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Abstract—We propose a new parallelized high-dimensional
single-query path planning technique that uses a coupled forest
of random trees (i.e., instead of a single tree). We present both
theoretical and experimental results that show using forests of
random trees can lead to expected super linear speedup, with
respect to the number of trees in the forest. In other words, with
T trees running in parallel, we expect to get a particular quality
result in less than1/T the time required by a single tree (this is
also known as having efficiency greater than 1). Our algorithm
works by linking the random sampling and pruning mechanisms
of all trees in the forest to the length of the current best path
found by any tree. This enables all trees to avoid sampling from
large portions of the configuration space that cannot possibly lead
to better solutions, and increases speed by enabling trees to prune
obsolete nodes. The current best solution is also passed between
trees, so that it may be improved by any tree in the forest. Given
the potential of super linear speedup, we additionally propose a
sequential version of the forest algorithm that works by dividing
computation time between each ofT trees. We perform a series
of experiments and find that both the parallel and sequential
versions of the forest algorithm perform well in practice (e.g.,
vs. a single tree or smaller forests). To demonstrate that our
algorithm is generally applicable, experiments are performed
using two different state-of-the-art random tree algorithms for
the underlying random trees. Theoretical analysis suggest that
these results can be duplicated for any random tree path planning
algorithm that meets a few requirements stated in the paper.

I. I NTRODUCTION

We present a new technique for single-query high-
dimensional path planning. The basic idea is to use a forest of
random trees instead of a single tree. The forest is special
in the sense that both the random sampling and pruning
mechanisms of all trees are coupled. That is, they are defined
in terms of the length of the current best solution known to
any tree in the forest. This allows all trees to prune themselves
based on the current best path, and also to avoid sampling
new points from portions of the configuration space that
cannot possibly produce better solutions. This reduces the
time required to insert new nodes into the tree, and increases
the chances new points produce better solutions, respectively.
Additionally, the current best solution is shared throughout the
forest so that all trees have a chance to improve it directly.In
section III we show that using a forest of random trees can
lead to super linear efficiency vs. number of trees in the forest.
That is, withT trees, we can expect solutions of a particular
quality to be found in less than1/T the time required by a
single tree. This is also known as having efficiency> 1.

In Sections II and IV we propose two similar but different
forest algorithms: a parallel version where each computational
unit grows a single tree, and a sequential version where

computation time is divided between each tree in the forest,
respectively. Either algorithm is able to utilize any underlying
random tree algorithm and configuration space, as long as the
following three conditions are met: (1) the configuration space
obeys the triangle inequality. (2) a heuristic estimate of the
cost between two points can be obtained that is exactly what
the actual cost would be if no obstacles were present. (3) The
underlying tree is expected to converge to an optimal solution,
given infinite time.

The rest of this paper is organized as follows: the remainder
of this section is devoted to background information on path
planning and related work. In Section V we perform a series
of experiments comparing the performance of various sized
forests to single trees. Both the parallel and sequential version
of the forest algorithm are evaluated using two different
state-of-the-art random trees. Discussion and conclusions are
presented in Sections VI and VII, respectively.

A. Background

The path planning problem is that of finding a sequence
of actions that cause a system to transition from an initial
state to a goal state. While efficient complete grid-based
methods exist for the 2D and 3D cases (Dijkstra [4], Hart
et al. [9], Stentz [21], Koenig and Likhachev [12], Ferguson
and Stentz [5]), the PSPACE-hardness of complete planning
causes complete algorithms to be impractical in higher dimen-
sions (Reif [18], Hopcroft et al. [10]). Current algorithmsof
choice for planning in higher-dimensions work by randomly
sampling the environment to create a random graph that is
then searched using standard graph techniques. In general,
these algorithms are probabilistically complete—the chance
that they find a solution (if one exists) approaches one as time
approaches infinity. Unlike low-dimensional grid methods,
most of the computational effort is spent on graph creation
(vs. graph search for a path). Depending on the application,
high-dimensional graph based planners tend to come in one
of two flavors: multi-query and single-query.

