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ABSTRACT

This paper which is the second part of a paper consisting of three
parts continues the investigation of the Generalized Post Correspondence
Problem of length 2. In this part we demonstrate the decidability of
this problem in a number of very "concrete" cases, when one specifies

quite precisely the patterns of images of 0 and 1 by the homomorphisms

involved.



INTRODUCTION

In this paper we continue the investigation of the Generalized Post
Correspondence Problem of length 2, abbreviated GPCP(2), started in [ER1].
We consider instances I of GPCP(2) of the form (h’g’a1°a2’b1’b2) where
(in the terminology of [ER1]) h,g are marked homomorphisms such that the
sequence (h,g),ecol(h,q),... is periodic and moreover one requires that
h(0),h(1),9(0) and g(1) have a very specific form. For example one
may require that h(0) and g(0) are of the form 0101.... while h(1) and
g(1) are of the form 1010.... We distinguish in this way six classes
of possible "patterns" for the pair (h,g) and then demonstrate that
whenever (h,g) is in one of these classes, it is decidable whether or

not I has a solution. These results are very useful in [ER2] when the

decidability of GPCP(2) is proved.



0. PRELIMINARIES

£

In addition to the notation and terminology from [ER1] we will use
also the following.
For words x and y, mpref(x,y) denotes their maximal common prefix. If
xPREFy then dif(x,y) denotes the unique word z such that either xz =y
or yz = x.
In this paper we will consider only marked homomovrphisms (and only marked
instances of GPCP(2)) from {O,l}* into {0,1}*. For a homomorphism f,
Right(f) = {£(0),£(1)}; if K ¢ {0,13" and £(0),f(1) < K then we say

that f is a K-homomorphism. For an instance I = (h,g,al,az,b b,) of GPCP(2)

1:0)
maxr (1) = max {maxr(h), maxr(g)’.
We write the composition of functions from right to left, that is, gf

means "first apply f and then g".

The following (regular) languages will play an important role in
the considerations of this paper.
For i « {0,1},

A =it B, = i(1-1)" and C; = i((1-1)1) 1, (1-1) 3.

Then A = A uA,, B=B,yuB,and C =C, u C,.

0 1’ 0 1 0 1
Based on these languages we define now six classes of marked

instances of GPCP(2).

Definition 0.1. Let I = (h’g’al’aZ’bl’bZ) be a marked instance
of GPCP(2).

(a). For i e {0,13, 1 ¢ CLA if
i

h(0) « AO’ h(l) « Al’ g(i) « AO and g(1-1) « Al'
(b). For i e {0,1}, I « CLB. if
1

h(0) « AO’ h(l) ¢ Bl’ g(i) « AO and g(1-1) « Bl'

(c). For i e {0,1}, I ¢ CLC if
i

h(0) « CO’ h(l) e Cl’ g(i) e CO and g(1-1) « Cl'



(d) Also: I e CL, if either I ¢ CL  or I ¢ CLA »

Ao 1

I e CLB if either I ¢ CLBO or I ¢ CLB1 and I « CLC

d

A

if either I ¢ CL. or I ¢ CL

CO Cl.

The following definition is very basic for this paper.
Definition 0.2.
(a). Let (h,g) be an ordered pair of marked homomorphisms. We say
that (h.g) is good if there exists a pair of marked homomorphisms
(h‘,g') such that trace (h: g') is infinite, thres (hZQ') = v and for
some i =r + 1,(h,g) = ecozj (h',g').
(b). We say that an instance I = (h,g,al,az,bl,bz) of GPCP(2) is

good if (h,g) is good.

Indeed, we will investigate here directly good instances of
GPCP(2) and then as corollaries we will get results about stable
instances of GPCP(2) needed in the next part of this paper.

