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1. Introduction

In [PY], Papadimitriou and Yannakakis solve the unit-execution-
time scheduling problem [C,pp.51-3] for a family of partial orders
called interval orders. Only one other family (the forest orders [H]) is

known to have an efficient solution.

The development in [PY] assumes the interval order is given in
transitively closed form. This note extends ideas that are implicit in
[PY] to remove this assumption. The main tool is a linear-time algorithm
to recognize an interval dag, i.e., a dag whose transitive closure is an
interval order. This is given in Section 2. Section 3 indicates how the

recognition algorithm applies to the scheduling problem.

Before proceeding we establish some notation and give a convenient
definition of interval dag. For a dag (directed acyclic graph), n repre-
sents the number of vertices and m the number of edges; the vertices are

numbered 1, ..., n. For a vertex i, the set of vertices adjacent from i

is A(i) = {j| there is an edge from i to j}; the successor set of i is

S(i) = {j| there is a path of one or more edges from i to Jl.

An interval dag satisfies the following nesting property:

*This research was supported in part by National Science
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Definition A dag is an interval dag iff for any two vertices i,j, either

S(1)¢S(d) or S(3) eS(1).
So the distinct successor sets S(j) can be Tabelled as ¢ = T0 = T1 Z . . Tﬁ_1 G TZ'
Figure 1 shows an inyerval dag. The transitively closed interval dags are

exactly the interval orders; this can be seen by examining the proofs of [PY].

2. The Recognition Algorithm

The algorithm processes vertices one-by-one, checking the nesting
property is always satisfied. To do this, the vertices are numbered in
topological order [K], so if (i,j) is an edge, i < j (Each vertex is

identified with its number.). Vertices are processed in decreasing order.

Suppose the nesting property has been verified for all vertices
J > 1. So the distinct successor sets S(j), j > i, can be labelled as
To § - T g.Tk, where for convenience, T does not denote a successor
set but rather T '= {1, ...n}. Let T, be the smallest set containing A(1).
The nesting property implies Tq_1 < S(1) ST@' So if Tq_1 < S(i) is false,
the dag is not interval. Otherwise the dag seen so far is interval. If
S(i) = Tq,the next vertex i-1 can be processed. If S(i) lies properly
between Td-l and Tq, S(1) can be made a new T- set and then vertex i-1

can be processed.
To implement this approach efficiently, the following data structure
is used (see Figure 2). A set Tj is represented by aknode t; it has a f}eld
canr(e) - ryl. o *
The nédes Tes Teogs =oes Ty are Tinked, in this order, to form é 11neaf Tist
L. A vertex i has entries in two arrays:

SUCC(i) points to the node for set S(i);

IN(1) points to the node for the smallest set containing 1.
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Noté the nest1ng property a11ows us to use COUNT f1e1ds to ccmpafe~;

. . sets Now we present the a1gor1thm 1n pseudo ATgo?

eg1 n comment This a1gor1thm haTts 7nd1cat1ng whether or not the
given dag is interval. If it is, a node t in L represents the
successor set {i|IN(i) is t or is after t in L}, L gives the
nesting order of successor sets, and vertex i has successor set
SUCC(1i);
initialization:
1. number the vertices in topological order;

2. Tlet L be Tl’ TO’ where Tl = {1,...,n}, T0 = ¢3 let IN(i) point to T1
and SUCC(i) point to TO’ for 1 < i < n;
processing:
3. for i<«n to 1 by -1 do

4, if A(i) = ¢ then beg1n
comment,f1nd T k_thé smal]éSthuCQes

set containing A(1), and Ty, the |

. q° P’
6. comment Tet LO = A(i) n Tq 1- p’ HI = A(i) n T "Tq~1;
Tet LO = {j|jeA(i), COUNT(p) < COUNT(IN(j)) < COUNT(q)};
Tet HI = {j|ieA(i), IN(3) = q};
7. comment find Tq_1 and check Tq_1 S S(i);
let q' point to the node following g in L;
iﬁ'COUNT(q‘) > COUNT(p) + |LO|  then halt (G is not interval);
8. comment check if S(i) = Tq;
if COUNT(q) = COUNT(q") + [HI| then_ SUCC(i) < q
else begin comment create a new successor set for S(i);
9. ‘let t point to a new node between g and g', with

COUNT(t) = COUNT(q') + [HI|, SUCC(i) = t, and
IN(j) = t for j e HI;
end end
halt (G is interval)

end.
ASANAS



Theorem: An interval dag can be recognized in time O(n+m).

Proof: Correctness of the algorithm follows from the comments and the

preceding discussion. The linear time bound is obvious. O

In an actual implementation, the algorithm would be modified for
greater speed. The topological numbering could be eliminated by exploring
the graph depth-first, processing successors before predecessors. In line 6
it is more economical to compute only |LO| and |HI|; only in Tine 9 might

it be necessary to reexamine A(i) to find HI.

3. Application to Scheduling

To implement the scheduling algorithm of Papadimitriou and Yannakakis,

it is necessary to form a "priority 1ist" of the vertices i in decreasing

érder'of IS(i)]. Thjs‘is done:by traveréihg L; 11st{ngka]]'vértices iwith

succ(i) ¥’t~when;node t is visited. ,It:isfeaSy,fO'fmp]ementgthis in time O(h{m)g
The complete scheduling algorithm runs in almost-Tinear time,

O(na (n)+m).* Here a(n) is the inverse of Ackermann's function and is

<3 for practical applications [T]. The factor a(n) results from the time

to convert the priority 1ist to a schedule [S]. There seems to be no simple

way to take advantage of the special structure of interval dagsktd do

the conversion faster.

*This is slightly worse than the Tinear bound claimed in [PY].
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Figure 1. Example graph

Figure 2. Data structure after vertex 3
is processed.
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