Contribution Analysis:
A Technique for Assigning Responsibilites to
Hidden Units in Conectionist Networks

Dennis Sanger

CU-CS-435-89 May 1989

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Contribution Analysis: A Technique for Assigning Responsibilities to Hidden
Units in Connectionist Networks

Dennis Sanger

AT&T Bell Laboratories and the University of Colorado at Boulder

Abstract: Contributions, the products of hidden unit activations and weights, are presented as a
valuable tool for investigating the inner workings of neural nets. Using a scaled-down version of
NETtalk, a fully automated method for summarizing in a compact form both local and distributed
hidden-unit responsibilities is demonstrated. Contributions are shown to be more useful for ascertaining
hidden-unit responsibilities than either weights or hidden-unit activations. Among the results yielded by
contribution analysis: for the example net, redundant output units are handled by identical patterns of
hidden units, and the amount of responsibility a hidden unit takes on is inversely proportional to the
number of hidden units.

1. The Problem

Three-layer feed-forward neural nets have become very popular of late, with much research exploring
how tv apply these nets to a wide variety of problems and how to improve their performance, especially
in terms of leavning rate. Yet in spite of their popularity, relatively little research has investigated how
neural nets solve problems, i.e. how the hidden units implement the mapping from input to output. This
has resulted in a situation where researchers are using a tool that works well, while not understanding in
any great detail why the tool works, analogous to an instructor not requiring pupils to show how they
arrive at solutions to problems.

Understanding this mapping would not be a difficult problem if the activation function used by the net
were linear: given inputs and outputs, the net would essentially be solving a large system of linear
equations, eliminating much of the mystique surrounding the problem of understanding what goes on
inside neural nets.

Neural nets do not, however, use linear activation functions. Worse yet, most nets use at least one
additional, hidden layer of non-linearly activated units. Now, the problem of mapping inputs to outputs
clearly does not have a simple, closed-form solution. In this paper, I propose a method, contribution
analysis, for deriving the responsibilities of individual hidden units in implementing the input-output
mapping.

2. Contribution Analysis

While most attempts at understanding neural net internals focus on weights or hidden-units, I define a
new quantity, a combination of weights and hidden-unit activations: the contribution. For a specific
input presentation, a specific hidden unit, and a specific output unit, the contribution is defined as the
product of the hidden unit’s activation when the net is presented with the specified input and the weight
from the hidden unit to the output unit. There is a distinct contribution for each combination of input
presentation, hidden unit, and output unit.

Unless stated otherwise, for the analysis described in this paper, the contribution is slightly modified. It
is possible for a contribution to be very large, yet push the output unit in the wrong direction. Further,
the sign of a contribution indicates only whether the contribution stimulates or inhibits the output unit.
To transform the contribution into a measure of correctness, it is necessary only to adjust the sign of the
contribution so that contributions in the wrong direction are negative, while contributions in the right
direction are positive.

3. An Example Problem Domain: Micro-NETtalk

Contribution analysis is best explained by example. The neural net used here is a small version of
NETtalk (Sejnowski & Rosenberg, 1986; 1987; 1987), a net that learns to convert written English text to
the corresponding spoken English phonemes.

Like NETtalk, this net uses the backward-propagation rule (Rumelhart, Hinton, & Williams, 1986) to
learn to "pronounce” text. In this case, as shown in Figure 1, the input to the net is a pair of letters and
the output is a phoneme corresponding to the pronunciation of the first letter in the pair.

22
7
DR
NN

2 7
7

<Z &
R

N
5

*-‘\

O

S

ot

=

ST
S

K25
=

-,
R, 2
<

S =
Seo
e
S

&2
=2

Rt

-

&2
e

57 2

74

.
22>

£7
<

2

L

25
25

72
ez

N

Figure 1 - Micro-NETtalk Architecture

There are eighteen input units, logically divided into two groups of nine units, with one group
representing the first letter in the pair (the letter to be "pronounced") and the other group representing
the second. Within the groups, each of the nine units represents one of the letters from the set {a, c, ¢,
g h, i, p, s, t}. For valid input, only one unit in each group will be active. The input units are referred
to by names consisting of a letter followed by a number, such that the letter is the letter the unit
represents and the number is the position of the letter in the input, i.e. "1" or "2". For example, for input
"ag", only the units al and g2 will be active.

The number of hidden units may be varied. As few as five and as many as twenty-five were used in this
study — unless stated otherwise, the data presented here comes from a net with nineteen hidden units,
The hidden units are referred to by number, with the lowest-numbered one being called 0, and the
highest-numbered one, in this case, being 18.

The twenty-one output units correspond to phonetic features, e.g. position of the tongue in the mouth or
vowel pitch. The output units are referred to by three-letter abbreviations of the features they represent.
For example, the unit lab represents the labial feature. The various features and their abbreviations are
defined in Table 1, based on systems used by Sejnowski and Rosenberg (1986) and Ladefoged (1975).

Unit | Feature Feature Type

lab labial

den dental

alv alveolar o

pal palatal position in mouth

vel velar

glo glottal

sto stop

nas nasal

fri fricative

aff affricative phoneme type

gli glide

lig liquid

voi voiced

ten tensed

hig high

med | medium vowel frequency

low low

sil silent

eli elide .
punctuation

pau | pause

ful full stop

Table 1 - Phonetic Features

A phoneme is defined by a particular pattern of activation in the output units; see Table 2, again based
on Sejnowski and Rosenberg (1986) and Ladefoged (1975). Note that the features liq, pau, and ful are
never present.