Multi-query planners are used when many searches are
expected to be performed in the same environment. A detailed
graph through the configuration space is created, stored, and
possibly improved over time. Paths are calculated by connect-
ing start and goal states to the graph and then searching for
a path between them (Overmars and Svestka [17], Koga and
Latombe [13], Sanchez and Latombe [19, 20], Clark et al. [3]).

Single-queryplanners are used when a planner is expected
to encounter a different environment every time it plans. A
detailed graph is not saved, since each graph will only be used



once. Instead, the planner builds the best graph it can within
the allotted planning time. Single-query planners usuallytake
the form of random tree algorithms that fuse the graph creation
and search operations. Newly sampled points are inserted into
the tree as soon as they can be connected to the existing graph.
Points that cannot be connected to the graph are ignored.
The forest algorithms presented in this paper build directly
on single-query random trees.

One of the earliest and most widely used single-query plan-
ners is therapidly exploring random treeor RRT(LaValle and
Kuffner [14, 15]). Re-planning versions also exist (Ferguson
et al. [8], Ferguson and Stentz [7]). While RRT provides nice
probabilistic coverage guarantees, the resulting paths tend to
wander—for instance, Karaman and Frazzoli [11] prove that
RRT will almost surly converge to a sub-optimal solution. A
number of attempts have been made to eliminate wandering
by finding increasingly optimal solutions as time permits.Any-
Time RRTworks by building new trees while time remains,
such that each subsequent tree is guaranteed to be better than
its predecessor (Ferguson and Stentz [6, 7]).RRT* carefully
chooses a set of candidate nodes such that the resulting algo-
rithm almost surly converges to the optimal solution (Karaman
and Frazzoli [11]). TheAny-Com ISSrandom tree described
by Otte and Correll [16] attaches new nodes in a way that
minimizes cost given the current tree, and ongoing remodeling
guarantees convergence to the optimal solution. In SectionV
we evaluate forests that use both RRT* and the Any-Com ISS
random tree.

Given that recent breakthroughs have provided algorithms
with optimal convergence, it is clear that future advances in
path planning will focus on increasing the rate of convergence.
We believe that distributed computation is a natural way to
achieve this type of acceleration, and that forests are an elegant
way to achieve distribution. On the other hand, given the
potential for super linear speedup, we also believe that forests
of random trees can benefit search in non-distributed settings.

B. Related work

Probabilistic road-maps, a popular multi-query planner, have
been shown to be ‘embarrassingly parallel’ (Amato and Dale
[1]). Here parallelization is achieved by having each pro-
cess randomly sample new points to connect to the graph.
Results show approximately linear speedup vs. the number
of processors. While it seems reasonable that single-query
planners could be parallelized in the same way, this form
of distributed algorithm requires each process to have direct
access to a single tree stored in memory. In contrast, each tree
in our forest algorithm maintains its own memory footprint—
knowledge transfer is achieved via exchanging small messages
between processes. The latter framework allows the forest to
be distributed between processes that do not necessarily have
access to a shared global memory structure (e.g., between
multiple machines connected by a network).

The Any-Time RRT algorithm builds multiple trees sequen-
tially (Ferguson and Stentz [6]). However, the next tree is
not started until the previous tree has been completed and

destroyed. In contrast, our forest idea builds all trees simul-
taneously. Since multiple trees exist at one time, cooperation
between them contributes to search progress.

Any-Com ISS (Otte and Correll [16]) is the most closely
related work to our own. In that work, the authors present
a multi-robot search algorithm that is solved in a distributed
manner by a six robot team. The specific algorithm is similar
to the distributed version of forests of random trees that we
present here, except that the underlying trees are assumed to
be a unique type described in that work. Otte and Correll [16]
note that their experimental results show super-linear speedup,
however no theoretical explanation is given. In contrast, amain
contribution of our paper is the theoretical proof that paral-
lelizing search in a coupled forest of random trees can lead
to super linear speedup for many different types of random
trees. Another difference is that we show how to harness the
super linear speedup to improve non-distributed path planning.
One final difference is that we perform experiments using
forests with many more than six trees, and multiple underlying
random tree algorithms.

