (IMECE2005), Orlando
Florida, 2005, pp. 1489-1495.

18. V. Chouvardas, A. Miliou and M. Hatalis: “Tactile displays: Overview and
recent advances”, Displays, 29, 2008, pp. 185-194.

19. P. Dario: “Tactile sensing: Technology and applications.”, Sensors and
Actuators, 1991, pp. 251-256.

20. L. Johnson and C. Higgins: “A Navigation Aid for the Blind Using Tactile-
Visual Sensory Substitution”, Proceedings of the 28th IEEE EMBS Annual
International Conference, New York City, USA, 2006, pp. 6289-6292.

 ! 182

http://www.flickr.com/photos/enil/2800434486/sizes/l/in/photostream/
http://www.flickr.com/photos/enil/2800434486/sizes/l/in/photostream/
http://www.dinodirect.com/Pin-Point-Impression-Toy.html
http://www.dinodirect.com/Pin-Point-Impression-Toy.html
http://www.dinodirect.com/Pin-Point-Impression-Toy.html
http://www.dinodirect.com/Pin-Point-Impression-Toy.html
http://smartech.gatech.edu/bitstream/1853/3285/1/02-22.pdf
http://smartech.gatech.edu/bitstream/1853/3285/1/02-22.pdf
http://smartech.gatech.edu/bitstream/1853/3285/1/02-22.pdf
http://smartech.gatech.edu/bitstream/1853/3285/1/02-22.pdf

21. B. Britton, A. Moklestad, M. Rodriguez, C. Rogers and S. R. Sokol:
“BrailleEye - Haptic User Interface for the Visually Impaired”, poster
presented at The Ninth Annual Coleman Institute conference, Cognitive
Disability, Inequality, and Technology in an Age of Economic Uncertainty,
Westminster, Colorado, 2009, pp. 1.

22. C. Li, E. Thostenson and T. Chou: “Sensors and Actuators Based on Carbon
Nanotubes and Their Composites: A Review”, Composites Science and
Technology, 68, 2008, pp. 1227-1249.

23. I. Poupyrev, T. Nashida and M. Okabe: “Actuation and tangible user
interfaces: the Vaucanson duck, robots, and shape displays”, Proceedings of
the 1st international conference on Tangible and embedded interaction
(TEI'07), Baton Rouge, LA, USA, 2007, pp. 205 - 212.

24. F. Vidal-Verdu and M. Hafez: “Graphical Tactile Displays for Visually-
Impaired People”, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 15, 2007, pp. 119-130.

25. R. Chellali, L. Brayda, C. Martinoli and E. Fontaine: “How Taxel-based
Displaying Devices Can Help Visually Impaired People to Navigate Safely”,
Autonomous Robots and Agents, 2009. ICARA 2009. 4th International
Conference on, 2009, pp. 470-475.

26. X. Wu: "A reconfigurable tactile display based on polymer MEMS
technology", PhD, Georgia Tech, 2008, available at https://
smartech.gatech.edu/handle/1853/22623, visited on September 2, 2010.

27. S. Wall and S. Brewster: “Sensory substitution using tactile pin arrays: Human
factors, technology and applications”, Signal Processing, 86, 2006, pp.
3674-3695.

28. O. Bimber and R. Raskar: "Spatial Augmented Reality: Merging Real and
Virtual Worlds", Prentice Hall, 2005, ISBN-13: 978-1568812304.

29. I. E. Sutherland: “The Ultimate Display”, Proceedings of the IFIP Congress,
1965, pp. 506-508.

30. Amazon.com, Inc.: “Amazon Kindle DX Technical Specs”, in 2009, available
at http://www.amazon.com/Kindle-Wireless-Reading-Display-Generation/dp/
B0015TCML0, visited on November 10, 2009.

31. N. Asamura, T. Shinohara, Y. Tojo, N. Koshida and H. Shinoda: “Necessary
Spatial Resolution for Realistic Tactile Feeling Display”, IEEE
INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 2,
Coex, South Korea, 2001, pp. 1851-1856.

 ! 183

https://smartech.gatech.edu/handle/1853/22623
https://smartech.gatech.edu/handle/1853/22623
https://smartech.gatech.edu/handle/1853/22623
https://smartech.gatech.edu/handle/1853/22623
http://www.amazon.com/Kindle-Wireless-Reading-Display-Generation/dp/B0015TCML0
http://www.amazon.com/Kindle-Wireless-Reading-Display-Generation/dp/B0015TCML0
http://www.amazon.com/Kindle-Wireless-Reading-Display-Generation/dp/B0015TCML0
http://www.amazon.com/Kindle-Wireless-Reading-Display-Generation/dp/B0015TCML0

32. A. Arnoldussen, B. Besta, A. Ferber and E. Fisher: “Spatial Resolution on the
Tongue as Applied to a Prosthetic BrainPort (R) Vision Device”, Investigative
Ophtalmology and Visual Science, 49, 2008.

33. H. Zhu: "PRACTICAL STRUCTURAL DESIGN AND CONTROL FOR
DIGITAL CLAY", PhD Thesis, Georgia Institure of Technology, 2005,
available at http://smartech.gatech.edu/handle/1853/7270, visited on
September 2, 2010.

34. J. D. Foley, A. v. Dam, S. K. Feiner and J. F. Hughes: "Computer Graphics:
Principles and Practice in C (2nd Edition)", Addison-Wesley Professional,
1995, ISBN-13: 978-0201848403.

35. A. Watt and F. Policarpo: "Advanced Game Development with Programmable
Graphics Hardware", A K Peters, Ltd, 2005, ISBN-13: 978-1568812403.

36. W. Engel: "ShaderX3: Advanced Rendering with DirectX and OpenGL
(Shaderx Series)", Charles River Media, 2004, ISBN-13: 978-1584503576.

37. R. J. Rost: "OpenGL(R) Shading Language (2nd Edition)", Addison-Wesley
Professional, 2006, ISBN-13: 978-0321334893.

38. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn
and T. Purcell: “A Survey of General-Purpose Computation on Graphics
Hardware”, Computer Graphics Forum, 26, 2007, pp. 80-113.

39. A. Brodtkorb, C. Dyken, T. Hagen, J. Hjelmervik and O. Storaasli: “State-of-
the-Art in Heterogeneous Computing”, Scientific Programming, 18, 2010, pp.
1-33.

40. V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N.
Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal and P.
Dubey: “Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU”, Proceedings of the 37th annual
international symposium on Computer architecture, 38(3), Saint-Malo,
France, 2010, pp. 451-460.

41. E. Catmull: "A Subdivision Algorithm for Computer Display of Curved
Surfaces", PhD, University of Utah, 1974.

42. J. Hollerbach, W. Thompson and P. Shirley: “The Convergence of Robotics,
Vision, and Computer Graphics for User Interaction”, International Journal of
Robotics Research, 18, 1999, pp. 1088-1100.

 ! 184

http://smartech.gatech.edu/handle/1853/7270
http://smartech.gatech.edu/handle/1853/7270

43. D. Tristano, J. Hollerbach and R. Christensen: “Slope Display on a
Locomotion Interface”, EXPERIMENTAL ROBOTICS VI - Lecture notes in
control and information sciences, 250/2000, 2000, pp. 193-201.

44. H. Iwata, H. Yano and F. Nakaizumi: “Gait master: A Versatile Locomotion
Interface for Uneven Virtual Terrain”, Proceedings of the IEEE VR2001
Conference, Yokohama, Japan, 2001, pp. 131-137.

45. H. Yano, K. Kasai, H. Saito and H. Iwata: “Sharing Sense of Walking With
Locomotion Interfaces”, International Journal of Human-Computer
Interaction, 17, 2004, pp. 447-462.

46. J. Hollerbach, D. Grow and C. Parker: “Developments in Locomotion
Interfaces”, Proc. 9th Int’l Conf. on Rehabilitation Robotics, Chicago, Illinois,
2005, pp. 522–525.

47. J. Hollerbach: “Some Current Issues in Haptics Research”, IEEE
INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, San
Francisco, California, 2000, pp. 757-762.

48. J. Yoon and J. Ryu: “A novel locomotion interface with two 6-dof parallel
manipulators that allows human walking on various virtual terrains”, The
International Journal of Robotics Research, 25(7), 2006, pp. 689-708.

49. Intel Corporation: “Dynamic Physical Rendering”, in 2010, available at http://
techresearch.intel.com/ProjectDetails.aspx?Id=120, v i s i t e d o n
September 28, 2010.

50. Carnegie Mellon: “Claytronics Project”, in 2010, available at http://
www.cs.cmu.edu/~claytronics/, visited on September 28, 2010.

51. P. Pillai and J. Campbell: “Sensing and Reproducing the Shapes of 3D Objects
Using Claytronics”, Proceedings of the 4th international conference on
Embedded networked sensor systems (DEMONSTRATION SESSION:
Demonstration papers), 2006, pp. 369-370.

52. B. T. Kirby, B. Aksak, J. D. Campbell, J. F. Hoburg, T. C. Mowry, P. Pillai and
S. C. Goldstein: “A modular robotic system using magnetic force effectors”,
In Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS’07), San Diego, CA, 2007, pp. 2787-2793.

53. M. Karagozler, S. Goldstein and J. Reid: “Stress-driven MEMS Assembly+
Electrostatic Forces= 1mm Diameter Robot”, IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009. IROS 2009., St. Louis,
Missouri, 2009, pp. 2763-2769.

 ! 185

http://techresearch.intel.com/ProjectDetails.aspx?Id=120
http://techresearch.intel.com/ProjectDetails.aspx?Id=120
http://techresearch.intel.com/ProjectDetails.aspx?Id=120
http://techresearch.intel.com/ProjectDetails.aspx?Id=120
http://www.cs.cmu.edu/~claytronics/
http://www.cs.cmu.edu/~claytronics/
http://www.cs.cmu.edu/~claytronics/
http://www.cs.cmu.edu/~claytronics/

54. S. Goldstein, J. Campbell and T. Mowry: “Programmable Matter”, Computer,
38, 2005, pp. 99-101.

55. P. Bhat, J. Kuffner, S. Goldstein and e. al.: “Hierarchical Motion Planning for
Self-Reconfigurable Modular Robots”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006, Beijing, China, 2006, pp. 886-891.

56. D. Christensen, J. Campbell and K. Stoy: “Anatomy-Based Organization of
Morphology and Control in Self-Reconfigurable Modular Robots”, Neural
Computing & Applications, 19, 2010, pp. 787-805.