Symbol

1ab

den

alv

pal

vel

glo

Phonetic Features
sto nas fri aff gli lig

voi

ten

hig

med

low

sil

eli

pau

ful

bit

shin

father

bake

guess

head

Pete

Ken

it

N

v

The training set consisted of fifty-five two-letter pairs and a phoneme to represent the pronunciation of
the first letter, as shown in Table 3. Only one pronunciation is associated with any pair; the
pronunciation for a given pair was chosen by extracting occurrences of the pair from a dictionary and

Table 2 - Phonemes and Associated Phonetic Features
(V = feature present in phoneme)

using the most frequent pronunciation. Note that none of the pairs started with the letter "t".

The net was trained over two-thousand epochs, with weights updated after each of the fifty-five input

a C e g h i P S t
a @ ¢ @ a e @ @ @
c | k k S C s k k
e | i E i E E i E E E
g 8 J g - g g g -
h | h h
i A I A I I 1
P| P p P
s | s S S S s S S 3
t

Table 3 - Letter Pairs and Their Pronunciations
(first letter on left, second letter on top)

presentations and used the activation function

1
-(ZW,';G.' +B)

a=

1+e

where a; is the activation of the jth unit in this layer, e is the constant 2.719..., B; is the bias, g; is the
activation of unit 7 in the layer below, and w;; is the weight on the connection from that unit. The
learning rate was .8; momentum was .2.

4. Applying Contribution Analysis to Micro-NETtalk

Since a contribution is defined in terms of a specific input presentation, a specific hidden unit, and a
specific output unit, the set of all contributions resides in a three-dimensional array. Extracting useful
generalizations from a large three-dimensional array of data — in the Micro-NETtalk example, there are
21,945 contributions — is not an easy task. Since the distribution of the contributions is more
interesting in the pursuit of hidden-unit responsibilities than the magnitude of the contributions, principal
component analysis on two-dimensional cross-sections of the contribution array suggests itself as the
method of attack.

Principal component analysis (Fukunaga, 1972) is a procedure for taking a set of n-vectors and rotating
n-space such that the new axes are aligned with the direction of greatest variation in the set of vectors.
For contribution analysis, there are two types of cross sections that principal components analysis can
operate on. First, the set of vectors can be defined such that each vector consists of the contributions
from all hidden units to a specific output unit for a specific input presentation. There is one such vector
for each input presentation, and a separate analysis must be performed for each output unit. In this case,
the principal components represent patterns of hidden units that are responsible for activating the specific
output unit: distributed hidden-unit responsibilities can be found this way.

Second, the set of vectors can be defined such that each vector consists of the contributions from a
specific hidden unit to all output units for a specific input presentation. Again, there is one such vector
for each input presentation, and a separate analysis must be performed for each hidden unit. In this case,
the principal components represent the patterns of output units that the specific hidden unit is responsible
for: local hidden-unit responsibilities can be found this way.

4.1 Distributed Hidden-Unit Responsibilities

As described above, a separate principal component analysis is performed for each output unit. The
results of such an analysis for the output unit lab are shown in Figures 2 and 3. Figure 2 plots the
value of the first rotated variable for each input presentation. The input presentations are clearly divided
into those for which lab is active and those for which it is not. Note that it is possible for the axes of
contribution space to be rotated in a way that a negative value for a rotated variable actually denotes
correctness; this is not the case here, where the input presentations that are handled correctly most
strongly for lab are those with large positive values of the first rotated variable.

ps_s) .fﬁa_ﬁ; pitl
IAEA\ isI -
8 iglCLI Gﬂ%
ii
1
e
ﬂ%@_@ @] a
Y Coade B
StS o g _
S1 g,
sC_s .Séhsks
“x h C
gt - gp ggl Cé‘:‘i
b o
Ty
]] I
-5 0 5

Figure 2 - Results of Contribution Analysis for the Output Feature "lab"
(Values of the first rotated variable for each input presentation -
"eg_E" means input presentation "eg", output phoneme "E")

Figure 3 plots the first column of the rotation matrix; the values represent the weight each hidden unit
was given in forming the first principal component. The hidden units with the most positive weights are

those that contribute most strongly in the right direction to lab. Thus Figure 3 yields the pattern of
hidden units that are responsible for lab.

04 —

0.2

T T (T S R B S B B
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3 - First Principal Component Weight for Each Hidden Unit

Similar analyses can, of course, be performed for all the hidden units. Most of the graphs corresponding
to Figure 2 show a similar quality of separation, i.e. the pattern of hidden units has a very clearly
delineated domain of responsibility for this feature. A few features exhibit a lesser degree of separation
— in general, the degree of separation increases as the proportion of inputs for which the output feature
is active approaches one half. For example, liq is active for none of the input presentation, and the
corresponding graph shows little separation.

The charts corresponding to Figure 3, on the other hand, showed with some consistency a clear
separation between hidden units in the pattern and hidden units not in the pattern. This indicates that
membership in hidden-unit patterns is clearly defined.

The results of analyses for all output units are summarized in Table 4. The second column shows the
patterns of hidden units responsible for the features in the first column; when more than one principal
component was significant, each was displayed as a separate row, in descending order of significance.
The third column indicates for which of the input presentations the pattern properly activates the output
unit, again, in descending order of significance.

An intriguing conclusion can be drawn from Table 4: the units glo and gli are handled by the same
pattern of hidden units. What these output units have in common is that they are activated only for the
two inputs "ha_h" and "hi_h". Likewise, the units sil and eli are activated only for "gt -" and "gh ."
and are handled by identical patterns of hidden units. Finally, the same effect can be seen for the umts
lig, pau, and ful, which are never activated, and are all handled by the same pattern of hidden units.
Apparently the net has learned which output units can be handled identically and thus consolidates the
responsibility for identical units.