Given an instance I = (h,g,al,az,bl,bz) of GPCP(2) we may:
(1). "switch" the role of homomorphisms h and g by considering the
instance I = (g’h’bl’bZ’al’az); clearly I has a solution if and
only if Il has a solution,

(i1). "switch" the role of 0 and 1 in the domain of h and g by
considering the instance Il = (h:g:al,az,bl,bz), where h(0) = h‘(l),
h(1) = h (0), g(0) = gi(l) and g(1) = gl(O); clearly I has a solution
if and only if Ilhas a solution,

(ii1). ‘“switch" the role of 0 and 1 in the rgnge of h and g by

considering the instance I = (h,g,gl,gz,gl,gg) with, for i ¢ {0,1},



h (i) =& $f h(i) = o and g (i) = & if g(i) = g, where for a word
X, % denotes the word obtained from x by replacing every occurrence of
a 0 in x by 1 and every occurrence of 1 in x by 0; clearly I has a
solution if and only if Il has a solution.
We will refer to these three operations above as the
homomorphisms switch, the domain switeh and the range switch respectively.
Clearly if I is a subject of composition of ( some of ) these switches
which yield II then I has a solution if and only if Il has a solution.
Whenever we refer to a result from Part I of this paper we precede

its "identification number" by I; thus, e.g., Theorem I.4.1 refers to

Theorem 4.7 1in Part I.



In this section we demonstrate that GPCP(2) is decidable for

good instances from the class CLA .
0

Theorem 1.1. It is decidable whether or not an arbitrary

good instance I of GPCP(2) such that I « CL, has a solution.
0

Proof.

Let I = (h,g,al,az,bl,bz) be a good instance of GPCP(2)

such that I e CLA . Hence h(0) = Ok,h(l) = 11, g(0) = o™ and g(1) = "

0
for some k,f,m,n > 1.

If k = m then, by Theorem 1.4.2, it is decidable whether or

not I has a solution.

Hence let us assume that k > m. (The case of m > k is reduced by the

homomorphisms switch to the previous case).

*

Note that for a word x ¢ {0,1} we have
#Oh(x) - #Og(x) = k#ox - migx = (k—m)#ox.
But if x is a solution of I then
#Oh(x) - #Og(x) < #OalaZble
and consequently

# a,a,b.b
#OX y 0°172°1°2

k - m

(note that k - m = 0).

Consequently by Theorem I.1.2 it is decidable whether or not

I has a solution. [}



In this section we demonstrate that GPCP(2) is decidable for
good instances from the class CLA .
1
Theorem 2.1. 1t is decidable whether or not an arbitrary good
instance I of GPCP(2) such that I ¢ CLA has a solution.

1
Proof.

220120,

Hence h(0) = Ok, h(l) = 15, g(0) = 1™ and g(1) = 0" for

let I = (h,g,al,a b,) be a good instance of GPCP(2) such

that I « CLAI.
some k,£,m,n = 1.

Assume that w is a solution of I. Either firset(w) = 0 or
Ffirst(w) = 1. Since one case is obtained from the other by the domain
switch we will consider only one of them.

Assume that first(w) = 0. Hence w = XYoXsYp e where
XpsXgsnnn € 0" and YopsYgs-re € 1 (in the rest of this proof we will
use subscripted x to range over strings in 0" and subscripted y to
range over strings in 1+). We will assume that w is "long enough”
(from the rest of the proof it will be clear how long, at Teast, w
should be).

Since first(h(0)) = 0 2 1 = first(g(0)), it must be that
fali 2 ]b1§.

Assume then that [a1] > ]b11 - (the case of }bli > [ali
is considered analogously).

Clearly for some j > 2 we have

h(xl) = blg(x1y2x3...yj)



which implies that, for every r > 1,

O G P (2.1)

here = x for r odd and = for r even.
w Tr r TY‘ yr en

Let c,. = lTrl' We will compute now c as the function of c .

r+2j-2
Assume that r is odd.

h(x )] = In(x)] = [n(0)]c
but, by (2.1),

(e | = 190y = 19(1) e 5 5 thus
[(0) ey = QL) e g qgemenee e o (2.2)
On the other hand

Ve )| = (D ey

but, by (2.1),

]h(yr+j-1)l = Ig(xr+2j-2)! = 19(0)lcr+2j_2; thus

]h(l)lcr+j~1 = ]g(O)}cr+2j_2 ........................................ (2.3)
From (2.2) and (2.3) we get

(h(O) [ h(L) lepepys g = 1o(L) 11900 ep s g Cpips o
Consequently
Criojo2 Dcr ...................................................... (2.4)
h(0)|[h(1)]
D= .
where D = 19(17TTg(0)]

We get an analogous result if we assume that r is even.
We will consider separately three cases.

