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Yang, Honghua (Ph.D., Physics)

Novel concepts in near-field optics:

from magnetic near-field to optical forces

Thesis directed by Prof. Markus B. Raschke

Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanome-

ter spatial resolution are needed for in situ material characterizations. Near-field optics provides a

unique way to selectively excite and detect elementary electronic and vibrational interactions at the

nanometer scale, through interactions of light with matter in the near-field region. This dissertation

discusses the development and applications of near-field optical imaging techniques, including plas-

monic material characterization, optical spectral nano-imaging and magnetic field detection using

scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of

optical spectroscopy based on optical gradient force detection.

Firstly, the optical dielectric functions of one of the most common plasmonic materials –

silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral

range from visible to mid-infrared. This work was motivated by the conflicting results of previous

measurements, and the need for accurate values for a wide range of applications of silver in plas-

monics, optical antennas, and metamaterials. This measurement provides a reference for dielectric

functions of silver used in metamaterials, plasmonics, and nanophotonics.

Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at

both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments,

the novel design concept and key specifications are discussed. Initial low-temperature and high-

temperature performances of the instrument are examined by imaging of optical conductivity of

vanadium oxides (VO2 and V2O3) across their phase transitions. The spectroscopic imaging capa-

bility is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA)

and other samples.
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The third part of this dissertation explores imaging of optical magnetic fields. As a proof-

of-principle, the magnetic near-field response of a linear rod antenna is studied with Babinet’s

principle. Babinet’s principle connects the magnetic field of a structure to the electric field of its

complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I

identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared fre-

quencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical

requirement of Babinet’s principle for a structure to be infinitely thin and perfectly conducting is

still fulfilled to a good approximation in the mid-infrared. Thus Babinet’s principle provides access

to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic

optical antennas.

Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of

optical gradient force is explored. It is to measure the optical gradient force between induced

dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the

theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of

the optical gradient force from numerical simulations for a coupled nanoparticle model geometry.

I show that the optical gradient force is dispersive for local electronic and vibrational resonances,

yet can be absorptive for collective polaronic excitations. This spectral behavior together with the

distance dependence scaling provides the key characteristics for its measurement and distinction

from competing processes such as thermal expansion. Furthermore, I provide a perspective for

resonant enhancement and control of optical forces in general.
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Chapter 1

Introduction

Nanotechnology has enabled new materials and devices through advanced bottom-up nano-

material synthesis to top-down nano fabrication. The properties of these new materials and devices

are characterized at the relevant length scales of nm to µm, determined by composition, struc-

ture, and chemical interactions. On the one hand the structural informations such as spatial

inhomogeneities, atomic scale defects, and grain boundaries are typically provided by scanning

probe microscopy and electron microscopies. On the other hand, electronic and chemical proper-

ties are typically probed by optical spectroscopies with ensemble average at the bulk level limited

by diffraction. To effectively access the local electronic and vibrational responses and their cou-

plings in various materials, a more generalized approach with combined spectroscopic specificity

and nanometer spatial resolution is needed.

As the energy of light quanta matches the energy of electronic and vibrational excitations in

matter, optical techniques provide an effective tool to probe these excitations. Optical techniques

are adaptable in ambient environment for in situ studies, and are generally non-destructive. Optical

methods based on the light-matter interaction are also less sensitive to perturbations by external

electric and magnetic fields. In addition, by using ultrafast lasers, optical techniques provide a

unique way to probe at the characteristic time scales of electronic and vibrational excitations on

the order of fs to ps. However, due to diffraction traditional optical spectroscopy/microscopy has

limited spatial resolution on the order of a few hundred nm in visible to a few µm in infrared. This

diffraction limit was identified by Ernst Abbe in 1873 [1]. He found that a light beam focused by a
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lens with a converging half-angle θ would result in concentric bright and dark rings with a central

sphere of radius

r =
1.22λ

2n sin(θ)
=

0.61λ

NA
, (1.1)

with refractive index of the medium n, free space wavelength λ, and the numerical aperture (NA),

NA = n sin(θ). The focal spot is known as Airy disk with a radial intensity profile of a first order

Bessel function.

The criterion to distinguish two adjacent points, now known as the Rayleigh criterion, states

that two points are barely resolved if the maximum of the Airy disk of the first point coincides

with the first minimum of the Airy disk of the second point. Thus even using an oil immersion

objective with n ≈ 1.3, diffraction still practically limits the optical resolution to ∼ 200 nm at

visible wavelengths. Higher spatial resolution can be achieved by using ultraviolet (UV) or X-ray

light. However, the lack of suitable focusing lenses, strong absorption in air, and sample damage

due to photon ionization limit the practical use of this strategy. Alternatively, electron microscopy

can be constructed by focusing electrons with a magnetic lens in order to achieve even sub-atomic

resolution due to the small de Broglie wavelength of electrons. Despite being an indispensable tool

for nanostructure analysis, electron microscopes generally lack the capability to probe vibrational

resonances of materials. In addition, electron microscopes require high vacuum to operate.

Another class of techniques, called super-resolution fluorescence microscopy, has been devel-

oped to overcome the diffraction limit based on fluorescence imaging. Due to its success in biological

imaging, the technique was awarded the Nobel Prize in Chemistry in 2014 [169]. Super-resolution

fluorescence microscopy consists of two primary methods: stimulated emission depletion microscopy

(STED) [122] based on nonlinear saturation, and photo-activated light microscopy (PALM) [22]

based on point-spread function reconstruction of an emitter by turning the fluorescence of individ-

ual molecules on and off. These methods have been demonstrated to achieve 10 nm resolution in

three dimensions, however, they have been limited to luminescence. Therefore, a more universal

method is desired to extend the diverse range of optical techniques by overcoming the diffraction
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Figure 1.1: (a) Principle of scanning near-field optical microscopy (SNOM): the incident light
induces a coupled polarization between the tip and sample, which then scatters light to the detector
in the far-field. The localized light-matter interaction under the tip provides the high spatial
resolution. (b) The spatial resolution of SNOM can reach 10 nm with spectral coverage from
visible to THz. Thus SNOM enables the study of electronic and vibrational phenomena at the
nanoscale. Figure after [20].

limit.

Near-field optics can overcome the diffraction limit through the spatial confinement of the

evanescent field, and is generally compatible with all conventional optical techniques, including

nonlinear and ultrafast techniques, ranging in spectral region from UV to THz. The experimen-

tal implementation of near-field optical imaging based on a scanning probe microscope is named

scanning near-field optical microscopy (SNOM). Its principle is based on the localized mutual po-

larization of the tip and sample, which then scatters light to the detector in the far-field (Fig. 1.1a).

As a consequence, SNOM makes it possible to extend all-optical spectroscopy to a spatial resolution

down to tens of nm, practically limited by the tip radius [231, 195]. The spatial resolution and

spectral accessibility of SNOM are illustrated in Fig. 1.1b.

This thesis explores different mechanisms responsible for light-matter interaction at the

nanoscale, and their implications and potential applications for optical imaging and spectroscopy.

The remainder of the chapter provides a conceptual background for the thesis.
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1.1 Near-field optics and near-field optical microscopy

Near-field optics relies on the spatial confinement of evanescent waves, whose amplitude

decays exponentially from the sources (such as currents or induced polarizations). Evanescent

waves can be expanded in the form of E0e
i(k·r−ωt), with at least one component of the wavevector

k being imaginary. The highly confined evanescent waves are crucial for subwavelength spatial

resolution and other novel properties in near-field optics.

The idea of near-field optical microscopy dates back to 1928. In a letter from E.H. Synge

to Einstein [172, 173], he proposed to use light scattered from a tiny gold particle to illuminate

the sample locally. By raster scanning the particle over a sample surface while recording the local

emitted signal simultaneously, one could in principle obtain an optical image of the sample. The

same idea for super resolution was reinvented several times, but the first experimental demon-

stration was not achieved until 1972 [12]. By using microwaves, Ash et al. were able to achieve

a resolution of λ/60. The first experiment at optical frequencies was performed a year after the

invention of scanning tunneling microscopy (STM), which enabled the stable position control of

a local light source relative to the sample surface. Pohl et al. obtained a resolution of 25 nm at

laser wavelength λ = 488 nm by squeezing light through a small aperture [189]. This technique

later evolved into near-field scanning optical microscopy (NSOM), now typically implemented by

using a subwavelength aperture at the end of a tapered fiber probe. However, NSOM is severely

limited by the dispersion of the fiber, the complex contrast mechanism, and weak signal due to low

throughput put from the small aperture. These drawbacks limit its generalization for spectroscopy.

To overcome the limitations of NSOM, a proposal was made to use a sharp tip to perturb in

the near-field region and scatter the field into a propagating wave for far-field detection [230, 105,

211]. This technique, based on detecting the scattered light from perturbed near-field, is named

scattering-type scanning near-field optical microscopy (s-SNOM). 1

A typical experimental implementation of s-SNOM consists of an atomic force microscope

1 s-SNOM is also called apertureless NSOM (ANSOM). NSOM or SNOM is frequently used interchangeably in
literature.
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(AFM), a light source, a detector, and focusing and collecting optics. Light is focused onto the

AFM tip and the back-scattered light is collected. The principle of s-SNOM relies on the optical

field localization at the nanoscale tip apex and its optical antenna properties. The tip (generally

5 - 30 nm radius of curvature) acts as a localized scattering source for the enhanced evanescent

optical fields localized between the AFM tip and the sample surface. The scattered light from the

tip-apex region then contains spectroscopic information about the sample from a region confined

laterally by the dimensions of the tip apex radius. Scattered light is collected in the far-field, and

both amplitude and phase can be detected interferometrically.

s-SNOM has been successfully used to map local dielectric contrast, and also the local elec-

tromagnetic field in nano-photonoic and plasmonic structures. The recent progress in s-SNOM,

especially its advance in nanoscale infrared spectroscopy, has attracted significant interest for com-

mercializing this technique.

1.2 Dissertation Outline

This thesis is organized as follows:

Chapter 2 provides a theoretical background of the optical properties of materials, particular

the Drude free electron behavior of metals and the associated plasmonic responses. In addition,

the principle of near-field light-matter interaction in s-SNOM is discussed.

Chapter 3 studies the dielectric function of two most widely used materials in plasmonics –

silver and gold. This work was motivated by the need for accurate values for the wide range of

applications of silver and gold for plasmonics, optical antenna, and metamaterials. Using broadband

spectroscopic ellipsometry, we determine the complex valued dielectric function of evaporated and

template stripped polycrystalline silver films from 0.05 eV (λ = 25 µm) to 4.14 eV (λ = 300 nm).

Our Drude model analysis on silver provides a relaxation time of 17±3 fs, a significant correction

to the commonly used relaxation time of 31±12 fs from Johnson and Christy (Phys. Rev. B 6,

4370 (1972)). Yet, it is in agreement with the suggestion that the Johnson and Christy value has

been a large overestimate based from a large body of plasmonics work. For energies below the
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interband transition, slight deviation from the Drude model is observed in our data and through

which we determine a frequency dependence of the relaxation time consistent with predictions from

Fermi-liquid theory. In addition, to explain the discrepancies in the previous measurements, we

discuss the role of intrinsic electron scattering and extrinsic defect and grain boundary damping.

This work has been published as H. Yang, J. Archangel, M. Sundheimer, E. Tucker, G. Boreman,

and M.B. Raschke, “Optical dielectric function of silver”, Physical Review B 91, 235137 (2015).

The experimental implement of s-SNOM is covered in chapters 4 and 5. Chapter 4 describes

experimental implementations of an infrared s-SNOM instrument and several applications including

chemical mapping through molecular vibrational resonances and imaging surface polaritonic waves

on 2D materials. In chapter 5 a low temperature s-SNOM system is presented. As one of the first

low temperature s-SNOM instrument, I mainly cover the novel design concept. This work has been

published as H. Yang, E. Hebestreit, E. Josberger, and M.B. Raschke, “A cryogenic scattering-type

scanning near-field optical microscope”, Rev. Sci. Instruments 84, 023701 (2013).

Followed is the application of s-SNOM to map the optical magnetic field (chapter 6) and the

extension for a novel optical gradient force spectroscopy (chapter 7).

In chapter 6, I exploit the possibility of using Babinet’s principle to probe the magnetic

field of a structure through the electric field of its complement structure. Generally, the optical

magnetic field interaction is much weaker than the electric field interaction, and thus difficult to

measure in experiment. This work demonstrates an elegant method to experimentally map the

local optical magnetic field as an important step to understand the near-field interactions. The

work has been published as H. Yang, R. Olmon, K. Deryckx, X. Xu, H. Bechtel, Y. Xu, B. Lail,

and M.B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle”, ACS

Photonics 1, 894 (2014).

Chapter 7 describes a novel nanoscale spectroscopic imaging method based on optical force

detection. Under laser illumination, induced optical polarization would cause a gradient force

between an AFM tip and the underneath sample. I provide a generalized description of the optical

gradient force between a scanning tip and sample as an imaging contrast mechanism. The optical
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gradient forces are numerically calculated with Maxwell’s stress tensor. The spectroscopic response

of the optical gradient force is found to be dispersive for single particle electronic or vibrational

resonances. In contrast collective polariton resonances can give rise to absorptive spectral force

profile. The effect is distinct from the accompanying thermal expansion due to optical absorption,

which results in absorptive-like resonance spectra in all cases. While the optical gradient force

is comparable to thermal noises in a room temperature AFM, the effect should be detectable

under cryogenic conditions as demonstrated in cavity opto-mechanics. The work is submitted for

publication as H. Yang, and M.B. Raschke, “Resonant optical gradient force for nano-imaging and

-spectroscopy”.

Chapter 8 gives a brief summary of the works in this thesis.



Chapter 2

Optical properties of materials

This chapter provides a theoretical background to near-field light-matter interaction for

nanoscale imaging and spectroscopy. We begin with the optical properties of materials, then derive

related near-field and plasmonic properties for this work.

2.1 Maxwell’s equations

To study the interaction of light with matter in the near-field, we start with the Maxwell’s

equations that form the foundation of classical electrodynamics:

∇ ·D = ρ (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B

∂t
(2.3)

∇×H = J +
∂D

∂t
(2.4)

with ρ the free charge density, and J the current. The displacement field D and the magnetic field

H are defined through:

D = ε0E + P = ε0εrE (2.5)

B = µ0H + M = µ0µrH, (2.6)

where ε0 and µ0 are the vacuum dielectric permittivity and the magnetic permeability; polarization

P and magnetization M describe the additional field response due to the presence of the material.
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Therefore the relative dielectric permittivity εr and permeability µr characterize the electromagnetic

properties of the material. In the optical frequency, the magnetic permeability of ordinary material

is very weak, thus µr ≈ 1.

In general, the dielectric permittivity (the dielectric function) of a medium as a response

function to external electric fields is a tensor [59, 130]. It connects the displacement field and the

applied electric field through

Di(r, t) =

∫ ∫
εij(r, r

′, t, t′)Ej(r
′, t′)dt′dr′. (2.7)

Only within the local response approximation and in a homogeneous medium, Eq. 2.7 simplifies to

Di(r, t) =

∫
εij(t− t′)Ej(r, t′)dt′, (2.8)

or in the frequency domain

Di(r, ω) = εij(ω)Ej(r, ω). (2.9)

The dielectric function can be expressed by a scalar ε(ω) = ε0εr(ω) for the case of isotropic media,

such as amorphous molecular materials, or metals with cubic crystal lattice (gold and silver). This

is the case for all materials to be discussed in this thesis.

It is important to note that in general, due to temporal dispersions in a medium εr(ω) is a

complex quantity, i.e., εr(ω) = ε1(ω)+iε2(ω). The imaginary part ε2(ω) reflects the phase difference

between polarization P and incident field E. The real and imaginary part are not independent due

to causality. The two parts are connected through Kramers-Kronig relations:

ε1(ω) = 1 +
2

π
P

∫ ∞
0

ε2(ω′)

ω′2 − ω2
dω′, (2.10)

ε2(ω) = −2ω

π
P

∫ ∞
0

ε1(ω′)− 1

ω′2 − ω2
dω′. (2.11)

Hereafter to simplify notations, all the dielectric function mentioned is the relative dielectric func-

tion εr(ω), and the subscript r in εr is dropped.
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Figure 2.1: (a) The dielectric function of an artificial material from infrared to ultraviolet, featuring
resonances due to electronic and vibrational resonances. (b) Dielectric function of PMMA. Figure
in (a) after [71].

2.2 Optical properties of materials

Knowledge of the frequency dependent dielectric function gives insight into the underlying

elementary excitations of materials, such as lattice vibrations, free carrier absorption, superconduct-

ing gaps, plasmon resonances, chemical bonding, excitons, or interband absorption [11, 59, 130].

Dielectric functions of materials are typically determined by ellipsometry, which will be discussed

in chapter 3. Fig. 2.1a shows the schematics of a dielectric function characterizing different elec-

tronic and vibrational resonances. Across a resonance, ε1(ω) shows a dispersive line shape while

ε2(ω) has an absorptive line shape. The resonances of a dielectric function can be well described by

different oscillator models, such as Lorentz oscillators for local vibrational resonances. (b) shows

the experimental dielectric function of a polymer (Poly(methyl methacrylate) (PMMA)) featuring

different vibrational resonances measured by ellipsometry.

The dielectric function also directly relates to many optical properties, in particular trans-

mission and reflection at the most fundamental level. The complex refractive index N(ω) =

n(ω) + iκ(ω), characterizing the propagation of light in a medium of interest, relates to the di-

electric function through N(ω) =
√
ε(ω), with the refractive index n and the extinction coefficient
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κ. It is easy to work out the explicit form of n(ω) and κ(ω):

n =
1√
2

(
ε1 +

√
ε21 + ε22

)1/2

, (2.12)

κ =
1√
2

(
−ε1 +

√
ε21 + ε22

)1/2

. (2.13)

With a weak absorption ε2 � ε1, the formulae can be simplified to

n =
√
ε1, (2.14)

κ =
ε2√
2n
. (2.15)

2.2.1 Lorentz oscillators for molecular resonances

The resonance behaviors of molecular vibrational excitations in Fig. 2.1b can be described

by Lorentz oscillators. The displacement of atomic dipoles under an applied electric field follows

the equation of motion of

mẍ+mΓẋ+mω2
0x = −eE(t) (2.16)

with the relaxation rate Γ, the electron mass m, and applied electric field E(t). Considering a time

harmonic field E(t) = E(ω)e−iωt, the displacement x(t) = x(ω)e−iωt can be solved as

x(ω) =
−eE(ω)/m

ω2
0 − ω2 − iΓω

. (2.17)

The induced polarization from the displacement of atomic dipoles is

P (ω) = −Nex(ω) (2.18)

=
Ne2

m

1

ω2
0 − ω2 − iΓω

E(ω) (2.19)

where N is the electron density. Plugging the polarization P (ω) back to the expression for the

displacement field in Eq. 2.5, we get

D(ω) = ε0E(ω) + P (ω) (2.20)

= ε0E(ω) +
Ne2

m

1

ω2
0 − ω2 − iΓω

E(ω) (2.21)

= ε0ε(ω)E(ω). (2.22)
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Thus the dielectric function across a molecular vibrational resonance at frequency ω0 can be derived

as

ε(ω) = 1 +
Ne2

m

1

ω2
0 − ω2 − iΓω

. (2.23)

2.2.2 Drude model for quasi-free electrons

In the low energy region, the dielectric function of a metal can be described to a good

approximation as a gas of noninteracting electrons by the Drude-Sommerfeld free electron model

(denoted as Drude model below). The model describes the motion of electrons using classic kinetic

theory:

m∗ẍ +m∗Γẋ = −eE(t) (2.24)

where Γ is the relaxation rate, and m∗ is the effective mass of electron, which is different from the

rest electron mass due to electron correlation effects. It is easy to recognize that the Drude model

is a harmonic oscillator without restoring force, or equivalently with the resonance frequency at

zero.

The dielectric function can be derived in the same fashion as for the Lorentz oscillators,

resulting in an expression of

ε(ω) = 1− Ne2

m∗ε0

1

ω2 + iωΓ
(2.25)

≡ 1−
ω2
p

ω2 + iωΓ
(2.26)

where the plasmon frequency ωp is related to the effective mass of the electron m∗ and the electron

density N through

ω2
p =

Ne2

m∗ε0
. (2.27)

The relaxation rate Γ describes the effective electron scattering rate, with a corresponding relaxation

time τ = 1/Γ.

To account for the net contribution from the positive ion cores, an effective parameter ε∞ is

introduced

ε(ω) = ε∞ −
ω2
p

ω2 + iωΓ
. (2.28)
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For the ideal free electron gas ε∞ = 1, and for typical metals ε∞ = 1 – 10 depending on spectral

onset of the interband response [136, 37]. It is important to note that the real part of the dielectric

function of metals is negative below the plasma frequency. This negative value of the dielectric

function is essential for plasmonic resonances as discussed below.

2.2.3 Relationship between dielectric function and optical conductivity

The optical conductivity can be derived from the equation of motion in Eq. 2.24 as well.

Under a time harmonic field

E(t) = E(ω)e−iωt, (2.29)

the electron velocity v = ẋ can be solved as

v = − e

m∗
1

Γ− iω
E(ω) = − eτ

m∗
1

1− iωτ
E(ω). (2.30)

By relating the electron velocity v to the current J, the optical conductivity σ(ω) can be

derived as

J(ω) = −Nev (2.31)

=
Ne2τ

m∗
1

1− iωτ
E(ω) (2.32)

= σ(ω)E(ω) (2.33)

with

σ(ω) =
Ne2τ

m∗
1

1− iωτ
(2.34)

≡ σ0

1− iωτ
. (2.35)

Here the DC conductivity σ0 is defined as σ0 = Ne2τ
m∗ .