It is also worth mentioning that, in the field of machine
learning, forests of decision trees have proven to be much
more powerful than a single decision tree for the problems of
classification and regression (Breiman [2]). While the tasksof
regression and classification are quite different from the path
planning problem we are concerned with, this body of work
is an interesting analogue.

II. PARALLEL FORESTALGORITHM

The parallel version of the forest algorithm is displayed
in Figure 1-top. The best solutionPbst is initialized to the
empty set and its length is initialized to∞ (lines 1-2). Next,
T trees are started, each on their own process or computational
unit (lines 3). The subroutineTimeLeft() returns true while
planning time remains, otherwise it returns false. Once the
allotted planning time has been exhausted, the forest returns
the best solution found by any tree (lines 5-7).

The bulk of the algorithm takes place within each individual
tree (Figure 1-bottom). Each tree begins by initializing its
best known solution to the empty set and its length is to∞
(lines 1-2). Search happens by picking a random pointv from
the configuration space withRandomPoint(L) and then
inserting it into the tree usingInsert(v) (lines 4-5). Random
sampling happens in a special way that depends onL, the
length of the best solution know to all trees; however, we
postpone a full discussion on this topic until later.Insert(v)
is assumed incorporate any specific logic required by the
underlying random tree. If the new node leads to a (globally)
better path, then the new solution is distributed to the other
trees (lines 7-8). This can be accomplished in shared memory
or via messaging over a network. If a better solution has been
found by another tree, then it is added to the local tree using
AddPath(Pbst) (lines 10-12), taking care to avoid point
duplication. Finally, the local tree is pruned based on the global
value ofL usingprune(L) (lines 9 and 12).



ParallelForest()

1: L = ∞
2: Pbst = ∅
3: for t = 1 to T do
4: RandomTree(t) on its own process
5: while TimeLeft() do
6: sleep
7: Return (L,Pbst)

RandomTree(t)

1: t.L = ∞
2: t.Pbst = ∅
3: while TimeLeft() do
4: v = t.RandomPoint(L)
5: t.Insert(v)
6: if t.L < L then
7: Pbst = t.Pbst

8: L = t.L
9: t.prune(L)

10: if L < t.L then
11: t.AddPath(Pbst)
12: t.L = L
13: t.prune(L)

Fig. 1. Algorithm for parallel forests of random-trees (top), and forest tree
(bottom). Note that any random tree algorithm can be used, as long as it
provides the necessary subroutines.
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Fig. 2. Boundary of ellipsoid beyond which new points cannotpossibly lead
to better solutions (dashed-blue). The space within the ellipsoid is denoted
AL and its boundary is defined byhs(v) + hg(v) = L, where L is the
length of the current best pathP (red).

Let s and g represent the start and the goal states, respec-
tively. Let h(v1, v2) be a heuristic function that returns the
distance between two statesv1 andv2 assuming no obstacles
are present. Leths(v) = h(s, v) and hg(v) = h(v, g). Let
ds(v) represent that actual distance from the start tov through
the current tree. Assume that at least one path to the goal
has been found, and the algorithm is currently working on
finding better solutions as time remains. The current shortest
path between the start and the goal is denotedP, and the
distance (or cost) along this path isL = ds(g).

Any point v for which hs(v) + hg(v) ≥ L cannot possibly
lead to a betterP. Geometrically,hs(v)+hg(v) = L describes
an ellipsoid in the search space (see figure 2). Let the space

v = RandomPoint(L)

1: a = (L − |s − g|)/2
2: b = max {min{s, g} − a,MinBounds()}
3: c = min {max{s, g} + a,MaxBounds()}
4: repeat
5: s = (Rand(0, 1) ∗ (c − b)) + b
6: until hs(v) + hg(v) < L

Insert(v)

1: calculatepv, the prospective parent ofv, according to the
particular tree algorithm that is being used

2: if ds(pv) + h(pv, v) + hg(v) < L then
3: continue to insertv according to the tree algorithm

prune(L)

1: for n = each node in the treedo
2: if hs(n) + hg(n) ≥ L then
3: removen and all of its descendants