Hidden Units Input Presentations
ei icaieciec Eep Eet Ecg Epp peh Eit les Eic Iig I
ip Ipa pph fis Ipi ppe p
den 9 et Eec Ech Eeg Eep Ees Eat @ ap @ ac_@ ag_@ as_@
atv 6 St ssi $sa sse ssc_ssp sci sss_sce sie Aia Aps s
pal 0 cc ket kes kga gea kge Jgi ggs ggh -gp gge g
7 ch Csh Sah a
6111541 se ssis
vel 0 gs ggg ggp gga gcet kec kgi gge Jea kesk
glo 8 hi hha h
sto 16 Pp_pgs_gca kpapgg gcc kgi ggp ges kgagpi ppepetk
nas 2013 ge J
fri 18 Si_sse ssa sstSsp sscsss_sps_sciscesshSphf
aff 618515 se ssi sci_sce ssp ssc_ssh Sss ssassts
072 gt -8 g8p_ggs ggh -
gli 8 hi hha h
lig 032 cc kgs ggg ges kgp get kga ggt -gh -gi gea k
voi | 20 gs_ ggg ggp gge Jgageig
ten 15 10 ai_eac eie Aee iei iia Aea iah a
hig 12 it Tic T'ig Tip I'is Tea ieiiee i
med 91311 et Eec Ech Eep Eeg Ees Eai eae eia Aie A
low 10119 at @ ap @ ac @ ag_@ as_@ ah_a
sil 10 ae e
12 gh - gt -
eli 10 ae e
12 gh - gt -
pau 032 cc kgs ggg ges kgp get kga ggt -gh -gi gea k
ful 032 cc kgs ggg ges kgp get kga ggt -gh -gi gea k

Table 4 - Hidden Unit Patterns (19 Hidden Units)

4.2 Local Hidden-Unit Responsibilities

As described earlier, a separate principal component analysis is performed for each hidden unit. The
results of such an analysis for hidden unit 0 are shown in Figures 4 and 5. Figure 4 plots the value of
the first rotated variable for each input presentation. The input presentations are clearly divided into
those that 0 handles correctly and those it does not especially care about. Hidden unit 0 appears to be
responsible for all inputs resulting in the phonemes "k", "g", and "J".

hidden unit 0
i pp_p
PLD pe D
pap
ia KIS‘ -
ié'_
ac e ¢ aﬁ‘:@
alr a as @
hizhp, - af’@®
tk
& ca k -
ch> cs_ k T cck
gl - ig 8PE
gL g -
it
] I] I
0 5 10 15

Rotated Variable 1

Figure 4 - Results of Contribution Analysis for Hidden Unit 0
(Values of the first rotated variable for each input presentation -
"eg_E" means input presentation "eg", output phoneme "E")

Figure 5 plots the first column of the rotation matrix; the values represent the weight each output unit
was given in forming the first principal component. The output units with the largest weights are those
that are contributed to most strongly by 0. While Figure 4 shows which input presentations 0 is
responsible for, Figure 5 shows which output units 0 handles. 0 turns out to be responsible for the
output unit vel, which is active for the input presentations that 0 is responsible for.

04 —

-10 -

T (e O O T R R T I B B
lab den alv pal vel glo sto nas fri aff gli liq voi ten hig med low sil eli pau ful

Figure 5 - First Principal Component Weight for Each Output Unit

The graphs corresponding to Figure 4 for the other hidden units exhibit strong separation, in most cases
with one cluster of input presentations on one edge of the graph, another on the opposite edge, and no
inputs in between. From this, one can conclude that each hidden unit has a very clearly defined domain
of input presentations for which it is responsible. The separation is also clear, albeit not as strongly, in
the charts corresponding to Figure 5, suggesting that hidden units tend to be responsible for correctly
activating a small set of output units for a small set of input presentations.

The results of analyses for all hidden units are shown in Table 5. The output features for which the
hidden units are responsible are shown in the second column. Some hidden units have more than one
row of responsibilities — this occurs when more than just the first principal component has a significant
standard deviation associated with it. A separate row of the table is devoted to each component, in
descending order of significance. The input presentations for which the hidden units are responsible are
listed in the third column, again, in descending order of significance.

Two results are readily apparent from Table 5. First, there is a strong dichotomy between units that are
responsible for vowels and those that are responsible for consonants. Second, "exceptions”, such as
“gt -" and "gh_-", appear frequently in the table, suggesting that exceptions require more resources to
learn.

- 11 -

Hidden Unit Features Input Presentations
0 | vel gp ggeg ggaggs get kg geec kecakge Jesk
med gt -at @ac_ @ ap @ gh -ag @
1 med ah ach Csh Sgh -gt -at @
sil eli gh - gt -
2 lab gs_ggg_ggp ggiggaggel
3 nasmedten | cc kgp ggg gca kes kga ggs g
4 voi ct k
5 fri alv $S_S St $SC SSi_Sse ssp_ssasps_scisces
6 alv Si_sse ssa Sst ssp_sscscisce ssssie Aia A
7 sto vel den si_sse ssp_sci ssh Sce ssc_sss s
8 gli glo hi_h ha_h
9 den et Eep Eec Ees Eeg Ech E
10 sto es Eas @ ap @ ag @ ac @is I at @ ep Eeg Eai eae eip I
ig Tec Eic Iah aca ieh Eeci iee_iia Aie Aet Eit Ips s
11 vel sto alv at @ ac @ as @ ag_ @ ap_@ eh Eet Eai eac_cah aec E gh -
es Eph feg Eep Esh Sgt -
12 lab vel et Eec Eech Eeg Eep Ees Eit Iea iei iic Ipp pee iph f
ig Tip Tis I
13 fri low lab eiieaiee iep Eet Eec Eip Ieg Eit Iic Ipi pig Ipa ppe p
eh Ees Epp pia Aie Ais Tai eae ¢
14 hig ip_Iit T'ic Tig I'is I
15 sto se ssi_ssasces
ten ec_iei_ iac eai eea iic Aia Aah a
16 sto cs kec kgs gea kpp ppi ppa pgg ggp ggigpe pga get k
17 lab eh Eet Eec Eep Eeg E
18 fri se_SPps ssi_ssc_sss sst ssp ssascesphfci ssh S