57. Mark Yim,Wei-Min Shen,Behnam Salemi, D. Rus, M. Moll,Hod Lipson,Eric
Klavins and G. S. Chirikjian: “Modular Self-Reconfigurable Robot Systems”,
IEEE Robotics and Automation Magazine, 1, 2007, pp. 43-52.

58. R. Fitch and Z. Butler: “Million Module March: Scalable Locomotion for
Large Self-Reconfiguring Robots”, The International Journal of Robotics
Research, 27, 2008, pp. 331-343.

59. Z. Wang, K. Bauernfeind and T. Sugar: “Omni-Directional Treadmill System”,
11th Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, 2003. HAPTICS 2003. Proceedings., Los Angeles,
California, 2003, pp. 367-373.

60. H. Iwata: “Walking About Virtual Environments on an Infinite Floor”,
Proceedings of the IEEE Virtual Reality, Houston, Texas, 1999, pp. 286-293.

61. J. Hollerbach, R. Mills, D. Tristano, R. Christensen, W. Thompson and Y. Xu:
“Torso Force Feedback Realistically Simulates Slope on Treadmill-Style
Locomotion Interfaces”, The International Journal of Robotics Research, 20,
2001, pp. 939.

62. J. Hollerbach, D. Checcacci, H. Noma, Y. Yanagida and N. Tetsutani:
“Simulating Side Slopes on Locomotion Interfaces Using Torso Forces”,
Proceedings of the 11th Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems (HAPTICS'03), Los Angeles, CA,
2003, pp. 91-98.

63. C. Cruz-Neira, D. J. Sandin and T. A. DeFanti: “Surround-Screen Projection-
Based Virtual Reality: the Design and Implementation of the CAVE”,
SIGGRAPH '93: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, Anaheim, CA, 1993, pp. 135-142.

64. Wikimedia Commons Image: “Image of the soldier in the CAVE environment
(public domain as work from United States Federal Government)”, in 2007,

 ! 186

available at http://en.wikipedia.org/wiki/File:ARL_ODT.jpg, visited on
November 11th, 2009.

65. American Foundation for the Blind: “Refreshable Braille Display”, in 2010,
a v a i l a b l e a t h t t p : / / w w w . a f b . o r g / S e c t i o n . a s p ?
DocumentID=3652&SectionID=7&SubTopicID=97&TopicID=330, visited on
September 28, 2010.

66. Wikimedia Commons: “Image of the refreshable Brail Display”, in 2006,
available at http://en.wikipedia.org/wiki/File:Refreshable_Braille_display.jpg,
visited on September 28, 2010.

67. M. Hafez: “Tactile Interfaces: Technologies, Applications and Challenges”,
The Visual Computer, 23, 2007, pp. 267-272.

68. Y. Ikei, M. Yamada and S. Fukuda: “A new design of haptic texture display-
Texture Display2-and its preliminary evaluation”, Proceedings of IEEE
Virtual Reality 2001 Conference, Yokohama, Japan, 2001, pp. 21-28.

69. D. Ruspini, K. Kolarov and O. Khatib: “The Haptic Display of Complex
Graphical Environments”, Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, Los Angeles, California, 1997,
pp. 345-352.

70. J. Roberts and S. Panëels: “Where are we with Haptic Visualization?”,
Proceedings of the Second Joint EuroHaptics Conference and Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, Tsukuba,
Japan, 2007, pp. 316-323.

71. M. Shinohara, Y. Shimizu and A. Mochizuki: “Three-Dimensional Tactile
Display for the Blind”, IEEE Transactions on Rehabilitation Engineering, 6,
1998, pp. 249-256.

72. E. Chabot and Y. Sun: “Visual-to-Tactile Interface to Detect Motions in Real-
time for Persons with Visual Impairments”, Proceedings of the IEEE 32nd
Annual Northeast Bioengineering Conference, 2006., Easton, Pennsylvania,
2006, pp. 63-64.

73. M. Pereira and F. Kassab: “An Electrical Stimulator for Sensory Substitution”,
Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual
International Conference of the IEEE, August 30 - September 3, 2006, 2006,
pp. 6016-6020.

74. R. E. Ladner, M. Y. Ivory, R. Rao, S. Burgstahler, D. Comden, S. Hahn, M.
Renzelmann, S. Krisnandi, M. Ramasamy, B. Slabosky, A. Martin, A.
Lacenski, S. Olsen and D. Groce: “Automating Tactile Graphics Translation”,

 ! 187

http://en.wikipedia.org/wiki/File:ARL_ODT.jpg
http://en.wikipedia.org/wiki/File:ARL_ODT.jpg
http://www.afb.org/Section.asp?DocumentID=3652&SectionID=7&SubTopicID=97&TopicID=330
http://www.afb.org/Section.asp?DocumentID=3652&SectionID=7&SubTopicID=97&TopicID=330
http://www.afb.org/Section.asp?DocumentID=3652&SectionID=7&SubTopicID=97&TopicID=330
http://www.afb.org/Section.asp?DocumentID=3652&SectionID=7&SubTopicID=97&TopicID=330
http://en.wikipedia.org/wiki/File:Refreshable_Braille_display.jpg
http://en.wikipedia.org/wiki/File:Refreshable_Braille_display.jpg

Assets '05: Proceedings of the 7th international ACM SIGACCESS conference
on Computers and accessibility, New York, NY, 2005, pp. 50-57.

75. T. P. Way and K. E. Barner: “Automatic Visual to Tactile Translation-Part I:
Human Factors, Access Methods, and Image Manipulation”, IEEE
Transactions on Rehabilitation Engineering, 5, 1997, pp. 81-94.

76. T. P. Way and K. E. Barner: “Automatic Visual to Tactile Translation. II.
Evaluation of the TACTile Image Creation System”, IEEE Transactions on
Rehabilitation Engineering, 5, 1997, pp. 95-105.

77. F. Alarya, M. Duquettea, R. Goldsteina, C. E. Chapmanb, P. Vossa, V. L.
Buissonnière-Arizaa and F. Leporea: “Tactile acuity in the blind: A closer look
reveals superiority over the sighted in some but not all cutaneous tasks”,
Neuropsychologia, 47, 2009, pp. 2037-2043.

78. H. Zhu and W. Book: “Practical Structure Design and Control for Digital
Clay”, 2004 ASME International Mechanical Engineering Congress and
Exhibition, Anaheim, California, 2004, pp. 1051.

79. J. Rossignac, M. Allen, W. Book, A. Glezer, I. Ebert-Uphoff, C. Shaw, D.
Rosen, S. Askins, J. Bai and P. Bosscher: “Finger Sculpting with Digital Clay:
3d Shape Input and Output Through a Computer-Controlled Real Surface”,
International Conference on Shape Modeling and Applications, May 12-15,
2003, 2003, pp. 229 - 231.

80. H. Iwata, H. Yano, F. Nakaizumi and e. al.: “Project FEELEX: Adding Haptic
Surface to Graphics”, Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, Los Angeles, California, 2001,
pp. 469-476.

81. D. Overholt, E. Pasztor and A. Mazalek: “A Multipurpose Array of Tactile
Rods for Interactive eXpression”, ACM SIGGRAPH 2001, Sketches &
Application Session, 2001, pp. 232.

82. D. J. Page: “Reconfigurable surface. US Patent, June 2005. US 6903871.”,
2005, pp. 1-11.

83. W. Hillis and F. B. Daniel: “Raised display apparatus. US Patent, October
2008. US 7436388”, 2008, pp. 1-11.

84. D. Leithinger and H. Ishii: “Relief: a Scalable Actuated Shape Display”,
Proceedings of the fourth international conference on Tangible, embedded,
and embodied interaction (DEMONSTRATION SESSION: Demonstrations),
Cambridge, Massachusetts, 2010, pp. 221-222.

 ! 188

85. D. Leithinger: "Design and Implementation of a Relief Interface", MS Thesis,
Massachusetts Institute of Technology, 2010, available at http://
dspace.mit.edu/handle/1721.1/57899, visited on October 16th, 2010.

86. M. Benali-Khoudja, M. Hafez, J. Alexandre and A. Kheddar: “Tactile
Interfaces: a State-of-the-art Survey”, ISR 2004, 35th International
Symposium on Robotics, Paris, France, 2004.

87. S. Takagi, H. Sasaki, M. Shikida and K. Sato: “Electrostatic Latch Mechanism
for Handling Projection on Arrayed Vertical Motion System”,
TRANSDUCERS & EUROSENSORS ’07, The 14th International Conference
on Solid-State Sensors, Actuators and Microsystems, Lyon, France, 2007, pp.
1147-1150.

88. Apple, Inc.: “iPhone”, in 2009, available at http://www.apple.com/iphone/,
visited on September 3, 2010.

89. C. Harrison and S. Hudson: “Dynamic Displays”, ACM Crossroads, 16, 2009,
pp. 6-7.

90. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M.
Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski,
S. Roth and M. Kertesz: “Carbon Nanotube Actuators”, Science, 284, 1999,
pp. 1340-1344.

91. C. Ziegler: “iPhone 3G vs. iPhone 3G S: the tale of the tape”, in
engadget.com, 2009, available at http://mobile.engadget.com/2009/06/08/
iphone-3g-vs-iphone-3g-s-the-tale-of-the-tape/, visited on March 23, 2010.

92. C. Ziegler: “iPhone 3G S supports OpenGL ES 2.0, but 3G only supports 1.1
-- will the App Store splinter?”, in 2009, available at http://
www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-
only-supports-1-1/, visited on August 3, 2010.

93. H. Nguyen: “iPhone 3GS: Prepare For a 3D Graphics Shock”, in
ubergizmo.com, 2009, available at http://www.ubergizmo.com/15/archives/
2009/06/iphone-3gs-gpu.html, visited on February 11, 2010.