Fig. 3. Subroutines used in the forest of random trees algorithms.
MinBounds() and MaxBounds() return the minimum and maximum
coordinates of the configuration space along each dimension.

within the ellipsoid be denotedAL. We can ignore all points
not in AL for random sampling (RandomPoint(L), line
6, Figure 3). Similarly, we can prune any nodes not inAL

(prune(L), line 2). Sampling directly from the ellipsoid can
be difficult in practice. Instead, we perform initial sampling
from the hypercube described byhs(v)+hg(v) = L per each
dimension (RandomPoint(L), lines 1-3), and then disregard
points outside the ellipsoid (lines 4-6).

We have also found it useful to disregard any points for
which ds(v) + hg(v) ≥ L (Insert(v), line 2). Note this is
a greedy strategy, since it does not account for the fact that
future tree-remodeling may decreaseds(v) (also note, this is
similar to the priority heap weight used in the A* algorithm).
In another greedy approach, we also prune the descendants of
pruned nodes (prune(L), line 3).

Coupling the sampling and pruning mechanisms of all trees
enables the entire forest to grow based on the best solution
found so far. Sharing the current best solution gives all trees
a chance to improve it.

A few variations on the algorithm are also possible. Often,
the insertion and pruning operations can be combined such that
irrelevant nodes are removed as they are discovered during the
insertion operation. If pruning is especially time consuming,
a similar effect can be achieved by deleting trees with a
small probability and then regrowing them to contain only
the current best solution. Obviously, deletion must be done
judicially, since it removes potentially valuable information
from the tree. In practice, we have found small values (e.g.,
probability of deletion 0.01 per 0.01 seconds) to be useful.

III. A NALYSIS

There are two subspaces withinAL that are relevant.APnow

is the union of all points not in the tree that, if added, would
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Fig. 4. The relationship between the subspacesAPnow
(dashed-green),

APfuture
(dashed-red),AL (dashed-blue), andAs (dashed-black).

immediately result in a better solution.APfuture
is the union

of all points not in the tree that, if eventually added, would
eventually enable a better path.APnow

⊆ APfuture
and

APfuture
⊆ AL. Verification ofv ∈ APnow

is easy, assuming
we are alerted when better solutions are found.

APfuture
can be broken into two disjoint subspaces:

APfuture,see
contains points that are also within the visibility

region of the current tree, andAPfuture,blind
contains points

that cannot see the tree due to collisions. If sampled, points
from APfuture,see

will be added to the tree, while those in
APfuture,blind

will not. Note APnow
⊆ APfuture,see

.
We assumeAPfuture,see

cannot be calculated in practical
time—if it could, then better planning algorithms exist (e.g.,
gradient decent). LetAs denote the space we actually use
for sampling. In practiceAs ⊇ AL. Figure 4 depicts the
relationship betweenAPnow

, APfuture
, AL, andAs.

Let the volume of a subspace be denoted‖ · ‖. Assuming
points are sampled uniformly at random fromAs, and a
subspaceA ⊆ As, it is possible to express the probability
of choosing a point inA as P(v ∈ A) = ‖A‖/‖As‖. The
probability a point sampled uniformly at random leads to a
better solution isP(v ∈ APnow

) = ‖APnow
‖/‖As‖.

If the sizes of the subspaces were not tied to the structure
of the tree, then the expected number of samples needed to
find a better path would beEP = ‖As‖/‖APnow

‖. How-
ever, since adding new points changes the sizes ofAPnow

and APfuture,see
, we cannot do this. However, we know

that if APfuture,see
changes due to a node insertion that

does not result in a better path being found (i.e., the node
v ∈ APfuture,see

, /∈ APnow
), then APfuture,see

will not get
smaller (andAPfuture,blind

will not get bigger). Similarly,
APnow

will not get smaller until a better path is found.
Thus, the probability of picking a node inAPnow

will not
decrease until a better path is found, and an upper bound on
the expected number of insertions required to find a better
solution is given byEP < ‖As‖/‖APnow