Table § - Hidden Unit Responsibilities (19 Hidden Units)

Table 5 may seem unwieldy for those secking a short summary of why Micro-NETtalk works, but, upon
inspection, it becomes obvious that Table 5 can be summarized in a much more compact form. For the
reader familiar with regular-expression syntax, Table 5 is summarized in Table 5a. An asterisk represents
a wild-card, while brackets represent a set of alternatives. For example, "g* g" represents all input
presentations with "g" in the first position and with output phoneme "g", while "p[hs] *" represents the
input presentations "ph_f" and "ps_s".

-12-

Hidden Unit Features Input Presentationsr__TJ
0 vel g* [gl] c:ik
med gt -a* @
1 med [acs]h_* g* - at @
sil eli g* -
2 lab g*_[gl]
3 nasmedten | c* kg* g
4 voi ct k
5 fri alv [cspl* s
6 alv [cs]* si* A
7 sto vel den [cs]* ssh S
8 gli glo h* h
9 den e* E
10 sto [aei]* * ps_s
11 vel sto alv a*_*e* E [pslh * g* -
12 lab vel e*_*i* I p[ph]_*
13 fri low lab [ei]*_* p* p
14 hig i* I
15 sto s* s
ten e*_ia*_[eh] i* A
16 sto c* kg* gp*p
17 lab e* E
18 fri {cps]* s [pslh_*

Table 5a - Hidden Unit Responsibility Summary (19 Hidden Units)

4.3 The Effect of Varying the Number of Hidden Units

To illustrate the usefulness of contribution analysis in studying net internals, consider the effect on
hidden-unit responsibilities of varying the number of hidden units. Table 6 shows hidden-unit patterns
found in a net with five hidden units, while Table 7 shows hidden-unit responsibilities for the same net.

Tables 8 and 9 display similar data for a net with twenty-five hidden units.

-13 -

lab

Feature | Hidden Units } Input Presentations
0

Si_ssa sse sce sstsci sspsscsss sie A
sh Sia Ach Cai eaec eah age J

den 0 ie Aja Aai eac eat @ as_@ ac_ @ ag @ ap @ es E
e¢h Eep Eet Eeg Eec Eig Iea iic Iip Iis Jei iee iitI
alv 4 Si_sse ssa sie Aia Ace SSp_SSt SSC SCi SSS SPs s
pal 0 sh_S ah ach C
vel 2 ge Jcakgs ggi gga ggg ggp gos ket kee k
glo 3 hi_ h ha h
sto 0 st ssh_Ssa ssi sse sce sss sscscisge]
sp_sgh -ch Cgt -ps sah aph fha hhi hai e
ac eie Aia A
nas 0 geJ
fri 4 St sps_ssi_ssasse sss_ssc_sspscescisph fsh S
aff 0 ch C
gli 3 hi hha h
lig 4 Si_Ssa sse_sstSce ssc_SSp_SSS SCisps s
4 ei_iec_iea iia_ Aie_ Aae eai epe ppa ppip
ip Iit Tic Tig Iep Epp pec Eet Eeg Ees E
eh_Eis Iph f
2 pappipgt-pepgiggaggs ggp ggh -gs gge
voi 2 gs ggi gge Jgg ggagepg
ten 04 ie Aia_ Aah aai eac e
hig 4 ee_iei_iea iip Iit Tic Iis IigI
med 0 ie Aia_ Aai cace
low 3 as_ @ag @ac_@at @ap_@ah ach Eep Eet Eec E
eg Ees Eac eai eea iee iei iia Aie Aip I
it Tic Tig I'is I
sil 1 gh - gt -
eli 1 gh_- gt -
pau 4 SI_Ssa_sse_sst sce_ssc SSp Sss_Scisps s
4 ei_iee iea iia_Aie_ Aae eai epe pip Ipap
pipit Tic Tig Tep Epp pec Eet Eeg Ees E
eh_E is I ph f
2 Pa ppi ppe pgt-gigga ggg ggp ggh -gs gge
ful 4 Si_$sa_sse Sst sce sSSP SSC SSS ScCisps s
ei_iee_iea iia_ Aie Aaec eai epe ppapip |
pi pit Tic Tep Eig Iec Eet Eeg Epp pes E
eh Eis Iph f
2 pappipgt-pepgiggages gep ggh -gs ggel

Table 6 - Hidden Unit Patterns (5 Hidden Units)

-14 -

Hidden Unit ! Features Input Presentations

0 lab se ssi ssas ce_ St_s cis Sp_s _ ss_s sh_S
ic Aia_ Aae eai ech Cah ageJ

1 den ph_fsh Sst sps_sah aha hhi_hgh -gt -

2 low den med hig ten SS s gt -sa ssi sps sci sse sgh -stsscs
ce ssp scs kca ket kec kpa ppipgs ggag
gl ggg gep gpe pshSge]