94. G. E. Favalora: “Volumetric 3D Displays and Application Infrastructure”,
Computer, 38, 2005, pp. 37 - 44.

95. W. Chun, J. Napoli, O. S. Cossairt, R. K. Dorval, D. M. Hall, T. J. P. II, J. F.
Schooler, Y. Banker and G. E. Favalora: “Spatial 3-D Infrastructure: Display-
Independent Software Framework, High-Speed Rendering Electronics, and
Several New Displays”, Stereoscopic Displays and Virtual Reality Systems

 ! 189

http://dspace.mit.edu/handle/1721.1/57899
http://dspace.mit.edu/handle/1721.1/57899
http://dspace.mit.edu/handle/1721.1/57899
http://dspace.mit.edu/handle/1721.1/57899
http://www.apple.com/iphone/
http://www.apple.com/iphone/
http://mobile.engadget.com/2009/06/08/iphone-3g-vs-iphone-3g-s-the-tale-of-the-tape/
http://mobile.engadget.com/2009/06/08/iphone-3g-vs-iphone-3g-s-the-tale-of-the-tape/
http://mobile.engadget.com/2009/06/08/iphone-3g-vs-iphone-3g-s-the-tale-of-the-tape/
http://mobile.engadget.com/2009/06/08/iphone-3g-vs-iphone-3g-s-the-tale-of-the-tape/
http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/
http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/
http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/
http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/
http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/
http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/
http://www.ubergizmo.com/15/archives/2009/06/iphone-3gs-gpu.html
http://www.ubergizmo.com/15/archives/2009/06/iphone-3gs-gpu.html
http://www.ubergizmo.com/15/archives/2009/06/iphone-3gs-gpu.html
http://www.ubergizmo.com/15/archives/2009/06/iphone-3gs-gpu.html

XII, edited by Andrew J. Woods, Mark T. Bolas, John O. Merritt, Ian E.
McDowall, Proceedings of SPIE-IS&T Electronic Imaging, SPIE, 5664, 2005,
pp. 302-312.

96. J. Napoli, S. Stutsman, J. Chu, X. Gong, M. Rivard, G. Cardarelli, T. Ryan
and G. Favalora: “Radiation Therapy Planning Using a Volumetric 3-D
Display: PerspectaRAD”, Proceedings of SPIE, 6803, San Diego, California,
2008, pp. 680312.

97. R. Fernando: "GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics", Addison-Wesley Professional, 2004, ISBN-13:
978-0321228321.

98. M. Bunnell and F. Pellacini: "GPU Gems 2 - Programming Techniques for
High-Performance Graphics and General-Purpose Computation", Addison-
Wesley Professional, 2005, ISBN-13: 978-0321335593.

99. M. Liao, Z. Zhang and J. Lewis: “Software-Based Distortion Compensation
for a Scanned Beam Display”, Proceedings of the 5th ACM/IEEE
International Workshop on Projector camera systems, Marina del Rey,
California, 2008, pp. 13.

100. C. Chen, B. Miao and D. Prather: “Enhanced Electro-Optical Effect in
Silicon”, Proc. of SPIE Vol, 6477 64770Y-1, San Jose, California, 2007, pp.
6477-6432.

101. F. Bourger, C. Doignon and M. D. Mathelin: “A Model-free Vision-based
Robot Control for Minimally Invasive Surgery using ESM Tracking and
Pixels Color Selection”, 2007 IEEE International Conference on Robotics
and Automation, Roma, Italy, 2007, pp. 3579-3584.

102. P. Novotny, J. Stoll, N. Vasilyev, P. Del Nido, P. Dupont, T. Zickler and R.
Howe: “GPU Based Real-Time Instrument Tracking with Three-Dimensional
Ultrasound”, Medical image analysis - Special Issue on the Ninth
International Conference on Medical Image Computing and Computer-
Assisted Interventions - MICCAI 2006, 11, 2007, pp. 458-464.

103. P. Novotny, J. Stoll, P. Dupont and R. Howe: “Real-time Visual Servoing of a
Robot Using Three-Dimensional Ultrasound”, IEEE International
Conference on Robotics and Automation, Rome, Italy, 2007, pp. 2655-2660.

104. E. Dedu, K. Boutoustous and J. Bourgeois: “An Exhaustive Comparison
Framework for Distributed Shape Differentiation in a MEMS Sensor
Actuator Array”, Proceedings of the 2008 International Symposium on
Parallel and Distributed Computing, Krakow, 2008, pp. 429-433.

 ! 190

105. A. Frezzotti, G. P. Ghiroldi and L. Gibelli: “Solving Kinetic Equations on
GPUs I: Model Kinetic Equations”, Preprint Submitted to Elsevier, 24
March, 2009.

106. R. Gayle, M. Lin and D. Manocha: “Constraint-based motion planning of
deformable robots”, Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, 2005. ICRA 2005., Barcelona, Spain, 2005, pp.
1046-1053.

107. L. Williams: “Casting curved shadows on curved surfaces”, ACM
SIGGRAPH Computer Graphics, 12(3), 1978, pp. 270-274.

108. M. W. Jones, J. A. Baerentzen and M. Sramek: “3D distance fields: A survey
of techniques and applications”, IEEE Transactions on Visualization and
Computer Graphics, 12, 2006, pp. 581-599.

109. T. Morvan, M. Reimers and E. Samset: “High Performance GPU-Based
Proximity Queries Using Distance Fields”, Computer Graphics Forum, 27,
2008, pp. 2040-2052.

110. A. Sud, M. Otaduy and D. Manocha: “DiFi: Fast 3D distance field
computation using graphics hardware”, EUROGRAPHICS, 23, 2004, pp.
557-566.

111. K. Hoff, T. Culver, J. Keyser, M. Lin and D. Manocha: “Fast Computation of
Generalized Voronoi Diagrams Using Graphics Hardware”, Proceedings of
ACM SIGGRAPH, 1999, pp. 277-286.

112. O. Spinczyk, A. Gal and W. Schoder-Preikschat: “Aspect C++: An Aspect-
Oriented Extension to the C++ Programming Language”, Proceedings of the
Fortieth International Conference on Tools Pacific: Objects for internet,
mobile and embedded applications, 21, Sydney, Australia, 2002, pp. 53-60.

113. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier
and J. Irwin: “Aspect Oriented Programming”, European Conference on
Object-Oriented Programming, 1241, 1997, pp. 220-242.

114. W. Mokwa: “MEMS Technologies for Epiretinal Stimulation of the Retina”,
Journal of Micromechanics and Microengineering, 14, 2004, pp. 12.

115. G. Lamb: “Tactile Discrimination of Textured Surfaces: Psychophysical
Performance Measurements in Humans.”, The Journal of Physiology, 338,
1983, pp. 551-565.

116. J. Morley, A. Goodwin and I. Darian-Smith: “Tactile Discrimination of
Gratings”, Experimental brain research, 49, 1983, pp. 291-299.

 ! 191

117. Y. Tojo, N. Asamura and H. Shinoda: “A study on tactile resolution of human
skin”, SICE 2002. Proceedings of the 41st SICE Annual Conference, 5, 2002,
pp. 3205-3207.

118. L. Elliott, J. van Erp, E. Redden and M. Duistermaat: “Field-Based
Validation of a Tactile Navigation Device”, IEEE Transactions on Haptics, 3,
2010, pp. 78-87.

119. J. B. F. v. Erp, L. Eriksson, B. Levin, O. Carlander, J. A. Veltman and W. K.
Vos: “Tactile Cueing Effects on Performance in Simulated Aerial Combat
with High Acceleration”, Aviation, Space and Environmental Medicine, 78,
2007, pp. 1128-1134.

120. J. B. F. v. Erp, E. L. Groen, J. E. Bos and H. A. H. C. v. Veen: “A Tactile
Cockpit Instrument Supports the Control of Self-Motion During Spatial
Disorientation”, Human factors, 48, 2006, pp. 219-228.

121. J. M. Rolfe and K. J. Staples: "Flight Simulation (Cambridge Aerospace
Series)", Cambridge University Press, 1988, ISBN-13: 978-0521357517.

122. T. Jung and I. Haulsen: “Immersive Escape-Route Scenario with Locomotion
Devices”, Proceedings of Workshop on Spatial Cognition in Real and Virtual
Environments.

123. Nintendo Corporation: “Nintendo Wii”, 2009, available at http://
www.nintendo.com/wii, visited on November 10th, 2009.

124. O. A. R. Board, D. Shreiner, M. Woo, J. Neider and T. Davis: "OpenGL(R)
Programming Guide: The Official Guide to Learning OpenGL(R), Version 2
(5th Edition)", Addison-Wesley Professional, 2005, ISBN-13:
978-0321335739.

125. K Christian: “Design of Haptic and Tactile Interfaces for Blind Users”, in
2000, available at http://www.otal.umd.edu/UUGuide/kevin/, visited on
November 5, 2009.

126. Digital Display Working Group: “Digital Visual Interface (DVI)”, Revision
1.0, 1999, available at http://www.ddwg.org/lib/dvi_10.pdf, visited on
September 6, 2010.

127. S. Brewster and L. Brown: “Tactons: structured tactile messages for non-
visual information display”, Proceedings of Australasian User Interface
Conference, Dunedin, New Zealand, 2004, pp. 15-23.

 ! 192

http://www.nintendo.com/wii
http://www.nintendo.com/wii
http://www.nintendo.com/wii
http://www.nintendo.com/wii
http://www.otal.umd.edu/UUGuide/kevin/
http://www.otal.umd.edu/UUGuide/kevin/
http://www.ddwg.org/lib/dvi_10.pdf
http://www.ddwg.org/lib/dvi_10.pdf

128. L. Brown, S. Brewster and H. Purchase: “Multidimensional tactons for non-
visual information presentation in mobile devices”, Proceedings of the 8th
conference on Human-computer interaction with mobile devices and
services, 2006, pp. 238.

129. K. R. Castelman: "Digital Image Processing", Prentice Hall, 1995, ISBN
978-0132114677.

130. A. S. Glassner: "Principles of Digital Image Synthesis", Morgan Kaufmann,
1995, 978-1558602762.

131. CppUnit Project: “CppUnit Wiki”, in 2008, available at http://
sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page, visited
on May 2nd, 2007.

132. K. Back: "Test Driven Development: By Example", Addison-Wesley
Professional, 2002, ISBN-13: 978-0321146533.

133. Khronos Group: “COLLADA – Digital Asset Schema Release 1.5.0
Specification”, in 2008, available at http://www.khronos.org/files/
collada_spec_1_5.pdf, visited on December 30, 2009.

134. Dimitri van Heesch: “Doxygen: Doxygen: Generate Documentation From
Source Code”, in 2010, available at http://www.stack.nl/~dimitri/doxygen/,
visited on September 20, 2010.

135. G. E. Krasner and S. T. Pope: “A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System”, Journal of Object
Oriented Programming, 1, 1988, pp. 26-49.

136. Flickr user Joel Johnson: “Creative Commons licensed image of VR
helmet”, in 2007, available at http://www.flickr.com/photos/joeljohnson/
353246613/sizes/m/in/photostream/, visited on August 16, 2010.

137. Khronos Group: “OpenGL ES 2.X and the OpenGL ES Shading Language”,
in 2010, available at http://www.khronos.org/opengles/2_X/, visited on
September 2, 2010.

138. NVIDIA: “GeForce 7300 GPUs”, in 2009, available at http://
www.nvidia.com/page/geforce_7300.html, visited on November 10, 2009.