Based on the above derivations from the Drude model, we can connect ε(ω) to σ(ω). 1 σ(ω)

in Eq. 2.34 can be rewritten as

i

ωε0
σ(ω) = − Ne

2

m∗ε0

1

ω2 + iω/τ
, (2.36)

1 The relation of dielectric function to optical conductivity is not uniquely defined, because under an AC field the
free electron/current and induced electron/current are not easily distinguishable [13].
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Figure 2.2: (a) Real and imaginary optical conductivity σ(ω) = σ1(ω) + iσ2(ω) of silver agrees well
with Drude model predictions below the interband transition. (b) The corresponding dielectric
function ε(ω) = ε1(ω) + iε2(ω) of silver.

Comparing Eq. 2.36 to Eq. 2.25, we get

i

ωε0
σ(ω) = −1 + ε(ω), (2.37)

or

ε(ω) = 1 +
i

ε0ω
σ(ω). (2.38)

More explicitly, the real and imaginary part of ε(ω) = ε1(ω) + iε2(ω) can be expressed as

ε1(ω) = 1− σ2(ω)

ε0ω
, (2.39)

ε2(ω) =
σ1(ω)

ε0ω
, (2.40)

where σ1(ω) and σ2(ω) are real and imaginary part of σ(ω).

The above derivation of optical conductivity and dielectric function ε(ω) is based on the

assumption of a Drude model for the free electron behavior, which is valid for noble metals below

their interband transition. Fig. 2.2 shows σ(ω) and ε(ω) of a commonly used metal for plasmonics

– silver. In Fig. 2.2a, experimentally determined σ1(ω) (red) and σ2(ω) (blue) are shown together

with the Drude model prediction (black) for frequency below 1 eV with good agreement. The
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Figure 2.3: (a) Surface plasmon polariton (SPP) is spatially confined at the metal-dielectric inter-
face, with the electric field exponentially decaying into the two surrounding media. (b) Dispersion
relation of the SPP at the silver-air interface calculated from Eq. 2.41. The dispersion calculated
using experimental dielectric function is shown in blue. In comparison, the result using the Drude
model dielectric function is shown in red. The SPP dispersion relation deviates from that of light
(black) at optical frequencies due to the spatial confinement of SPPs. Inset illustrates the coherent
electron oscillation of SPPs.

corresponding dielectric function ε(ω) = ε1(ω)+iε2(ω) is shown in Fig. 2.2b, which will be discussed

further in chapter 3.

2.3 Propagating surface plasmon polaritons

At the interface between a metal and a dielectric medium, optical excitation of free electrons

can give rise to collective oscillation of surface charge density. This oscillation of surface charge

density is coupled to the electromagnetic wave, and can propagate along the interface with evanes-

cent confinement in the out-of-plane direction. This confined surface wave of collective oscillation

of charge carrier and photon is called surface plasmon polariton (SPP).

These SPPs can be derived from Maxwell’s equations as a special solution for propagating

surface waves between a metallic and a dielectric interface with dielectric functions εm and εd,

respectively [114, 194]. As illustrated in Fig. 2.3a, for a SPP propagating along x direction on the

interface (z = 0) between a metal εm (z < 0) and a dielectric εd (z > 0), the resulting ω versus kx



16

dispersion relation has a well defined expression of

k2
x =

ω2

c2

εmεd
εm + εd

(2.41)

where kx is the in-plane wavevector, ω the frequency of the light. For a special case of the dielectric

being air (εd = 1), the resonant condition is reached by setting zero for the denominator in Eq. 2.41,

i.e., Re[εm(ω) + 1] = 0. Fig. 2.3b shows the dispersion relation of SPP on an interface of silver

and air. The dispersion relation is calculated both for the Drude model dielectric function (red)

and for experimental silver dielectric function (blue). Compared to the wavevector of the light

(black), the in-plane wavevector of the SPP is larger at optical frequencies. This large wavevector

makes the SPPs decoupled to the free space plane waves, responsible for the long propagating

distance along the surface. The dispersion relation calculated using Drude model dielectric function

suggests that the in-plane wavevector of the SPP diverges at the surface plasmon frequency (ωsp =

ωp/
√

1 + ε∞) and then transitions to a region with its value less than the wavevector of the light

(i.e., no longer surface confined). The same behavior is seen with the dispersion relation calculated

from experimental silver dielectric function, with difference at higher energy (> 3 eV) due to the

interband effects.

2.4 Particle plasmon resonance: localized SPPs

Localized SPPs (LSPPs) are plasmon resonances on metal nanoparticles, and can be viewed as

standing waves of SPPs along the surface of a particle [96]. Due to LSPPs, metal nanoparticles can

efficiently couple to far-field electromagnetic waves, resulting in a large absorption and scattering

cross-section, and manifesting as distinct colors depending on the size and geometry. The optical

response of a nanoparticle can be understood through the frequency dependent polarizability α(ω).

For a spherical particle much smaller than the illuminating wavelength, the polarizability α(ω)

under electrostatic approximation is given by the Clausius - Mossotti relationship [106]

α(ω) = 4πr3ε0
εm − εd
εm + 2εd

(2.42)
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Figure 2.4: Particle plasmon resonance of a silver sphere. The dielectric function of silver εm is
shown in (a), with its parametric plot for varying wavelength shown in (b). The arrow indicates the
direction for increasing frequency or decreasing wavelength. (c) Illustration of the particle plasmon
resonance under an applied electric field. A restoring force is applied to the electron motion from
the boundary of the sphere. (d) The real and imaginary part of polarizability α(ω) = α1 + iα2 in
a parametric plot when the frequency increases (counter clockwise) across the plasmon resonance.

with the radius of the particle r, the dielectric function of the metal εm(ω) and the surrounding

medium εd. Apparently, the polarizability α(ω) has a resonance at Re[εm + 2εd] = 0. With air

εd = 1 the resonance condition happens at Re[εm(ω)] = −2, which for metal is in the visible

spectral range.

The response of a silver particle to an applied electric field is illustrated in Fig. 2.4c. The

plasmon resonance is a result of coherent motion of electrons under geometric constraints by the

boundary of the particle. The polarizability α(ω) across its resonance at λ = 355 nm for a silver

particle is shown in (d) as a parametric plot. As the frequency increases (counter clock wise),

the real part of the polarization α1 starts close to 1 and increases till reaching near the resonance

wavelength at λ = 355 nm. It then dramatically decreases and changes the sign on resonance, finally

completes the circle back to 1 off resonance. The dielectric function of silver with a negative real

part and a small imaginary part is the reason for this plasmonic resonance behavior (Fig. 2.4(a,b)).

To further illustrate the geometric dependence of the particle plasmon resonance, we can

extend the analysis of a sphere to a spheroid particle (a 6= b = c). When the external field is
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Figure 2.5: (a) Illustration of localized SPP of a gold spheroid particle with incoming field polarized
along the semi-major axis. (b) shows the spectra for particles of different aspect ratio (r = a/b).
The plasmon resonance red-shifts with increasing aspect ratio. Figure after [194].

polarized longitudinally along a prolate spheroid with dielectric function εm(ω), the polarizability

can be expressed analytically [164]:

α(ω) = 4πε0 · ab2 ·
εm − εd

3[A(εm − εd) + εd]
(2.43)

=
4πε0

3
· ab2 · εm − εd

εd +A(εm − εd)
(2.44)

with semi-major axes a, semi-minor axes b, and the depolarization factor A. The depolarization

factor A depending on the aspect ratio r = a/b is given by

A(r) =
1

2r2

∫ ∞
0

1

(s+ 1)3/2(s+ r−2)
ds (2.45)

=
1

1− r2
− r arcsin(

√
1− r2)

(1− r2)3/2
. (2.46)

The values of A for three special cases of r → 0, r = 1, and r →∞ are listed:

A = 1, r → 0, pancake-like, oblate ellipsoid

A =
1

3
, r = 1, sphere

A = 0, r →∞, cigar-like, prolate ellipsoid

(2.47)

The spectral response of gold spheroids with different aspect ratio is shown in Fig. 2.5. As the

aspect ratio increases from r = 1 with fixed semi-minor axis length, the SPP resonance red-shifts

associated with a narrower line width.
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Closely related to A is the field enhancement factor Elocal = ξE(ω) at the end of the semi-

major axis of the spheroid particle, given by [149, 164, 217]:

ξ = | εm
1 + |εm − 1|A

|, (2.48)

assuming the surrounding is air with εd = 1.

2.5 Optical antenna

As discussed above, a metallic nanoparticle can strongly couple to the incident field at reso-

nance, resulting in an enhanced electric field confined to its surface. In addition, the resonance and

coupling efficiency can be controlled with parameters such as geometry and material. These prop-

erties make optically resonant metallic structures in good analogy to radiofrequency (RF) antennas.

Thus optically resonant metallic structures are also called optical antennas. Despite these similari-

ties, the rules working for RF antennas cannot be readily applied to optical antennas, because the

resonances of optical antennas are expressed in terms of bound surface waves with locally enhanced

field. However, a connection between the RF antennas and optical antennas can be established by

replacing the wavelength in free space λ by the resonance wavelength of propagating SPP λp, as

explained by a Fabry-Pérot model [171, 96, 209, 56, 31]. The resonance occurs when propagating

SPP mode forms a standing wave around an optical antenna.

The tip in s-SNOM also acts as an optical antenna, and it plays three key roles in the near-

field interaction with the sample [179]. Firstly the tip receives and concentrates the light; secondly

it mediates the local field coupling and energy transfer; lastly it serves as a local scattering source

for far field detection. In this picture, an enhanced light-matter interaction can be achieved due to

the increase in electromagnetic local density of states (EM-LDOS) in the near-field.

2.6 Principle of s-SNOM

After discussing the macroscopic behavior of optical properties of materials and the plasmonic

properties associated with nanostructures, the s-SNOM technique to study the corresponding mi-
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Figure 2.6: Distance dependence of the cantilever oscillation amplitude and the demodulated scat-
tered light at different harmonics of the cantilever oscillating frequency. Here 2Ω stands for the
second harmonics. As the tip gets close to the sample, the cantilever oscillation amplitude decreases
due to the damping from the sample surface. In contrast, the 2Ω and 3Ω signals show exponential
increase towards smaller tip-sample separation, with a decay length of about 20 - 30 nm. This is a
result of evanescent character for near-field signal, which is responsible for high spatial resolution.

croscopic properties and the local field distributions is presented in this section. As shown in

Fig. 2.6a, in a s-SNOM instrument the incident light is focused onto the AFM tip apex region

and the scattered light carrying the optical properties of the sample is collected. The high spatial

resolution of s-SNOM is provided by the localized light-matter interaction under the AFM tip. By

raster scanning across the sample while detecting the elastically scattered light, the optical response

of the sample is mapped with nanometer spatial resolution.

As the near-field region underneath the tip (10s nm) is much smaller than the area of the

optical focus (10s µm), the scattered light contains both the near-field signal (Es) and unspecific far-

field background (Eb) scattered from both the tip shaft and the sample. In experiments, to extract

the near-field signal the tip-sample distance is modulated by oscillating the AFM tip in non-contact

mode, with a typical oscillation amplitude of 30 - 100 nm. The scattered light after collection is

demodulated at the AFM oscillation frequency Ω and its higher harmonics nΩ. The unspecific far-

field background Eb dominates the DC and first harmonic demodulated signal (1Ω) at the detector,

while the near-field signal Es dominates in the higher harmonics due to the nonlinear tip-sample
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coupling. The tip-sample distance dependence of the first three harmonics of the scattered light is

shown in Fig. 2.6b. As the tip approaches the sample, the AFM cantilever oscillation amplitude

(black) decreases linearly with distance due to additional forces and damping from interactions

with the sample. At the same time, the higher harmonics of the scattered light (at 2nd and

3rd harmonics, i.e., 2Ω in green and 3Ω in red) increase exponentially in the short tip-sample

separation, with a decay length of ∆z = 20 − 30 nm. Due to this evanescent character, these

signals at the higher harmonics represent the near-field signal. The in-plane spatial resolution of

these near-field signal can be estimated from the evanescent wave formula, which can be represented

as E = E0 exp(ikx+iky−γzz), with 1/γz = ∆z the exponential decay length. From the conservation

of momentum, we have

k2
x + k2

y = γ2
z + k2

0 ≈ γ2
z . (2.49)

The approximation is valid because the k-vector in z-direction γz is much bigger than the free space

wavevector k0. Thus the spatial resolution in-plane can be estimated as ∆x = 1/max(kx) ≈ 1/γz =

∆z = 20− 30 nm.

2.6.1 Modeling of tip-sample interaction in s-SNOM

To specifically address the role of the tip in s-SNOM, a model calculation can be employed.

Here I only take the simplest model to illustrate the principle, because the quantitative interpre-

tation of optical contrast of s-SNOM signal can be complicated due to the multiple interactions of

tip, sample, and light [173]. As shown in Fig. 2.7, the tip considered as a small polarizable sphere

of radius R is placed at height of h above a semi-infinite sample surface. The dielectric function

of tip and sample are εt, and εs respectively. The induced dipole moment p of the tip under an

vertically applied external field E0 is [124, 195]

p = αE0, (2.50)

where α = 4πε0R
3(εt − 1)/(εt + 2) is the dipole polarizability. The mirror image of the tip dipole

formed at the sample is pimag = βp, with the reflection coefficient β = (εs − 1)/(εs + 1) describing
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Figure 2.7: Illustration of the dipole model of s-SNOM. Incident field induces a dipole p at the tip
with its image dipole on the sample pimag = βp. The mutual interaction of the two dipoles forms
a coupled polarization, responsible for the near-field signal in s-SNOM.

the effective surface charge response of the sample. The electric field produced by the image dipole

pimag at the center of tip is

Ei(R+ d) =
pimag

2πε0 [2(R+ d)]3
. (2.51)

Thus the tip dipole p and its image pimag on the sample mutually interact with each other, resulting

in a recursive relation:

p = α [E0 + Ei(R+ d)]

= α

[
E0 +

βp

2πε0[2(R+ d)]3

]
(2.52)

≡ αeffE0

where αeff is the effective polarizability due to the mutual tip-sample interaction. Solving the

recursive relation in Eq. 2.52, we get

αeff = α

[
1− αβ

16πε0(R+ d)3

]−1

. (2.53)

According to the Mie theory [26], the scattered light off the tip is related to the effective

polarizability through Is ∝ |αeff |2. Thus by detecting the scattered light, information about the

local dielectric function of the sample material can be obtained.
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This simple point dipole model provides an intuitive picture to understand the mechanism

of optical contrast. However, to quantitatively compare or to predict experimental results more

theoretical efforts have been undertaken [234, 3, 97, 42, 16, 152]. These works include modeling

the tip shape as a spheroid [42] or as a hyperboloid [16], and a more recent electromagnetic model

taking field retardation and real probe geometry into account [152]. With the development of near-

field optical spectroscopy both experimentally and theoretically, quantitative near-field modeling

is expected to be able to directly convert experimental s-SNOM data to the optical properties of

samples.



Chapter 3

The optical dielectric function of silver

An accurate dielectric function of silver is needed for a wide range of applications including

plasmonics, optical antennas, and metamaterials. Both applied and fundamental properties such

as surface plasmon propagation length, plasmon lifetime, non-radiative loss, and even the Casimir

force, are sensitive to small variations of the dielectric function. As a result, the silver dielectric

functions available in literature from decades ago no longer meet the needed accuracy. The mea-

surement on silver is experimentally challenging with the values of dielectric function spanning over

four orders of magnitude from nearly 2× 104 at 0.05 eV to about 4 at 3 eV.

In this chapter, we determine the complex valued dielectric function of evaporated and tem-

plate stripped polycrystalline silver films using broadband spectroscopic ellipsometry. The mea-

surement covers from 0.05 eV (λ = 25 µm) to 4.14 eV (λ = 300 nm) with a statistical uncertainty

of less than 1%. From Drude analysis of the 0.1 – 3 eV range, values of the plasma frequency

~ωp = 8.9 ± 0.2 eV, dielectric function at infinite frequency ε∞ = 5 ± 2, and relaxation time

τ = 1/Γ = 17± 3 fs are obtained, with the absolute uncertainties estimated from systematic errors

and experimental repeatability. Further analysis based on the extended Drude model reveals an

increase in τ with decreasing frequency in agreement with Fermi liquid theory, and extrapolates to

τ = 22±5 fs at zero frequency. A deviation from simple Fermi liquid behavior is noticed at energies

below 0.1 eV (λ = 12 µm) with the onset of a further increase in τ connecting to the DC value from

Work in this chapter is published in Physical Review B 91, 235137 (2015)
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transport measurements of ∼ 40 fs. The results are consistent with a wide range of optical and

plasmonic experiments throughout the infrared and visible/ultraviolet spectral range [161, 101, 25].

The influence of grain boundaries, defect scattering, and surface oxidation is discussed. The results

are compared with our previous measurements of the dielectric function of gold [Olmon et al., Phys.

Rev. B 86, 235147 (2012)].

3.1 Introduction

The dielectric function of silver together with that of other noble metals has played an

important historical role in the understanding of the electronic structure of metals [48, 49, 214, 61,

136]. This role continues for understanding the ultrafast electron dynamics of metals [6, 146, 33,

41, 159, 92, 90]. Silver in particular has a special status due to its high optical conductivity and

wide range of applications from mirrors to plasmonics and optical metamaterials.

However, similarly to the case of gold [180], large variations exist among historical mea-

surements of the dielectric function of silver, especially for the imaginary part near the interband

transition in the visible/ultraviolet (Vis/UV) region [145]. Most of these measurements only cover

a narrow energy range, making a direct comparison between the different experiments difficult. In

addition, discrepancies between theoretical and experimental values of different optical and plas-

monic properties of silver have raised concerns over the accuracy of some of the most widely used

data of the dielectric function of silver [190, 163, 210, 161, 101, 162, 95, 25, 226, 109]. Accurate val-

ues for the dielectric function of silver are needed in the visible and infrared (IR) spectral ranges,

because many important parameters, such as surface plasmon propagation length, plasmon life-

time, non-radiative loss, and even the Casimir force, are sensitively linked to small variations of

the dielectric function [180].

In this work, we provide a comprehensive measurement of the optical dielectric function

ε(ω) of evaporated and template-stripped polycrystalline silver using spectroscopic ellipsometry,

covering a broad spectral range throughout the mid-IR to Vis/UV of two orders of magnitude, from

0.05 eV to 4.14 eV (25 µm to 300 nm). We analyze the free electron behavior below the interband
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transition using the Drude model with plasma frequency ωp, dielectric function at infinite frequency

ε∞, and relaxation time τ = 1/Γ. While there is a good agreement of ωp and ε∞ with many past

measurements, our value of τ = 17± 3 fs is significantly smaller than the commonly used literature

value from Johnson and Christy of 31± 12 fs [112] and the value derived from DC conductivity of

∼ 40 fs [60, 151], yet consistent with most optical and plasmonic experiments, such as typical surface

plasmon propagation length and particle plasmon resonance lifetimes [184, 235, 162, 161, 25]. The

difference in τ between the DC and the optical frequency measurements is due to the frequency

dependence of the scattering rate 1/τ(ω) [75, 208]. An analysis with extended Drude model extracts

this frequency dependence, which is found to be consistent with Fermi liquid theory beyond 0.1

eV [185, 75, 229]. However, at energies below 0.1 eV τ(ω) rises more rapidly than suggested by

the Fermi liquid theory possibly connecting to the Drude DC value of 40 fs. We discuss effects of

impurity and grain boundary scattering, and note that even for samples prepared under nominally

identical conditions, sample-to-sample variations can be as large as 30% for the imaginary part ε2

near the interband transition.

3.1.1 Past measurements of dielectric function

Many previous experiments have measured the dielectric function of silver, based on different

methods, and with partially inconsistent values. Fig. 3.1a shows selected examples of studies

representative of the different experimental methods and measurement ranges, with the spectral

range and the year of publication. For comparison, the range of our measurements is shown in red.

Various measurement techniques and deposition methods have been employed in previous

measurements [145, 223, 181, 69]. Drude’s polarimetric methods were used in early studies of

evaporated metallic thin films. For example, reflectance measurements with different polarizations

were carried out by Dold and Mecke on evaporated silver on polished glass to determine n and k

in the range of 0.13 – 1 eV [55]. The same measurement method was applied to polycrystalline

silver by Winsemius et al. in vacuum covering 0.5 – 5.4 eV [225]. An interferometric method was

developed by Schulz to determine the extinction coefficient κ from the phase change of reflection at
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Figure 3.1: (a) Six decades of dielectric function measurements of Ag covering different spectral
regions. Our measurement broadly covering the mid-IR to Vis/UV range is shown in red. (b) The
existing literature values are in part inconsistent, mostly notably in the Vis/UV spectral range.
Data from Leveque et al. [135], Winsemius et al. [225], Johnson and Christy (Johnson) [112],
Schulz [205, 206], and Hagemann et al. [93].

normal incidence from 1.3 to 3.1 eV [204, 205]. More specifically, Ag-x-Ag multilayers were used in

his experiment with x being mica or other dielectric material. In a separate study Schulz calculated

index of refraction n from measured reflectivities at an incidence angle of 45° with a predetermined

extinction coefficient κ from the above multilayer measurement [206]. The most common method

to obtain the dielectric function is to apply Kramers-Kronig analysis on reflectance or transmission

spectra of silver films. Hagemann et al. performed transmission measurements on evaporated silver

thin films on collodion substrates in the range of 13 – 150 eV [93]. The resulting spectrum was

complemented with other data in literature to yield a broad spectral range for proper Kramers-

Kronig analysis. Similar measurements of silver films were carried out by Leveque et al. in vacuum

after sample evaporation in the same chamber without exposing to air [135]. The reflectance

spectrum from 3.5 to 30 eV was again extended with other data from literature for a Kramers-

Kronig analysis. Similarly, Quinten developed a method for determining the dielectric function

of metallic clusters from Kramers-Kronig analysis of optical extinction spectra [190]. Combined
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reflectance and transmittance measurements of semitransparent thin films prepared by evaporation

on fused quartz were done by Johnson and Christy in the range of 0.5 – 6.5 eV [112]. In their work,

contour plots of the reflectance and transmittance were used to determine the complex index of

refraction N(ω) = n(ω)+ iκ(ω). In the visible spectral range from 1.38 to 2.76 eV, angle dependent

surface plasmon-polaritons resonances on a silver-covered silica grating were used by Nash and

Sambles to calculate the dielectric function [163]. More recently, spectroscopic ellipsometry was

used to obtain the dielectric function with improved acquisition speed and accuracy over a broad

spectral range limited only by light sources and detectors [218]. Stahrenberg et al. prepared clean

surfaces of single crystal Ag in situ by ion sputtering and annealing [212]. Subsequent ellipsometry

measurements were taken in the same ultrahigh vacuum environment in the spectral range of 2.5 –

9.0 eV using a synchrotron light source. Park et al. measured template stripped silver with reduced

roughness by ellipsometry in the visible spectral range of 1.65 – 2.75 eV [184, 183].