3 med ten voi sil eli nas lab cs_kcc ket kss ssc sst sspsci ssh Ssi s
ps_sce sca kch Cse ssa sis Thi hha has @

4 alv fri se_ssi_ssa_sps_Ssp_Ssc_sstscescissss
ie Aia_ A

low pal den aff vel med voisil | pe ppi_ppa ppp pee iei iip Iph fse ssis
eli nas glo gli ic Isa sps sit Tea iig Iis Isp ssc ssts
ce sci sss s

Table 7 - Hidden Unit Responsibilities (5 Hidden Units)

-15 -

Feature | Hidden Units Input Presentations
lab 14 p;;- _pph fpipeh Eet Eec Eeg Eep Epa ppe p
es Eit Tis Tic Iig Teiiip Jee iea i
den 20 eh Ees Eeg Eec Eep Eet Eat @ as @ ac @ ag @
ap_@
alv 319 St $SC_SSp SSS SSi_ sps ssa sse sie Aia A
ci_sce s
pal 62312 ah ach Csh S
vel 13 cs kgs ggg ggp gec kcakcetkgi gga ggeJ
glo 19 si_sse ssascisce sspssc ssh Sss ssts
ie Aia Acakal cac e
24 ha hhi_h
sto 4 pi_pcs kpp ppa pec_kcakgs gpe petkgg g
gp_g g ggeag
nas 9 ge J
fri 18 sh_S st sph fps sss_ssc_ssi_ssp sse sce s
ci_ssas
aff 15 ch Ceh Eec Eet Eeg Eep Ees Eee iei iea i
13 ch C
19 ch Cse ssi sie Asascescisia Aspsaee
sc sai_ess sst see iei iea ihi hsh Shah
gli 19 si sse ssasciscesspsscssh Sss ssts
ie Aia Acakai eac e
24 ha_h hi_h
lig 15 ¢h Eec Eet Eeg Eep Ees Eci iee ieaiah a

iplat @it lic IiglisTaec eac @ic Aag @
ap @ia_Aai eas @

voi 10 13 gs_g8g g8p gga ggi ggeJ
ten 15 ai eia Aah aic Aei iea_iac eee i
hig 14 ei_ieaiee iit Iic Tig I'is Iip I
med 20 es Eeg Eeh Eec Eep Eet E
low 20 ah aat @ac_ @ ag @ ap_@ as_ @
sil 18 gh - gt -
1518613 gh - gt -
eli 18 gh - gt -
15186 13 gh - gt -
pau 15 eh Eec Eet Eeg Eep Ees Eei iee ieaiah a

at @ ip_litlicTig Tae eis Tac_@ ie_A ag @
ap_ @ia_ Aai eas @

ful 15 eh Eec Eet Eeg Eep Ees Eei iee ieaiah a
ipTat @it Iic Tig Tae eis Tie Aac @ ap @
ag @ ia_Aai eas @

Table 8 - Hidden Unit Patterns (25 Hidden Units)

- 16 -

Hidden Unit Features Input Presentations
0 lab ten ss_sst ssc_ssh_ Scs ket kci ssa scc kps s
ch_ Csp ssisgs geca kgt -
1 fri alv Si_SSe SSs SSt SsC_SSp SCissasces
2 ten pp_pph fpappepes Eeh Epi pet Eis Iec E
eg Eit Tep Eic Iig Ich Cip Ics ket kec k
3 alv ia_ Astsscssp ssssps_sic Asi ssasses
4 sto cs kec kgs ggp ggg geakgi gpp ppippap
ctkpe pga g
ten ps_sci_sss ssp ssc_ssis
5 ten it Tet Ests
6 den sh_Sph fah ach C
7 ten voi hig pa_pca kpppctkcec kpip
8 fri ss_ ssi_sse ssc_sph fsp ssa ssh Sstsps s
ci_sces
9 sto fri alv se sce ssi_ssp sst sscscis
10 ten sil eli PS_SSS_SSp_Ssc ssa scs ksi spp pgs gegpg
gg_gpapcc kga gcea kpipgi gci ssespep
as @ ap @ ag @ geJ
11 lab pe_pee ipi pei ipp pep Epa pet Eea iph f
ec Eeg Eeh E
12 sto vel eh_E ph fsi_ses Ess_s
13 med 88 ggs ggp gga geec ket kes kgt -gh -ch C
ge Jgi gah aag @ ac_ @ at @ ca kas @ ap @
14 hig den med ei_iee iea iit Iic Iis IigIip I
med den ps_sgs ggg ggp ggh -gt -ah a
lab pp_p pi_p ph_fpe ppa p
15 ten gli glo cs kca kec ket kgi ggs gga ggg ggp ggt -
ge_J pp_p gh_-pa ppe ppi pstssp sscsces
ps_s
16 voi sa_sst sps sca kce sct kpa psc_sss_scis
sp_sse_scc kecs ksi spp ppe pph fpi pch C
sh_ Sia Aat @
17 ten voinas den | ch Cct kca kcc kes_kci_ssh_Sst ssasscs
hig med lab ph_fss ssi sha hps shi_hpa pgh -sp sgt-
Pipce spp_p
18 sto at @as @ac_@ch Eet Eag @ ah aap @es Eec E
gh -ph feg Egt -sh Sst sps_sep Eae e
19 alv Si_ssa sse sci ssc_sspscesstssssshS

ia_Aie A

Table 9 - Hidden Unit Responsibilities (25 Hidden Units) - cont.