‖.
Let p = P(v ∈ APnow

). We assume that a better path can
actually be found. Thus,0 < p ≤ 1. Let f(n) represent the
insertion time required to add a new node to a tree, assumingn
nodes are already in the tree.f(n) is a stand-in for something
like log(n) or n. In all non-trivial random treesf(n) = Ω(c),

for a constantc, since attaching new nodes in a useful way
requires performing a search of the tree. Assuming that every
sampled point is added to the tree, the expected time to find
a better path is:

E =

∞
∑

j=1

[

(1 − p)j−1p

(

j−1
∑

i=0

f(n + i)

)]

(1)

Where(1 − p)j−1p is the probability thej-th node insertion
leads to a better path, and

∑j−1

i=0
f(n + i) is the cumulative

time required to insertj nodes into the tree. Assuming
limm→∞ (1 − p)mf(n + m − 1) = 0 (that is,f(n) = o(cn),
note the little ‘o’), Equation 1 can be reduced to:

E =

∞
∑

i=0

(1 − p)if(n + i) (2)

Assume that we build a forest ofT random trees, such
that all trees simultaneously search for a path between the
same start and goal locations in the configuration space. Let
pt denote the probability an insertion into treet leads to a
better solution. If all trees simultaneously add a new point,
then the probability at least one tree finds a better path is:

PT = 1 −
T
∏

t=1

(1 − pt) (3)

If all trees require the same amount of time to insert a new
node (i.e., they are all the same size), then the expected number
of iterations until a better path is found is1/PT . In practice,
different trees may have differentn and different values for
f(n). We can calculate an upper bound on the expected time
to a new better path, if we use the maximumf(n) over t
per each iteration. Assuming the insertion function is non-
decreasing,f(n+1) ≥ f(n) for all n > 0, then it follows that
f(maxt (nt) + i) = maxt f(nt + i). Let nmax = maxt (nt).
The upper bound on the expected time until the discovery of
a better forest path is given by:

ET ≤
∞
∑

j=1

[

(1 − PT )j−1PT

(

j−1
∑

i=0

f(nmax + i)

)]

(4)

Assuminglimm→∞ (1 − PT )mf(n + m − 1) = 0 (again, that
is f(n) = o(cn) with a little ‘o’), we obtain:

ET =

∞
∑

i=0

(1 − PT )if(n + i) (5)

Comparing Equations 2 and 5 shows how the parallelized
multi-tree version of the forest is expected to perform vs. a
single search tree, respectively. The expected time required to
find a better path is less for the forest than for a single tree,
as long as1 −

∏T
t=1

(1 − pt) ≥ p, since 0 < pt ≤ 1 and
0 < p ≤ 1, andT > 1.

If we assume thatpt = p for all t (that is, the probability a
new node leads to a better path is the same for all forest trees
and the single tree), then we see that the forest withT > 1 is
always expected to find a better path before a single tree. This



is intuitive, since more samples from a random distribution
increases the probability of finding what we are looking for.
Note limT→∞ 1 −

∏T
t=1

(1 − pt) = 1, and as a result, the
expected time to a new solution decreases to 0 as the number
of trees in the forest approaches infinity.

We would like to investigate what conditions, if any, allow
super linear speedup. Namely, when is the following true:

ET < E/T. (6)

In general, super linear speedup is rare, showing when it can
happen is a delightful treat. This is also of particular interest
because it tells us when we would theoretically do better to use
a forest instead of a single tree when using a single processor
(e.g., splitting computation time between each tree).

In particular, we want to see when Equation 6 holds for
popular search-tree algorithms (e.g., whenf(n) is linear,
logarithmic, etc.). The basic idea is to assume that each tree is
equally likely to find a better solutionp = pt, and then solve
for a relation betweennmax andn.

Given that the expected time to a solution is less for the
forest (regardless of super linear speedup or not), the number
of nodes in a forest tree is likely to be less than that in a stand-
alone tree (nmax ≤ n), especially after a few solutions have
already been found (e.g., due to pruning and reduced sample
space). Smaller tree size translates into a smaller insertion time
per new node, which helps reduce the expected time to a better
path. Hence, we would like to know how large forest trees
can get(nmax), relative to a stand-alone tree(n), while still
facilitating super linear speedup.