Only one previous measurement has yet addressed the low energy range below 0.2 eV (> 6µm)

[18]. In that study, reflectance at normal incidence was measured in the 3 – 30 µm wavelength

range by Bennett and Bennett. The experimental reflectivity was compared to the calculated

reflectivity from Drude model with good agreement. However, since reflectivity itself is not sufficient

to constrain the three parameters in the Drude model, a value of τ = 36 fs based on DC conductivity

was assumed for data modeling.

3.1.2 Drude model and extended Drude model

Silver, being a face-centered cubic (FCC) crystal lattice, is optically isotropic [13, 29]. Its

relative dielectric function ε(ω) = ε1(ω) + iε2(ω) can describe the full electromagnetic response of

the medium in the absence of magnetic effects. Derived in Eq. 2.38, the dielectric function ε(ω)

connects to the frequency dependent complex conductivity σ(ω) = σ1(ω)+iσ2(ω) = −iε0ω(ε(ω)−1),

where the real part σ1(ω) describes the Ohmic loss and the imaginary part σ2(ω) defines the phase

lag between the applied electric field and the electric current.

In the low energy region, considering only electronic intraband transitions within the conduc-
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tion band, the dielectric function of silver can be described to a good approximation by the Drude

model. The Drude model dielectric function is derived in Eq. 2.28 and has the expression of

ε(ω) = ε∞ −
ω2
p

ω2 + iωΓ
, (3.1)

where the volume plasma frequency ωp is related to the effective mass of the electron m∗ and

the electron density N through ωp = (Ne2/ε0m
∗)1/2. The relaxation rate Γ describes the effective

electron scattering rate, with a corresponding relaxation time τ = 1/Γ. The parameter ε∞ accounts

for the net contribution from the positive ion cores. For the ideal free electron gas ε∞ = 1, and for

typical metals ε∞ = 1 – 10 depending on the interband response [136, 37]. The contribution to the

dielectric function from the interband transition of d-band to sp-band can empirically be accounted

for by functions of damped harmonic oscillators [194, 75].

The real ε1(ω) and imaginary part ε2(ω) of the dielectric function in Eq. 3.1 have the form

ε1(ω) = ε∞ −
ω2
p

ω2 + Γ2
≈ ε∞ −

ω2
p

ω2
, and (3.2)

ε2(ω) =
ω2
p Γ

ω(ω2 + Γ2)
≈
ω2
p Γ

ω3
, (3.3)

with the approximations valid for ω � Γ. Eqs. 3.2 and 3.3 allow for the direct calculations of ωp,

ε∞, and Γ from ε1(ω) and ε2(ω) for large frequencies.

The Drude model provides an effective description of the free carrier response in metals. The

neglected Coulomb interactions between electrons can be described by Fermi liquid theory [33, 147,

146, 83]. In the Fermi liquid theory, a free quasiparticle picture is used to explain the macroscopic

response of the interacting electron system with frequency dependent renormalized effective electron

mass m∗ and relaxation time τ [185, 83]. Drude model can be modified accordingly to capture the

Coulomb interactions by introducing a frequency dependence to the Drude parameters [229, 129],

which becomes the extended Drude model. With frequency dependent Drude parameters, Eq. 3.1

becomes

ε(ω) = ε∞ −
ωp(ω)2

ω2 + iω/τ(ω)2
, (3.4)
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with real and imaginary parts given by

ε1(ω) = ε∞ −
ωp(ω)2

ω2 + 1/τ(ω)2
, and (3.5)

ε2(ω) =
ωp(ω)2

ω2 + 1/τ(ω)2
· 1

ωτ(ω)
. (3.6)

Equating the common factor in the real and imaginary part, the relaxation time τ(ω) can be

expressed as

1/τ(ω) =
ωε2(ω)

ε∞ − ε1(ω)
. (3.7)

Deviations from the Drude model have been noticed in recent experiments due to both

intrinsic and extrinsic effects, including band structure, impurity, and surface effects [216, 140, 88].

In the study of DC conductivity of metals, intrinsic effects can be determined after consideration

of extrinsic effects from systematic studies under controlled temperature and impurity levels [215,

131, 151]. In contrast, the determination of the spectroscopic behavior of the dielectric function

at optical frequencies is more involved. However, with an accurate measurement of the dielectric

function of silver over a broad spectral range, we can quantitatively compare the experimental

dielectric function with different models and literature, thus posing constraints on intrinsic and

extrinsic effects.

3.2 Experiment

Template stripped (TS) silver films deposited on Si substrates were chosen for spectroscopic

ellipsometry measurement over the range of 0.05 – 4.14 eV. The experimental procedure is generally

similar to our previous measurements on gold [180]. The deposition of the metal on a flat substrate

(template) leads to a smooth and more homogeneous metal surface at the metal-substrate interface

compared to the vacuum side of the film. The metal film can then be stripped off the substrate to

reveal the desired surface. For template stripping we use a silicon wafer with a native oxide layer

(Si/SiO2) (University Wafer) as substrate, ultrasonically cleaned in isopropyl alcohol and dried with

nitrogen. Silver pellets of 99.99% pure element (Kurt J. Lesker) are evaporated in a cryopumped
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evaporator (E360A, Edwards) from a molybdenum boat at a pressure of < 10−6 mbar. A silver film

of thickness 150 nm (optically opaque and thick enough to resemble the bulk properties of silver

through most of the spectral region studied) is deposited at a rate of 0.1 – 0.2 nm/s. The substrate

is not heated during evaporation. In order to transfer and expose the desired metal surface after

evaporation, the sample is glued with the vacuum silver side (fiber optic grade epoxy, EpoTek

377, EpoTek) to another cleaned piece of Si wafer, and the epoxy cured at 150°C for 30 min. To

minimize the effect of surface oxidation [17], samples are then stripped to expose the Ag film but

only shortly before the measurement. Fig. 3.2 shows the sample preparation procedure before and

after stripping.

Template stripping is preferred over other methods for sample preparation, because of the

reduced surface roughness and larger grain size [224]. In addition, the final metal surface remains

protected from oxidation and contaminations from atmosphere prior to measurement. The TS

silver films are carefully characterized for surface defects. Dark field optical microscopy is used for

inspection over the whole sample surface, noting no visible defects. For local area characterization,

the samples are analysed by non-contact atomic force microscopy (AFM, Innova, Bruker) shown

in Fig. 3.3. Root mean square (rms) surface roughness of 1.2 nm was obtained for TS silver with

estimated average grain size of 100 nm, comparable to the best literature values [224, 184, 162].

For comparison, the evaporated Ag side before template stripping exhibits rms roughness of 2.4

nm and grain size of 50 nm. For direct comparison and to test consistency with our earlier work

[180], we also measured the dielectric function of gold. TS gold samples were prepared in the same

Figure 3.2: After evaporating a silver film on a silicon substrate, another silicon wafer is glued on
top with a low viscosity epoxy. The silver film will stick to the epoxy and thus to the top silicon
wafer after drying. The top silicon wafer can be easily peeled off with the silver film as shown in
the right picture.
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Figure 3.3: AFM topography of evaporated (EV) and template-stripped (TS) silver surface, with
root mean square (rms) surface roughness of 2.4 nm, and 1.2 nm, respectively. The average grain
size for EV is about 50 nm and that for TS is about 100 nm as derived from the Fourier transform
analysis of the topography image.

way as the silver samples.

In contrast to standard reflectivity methods which only record the intensity, spectroscopic

ellipsometry provides direct access to the complex dielectric function from two independent pa-

rameters [174]. Fig. 3.4 shows the configuration of an ellipsometer. Ellipsometry relies on the

measurement of the ratio of complex reflectance ρ(ω), given by the ratio of reflection coefficients

for p- and s-polarization

ρ(ω) = rp(ω)/rs(ω) = (tan Ψ)ei∆, (3.8)

with amplitude ratio tan Ψ and phase difference ∆ = φp − φs. By measuring only the relative

reflectivities of different polarizations, ellipsometry does not require a reference sample or Kramers-

Kronig analysis [218, 174]. The nature of measuring relative values also makes the method robust

to intensity fluctuations of the source.

The relation connecting the ellipsometry measurements to the dielectric function ε can be

derived from Fresnel’s equation

rp =
ε cos θ −

√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

, (3.9)

rs =
cos θ −

√
ε− sin2 θ

cos θ +
√
ε− sin2 θ

, (3.10)

where θ is the angle of incidence with respect to the surface normal of the sample. The ratio of the

reflection coefficients ρ is [218, 174]

ρ =
rp
rs

=

(
ε cos θ −

√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

)
/

(
cos θ −

√
ε− sin2 θ

cos θ +
√
ε− sin2 θ

)
. (3.11)
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Figure 3.4: Configuration of an ellipsometer. An incident beam containing both s- and p-polarized
light after reflected from the sample surface will cause a phase delay of one polarization with respect
to the other by amount of ∆. In addition the amplitudes of the reflected beam get attenuated
differently with a ratio |rp/rs| = tan Ψ. For an isotropic bulk-like sample, the two unknowns of
the dielectric function ε1 and ε2 can be determined from the two parameters of ∆ and Ψ at each
wavelength. Figure after [174].

For a uniform, isotropic, and optically opaque material with a smooth surface the relative dielectric

function ε(ω) is directly related to ρ(ω) through

ε(ω) = sin θ2

(
1 + tan θ2

(
1− ρ(ω)

1 + ρ(ω)

)2
)
. (3.12)

We used two variable angle spectroscopic ellipsometers (VASE and IR-VASE, J. A. Woollam).

VASE (variable angle spectroscopic ellipsometer) for the spectral range from 0.62 eV to 4.14 eV (2

µm – 300 nm) consists of a Xenon lamp with a monochromator. IR-VASE, covering 0.05 – 0.73 eV

(25 – 1.7 µm), uses a glow bar as light source and is based on a Fourier-transform spectrometer.

According to the manufacturer calibration, the accuracy of both instruments tested in trans-

mission without a sample loaded is better than δΨ = ±0.14° and δ∆ = ±0.8° for IR-VASE, and

δΨ = ±0.03°and δ∆ = ±0.2° for VASE. Factory calibration for both of the instruments has been

performed using a Si/SiO2 calibration sample. In addition, ellipsometers in two different labs have

been cross-checked to eliminate the possibility of systematic errors as discussed previously [180].

Measurements are taken and averaged at three angles of incidence of 65°, 70° and 75°. The

angles are chosen to have a high sensitivity to the differentiation between p- and s- polarized light
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upon reflection. To further reduce noise, long measurement times of 5 hours for IR and 3 hours for

Vis/UV lead to a statistical uncertainty < 1% over the full spectral range.

An in-plane isotropic optical response is assumed for silver with negligible depolarization

upon reflection at the surface. The dielectric function is therefore directly determined from the

measurement of ∆ and Ψ using Eqs. 3.8 and 3.12. The data from this direct inversion retains

the uncertainty due to instrumental errors, which we use later to characterize the error in our

measurement. Due to residual instrumental errors the data are not perfectly Kramers-Kronig

consistent. We therefore fit a combination of a Drude response and three Gaussian functions to

the data with good agreement over the full spectral range. A similar fitting procedure was applied

in our previous work on gold [180]. We provide the raw data of both silver and our previous gold

measurements in the appendix.

3.3 Results

Negative real −ε1 and imaginary part ε2 of the dielectric function in the Vis/UV spectral

range of 1 – 6 eV are shown in Fig. 3.5 and Fig. 3.6, respectively. Results from three measured TS

silver samples are plotted in red (A), green (B), and blue (C). The inset in Fig. 3.5 shows −ε1(ω)

near the interband transition in a linear plot, where −ε1(ω) undergoes a sign change due to the

interband transition from the occupied d band to the partially filled sp band. Correspondingly, −ε1

and ε2 of the IR spectral range 0.05 – 1 eV are shown in Fig. 3.7 and Fig. 3.8, respectively.

In the spectral range of 1 – 6 eV, data for ε1(ω) and ε2(ω) from Leveque et al. [135] (squares),

Winsemius et al. [225] (circles), Johnson and Christy [112] (triangle), Schulz [205, 206] (inverted

triangle), and Hagemann et al. [93] (diamond) are shown for comparison in Fig. 3.5 and Fig. 3.6.

In the IR spectral range of 0.03 – 1 eV, Fig. 3.7 and Fig. 3.8 show data from Winsemius et al.

[225] (circles), Johnson and Christy [112] (triangle), Dold and Mecke [55] (inverted triangle), and

Bennett and Bennett [18] (diamond).

For ε1 the relative variations among literature values increase towards the visible spectral

range, with the largest differences near the interband transition edge at ∼ 3.8 eV. In particular, the
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Figure 3.5: Negative real part of the dielectric function of silver −ε1 in the visible/ultraviolet
spectral range for three different samples A(red), B(green), and C(blue). Data from Leveque et
al. [135] (squares), Winsemius et al. [225] (circles), Johnson and Christy [112] (triangle), Schulz
[205, 206] (inverted triangle), and Hagemann et al. [93] (diamond) are shown for comparison.
Drude fit for sample C with ~ωp = 8.9 eV, τ = 18 fs, and ε∞ = 5 (dashed) or ε∞ = 1 (dotted line).
Inset: data near 3.8 eV shown in linear scale, where −ε1(ω) transitions from positive to negative
values due to the interband transition.

values for ε2 scatter widely below 3.8 eV as seen in Fig. 3.6. Our data in general fall in between the

results from Johnson and Christy [112], and Winsemius et al. [225]. Compared to [112], we have

good agreement of −ε1, but find a considerably larger ε2 in the near-IR. This implies a considerably

smaller value of τ compared to the results from Johnson and Christy as discussed below. Note that

a careful inspection of the original data of ref. [112] shows a large uncertainty of over 40% in n in

the energy range of 0.6 – 3 eV. As a result, with ε2 = 2nk, values of ε2 from Johnson and Christy

scatter strongly due to the large uncertainty in n.
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Figure 3.6: Imaginary part of dielectric function of silver ε2 in the visible/ultraviolet spectral range
for samples A(red), B(green), and C(blue). Data from Leveque et al. [135], Winsemius et al. [225],
Johnson and Christy (Johnson) [112], Schulz [205, 206], and Hagemann et al. [93] are shown, as
well as the result for the Drude model fit to sample C with parameters ~ωp = 8.9 eV, ε∞ = 5,
τ = 18 fs.

3.3.1 Drude Analysis

To obtain the Drude parameters ωp, ε∞, and τ , we fit our data to Eq. 3.1 in the range of

0.1 – 3 eV with simulated annealing algorithm by minimizing the least error for ε1(ω) and ε2(ω)

simultaneously [180, 121]. We limit the energy range to 0.1 – 3 eV for the fit to minimize the effect

of a frequency dependence of τ at low frequency. Above 3 eV, ε∞ can no longer effectively account

for the interband effects.

The fit results for samples A, B, and C are listed in Table. 3.1, with τ ranging from 15 to 18 fs

for the different samples. The mean values for the three samples are ~ωp = 8.9±0.2 eV, ε∞ = 5±2,

and τ = 17 ± 3 fs. The errors are calculated based on variations of the fit between the raw data
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Figure 3.7: Negative real part of silver dielectric function -ε1 in the infrared spectral range for
samples A – C (red, green, and blue). Data from [225, 55, 112, 18] are shown together with the
Drude model fit to sample C (see text).

and the Kramers-Kronig corrected data. The source of errors mainly comes from instrumental

uncertainties as discussed in appendix. The dashed line in Figs. 3.5 – 3.8 is the dielectric function

calculated for Drude model using Eq. 3.1 with parameters ~ωp = 8.9 eV, ε∞ = 5, and τ = 18 fs for

sample C. The Drude fit has perfect agreement at low energies as expected. ε∞ effectively describes

the cumulative response of the bound electrons to the first order. With ε∞ = 5 we can describe

the onset of the interband transition.

An alternative way to extract the Drude parameters is based on the approximation in Eqs. 3.2

and 3.3. In the frequency range with ω � Γ but still below the interband transition, the slope of

−ε1(ω) vs 1/ω2 directly provides ω2
p, the ratio of ε2(ω) vs 1/ω3 gives ω2

p×Γ, and the offset of ε1(ω)

extrapolated at 1/ω2 = 0 provides ε∞. Using this approach from 0.4 – 2 eV (3.1 µm – 620 nm)
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Figure 3.8: Imaginary part of silver dielectric function ε2 in the infrared spectral range for samples
A – C (red, green, and blue) in comparison with literature from [225, 55, 112, 18] and the Drude
model fit to sample C (see text).

Table 3.1: Derived ωp, ε∞, τ from Drude fit in the energy range of 0.1 – 3 eV for the three samples.
The comparison to literature values are discussed in section 3.4.1.

~ωp (eV) τ (fs) ε∞

A 8.9± 0.2 17± 2 5± 2

B 8.9± 0.2 15± 2 4± 2

C 8.9± 0.2 18± 1 5± 2

values for ~ωp of 8.7 eV, 8.9 eV, and 9.0 eV, ε∞ of 6, 4, 5, and τ of 17 fs, 16 fs, and 18 fs, are

obtained for sample A, B and C, respectively. The results from the two methods are consistent.

Despite an overall good agreement to the Drude model, a deviation of the Drude fit from the

direct inverted dielectric data of ε2 at energies below 0.1 eV and at high energies above 3 eV are

noted (see appendix). The deviations at high energies are due to the interband transition. The
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Figure 3.9: Optical conductivity σ(ω) = σ1(ω) + iσ2(ω) of sample C (red, blue). Drude model fit
for the real part (solid black) and the imaginary (dashed black) with ~ωp = 8.9 eV, ε∞ = 5, τ = 18
fs.

deviations of low energy ε2 from Drude model is possibly due to an energy dependence of τ as

predicted by Fermi liquid theory.

3.3.2 Optical conductivity and skin depth

The derived complex optical conductivities σ1(ω) (red) and σ2(ω) (blue) from the dielectric

function of sample C are shown in Fig. 3.9. The solid and dashed black lines are Drude fits to the

real and imaginary part of the conductivity, with parameter ~ωp = 8.9 eV, ε∞ = 5, and τ = 18 fs.

In the low frequency region with ωτ � 1, the optical properties are mainly determined by the

DC conductivity with σDC ≈ σ1 � σ2. Extrapolated σDC = 2.9× 107 m−1Ω−1 is smaller compared

to experimental DC conductivity of silver of σDC = 6.3× 107 m−1Ω−1 [151]. The difference will be

discussed in section 3.4.3. As the frequency increases, the imaginary conductivity σ2(ω) increases

while the real part σ1(ω) decreases and they eventually cross over near the frequency corresponding

to the relaxation rate at ω = 1/τ . At even higher frequency, both σ1(ω) and σ2(ω) start to decrease

with σ2(ω) > σ1(ω) [59].

The penetration depth of an electromagnetic wave into the sample is described by the skin
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Figure 3.10: Skin depth δ0(ω) remains nearly constant at 25 ± 5 nm throughout the IR to visible
range, then peaks at ∼ 3.8 eV due to the interband transition. Derived reflectivity (blue). Density
of state (DOS) from photoemission (red) [182].

depth δ0, which is defined as the distance at which the electric field amplitude decays to 1/e of the

incoming field amplitude. The skin depth relates to κ(ω) as δ0(ω) = c/ωκ(ω). Fig. 3.10 shows the

derived frequency dependence of δ0(ω). The skin depth remains nearly constant at 25 ± 5 nm in

the IR, which is due to κ ∝ 1/ω in this spectral range. The skin depth peaks at the interband

transition near 3.8 eV, where our assumption of bulklike film may fail. The peak of skin depth

corresponds to a sharp minimum in κ, which results from a particular way the dielectric function

associated with the interband transitions adds to the dielectric function of the Drude free electrons

(conduction electrons) in the vicinity of interband transition [214].

3.3.3 Extended Drude model analysis

While the Drude model provides a good description of the dielectric function data across the

mid-IR spectral range, a noticeable deviation between the direct inverted dielectric function ε2 and

the Drude model prediction is seen for energies below 0.1 eV. The smaller experimental values for

ε2 would suggest an increase in τ with decreasing frequency.

Using the extended Drude model, the frequency dependence of τ−1(ω) can readily be calcu-

lated from Eq. 3.7 with an input of ε∞ = 5 for silver. At low frequency ε1 � ε∞, so the exact value
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Figure 3.11: Frequency dependence of τ−1(ω) from extended Drude analysis. The linear relation be-
low the interband transition agrees with Fermi liquid theory, 1/τ = a+b(~ω)2, with a = 0.045 fs−1,
b = 0.065 eV−2fs−1 for silver, and a = 0.06 fs−1, b = 0.08 eV−2fs−1 for gold, respectively. Extrap-
olating to zero frequency with τ = 22 fs for silver and τ = 16 fs for gold.

of ε∞ does not significantly affect the resulting τ−1(ω). The frequency dependence of ωp(ω) can

also be derived [4, 229], but we do not analyse it here.

Due to electron-electron interactions, a quadratic frequency dependence of 1/τ is predicted by

the Fermi liquid theory with 1/τ = a+ b(~ω)2 [185, 229]. Fig. 3.11 shows the frequency dependent

τ−1(ω) from extended Drude analysis plotted against (~ω)2. The observed linear relation below

the interband transition seems to support the predicted quadratic frequency dependence of 1/τ(ω).

