A PROGRAM FOR DEVELOPMENT OF HIGH QUALITY
MATHEMATICAL SOFTWARE

By

Wayne R. Cowell
Computer Scientist
Argonne National Laboratory
Argonne, Illinois 60439

‘and
Lloyd D. Fosdick - ‘
Professor of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU~CS-079-75 September 1975

This work was supported by the National Science Foundation
under grant number DCR74-21785 to Argonne National Laboratory
and DCR74-24547 to the University of Colorado.

We have been heavily influenced by conversations with many experts in

the mathematical software area, most especially with the following consultants:

Dr. Edward Battiste
International Mathematical & Statistical
Libraries, Inc.

Professor Garrett Birkhoff
Harvard University

Mr. W. J. Cody
Argonne National Laboratory

Professor C. William Gear '
University of Illinois -~ Urbana

Dr. Nicholas Metropolis
Los Alamos Scientific Laboratory

Professor Cleve Moler
University of New Mexico

Dr. Hans J. Oser
National Bureau of Standards

Professor Joseph F. Traub
Carnegie-~Mellon University

2. Background

"Mathematical software' denotes computer programs which carry out the basic
computations of science and engineering. Most mathematical software, at the
present time, is numerical in nature, often performing a very large number of
elementary arithmetic operations on finite-precision approximations to real
and complex numbers. Typical examples include programs to solve systems of
equations, to evaluate functions, and to calculate statistical estimates. On
the other hand, some mathematical software makes extensive use of integer arith-
metic, typically programs to solve combinatorial problems (sorting and searching,
permutations, enumeration, etc.). Programs to perform symbolic mathematical
operations represent an emerging new area of mathematical software. However,
computer programs which perform accounting functions, though they deal primardily
with numerical data, are not generally considered mathematical software, nor
are assemblers and operating systems, though they perform many symbolic and

combinatorial functions.

A PROGRAM FOR DEVELOPMENT OF HIGH QUALITY
MATHEMATICAL SOFTWARE

By

Wayne R. Cowell
Computer Scientist
Argonne National Laboratory
Argonne, Illinois 60439

and
Lloyd D. Fosdick _
Professor of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-079-75 September 1975

This work was supported by the National Science Foundation
under grant number DCR74-~21785 to Argonne National Laboratory
and DCR74~24547 to the University of Colorado.

ABSTRACT

This is a report of a study entitled "Planning a Mathe-
‘matical Software Alliance" carried out with support from the
National Science Foundation for the purpose of arriving at
recommendations for the structure of a national effort to
develop high quality mathematical software. The report con-
sists of a transmittal letter containing the recommendations
of the study and a position paper, "A Program for Development

of MHigh Quality Mathematical Software".

AFGONNE NATIONAL LABORATORY

September 4, 1975

Dr. J. Richard Phillips

Software Quality Research Program
Division of Computer Research
National Science Foundation

1800 G. Street N.W.

Washington, D. C. 20550

Dear Dr. Phillips:

Grants DCR74-21785 to Argonne National Laboratory and DCR74-24547 to the
University of Colorado provided support for a project entitled "Planning a
Mathematical Software Alliance'. This planning effort was a sequel to earlier
studiesl which explored the needs for high-quality mathematical software and
the problems associated with its production. The current study has dealt with
the issues of organizational structure and costs necessary to mount a national
effort to improve the quality of mathematical software available to scientists
and engineers. Our report is presented in the attached position paper "A Pro-

gram for Development of High Quality Mathematical Software".

We were fortunate in having the counsel of eight consultants, listed on
page 2 of the paper, who were thorough in their analysis and candid in their
responses. We acknowledge their strong influence and their invaluable help
but, at the same time, we recognize that each of them speaks for himself and

we assume full responsibility for the conclusions we have reached.

Several ongoing activities have provided insight into the organization
of mathematical software projects and their associated costs, notably the NATS

Project, International Mathematical and Statistical Libraries, Inc., and the

1In particular, those funded by NSF under Granmt GJ31681 to the University

of Colorado and Grants AG325 and AG435 to Argonne National Laboratory.

LUt Lass Avehue,Arggnne,sﬂuuﬂs 60438 - Telephone 312-738-7711 « TWX 810-258-3215 - X b, Argunro s,

ii

NAG Project. Among these, the NATS Project has received the most attention
in this study because we have focused on directions to be taken by publicly

supported efforts in the United States.