D <1.

Then the Tength of the x and y blocks decreases, and so we run the
sequence X;Y,Xg. .. until we cannot continue it any more (the length
of the next block would have to be smaller than 1). Thus, in this case,

a solution of I must be shorter than the length of the above sequence,



and we can decide whether or not I has a solution.

D =1.

Then clearly the sequence XY oXge s becomes ultimately periodic and
we can effectively construct it until and including the first run of
the period. Clearly, if a solution of I exists in this case then a
solution of I exists that is no longer than the above sequence.

D> 1.

Then we run the sequence until the Tength of each of current (2j-1) consecutive
blocks will be longer than Jazbzi . Clearly, in this case it suffices to
check whether I has a solution not Tonger than the lenqgth of the above

sequence. [J



3. CL
By

In this section we demonstrate that GPCP(2) is decidable for

good instances from the class CLB .
0

Theorem 3.1. It is decidable whether or not an arbitrary good

instance I of GPCP(2) such that I ¢ CLB has a solution.
0

Proof.
Let I = (h,g,al,az,bl,bz) be a good instance of GPCP(2) such
that I ¢ CLB .
0
_ A~k _ 1l _am PN T
Hence h(0) = 0", h(1) = 10~, g(0) = 0" and g(1) = 10" for some k,m > 1 and
Z,n =z 0.

We consider separately two cases ((a) and (b)).

(a). Either h(lOt) = g(lOt) for some t = 0....ovun.n... N (3.1)

Then we proceed as follows.

(a.1). If (3.1) holds then Tet ty be the smallest t for which (3.1)

- t - Yo
holds. Note that then h(1) = 10 7, g(1) = 10

and so, by Theorem 1.4.2,
we can decide whether or not ECOL(I) contains an instance which has a
solution and consequently by Theorem I1.3.1 and Theorem I.4.1 we can decide
whether or not I has a solution.

(a.2). If (3.2) holds then, by Theorem I.4.2 we can decide whether

or not I has a solution.

(b). Neither of the conditions (3.1), (3.2) holds.
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The following construction is very basic for the considerations
of this case.
A base is a sequence of words T = Tgr Ty v satisfying the following
conditions:
(0). g T A,
(1). if Ti4]
(2). for each i = 0, alh(ri) PREFblg(Ti),

is defined then [, .| = [t + 1 and Ty pref T

\

(3). for each i = 0 and each 0< j < i, alh(Tj) 4 b}g(rj), and
(4). if ¢ is finite, 7 = Tgr Tpr tree Te and ¢ ¢ {0,1}, then either

alh(T ) = blg(TS) or it is not true that alh(fsc) PREFblg(rSc).

The following result follows easily from the definition of a base.
Claim 3.1. Let 7 be a base, t = Tgr Ty e and Tet i 2 0 be
such that . , s defined. If first(dif(alh(Ti),blg(Ti>>) =C

then .

i+1 - Ti¢- U

As straightforward corollaries of this claim we get the following

two results.

Claim 3.2. Let a; = bl‘ Then there exist precisely two bases,

denoted T(O) and r(l). Both are infinite and
(1). Tig% = 0" for every r = 0,

(2). Tﬁi% = 10" for every r = 0. [

H

Note that k = m guarantees that T(O> is infinite and the
/
negation of (3.1) guarantees that A1) g infinite.
Clatm 3.3. Let a; * bl' Then there exists precisely one base,

denoted t, where T = first(dif(al,bl)). 0
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We will consider separately cases a; = bl and a1 = bl'

(b.1). a; = bl'

Assume that x is a solution of I. Then

abs (}alh(x)i —}blg(x)}) s}azbzl ......................................

If first (x) = 0 then Claim 3.2 implies that
abe (Ja h(x)] - byg(x)]) =
abs (|x] | h(0)] + lag| - by 1= x| 1g(0)]) = |x]abs([h(0)] - |g(0)]).
Thus, by (3.3),
a,b
X = ibi(i}m)
(note that since k = m, k - m = 0).
Hence, it is decidable whether ‘or not I has a solution.
If first (x) = 1 then Claim 3.2 implies that
abs (lalh(x)t - Jblg(x)f) =
abs (ay |+ [n(1)[ + (x| =1)[h(0)| - by ] - [9(1)] - (x]-1)|g(0)])
and so, by (3.3),
x| < E%§%§§%) + lalblh(l)g(l)i +1;
thus it is decidable whether or not I has a solution.