Based on a fit with a = 0.045 fs−1 and b = 0.065 eV−2fs−1 (solid line), an extrapolation to zero

frequency implies a DC value of τ = 22 fs for silver. Similarly, an extended Drude analysis for

gold shows a quadratic frequency dependence of 1/τ below the interband transition. A linear fit

in Fig. 3.11 gives a = 0.06 fs−1, b = 0.08 eV−2fs−1, with extrapolated τ = 16 fs at zero frequency.

This value can be compared with τ = 13± 3 fs from the Drude analysis [180].

With closer inspection of low frequency range of 0.05 – 0.1 eV, a frequency dependent trend

of τ−1 different than quadratic is observed. Fig. 3.12 shows the frequency dependence of τ applying

the extended Drude analysis in the range of 0.05 – 0.6 eV. τ for silver from this work is shown in

red, and τ for gold from our previous work in blue [180]. The dashed and dot-dashed line is a fit to
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Figure 3.12: Frequency dependence of τ(ω) in the low energy IR range for silver (red dot) and gold
(blue dot). The fits are a simple exponential connecting to the zero-frequency value of τ calculated
from DC conductivity (squares) [151]. Note, however, that increase in τ(ω) below 0.1 eV is within
our instrumental error.

a simple empirical exponential function with connection to the DC value (electrical relaxation time

deduced from DC conductivity), for silver and gold respectively [60, 61, 151]. In this plot, both τ

of silver and gold indicate an exponential increase towards DC frequency, different and more rapid

than the quadratic frequency dependence of 1/τ from Fermi liquid theory.

3.4 Discussion

3.4.1 Comparison of Drude parameters with literature values

Our derived Drude parameters are ~ωp = 8.9 ± 0.2 eV, ε∞ = 5 ± 2, and τ = 17 ± 3 fs. For

comparison, the range of literature values are ~ωp = 7− 9 eV, ε∞ = 1− 10, and τ = 5− 40 fs. The

differences can be due to both instrumental errors and/or sample types and preparation procedures

[180, 219].

For the two previous experiments with longer τ than our measurement [112, 18], some issues

have already been noted above. Data from Johnson and Christy have an uncertainty of ∼ 40%

for n in the 0.6 – 3 eV spectral range when n is small [112]. The resulting relaxation time has a
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large uncertainty with τ = 31± 12 fs. In addition, the data directly extracted from reflection and

transmission is not necessarily Kramers-Kronig consistent. Bennett and Bennett simply assumed

τ = 36 fs to complement their normal reflectance measurement for calculating the dielectric function

in the 3 – 30 µm wavelength range [18]. Of the other previous measurements, data from Dold and

Mecke [55] was pointed out by Lynch and Hunter [145] to have erroneously low values for k resulting

in too large values of ε1. The good agreement in ε2 and the difference in ε1 between their data and

ours further imply the data from Dold and Mecke are not Kramers-Kronig consistent.

In previous experiments as well as in our measurements on three different samples, larger

relative variations in Vis/UV are observed in comparison to the IR region. Our derived reflectivity

from the dielectric function agrees well with the behavior expected from density of state (DOS)

measurements from photoemission [182], as shown in Fig. 3.10. The reflectivity derived from our

data inversely correlates to the DOS, with good agreement on the position and slope near the

interband transition.

It is in principle possible to compare the Drude parameters with results from surface plasmon

resonance (SPR) lifetime measurement. τ relates to the non-radiative damping of a localized SPR,

and the surface plasmon propagating length. However, SPR lifetime can be influenced by radiative

damping and surface scattering, and in most nano-particles studies, the SPR resonances spectrally

overlap with interband transitions [161, 101, 25, 28]. It is worth noting, however, that our measured

τ = 17 ± 3 fs is consistent with the longest value of τ = 13 fs based on plasmonic resonance line

width of a silver nano-particle at room temperature [161, 101, 25].

3.4.2 Interband effects

As mentioned in section 3.3.1, the experimental dielectric function deviates from the Drude

behavior in the Vis/UV region due to the direct interband transition from d to sp band. The

electronic band structure of silver for the related d to sp band transition is shown in Fig. 3.13c.

The eleven unfilled electrons of silver ([Kr]4d105d1) forms six bands, which are hybridized into two

groups. Five of them lie in a narrow range of energies from 2 eV to 5 eV below the Fermi energy
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Figure 3.13: (a)Band structure of silver and interband transition from d band to sp band with
onset energy of about 3.8 eV. (b) The first Brillouin zone of a FCC crystal. (c) The Fermi surface
of silver resembles the free electron Fermi sphere. Figure after [196, 73].

and are referred as the d-band, while the sixth one spans a wide energy range for different k-vectors

and are referred as the sp-band. The reciprocal space of the FCC crystal structure of silver is shown

in (a) labelled with symmetric points. The Fermi surface for silver is shown in (b). It is similar to

the free electron Fermi sphere of a single electron FCC crystal, except at the 〈111〉 direction where

the L-neck connects across the zone faces [13].

For energies below the onset of the interband transition, ε∞ can be adjusted to partially ac-

count for the interband effect. To better describe the interband influence on the dielectric function,

empirically parametrized Gaussian or Lorentzian resonances can be added into the Drude model

with ε(ω) = εDrude + εd(ω) [193, 194]. The interband contribution εd(ω) can be well described by

damped harmonic oscillators to parametrize the response of the d-electrons [193]. However, this

approach does not add any additional physical insight, thus such analysis is not performed here.

3.4.3 Deviation from Drude behavior

As shown in section 3.3.3, despite the general agreement between experimental results and

the extended Drude model, the observed rapid rise of τ at energies below 0.1 eV cannot fully
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be described by the Fermi-liquid theory. The relaxation time is related to the DC conductivity

in the Drude model through σ(0) = ε0ω
2
p/Γ. This would imply a DC conductivity of 3.6 × 107

m−1Ω−1 for τ = 22 fs and ωp = 9 eV — a factor of 2 smaller than the electrically measured DC

conductivity of 6.3 × 107 m−1Ω−1 [215, 186, 151]. Similar discrepancies between τ from optical

measurements and DC resistivity measurements have been noted previously but not yet reconciled

[61, 216, 60, 185, 91]. While our results suggest a connection between the IR and DC due to a

rapid increase of τ below 0.1 eV, we would like to emphasis that the variation in τ below 0.1 eV is

within the systematic uncertainty of our instrument when operating at the low frequency limit.

The relaxation time τ is determined by electron damping. For an ideal silver sample free

from defects and impurities at a temperature of T = 0 K the damping goes to zero, thus τ → ∞

[185, 140]. However, for a real sample at room temperature various intrinsic and extrinsic effects

result in a finite τ . The relaxation rate τ−1, as the summed contribution from intrinsic electron-

electron and electron-phonon, and extrinsic electron-surface/grain boundary scattering, can be

expressed as [140, 185]

τ−1 = τ−1
e−ph + τ−1

e−e + τ−1
S . (3.13)

τ−1
e−ph is the dominating factor at room temperature and is a result of scattering an electron by

simultaneously absorbing and emitting a phonon [100, 30, 115, 185]. At frequencies much higher

than the Debye frequency (∼ 0.01 eV), the interaction averages over all the phonon modes resulting

in a constant effective collision time with negligible frequency dependence [200, 5]. The contribution

from electron-electron scattering has been derived as [132, 185]

τ−1
e−e =

π3Σ∆

12~EF

[
(kBT )2 +

(
~ω
2π

)2
]
, (3.14)

with Fermi energy EF , averaged scattering probability over the Fermi-sphere Σ, and the fractional

umklapp scattering ∆. τ−1
e−e has a quadratic frequency dependent term. τ−1

e−e is also quadratically

temperature dependent, but the temperature dependence of electron-electron scattering is negligible

compared to electron-phonon scattering at room temperature [185, 132]. The interface scattering

rate τ−1
S is related to grain boundaries and surface roughness, and is assumed to be directly propor-
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tional to the surface area for nano-particles. One therefore expects an overall quadratic frequency

dependent τ−1(ω). However, the quadratic frequency dependence of τ−1(ω) can easily be obscured

at finite temperature. Measurements as a function of temperature and purity, and with controlled

sample morphology are needed to discriminate the various mechanisms responsible for damping

[140, 219].

A reduction of relaxation rate at low temperature has been observed measuring the surface

plasmon lifetimes of gold nano-particles in agreement with theory [140]. However, the frequency

dependence was not studied.

3.4.4 Grain size and other finite size effects

Recently, effects of sample morphology have been studied systematically with spectroscopic

ellipsometry on gold in the IR spectral range [219]. By estimating the grain size from AFM

measurements, the authors established a linear relation of increasing τ with larger grain size. Their

measured relaxation rate Γ = 261 cm−1 on the sample with largest gain size of 170 nm (300 nm

thick gold film on mica) corresponds to τ = 20 fs. By linearly extrapolating their measurements on

different samples to infinite grain size, the authors suggest τ = 26 fs for gold at room temperature.

This value would be close to the corresponding τ from DC conductivity of ∼ 30 fs as shown

in Fig. 3.12, yet neglects the effects of electron-electron, and electron-phonon scattering at finite

temperature. At grain size of 170 nm and beyond, the relaxation time should no longer be grain

size limited as the mean free path of electron for gold at room temperature is about 30 nm. Thus

simple linear extrapolation of the relaxation time with grain size may not be valid. Variation of τ

with grain size in ref. [219] for sizes above 60 nm could also be due to differences in impurity/defect

scattering due to different preparation procedures for their commercial and self-prepared samples.

We note that ref. [219] seems to underestimate the instrumental errors. As the authors used

the same type of instruments as ours, we can assign an instrumental error of 3 fs to the relaxation

time τ based on our calibration. The 3 fs can be comparable to the differences between samples.

Nevertheless the generally large values of 16 – 20 fs in ref. [219] compared to our τ = 14 ± 4 fs
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measured for single crystal gold and τ = 13± 3 fs for TS gold with average grain size of 120± 30

nm [180], would indicate higher impurity/defect scattering for our samples.

To assess sample morphology influence on silver, we compare TS silver to TS gold with similar

grain size. A re-measurement on four TS gold samples on Si substrate shows good agreement with

our previous TS gold measurements [180], as well as with measurements of a 200 nm thick gold

film on a polished silicon 〈100〉 surface in ref. [219]. However, larger sample-to-sample variations

of dielectric function ε2 are observed for silver. In addition, by measuring at different times of

an interval of from one day up to a week after stripping, we observe the dielectric function of

TS gold varies within the uncertainty of the instruments, while similar measurements on silver

show significant variations with a trend of decreasing τ over time. This suggests that the dielectric

function of silver is more sensitive to variations in morphology than gold. Morphology influences on

silver have also been observed with increased τ on smoother silver surface [184, 183]. Measurements

on single crystal result in a larger τ than on polycrystalline sample [183]. As our measurements have

been performed under ambient conditions, surface oxidation is unavoidable despite great care on

handling the sample. Despite numerous studies, a quantitative correlation between sample extrinsic

effects and τ has not yet been performed.

3.4.5 Conclusion

In summary, we measured dielectric function of optically thick silver film over a broad spectral

range from 0.05 to 4.14 eV. Data show an overall good agreement of measured dielectric function

to the Drude model. Deviation at low energies below 0.1 eV is partially explained by Fermi-

liquid theory with frequency dependent Drude parameters. Sample-to-sample variations suggest

the dielectric function of silver is sensitive to environmental conditions and influenced by extrinsic

effects. We have improved accuracy and provided a broader spectral range compared to historical

measurements, and believe our measured dielectric function is representative of pure bulk silver used

in typical experimental thin film applications. Further verification of the improvement for practical

use can be tested for silver photonics applications with models based on our values. However, given
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the undetermined extrinsic effects more investigation is needed especially for energy range between

DC to 0.1 eV. To exclude unquantified contribution from grain boundaries, other possible surface

morphology effects, and surface impurity scattering, future experiments with samples of single

crystal surfaces under ultrahigh vacuum and at variable temperature condition are highly desirable

to arrive at a more microscopic understanding of the frequency dependence of the relaxation process

in metals. The possibility of different relaxation time over the Fermi surface needs to be explored

by studying different surface orientations 〈111〉 and 〈110〉 and 〈100〉. Finally, there may be a need

for more direct methods, such as energy and momentum resolved photoemission, in combination

with ellipsometry to probe the underlying electronic interactions of silver.



Chapter 4

Experimental implementation of infrared s-SNOM

By combining optical spectroscopy with atomic force microscopy (AFM), scattering-type

scanning near-field optical microscopy (s-SNOM) enables the optical spectroscopy to achieve nanome-

ter optical spatial resolution. This is especially desirable for infrared with its spatial resolution of

a few µm limited by diffraction. Infrared spectroscopy is very powerful because its photon energy

corresponds to the energy range of vibrational resonance of molecules, which is specific to different

chemical bonds in the so called “fingerprint” region. Infrared can also probe the Drude free elec-

tron response of metals, which is instrumental for studying metal-insulator transitions in correlated

electron materials.

In this chapter, I cover the fundamentals of the s-SNOM technique and address how the

amplitude and phase of the measured near-field signal connects to the local material properties.

Measured near-field spectrum on organics are compared to conventional far-field Fourier transform

infrared spectroscopy (FTIR) spectrum, and the difference in spectrum due to spectral-phase ap-

proximation and near-field coupling effects are discussed. In addition as a demonstration of general

applicability of our s-SNOM approach, I also measured surface plasmon polariton on graphene, sur-

face phonon polariton on hBN, and chemical mapping of membrane protein of bacteriorhodopsin.

4.1 Setup of s-SNOM

A typical experimental implementation of a s-SNOM setup is illustrated in Fig. 4.1a, with

the schematics of the interferometric detection shown in (b). Due to the similarity in the optical
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Figure 4.1: (a) Schematics of a typical s-SNOM setup, with an atomic force microscope (AFM) for
mediating near-field interaction and a Michelson interferometer for interferometric detection. Light
propagating in free space is focused to the tip apex of AFM by a parabolic mirror. Scattered light
from the tip is collected by the same parabolic mirror. Inset shows the tip-sample interaction. (b)
Principle of interferometric detections in s-SNOM. The scattered light from the tip is collected by
the same optics, and recombined with the reflected reference beam in the beamsplitter for coherent
amplification and phase-resolved interferometric detection.

detection scheme, s-SNOM can been seen as a natural extension of FTIR, thus inheriting the full

spectroscopic capability. The setup of s-SNOM consists of two parts, a Michelson interferometer

and an AFM. The interferometer arm with the AFM and the sample focuses the incoming light

to the tip and collect the scattered light; the other arm, called the reference arm, consists of a

reflective mirror to coherently amplify the weak scattered light from the tip and for interferometric

detection to resolve the phase.

As already explained in chapter 2.6, the tip scattered light contains both the near-field signal

Es and unspecific far-field background from the tip shaft and the sample Eb. In order to suppress

the background, the scattered light is modulated by the AFM tip oscillation at its mechanical

resonance frequency Ω. Despite the modulation, the coherent nature of the incidence laser light

makes the photons emitting from the localized tip-sample region interference with the far-field

background. Thus, the light on the detector is a time averaged intensity of I ∼ |Es + Eb|2 =

|Es|2 + |Eb|2 + 2|EsEb| cos(φs − φb), with the term |EsEb| cos(φs − φb) due to the multiplicative
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far-field background, and φs and φb the phase of the near-field signal and background, respectively.

As the far-field background Eb is randomly scattered from the whole illuminated area, the phase φb

is generally uncontrolled. To fully characterize the near-field signal and suppress the multiplicative

far-field background, interferometric detection with a known reference beam is needed to determine

both the amplitude and phase of the near-field signal. By adding the reference term Er as shown

in Fig. 4.1b, the intensity at the detector becomes

I ∼ |Es + Eb + Er|2

= |Es|2 + |Eb|2 + |Er|2

+ 2|EsEb| cos(φs − φb) + 2|EsEr| cos(φs − φr) + 2|EbEr| cos(φb − φr) (4.1)

with φr the phase of the reference arm.

After demodulating the detected signal at higher harmonics of the AFM tip oscillation fre-

quency (i.e., 2Ω and 3Ω), only the terms being modulated at 2Ω or 3Ω remain, namely 2|EsEb| cos(φs−

φb) and 2|EsEr| cos(φs − φr) in Eq. 4.1. Typically, the third harmonic signal after demodulation

I3Ω is chosen to represent the near-field signal, with I3Ω being

I3Ω = 2|EsEb| cos(φs − φb) + 2|EsEr| cos(φs − φr). (4.2)

The near-field amplitude |Es| and phase φs can be obtained from the second term 2|EsEr| cos(φs−

φr) by controlling the reference phase φr. The first term 2|EsEb| cos(φs − φb) is due to the multi-

plicative far-field background. Various phase modulation methods have been developed to suppress

the background term and to extract the amplitude and phase [202, 54, 175].

4.2 Near-field spectroscopy

In Eq. 4.2, the I3Ω is a sinusoidal function (interferogram) with respect to the reference

phase φr. Fig. 4.2a shows two such interferograms taken on locations of two different materials

by linearly moving the reference mirror (linearly increasing the reference phase). The blue curve

is an interferogram taken on a material of interest at position A, while the red curve is taken at
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Figure 4.2: (a) Interferometric detected near-field signal forms a sinusoidal wave as the reference
mirror linearly translated in the Michelson interferometer in Fig. 4.1. The amplitude and phase
delay of the interferogram carries spectroscopic information of the local sample material and changes
with the local material. To extract the spectroscopic information, the signal on a point of interest
needs to be normalized to a reference signal obtained on a known substrate with flat spectroscopic
response (typically gold or silicon). The blue and red curves are taken at two locations on and off
the feature of interest in (c), which are labeled as point A and point B respectively. The amplitude
ratio and the phase difference of the two sinusoidal wave contains the spectroscopic information of
the sample, and varies with wavelength. As the wavelength changes, the amplitude ratio and the
phase difference varies. (b) Resulting spectrum of amplitude and phase across an amide I band
resonance of the organic defect sample. The amplitude corresponds to the real part of dielectric
function ε1, while the phase corresponds to the imaginary part of dielectric function ε2. The exact
relation of the amplitude and phase spectrum to the dielectric function of the underlying material
are still under research. Near-field phase image for the organic defect on gold substrate on resonance
at 1659 cm−1 (c) and off resonance at 1605 cm−1 (d).

a gold substrate at position B as a reference. Although being constant, in general the absolute

amplitude |Er| and phase φr of the reference beam in Eq. 4.2 is undetermined. As a result, to

determine the scattered light from a point of interest (A), a reference interferogram from a known
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material (B) need to be collected and subtracted from the interferogram A. The amplitude ratio of

the interferograms A and B represents the relative amplitude of the scattered light |Es|, while the

phase difference of interferograms A and B represents the relative phase of the scattered light φs.

With a tunable continuous-wave (CW) laser, the amplitude and phase of a sample at one

wavelength can be extracted from interferograms as mentioned above. By stepping the laser wave-

length across resonances, a spectrum of both amplitude and phase can be obtained. Fig. 4.2b shows

the amplitude (red) and phase (blue) spectrum of an organic defect on gold film with its resonance

at around 1660 cm−1. The phase spectrum shows an absorptive line shape resembling the conven-

tional FTIR spectrum. It corresponds to the extinction coefficient (κ) or the imaginary part of the

dielectric function (ε2). The amplitude spectrum shows a dispersive line shape which corresponds

to the refractive index (n) or the real part of the dielectric function (ε1). The amplitude and phase

spectrum can thus be used as approximation to complex dielectric function of ε(ω) = ε1(ω)+iε2(ω).

This approximation is typically valid for weak resonances such as molecular vibrational resonances,

however it can fail for collective resonances such as surface phonon or surface plasmon polaritons

resonances [160].

The quantitative correspondence of the amplitude and phase spectra to the frequency de-

pendence of the dielectric function ε(ω) = ε1(ω) + iε2(ω) is still under investigation, with current

experimental and theoretical results indicating a unsystematic variation of the amplitude and phase

spectra due to sample thickness and tip geometry [160, 150, 85]. The amplitude and phase can

also be transformed to real and imaginary part as in a coordinate transformation. Recent studies

show the imaginary part of the s-SNOM signal corresponds better to the dielectric function of the

sample than the phase. More systematic studies are needed to quantitatively determine the spectral

correspondence of the near-field signal and the dielectric function of the sample material.
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4.3 Understanding the near-field spectrum

As derived in chapter 2.6.1, the dipole model predicts that the near-field signal Es is propor-

tional to the effective polarizability αeff , i.e., Es = αeffE0, with

αeff = α

[
1− αβ

16πε0(R+ h)3

]−1

. (4.3)

Here α is the polarizability of the tip itself, R is the tip radius, h the tip and sample separation,

and β the reflection coefficient. Only β = (εs − 1)/(εs + 1) contains the information of sample

dielectric function εs = ε1 + iε2. With some algebra, β can be rewritten to separate its real and

imaginary part as

β =
ε1 + iε2 − 1

ε1 + iε2 + 1

=
(ε1 − 1 + iε2)(ε1 + 1− iε2)

(ε1 + 1 + iε2)(ε1 + 1− iε2)

=
|εs|2 − 1 + i2ε2
|εs + 1|2

. (4.4)

So the imaginary part of β is proportional to the imaginary part of the sample dielectric function

ε2, or explicitly

Im(β) =
2ε2

|εs + 1|2
. (4.5)

Under typical experimental condition for weak resonance material, the denominator in Eq. 4.3

is close to 1 and can be approximated to the first term of the Tylor expansion series [85, 103]

αeff = α

[
1− αβ

16πε0(R+ d)3

]−1

≈ α
[
1 +

αβ

16πε0(R+ d)3

]
. (4.6)

With Eq. 4.6, we can derive the material dependence of the near-field signal Es. The complex

valued near-field signal Es is Es = Re(Es) + Im(Es) = |Es| exp(iφs). Combining Eq. 4.5 and 4.6,

we get Im(Es) ∝ Im(β) ∝ Im(εs), i.e., the imaginary part of the near-field signal corresponds to

the imaginary part of the sample dielectric function.
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Typical s-SNOM experiments are implemented in such a way that the near-field ampli-

tude |Es| and phase φs are measured instead of the real Re(Es) and imaginary part Im(Es).