-17 -

LHidden Unit Features Input Presentations
20 “den es Eeg Eep Eeh Eec Eet Eai ¢as @ ag @ ap @
ac_@ at @ ac_e
hig as @ ag_ @ ap_@ ac_@ at @ ah_acs kch Ccc kps_s
ct kpp pph f
hig med cs kecc kch Cpp pes Eeg Eps sep Ech Eec E
ct ket Eph f
21 fri $s_Sse ssi ssc_sst sps_ssp ssascessh S
ci_sph f
22 alv pp_peh Eph fpi ppe ppapep Egh -ch Cah a
et Eec Eeg Esh Shi hap @ ha_h
hig den c¢h Csh Sah agh -
23 med alv voi cakcc ket kes kch Cap @ ac_ @ ag @ at @ sh_S
ah aas @ ph f
pal ch_ Cah ash S
low ah aap @ ac_@ ag_ @ at @ as_@
24 den ten low med | ci_sss ssi_scs kps sch Csh Ssa sca kce s
hig lab eli sil sc scc_ksp sse sgs ggi gpip

Table 9 - Hidden Unit Responsibilities (25 Hidden Units)

The preceding tables suggest some interesting hypotheses. In Table 6, there is only one pattern
consisting of more than one hidden unit, while Table 8 shows five such patterns, with up to four hidden
units in a pattern. It appears that in nets with small numbers of hidden units, there is little distribution
of responsibility.

A related effect can be observed in the hidden-unit-responsibility tables. In Table 7, three of the five
hidden units are responsible for seven or more output features, while in Table 9, only two of the
twenty-five units take on such a heavy workload. Similarly, while all but one of the hidden units in
Table 7 are responsible for seventeen or more input presentations, less than half of the hidden units in
Table 9 bear a comparable burden. Put simply, hidden units in a smaller net work harder.

5. The Effectiveness of Contribution Analysis
5.1 Contributions Versus Weights and Hidden-Unit Activations

Having developed a new method for analyzing what goes on inside neural nets, it is necessary to gauge
its effectiveness relative to other methods. A simple comparison between weights, hidden-unit
activations, and contributions involves thresholding activations passed to the output units. Suppose that
all contributions below a given threshold are set to zero. If contribution analysis is a valid method for
characterizing what is going on inside the net, then the error rate should remain low even if a large
number of contributions to the output units are zeroed, if those contributions are all small, since the size
of a contribution is directly proportional to its importance in implementing the input-output mapping.
An analogous thresholding can be applied to hidden-unit activations and weights. If contributions are
more useful in assigning meaning to hidden units than weights or hidden-unit activations, then the
percentage of contributions that can be removed while still maintaining a given error level should be
higher than the percentage of hidden-unit activations or weights that can be removed.

This is indeed the case, as is shown in Figure 6. The curve labelled "C" represents the number of
erroneous outputs, i.e. output units with activations on the wrong side of .5, as the threshold value is
raised and the percentage of contributions thresholded increases. The curve labelled "H" is the
analogous curve for hidden-unit activations, while the curve for weights is labelled "W". Note that all
three curves start out at one error with no information thresholded out, since there is a combination of

-18 -

input presentation and output unit, "ps_s"-alv, that is not mapped correctly by the net after two thousand
epochs. If contributions were thresholded out in order of correctness, least correct first, rather than in
order of magnitude, this error would disappear with only 3.9% of the contributions removed.

30
w H c
20 -
Number of Errors
10 -
0 I I I 1
0 0.2 04 0.6 0.8

Proportion of Information Removed

Figure 6 - Errors As a Result of Thresholding

Having determined that the contribution is a highly relevant quantity in terms of understanding
connectionist net internals, the next question to ask is whether the hidden-unit responsibilities extracted
from contribution array via principal components analysis are accurate. Table 10 shows the errors that
occur when hidden units are removed from the net one at a time, i.e. it represents an empirical attempt
at determining hidden unit responsibilities. Seven hidden units create no errors when they are removed,
indicating that they are perhaps superfluous units, and this task could be learned with fewer hidden units.
Note that only local hidden-unit responsibilities can be derived in this way without incurring
combinatorial computational expense.

This experiment cannot yield all hidden-unit responsibilities, but only the ones that result in errors when
the hidden unit is removed. Whether deleting a hidden unit produces an error is highly dependent on
what other hidden units are doing: the sum of the contributions from all of the other hidden units may
be larger than the contribution from the deleted hidden unit, although this contribution may be far larger
than any other single contribution, and no error will result. Conversely, an output unit may be hovering
on the brink of error, and deleting a small contribution may be enough to produce an error. As a result,
Tables 5 and 10 are not identical, although they are similar enough to verify that the hidden-unit
responsibilities revealed by contribution analysis are indeed accurate.

-19 -

I Hidden Unit Erroneous Input/Output Pairs

0 gg g vel gs g vel ge J vel ca_k_v=e-1

1

2

3

4

5

6 ci_s alvst s alvia A alvia A hig

7 ch_C pal ch_C_sto

8 ha_h_gloha_h gli hi h glohi h gli

9 at @_den at @_teneg E deneg E higeg E med ec_E_den
ec_E_hig ec E_med eh_E_den ‘

10 ah_a ten

11 sh_S_alv ag_ @ _vel ac_e alv

12 gt -_veles E lab ea_i_hig ee_i_hig ei i hig

13 ac_e lowie A fripe p fri

14

15 ge J sto

16 gg g sto gs_g sto

17

18 ps_s_fri

Table 10 - Errors Created by Removing Hidden Units
("ps_s_fri" means input "ps", output phoneme "s", output feature "fri")

5.2 An Extension to Contribution Analysis: Activation Change

As an extension to the contribution concept, consider the change in activation caused by deleting a
single contribution. There is, then, an activation change associated with each contribution. It could be
argued that this new quantity is a better measure of a hidden unit’s responsibility, since a large
contribution may do absolutely nothing to change an output unit’s activation, if the sum of the other
contributions may already have driven the unit perfectly to 0 or 1.