From past experience we felt we could describe the processes that would
lead to quality software and could estimate the resources reQuired by a pro-
gram to implement those processes; but that experience could be extrapolated
in various ways and several organizational approaches were explored with the
consultants before we settled on recommendations to the Foundation. The ques-
tions that were especially difficult to resolve related to the degree of cen-
tralization of work and of policy-making. Since various kihds»of expertise
must be brought to bear on mathematical software problems, it is tempting
to propose centers where experts can gather and work together. Surely such
interaction is absolutely necessary but it can occur in the context of work
on a particular problem rather than work at a particular place. There is
the danger that the stability provided by a center can become inertia, causing

an activity to persist after its usefulness has declined.

Akin to the centralization issue is the question of who makes the key
decisions. If the financial resources for mathematical software development
were placed in the hands of a trusted few (even if that possibility were open),
it is likely that an éfficient program would result; but such a course is
neither politically realistic nor likely, in the long rum, to be innovative
and adaptive to fresh ideas. On the other hand, a program involving such a
diversity of interests must have strong input from a group with a comprehensive

view of the problems and the possibilities.

Our recommendations are compromises between too much and too little cen-
tralization. They were hammered out through interplay with the consultanté
wherein we submitted proposals in working papers which they reviewed, This
interaction culminated in an intensive 1-1/2 day meeting on February 21-22,
1975. The recommendations are contained in Section 9 of the position paper.

We repeat them here:

iii

1. To accomplish the task of producing high-quality mathematical soft-
ware, we recommend that the National Science Foundation encourage
and entertain proposals for collaborative mathematical software
projects as discussed in Sections 3-7 of the position paper and
be prepared to fund such projects at a level of approximately $4.5
Million over a period of six years. ‘

2., To providé for information exchange, analysis of spécific needs,
and stimulation of mathematical software production, we recommend
that the National Science Foundation entertain proposals for the
establishment of a Mathematical Software Panel as discussed in
Section &4 of the position paper.

3. Since the concern for good mathematical software is felt in research
centers with various missions, we recommend that the National Science
Foundation seek to develop its program (as articulated in the two
recommendations above) in cooperation with the mission-oriented
programs of other agencies, in particular the Energy Research and
Development Administration, with a view toward encouraging the ex-—
penditure by other agencies of an additiomal $4.5 Million over a

period of six vyears.

A proposal (The LINPACK Project) comsistent with recommendations 1 and 3
has already been transmitted to you from Argonne and five universities with com-

panion proposals from several university test sites.

We thank the National Science Foundation for their support of this plan-
ning project and we look forward to further action by the Foundation to stimu-

late the development of high quality mathematical software.

Yours 31ncere1y”

/'{6?{ oy K/ "7 Jt

Wayne R Cowell
Computer Scientist
Argonne National Laboratory

f . feo
'45{7' ”j,“:;‘,é'\: é\«g s x%‘;)&{/i(\g"

Lloyd D. Fosdick
Professor of Computer Science
University of Colorado
WRC:LDF:mbg :

A PROGRAM FOR DEVELOPMENT OF HIGH QUALITY MATHEMATICAL SOFTWARE

A Position Paper for the Project
"Planning a Mathematical Software Alliance'

1. Introduction

This paper describes a coordinated program aimed at improving the quality
of mathematical software available to scientists and engideers. The recommended
program consists of a number of software development projects of three basic
types with coordination provided by an advisory panel. Rationale for the program
rests upon the following considerations:

1. The quality of much basic software for numerical computations

is poor. The software is unreliable, non-transportable, and
inadequately documented. This constitutes a weakness which
pervades the whole structure of computing, wasting vital
resources, .and impeding scientific and technological develop-
ment;

2. Mathematical software development is not well established
either as an academic or industrial activity which it must
be in order to meet vital national needs., A publicly funded
program will encourage the involvement of creative people
and stimulate the growth of private ventures;

3. Several prototypical efforts serve as models of what is
possible and information derived from them (particularly
from the NATS project) provides a basis for planning an

expanded program.

Reason and experience point convincingly to the need for collaboration
among mathematical scoftware workers in research laboratories and universities.
Any program must draw together the best talent to attack selected problems. We
shall recommend a program that emphasizes the careful selection of problems,
collaborative efforts toward their solution, and education to explain and

encourage the use of software resulting from such efforts.