139. J. L. Hennessy and D. A. Patterson: "Computer Architecture: A Quantitative
Approach, 4th Edition", Morgan Kaufmann, 2006, ISBN-13:
978-0123704900.

 ! 193

http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://www.khronos.org/files/collada_spec_1_5.pdf
http://www.khronos.org/files/collada_spec_1_5.pdf
http://www.khronos.org/files/collada_spec_1_5.pdf
http://www.khronos.org/files/collada_spec_1_5.pdf
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.flickr.com/photos/joeljohnson/353246613/sizes/m/in/photostream/
http://www.flickr.com/photos/joeljohnson/353246613/sizes/m/in/photostream/
http://www.flickr.com/photos/joeljohnson/353246613/sizes/m/in/photostream/
http://www.flickr.com/photos/joeljohnson/353246613/sizes/m/in/photostream/
http://www.khronos.org/opengles/2_X/
http://www.khronos.org/opengles/2_X/
http://www.nvidia.com/page/geforce_7300.html
http://www.nvidia.com/page/geforce_7300.html
http://www.nvidia.com/page/geforce_7300.html
http://www.nvidia.com/page/geforce_7300.html

140. J. E. Stone, D. Gohara and G. Shi: “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems”, Computing in Science
and Engineering, 12, 2009, pp. 66-73.

141. NVIDIA: “NVIDIA CUDA Programming Guide”, in NVIDIA Corporation,
2009, pp.1-145, available at http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf,
visited on March 5, 2010.

142. M. Sadeghi, H. Kim and K. Najafi: “Electrostatically Driven Micro-
Hydraulic Actuator Arrays”, IEEE 23rd International Conference on Micro
Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010, pp.
15-18.

143. M. Strengert, M. Kraus and T. Ertl: “Pyramid Methods in GPU-based Image
Processing”, Vision, modeling, and visualization 2006: Proceedings, Aachen,
Germany, 2006, pp. 169-176.

144. J. T. Luftig and M. V. Petrovich: "Quality with Confidence in
Manufacturing", Luftig & Warren International/SPSS Inc, Chicago, IL, 1997,
ISBN 1-56827-153-0.

145. J. Fung: “Implementing Efficient Parallel Data Structures on GPU (Sparse
Data Structures subchapter)”, in GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation, 2005, pp.
535-540.

146. Blender Team Project: “Blender Material Library”, in 2010, available at
http://www.blender.org/download/resources/, visited on November 10,
2009.

147. Omniglot - writing systems & languages of the world: “Braille”, in 2010,
available at http://www.omniglot.com/writing/braille.htm, visited on
September 2008, 2010.

148. G. Lamb: “Tactile Discrimination of Textured Surfaces: Peripheral Neural
Coding in the Monkey.”, The Journal of Physiology, 338, 1983, pp. 567-587.

149. R. LaMotte and J. Whitehouse: “Tactile Detection of a Dot on a Smooth
Surface: Peripheral Neural Events”, Journal of Neurophysiology, 56, 1986,
pp. 1109-1128.

150. A. Chang and C. O’Sullivan: “Describing Haptic Phenomena”, in 2005,
available at http://www.dcs.gla.ac.uk/haptic/haptics%20web%20pages_files/
Chang%20and%20Sullivan.pdf, visited on September 28, 2010.

 ! 194

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://www.blender.org/download/resources/
http://www.blender.org/download/resources/
http://www.omniglot.com/writing/braille.htm
http://www.omniglot.com/writing/braille.htm
http://www.dcs.gla.ac.uk/haptic/haptics%20web%20pages_files/Chang%20and%20Sullivan.pdf
http://www.dcs.gla.ac.uk/haptic/haptics%20web%20pages_files/Chang%20and%20Sullivan.pdf
http://www.dcs.gla.ac.uk/haptic/haptics%20web%20pages_files/Chang%20and%20Sullivan.pdf
http://www.dcs.gla.ac.uk/haptic/haptics%20web%20pages_files/Chang%20and%20Sullivan.pdf

151. Wikimedia Commons: “Image of Michelangelo David”, in 2007, available at
http://en.wikipedia.org/wiki/File:Michelangelo%27s_David_-_Floyd-
Steinberg.png, visited on September 27, 2010.

152. Google, Inc.: “Google SketchUp Home Page”, in 2010, available at http://
sketchup.google.com/, visited on January 5, 2010.

153. Personal communication with Dr. Hiroo Iwata, October 25, 2010.

154. Tokyo National Museum of Emerging Science and Innovation, Japan:
“Laboratory for New Media 3rd Exhibition, "Hiroo Iwata: Dr. Strange
Device"”, in 2010, available at http://www.miraikan.jst.go.jp/en/info/
090108102774.html, visited on October 25, 2010.

155. Kevin Hall: “CirculaFloor simulates 360° of movement in VR — and now
goes up, too”, in 2009, available at http://dvice.com/archives/2009/02/
circulafloor_si.php, visited on September 12, 2010.

156. B. He, W. Fang, Q. Luo and N. K. Govindaraju: “Mars: a MapReduce
Framework on Graphics Processors”, Parallel Architectures and
Compilation Techniques (PACT) PACT’08, Toronto, Ontario, Canada, 2008,
pp. 260-269.

157. nViDIA Corporation: “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide Version 1.0”, in 2007, pp.1-112, available
at http:/ /developer.download.nvidia.com/compute/cuda/1_0/
NVIDIA_CUDA_Programming_Guide_1.0.pdf, visited on April 9, 2010.

158. H. Nguyen: “Using Geometry Shader for Compact and Variable-Length GPU
Feedback”, in Gpu Gems 3, Addison-Wesley Professional, 2007, pp.891-907,
ISBN:9780321545428.

159. J. Fung: “Chapter 40. Computer Vision on the GPU”, in GPU Gems 2:
Programming Techniques for High-Performance Graphics and General-
Purpose Computation, Addison-Wesley Professional, 2005, pp.649-666,
ISBN-13: 978-0321335593.

160. M. Bunnell and F. Pellacini: “Chapter 11 - Shadow Map Anti-Aliasing”, in
GPU Gems: Programming Techniques, Tips and Tricks for Real-Time
Graphics, Addison-Wesley, 2004, pp.185-192, ISBN-13: 978-0321228321.

161. Kurt Akeley, Jason Allen, Bob Beretta, Pat Brown, Matt Craighead, Alex
Eddy, Cass Everitt, Mark Galvan, Michael Gold, Evan Hart, Jeff Juliano,
Mark Kilgard, Dale Kirkland, Jon Leech, Bill Licea-Kane, Barthold
Lichtenbelt, Kent Lin, Rob Mace, Teri Morrison,Chris Niederauer, Brian

 ! 195

http://en.wikipedia.org/wiki/File:Michelangelo%27s_David_-_Floyd-Steinberg.png
http://en.wikipedia.org/wiki/File:Michelangelo%27s_David_-_Floyd-Steinberg.png
http://en.wikipedia.org/wiki/File:Michelangelo%27s_David_-_Floyd-Steinberg.png
http://en.wikipedia.org/wiki/File:Michelangelo%27s_David_-_Floyd-Steinberg.png
http://sketchup.google.com
http://sketchup.google.com
http://sketchup.google.com
http://sketchup.google.com
http://www.miraikan.jst.go.jp/en/info/090108102774.html
http://www.miraikan.jst.go.jp/en/info/090108102774.html
http://www.miraikan.jst.go.jp/en/info/090108102774.html
http://www.miraikan.jst.go.jp/en/info/090108102774.html
http://dvice.com/archives/2009/02/circulafloor_si.php
http://dvice.com/archives/2009/02/circulafloor_si.php
http://dvice.com/archives/2009/02/circulafloor_si.php
http://dvice.com/archives/2009/02/circulafloor_si.php
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

Paul, Paul Puey, Ian Romanick, John Rosasco, R. Jason Sams, Jeremy
Sandmel, Mark Segal, Avinash Seetharamaiah, Folker Schamel, Daniel
Vogel, Eric Werness and Cliff Woolley: “OpenGL Extension Registry for
EXT_framebuffer_object”, in 2008, available at http://www.opengl.org/
registry/specs/EXT/framebuffer_object.txt, visited on January 4, 2010.

162. D. Wigdor, C. Forlines, P. Baudisch, J. Barnwell and C. Shen: “Lucid Touch:
a See-Through Mobile Device”, Proceedings of the 20th annual ACM
symposium on User interface software and technology, Newport, Rhode
Island, USA, 2007, pp. 269-278.

163. C. Ericson: "Real-Time Collision Detection", Morgan Kaufmann, 2005,
ISBN-13: 978-1558607323.

164. D. Rosen, A. Nguyen and H. Wang: “On the Geometry of Low Degree-of-
Freedom Digital Clay Human-Computer Interface Devices”, Proceedings
ASME Computers and Information in Engineering Conference, Chicago,
Illinois, 2003, pp. 2-6.

165. J. Lee, C. Wagner, S. Lederman and R. Howe: “Spatial Low Pass Filters for
Pin Actuated Tactile Displays”, Proceedings of 11th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, 2003.
HAPTICS 2003., Los Angeles, California, 2003, pp. 57-62.

166. W. E. Lorensen and H. E. Cline: “Marching cubes: A High Resolution 3D
Surface Construction Algorithm”, Computer Graphics, 21, 1987, pp.
163-169.

167. Wolfram Research: “Circle-Line Intersection”, in 2010, available at http://
mathworld.wolfram.com/Circle-LineIntersection.html, visited on September
24, 2010.

168. Apple, Inc.: “Grand Central Dispatch (GCD) Reference”, in 2010, available
at http://developer.apple.com/library/mac/#documentation/Performance/
Reference/GCD_libdispatch_Ref/Reference/reference.html, visited on
October 28, 2010.

169. Intel Corporation: “10 Gigabit Ethernet Technology Overview”, in 2003,
available at http://www.intel.com/network/connectivity/resources/
doc_library/white_papers/pro10gbe_lr_sa_wp.pdf, visited on September 3,
2010.

170. IEEE Computer Society: “IEEE Standard for Local and metropolitan area
networks — Link Aggregation (IEEE Std 802.1AXTM-2008)”, in 2010,
available at http://standards.ieee.org/getieee802/download/
802.1AX-2008.pdf, visited on September 23, 2010.

 ! 196

http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://mathworld.wolfram.com/Circle-LineIntersection.html
http://mathworld.wolfram.com/Circle-LineIntersection.html
http://mathworld.wolfram.com/Circle-LineIntersection.html
http://mathworld.wolfram.com/Circle-LineIntersection.html
http://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf
http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf
http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf
http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf

171. Khronos Group: “OpenCL 1.1 Specification”, in 2010, available at http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf, visited on October 14,
2010.