This argument may be countered by the assertion that contributions measure a hidden unit’s
responsibility in the absence of all other hidden units. Further, if several hidden units cooperate with
large contributions to an output unit, the activation changes would all be small, leading one to believe
that none of the large contributions are useful in activating the output unit. Deleting all the large
contributions quickly erases that impression.

An example of this effect is readily apparent in Micro-NETtalk. Table 11 shows the relationship
between contributions and activation changes. Points on a graph of contribution versus activation
change have been grouped into one hundred clusters by dividing each axis into ten segments, and the
number of points in each cluster is displayed in the table.

=20 -

-1--8|-8--6|-6--4|-4--2/-2-0|0-2|2-4|4-6|6-8]|.8-1
8-10 0 0 0 0 0 0 0 0 0 6
6-8 0 0 0 0 0 11 2 4 8 24
4-6 0 0 0 0 0 218 49 61 24 1
2-4 0 0 0 0 0 1386 71 1 0 0
0-2 0 0 0 0 0 | 14375 0 0 0 0
2-0 0 0 0 0 5220 0 0 0 0 0
-4 -2 0 0 0 0 369 0 0 0 0 0
-6 - -4 0 0 0 0 98 0 0 0 0 0
-8--6 0 0 0 0 16 0 0 0 0 0
-10 - -8 0 0 0 0 1 0 0 0 0 0

Table 11 - Contributions versus Activation Change
(Contributions on vertical axis, activation changes on horizontal axis)

Even though the net never learns the proper state of alv for the "ps_s" input, there is no large activation
change in the wrong direction. This is because, as shown in Table 12, five hidden units cooperatively
contribute in the wrong direction. I maintain that the contribution yields more valuable information in

this case than the activation change.

Hidden Unit | Contribution | Activation Change
0 -1.482 0.000
1 -0.011 0.000
2 -0.664 0.000
3 -0.913 0.000
4 -0.072 0.000
5 3.056 0.000
6 0.002 0.000
7 0.006 0.000
8 -0.970 0.000
9 -0.215 0.000
10 -1.327 0.000
11 -4.742 -0.001
12 -2.018 0.000
13 0.073 0.000
14 -0.080 0.000
15 0.001 0.000
16 -2.660 0.000
17 -0.439 0.000
18 2.752 0.000

Table 12 - Contributions to "alv" for input "ps_s"
with corresponding activation changes

The same effectiveness analysis that was used to compare contributions to weights and hidden-unit
activations can be used to compare contributions to activation changes - the result, as shown in Figure 7,
where the curve labelled "A" represents activation change, is that contributions perform better at first
with activation change slowly catching up. Clearly, the extra effort involved in computing activation

changes is not worth the effort.

221 -

30

Number of Errors

10 —

! 1 l I
0 0.2 04 0.6 0.8

Proportion of Information Removed

Figure 7 - Errors As a Result of Thresholding

6. Conclusion

In this paper, I argue for contribution analysis as a method for assigning responsibilities to hidden units.
As demonstrated above, contributions are a more accurate indicator of how the net maps inputs to
outputs than weights or hidden unit activations, although the cost of the analysis is greater.

The conclusion that contributions are more useful in assigning hidden-unit responsibilities than weights
or hidden-unit activations is an intuitive one. It is common for highly active hidden units to be
connected to some output units via minuscule weights. The activity of a hidden unit says little about
how that hidden unit will affect output units. Similarly, for some input presentations, connections with
large weights will be carrying a small amount of activation from a hidden unit to an output unit. The
size of the weight on a connection correlates poorly with the amount of activation flowing across the
connection. The contribution combines the weight and the hidden-unit activation in a quantity that is
proportional to the effect on the activation of the output unit.

The example analysis demonstrates the ease with which contribution analysis brings to light interesting
conclusions about neural net internals. Among the obvious results of this analysis: at least for the
Micro-NETtalk application, redundant output units are handled by identical patterns of hidden units, and
the amount of responsibility taken on by a hidden unit is inversely proportional to the number of hidden
units.

-2

7. Future Work

The most obvious piece of future work is to apply contribution analysis to a variety of nets and pick
apart the results in greater detail than has been done in this paper, in the hope that general conclusions
can be drawn can be drawn about the inner workings of neural nets. Since the size of the net that can be
analyzed is limited only by the amount of available computing resources, I plan to look at larger nets
than described here, in particular, the full-sized NETtalk. The bottleneck of the analysis is the principal
components computation; the number of hidden units or output units that can be used is equivalent to
the order of the largest matrix for which eigenvectors can be computed. As the number of input
presentations increases, on the other hand, the computational expense increases only linearly,

The analysis is, as described in the appendix, fully automatable — C programs took as input the net’s
weights and training set and generated pic and tb! source for all the figures and tables (except for Table
5a) displaying contribution analysis results. A possibility for the future is the release of a software
package for performing contribution analysis.