-3-

It is important to distinguish between algorithms and software. An
algorithm is a description of a computational process in terms of well defined
elementary steps, and may be represented by sets of recurrence relations,
flow diagrams, sequences of statéments in algorithmic languages such as Algol,
etc. Software ié the physical realization of an algorithm. It is a computer
program and must take into account such operational matters as storage alloca-
tion, error conditions, finite precision arithmetic, efficiency, portability,

documentation, and the man-machine interface.

Software development and the study of algorithms (the latter is often
called numerical analysis when referring to numerical algorithms) are inter-
dependent and can enrich one another. But numerical analysts and software
specialists do not always communicate well. It is convenient for the numerical
analyst to invent and analyze algorithms without reference td the perversity
- of real computers and software designers often do not appréciate the mathematical
difficulties that concern the numerical analyst. Individuals conversant in
both areas are rare although there are a few notable exceptions among the mbst
creative numerical analysts. It is healthy that numerical analysis and software
design should appeal.to people with different interests and orientation but
both suffer when the two communities work in semi-isolation from one another.
This communication failure is an important source of weakness in mathematical

software.

Software designers and numerical analysts together could form a constituency
influencing machine design and the future development of programming languages.
One well-known instance (see |1]) shows that hardware manufacturers can be in-
fluenced by a concerted effort. With regard to programming languages, we remark
that individual mathematical software specialists were far more involved in
the design of Algol 60 than in setting Fortran standards and the former is a
better language for mathematical software. This has long~term implications since
most practical mathematical software will be written in Fortran (especially in
the U.S.) for at least the next 5 years.

Recent developments in computef architecture (e.g., see [2])providing for

parallel operations synchronously or asynchronously introduce a radical new set

evaluation of a large mathematical software system is a major undertaking and
cannot reasonably be expected to be done by unpaid volunteers. Thus, the
professional journals serve as important vehicles for communication of algo-
rithms and software, but they are not a substitute for mechanisms to create

and distribute mathematical software of very high quality.

The early installation libraries eventually contained mostly Fortran
codes. There was some useful circulation of these but they had not been
designed for general distribution and were never successfully distributed
to a mass audience although computer users' groups, notably SHARE, made heroic
efforts to do so. Computer manufacturers developed libraries of elementary
functions associated with high-level language processors. These were not
uniformly reliable (see [4,5]) although quality has improved in recent re-

leases of the compilers.

The mathematical software libraries available commercially are, for the
most part, collections of routines based on research and development work in
universities and research laboratories. The companies which produce them are
performing a valuable service to the computing community by organizing this
material and offering these libraries to customers. We believe that the
best of these commercial activities are accomplishing much of what the users'
groups failed to do. However, it does not appear that the underlying research,
nor ecven the exacting testing, that distinguishes the best software development
projects is a commercially viable activity. That is, we expect that computer
manufacturers will make their hardware more attractive to scientific customers
by offering mathematical subroutines and we expect that some firms will specialize
in mathematical software products but we do not expect that any of these private
concerns will initiate major programs in algorithmic research or in concentrated
efforts to develop extremely high quality software in a given problem area.
These activities will continue to be fostered in universities and research

laboratories, and supported by public funds.

The cost of bad software is difficult to determine quantitatively. Open
disclosure and discussion of failure by software developers would often raise

difficult questions about liability. Moreover, the complexity of the software

- -

talented individuals who saw greater opportunities for recognition in the

more formal areas of computer science. We believe that more talented
individuals can be attracted into the area of software development because

the problems are intellectually challenging and because there is a growing
awareness in the scientific community, as a result of trauma suffered from

bad software, that efforts to develop good software are important. Mathematical
software, in particular, is a promising area for increased attention because

(a) the products are valuable basic building blocks in scientific and engineering
computation; (b} the problems, while difficult, are tractable and significant
progress can be made; (c) insights gained in developing quality mathematical
software may lead to a better understanding of the larger problems of

quality software in general. These reasons convince us that a carefully

guided program of publicly-funded support for work in mathematical software

and in vitally related areas would have a significant beneficial effect on

software technology, its academic foundations, and its associated industry.