172. Melchor J. Antunano: “Federal Aviation Administration Pilot Safety
Brochure - Spatial Disorientation”, in 2003, available at http://www.faa.gov/
pilots/safety/pilotsafetybrochures/media/SpatialD.pdf, visited on October 24,
2010.

173. J. M. Rolfe and K. J. Staples: “6. Motion Systems”, in Flight Simulation
(Cambridge Aerospace Series), 1988, pp.111-129, ISBN-13:
978-0521357517.

174. K. Mueller, F. Xu and N. Neophytou: “Why Do Commodity Graphics
Hardware Boards (GPUs) Work so Well for Acceleration of Computed
Tomography?”, SPIE Electronic Imaging, 6498, 2007, pp. 64980N.

175. C. L. Liu and J. W. Layland: “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment”, Journal of the ACM (JACM), 20, 1973,
pp. 46-61.

176. N. C. Audsley, A. Burns and M. F. Richardson: “Hard Real-Time
Scheduling: The Deadline Monotonic Approach”, Proceedings 8th IEEE
Workshop on Real-Time Operating Systems and Software, 1991, pp. 133-137.

177. G. A. Elliott and J. H. Anderson: “Real-Time Multiprocessor Systems with
GPUs”, to appear in Proceedings of the 18th International Conference on
Real-Time and Network Systems, 2010.

178. R. Dimitrov: “Cascaded Shadow Maps”, in 2007, pp.1-16, available at http://
d e v e l o p e r . d o w n l o a d . n v i d i a . c o m / S D K / 1 0 . 5 / o p e n g l / s r c /
cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf, visited on March
7, 2010.

179. P. Longhurst, K. Debattista and A. Chalmers: “A gpu based saliency map for
high-fidelity selective rendering”, Proceedings of the 4th international
conference on Computer graphics, virtual reality, visualisation and
interaction in Africa, 2006, pp. 21-29.

180. D. Calder: “Travel Aids For The Blind - The Digital Ecosystem Solution”,
7th IEEE International Conference on Industrial Informatics, 2009. INDIN
2009., Cardiff UK, 2009, pp. 149-154.

 ! 197

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.faa.gov/pilots/safety/pilotsafetybrochures/media/SpatialD.pdf
http://www.faa.gov/pilots/safety/pilotsafetybrochures/media/SpatialD.pdf
http://www.faa.gov/pilots/safety/pilotsafetybrochures/media/SpatialD.pdf
http://www.faa.gov/pilots/safety/pilotsafetybrochures/media/SpatialD.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf

181. BlackBerry, Inc.: “BlackBerry Torch 9800 Specifications”, in 2010, available
at http://na.blackberry.com/devices/blackberrytorch/#!phone-specifications,
visited on September 1, 2010.

182. Apple, Inc.: “iPhone Features - Keyboard”, in 2010, available at http://
www.apple.com/iphone/features/keyboard.html, visited on September 19,
2010.

183. Motorola, Inc.: “DroidX by Motorola”, in 2010, available at http://
www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/
Mobile-Phones/Motorola-DROID-X-US-EN, visited on September 20, 2010.

184. M. Sugimoto and K. Hiroki: “HybridTouch: an intuitive manipulation
technique for PDAs using their front and rear surfaces”, Proceedings of the
8th conference on Human-Computer Interaction with Mobile Devices and
Services, Helsinki, Finland, 2006, pp. 137-140.

185. S. Hiraoka, I. Miyamoto and K. Tomimatsu: “Behind Touch: A Text Input
Method for Mobile Phone by The Back and Tactile Sense Interface.”,
Information Processing Society of Japan, Interaction 2003, 2003, pp.
131-138.

186. D. Wigdor, D. Leigh, C. Forlines, S. Shipman and e. al.: “Under the Table
Interaction”, Proceedings of the 19th Annual ACM Symposium on User
Interface Software and Technology, Montreux, Switzerland, 2006, pp.
259-268.

187. D. Holman and R. Vertegaal: “Organic User Interfaces: Designing
Computers in Any Way, Shape or Form”, COMMUNICATIONS OF THE
ACM, 51, 2008, pp. 48-55.

188. Apple, Inc: “Chapter 4 - Drawing Offscreen”, in OpenGL Programming
Guide for Mac OS X, 2010, pp.47-57, available at http://
developer.apple.com/library/mac/#documentation/GraphicsImaging/
Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf, visited on
February 16, 2010.

189. Layar.com: “Layar's Technical Overview”, in 2009, available at http://
layar.com/api/, visited on July 16, 2009.

190. M. Fukumoto and T. Sugimura: “Active Click: Tactile Feedback for Touch
Panels”, CHI '01 extended abstracts on Human factors in computing systems,
Poster Session, 2001, pp. 121-122.

191. I. Poupyrev, S. Maruyama and J. Rekimoto: “Ambient Touch: Designing
Tactile Interfaces for Handheld Devices”, Proceedings of the 15th annual

 ! 198

http://na.blackberry.com/devices/blackberrytorch/#!phone-specifications
http://na.blackberry.com/devices/blackberrytorch/#!phone-specifications
http://www.apple.com/iphone/features/keyboard.html
http://www.apple.com/iphone/features/keyboard.html
http://www.apple.com/iphone/features/keyboard.html
http://www.apple.com/iphone/features/keyboard.html
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-DROID-X-US-EN
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-DROID-X-US-EN
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-DROID-X-US-EN
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-DROID-X-US-EN
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-DROID-X-US-EN
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-DROID-X-US-EN
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf
http://developer.apple.com/library/mac/#documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/OpenGLProg_MacOSX.pdf
http://layar.com/api/
http://layar.com/api/
http://layar.com/api/
http://layar.com/api/

ACM symposium on User interface software and technology, Paris, France,
2002, pp. 51-60.

192. E. Hoggan and S. Brewster: “Crossmodal Spatial Location: Initial
Experiments”, Proceedings of the 4th Nordic conference on Human-
computer interaction: changing roles, Oslo, Norway, 2006, pp. 469-472.

193. M. Kurze: “Rendering Drawings for Interactive Haptic Perception”,
Proceedings of the SIGCHI conference on Human factors in computing
systems, Atlanta, Georgia, 1997, pp. 423-430.

194. M. Hickins: “Smartphones Get Killer App”, in bnet.com, 2009, available at
http://industry.bnet.com/technology/10002375/smartphone-gets-killer-app/,
visited on May 6, 2010.

195. wikitude.org and Mobilizy Software: “Wikitude World Browser”, in
Mobilize Software, 2010, available at http://www.wikitude.org/, visited on
September 28, 2010.

196. A. Jaimes and N. Sebe: “Multimodal Human–Computer Interaction: A
Survey”, Computer Vision and Image Understanding, 108, 2007, pp.
116-134.

197. M. Song, S. Park and Y. B. Kang: “A Survey on Projector-based PC Cluster
Distributed Large Screen Displays and Shader Technologies”,
ENTERTAINMENT COMPUTING – ICEC 2007, Lecture Notes in Computer
Science, 4740/2007, 2007, pp. 445-449.

198. Sony Computer Entertainment: “SCEA Shared Source License 1.0”, in 2010,
available at http://research.scea.com/scea_shared_source_license.html,
visited on September 19, 2010.

199. Boost C++ Libraries: “Boost Software License”, in 2003, available at http://
www.boost.org/users/license.html, visited on September 20, 2010.

200. Jean-loup Gailly and Mark Adler: “zlib License”, in 2010, available at http://
www.zlib.net/zlib_license.html, visited on September 21, 2010.

201. Apache Software Foundation: “Apache License, Version 2.0”, in 2004,
available at http://www.apache.org/licenses/LICENSE-2.0.html, visited on
September 28, 2010.

202. Sen:te: “Sen:te Free Software License v4”, in 2004, available at http://
www.sente.ch/software/OpenSourceLicense.html, visited on September 7,
2010.

 ! 199

http://industry.bnet.com/technology/10002375/smartphone-gets-killer-app/
http://industry.bnet.com/technology/10002375/smartphone-gets-killer-app/
http://www.wikitude.org
http://www.wikitude.org
http://research.scea.com/scea_shared_source_license.html
http://research.scea.com/scea_shared_source_license.html
http://www.boost.org/users/license.html
http://www.boost.org/users/license.html
http://www.boost.org/users/license.html
http://www.boost.org/users/license.html
http://www.zlib.net/zlib_license.html
http://www.zlib.net/zlib_license.html
http://www.zlib.net/zlib_license.html
http://www.zlib.net/zlib_license.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.sente.ch/software/OpenSourceLicense.html
http://www.sente.ch/software/OpenSourceLicense.html
http://www.sente.ch/software/OpenSourceLicense.html
http://www.sente.ch/software/OpenSourceLicense.html

Appendix A - Licenses For the Software
In the development of HoloSim, we used multiple open source packages to

speed up development of the simulator. All packages used have licenses allowing for

the given use, and additionally none of those packages already performed functionality

that is a core area of this research - they were used for peripheral tasks like file loading.

Licenses for the used packages are as follows.

A.1 Apple Examples

Apple examples were used for the initialization of OpenGL on OS X and its

interface with the Cocoa toolkit and window system, as well as for unit testing of the

shader initialization system. Apple examples FBOBunnies and GLSLBasicCocoaDL

were used as a starting point for the framebuffer object initialization and as a template

of how to use aforementioned Appleʼs technologies 99.

All of the previous files and examples are used under the following license:

“Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple
Computer, Inc. ("Apple") in consideration of your agreement to the following
terms, and your use, installation, modification or redistribution of this Apple
software constitutes acceptance of these terms. If you do not agree with these
terms, please do not use, install, modify or redistribute this Apple software.

In consideration of your agreement to abide by the following terms, and subject
to these terms, Apple grants you a personal, non-exclusive license, under Apple's
copyrights in this original Apple software (the "Apple Software"), to use,
reproduce, modify and redistribute the Apple Software, with or without
modifications, in source and/or binary forms; provided that if you redistribute the
Apple Software in its entirety and without modifications, you must retain this

 ! 200

99 Furthermore, code performing initialization and usage of the Frame Buffer Object was written
based on the outline of the process provided in [188],

notice and the following text and disclaimers in all such redistributions of the
Apple Software.

Neither the name, trademarks, service marks or logos of Apple Computer, Inc.
may be used to endorse or promote products derived from the Apple Software
without specific prior written permission from Apple. Except as expressly stated in
this notice, no other rights or licenses, express or implied, are granted by Apple
herein, including but not limited to any patent rights that may be infringed by your
derivative works or by other works in which the Apple Software may be
incorporated.