The assumptionp = pt is fair if we assume that all
trees have the sameL, and that the size of the subspaces
depicted in Figure 2 are dependent onL given a particular
environment (recall that all trees in the forest have the same
L), and/or that the search space is sufficiently populated such
that APfuture,see

>> APfuture,blind
(so helpful points are

unlikely to be ignored due to unnecessary obstacle collisions).
Also, if we assume that the tree is sufficiently populated
such that adding new points does not significantly change the
size of APnow

, then we can assume thatp is a static value
independent ofj. For computational ease, we letq = 1 − p,
where0 ≤ q < 1. Substituting into Equation 6 gives:

∞
∑

i=0

qTif (nmax + i) <
1

T

∞
∑

i=0

qif (n + i) (7)

We start with the linear casef(n) = c1n, where c1 is a
constant greater than 0. Note thatc1 cancels from either side.

∞
∑

i=0

qTi (nmax + i) <
1

T

∞
∑

i=0

qi (n + i) (8)

Solving for the limit of the sum as the number of terms
approaches infinity, we are able to obtain the following closed-
form solution:

nmax <
(1 − qT )(pn + q)

Tp2
−

qT

1 − qT
(9)
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Fig. 5. Linear insertion functionf(n) super linear speedup range. The
vertical axis displays the maximum rationmax/n that allows super linear
speedup vs.T , given the values ofn, T , and p. Different colors indicate
different values ofn.
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Fig. 6. Logarithmic insertion functionf(n) super linear speedup range. The
vertical axis displays the maximum rationmax/n that allows super-linear
efficiency in T , given the values ofn, T , and p. Different colors indicate
different values ofn.

Figure 5 displays the maximum ratio ofnmax/n for which the
inequality holds, given various values ofn, T , andp = 1− q.
The area beneath a curve represents the region in which the
expected speedup is super linear. For example, givenT = 10
trees andp = 10−1, if a single tree would haven = 103 nodes
given a particularL, then super linear speedup is expected
when forest trees have less than about0.6n nodes. Recall that
forest trees tend to require fewer nodes perL because they are
expected to find solutions faster—regardless of super linear
speedup or not. Asn approaches infinity, the rationmax/n
approaches(1 − qT )/(Tp). This is represented by the black
dashed line in Figure 5.

The next case we examine is whenf(n) is logarithmic
f(n) = c2 log

2
(n), where c2 is a constant greater than 0.

Note thatc2 cancels from either side.
∞
∑

i=0

qTi log
2
(nmax + i) <

1

T

∞
∑

i=0

qi log
2
(n + i) (10)



We are unable to find a closed-form solution, however it is still
possible to evaluate the inequality numerically using partial
summations to obtain an estimate that is arbitrarily accurate.
Note that the size of the terms rapidly decreases due to the
exponentiationqi vs. the slow growth oflog

2
(n+ i). Figure 6

displays the the maximum ratio ofnmax/n for which the
logarithmic inequality holds.

The final case we examine is the insertion function used
by RRT*. In RRT* all nodes within a particulard-ball are
evaluated for possible connection to a new node, whered is
the dimensionality of the configuration space. The radius of
the d-ball is calculated asmin

{

c3((log n)/n)1/d, c4

}

, where
c3 andc4 are constants defined in terms ofd (see Karaman and
Frazzoli [11] for more details). This means that the volume of
the d-ball is Aball = min {c5((log

2
n)/n), c6}, wherec5 and

c6 are constants dependent ond. If we assume that nodes are
evenly distributed inAs, then the expected number of nodes
evaluated per insertion isnr‖Aball‖/‖As‖, where r is the
ratio between the number of nodes inAs and the number of
nodes in the tree. We can assumer is a constant if most nodes
are inAs, andr = 1 if the tree is pruned as described in 1.
This gives an expected node insertion time of:

f(n) = min {c7 log
2
(n), c8n} (11)

Wherec7 andc8 are constants. While it is possible to substitute
this result into Equation 8 and then solve numerically as we
have done before, we note that logarithmic case wins out
wheneverlog

2
(n) < c9n and log

2
(nmax) < c9nmax, where

c9 = c8/c7. Therefore, results for the logarithmicf(n) can be
used for RRT*, assuming trees are sufficiently big.