3. The Evolutionary Process

We recognize six principal stages in the evolution of mathematical soft-
ware:
1. Mathematical analysis;
2. Constructing algorithms to perform combutations suggested by
the analysis;
3. Converting the algorithms into software for a particular class
of computers;
4, Organizing collections of software designed for problems in a
mathematical area;
5. Validating, certifying, énd disseminating the collections;:
6. Incorporating the collections into subroutine libraries.
Work in the first two stages is research oriented and is usually found at universi-
ties and certain research laboratories. Work in the third stage is development
oriented. It involves converting the description of an algorithm into a program
acceptable to a compiler for some particular computer or class of computers. ’If

this conversion work is done to satisfy an immediate need of some individual then

-9-

The EISPACK and FUNPACK projects, which were carried out under the aegis
of NATS, are the prototypical projects of Type 1.

Regarding Type 2 ﬁrojects, experience has shown that high level languages
and language tools greatly simplify the process of software development and they
also make the results of that development more accessible to the scientific user.
An example of a project in this area is discussed in [13]. We recommend, however,
that any Type 2 project supported under this program be associated with a Type 1
(software package) project, no matter what merit it may have fof support under

other programs.

Our advocacy of Type 3 projects reflects the fact that the development of
reliable software depends heavily on good test facilities. It has been reported
by Boehm [6] and Brooks [11] that about 50% of the effort in software development
goes into testing and debugging. There has been a good deal of research actiVity
in this area recently, including the work of Fosdick and Osterweil [14] and
others [15]. Close liaison between Type 3 and Type 1 projects will facilitate
applications of this work to the development and validation of mathematical soft-

ware packages.

4. A Mathematical Software Panel

A natiomal program in mathematical software development will require, on
the one hand, enough coordination and control to assure the most effective use
of limited resources and, on the other hand, enough freedom to permit wide par-
ticipation and infusion of ideas. Moreover, constraints will be imposed by the
funding level that might be reasonably anticipated and the types of organiza-
tional structures that might be supported. Careful consideration of these
factors leads us to recommend a program of projects of Types 1, 2, 3 above
with cohesion and unity provided by the work of a coordinating and advisory

Mathematical Software Panel.

The principal objectives of the Panel are to:

1. Critically evaluate and report the state-of-the-art in mathematical

software research, development, and dissemination;

~11-

uity of ideas and policy while providing for a turnover that brings fresh view-
points. The Panel should meet as a body about twice per year although subpanels
may meet more frequently and for longer periods. There should be sufficient
staff and clerical assistance so that the members can concentrate on issues.
The selection of members should be made in a manner which will assure broad
and expert representation of the various interests of the mathematical software

community. SIGNUM and SIAM should be represented.

Based on these general recommendations, a host institution must determine
the operational details and seek support for the establishment of the Panel.
We have concluded that a university is the best choice for a host institution.
In a university setting, the Panel will be in a particularly good position to
maintain its independent position as reviewer and critic of softwére activity.
Furthermore, a university can provide a good environment for meetings and work-
shops. The Panel need not always be centered at the same university, but might

move after three or four years.

The Department of Computer Science of the University of Colorado would be
willing to serve initially as host for the Panel. As already noted there is
a strong interest at Colorado in problems related to software reliability and
testing. Other members of the faculty have a strong interest in numerical
analysis, and special languages for mathematical software. For these reasons,
and because the University of Colorado enjoys an unusually attractive location,
it is particularly well suited to serve as host for the various meetings and

workshops that would be sponsored by the Panel.

5. Software Projects

The actual work of developing mathematical software, special languages,
and debugging and testing tools will be carried out through projects which will
usually involve collaboration among individuals at several institutions. It
is important to recognize that we are not recommending the establishment of a
new organizational entity (a "center" or an "institute") to be host to the
projects. Centralization would apparently offer efficiency and the advantage
of focusing mathematical software development in one superactive center of
excellence. However, there are several reasons why we feel that the dispersal

of such activity is necessary: First, the skilled people are widely dispersed.

-13~

The principal institution would often serve as a site for meetings of workers
from the collaborating institutions. At certain points during the course of a
project some of these workers may need to spend an extended period, perhaps up
to three months, at the principal institution. We anticipate that remote use

of the principal institution's computing facilities will be desired.

6. Type 1 Projects (Mathematical Software Packages)

To make more concrete the notion of a mathematical software package project
we shall review certain features of the NATS project and attempt to relate this
experience to a Type 1 project carried out under the aegis of the Mathematical

Software Panel.