If Im(Es)� Re(Es), then φs ∝ Im(Es). This is the spectral phase approximation, which says the

phase φs is proportional to the imaginary part of the dielectric function Im(εs). The validity of

this approximation is discussed below.

To study the relation between the near-field spectra and the dielectric function of the sample

material, I start with a model material with a single Lorentzian resonance. The dielectric function

of the sample material can be modelled as a harmonic oscillator with resonance frequency ω0, line

width γ, and coupling strength A, with

ε(ω) = 1 +
A

(ω2
0 − ω2)− iωγ

(4.7)

By introducing a detuning frequency δ = ω − ω0, we can simplify Eq. 4.7 under the assumption

of near resonance δ � ω0 and low damping γ � ω0. Under these two approximations we have

ω2
0 − ω2 ≈ −2ω0δ, and ωγ ≈ ω0γ, and Eq. 4.7 simplifies to

ε(δ) = 1 +
A

−2ω0δ − iω0γ
(4.8)

= 1− A

2ω0

1

δ + iγ/2
(4.9)

= 1− A

2ω0

δ − iγ/2
δ2 + (γ/2)2

. (4.10)

I further introduce a coupling coefficient

g ≡ A

2ω0γ
, (4.11)

with which Eq. 4.10 can be rewritten as

ε(δ) = 1− gγ δ − iγ/2
δ2 + (γ/2)2

. (4.12)

Now the complex dielectric function becomes a Lorentzian function and traces an circle counter

clockwise in the complex plane as the detuning frequency δ goes from −∞ to +∞ as shown in

Fig. 4.3. The circle has a radius of g, and an offset of (ε1, ε2) = (1, g) from the origin. Under this
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Figure 4.3: The dielectric function of a material across a resonance can be modeled as ε(δ) =

ε1 + iε2 = 1− gγ δ−iγ/2
δ2+(γ/2)2

, where δ = ω − ω0 is the detuning frequency, γ the damping factor, and

g is coupling coefficient. The dielectric function can be represented as a sphere in complex plane.

picture, the dielectric function can either be represented in Cartesian coordinate as ε = ε1 + iε2

or in polar coordinate as ε = A exp (iφ), with the phase φ defined as tanφ = ε2/ε1 as shown in

Fig. 4.3. For g < 1, the circle stays in the right side of the complex plane with ε1 > 0. This region

can be defined as the weak coupling region. In the strong coupling region with g ≥ 1, ε1 can be

negative. Intuitively, as δ goes from negative to positive along the circle ε2 goes across a resonance

with its maximum at δ = 0, i.e., the resonance of the material. The maximum and minimum ε1

happens at δ = −γ/2 and δ = γ/2, respectively. For g � 1 the phase φ is proportional to ε2, and

can be used to approximate ε2.

As δ increases from negative, φ gradually increases and reaches a maximum. The maximum

point can be found by drawing a tangent line passing through the origin. This maximum point

defined as δ0 is located in between δ = 0 and δ = γ/2. Thus the resonance (maximum) of φ is not

at the same resonance frequency of ε2, but blue shifted. The amount of blue shift can be easily

calculated from the graph with a resulting value δ0 = gγ/2. The blue shift δ0 increases with g, with

maximum shift of δ0 = γ/2 when g = 1. Since γ is the FWHM of the resonance, the maximum

resonance frequency shift of φ relative to ε2 is half the line width of the resonance.

Fig. 4.4 shows an example of blue shifts for different coupling coefficients g = 0.5 (a) and

g = 1 (b), with fixed γ = 20 cm−1. The imaginary part of dielectric function ε2 = Im(ε) and phase
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Figure 4.4: Comparing ε2 = Im(ε), refractive index k, and phase of ε (φ), assuming a Lorentzian
oscillator with resonance at 1730 cm−1, γ = 20 cm−1, and coupling coefficient g of different values.
The resonance frequency of φ is blue shifted to 2k, which is also blue shifted to Im(ε). (a) For
coupling strength g = 0.5, φ is blue shifted by 5 cm−1 with respect to ε2. (b) For g = 1, the phase
is blue shifted by 10 cm−1 with respect to ε2.

φ = arctan(ε2/ε1) are shown in black and blue, respectively. In addition, the extinction coefficient

κ = Im(
√
ε) after multiply by a factor of two is plotted together in red. With γ = 0.5, φ is blue

shifted 3 cm−1 relative to 2κ, and 5 cm−1 relative to ε2; γ = 1 gives a shift of 10 cm−1 relative to

ε2, and 6 cm−1 relative to 2κ.

To get a sense of coupling coefficient for a real material, let us take a look at two com-

mon organic materials – Poly(methyl methacrylate) (PMMA) and Polytetrafluoroethylene (PTFE).

Fig. 4.5 shows the dielectric function of PMMA (a) and PTFE (b) across their prominent reso-

nances. PMMA has a carbonyl resonance at around 1729 cm−1, and the real and imaginary part

of the dielectric function from ellipsometry measurements are shown in black and blue dotted lines,

respectively. The solid lines are Lorentzian oscillator fit to the experimental dielectric function

with a resulting coupling coefficient of g = 0.6. For PTFE, its characteristic C-F stretch vibration

mode has two resonances at ω = 1160 cm−1 (symmetric stretch) and ω = 1220 cm−1 (antisym-

metric stretch), respectively. The imaginary part of the dielectric function of PTFE at the range

of interest is shown as dotted blue line in Fig. 4.5. The two resonances can be simulated as two
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Figure 4.5: Dielectric function of PMMA and PTFE. (a) The dielectric function of PMMA across
the carbonyl resonance with experimental value in dotted line and Lorentzian model in solid line.
The coupling coefficient g = 0.6 is obtained from the Lorentzian fit to the experimental value. (b)
Imaginary part of the dielectric function of PTFE with experimental value and Lorentzian model
in dotted and solid line, respectively. The two peaks are symmetric and antisymmetric C-F stretch
modes of PTFE, which can be simulated as two Lorentzian oscillators, with ω1 = 1160 cm−1,
γ1 = 20 cm−1, g1 = 0.9, and ω2 = 1220 cm−1, γ2 = 30 cm−1, g2 = 0.8.

Lorentzian oscillators

ε(ω) = 1 + g1
2γ1ω1

ω2
1 − ω2 − iωγ1

+ g2
2γ2ω2

ω2
2 − ω2 − iωγ2

, (4.13)

with ω1 = 1160 cm−1, γ1 = 20 cm−1, g1 = 0.9, and ω2 = 1220 cm−1, γ2 = 30 cm−1, g2 = 0.8. So the

symmetric stretch and antisymmetric stretch have coupling coefficients of g1 = 0.9 and g2 = 0.8,

respectively. C-F in PTFE and carbonyl in PMMA are very strong resonances in organics, but the

coupling coefficients are still smaller than 1. We can conclude that vibrational resonances of most

organic materials belong to weak coupling under which the spectral phase approximation can be

used.

To confirm the modeling, we compare experimental s-SNOM spectra to sample dielectric

functions measured by ellipsometry. 300 nm thick mircotomed film of 3 µm diameter PMMA

beads embedded in epoxy on ZnS substrate is measured by s-SNOM to extract the complex optical

dielectric function of PMMA across the carbonyl resonance at ω = 1729 cm−1. A large disk of thick

PMMA is chosen here to represent a bulk-like PMMA. Continuous-wave infrared light tunable from

ω = 1660 cm−1 to 1800 cm−1 with a line width < 1 cm−1 is emitted from a quantum cascade laser
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Figure 4.6: s-SNOM spectrum of PMMA taken on PMMA disk embedded in epoxy. (a) AFM
height image on PMMA/epoxy sample; (b) s-SNOM phase image on resonance at 1729 cm−1. The
bright disk is PMMA, while other topographic features in the height image in (a) do not show
phase contrast. (c) s-SNOM amplitude (red) and phase (blue) spectrum taken on PMMA disk.
s-SNOM amplitude spectrum is dispersive and phase spectrum is absorptive.

(QCL, Daylight solutions). Fig. 4.6 (a) shows the topography of a sample region with a PMMA

bead together with other topographic features. The PMMA bead can be clearly identified with a

big phase shift relative to the epoxy matrix from the s-SNOM phase image taken on resonance at

ω = 1729 cm−1 (b). The other topographic features are polystyrene beads, showing no phase shift

due to the lack of carbonyl resonance. Fig. 4.6 (c) shows the s-SNOM spectrum on PMMA, with

phase in blue and amplitude in red. The s-SNOM phase shows an absorptive-like profile, with peak

of 1.2 radian (60 deg). The s-SNOM amplitude, as ratio of scattering intensity of PMMA to the

surrounding epoxy, follows a dispersive line shape.

To correlate the nanoscale s-SNOM spectra to the sample dielectric function, I re-plotted

the same s-SNOM spectra with the refractive index (n and κ) of PMMA from ellipsometry mea-

surement. Fig. 4.7 (a) shows the normalized s-SNOM real and imaginary spectra in red and blue

dots, with solid line for ellipsometry data. After proper scaling, we see the s-SNOM spectrum

overlaps very well with the bulk dielectric function of PMMA. To understand the spectral phase

shift, I plotted s-SNOM phase and imaginary part together with the extinction coefficient κ after

multiplying a factor of two. In Fig. 4.7 (b) we can see the imaginary part of the s-SNOM signal

overlaps well with the extinction coefficient κ, while the peak of s-SNOM phase is blue shifted



60
(a) (b)

Figure 4.7: (a) Normalized s-SNOM real and imaginary spectra together with the complex refractive
index n and κ. (b) s-SNOM imaginary spectrum (black dots) agrees well with 2κ (black solid),
while the s-SNOM phase (blue dots) is blue shifted by about 10 cm−1. In addition, I plotted PTIR
measurement on the same sample (green dots) for comparison.

by about 10 cm−1, in agreement with prediction in Fig. 4.4. A photothermal induced resonance

(PTIR) spectrum of the sample sample (green curve) is plotted for comparison [45], which overlaps

with the s-SNOM imaginary spectrum. It worths to note this is the first time a direct comparison

of PTIR spectrum with s-SNOM spectrum in experiment has been made. From this comparison,

we conclude the imaginary part of s-SNOM corresponds well to the extinction coefficient κ, and

can be used for chemical identification.

4.4 Spectroscopic nano-imaging and applications

After explaining the principle, below I show a few representative examples of spectral imaging

for different applications. All data are taken with the infrared s-SNOM system I built.

4.4.1 Chemical vibrational resonance

Chemical specific nanoscale imaging can be achieved in s-SNOM by combining with label-free

vibrational spectroscopies. Here I image membrane protein bacteriorhodopsin (bR) in dried purple

membrane as an example to test chemical specificity in IR s-SNOM [21]. The protein peptide

bonds in bR has a characteristic amide I vibrational mode at around ω = 1667 cm−1, which can be
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Figure 4.8: Chemical imaging of purple membrane on and off resonance of the amide I band.
s-SNOM phase images of bacteriorhodopsin (bR) of a disordered dried purple membrane patch
at amide I band reveal distribution of protein within the lipid membrane. (a) AFM height; (b)
s-SNOM phase image with IR source tuned to the amide I absorption band; (c) s-SNOM phase
image taken off resonance.

covered with a tunable CW QCL laser source of spectral range from ω = 1570 cm−1 to 1750 cm−1.

Fig. 4.8 shows the resulting s-SNOM measurements of bR. When the laser is tuned to on resonance

at 1667 cm−1, the bR clearly shows a phase contrast (b). The contrast disappears off resonance

at 1618 cm−1 (c). Phase image obtained at the resonance of amide I band reveals distribution of

protein within the lipid membrane.

4.4.2 Surface plasmon polariton and surface phonon polariton

Another interesting application for s-SNOM is to study 2D materials with surface plasmon

polaritons (SPP) or surface phonon polaritons (SPhP). These surface waves can be used as a

sensitive probe to measure the microscopic spatial variations of the underlying optical and electronic

properties of 2D materials, such as measuring carrier mobility in graphene and visualizing grain

boundaries in chemical vapor deposition (CVD) grown graphene [66, 35, 65, 78].

Graphene has zero bandgap. However, with modified Fermi level (EF ) by gating or doping,

graphene can have a Drude-like response at low optical frequency (ω < 2EF ) due to Pauli blocking

of the occupied electron states. The Drude-like response can result in propagating SPPs in graphene

similar to SPPs in a metal-dielectric interface. However, low frequency plasmons are dormant in

conventional infrared spectroscopy of graphene because of mismatch in momentum. In s-SNOM

high momenta can be provided by coupling the infrared light to the tip, which enables s-SNOM to
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Figure 4.9: Graphene wedge shows clear SPP propagating. Phase and amplitude images of surface
plasmon polariton (SPP) on a graphene wedge. s-SNOM phase with a line cross-section of the SPP
standing wave; (b) s-SNOM amplitude image. Top image is a 3D view of the phase image in (a).

launch and image SPPs in graphene.

Fig. 4.9 shows s-SNOM measurements on exfoliated single layer graphene with a wedged

shape. The measurement is done with a 13CO2 laser at λ = 10.8 µm. The monolayer graphene

sample is adhered to a SiO2 dielectric substrate. Due to the substrate, the graphene sample is

unintentionally hole doped with equivalent EF ≈ 0.4 eV. Launching SPPs requires large in-plane

momentum, which is provided by coupling the infrared light to the sharp tip. The SPPs then

propagate along the surface and reflect at the wedge boundary. The reflected surface waves interfere

with the near-field at the tip, consequently scatter by the tip and are detected in the far field. In

Fig. 4.9 amplitude (b) and phase (a) images reveal excited SPP standing waves pattern along the

graphene edges. The line profile of the phase signal at one cross-section of the wedge shows the

interference fringes, with a dramatic phase change close to 90 deg.

The SPPs in graphene can be used to characterize CVD grown graphene, where the macro-
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Figure 4.10: CVD graphene with grain boundary. (a) AFM height image shows cracks on the
graphene sample; s-SNOM amplitude (b) and s-SNOM phase image (c) reveals internal grain
boundaries together with cracks.

scopic electronic and optical properties largely depends on the characteristics of the grain bound-

aries. Grain boundaries are atomic dislocations of carbon atoms along a large domain boundary.

The atomic dislocation is difficult to image with AFM, but it can cause disturbance to propagating

surface waves. Fig. 4.10 shows s-SNOM measurement on CVD graphene. The 5× 5 µm AFM im-

age (a) shows cracks among the sample, with otherwise flat surface. These cracks lines as external

boundary are visualized as double lines caused by interference of SPPs in the s-SNOM amplitude

(b) and phase images (c). The s-SNOM amplitude and phase image also reveals internal grain

boundaries in otherwise topographically flat regions.

Besides the gapless graphene, there is another class of 2D materials with band gaps. This

diverse class is called layered van der Waals materials including hexagonal-Boron nitride (hBN)

[43, 44]. hBN is a layered polar dielectric material with a band gap larger than 5 eV. The material

has strong in- and out- of-plane longitudinal optical (LO) phonon modes at frequencies of 1380

cm−1 and 780 cm−1, respectively [43]. Analogy to SPPs in graphene, hBN supports surface phonon

polariton (SPhP) waves. In the experiment, I used a tunable QCL (Daylight) with frequency at

1580 cm−1 for s-SNOM measurements. The SPhPs being excited with nanofocused infrared light

forms standing waves after reflected from the boundary of the hBN sheet. Fig. 4.11 shows the

standing waves of SPhP on hBN. The oscillatory period of standing waves λSPhP is a function of

the sample thickness. The AFM height image (a) shows a homogeneous flat surface of hBN, with

different layers at the boundary. The SPhPs with high oscillation amplitude can be seen in both
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Figure 4.11: Nano imaging of surface phonon polaritons (SPhP) in hexagonal boron nitride (hBN)
(5 µm ×5µm). (a) AFM height image shows homogeneous hBN surface with different layers on
Si substrate; (b) s-SNOM amplitude shows strong interference fringes due to propagating surface
phonon polariton (SPhP) along the surface on hBN; (c) s-SNOM phase image shows phase changes
depending on layer thickness; (d,e) are corresponding 3D displays for (b,c). From the s-SNOM
images, we can see the wavelength of the SPhP changes with the number of layers.

s-SNOM amplitude (b) and phase (c) images. By comparing the λSPhP for different layers, we see

larger λSPhP for thicker hBN layers. This real space image reveals a tunability of hBN SPhPs with

layers.

4.5 Conclusion and outlook

In conclusion, infrared s-SNOM provides nanometer spatial resolution to infrared spec-

troscopy. Through theory and experiment, I have demonstrated the spectroscopy and imaging

capability of infrared s-SNOM. My study confirms the complex near-field signal directly correlates

to the dielectric function of sample material. In addition, surface polaritonic interferometry through

s-SNOM provided by the high k-vector of tip coupling enables optical and electric characterization

of 2D materials. The generalization of s-SNOM with ultrafast and nonlinear optics will eventu-
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ally achieve the ultimate goal of femtosecond time resolution with nanometer spatial resolution.

More and more exciting applications of this technique are expected with the commercialization of

s-SNOM instruments, which I am actively involved in.



Chapter 5

Development of low temperature s-SNOM system

Following a general discussion on principles and applications of scattering-type scanning near-

field optical microscopy (s-SNOM), this chapter describes a versatile s-SNOM instrument I built

together with Erik Hebestreit for studying low temperature physics, including metal-insulator tran-

sition in correlated electron materials. As one of the first cryogenic s-SNOM instruments, I discuss

the considerations in instrument designs. Its performance is demonstrated on mid-infrared Drude

response by probing of the domain formation associated with the metal-insulator transitions (MIT)

of VO2 (TMIT ' 340 K) and V2O3 (TMIT ' 150 K). This s-SNOM instrument can operate under

cryogenic and variable temperature (∼ 20 - 400 K) and is compatible with high magnetic fields

(up to 7 T). The instrument features independent tip and sample scanning (scan range 50 µm ×

50 µm × 24 µm) and free-space light delivery with an integrated off-axis parabolic mirror for tip-

illumination and signal collection with a numerical aperture of NA=0.45. The optics operates from

the UV to THz range allowing for continuous wave, broadband, and ultrafast s-SNOM spectroscopy.

5.1 Instrument Design of low temperature s-SNOM

The design of a cryogenic s-SNOM instrument requires a set of primary considerations critical

for reaching the desired optical, thermal, and magnetic field specifications. The overall geometry of

the setup is determined by the need for broadband illumination, large solid angle for tip-scattered

Work in this chapter is published in Rev. Sci. Instruments 84, 023701 (2013)
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light collection, compatibility with low temperatures, and large magnetic fields. This leads to

several trade-offs, e.g., a compact design is desired to fit into the bore of a superconducting magnet

which restricts the optical access with large numerical aperture for most efficient tip illumination

and near-field scattering collection.

Given the restricted space inside the magnet bore, the incident and outgoing beams are chosen

to be parallel or collinear. Furthermore, the incident beam enters the apparatus from the bottom,

such that the optical axis is parallel to the magnetic flux lines and instrument axis (Fig. 5.1).

This illumination scheme requires only a single-solenoid magnet, while simultaneously yielding a

short and interferometrically stable beam delivery. The bottom incidence design also allows for the

conventional upright AFM orientation. An off-axis parabolic mirror is positioned at the side of the

sample stage with its focus at the tip location. The numerical aperture is maximized within the

limits of the sample plane, tip axis, scan range, magnet geometry and maximum beam size.

The system features independent tip and sample positioning which is desirable for an optimal

optical alignment procedure as discussed in section 5.1.2.

System cooling is performed by a modified Janis ST500 cryostat. It features a 25 mm diameter

bottom BaF2 window (ISP-Optics, BF-W-38-5), suitable for beam delivery from the UV to mid-IR.

The cryostat was chosen to meet the temperature requirements. Turbo-molecular pump and other

vacuum components were chosen or designed to maximize stability and minimize vibrations.

5.1.1 AFM

A dynamic force AFM (Attocube Systems AG) serves as the core component for the cryogenic

s-SNOM system. It consists of two 3-axis piezo slip-stick stages (ANPxyz101) for independent tip

and sample positioning. Each stage features a 5 mm coarse xyz travel range, with a step size of

about 100 nm at room temperature.

An open loop 3-axis piezo scanner (ANSxyz100) is mounted on top of the sample stage. This

scanner has a range of 50 µm × 50 µm × 24 µm at room temperature (30 µm × 30 µm × 15 µm

at 4 K). The cantilever oscillation is tracked interferometrically by a single mode fiber placed 50 -
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Figure 5.1: Cryogenic scattering-type scanning near-field optical microscopy (s-SNOM) system,
based on a contact and dynamic force AFM with optics for tip illumination and collection of
scattered near-field light. (a) s-SNOM schematic. The blue arrow in the center of the vacuum
chamber indicates the magnetic field direction; the copper block marked with T is the heater and
temperature sensor connected to the flow cryostat. (b) Cross-sectional view of core components.
The AFM consists of two positioners for independent tip and sample spatial control. Light is
focused by an off-axis parabolic mirror, mounted on a 2-axis goniometer. All components are held
by a titanium housing mounted on a continuous flow cryostat, with optical access through its base
for epi-illumination and detection. The dimensions are minimized such that insertion into a high-
field (6.5 T) superconducting magnet (not shown) is possible. (c) Photo of the s-SNOM apparatus,
with AFM inside the test chamber (cut away view).

100 µm from the backside of the cantilever [199]. The AFM allows for a variety of imaging modes,

including contact, non-contact atomic force, magnetic force, and conductive microscopy.

A titanium housing for the components ensures a non-magnetic, rigid mounting with low

vibration transmission. The translation stages are also made of titanium, and provide minimal

absolute and relative thermal expansion. The slender design of the positioners and scanners leaves

outer dimension of ∼ 24 mm × 24 mm. Since the superconducting magnet bore is 74 mm in

diameter, this leaves enough space for optical access.