The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES
NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE
OR IN COMBINATION WITH YOUR PRODUCTS.

IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED
AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING
NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2006 Apple Computer, Inc., All Rights Reserved”

 ! 201

A.2 COLLADA DOM

ColladaDOM was used for reading files of the Collada format, as written by the

Google Sketchup! and other modeling tools. Modifications of the code were limited to

the various modifications needed to compile on my machine and are available upon

request.

Full text of license, from [198] is included below:

“SCEA Shared Source License 1.0

Terms and Conditions:

1. Definitions:

"Software" shall mean the software and related documentation, whether in
Source or Object Form, made available under this SCEA Shared Source license
("License"), that is indicated by a copyright notice file included in the source files
or attached or accompanying the source files.

"Licensor" shall mean Sony Computer Entertainment America, Inc. (herein
"SCEA")

"Object Code" or "Object Form" shall mean any form that results from
translation or transformation of Source Code, including but not limited to
compiled object code or conversions to other forms intended for machine
execution.

"Source Code" or "Source Form" shall have the plain meaning generally
accepted in the software industry, including but not limited to software source
code, documentation source, header and configuration files.

"You" or "Your" shall mean you as an individual or as a company, or whichever
form under which you are exercising rights under this License.

2. License Grant.

Licensor hereby grants to You, free of charge subject to the terms and conditions
of this License, an irrevocable, non-exclusive, worldwide, perpetual, and royalty-
free license to use, modify, reproduce, distribute, publicly perform or display the
Software in Object or Source Form .

 ! 202

3. No Right to File for Patent.

In exchange for the rights that are granted to You free of charge under this
License, You agree that You will not file for any patent application, seek copyright
protection or take any other action that might otherwise impair the ownership
rights in and to the Software that may belong to SCEA or any of the other
contributors/authors of the Software.

4. Contributions.

SCEA welcomes contributions in form of modifications, optimizations, tools or
documentation designed to improve or expand the performance and scope of the
Software (collectively "Contributions"). Per the terms of this License You are
free to modify the Software and those modifications would belong to You. You
may however wish to donate Your Contributions to SCEA for consideration for
inclusion into the Software. For the avoidance of doubt, if You elect to send Your
Contributions to SCEA, You are doing so voluntarily and are giving the
Contributions to SCEA and its parent company Sony Computer Entertainment,
Inc., free of charge, to use, modify or distribute in any form or in any manner.
SCEA acknowledges that if You make a donation of Your Contributions to SCEA,
such Contributions shall not exclusively belong to SCEA or its parent company
and such donation shall not be to Your exclusion. SCEA, in its sole discretion,
shall determine whether or not to include Your donated Contributions into the
Software, in whole, in part, or as modified by SCEA. Should SCEA elect to
include any such Contributions into the Software, it shall do so at its own risk and
may elect to give credit or special thanks to any such contributors in the attached
copyright notice. However, if any of Your contributions are included into the
Software, they will become part of the Software and will be distributed under the
terms and conditions of this License. Further, if Your donated Contributions are
integrated into the Software then Sony Computer Entertainment, Inc. shall
become the copyright owner of the Software now containing Your contributions
and SCEA would be the Licensor.

5. Redistribution in Source Form

You may redistribute copies of the Software, modifications or derivatives thereof
in Source Code Form, provided that You:

a. Include a copy of this License and any copyright notices with source

b. Identify modifications if any were made to the Software

c. Include a copy of all documentation accompanying the Software and
modifications made by You

6. Redistribution in Object Form

 ! 203

If You redistribute copies of the Software, modifications or derivatives thereof in
Object Form only (as incorporated into finished goods, i.e. end user applications)
then You will not have a duty to include any copies of the code, this License,
copyright notices, other attributions or documentation.

7. No Warranty

THE SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT ANY
REPRESENTATIONS OR WARRANTIES OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR
DETERMINING THE APPROPRIATENESS OF USING, MODIFYING OR
REDISTRIBUTING THE SOFTWARE AND ASSUME ANY RISKS ASSOCIATED
WITH YOUR EXERCISE OF PERMISSIONS UNDER THIS LICENSE.

8. Limitation of Liability

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY WILL
EITHER PARTY BE LIABLE TO THE OTHER PARTY OR ANY THIRD PARTY
FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR
EXEMPLARY DAMAGES WITH RESPECT TO ANY INJURY, LOSS, OR
DAMAGE, ARISING UNDER OR IN CONNECTION WITH THIS LETTER
AGREEMENT, WHETHER FORESEEABLE OR UNFORESEEABLE, EVEN IF
SUCH PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH INJURY,
LOSS, OR DAMAGE. THE LIMITATIONS OF LIABILITY SET FORTH IN THIS
SECTION SHALL APPLY TO THE FULLEST EXTENT PERMISSIBLE AT LAW
OR ANY GOVERMENTAL REGULATIONS.

9. Governing Law and Consent to Jurisdiction

This Agreement shall be governed by and interpreted in accordance with the
laws of the State of California, excluding that body of law related to choice of
laws, and of the United States of America. Any action or proceeding brought to
enforce the terms of this Agreement or to adjudicate any dispute arising
hereunder shall be brought in the Superior Court of the County of San Mateo,
State of California or the United States District Court for the Northern District of
California. Each of the parties hereby submits itself to the exclusive jurisdiction
and venue of such courts for purposes of any such action. In addition, each party
hereby waives the right to a jury trial in any action or proceeding related to this
Agreement.

10. Copyright Notice for Redistribution of Source Code

Copyright 2005 Sony Computer Entertainment Inc.

 ! 204

Licensed under the SCEA Shared Source License, Version 1.0 (the "License");
you may not use this file except in compliance with the License. You may obtain
a copy of the License at:

http://research.scea.com/scea_shared_source_license.html

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License.”

A.3 Boost C++ Libraries

Boost is used as a file I/O layer by the Collada Dom and other libraries included

in this project. Full text of the license is included below [199]:

“Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute, execute, and
transmit the Software, and to prepare derivative works of the Software, and to
permit third-parties to whom the Software is furnished to do so, all subject to the
following:

The copyright notices in the Software and this entire statement, including the
above license grant, this restriction and the following disclaimer, must be
included in all copies of the Software, in whole or in part, and all derivative works
of the Software, unless such copies or derivative works are solely in the form of
machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.”

 ! 205

http://research.scea.com/scea_shared_source_license.html/
http://research.scea.com/scea_shared_source_license.html/

A.4 LibZ

Zlib is used as a compression library by the other open source libraries used in

the system, as well as for file I/O. Full text of its license from [200] is included below:

“zlib.h -- interface of the 'zlib' general purpose compression library

version 1.2.5, April 19th, 2010

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no
event will the authors be held liable for any damages arising from the use of this
software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

1. The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not
required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly

Mark Adler”

 ! 206

A.5 Apache Xerces-C++ XML Parser

Xerces-C++ was used for XML document parsing and by other open source

libraries. Full text of its license is included below [201]:

“Apache LicenseVersion 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is
included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an

 ! 207

http://www.apache.org/licenses/
http://www.apache.org/licenses/

original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this
License, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce,
prepare Derivative Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this
License; and

 ! 208

You must cause any modified files to carry prominent notices stating that You
changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided that
such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in
writing, Licensor provides the Work (and each Contributor provides its
Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are

 ! 209

solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets "[]" replaced with your own identifying
information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or
class name and description of purpose be included on the same "printed page"
as the copyright notice for easier identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied.

 ! 210

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

See the License for the specific language governing permissions and limitations
under the License.”

 ! 211

A.6 CPPUnit

CPPUnit [131] is used for unit and automated functional testing of the C++ code

as a part of our projectʼs build system. Full text of its license from CppUnit 1.12.1

distribution is included below:

“GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not
allowed.

[This is the first released version of the Lesser GPL. It also counts as the
successor of the GNU Library Public License, version 2, hence the version
number 2.1.]

 Preamble

 The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users.

 This license, the Lesser General Public License, applies to some specially
designated software packages--typically libraries--of the Free Software
Foundation and other authors who decide to use it. You can use it too, but we
suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case, based
on the explanations below.

 When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you
wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are
informed that you can do these things.

 To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the library or
if you modify it.

 ! 212

 For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make sure
that they, too, receive or can get the source code. If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy, distribute
and/or modify the library.

 To protect each distributor, we want to make it very clear that there is no
warranty for the free library. Also, if the library is modified by someone else and
passed on, the recipients should know that what they have is not the original
version, so that the original author's reputation will not be affected by problems
that might be introduced by others.

 Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library
must be consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License,
applies to certain designated libraries, and is quite different from the ordinary
General Public License. We use this license for certain libraries in order to permit
linking those libraries into non-free programs.

 When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom. The
Lesser General Public License permits more lax criteria for linking other code
with the library.

 We call this license the "Lesser" General Public License because it does Less to
protect the user's freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

 For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free

 ! 213

libraries. In this case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

 Although the Lesser General Public License is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library
has the freedom and the wherewithal to run that program using a modified
version of the Library.

 The precise terms and conditions for copying, distribution and modification
follow. Pay close attention to the difference between a "work based on the library"
and a "work that uses the library". The former contains code derived from the
library, whereas the latter must be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Lesser General Public
License (also called "this License"). Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

 The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the
Library or any derivative work under copyright law: that is to say, a work
containing the Library or a portion of it, either verbatim or with modifications and/
or translated straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the library.

 Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running a program using the
Library is not restricted, and output from such a program is covered only if its
contents constitute a work based on the Library (independent of the use of the

 ! 214

Library in a tool for writing it). Whether that is true depends on what the Library
does and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

 (For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

 ! 215

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

 3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter all
the notices that refer to this License, so that they refer to the ordinary GNU
General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then
you can specify that version instead if you wish.) Do not make any other change
in these notices.

 Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.

 This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

 4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete corresponding machine-
readable source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from
the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object
code.

 5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a
"work that uses the Library". Such a work, in isolation, is not a derivative work of
the Library, and therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The executable is therefore
covered by this License. Section 6 states terms for distribution of such
executables.

 ! 216

 When a "work that uses the Library" uses material from a header file that is part
of the Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in
length), then the use of the object file is unrestricted, regardless of whether it is
legally a derivative work. (Executables containing this object code plus portions
of the Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the
Library itself.

 6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of
the Library, and distribute that work under terms of your choice, provided that the
terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the Library is
used in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as
well as a reference directing the user to the copy of this License. Also, you must
do one of these things:

 a) Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the work
(which must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work
that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user's computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

 ! 217

 c) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified materials
from the same place.

 e) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

 For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the
executable.