Finally, there are other, more practical applications for contribution analysis than just answering the
question of how neural nets work. Mike Mozer and Paul Smolensky (1989) of the University of
Colorado at Boulder have used a quantity called relevance, similar in spirit to contributions, to
implement a sort of dynamic allocation of hidden units. Contributions could be used for the same sort of
experimentation, as well as for investigations into how the net learns over epochs, potentially leading to
a method for increasing learning speeds.

8. Acknowledgments

Thanks go to Paul Smolensky of the University of Colorado for his many useful comments on both the
concepts and the format of this paper, to Mike Mozer and the Boulder Connectionist Research Group for
their constructive criticism, and to Henry Dittmer and Dave Ruby of AT&T Bell Laboratories for their
support.

9. References
Fukunaga, K. (1972) Introduction to Statistical Pattern Recognition. New York: Academic.
Ladefoged, P. (1975) A Course in Phonetics. New York: Harcourt Brace Jovanovich.

Mozer, M.C. & Smolensky, P. (1989) Skeletonization: A Technique for Trimming the Fat from a
Network via Relevance Assessment. Technical Report CU-CS-421-89, University of Colorado,
Department of Computer Science.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986) Leamning Internal Representations By Error
Propagation. In D.E. Rumelhart & J.L. McClelland (Eds.) Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 1: Foundations. Cambridge: MIT Press.

Sejnowski, T.J. & Rosenberg, C.R. (1986) NETtalk: A Parallel Network That Learns To Read Aloud.
Technical Report 86/01, Johns Hopkins University, Dept of Electrical Engineering and Computer
Science.

Sejnowski, T.J. & Rosenberg, C.R. (1987) Parallel Networks That Learn to Pronounce English Text.
Complex Systems, 1, 145-168.

Sejnowski, T.J. & Rosenberg, C.R. (1987) Connectionist Models of Learning. In M.S. Gazzaniga (Ed.)
Perspectives in Memory Research and Training. Cambridge: MIT Press.

-23.

APPENDIX 1 - The Mechanics of Contribution Analysis

This appendix is intended as a sort of cookbook for generating contribution analysis results such as
those presented in Tables 4 through 9 and Figures 2 through 5. There are three steps in the process:
generating the contribution array, performing principal component analyses on a two-dimensional slice
of the array, and extracting the significant information out of the principal component analysis output.

Since the contribution is the product of a hidden-unit activation evaluated for a specific input
presentation and a weight from that hidden unit to an output unit, the contribution array has three
dimensions: input presentation, hidden unit, and output unit. As the net is shown each input presentation,
every weight between a hidden unit and an output unit is multiplied by the appropriate hidden-unit
activation and the sign of the product is adjusted such that it is positive if it is pushing the output unit in
the correct direction. The resulting contributions form a two-dimensional slice of the contribution array.
When the net has seen all input presentations, the contribution array has been fully populated.
Symbolically,

Cije = Wij@;i(25-1)

where w,; is the weight from hidden unit j to output unit k, a; is the activation of hidden unit j when
the net is shown the ith input presentation, and ¢, is the target output for output unit k£ and input
presentation i. It is assumed that target outputs will always be 0 or 1. The last factor in the equation
serves to adjust the sign of the contribution so that it is a measure of correctness, i.e. positive
contributions are in the right direction.

As described in the body of the paper, a two-dimensional slice of the contribution array, taken for either
a specific hidden unit or a specific output unit, is used as input to a principal components analysis. In
one sentence, principal components analysis finds the eigenvalues and eigenvectors of the covariance
matrix of the contribution slice. This amounts to rotating contribution space so that the new axes are in
the directions of greatest variance. Each eigenvector represents the weightings given to each original
factor in forming a new, rotated variable. The product of the eigenvector and the contribution slice
yields a vector with values of that component’s rotated variable. The eigenvalues correspond to the
significance of the associated principal components. The rotated variable associated with the largest
eigenvalue will show the clearest possible separation among the input presentations, It is this vector
whose elements are graphed in Figures 2 and 4. The elements of the corresponding eigenvectors are
charted in Figures 3 and 5.

To summarize the large amount of data present in these figures into tables such as Tables 4 through 9, a
simple algorithm is used. To determine which principal components are significant, the associated
eigenvalues are sorted. The largest gap in the sequence is found and principal components with
eigenvalues above the gap are deemed significant.

For each significant component, the significant factor weightings (i.e. eigenvector elements) and well-
represented input presentations (i.e. elements of the rotated variable) must be found. As for the
eigenvalues, these vectors have their elements sorted and the largest gap in the sequence is sought.
However, the search for the largest gap does not encompass the entire sorted set in these cases. Since
positive values of the rotated variable do not necessarily denote well-represented inputs — an
eigenvector may be multiplied by an arbitrary constant, even a negative one, and it remains an
eigenvector — a decision must be made regarding which side of the origin is the "well-represented"
side. The two extremes of the sorted set are compared to the set’s average, and the side whose extreme
is farther from the average is declared the "well-represented” side. This decision is motivated by the
realization that all rotated variables that I have looked at have consisted of a cluster around the origin
and a cluster of well-represented inputs far from the origin. Only gaps on the "well-represented" side of
the origin, which is the same for both factor weightings and values of the rotated variable are considered
in finding a cutoff point for significant factor weightings. In the search for a cutoff point for well-
represented inputs, only the better-represented half of the rotated variable values are considered. Once
these cut-off points have been found, values above the cutoffs are displayed in the tables.

Although this sounds like an enormous amount of effort, it is easy to automate. The C program that
generated pic and tbl source for Tables 4 through 9 and Figures 2 through 5 ran in less than thirty CPU
seconds on an Amdahl 580.