Although we have only shown that the forest can be better
for a single iteration, it is easy to see that this can extend to
the entire run of the algorithm by induction. Each new value
of L significantly affectsp via A, and a particular path length
reduction reduces‖As‖ by an amount exponential ind. Since
‖As‖ correlates directly to random sampling and pruning,
we expect forests of random trees to become more and more
useful with increasingd.

IV. SEQUENTIAL FORESTALGORITHM

Given the potential for super linear speedup vs.T , we
propose a sequential version of the forest algorithm that uses
1/T -th of computation time on a single processor for each ofT
trees. The algorithm is presented in Figure 7. The subroutine
TreeTimeLeft() returns true if there is still time for this
tree to plan during the current planning iteration. The amount
of time allotted to each tree per iteration is small (e.g., on
the order of0.01 second), so that many loops through the
forest occur over the course of the search. Note that we
move on to the next tree as soon as the previous tree has
found a solution, even if time still remains for the previous
tree (RandomTree(t), line 11). We have found this to help
during early phases of search, since it enables the next treeto
focus a disproportional amount of its effort on improving the
current best solution. This effect is diminished once the entire
forest is established. However, quickly reducing the search

Forest()

1: L = ∞
2: Pbst = ∅
3: for t = 1 to T do
4: t.L = ∞
5: t.Pbst = ∅
6: while TimeLeft() do
7: for t = 1 to T do
8: RandomTree(t)
9: Return (L,Pbst)

RandomTree(t)

1: if L < t.L then
2: t.AddPath(Pbst)
3: t.L = L
4: t.prune(L)
5: while TreeTimeLeft() and TimeLeft() do
6: s = t.RandomPoint(L)
7: t.Insert(s)
8: if t.L < L then
9: Pbst = t.Pbst

10: L = t.L
11: Return

Fig. 7. Sequential forests of random-trees algorithm (top),and individual
tree (bottom). Note that any random-tree algorithm can be used, as long as it
provides the necessary subroutines. Subroutines are described in Figure 1 in
Section II.

space at the beginning of the search has positive effects that
propagate through the rest of the runtime.

V. EXPERIMENTS

We perform five experiments to evaluate the performance
of forests of random trees vs. stand-alone trees. Two different
type of trees are used: Any-Com ISS trees [16], which have
a linear node insertion function, and RRT* trees [11], which
have a logarithmic insertion function in most cases.

The first two experiments use the parallel forest algorithm
with Any-Com ISS trees and RRT* trees, respectively. In
Experiment 1, robots are given the centralized multi-robot
planning task of navigation in an office environment. In
Experiment 2, a single robot is given the task of navigation
through a maze-like environment. Both experiments are run on
a simulated1 cluster ofT computers forT = [1...64]. Results
are displayed in Figure 8-top and -bottom, respectively.

Plots show mean and standard deviation of solution quality
over 20 runs vs. number of trees in the forest (note the
logarithmic scale used on the horizontal axis). Different colors

1We hope to rerun this experiment on an actual cluster in futurework. The
simulation works by running each of theT simulated computational units for
a small amount of time in a sequence, rewinding the global clock for each
unit. Messages sent from each computational unit are not made available until
after all units have finished calculation per the current iteration, and message
passing is included in the time calculation. Since a real cluster would not limit
communication in this way, we expect a real cluster to marginally improve
results.
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Fig. 8. Experiments 1 and 2. Parallel forests of Any-Com ISS trees, 5
robots in an office environment (top). Parallel forests of RRT* Trees, 1 robot
planning in a maze environment (bottom). Results show solutionquality vs.
forest size. Color denotes planning time. Data-points show mean and standard
deviation over 20 runs. Note the log scale of the horizontal axis.
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Fig. 9. Experiments 3 and 4. Sequential forests of Any-Com ISStrees,
5 robots in an office environment (top). Sequential forests ofRRT* Trees,
1 robot planning in a maze environment (bottom). Results show solution
quality vs. forest size. Color denotes planning time. Data-points show mean
and standard deviation over 50 runs. Note the log scale of thehorizontal axis.

represent different planning times. AssumingT1 and T2 rep-
resent two different forest sizes, andP1 andP2 represent two
different planning times, super linear speedup can be observed
by comparing data-points for whichT1P1 = T2P2.