The eigensystem package EISPACK and the special function package FUNPACK
were based on state-of-the-art algorithms and earlier software that had been
carefully selected. EISPACK was constructed from the algorithms expressed in
Algol in [16] and FUNPACK from Fortran routines developed at Argomme after con-
siderable study by W. J. Cody. In general, a review of the state-of-the-art
would be an explicit prelude to a project and would be an appropriate activity
to be carried out under the auspices of the Panel. One approach would be to
form a study group, possibly with joint sponsorship by othef institutions in-
terested in a particular software area. The study group of three to five experts

would agree to:

1. Review numerical techniques in the problem area;
2. Review available software;
3. Write a state-of-the-art report.

The work of the study group should begin with a one month workshop to ex~
change ideas, parcel out work assignments, agree to a timetable, and begin the
reviews. At the end of the month the study group members would return to their
home institutions to work on the reviews on a part-time basis. The study group
would have a chairperson who, in the ideal case, would devote a major portion

of his time to this effort.

After a suitable period (say nine months to be compatible with the academic
calendar) the study group would reconvene to complete their reviews and write

the state-of-the-art report. Early in the nine month period a conference in-
/

~15-

Release 1 of EISPACK, six for Release 2 of EISPACK, one for the EISPAC control
program, and three for FUNPACK. The approach to field testing of EISPACK is
discussed in [7] and [17] and of FUNPACK in [7] but more completely in [18].

The test site meetings shown in Table 1 were one~day report and planning
sessions. The Eigensystem Workshop was a five-day intensive meeting of about
thirty international experts in numerical linear algebra who could be expected
to influence the use of EISPACK. Five one-hour lectures (four by J. Wilkinson,
one by C. Moler) were videotaped at the workshop and have been widely distributed
through interlibrary loans and sale at duplication cost. Such a workshop would

be a highly appropriate activity of the Mathematical Software Panel.

The meaning of "certification" is discussed in [7] and may be illuminated
by the following certification statement which appears on codes in Release 2

of EISPACK.

Under the auspices of the NATS Project, the subroutines con-
stituting Release 2 of EISPACK, including (name of routine), have
been thoroughly tested on the following computer systems: (List
of machines, operating systems, compilers, and locations).

The performance of this software on these systems was satis-
factory and Release 2 of EISPACK is hereby certified for these
systems. The NATS Project fully supports this certified software
in the sense that reports of poor or incorrect performance on at
least the machines and operating systems listed above will be ex-
amined and any necessary corrections made. This assurance of sup-
port applies only when the software is obtained directly from the
Argonne Code Center and has not been modified.

Questions and comments should be directed to:
(Name, address, and phone of contact)

The developers of EISPACK intend to support the package
throughout its useful life or until, in the estimation of the de-
velopers, it is superseded or incorporated into other supported,
widely~available program libraries. Information about any change
in the status of EISPACK support will be supplied to recipients of
the package or may be obtained from the above-named individual.

Table 1 - EISPACK Page 17
&= 0
‘ B H A
| F ol
MILESTONE E g E %
DATES gl 8% 3|5 E
(APPROXIMATE) Release 1 gl 88 Release 2 2| O
" 1 8PS men-year prior to 11/1/70 L6
ll/l/YO Major effort committed O
L.2 8PS
5oCs \
9/1/71 Package to test sites 10| 218
[Pest Site Meeting | 4.0 SPS
S CS
2 PS8 equiv. Tor testing
5/1/72 Package Certified, Distribu- [18]|LO7 |Effort for Release 2 commltted 0 0
tion end Support Begin ' 1.h sps
\ 1.3 8PS .3 C8
| Test Site Meeting | .3 CS .1 Grad.
.1 Grad.
(/1/73 Eigensystem Workshop ($25T)
9/1/73 Users Culde Manuscript to 34| 528
Publisher (see ref. [19})
Increase effort level 20 122
1.5 8PS
S5 PS
5 Cs
9/1/7h Package to test siltes 28 197
1.5 8ps
15 P8
5 C8
2 P8 equlv. for testing
5/1/15 Certification, Distribution, Sup- |36 324
port 1.5 8PS
15 PS
(L 05 CS
9/ Second edltion Users Gulde to 41 371

Publisher

Continuing Support
(.1 sps)

Table 3

ETISPACK Size

(For each applicable machine)