(b.2). a, = bl-

By Claim 3.3 we know that there exists precisely one base r.
(b.2.1). We assume first that dif(al,bl) c o
Then we have two cases to consider.

(i). Assume that alh(u) = blg(u) for some u e {0}%.

Clearly it is decidable whether or not (i) is satisfied and if

it is one can find a u, say Uys satisfying (1).



R BN S

If T has a solution then
either (i.1). I has a solution not longer than Uy

*
or (i.2). I has a solution of the form u_.y for some y « {0,1} .

0
If we assume that (i.1) holds then clearly we can effectively find
out whether or not I has a solution.
If we assume that (i.2) holds then let us construct the instance

IuO of GPCP(2) defined by IUO = (h,g,alh(ug),az,blg(uo),bz). Obviously
Iu has a solution if and only I has a solution of the form UgY for some
0 .
*
y ¢ {0,1} . Observe that Iu belongs to the category (b.1) and so we can
0
decide whether or not I - has.a sqlution.
- 0 o

(ii). Assume that (i) does not hold.
*
Clearly for every word x ¢ {0,1} we have
abs (ialh(x)azl —!blg(x)bzl) zabs (|h(x}]-]g(x)]) —[alazblbzl ........... (3.4)
Since d%j’(al,bl) e 0" and (i) does not hold, we have
abs ([h(x)]-]g(x)]) ~]a1a2b1b2] = |x|abs (k-m) w[alazblbzf .............. (3.5)
If x is a solution of I, then [alh(x)azl - [bzg(x)bzl = 0
and so, by (3.4) and (3.5), we have
by, |

2,2,

abs (k-m)
(note that k = m and so abs (k-m) =0).

Ix| =

Thus, by Theorem I.1.2, it is decidable whether or not I has a solution.

(b.2.2). Assume now that dif(al,bl) ¢ ot. Clearly we can assume that



~-13-

3yl > Iy
Let p = #ldif(al,bl). The reader can easily prove (by induction on i) the
following result.

Claim 3.4. For every i = 0, #ldif(alh(Ti)’blg(Ti)) =p. [

Note that Claim 3.4 does not imply that t is infinite in this case.

Given Ti T Xl,i""x > 1, Xl,i""’xq,i e {0,1} we say that the

sequence Xj ....X;. . of(occurrences of) letters from t; 1s a block

L
q,1°

if Xj’-

; X

is (an occurrence of) 1 is (an occurrence of) 1 and

b

J+r+l, i

X . X are (occurrences of) zeros.

J+l,i*” J+r,i

It is easily seen, by induction on j, that Claim 3.4 implies the
following result.

Claim 3.5. Let 1 = 1 and Tlet T, = awlwz...wg 8 where
7

Nl, WZ’ e Ws. are all the blocks of T Then for every j=1 such that
A i

J+p < s, we have a h(aW, ..

1 ML) o= blg(u\£l...w.

1 ; J+p) and h(wj) = g(W.

J+p)' .

Let Zj = #Owj for 1 <j <j+p < S

We will compute now Zj+p as the function of Zs-

Clearly

) = n+mz.

#Oh(wj) = £+ kzj and #Og(w jip °

J+p
Hence, by Claim 3.5, we have

=n + .

£+ kzj n sz+p
and so

_k (£-n)
Zj_’_p—"nqzj + m

(note that since k = m, %~x 1).
Thus if we set D = %-and F == we get

the following Tinear equation



Note that if D> 1 and 2 = n, then by Theorem I.1.1 we can
decide whether or not I has a solution. Thus we can assume that if
D> 1 then F < 0. Similarly we can assume that if D < 1 then F -~ 0.

We will analyse equation (3.7) for each of the above two
cases separately.

Assume that D < 1 and F > 0.

Then we have the following situation.

Z. "
J+p w

O

Thus eventually the length of every block becomes Q + 1. Let

then T be the first element of t which has p + 1 consecutive blocks of
0

length Q + 1. Clearly if I has a solution then it has a solution

not longer than ]ri |. Thus we can effectively find out whether or
0

not I has a solution.