 It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such
a contradiction means you cannot use both them and the Library together in an
executable that you distribute.

 7. You may place library facilities that are a work based on the Library side-by-
side in a single library together with other library facilities not covered by this
License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

 b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or

 ! 218

its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Library (or any work based on
the Library), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Library or works
based on it.

 10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties with this License.

 11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence
you may not distribute the Library at all. For example, if a patent license would
not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as
a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system
which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up to the author/
donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

 ! 219

 13. The Free Software Foundation may publish revised and/or new versions of
the Lesser General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever
published by the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY
IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 ! 220

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

 To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright" line and
a pointer to where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.> Copyright
(C) <year> <name of author>

 This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

 This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

 You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a
sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a
library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice

That's all there is to it!”

 ! 221

A.7 OCUnit

OCUnit was used for automated unit testing of the Objective-C code. Full text of

its license is included below [202]:

“Copyright (c) 2000-2004, Sente SA. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list
of and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL SEN:TE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.”

 ! 222

A.8 Doxygen

Doxygen was used for automated HTML documentation generation from the

source code comments in Objective-C, Objective-C++ and C++. Full text of its license is

included below100 [134]:

“Copyright © 1997-2009 by Dimitri van Heesch.

Permission to use, copy, modify, and distribute this software and its
documentation under the terms of the GNU General Public License is hereby
granted. No representations are made about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty. See the
GNU General Public License for more details.

Documents produced by doxygen are derivative works derived from the input
used in their production; they are not affected by this license.”

 ! 223

100 Full text of GNU General Public License referenced in the text of Doxygenʼs license can be
found at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

A.9 ColladaDOM Use Example

ColladaDOM use example was used as the template for code that is loading

COLLADA model code. It is licensed under MIT license. Full text of its license is

included below:

 Copyright 2006 Sony Computer Entertainment Inc.

 Licensed under the MIT Open Source License, for details please see license.txt
or the website

 http://www.opensource.org/licenses/mit-license.php

 ! 224

http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php

Appendix B - License For This Thesis
The author believes that this work should be made available free of charge to

anyone who can benefit from it, provided that proper attribution of the work is done. As a

result, author is making this work available under the Creative Commons Attribution

Non-Commercial 3.0 Unported license. Keep in mind that this thesis uses (with the

proper attributions) other material in the public domain or under the various versions of

Creative Commons license, and that it is your responsibility to comply with the terms of

the original licenses, where appropriate. Full text of the Creative Commons Attribution

Non-Commercial Unported 3.0 license is available below and at http://

creativecommons.org/licenses/by-nc/3.0/legalcode. For the short summary of your

obligations under this license, see http://creativecommons.org/licenses/by-nc/3.0/

legalcode.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF
THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE
WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW.
ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS
LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU
ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO
THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT,
THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

"Adaptation" means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work,
arrangement of music or other alterations of a literary or artistic work, or
phonogram or performance and includes cinematographic adaptations or any

 ! 225

http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode

other form in which the Work may be recast, transformed, or adapted including in
any form recognizably derived from the original, except that a work that
constitutes a Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical work,
performance or phonogram, the synchronization of the Work in timed-relation
with a moving image ("synching") will be considered an Adaptation for the
purpose of this License.

"Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or broadcasts, or
other works or subject matter other than works listed in Section 1(f) below, which,
by reason of the selection and arrangement of their contents, constitute
intellectual creations, in which the Work is included in its entirety in unmodified
form along with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a collective
whole. A work that constitutes a Collection will not be considered an Adaptation
(as defined above) for the purposes of this License.

"Distribute" means to make available to the public the original and copies of the
Work or Adaptation, as appropriate, through sale or other transfer of ownership.

"Licensor" means the individual, individuals, entity or entities that offer(s) the
Work under the terms of this License.

"Original Author" means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can
be identified, the publisher; and in addition (i) in the case of a performance the
actors, singers, musicians, dancers, and other persons who act, sing, deliver,
declaim, play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer being the
person or legal entity who first fixes the sounds of a performance or other
sounds; and, (iii) in the case of broadcasts, the organization that transmits the
broadcast.

"Work" means the literary and/or artistic work offered under the terms of this
License including without limitation any production in the literary, scientific and
artistic domain, whatever may be the mode or form of its expression including
digital form, such as a book, pamphlet and other writing; a lecture, address,
sermon or other work of the same nature; a dramatic or dramatico-musical work;
a choreographic work or entertainment in dumb show; a musical composition
with or without words; a cinematographic work to which are assimilated works
expressed by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a photographic work to
which are assimilated works expressed by a process analogous to photography;
a work of applied art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a performance; a
broadcast; a phonogram; a compilation of data to the extent it is protected as a

 ! 226

copyrightable work; or a work performed by a variety or circus performer to the
extent it is not otherwise considered a literary or artistic work.

"You" means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who
has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

"Publicly Perform" means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process,
including by wire or wireless means or public digital performances; to make
available to the public Works in such a way that members of the public may
access these Works from a place and at a place individually chosen by them; to
perform the Work to the public by any means or process and the communication
to the public of the performances of the Work, including by public digital
performance; to broadcast and rebroadcast the Work by any means including
signs, sounds or images.

"Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of fixation and
reproducing fixations of the Work, including storage of a protected performance
or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or
restrict any uses free from copyright or rights arising from limitations or
exceptions that are provided for in connection with the copyright protection under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor
hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in the Work as
stated below:

to Reproduce the Work, to incorporate the Work into one or more Collections,
and to Reproduce the Work as incorporated in the Collections;

to create and Reproduce Adaptations provided that any such Adaptation,
including any translation in any medium, takes reasonable steps to clearly label,
demarcate or otherwise identify that changes were made to the original Work.
For example, a translation could be marked "The original work was translated
from English to Spanish," or a modification could indicate "The original work has
been modified.";

to Distribute and Publicly Perform the Work including as incorporated in
Collections; and,

to Distribute and Publicly Perform Adaptations.

 ! 227

The above rights may be exercised in all media and formats whether now known
or hereafter devised. The above rights include the right to make such
modifications as are technically necessary to exercise the rights in other media
and formats. Subject to Section 8(f), all rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights set forth in Section 4
(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this
License. You must include a copy of, or the Uniform Resource Identifier (URI)
for, this License with every copy of the Work You Distribute or Publicly
Perform. You may not offer or impose any terms on the Work that restrict the
terms of this License or the ability of the recipient of the Work to exercise the
rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License
and to the disclaimer of warranties with every copy of the Work You Distribute
or Publicly Perform. When You Distribute or Publicly Perform the Work, You
may not impose any effective technological measures on the Work that
restrict the ability of a recipient of the Work from You to exercise the rights
granted to that recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this does not require
the Collection apart from the Work itself to be made subject to the terms of
this License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit as
required by Section 4(c), as requested. If You create an Adaptation, upon
notice from any Licensor You must, to the extent practicable, remove from the
Adaptation any credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in
any manner that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the Work for
other copyrighted works by means of digital file-sharing or otherwise shall not
be considered to be intended for or directed toward commercial advantage or
private monetary compensation, provided there is no payment of any
monetary compensation in connection with the exchange of copyrighted
works.

c. If You Distribute, or Publicly Perform the Work or any Adaptations or
Collections, You must, unless a request has been made pursuant to Section 4
(a), keep intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original Author and/or
Licensor designate another party or parties (e.g., a sponsor institute,
publishing entity, journal) for attribution ("Attribution Parties") in Licensor's

 ! 228

copyright notice, terms of service or by other reasonable means, the name of
such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be
associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work; and, (iv) consistent with Section 3
(b), in the case of an Adaptation, a credit identifying the use of the Work in the
Adaptation (e.g., "French translation of the Work by Original Author," or
"Screenplay based on original Work by Original Author"). The credit required
by this Section 4(c) may be implemented in any reasonable manner;
provided, however, that in the case of a Adaptation or Collection, at a
minimum such credit will appear, if a credit for all contributing authors of the
Adaptation or Collection appears, then as part of these credits and in a
manner at least as prominent as the credits for the other contributing authors.
For the avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the
Original Author, Licensor and/or Attribution Parties, as appropriate, of You or
Your use of the Work, without the separate, express prior written permission
of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or compulsory
licensing scheme cannot be waived, the Licensor reserves the exclusive
right to collect such royalties for any exercise by You of the rights granted
under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which
the right to collect royalties through any statutory or compulsory licensing
scheme can be waived, the Licensor reserves the exclusive right to collect
such royalties for any exercise by You of the rights granted under this
License if Your exercise of such rights is for a purpose or use which is
otherwise than noncommercial as permitted under Section 4(b) and
otherwise waives the right to collect royalties through any statutory or
compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect
royalties, whether individually or, in the event that the Licensor is a
member of a collecting society that administers voluntary licensing
schemes, via that society, from any exercise by You of the rights granted
under this License that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(c).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform

 ! 229

the Work either by itself or as part of any Adaptations or Collections, You must
not distort, mutilate, modify or take other derogatory action in relation to the
Work which would be prejudicial to the Original Author's honor or reputation.
Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise
of the right granted in Section 3(b) of this License (the right to make
Adaptations) would be deemed to be a distortion, mutilation, modification or
other derogatory action prejudicial to the Original Author's honor and
reputation, the Licensor will waive or not assert, as appropriate, this Section,
to the fullest extent permitted by the applicable national law, to enable You to
reasonably exercise Your right under Section 3(b) of this License (right to
make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN
WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE
WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE
PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO
YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON
ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL,
PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR
THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically
upon any breach by You of the terms of this License. Individuals or entities
who have received Adaptations or Collections from You under this License,
however, will not have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the Work
under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this

 ! 230

License (or any other license that has been, or is required to be, granted
under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the
Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to
the recipient a license to the original Work on the same terms and conditions
as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable
law, it shall not affect the validity or enforceability of the remainder of the
terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed by
the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings, agreements
or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License
were drafted utilizing the terminology of the Berne Convention for the
Protection of Literary and Artistic Works (as amended on September 28,
1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the
WIPO Performances and Phonograms Treaty of 1996 and the Universal
Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are
sought to be enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are
deemed to be included in the License; this License is not intended to restrict
the license of any rights under applicable law.