The vibration spectrum was analyzed with both an external accelerometer and a built-in

AFM noise analyzer. Results indicated minimal vibrations levels, with mechanical amplitudes . 1

nm (RMS).
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5.1.2 Optics

Free space beam delivery of the incident and scattered beams is necessary for s-SNOM in

order to allow the wide spectral range (UV-THz) and large spectral bandwidth required for short

pulse excitations. This rules out fiber delivery due to dispersion and transmission constraints.

For broadband light and ultrashort laser pulse illumination, reflective optics are superior

to refractive optics since the absence of material dispersion eliminates any chromatic or other

aberration for confocal applications. Parabolic mirrors are preferable to Cassegrain objectives, as

they are more compact and have shorter focal lengths. However, parallelism of the incident light

beam with respect to the optical axis of the off-axis parabolic mirror is crucial to avoid coma in

the focus [138, 9].

A customized off-axis parabolic mirror (Nu-Tek Precision Optical Corporation) with a focal

length of 11.25 mm and a numerical aperture of 0.45 is used. The surface roughness is specified to

be 7 nm RMS and the form accuracy is specified to be below 0.625 µm. The mirror is mounted

on a piezo-driven 2-axis goniometer (Attocube ANGt50/ANGp50) with a tilting resolution of 10−4

degree. With the aid of a flat face precision machined on the mirror, the mirror axis is aligned

to the incident laser beam. During the initial alignment, a red HeNe laser is used to guide the

beam path and focused to the tip apex by parabolic mirror. Fig. 5.2 shows the laser illuminated

tip from both a side camera (a) and a camera in the beam path (b). Fine tuning of the laser focus

is achieved by optimizing the tip apex scattering to be as small and symmetric as possible. After

aligning the visible guide laser to the tip, other laser sources can be coupled into the system by

aligning them co-linearly with the alignment laser.

5.1.3 Cryostat and Vacuum system

A number of factors are taken into account for optimal sample cooling. A thermal link made

of a stack of 20 laser welded gold plated OFHC copper foils (Attocube Systems AG, ATC100), with

thermal conductivity of 10 mW/K, is used to couple the sample to the cryostat.
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Figure 5.2: Laser illuminated tip seen from the side camera (a) and from a camera in the beam
path (b). The scattered light from the tip apex can been clearly seen from both images if the optics
is well aligned.

To minimize the heat conduction from the translation stage to the sample holder, a teflon

thermal isolation plate sandwiched by two layers of Aluminized Mylar foil is placed underneath the

sample holder. The multiple interfaces between sample holder and the translation stage reduce the

heat conductance to be below 1 mW/K [62].

To minimize heating effects through heat conduction via the wires of the heater and the

temperature sensor, these cables were coiled around the cryostat and pre-cooled. Finally, to keep

laser heating of the sample at a minimum, the incident laser power is kept below 10 mW, which is

also a typical power level for s-SNOM .

The heat conduction via the gas with pressure below 0.1 Pa is estimated from q̇gas =

0.5kpA∆T , where k is an empirical coefficient of 1.2 for air, p the pressure (Pa), A the sample

holder surface area (m2), and ∆T the temperature difference between sample and the room tem-

perature chamber wall (K) [62]. For our conditions q̇gas can be estimated to be ∼ 0.7 mW, and is

therefore negligible.

A significant heat load arises from radiant heat flow from the surrounding chamber walls at

300 K to the sample holder at, e.g., 80 K when cooled with liquid nitrogen. We can estimate the

heat transfer using the black-body radiation expression q̇rad = σEA(T 4
Env − T 4

Samp), to be ∼ 130

mW, with σ the Stefan-Boltzmann constant, E a factor related to the emissivities of the surfaces

(taken as 0.5), A the sample holder surface area (m2), and TEnv and TSamp the environment and
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sample temperature respectively. A thin copper radiation shield was built around the AFM and

linked to the cryostat to reduce the thermal radiation. With the radiation shield at ≈ 100 K the

radiation power is reduced to < 1 mW.

The sample temperature is controlled with a resistive heater and a temperature controller

(Cryocon 32B), with a maximum power of 5 W, and stability within ± 0.1 K.

All materials inside the chamber are chosen to be high-vacuum compatible. With a turbo-

molecular pump (Pfeiffer HiCube Eco pump station) a pressure < 10−5 mbar is reached at room

temperature.

5.1.4 Magnet

In the design, a multi-filamentary niobium-titanium superconducting magnet (Janis 6.5T-74)

was used as a representative model. This superconducting magnet can produce a 6.5 Tesla vertical

field, with a moderate inhomogeneity of ± 0.5 % over a 1 cm sphere. Within a typical AFM scan

area of 10 µm × 10 µm, the inhomogeneity is below 10−3 %. The vertical center bore has a diameter

of 74 mm. All the piezo motors, including goniometers, coarse positioners and scanners, are made

of titanium and have demonstrated functionality under 7 Tesla magnetic fields.

5.2 Results and discussion

5.2.1 Near-field contrast of gold on silicon

To test the general system performance we have performed elastic IR s-SNOM with contrast

resulting from the metallic Drude response. Light from a CO2 laser (p polarized, I = 5 mW,

λ = 10.6 µm) is focused onto a commercial Pt-Ir coated AFM tip (Nanosensors, Arrow NCPt).

The optical signal is detected in the back scattered direction by a liquid nitrogen cooled HgCdTe

detector (Judson, J15D14-M204-S250U-30) with a high bandwidth transimpedance preamplifier

(Femto, HVA-S).

The AFM operates in dynamic force mode, with a controlled tip oscillation amplitude of
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Figure 5.3: Approach curves on Au at the first three tip harmonic demodulations show a near-field
localization < 30 nm (a). Panels (b, c, d) display the topography and associated s-SNOM optical
signal measured using pseudo-heterodyne signal filtering techniques for a Au-Si interface using
optical excitation from a CO2 laser (λ = 10.6 µm). A clear correlation of the measured optical
signal (c) with the substrate material is observed.

about 20 nm, and frequency Ω ≈ 250 KHz. The near-field contribution is selected by lock-in

demodulation at harmonics of the tip oscillation frequency (Ω, 2Ω, 3Ω). The optical response

during approach gives a clear indication of the near-field optical contrast [195]. Here, approach

curves over a flat gold surface in Fig. 5.3a show a strong nonlinear distance dependence, confirming

the near-field signal origin.

To reduce far-field background and obtain near-field phase information, pseudo-heterodyne

detection is utilized. In pseudo-heterodyne the signal is amplified interferometrically, and the phase

of the reference field Er modulated at a frequency ωr (Fig. 5.1a) [175]. The signal at the detector

contains a near-field component Es, far-field background from the tip shaft Eb and the reference

field Er, with total intensity I ∝ |Es(Ω) + Eb(Ω) + Er(ωr)|2. The near-field Es is extracted by

demodulating I at side bands of frequency nΩ+mωr, where n, m are integers [14]. Fig. 5.3(b,c,d)
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show an s-SNOM scan at 2Ω across the edge of a Au film evaporated onto a silicon surface. The

simultaneously acquired topography and optical maps demonstrate the clear distinction of gold and

silicon in the optical amplitude with pseudo-heterodyne detection. No phase contrast is expected

and the small variation of ∆φ ∼ 10◦ observed (Fig. 5.3d) is due to residual far-field interference.

5.2.2 Imaging phase transition of VO2 and V2O3

Figure 5.4: The topography (a, c) and near-field response (b, d) of a VO2 crystal at 340 K (a, b)
and 355 K (c, d). Due to the difference in conductivity of the two phases, the insulating phase
appears dark and the metallic phase appears bright. (e) s-SNOM signal together with topography
line-scan along the dashed line in (c, d).

To demonstrate the ability to probe phase transitions above and below room temperature,

micrometer-sized vanadium dioxide (VO2) single crystals on a silicon substrate were imaged. VO2

undergoes a first-order metal-insulator transition (MIT) from a low-temperature monoclinic insu-
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lating phase to a high-temperature rutile (R) metallic phase at TMIT= 340 K. These substrate

bounded single crystals form domains during the MIT due to external substrate-induced stress

[113]. Fig. 5.4 shows the s-SNOM image with corresponding topography. The crystal remains

insulating at 340 K (Fig. 5.4b) and becomes metallic at 355 K (Fig. 5.4d) showing increased op-

tical signal due to increased optical conductivity of the metallic phase. s-SNOM line scan over a

VO2 crystal (Fig. 5.4e) shows optical contrast of metallic domains, with no alleviated topographic

variation.

Figure 5.5: (a) Cryogenic micro-Raman spectrum shows a spectral difference below and above
phase transition temperature (Tc). Mid-IR s-SNOM optical images of doped V2O3 (c-e) with
corresponding topography (b). Metallic phases (red) are seen to nucleate near defects (large islands
are due to dielectric surface impurity).

V2O3 is a paramagnetic metal at room temperature with an MIT around 150 K, accompanied

by a structural change from rhombohedral to monoclinic symmetry [53], and it undergoes magnetic

ordering from a paramagnetic metal to an antiferromagnetic insulator [153]. The MIT can be tuned

by pressure or doping which modifies the magnetic orderings. Recently, the domain evolution across

the paramagnetic insulator to paramagnetic metal phase transition on chromium doped V2O3:

(V1−xCrx)2O3, x=0.011 was studied using PEEM [144]. Here we use micrometer sized V2O3 single



75

crystal to check the system performance at low temperature. The sample has been studied with

cryogenic Raman measurement, and the phase transition manifests itself in phonon Raman response

acquired ex-situ at different temperatures (Fig. 5.5a). By cooling the system starting from room

temperature, insulating domain begins to form around topographic defects at ∼ 160 K as shown

in Fig. 5.5 (c-e).

5.3 Conclusion and outlook

In conclusion, I designed and built a versatile cryogenic s-SNOM instrument compatible

with strong magnetic fields. This system, in combination with linear, nonlinear, and ultrafast

spectroscopy, could provide spectroscopic access to electronic and vibrational resonances, struc-

tural symmetry, and femtosecond dynamics with few-nanometer spatial resolution. The sensitivity,

specificity, and selectivity of the optical interaction allows for the systematic real space probing

of multiple order parameters and phases of complex materials simultaneously. The instrument

is applicable to a range of materials with related physical phenomena, including organic conduc-

tors and semiconductors which also exhibit electron correlation, charge order, and superconducting

gaps.



Chapter 6

Accessing the optical magnetic near-field through Babinet’s principle

Engineering the optical magnetic field with optical antennas or metamaterials extends the

ways to control light-matter interaction. However, characterization of optical magnetic field in the

nanoscale is challenging due to the weak magnetic interaction.

In this chapter, we developed a new method for imaging optical magnetic field with Babinet’s

principle. The method is demonstrated on a complementary system of a slot and rod antenna.

The magnetic near-field of a rod antenna can be determined by measuring the electric near-field

of a corresponding slot antenna. Using combined far-field spectroscopy, near-field imaging, and

theory, we identify magnetic dipole and higher order bright and dark magnetic resonances at mid-

infrared frequencies. From resonant length scaling and spatial near-field distribution, we confirm

the applicability of Babinet’s principle over the mid-infrared spectral region. Babinet’s principle

thus provides access to spatial and spectral magnetic field properties, leading to the targeted design

of magnetic optical antennas.

6.1 Introduction

Controlling the optical magnetic field with optical antennas or metamaterials provides for

new ways of tuning the near-field light-matter interaction [188, 63, 8, 117, 119]. Because the

magnetic dipole transition probability is in general ∼ 104 times smaller than the electric dipole

Work in this chapter is published in ACS Photonics 1, 894 (2014)
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transition, the magnetic response at optical frequencies is typically weak [111, 80, 39]. However, in

addition to the transition moment, the interaction rate highly depends on the electromagnetic local

density of states (EM-LDOS), which can be modified through the local environment. Examples

include the use of magnetic plasmonic structures for magnetic field enhancement over 100 times

[87, 128, 67], achieving magnetic nonlinear effects with metamaterials [123], nanorod metamaterials

for biosensing [116], or tailoring the magnetic dipole emission with plasmonic structures [98].

Despite the prominent role of the magnetic field in many nano-optical devices, probing mag-

netic resonances and local magnetic near-field properties, as desirable for design and device per-

formance evaluation, has remained difficult [32, 178, 207, 203]. Vector-resolved electric near-field

measurements at optical frequencies using scanning near-field probes can be used to derive the

magnetic field through Maxwell’s equations [178, 86]. Equally indirect, aperture-based near-field

imaging allows one to investigate the magnetic field coupled through a fiber [32, 120, 51, 133].

However, these methods require specially fabricated nano-probes or numerical modeling for data

interpretation.

Here we demonstrate experimentally and theoretically the application of Babinet’s principle

in the infrared (IR) as a generalized principle to gain insight into the spatio-spectral properties

of magnetic resonances, specifically from the comparison of the optical rod and slot antenna as a

prototypical system [74, 76, 50, 77, 233, 176, 99]. We show that electromagnetic duality can be

used to access the optical magnetic field and its structural resonance of optical rod antennas as the

dual to the slot antenna in both its far-field spectral and near-field spatial response. This confirms

that the theoretical requirement of Babinet’s principle for the structure to be infinitely thin and

perfectly conducting is still fulfilled to a good approximation in the IR.

Babinet’s principle for electromagnetic fields connects the scattered fields by two comple-

mentary planar screens S and Sc, which are infinitely thin and perfect conducting [106, 27]. As

illustrated in Fig. 6.1, if the incident fields on the original screen S are E0 and B0, then the
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Figure 6.1: Babinet’s principle relates the scattered fields E and B behind the screen S, and the
scattered fields Ec and Bc behind the complement screen Sc. Figure after [24].

complement fields Ec
0 and Bc

0 for Sc are defined as:

Ec
0 = −cB0, (6.1)

Bc
0 = E0/c, (6.2)

with c the speed of light. The Babinet’s principle for full vectorial electromagnetic fields states that

the scattered fields E and B of the screen S, and the scattered fields Ec and Bc of the complement

screen Sc must satisfy

Ec = cB + E0, (6.3)

cBc = B0 −E. (6.4)

For the case of a plane wave with normal incidence (E0)z = 0, thus in the direction normal to the

plane (Ec)z = cBz or Bz = (Ec)z/c. This provides a way to measure the out-of-plane magnetic

field of a structure through measuring the out-of-plane electric field of its complement structure.

Indeed, this approach is widely used in radio-frequency (RF) antenna and THz metamaterial design

[15, 64, 24]. However, the rigorous validity of Babinet’s principle requires perfect conductivity, which
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no longer holds in the IR with relatively high Ohmic losses in metals [232, 197]. Here, we study

the validity of Babinet’s principle in the IR by examining one particular dual system of a rod and

its complement slot. As shown in Fig. 6.2a, a rod (structure 1) and its complement slot (structure

2) form the dual system in Babinet’s principle. Thus according to Babinet’s principle, the fields

should be related by E1/c = B2 and E2/c = −B1. This relation is to be verified by experiments

and numerical simulations.

rod slotBabinet

1 µm

E

E2E1 B2

B1

k
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Figure 6.2: (a) The electromagnetic field of a slot antenna and its complementary linear rod antenna
are related through Babinet’s principle. (b) Scanning electron microscopy (SEM) image of a slot
antenna, with illustration of the incident laser field polarized perpendicular to the slot direction. (c)
scattering-type scanning near-field microscopy (s-SNOM), using tunable femtosecond OPO/DFG
excitation and interferometric near-field detection.

6.2 Experiment

Slot antennas were fabricated by focused ion beam (FIB) milling into a thermally evaporated

50 nm thick Au film on KBr and on silicon (with an approximately 3 nm native SiO2 layer). The

slot lengths range from 500 nm to 2600 nm with width of 150 nm. The individual slots are separated

by > 20 µm to allow for their individual far-field spectroscopic characterization. The Au thickness
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of 50 nm was chosen to be greater than the optical skin depth of Au of about 20 nm throughout

the IR [180].

To determine the resonant wavelength of slot antennas, the transmission spectra of the in-

dividual slot antennas on a KBr substrate were measured using an IR microscope at Beamline

1.4 at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory,

providing bandwidth from 800–10,000 cm−1. Fig. 6.3 shows a schematic setup of the IR microscope

for transmission measurement. For illumination and collection two Schwarzschild type objectives

were used (32×, NA=0.65), with nominal incidence angle between 18 degrees to 40 degrees at

focus. Spectra were measured using a Fourier transform infrared (FTIR) spectrometer (Nexus 870,

Thermo Nicolet Corp.) equipped with a HgCdTe (MCT) detector and averaged over 512 scans

with a spectral resolution of 32 cm−1. As illustrated in Fig. 6.2b, the polarization at the sample

focus was set perpendicular to the slot axis as required for excitation of slot antenna resonances.

MCT

FTIR

From

Synchrotron

Sample

Figure 6.3: Schematic setup of the IR microscope for transmission measurement. For illumination
and collection two Schwarzschild type objectives were used (32×, NA=0.65), with nominal incidence
angle between 18 degrees to 40 degrees at focus. Spectra were measured using a Fourier transform
infrared (FTIR) spectrometer.
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Near-field measurements were performed by scattering-type scanning near-field optical mi-

croscopy (s-SNOM) based on an atomic force microscope (AFM, Innova, Bruker Corp.) in non-

contact imaging mode (see Fig. 6.2c) as described previously [177, 178]. For that purpose mid-IR

light was generated by difference frequency generation (DFG) in a GaSe crystal of the signal and

idler beam from a fan-poled LiNbO3-based optical parametric oscillator (OPO, Chameleon, Coher-

ent Inc.) pumped by a Ti:Sapphire oscillator (Mira-HP, Coherent, Inc.). The IR radiation (∼ 280

µW, full width at half-maximum bandwidth of 85 cm−1, pulse duration of 220 fs, and repetition

rate of 80 MHz), polarized normal to the slot orientation, is focused to a nearly diffraction-limited

spot at the tip-sample region with side illumination, using a 25.4 mm working distance 90◦ off axis

parabolic (OAP) reflector. The tip-scattered antenna near-field is collected by the same parabolic

mirror in a backscattering geometry and filtered by a vertical polarizer before being directed to a

MCT detector, where it is detected interferometrically. Demodulation of the signal at the 2nd or

higher harmonic of the tip-dither frequency ΩAFM using a lock-in amplifier suppresses the far-field

background signal [177]. s-SNOM imaging provides a two-dimensional map of the z component of

the electric near-field Ez, assisted by the preferential scattering of the tip-parallel field component.

Homodyne interference and reference phase are adjusted such that the Ez near-field signal is sym-

metric with respect to the substrate non-resonant background, as is adequate for imaging resonant

structures with simple 90 degree phase behavior.

6.3 Numerical simulation

For full three-dimensional field simulations of the slot and rod antennas, a commercial finite

element electromagnetic simulation package is employed (COMSOL Multiphysics).

As illustrated in Fig. 6.4, the simulated geometry for a slot antenna is a stack consisting of a

substrate (KBr ε = 2.36, or Si ε = 11.7), a 50 nm thick gold plate with a slot in the middle, and air at

the top. A surrounding perfectly matched layer (PML) is added outside to minimize reflections from

boundaries. PML is an artificial absorbing layer used in simulations of wave equations to truncate

open boundaries. Incident plane waves point downwards under variable angles with respect to
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Figure 6.4: The simulated geometry for a slot antenna is a stack consisting of a substrate (KBr
ε = 2.36, or Si ε = 11.7), a 50 nm thick gold plate, and air at the top. The slot in the middle of
the gold plate can be seen in the transparent view on the right. Perfectly matched layers (PMLs)
are used to truncate the open boundaries to minimize boundary reflections.

the surface normal, and are polarized normal to the slot orientation. To reduce computational

complexity, mirror symmetry is employed with the mirror plane being the axial plane in Fig. 6.4.

The cross-sectional view of the mirror plane is shown in Fig. 6.5a, with the gold plate highlighted.

A dense mesh with element size of 5 nm or less is applied for the slot, and 25 nm or less for the

gold plate. The other domains are meshed with maximum element size of λ/8, with λ being the

wavelength of the incident wave.

Fig. 6.5b shows the simulation for a rod antenna. A rod made of gold is suspended in

air, which is then surrounded by PMLs to truncate the open boundaries. Similar to the slot

antenna simulation, incident plane waves point downwards under variable angles with respect to

the surface normal, but with the polarization along the rod orientation instead of being normal.

Mirror symmetry is also employed, with the mirror plane shown as the cross-sectional plane. Mesh

size of 5 nm or less is used for the rod. The mesh size gradually increasing away from the rod, with

maximum element size of λ/8.

The dielectric function of gold is taken from recent broadband spectroscopic ellipsometry

measurements of a thermally evaporated gold sample [180]. Transmission spectra are obtained by

calculating the transmission for each wavelength. The spatial near-field distribution is calculated
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Figure 6.5: (a) Cross-sectional view along the mirror symmetry plane of the slot antenna simulation
geometry. The gold plate is highlighted. PMLs are used to truncate the open boundaries. The
mesh element is 5 nm or less for the slot, and 25 nm or less for the gold plate. The maximum
element size is λ/8 for the air, substrate, and PML. (b) Simulation geometry of a corresponding
rod antenna with a gold rod suspended in air. The air domain is truncated with PMLs. Mesh size
of 5 nm or less is used for the rod, with maximum element size of λ/8 for the rest.

30 nm above the sample surface.

6.4 Results

In order to understand the resonant behavior and mode structure of a single slot antenna,

we perform far-field transmission spectroscopy over a wide spectral range. Fig. 6.6 shows the

measured transmission spectrum of a L = 2.4 µm slot on KBr (solid red line). It exhibits a

pronounced fundamental dipole resonance at 1370 cm−1, with a sequence of higher order modes.

For comparison, the numerical simulation of an equal length slot (black dashed) is shown with 20

degree angle of incidence with respect to the surface normal with polarization perpendicular to the

slot direction. The other curve is the calculated spectrum of the complementary rod antenna (blue

dashed). The simulated spectra are convoluted with a Lorentzian function of 30 cm−1 line width to

account for inhomogeneity in antenna structure and excitation focus. The difference in line width

may be due to losses from surface roughness and different effective gold dielectric constant between

experiment and simulation [180].