-15-

Thus the Tength of consecutive blocks eventually grows. Now

Tet T, be the first element of t which contains p + 1 constructive blocks
0

such that the number of occurrences of 0O in each of them is bigger
than }azbzi. Clearly if I has a solution then it has a solution

smaller than [r, | and so we can effectively find out whether or not

I has a solution.

Assume that D > 1 and F < 0.

Then we have the following situation.

O G
v

Now Tet s be the first element of t containing p blocks.
0

We consider separately three cases.

If one of the p blocks in Ty is shorter than Q + 1 then, clearly,
0

T is finite and we can effectively decide whether or not I has a solution.
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If all p blocks of T, are not shorter than Q + 1 and at least

0
one of them, say W, .q (where W, RE W paeres Wy p are all blocks of
0 0 0 0
v; ),is Tonger than Q + 1 then we proceed as follows. Let r; , 1, > i,
0 1

be the first T such that for some t = O the length of the block

W is Tonger than |asb,|mazr(1). Clearly if a solution of I exists

i,q+tp

then it is no longer than ‘Ti | and so we can decide whether or not I

has a solution.
If all p blocks in T, are of Tength Q + 1 then, clearly, if
0

I has a solution then it has also a solution not Tonger than lri |.
0
Hence we can decide whether or not I has a solution.

This concludes the proof of the theorem. [J
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4. cL
By

In this section we demonstrate that GPCP(2) is decidable for

good instances from the class CLB .
1

Theorem 4.1. It is decidable whether or not an arbitrary

stable instance I of GPCP(2) such that I ¢ CLB has a solution.
1

Proof.

Let I = (h’g’al’aZ’bl’bZ) be a good instance of GPCP(2)

k £

such that I e CL Hence h(0) = 0%, h(1) = 10%, g(0) = 10" and

Bl.

g(1) = 0" for some k, n = 1 and 2, m = O.

Construct ecol (h,g) = (h,g). It is easily seen that

£

h(0) = 0%, h(1) =107, g(0) = 1ﬁ-and g(1) = Olﬁ-whereng, n=71and 7, m
Note that it cannot be that both Z = 0 and m = 0 because this
contradicts Lemma I.3.7.
Assume then that £ = 0 (the case of m = 0 reduces to this one
by applying the homomorphisms switch and the range switch). Hence we
have F(0) = 0%, B(1) = 1, 3(0) = 1" and §(1) = 01",

If k =1 then |h(0)]

IA

19(0)] and [h(1)] = [g(1)] and so by

Theorem 1.1.1 we can decide whether or not ECOL(I) contains an instance
which has a solution and consequently, by Theorem I.3.1 and

Theorem 1.4.1, we can decide whether or not I has a solution.

Assume then that k > 1.

Then, by Lemma I.3.6, it must be that m = 0. Hence h(0) = Ok,

0) = 1" and g(1) = 0, and so if kK < n then
[h(0)] < [g(0)] and [h(1)] < [g(1)] and if n = k then [g(0)| < [h(0)]

and |g(1)] = |h(1)]. Hence by Theorem I.1.1 we can decide whether

z

0.
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or not ECOL(I) contains an instance which has a solution and
consequently, by Theorem I.3.1 and Theorem 1.4.1, we can decide

whether or not I has a solution. [J



5. REDUCTION THEOREM FOR Cle-

In this section we begin the investigation of the class CLC.

The main result of this section, Theorem 5.6, allows us to consider

only those instances I = (h,g,al,aa,bl,bz) from CLC for which if

i e {0,1} then first (h(i)) = Zast (h(i))and first (g(i)) = Zast (g(i)).
We start by introducing a classification of C-homomorphisms.
Definition 5.1. Let f be a C-homomorphism. Then

(a). f e SAME if and only if first (f(i)) = Zast (f(i)) for i ¢ {0,1},

(b). f e FLIP if and only if first (f(i)) # last (f(i)) for i e {0,1},

(c). f e LASTO'Yfand only if Zast (f(0)) = Zast (f(1)) = 0.