 ! 231

Appendix C - HoloSim License
HoloSim code is available at https://github.com/krunic/HoloSim. It is released

as open source software under the terms of the Affero GPL v3. Full text of its license is

included below:

 GNU AFFERO GENERAL PUBLIC LICENSE

 Version 3, 19 November 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is
permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

 Preamble

 The GNU Affero General Public License is a free, copyleft license for software
and other kinds of works, specifically designed to ensure cooperation with the
community in the case of network server software.

 The licenses for most software and other practical works are designed to take
away your freedom to share and change the works. By contrast, our General
Public Licenses are intended to guarantee your freedom to share and change all
versions of a program--to make sure it remains free software for all its users.

 When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs, and that you know you can do these
things.

 Developers that use our General Public Licenses protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this License which
gives you legal permission to copy, distribute and/or modify the software.

 A secondary benefit of defending all users' freedom is that improvements made
in alternate versions of the program, if they receive widespread use, become
available for other developers to incorporate. Many developers of free software
are heartened and encouraged by the resulting cooperation. However, in the
case of software used on network servers, this result may fail to come about. The

 ! 232

https://github.com/krunic/HoloSim
https://github.com/krunic/HoloSim
http://fsf.org/
http://fsf.org/

GNU General Public License permits making a modified version and letting the
public access it on a server without ever releasing its source code to the public.

 The GNU Affero General Public License is designed specifically to ensure that,
in such cases, the modified source code becomes available to the community. It
requires the operator of a network server to provide the source code of the
modified version running there to the users of that server. Therefore, public use
of a modified version, on a publicly accessible server, gives the public access to
the source code of the modified version.

 An older license, called the Affero General Public License and published by
Affero, was designed to accomplish similar goals. This is a different license, not a
version of the Affero GPL, but Affero has released a new version of the Affero
GPL which permits relicensing under this license.

 The precise terms and conditions for copying, distribution and modification
follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU Affero General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of works,
such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this License.
Each licensee is addressed as "you". "Licensees" and "recipients" may be
individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact copy.
The resulting work is called a "modified version" of the earlier work or a work
"based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based on the
Program.

 To "propagate" a work means to do anything with it that, without permission,
would make you directly or secondarily liable for infringement under applicable
copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making
available to the public, and in some countries other activities as well.

 ! 233

 To "convey" a work means any kind of propagation that enables other parties to
make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices" to the extent
that it includes a convenient and prominently visible feature that (1) displays an
appropriate copyright notice, and (2) tells the user that there is no warranty for
the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work for making
modifications to it. "Object code" means any non-source form of a work.

 A "Standard Interface" means an interface that either is an official standard
defined by a recognized standards body, or, in the case of interfaces specified for
a particular programming language, one that is widely used among developers
working in that language.

 The "System Libraries" of an executable work include anything, other than the
work as a whole, that (a) is included in the normal form of packaging a Major
Component, but which is not part of that Major Component, and (b) serves only
to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in
source code form. A "Major Component", in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run the
object code and to modify the work, including scripts to control those activities.
However, it does not include the work's System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in
performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source
files for the work, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and other parts
of the work.

 The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

 ! 234

 The Corresponding Source for a work in source code form is that same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This
License explicitly affirms your unlimited permission to run the unmodified
Program. The output from running a covered work is covered by this License only
if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by copyright
law.

 You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force. You may
convey covered works to others for the sole purpose of having them make
modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all
material for which you do not control copyright. Those thus making or running the
covered works for you must do so exclusively on your behalf, under your
direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered work,
and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work's users, your or third parties' legal rights to
forbid circumvention of technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice; keep intact all notices stating that this
License and any non-permissive terms added in accord with section 7 apply to

 ! 235

the code; keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey, and you
may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to produce
it from the Program, in the form of source code under the terms of section 4,
provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified it, and giving
a relevant date.

 b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the
requirement in section 4 to "keep intact all notices".

 c) You must license the entire work, as a whole, under this License to anyone
who comes into possession of a copy. This License will therefore apply, along
with any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it.

 d) If the work has interactive user interfaces, each must display Appropriate
Legal Notices; however, if the Program has interactive interfaces that do not
display Appropriate Legal Notices, your work need not make them do so.

 A compilation of a covered work with other separate and independent works,
which are not by their nature extensions of the covered work, and which are not
combined with it such as to form a larger program, in or on a volume of a storage
or distribution medium, is called an "aggregate" if the compilation and its resulting
copyright are not used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of the
aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms of sections
4 and 5, provided that you also convey the machine-readable Corresponding
Source under the terms of this License, in one of these ways:

 ! 236

 a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed
on a durable physical medium customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

 d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the
same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the Corresponding Source may
be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to the
object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying
the object code work.

 A "User Product" is either (1) a "consumer product", which means any tangible
personal property which is normally used for personal, family, or household
purposes, or (2) anything designed or sold for incorporation into a dwelling. In
determining whether a product is a consumer product, doubtful cases shall be
resolved in favor of coverage. For a particular product received by a particular
user, "normally used" refers to a typical or common use of that class of product,
regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial,

 ! 237

industrial or non-consumer uses, unless such uses represent the only significant
mode of use of the product.

 "Installation Information" for a User Product means any methods, procedures,
authorization keys, or other information required to install and execute modified
versions of a covered work in that User Product from a modified version of its
Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.

 If you convey an object code work under this section in, or with, or specifically
for use in, a User Product, and the conveying occurs as part of a transaction in
which the right of possession and use of the User Product is transferred to the
recipient in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates for a
work that has been modified or installed by the recipient, or for the User Product
in which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of the
network or violates the rules and protocols for communication across the
network.

 Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented (and with
an implementation available to the public in source code form), and must require
no special password or key for unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions that
are applicable to the entire Program shall be treated as though they were
included in this License, to the extent that they are valid under applicable law. If
additional permissions apply only to part of the Program, that part may be used
separately under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option remove
any additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when
you modify the work.) You may place additional permissions on material, added

 ! 238

by you to a covered work, for which you have or can give appropriate copyright
permission.

 Notwithstanding any other provision of this License, for material you add to a
covered work, you may (if authorized by the copyright holders of that material)
supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices displayed by
works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different
from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

 e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that material by anyone
who conveys the material (or modified versions of it) with contractual
assumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

 All other non-permissive additional terms are considered "further restrictions"
within the meaning of section 10. If the Program as you received it, or any part of
it, contains a notice stating that it is governed by this License along with a term
that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms of that
license document, provided that the further restriction does not survive such
relicensing or conveying.

 If you add terms to a covered work in accord with this section, you must place,
in the relevant source files, a statement of the additional terms that apply to those
files, or a notice indicating where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the form of a
separately written license, or stated as exceptions; the above requirements apply
either way.

 8. Termination.

 ! 239

 You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void, and
will automatically terminate your rights under this License (including any patent
licenses granted under the third paragraph of section 11).

 However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation of
this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

 Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, you do not qualify to
receive new licenses for the same material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or run a copy of
the Program. Ancillary propagation of a covered work occurring solely as a
consequence of using peer-to-peer transmission to receive a copy likewise does
not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to do
so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,
subject to this License. You are not responsible for enforcing compliance by third
parties with this License.

 An "entity transaction" is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging
organizations. If propagation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party's predecessor in interest had or could

 ! 240

give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the rights granted
or affirmed under this License. For example, you may not impose a license fee,
royalty, or other charge for exercise of rights granted under this License, and you
may not initiate litigation (including a cross-claim or counterclaim in a lawsuit)
alleging that any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this License of
the Program or a work on which the Program is based. The work thus licensed is
called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter acquired, that
would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed
only as a consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant patent sublicenses
in a manner consistent with the requirements of this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor's essential patent claims, to make, use, sell, offer
for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

 In the following three paragraphs, a "patent license" is any express agreement
or commitment, however denominated, not to enforce a patent (such as an
express permission to practice a patent or covenant not to sue for patent
infringement). To "grant" such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

 If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free of
charge and under the terms of this License, through a publicly available network
server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the
benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to
downstream recipients. "Knowingly relying" means you have actual knowledge
that, but for the patent license, your conveying the covered work in a country, or
your recipient's use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe are valid.

 ! 241

 If, pursuant to or in connection with a single transaction or arrangement, you
convey, or propagate by procuring conveyance of, a covered work, and grant a
patent license to some of the parties receiving the covered work authorizing them
to use, propagate, modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within the scope of its
coverage, prohibits the exercise of, or is conditioned on the non-exercise of one
or more of the rights that are specifically granted under this License. You may not
convey a covered work if you are a party to an arrangement with a third party that
is in the business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b)
primarily for and in connection with specific products or compilations that contain
the covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting any implied
license or other defenses to infringement that may otherwise be available to you
under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot convey a covered work so as to
satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not convey it at all. For example, if
you agree to terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisfy both
those terms and this License would be to refrain entirely from conveying the
Program.

 13. Remote Network Interaction; Use with the GNU General Public License.

 Notwithstanding any other provision of this License, if you modify the Program,
your modified version must prominently offer all users interacting with it remotely
through a computer network (if your version supports such interaction) an
opportunity to receive the Corresponding Source of your version by providing
access to the Corresponding Source from a network server at no charge, through
some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work

 ! 242

covered by version 3 of the GNU General Public License that is incorporated
pursuant to the following paragraph.

 Notwithstanding any other provision of this License, you have permission to link
or combine any covered work with a work licensed under version 3 of the GNU
General Public License into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to the part which is the
covered work, but the work with which it is combined will remain governed by
version 3 of the GNU General Public License.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of the
GNU Affero General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

 Each version is given a distinguishing version number. If the Program specifies
that a certain numbered version of the GNU Affero General Public License "or
any later version" applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number
of the GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future versions of the
GNU Affero General Public License can be used, that proxy's public statement of
acceptance of a version permanently authorizes you to choose that version for
the Program.

 Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copyright holder
as a result of your choosing to follow a later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 ! 243

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided above cannot be
given local legal effect according to their terms, reviewing courts shall apply local
law that most closely approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively state the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify it under the
terms of the GNU Affero General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any later
version.

 This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or

 ! 244

FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public
License for more details.

 You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

 Also add information on how to contact you by electronic and paper mail.

 If your software can interact with users remotely through a computer network,
you should also make sure that it provides a way for users to get its source. For
example, if your program is a web application, its interface could display a
"Source" link that leads users to an archive of the code. There are many ways
you could offer source, and different solutions will be better for different
programs; see section 13 for the specific requirements.

 You should also get your employer (if you work as a programmer) or school, if
any, to sign a "copyright disclaimer" for the program, if necessary. For more
information on this, and how to apply and follow the GNU AGPL, see <http://
www.gnu.org/licenses/>.

 ! 245

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