From the calculation, four modes can be assigned within the spectral range, labeled n =
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1 . . . 4. These modes correspond to the first four lowest-order magnetic resonant eigenmodes of the

slot antenna. The inset shows the corresponding schematic spatial near-field Ez distributions. The

n = 1

n = 2

n = 3

n = 4

n=1

n=2

n=3 n=4

Figure 6.6: Resonant modes of a slot antenna. Experimental far-field transmission spectrum (solid
red) for L = 2.4 µm slot compared to simulated spectrum (black dashed) and complementary
rod antenna (blue dashed) with corresponding mode assignment. The four peak positions of the
experimental spectrum are 1370, 2750, 4080 and 5790 cm−1. Inset: Illustration of spatial near-field
Ez distribution for different slot antenna modes or Bz for rod antenna, with odd (bright) and even
(dark) modes.

n = 2 and n = 4 modes are dark modes and are normally forbidden for plane wave excitation

at normal incidence. However, the excitation of these modes becomes allowed because of tilted

incidence from the Schwarzschild type objective. The relative intensity of the four resonance peaks

depends on the details of the incident field distribution. In agreement with theory, the peak of the

n = 3 mode appears embedded in the shoulder of the n = 2 resonance. The small difference in

peak position between experiment and theory most likely can be attributed to small differences in
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geometry and dielectric function between the fabricated and simulated structures.

Fig. 6.7 shows the evolution of the measured spectral behavior for slots of varying length

from L = 0.5 µm to 2.4 µm. The peak transmission in each spectrum is normalized with respect

to the peak transmission of the L = 2.4 µm spectrum. For each slot length, the dominant peak

corresponds to the fundamental dipolar resonance (n = 1) and shifts to lower frequency with

increasing slot length. Higher order resonant modes shift correspondingly and decrease in amplitude

with decreasing slot length.

The relation of slot length to the resonant wavelength can be derived from the transmission

spectra. The antenna resonance can be explained by a Fabry-Pérot model when propagating

plasmon modes form standing waves [171, 96, 209, 56, 31], given by

L− δ

2π
λp = n(λp/2) (6.5)

with antenna length L, plasmon wavelength of a propagating plasmon mode λp, phase shift δ due

to reflection of plasmon wave at the antenna end, and resonance mode number n.

For an ideal slot antenna cut from a film suspended in free space, dipole resonance occurs

when the length is approximately λ/2 [127]. With the slot patterned on a dielectric half-space,

together with the finite conductivity of metal at optical frequencies and low aspect ratios compared

to ideal narrow slot antenna, the resonant wavelength is red-shifted.

Fig. 6.8 shows the dependence of resonant wavelengths determined from the peak positions

as a function of slot length for the four modes. The length scaling can effectively be described by

L+ ∆L = n(λeff/2), (6.6)

for n = 1 . . . 4, with an apparent length increase of ∆L = δ/(2π)λp due to the phase shift at the

antenna end [57]. The apparent length increase ∆L is approximately the width of the antenna

[171, 96, 84, 31, 209] and is negligible because of the large aspect ratio > 10 for the slots in

our experiment. For ∆L = 0, we obtain an effective wavelength λeff = (0.64 ± 0.05)λ from the

simultaneous fit to all four modes as shown in Fig. 6.8.
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Figure 6.7: Transmission spectra of individual slot antennas on KBr substrate. For each length, the
main peak corresponds to the fundamental dipolar magnetic resonance of the slot antenna n = 1,
with higher order modes n = 2, n = 3 and n = 4 visible depending on length.

6.4.1 Probing the electric near-field of slot antenna

Based on the resonant characteristics determined from far-field spectroscopy, we measure the

corresponding near-field spatial distribution for selected antenna modes. Fig. 6.9 shows s-SNOM

images (b,e) of the relative Ez electric field component for two different slot lengths L = 2.2 µm

and L = 1.6 µm corresponding to the n = 1 and n = 3 modes for an excitation wavelength of

λ = 8.7 µm and λ = 5.7 µm respectively. The color scale reflects the regions of Ez pointing in and

out of the sample plane, corresponding to an associated π phase change. Fig. 6.9(c,f) shows the
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Figure 6.8: Resonant wavelength scaling of slot antennas. Resonance wavelengths from experiment
(solid symbol) for n = 1 (blue circle), n = 2 (red square), n = 3 (dark yellow diamond) and n = 4
(green triangle) scale linearly with slot length, and can be described by L = n(λeff/2) with a single
λeff = (0.64± 0.05)λ for n = 1 . . . 4 in agreement with simulation (open symbol).

result of field simulations for the given geometries and excitation wavelengths. This confirms that

the experimentally observed field pattern corresponds to the pure fundamental n = 1 mode (b,c),

and the n = 3 mode (e,f) which contains a slight admixture of the fundamental mode responsible

for the stronger than expected center lobes.

For the fundamental n = 1 mode as shown in Fig. 6.9(b,c), the field distribution in three

dimensions is circulating around the center axis of the slot, and decreasing in intensity in the radial

direction and towards the end of the slot. This type of electric field distribution of the n = 1 mode

thus corresponds to the electric field of a virtual oscillating magnetic dipole oriented along the slot.

Correspondingly, the higher order modes can be viewed as a superposition of multiple magnetic

dipoles aligned in series.
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Figure 6.9: Optical near-field imaging of Ez for different resonances of slot antennas. Topography
(a) and experimental near-field Ez (b) of the fundamental n = 1 resonance of a L = 2.2 µm slot
antenna on Si substrate. (c) The corresponding simulation of Ez for n = 1 resonance shows one
lobe symmetrically distributed along the slot in agreement with experiment. The Ez pointing in (-
sign) and out (+ sign) of the plane is displayed in blue and red, respectively. The higher order n = 3
mode of a L = 1.6 µm slot antenna on Si substrate is excited at λ = 5.7 µm (slightly red detuned
from the exact wavelength of n = 3 mode, limited by the laser in experiment), with topography
(d) and experimental near-field Ez (e). According to the simulation, by slightly red detuning the
incident laser from the exact resonance wavelength of n = 3 mode, a superposition of n = 1 and
n = 3 resonance modes is obtained. The resulting Ez from simulation (f) shows three lobes along
the slot, with a big lobe at the center and two small ones at the edges. The experimental results
in general agrees with simulation, indicating a higher order resonance is being excited.

6.5 Discussion

As shown in Fig. 6.8, the effective wavelength λeff = (0.64±0.05)λ obtained from experimental

spectra for the slot on a KBr substrate agrees with the corresponding simulation result of λeff =

0.63λ. The value can be understood considering the substrate material with permittivity ε and

the geometry of the slot with width W and length L from the relationship derived from the RF

spectral region [127]:

λeff = 0.97
1

√
εeff(1 +W/L)

λ, (6.7)

where εeff = (1 + ε)/2 is the mean permittivity of substrate ε and air. The factor 0.97 is twice

the exact scaling value associated with the fundamental dipole resonance L = 0.485λ [179]. In this

expression the inhomogeneous environment of air and substrate is approximated as an effective

homogeneous medium [165]. For a slot antenna on a KBr substrate (ε = 2.36, thus εeff = 1.68),
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Eq. (6.7) then results in λeff = 0.67λ, consistent with our experiment and numerical simulation. As

another example, for the case of an IR slot antenna on a Si substrate (ε = 11.7, thus εeff = 6.35),

the predicted λeff = 0.35λ also agrees with the result of a full electromagnetic simulation value of

λeff = (0.33± 0.05)λ.

Eq. (6.7), although derived for RF, is also applicable in the IR with the effective medium

chosen as the mean permittivity of air and substrate ε at the corresponding IR frequency. As shown

in Fig. 6.10, the reason for its validity within the Drude regime can be understood from the planar

surface plasmon dispersion relation [57], k2 = (ω2/c2)[εmεs/(εm + εs)], with dielectric function of

metal εm and its surrounding εs. The planar surface plasmon dispersion relation (solid line) is

linear and follows the light line (dashed line) of k = ω/c
√
εs with a difference in k-vector < 1%

for wavelength & 2 µm at a gold and KBr interface [201, 222, 36]. The deviation of the surface

plasmon dispersion and the light line becomes significant for λ > 2µm, which is a cutoff wavelength

shown as the red line in Fig. 6.10. The propagation loss is also small in the IR with negligible effect

on the resonance peak position. Only when the wavelength scaling becomes nonlinear, Eq. (6.7)

begins to fail and Babinet’s principle starts to break down.

To verify Babinet’s principle, we compare the slot antenna length scaling with its comple-

mentary rod antenna. The complementary Au rod antenna on KBr has been previously measured

to be λeff = (0.68± 0.06)λ [165], which agrees well with our measured result λeff = (0.64± 0.05)λ.

For a similar rod antenna on a Si substrate the effective wavelength was measured to be λeff =

(0.32± 0.05)λ [72, 40], consistent with that of slot antenna on Si with λeff = 0.35λ from Eq. (6.7).

Beyond far-field spectra our near-field imaging on the slot antenna resolved the n = 1 and

n = 3 modes. Through simulation the electric near-field and its spatial distribution of the slot

E2 is found to correspond to the magnetic distribution B1 of the rod and is related through the

duality relation B1 = −E2/c. This result quantitatively verifies that the magnetic field profile of

a rod antenna can be determined by measuring the electric field distribution of a slot antenna.

For example, for an incident field strength E0 ∼ 106 V/m, we achieve a maximum electric field

E2 ∼ 2×107 V/m at the center of slot at the fundamental resonance, corresponding to a maximum
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Figure 6.10: The dispersion relation of planar surface plasmon at the gold and KBr interface (solid
line) is plotted together with the light line (dashed line). The planar surface plasmon dispersion
relation is approximately linear and follows the light line at low frequency, but starts to deviate for
wavelength > 2 µm. The linear dispersion relation indicates the gold antenna resonance scales the
same as a perfectly conducting antenna. Thus gold antennas at low frequency can meet the require-
ments of Babinet’s principle. However, the plasmon dispersion relation starts to become nonlinear
for wavelength < 2 µm, when the deviation from Babinet’s principle will be seen. This cutoff
wavelength is marked by the vertical red line. Note: the Ohmic loss in metal causes broadening of
the resonance, but does not significantly shift the resonance peak position.

magnetic field B1 ∼ 0.06 Tesla for the complementary rod resonance.

6.6 Conclusion

In summary, the combination of far-field spectroscopy with near-field imaging quantifies the

validity of Babinet’s principle for Drude metals and wavelength & 2 µm. Using Babinet’s principle,

we demonstrate a general method of probing the optical magnetic field from the study of the

electric field of a complementary structure. This method of measuring the magnetic near-field and

the resonance scaling provides an improved way to characterize optical antennas and metamaterials

and to understand the magnetic light-matter interaction at the nanoscale.



Chapter 7

Resonant optical gradient force for nano-imaging and -spectroscopy

The optical gradient force provides for optomechanical interactions, for particle trapping and

manipulation, as well as for near-field optical imaging in scanning probe microscopy. Based on

recent experiments, its extension and use for a novel form of optical nanoscale spectroscopy was

proposed.

In this chapter, I provide the theoretical basis in terms of spectral behavior, resonant en-

hancement, and distance dependence of the optical gradient force from numerical simulations for a

coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local

electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations.

This spectral characteristics together with the distance dependence provide the key characteristics

for its measurement and distinction from competing processes such as thermal expansion. Further-

more, I provide a perspective for resonant enhancement and control of optical forces in general.

7.1 Introduction

The combination of scanning probe microscopy with optics provides optical spectroscopy

with nanometer spatial resolution. Under light illumination, the induced coupled optical polariza-

tion between scanning probe and sample forms the basis of scanning near-field optical microscopy

(SNOM) [23, 231], with the near-field signal typically detected by far-field scattering. The coupled

optical polarization is expected to also give rise to an optical gradient force between the tip and

the sample as illustrated in Fig. 7.1a [52, 168].



92

Optically induced forces, associated with gradient, scattering, and thermal expansion, have

been studied in scanning probe microscopy for topographic and near-field optical imaging with

focus on the spatial dependence, as well as for particle trapping and manipulation often exploring

the plasmonic resonance of metal particles [168, 166]. In scanning probe microscopy, the optically

induced forces, as competing factors to the van der Waals force, have been studied in the context of

topographic artifact in SNOM imaging [82, 236, 139, 89, 58, 125]. Used as the signal of interest in

itself, the nanomechanical detection of the optically induced forces has also enabled an alternative

to photon detection for near-field optical imaging [52, 155, 220, 2, 170]. In addition, a trapped

particle as a probe was used for near-field optical or force mapping in photonic force microscopy

[79, 213, 68, 157]. However, despite several theoretical studies [167, 34, 134, 10, 168, 104], these

works provided limited insight into the spectral characteristics of the optical gradient force and its

dependence on electronic and vibrational material resonances of the sample. While the frequency

dependence of the optically induced force is often explored in optical trapping of micro/nano-

particles [227, 187, 221, 38, 166, 156, 19, 94], and in optically induced mechanical response of

plasmonic structures [137, 158], the extension for spectroscopic nano-imaging was not explored.

Recently, the concept of using the optical gradient force for scanning probe optical spec-

troscopy was proposed based on empirical experimental observations [191, 192]. However, exper-
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Figure 7.1: (a) Optical gradient force induced by excitation of coupled optical polarization between
tip (µt) and sample (µs), with resulting force F ∝ µtµs. (b) The optical excitation is accompanied
by absorption, with the resulting thermal expansion ∆h gives rise to a competing force reaction of
the AFM tip.
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imental efforts on measuring the optical near-field gradient force have not been conclusive. For

example, a force image of a metal bowtie antenna on resonance at λ = 1550 nm was interpreted

to result from an optical gradient force [126]. In contrast, similar force images on gold split ring

resonators were attributed to thermal expansion [118]. For molecular electronic resonance spec-

troscopy an absorptive response was observed and attributed to the optical gradient force [191, 107],

in marked contrast to the predictions in this work of a dispersive spectral response. In addition,

a nearly instantaneous (few ps) response from ultrafast experiments [108] and polarization depen-

dence in imaging plasmonic particles [102] showed characteristics of the expected optical gradient

force behavior. However, both experiments lacked spectroscopic information which would be de-

sirable for a unique assignment. The situation is equally confusing regarding theory. Most studies

so far have treated both tip and sample as point dipoles [191, 107], even at close proximity where

the dipole approximation fails, or only calculated the distance dependence of the force without

considering its spectral response [47]. This leaves key questions open on experimental feasibility

and distinguishing spectral characteristics.

Here, I numerically calculate the optical gradient force between a scanning tip and different

types of sample materials across their resonances. I predict the spectral behavior of the optical

gradient force based on a coupled nano-particle model geometry using Maxwell’s stress tensor. The

spectroscopic response of the optical gradient force is found to be dispersive for molecular electronic

or vibrational and other single particle excitations, in contrast to recent experimental claims of

gradient force nano-spectroscopy [191, 107]. I find that only collective polariton resonances can

give rise to absorptive spectral force profile. The effect is distinct from the accompanying thermal

expansion due to optical absorption (Fig. 7.1b), which results in absorptive resonance spectra in all

cases [46, 45, 143]. While the optical gradient force off-resonance is below the thermal cantilever

noise limit in a room temperature AFM, with resonance enhancement the force should be detectable

with improved force detection or under cryogenic conditions, as established in cavity opto-mechanics

[7].
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Figure 7.2: (a) The tip and sample are simulated as two finite spheres under plane wave illumination
with vertical polarization. (b) The two spheres with radius r are separated by distance z. When the
system size is much smaller than the wavelength r, z � λ, such that retardation can be neglected,
the electromagnetic problem in (a) can be treated in electrostatic approximation. (c) 3D model
for (a) with a cross-sectional view. The two spheres are blue colored. Plane wave at the boundary
is terminated with perfectly matched layer (PML). (d) After using rotational symmetry along the
axis of the two spheres, the 3D problem can be simplified to 2D problem. The figure shows the
cross-section of the rotation plane. The region of the two spheres are colored.

7.2 Numerical simulation

The optical gradient force between the tip and sample can be calculated from a surface

integral of the Maxwell stress tensor Tij using finite element electromagnetic simulation (COMSOL

Multiphysics). The force on the tip is given by

Fi =
∑
j

∫
S
Tijnjds (7.1)

with tip surface S, surface normal n, and

Tij = ε0

(
EiEj −

1

2
|E|2δij

)
+

1

µ0

(
BiBj −

1

2
|B|2δij

)
. (7.2)

The finite element method solves boundary problems (e.g., Maxwell’s equations) by dividing the

domain of interest into a finite number of small elements. A brief introduction to finite element

method can be found in the appendix. Since the radius of tip apex r ' 10 nm is much smaller than

the laser wavelength λ, the near-field tip and sample interaction under plane wave illumination can

be analyzed in the quasistatic approximation by assuming the probe to be a polarizable sphere
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with radius r. The resulting field distribution on the sample can be effectively reduced to an image

sphere of radius r, as shown in Fig. 7.1a. As simulation in 3D is computationally intensive, I

made use of several approximation/symmetry techniques to reduce the computation cost without

sacrificing physical accuracy:

(1) Electrostatic approximation. As shown in Fig. 7.2 (a,b), if the dimension of the system is

small compared to the wavelength (r, z � λ), retardation effect can be neglected, and an

electrostatic configuration (b) can be used to approximate the electromagnetic wave prob-

lem (a). Since the radius of tip apex r ≈ 10 nm is much smaller than the laser wavelength

λ, this approximation is valid. Under the electrostatic approximation, Maxwell’s equation

with time harmonic field can be reduced to the Helmholtz equation

∇× (∇×E)− k2
0

(
ε+

iσ

ωε0

)
E = 0 (7.3)

(2) Dimension reduction. The 3D problem is computationally intensive, especially for small

gaps where a dense mesh is needed due to the highly non-uniform local electromagnetic

field. For example, for sphere size r = 10 nm with gap size of z = 1 nm, mesh size of

0.2 nm or smaller is required. The 3D simulation often becomes impractical for a single

computer to solve [141, 70, 228]. Considering incident polarization along the tip axis,

rotational symmetry along the z-axis allows simulation in reduced dimension to decrease

the computational complexity (d).

This coupled nanoparticle geometry has been used extensively and with great success pre-

dicting general behaviors accurate to within order of magnitude [166, 38, 168]. While the exact

geometry of tip and sample affects both the details of magnitude and spectral response of the

optical gradient force, especially for strong polaritonic resonances, the limiting case of two finite

spheres provides enough general insight into the spectral variation of the force spectrum and its

distance dependence.

For the field simulation, a dense mesh with element size of 0.2 nm or less is applied near the

spheres, and the distant surrounding is meshed with maximum element size of 20 nm, as shown in
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Figure 7.3: (a) Numerical model of two silver spheres under a uniform E field aligned in z direction.
Rotational symmetry of the geometry has been employed to reduce the calculation into a 2-D
problem. Very fine mesh size of 0.2 nm is used for the area around the two spheres. (b) Simulated
electric field distribution around the two spheres, with radius r = 10nm and gap size of 2 nm. The
background electric field is E = 106 V/m assuming a focused laser intensity of I = 133 kW/cm2.
The dielectric function of silver at λ = 500 nm is taken from the ellipsometry measurement in this
thesis, with value εAg = −9.37 + i0.32.

Fig. 7.3 (a). A uniform electric field E = 106 V/m along the z direction is applied. This electric field

corresponds to an average laser intensity of I0 = 1.33 mW/µm2 as used under typical experiment

conditions [191, 21].

We consider two types of resonant processes of the sample: i) single particle molecular elec-

tronic and vibrational resonances, and ii) collective plasmonic resonances. The results are readily

generalizable to samples with other types of resonances including phonons, excitons, and related

polaritons. For the case of an electronic resonance, a sample consisting of Rhodamine 6G (R6G) dye

molecules is modeled as a single harmonic oscillator for its dielectric function ε(ω) = ε1(ω)+ iε2(ω),

with transition energy of 2.42 eV, and line width of 0.41 eV, as a best fit to experimental results.

A tungsten tip with r = 10 nm is used to ensure a flat spectral response of the tip in the relevant

visible spectral region. For the molecular vibrational resonance, a gold tip sphere is used to in-

teract with a sample sphere (both with r = 10 nm) of poly(methyle methacrylate) (PMMA) with

characteristic carbonyl resonance (C=O) at 1729 cm−1. Finally, to study the case of plasmonic

resonance, two silver spheres of r = 10 nm are modeled as the tip and sample system.
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Figure 7.4: (a) Numerical calculation of force spectrum of a PMMA sphere and gold sphere (red
dot), in comparison with dipole formula (black solid line). Sphere radius r = 30 nm, separation
z = 30 nm, electric field E = 106 V/m. (b) Simulated absorption, in comparison with a isolated
PMMA sphere calculated with Mie theory. The agreement is excellent.

7.2.1 Verification of numerical simulation

To verify the accuracy of my numerical simulation, I compare the simulation against known

analytical results. For cases when the two spheres are well separated with z > 2r, the optical gradi-

ent force can be expressed analytically as the dipole-dipole interaction assuming two independently

polarized spheres. The resulting force is proportional to the polarizability of the tip and sample

spheres (αt and αs) [168],

〈F 〉 = −1

2
Re

[
1

4πε0

6αtα
∗
sE

2

z4

]
∝ Re(αtα

∗
s)
E2

z4
. (7.4)

Fig. 7.4a shows the comparison of the simulated spectrum (red symbol) of optical gradient

force with result of the analytical expression (black solid) from Eq. 7.4 for a gold sphere and a

PMMA sphere of radius r = 30 nm separated by z = 30 nm. In addition, I also compared the

simulated absorption spectrum to an absorption spectrum calculated by Mie theory of an isolated

PMMA sphere in (b). The good agreement of my simulations with analytical results validates the

numerical accuracy.
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Figure 7.5: (a) Electronic resonant force spectrum between a tungsten tip and R6G sample (both of
radius r = 10 nm) subject to an optical field E = 106 V/m, separated by z = 2 nm. (b) Dielectric
function of R6G ε(ω) = ε1(ω) + iε2(ω) modeled as a single harmonic oscillator. (c) Corresponding
force spectra between a gold sphere and PMMA sample of radii r = 10 nm. Dispersive force
spectrum at separation distance z = 20 nm (multiplied by 20, black) compared to force spectrum
at z = 2 nm (red). (d) Dielectric function of PMMA ε(ω) = ε1(ω) + iε2(ω) around the carbonyl
resonance at 1729 cm−1. (e) Simulated PMMA absorption at distances z = 20 nm (black) and
z = 2 nm (blue). (f) The distance dependence of the optical force (red) on resonance shows a
complex distance scaling, neither following simple dipole-dipole power law nor exponential scaling.
The slight increase of optical absorption (blue) is due to local field enhancement in the gap region.