)
(d). f « LASTl if and only if Zast (f(0)) = Zlast (f(1)) = 1. [

Clearly the above classification exhausts all possibilities for a

C-homomorphism.

Let (h,g) be a good pair of C-homomorphisms. Then the following

four results hold.
Lemma 5.1. Both h T and g g are C-homomorphisms.
Proof.

Obvious. [

Lemma 5.2.
(a). If h e FLIP, then h is an A-homomorphism.
(b). If g e FLIP, then g is an A-homomorphism.

Proof.

(a). It follows from Lemma 5.1 and from the simple observation
that if h ¢ FLIP then neither h(0)h(1) nor h(1)h(0) are in C.

(b). The proof is analogous to the proof of (a). [
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Lemma 5.3. Let J e {0,1}.
(a). If h e LASTj, then there exists an i ¢ {0,1} such that either

h(0) « Ai and h(1) « B

or h(0) < B and h(1) « A

1-1 1-1
(b). If g e LASTj then there exists an i ¢ {0,1} such that either

g(0) e A; and (1) e B, . or g(0) ¢B

13 ; and g(1) « Ai‘

1~
Proof.
(a). Let k be such that first (h(k)) = Zast (h(k)) = j. Then,
obviously, h(k)h(k) ¢ C and h(1-k)h(k) ¢ C. Hence, by Lemma 5.1, neither

h(0) nor h(1) can have k k or (1-k)k as a subword. Thus if we set i=1-k, (a) follo

(b). The proof is analogous to the proof of (a). [

Lemma 5.4.
(a). If h e SAME, then h is a C-homomorphism.
(b). If g e SAME, then g is a C-homomorphism.

Proof.

(a). If h e SAME then, for i ¢ {0,1}, h{(i)h(i) ¢ C and so
the result follows from Lemma 5.1.

(b). Is proved in the same way. [

Definition 5.2. Let I = (h,g,a},az,bl,bz) be a good instance
of GPCP(2) and let X, Y ¢ {SAME,FLIP,LASTO,LASTl}. Then we say that

[ is a (X,Y) instance if h e Xand g e Y. 0

Theorem 5.1. 1t is decidable whether or not an arbitrary
(FLIP,FLIP) instance I of GPCP(2) has a solution.
Proof.

Assume that ECOL(I) = g and let J e ECOL(I). Then, by Lemma 5.2,
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(perhaps with the use of the domain switch) J ¢ CLA. Thus the theorem

follows from Theorem 1.1, Theorem 1.2, Theorem I[.3.1 and Theorem 1.4.1.

Theorem 5.2. It is decidable whether or not an arbitrary

(LAST.,LAST,) instance I of GPCP(2) has a solution.

0’ O)
Proof.
Assume that ECOL(I) = @ and let J ¢ ECOL(I). Then, by Lemma 5.3,

(perhaps with the use of the domain switch)J e CLB" Thus the theorem follows

from Theorem 2.1, Theorem 2.2, Theorem I.3.1 and Theorem I.4.1. [}

Theorem 5.3. 1t is decidable whether or not an arbitrary
(SAME,FLIP) instance I of GPCP(2) has a solution.

Proof.

From Lemma 5.2 and Lemma 5.4 it follows that Right(ﬁ) = {a,B} and
rignt(g) = (0",1") where o ¢ Cg, 8 € Cps || = k+ 1, [8] = £ +1,
k, £ >0andm, n = 1.

We consider separately two cases.

n =z 2.

It is easily seen that, by Lemma [.3.6, either k = 0 and £ = 0 or
k=20and £ = 1.
If k=0and £ = 0 then by Theorem [.1.1, Theorem I.3.1 and Theorem 1.4.1

we can decide whether or not I has a solution.

i

Assume then that k = 0 and £ = 1.

It is easily seen that, by Lemma 1.3.6, m = 1 and so we have

Right (W) = {0,101 and Right(g) = {0",1}.

If for some i e {0,1}, h(i) = 0 and g(i) = 1 then by Theorem I.1.1,

Theorem 1.3.1 and Theorem I.4.1 we can decide whether or not I has a

solution.



Otherwise, if ECOL(I) = @ and J e ECOL(I), then (perhaps with the use of
the domaine switch) J « CLB and so by Theorem 3.1, Theorem 3.2. Theorem I.3.]

and Theorem I.4.1 we can decide whether or not I has a solution.