Experiments 3 and 4 are similar to 1 and 2, respectively,
except that the sequential version of the forest is used. Forest
sizeT = [1...128]. Results are displayed in Figure 9-top and
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Fig. 10. Experiment 5, Sequential forests of RRT* Trees, 1 robot planning
in a simple 2D environment with random obstacles. Results showsolution
quality vs. forest size. Color denotes planning time. Data-points show mean
and standard deviation over 20 runs. Note the log scale on thehorizontal axis.

-bottom, respectively. In this case, super linear speedup is
observable as a decrease in solution length vs.T .

In Experiment 5 we hope to provide an example of an
environment in which the single-processor forest does not have
super linear speedup for anyT . According to the analysis
in section III, this should happen in environments that are
relatively easy to plan through (i.e.,p is relatively large). The
RRT* algorithm is used, since logarithmic insertion functions
tend to shrink the super-linear range ofp vs. T . Planning is
performed in a simple 2D environment with random obstacles,
and results are displayed in Figure 10.

VI. D ISCUSSION OF RESULTS

Overall, we find that planning with forests of random
trees works exceptionally well. The parallel forest algorithm
gives significantly better results vs. a single tree—more trees
correlate to better solutions, regardless of the type of tree being
used. We observe super-linear speedup in the Any-Com ISS
tree, in general, and super linear speedup for small numbers
of trees with RRT*. Recall that Figures 5 and 6 in Section III
show that the range ofp conducive to super linear speedup
stabilizes vs.T for linear insertion functions but decreases with
T for logarithmic insertion functions. Thus, the experimental
results agree well with the theoretical analysis, since theAny-
Com ISS tree has a linear order insertion function and function
and RRT*’s is essentially logarithmic.

Results are similar for the sequential forest algorithm. This
algorithm is only useful when speedup is super linear vs.
T . As with the parallel forest, the number of trees that
produced super-linear efficiency tended to be small for RRT*
(logarithmic insertion function), especially for short planning
times. The Any-Com ISS tree (linear insertion function) was
observed to perform better with a large numbers of trees. It
is important to note that super linear speedup is observed for
someT in forests using either type of tree.

Forests of random trees tend to work well in challenging
environments, where the probability a new node produces a
better solution is relatively low. In very easy environments
a single tree may outperform a forest in the non-distributed
version of the algorithm, especially when the insertion function
is logarithmic and planning time is short (e.g., Experiment



five). However, when parallelization is available (and solution
quality per clock-time is the most important evaluation metric),
it is always better to use more trees.

VII. C ONCLUSIONS

We present a new approach to single-query path planning
that uses forests of random trees. Forests are coupled such
that they sample new random nodes, and prune existing ones,
based on the best solution known to any tree in the forest. The
current best solution is also shared between trees so that all
trees have a chance to improve it.

A significant contribution of this work is the theoretical
analysis that shows forests can achieve super linear speedup
vs. their number of trees (that is, efficiency can be> 1). Super
linear speedup is very rare. When it exists, it is possible to
design faster non-distributed algorithms by dividing processing
time between each sub-problem (i.e. instead of devoting a
unique cpu to each sub-problem). Therefore, we also propose
a non-distributed sequential forest of random trees algorithm
that operates according to this concept.

We perform experiments using two different state-of-the art
underlying random trees. The experiments show that parallel
forests always out-perform a stand-alone tree, often with
super linear speedup. Likewise, sequential forests outperform a
stand-alone tree in many circumstances (implying super linear
speedup). In general, forests of random trees work especially
well for difficult problems—when the probability of finding a
better path is small.
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