7.3 Results

Fig. 7.5a shows the resulting force spectrum between the tungsten tip and R6G sample at a

distance of z = 2 nm. The force spectrum is dispersive, and follows the trend of the real part of

the dielectric function ε1(ω) shown in Fig. 7.5b. The relatively small force variation between 23 fN
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to 25 fN across the resonance is due to the large broadband offset as a result of ε1 � ε2, which is

a characteristic property of the dielectric function for molecular electronic resonances.

Correspondingly, Fig. 7.5c shows the force spectrum of the Au sphere interacting with the

carbonyl vibrational resonance of PMMA at separation of z = 20 nm (black). The force increases

by 20 times in magnitude to a peak value of F ≈ 1 fN when decreasing the distance to z = 2

nm (red). Due to the smaller vibrational dipole moment compared to the electronic counter part,

the force is much weaker than in the case of R6G but exhibits a larger relative spectral variation

across the resonance from 0.2 fN to 1 fN (for z = 2 nm). Irrespective of distance, and similar

to the electronic resonance case, the force spectra are dispersive and follow the real part of the

dielectric function of PMMA ε1(ω) (Fig. 7.5d). For comparison, Fig. 7.5e shows the absorption

spectra at z = 20 nm and z = 2 nm in black and blue, respectively. In contrast to the force spectra,

the absorption spectra show the well known symmetric resonance behavior corresponding to the

imaginary part of the dielectric function ε2(ω). Except for a change in magnitude, peak position

and line shape of both optical gradient force and absorption spectra are invariant with respect to

tip-sample distance. The distance dependence of the optical force on resonance (red) is shown in

Fig. 7.5f. Due to increasing multipole contributions with decreasing distance, the distance scaling

follows neither simple exponential nor power law, and is far more shallow than what one would

expect based on a simple dipole-dipole interaction (∝ z−4). The magnitude of absorption (blue)

only increases slightly due to local field enhancement with decreasing distance.

Fig. 7.6a shows the force spectrum of two silver spheres (r = 10 nm) separated by z = 20

nm for an applied optical field of E = 106 V/m. The slight asymmetric plasmonic resonant force

spectrum peaks at 3.5 eV with Fmax ' 30 fN. For comparison, Fig. 7.6b shows the absorption

spectrum for the two silver spheres. The normalized complex polarizability of a silver sphere

ᾱ = (εAg − 1)/(εAg + 2) is shown in the inset. As can be seen, both optical gradient force and

absorption spectra follow the imaginary part of polarizability Im(ᾱ)(ω).

Fig. 7.7a shows the spectral evolution of the force as a function of distance. When the

separation of the two spheres decreases from z = 20 nm to z = 1 nm, the optical gradient force
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Figure 7.6: (a) Optical gradient force spectrum of two silver spheres with radius r = 10 nm
separated by z = 20 nm subject to external optical field E = 106 V/m. (b) Absorption spectrum
of the two spheres with symmetric resonance at 3.5 eV. Inset: real and imaginary part of the
normalized polarizability ᾱ = (εAg − 1)/(εAg + 2) for a silver sphere. Force and absorption spectra
follow the imaginary part of ᾱ(ω).

(b) (c)(a)

Figure 7.7: Simulated optical gradient force (a) and absorption (b) spectra for two silver spheres
of r = 10 nm at different separations. The peak magnitude of optical force on resonance increases
by a factor ∼ 103 from z = 20 nm to z = 1 nm. Meanwhile the resonance of the force spectrum red
shifts due to plasmonic coupling. In comparison, the magnitude of the corresponding absorption
spectra has no significant distance dependence. (c) The optical gradient force, both on-resonance
(red) and off-resonance (blue), follows a power law distance dependence on z.

increases by a factor of ∼ 103 reaching F ≈ 10 pN. Correspondingly, the resonance frequency of the

force spectrum red-shifts due to the plasmonic coupling between the two spheres [198]. In contrast,

the magnitude of optical absorption does not change significantly with separations as shown in

Fig. 7.7b. The distance dependence of the optical gradient force on- (red) and off-resonance (blue)

is plotted in Fig. 7.7c. Both increase with decreasing distance approximately following a power law

∝ zn, with n ≈ −2, i.e., again less steep than the point dipole z−4 dependence.
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7.4 Discussion

The different spectral behaviors of the optical gradient force can be rationalized based on the

dipole-dipole interaction assuming two independently polarized spheres when z > 2r, with resulting

force proportional to the polarizability [168], 〈F 〉 ∝ Re(αtα
∗
s). For a non-resonant tip, the force

simplifies to F ∝ Re(αs), describing the dispersive force spectra for a tungsten tip and a R6G

sample in the visible, and a gold tip and a PMMA sample in the infrared. In general, a dispersive

line shape is spectrally broader than an absorptive line shape, thus making the optical gradient

force spectra extending more outside of resonance than corresponding absorption spectra. It is

interesting to note that the optical gradient force can in principle also become repulsive for Re(αs)

crossing zero. When tip and sample consist of the same material (e.g., silver), the force spectrum

is proportional to the square of the polarization, i.e., F ∝ Re(αtα
∗
s) ∝ |αAg|2, and is absorptive

when Re(αAg) crosses zero as for the case for the two plasmonic silver spheres.

As shown above in Fig. 7.7c, the optical gradient force based on a collective plasmonic

resonance can reach few pN. The force based on a single particle excitation in the form of a

molecular resonance is weaker by three orders of magnitude (few fN) under similar tip-sample

geometric conditions. In the following we address the question of AFM sensitivity for its possible

detection and distinction from thermal expansion. The sensitivity of force detection in AFM is

limited by thermal fluctuations of the cantilever [148, 81]. The smallest detectable force is when

the cantilever oscillation amplitude equals that induced by thermal noise given by

Fmin =

[
4kBTkB

ωQ

]1/2

, (7.5)

with Boltzmann constant kB, temperature T , spring constant k, detection bandwidth B, and Q

factor of the cantilever. The minimal detectable force gradient due to a change in sample-tip

interaction operating in non-contact mode can also be derived as [148, 81]

F ′min =
1

A0

√
27kBTkB

ωQ
, (7.6)

with cantilever oscillation amplitude A0. Using typical values from force detection experiments
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[191, 126, 192, 142, 143], we get Fmin ≈ 0.3 pN (T = 300 K, k = 3 N/m, B = 10 Hz, ω ≈ 500

kHz, Q ≈ 100) and F ′min ≈ 0.03 pN/nm (A0 = 10 nm, T = 300 K, k = 3 N/m, B = 10 Hz,

ω ≈ 500 kHz, Q ≈ 100). This makes collective particle excitation induced force detectable under

typical laser intensities below the sample damage threshold. In contrast force detection due to

molecular electronic and vibrational resonance is two orders of magnitude below the detection limit

of conventional room temperature AFM. We can also compare the optical gradient force to the

van der Waals force, which has a 1/z7 distance dependence in comparison to the 1/z4 of optical

gradient force. The optical gradient force is typically weaker than the van der Waals force at short

distances, however, under plasmonic resonances the optical gradient force can exceed the van der

Waals force [94, 38].

The effect due to thermal expansion ∆h can be estimated based on ∆h = αT∆T [143].

Assuming a sample thickness of 10 nm, typical thermal expansion coefficients αT = 10−4−10−5/K,

and a sample temperature increase of a few K after laser illumination [58, 143], we get a thermal

expansion value of ∆h = 0.1 – 100 pm. When this expansion of the sample is modulated at a

resonance frequency of the cantilever, the corresponding force becomes Fthermal = k∆h×Q, where

k is the cantilever spring constant of typically 3 N/m, and Q =100 – 200. The resulting force is in

the range of Fthermal = 10 pN – 1 nN. Thus the thermal expansion effect can readily be measured

with AFM as shown experimentally even down to monolayer sensitivity with a single chemical bond

expansion of few pm [143].

In previous attempts to detect the optical gradient force, a large force magnitude of F ∼ 2 pN

and an excellent agreement of the force spectrum with the far-field molecular absorption spectrum

[191, 107] strongly suggest that the observed experimental results were in fact due to thermal

expansion and not due to the optical gradient force as claimed. Optical gradient force detection

has also been assigned to the force contrast on bowtie antennas reaching few pN on resonance

[126]. This assignment is feasible in principle according to our predictions. However, a force due

to thermal expansion of similar magnitude is expected, leaving the underlying mechanism of the

imaging contrast unclear.
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In practice, the differences both in distance dependence and spectral frequency dependence of

the optical gradient force and thermal expansion can be used to differentiate the two mechanisms.

Notably, the optical gradient force is a longer range effect, determined by the spatial extent of the

near-field of the tip apex, and thus follows a continuous change with distance as determined by

the tip radius (Fig. 7.5f and Fig. 7.7c). In contrast, the force exerted on the tip through sample

expansion requires a direct physical tip-sample contact, and should decay on even sub-nm distances

above the sample, independent of tip radius.

A way to differentiate the two mechanisms in imaging plasmonic optical antennas is to map

the spatial force distribution. The optical force is proportional to the local optical electric field,

while the thermal expansion/absorption is due to resistive heating associated with electric currents.

Thus distinct spatial maps result for the two different mechanisms since the current distribution

peaks at the positions of minima in the electric field in optical antennas [178].

Fundamentally, the optical gradient force due to optical polarization and thermal expansion

due to energy dissipation are two dynamic processes occurring on different time scales. This provides

an additional opportunity for their distinction. Optical polarization with coherent excitation is

induced nearly instantaneously in the fs to ps range, as determined by the spectral line width.

In contrast, thermalization of an optical excitation underlying optical absorption leads to thermal

expansion on ns time scales.

7.5 Conclusion and outlook

In summary, the dispersive line shape in probing electronic and vibrational materials reso-

nances as related to the real part of the dielectric function of the sample can serve as a distinguishing

attribute in optical gradient force spectroscopy. Albeit weak with forces in the fN to pN range,

their detection with advanced atomic force microscopy techniques can provide a novel form of op-

tical scanning probe nano-imaging and -spectroscopy. The magnitude of the force can be increased

by exploring the resonance enhancement with sharp gradient on resonance, such as slow light and

electromagnetically induced transparency. The gradient force spectroscopy can also be expanded
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to nonlinear and coherent interaction with multiple light fields.

Compatible with a wide range of spectroscopies, including coherent and ultrafast techniques,

the optical gradient force spectroscopy can complement related all-optical scattering scanning near-

field optical microscopy (s-SNOM). Our calculation provides a guidance of the key parameters of

strength, distance dependence, and spectral behavior for a simplified tip geometry, yet can readily

be extended to specific tip geometries and other optical processes, including inelastic, e.g., Raman,

as well as nonlinear excitations.



Chapter 8

Conclusion and outlook

In this thesis I explored fundamental properties of light-matter interactions in the near-field.

The first two chapters cover the concepts of near-field optics and the theoretical background.

In chapter 3, the optical dielectric functions of one of the most common plasmonic materials

– silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral

range from visible to mid-infrared. This work was motivated by the need for accurate values for

a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This

measurement provides a reference for dielectric functions of silver.

Chapter 4 and 5 describe the infrared s-SNOM instruments I developed for spectroscopic

nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-

SNOM instruments, the novel design concept and key specifications are discussed. Initial low-

temperature and high-temperature performances of the instrument are examined by imaging of

optical conductivity of vanadium oxides (VO2 and V2O3) across their phase transitions. The

spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl

methacrylate) (PMMA) and other samples.

Chapter 6 explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

near-field response of a linear rod antenna is studied with Babinet’s principle. Babinet’s principle

connects the magnetic field of a structure to the electric field of its complement structure. Using

combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and

higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant



106

length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet’s

principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good

approximation in the mid-infrared. Thus Babinet’s principle provides access to spatial and spectral

magnetic field properties, leading to targeted design and control of magnetic optical antennas.

Lastly in chapter 7, a novel form of nanoscale optical spectroscopy based on mechanical

detection of optical gradient force is explored. It is to measure the optical gradient force between

induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides

the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence

of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry.

I show that the optical gradient force is dispersive for local electronic and vibrational resonances,

yet can be absorptive for collective polaronic excitations. This spectral behavior together with the

distance dependence scaling provides the key characteristics for its measurement and distinction

from competing processes such as thermal expansion. Furthermore, I provide a perspective for

resonant enhancement and control of optical forces in general.

The results presented in this thesis improve the understanding of light-matter interaction in

the near-field as well as provide new optical spectroscopy methods for in situ material character-

izations. s-SNOM and its alternative with force detection opens the opportunity towards optical

spectroscopy with single molecule sensitivity. With the development of new light sources, tip engi-

neering, and optical coherent control methods, it is possible to push the near-field optics towards

the ultimate limit of femtosecond dynamics with nanometer spatial resolution.
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Appendix A

Finite Element Method

The finite element method is a widely used numerical technique to solve complicated boundary-

value problems with approximation [110]. The boundary-value problems in a domain Ω with bound-

ary condition Γ can be written in a general form:

Lψ = f, (A.1)

where L is a differential operator, f is a given function and ψ is the unknown function to be found.

In electromagnetics most practical problems do not have analytical solutions, and therefore require

approximation methods. To illustrate the ideas of the finite element technique, we need to start

from two general approximation methods: The Ritz and Galerkin’s methods. The Ritz method is

a variational method to find the approximate solution by minimizing an associated functional:

F (ψ̃) =
1

2
〈Lψ̃, ψ̃〉 − 1

2
〈ψ̃, f〉 − 1

2
〈f, ψ̃〉, (A.2)

with respect to ψ̃, where ψ̃ is the trial function, the angular brackets denote inner products:

〈ψ, φ〉 =

∫
Ω
ψφ∗dΩ, (A.3)

and the operator L is self-adjoint and positive definite. The Galerkin’s method is a weighted

residual method that obtains approximation solutions by minimizing the weighted residual of the

differential equation r = Lψ̃ − f at all points of Ω, which also means minimizing the total residual

over the domain Ω:

R =

∫
Ω
ω · rdΩ (A.4)
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where ω is the weighted function.

The two classical methods both require a trial function ψ̃ defined over the whole domain that

could at least approximately represent the true solution. In complicated electromagnetic systems,

especially in two or three dimensions with irregular boundary conditions, it is very difficult, if not

impossible, to find such an entire-domain trial function. This is where the finite element method

steps in: If the whole domain is decomposed into a number of subdomains (which is also called

‘element’), and the trial function becomes a combination of local unknown functions defined over

subdomains, then on each small subdomain the local unknown function could have quite simple

forms. In other words, the entire-domain unknown function ψ is approximated by a finite number of

simple interpolation functions over subdomains. Then the unknown coefficients of the interpolations

functions can be found by applying the Ritz or Galerkin’s methods.

In brief words the finite element methods have four steps:

(1) Domain discretization. In the commercial FEM software COMSOL that is used in this the-

sis, this step is also called ‘Meshing’. The shape of the elements are usually line segments

for one-dimensional domain, triangles or rectangles for two-dimensional domain, and tetra-

hedra, triangle prisms or rectangle bricks for three-dimensional domain. The element’s

size could also vary depending on the gradient of the fields, i.e., smaller in the region

where the fields vary fast and larger elsewhere. The discretization manner could affect the

performance in terms of storage space, computation efficiency and accuracy.

(2) Selection of interpolation functions. The interpolation function should be selected to ap-

proximate the solution within an element. It usually comes in a polynomial form with

various orders. For element e

ψ̃e =

n∑
j=1

N e
j ψ

e
j , (A.5)

where the sum runs over the nodes in element e, ψej is the value of the unknown function

ψ at node j and N e
j is the interpolation function for node j. The choice of the polynomial

order depends the trading off between efficiency (low order) and accuracy (high order).
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The linear form is widely used due to its simplicity.

(3) Formulation of equations. After the domain is discretized and interpolation function is

selected, we can formulate the system of equations either with Ritz or Galerkin’s method.

Since the COMSOL software uses Galerkin’s method, here we will only briefly describe the

procedure via Galerkin’s method. The weighted residual for element e can be obtained by

substituting Eq. A.5 into Eq. A.4:

Rei =

∫
Ωe

N e
i L{Ne}dΩ{ψe} −

∫
Ωe

fN e
i dΩ, (A.6)

where i = 1, ..., n and n is the number of nodes in element e. The above equation can be

rewritten in matrix form as

Re = Keψe − be, (A.7)

where

Re = [Re1, R
e
2, ..., R

e
n]T , (A.8)

Ke
ij =

∫
Ωe

N e
i LN e

j dΩ, (A.9)

bei =

∫
Ωe

fN e
i dΩ. (A.10)

(4) Solution of equations. The final step is to solve the systems of equations of the general

form:

Kψ = b. (A.11)

The non-vanishing b corresponds to the existence of a source or excitation, while a vanishing

b corresponds to source-free problems. After solving the system of equations, parameters

of interests can be computed easily.



Appendix B

The optical dielectric function of silver: supplement

In this work three template stripped (TS) silver samples are measured with spectroscopic

ellipsometry. The resulting dielectric data are corrected for Kramers-Kronig consistency and are

shown in the main text. The dielectric data of silver before correction for Kramers-Kronig consis-

tency are directly inverted from the ellipsometry measurements, and retain the instrumental errors.

Here, we show the dielectric data of silver both before and after the correction. For consistency

check with our previous work [180] and for comparison with silver, we also measured the dielectric

function of three TS gold samples as described in the main text. A comparison with gold shows a

larger variation of the dielectric function among silver samples possibly due to oxidation. Finally,

we show measurements of the dielectric function of silver over a period of time. A trend of sample

degrading is observed with a decreasing relaxation time τ .

B.1 Ellipsometry data of silver before and after correction

Fig. B.1 shows the direct inverted dielectric data from ellipsometry measurements and the

Kramers-Kronig consistent fit with good agreement. Photon energy in linear scale (a), and in

logarithmic scale (b) are plotted to emphasize the Vis/UV and IR spectral range, respectively. Due

to residual instrumental errors the direct inverted dielectric data are not perfectly Kramers-Kronig

consistent. We therefore fit the dielectric data of silver with an analytic formula consisting a Drude

and three Gaussian functions, a procedure commonly used for metals [193, 154].

As noted in the main text, the deviation of the direct inverted dielectric function ε2 from the
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a) b)

Figure B.1: Dielectric function of silver from direct inverted ellipsometry measurement (dot), and a
Kramers-Kronig consistent fit (line). The three samples are shown in red, green, and blue. Photon
energy in linear scale (a), and in logarithmic scale (b) are plotted to emphasize the Vis/UV and
IR spectral range, respectively.

Drude fit at energies below 0.1 eV is the cause of a frequency dependent τ(ω).

B.2 Dielectric function of gold

Fig. B.2 shows the direct inverted dielectric data of TS gold measured in this work in compar-

ison with fitted dielectric function presented in our previous paper [180]. The relative differences in

measured dielectric data between the three TS gold samples are less than the differences between

the three TS silver samples.
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Figure B.2: Dielectric function of three TS gold samples from direct inverted ellipsometry mea-
surement (red, green, and blue), in comparison with the fitted dielectric function presented in our
previous paper (black) [180]. Plots with phonon energy in linear (a) and in logarithmic scale (b).

B.3 Instrument error vs sample difference

As shown in Fig. B.1 and B.2, in the overlapped spectral range of the two instruments of

0.62 – 0.73 eV (1.7 – 2 µm), the measured dielectric functions between the two instruments have an

offset. This offset is fundamentally limited by the instruments, and is likely due to different light

sources, difference in illumination spot sizes, and signal detection methods. The offset imposes an

systematic error on our data. As the difference between the dielectric function of the three samples

is less than this offset, we can conclude our data is dominated by the instrumental error.
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B.4 Sample degrading over time

Comparing the measurements to gold, we see larger variations from sample to sample in

silver. Existence of large variations even among nominally identical samples indicates silver is

very sensitive to environmental conditions, such as surface oxidation, impurity, and crystallite size.

These variations also affect the electron relaxation time τ .

To test the influence of surface oxidation, we measured the three samples a day later for

comparison. Fig. B.3 shows the comparison of dielectric function for fresh samples (line) and the

same samples one day later (dot). ε1 of three samples only vary slightly. However, ε2 of samples

measured one day later are consistently smaller than fresh samples, indicating sample degrading. As

the relaxation time τ can serve as a characteristic parameter for sample quality, we apply extended

Drude model analysis to extract τ(ω). The resulting τ(ω) is shown in Fig. B.4, with decreased

relaxation time τ after one day for the same samples. We also measured the same samples after

3 days and 7 days, but these results do not have a consistent trend for τ . This could be due

to oxidation/contamination of the samples in an uncontrolled fashion over time when stored in

ambient conditions.
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a) b)

Figure B.3: (a) −ε1 and ε2 for fresh silver samples (line) and one day later (dot) of sample A – C
in red, green, and blue. (b) Zoom-in of ε2 in (a) to show the increase in ε2 of samples measured one
day later compared to fresh samples. ε2 of samples measured one day later are consistently larger
than fresh samples, indicating sample degrading. ε1 only vary slightly.
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Figure B.4: Extracted relaxation time τ from extended Drude analysis. Fresh samples have a larger
τ(ω) compared to samples measured one day later, indicating sample degrading over time.
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