If m = 1 then by Theorem I.1.1, Theorem 1.3.1 and Theorem 1.4.1 we can
decide whether or not I has a solution.

If m 2 2 then by the range switch we get the previous case of n = 2. [J

Theorem 5.4. It is decidable whether or not an arbitrary (SAME,LASTO)
instance I of GPCP(2) has a solution.

Proof.

By Lemma 5.3 and Lemma 5.4 we have that right(h) = {a,8} with
o« e Cos B e Cys o] = k+ 1, |g] =2+ 1, k, £ =0 and either
Rright(q) = {0”,10”}} or Right.(g) = {ln,Olm} forn =1, m=0. It
suffices to consider right.(§) = {0",10"} since the other case reduces
by the range switch to this one.

We consider separately the cases of n 2 2 and n = 1.

By Lemma I1.3.6, either rignt (R) = {0,1} or righz.(h) = {0,10}.
If Right.(h) = {0,1} then by Theorem I.1.1, Theorem I1.3.1 and Theorem 1.4.1

we can decide whether or not I has a solution.

We consider two cases. If m = 1 then by Theorem I.1.1, Theorem I.3.1

and Theorem I1.4.1 we can decide whether or not I has a solution. If

m = 0 then by Theorem 3.1, Theorem 4.1, Theorem I.1.1, Theorem I.3.1

and Theorem I.4.1 we can decide whether or not I has a solution.

If right.(h) = {0,10} then by Theorem 5.2, Theorem 1.3.1 and Theorem 1.4.1
we can decide whether or not I has a solution.

n=1.

Ifm=2 then, by Lemma 1.3.6, k = 0. Then by Theorem 1.3.1, Theorem 1.4.1

and Theorem 1.4.2 we can decide whether or not I has a solution.
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If m =0 then [g(0)| = |h(0)] and |g(1)| = [F(1)| and so by
Theorem I1.1.1, Theorem I1.3.1 and Theorem I.4.7 it is decidable

whether or not I has a solution.

Let us then assume that m = 1. Then Tet j ¢ {0,1} be such that

[h(1)];

consequently by Theorem I.1.1, Theorem I.3.1 and Theorem I.4.1 we can

IN

3(3) = 10. If |R(3)| = 2, then |g(0)] =< |h(0)| and |g(1)]

decide whether or not I has a solution.

Thus it suffices to consider two cases: k = 0 and £

i

0 (with k # 0).
k = 0.

Ther Right(h) = {0,8} and RrRight(g) = {0,10}. Thus by Theorem 1.4.2,
Theorem 1.3.1 and Theorem I1.4.1 one can decide whether or not I has

a solution.

£ =0 and k # 0.

Then Right(h) = {a,1} and Right(g) = {0,10}.

If, for an i ¢ {0,1}, h(i) = 1 and g(i) = 0 then by Theorem I.1.1,
Theorem 1.3.1 and Theorem I.4.1 we can decide whether or not I has a
solution.

Thus we assume that, for some i e {0,1},h(i) = o, h(1-i) =1, g(i) =0
and g(1-i) = 10; note that by Lemma I1.3.7 k must be even. So we can
assume that h(0) = «, h(1) =1, g(0) = 0 and g(1) = 10; the other case
reduces to this one after the domain switch.

) = (:ﬁag) . k

Construct ecol (h

ML~
¥

It is easily seen that h(0) = 0, h(1) = 10, g(0) = 012 and g(1) =1

Consequént1y by Theorem I.1.1, Theorem I1.3.1 and Theorem I.4.1 we

can decide whether or not I has a solution. [

Theorem 5.5. 1t is decidable whether or not an arbitrary

(FLIP,LAST,) instance I of GPCP(2) has a solution.

0/
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Proof.

By Lemma 5.2 and Lemma 5.3, Right(R) = {Ok,lﬂ} and either
Right(q) = 0™, 10" or Right(g) = (1",01"} where k, £, m > 1 and n = 0;
it suffices to consider the case ofﬁightiév = {Om,10n} because the
other case can be obtained by the range switch.

We consider separately two cases.

L= 2.