Page 19

Total Cards Comment Cards
Release 1 (34 Routines) 5719 2794 Control Program not
» included .
Release 2 {70 Routines) 11432 5556 Control Program not
1ncluded but 12 certi-
fied drivers included

EISPAC Control 2

Fortran 3089 1117

Avsembler 688 151
Release 0 (0 Routines)

Machlne Readable

Documentation ‘ 12373 -

Table 4
FUNPACK Size
Total Cards Comment Cards
IBM FUNPACK 1823 1223
CDC FUNPACK 137k 913
Univac FUNPACK 1377 860
IBM Demonstrator 980 278
CDC Demonstrator 632 173
Univac Demonstrator 652 174
Machine Readable Documentation 2125 =
(For each machine)

~21~

"Static analysis' generally denotes automatic scanning (but not execution)
of a program in a search for errors of suspicious constructions. Such scanning
and error detection is done by compilers; however recent work [14] has shown

that a much deeper analysis than compilers perform is possible and practical.

Other work in this area includes automatic generation of test data, iden-
tification of "impossible paths', and symbolic execution of programs (see [22]).
Here it seems that further work is needed before useful software can be developed,

but it would be appropriate for the Panel to review and encourage these efforts.

The system DAVE which was developed at the University of Coloradd gives
us a model on which to base estimates of costs and manpower réQuired for pro-
jects in the software testing and validation area. This system was designed
and constructed over a two-year period and it is operational but not fully
tested. It contains apbroximately 20,000 source statements. The costs to bring
the system to its present state were approximately $170,000. The effort was ap-
proximately 2.5 man years at the "SPS" level, 2 man years at the "PS" level,
3.5 man years at the "Grad" level, and 0.75 man years at the "CS" level. We
emphasize that DAVE is not quality software; rather it is an experimental pro-
totype whose cost per source statement is far lower than would be the case for

high quality software intended for wide distribution.

8. Costs |
We estimate that the éost of Type 1 or Type 3 projécts would average

roughly $250 Thousand per project per year and that the cost of the activities
carried out directly by the Mathematical Software Panel would be $100 Thousand
per year. Further, we believe that fundamental changes in available mathema-
tical software would be effected by a program of approximately 12 major projects
extending over a period of 6 years, roughly according to the following schedule
(each project is assumed to last 3 years). We are convinced that enough exper—

tise and interest exists to mount a worthy program of this size:

-23-
Panel as discussed in Section 4.

Since the use of mathematical software pervades all of science and engineer-
ing the concern for good mathematical software is felt in research centers with
various missions. In particular, the Energy Research and Development Administra-

tion has played. a vital role in ongoing activities in this area. We recommend

that the National Science Foundation seek to develop its program (as articulated
in the two recommendations above) in cooperation with the mission-oriented pro-
grams of other agencies, with a view toward encouraging the expenditure by other

agencies of an additional $4.5 Million over a period of six years.

15.

16.

17.

18.

19.

20.

21.

22.

References (Continued)

Workshop 4 - Approaches for Programmers to Application Software Validation.
Proceedings of Computer Science and Statistics: 8th Annual Symposium on

the Interface. Feb. 13, 14 (1975). University of California, Los Angeles,

CA.

Wilkinson, J. H. and Reinsch, C., Handbook for Automatic Computation,
Volume II, Linear Algebra, Part 2, Springer-Verlag (1971).

Cowell, Wayne, The Validation of Mathematical Software, to be presented
at IFIP~INFOPOL-76, International Conference on Data Processing, Warsaw,
Poland, March 22-27, 1976.

Cody, W. J., The FUNPACK Package of Special Function Subroutines, ACM
Transactions on Mathematical Software, Vol. 1, No. 1 (March, 1975), pp. 13-
25.

Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. C., Moler,
C. B., Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in
Computer Science, Vol. 6, Springer-Verlag (1974).

Elspas, B., Levitt, K. N., Waldinger, R. 0., and Waksman, A., An Assessment
of Techniques for Proving Program Correctness, ACM Comp. Surv., Vol. 4,
No. 2 (June, 1972), pp. 97-147.

Proceedings International Conference on Relaible Software. April 21-23

(1975), Los Angeles, CA.

Clarke, L., A System to Generate Test Data and Symbolically Execute Programs.
Technical Report, CU-CS-060-75, Department of Computer Science, University
of Colorado, Boulder, CO (Feb., 1975).

/