Lemma I.3.6 implies that n = 0 and so (perhaps ‘using the domain switch)
by Theorem 1.1, Theorem 2.1, Theorem I.3.1 and Theorem I.4.1 we can decide

whether or not I has a solution.

£ =1.

Then (perhaps using the domain switch) by Theorem 3.1, Theorem 4.1,

Theorem 1.3.1 and Theorem 1.4.7 one can decide whether or not I has a solution.

Theorem 5.6. It is decidable whether or not an arbitrary good

instance I of GPCP(2), such that I « CL. but I is not a (SAME,SAME)

C
instance, has a solution.

Proof.

Clearly, for some X, Y ¢ {SAME,FLIP,LAST LASTl}, [ is a (X,Y)

OS
instance.

First of all we notice that by Lemma I1.3.7 neither I is a

(LASTl,LASTO) instance, nor I is a (LASTO,LASTl) instance.

Then we notice that

(1). by the homomorphisms switch (FLIP,SAME), (LAST,,SAME),

OS

(LASTl,SAME), (LASTO,FLIP) and (LASTI,FLIP) cases reduce to
(SAME,FLIP), (SAME,LASTO), (SAME,LASTI), (FLIP,LASTO) and (FLIP,LASTl)

cases respectively;
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(ii). by the range switch (SAME,LASTI), (FLIP,LAST,) and (LAST.,LAST

1 1’ 1)
cases reduce to (SAME,LASTO), (FLIP,LASTO) and (LASTO,LASTO) cases
respectively.

Consequently the theorem follows by Theorems 5.1 through 5.5. [
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In this section we demonstrate that GPCP(2) is decidable for good
instances from the class CLC.

Theorem 6.1. It is decidable whether or not an arbitrary good
instance I of GPCP(2) such that I ¢ CLC has a solution.

Proof.

Let I = (h,g,al,az,bl,bz) be a good instance of GPCP(Z) such that
I ¢ CLC. By Theorem 5.6 we can assume that I € (SAME,SAME). Thus by
Lemma 5.4 both h andla are C-homomorphisms. Consequently:
for each i € {0,1} there exist ki’ Ei > 0 and ui’ti ¢ {0,1,A} such that

_ k. B ]
h(1) € 01,707 "y, and g(i) € (01,10} Tty oo (6.1)

Since for each i € {0,1} we have hﬂ(i) = gg(i), (6.1) implies that

kg 1RO |+ () |o= e | a(0)a(T) ok | glty) e (6.2).

We consider separately three cases.
(a). Assume that [h(0)h(1)| = |g(0)g(1)]
If there exist i,j ¢ {0,1} such that h(i) = g(j) then by Theorem I.4.2
it is decidable whether or not I has a solution.
Otherwise, iEKO)} = }E{])} = |g(0)] = ig(])\ = 2 and so by Theorem I1.1.1,
Theorem I.3.1 and Theorem I.4.7 it is decidable whether or not I has a
solution.
(b). Assume that [h(0)h(1)| > [g(0)g(1)]
Let i € {0,1}.
If k; = 2., then (because [h(0)h(1)] > |g(0)g(1)]) it must be that
t, # 4 and so [h(i)] = (g(i)].
If ki< ., then, by (6.1), [h(i)| < [9(i)].
If k; > £., then
1900 g+ gt < 2519(0)g(1) [ + [9(0)g(1)] = (£,+1) [9(0)g(1)] <
< ki [h(0)h(T)| + [h(u;)|

N



T/

which contradicts (6.2); thus ki >t cannot hold.
Consequently, for each i € {0,1}, {H(i)i < ié(i)j and so
by Theorem I.1.7, Theorem I1.3.7 and Theorem I.4.1 it is decidable
whether or not I has a solution.
(c). The case of [h(0)h(1)| < |g(0)g(1)| reduces to the previous

one by the homomorphisms switch. []
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7. THE MAIN THEOREM

As a straightforward corollary of Theorems 1.1, 2.1, 3.1, 4.1
and 6.1 we get the main result of this paper.

Theorem 7.1. 1t is decidable whether or not an arbitrary stable
instance I of GPCP(2) such tﬁat either I ¢ CL, or I € CL, or I ¢ CL

A B C
has a solution.
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