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Path Planning with Forests of Random Trees:
Parallelization with Super Linear Speedup

Michael Otte and Nikolaus Correll

Abstract—We propose a new parallelized high-dimensional computation time is divided between each tree in the forest,
single-query path planning technique that uses a coupled forest respectively. Either algorithm is able to utilize any uriyieg
of random trees (i.e., instead of a single tree). We present both random tree algorithm and configuration space, as long as the

theoretical and experimental results that show using forests of . o . . .
random trees can lead to expected super linear speedup, with following three conditions are met: (1) the configuratioasp

respect to the number of trees in the forest. In other words, win ~ Obeys the triangle inequality. (2) a heuristic estimate hef t
T trees running in parallel, we expect to get a particular quality cost between two points can be obtained that is exactly what

result in less than1/T the time required by a single tree (this is the actual cost would be if no obstacles were present. (3) The

also known as having efficiency greater than 1). Our algorithm ,qerlying tree is expected to converge to an optimal smiyti
works by linking the random sampling and pruning mechanisms given infinite time

of all trees in the forest to the length of the current best path ] . . .
found by any tree. This enables all trees to avoid sampling from  The rest of this paper is organized as follows: the remainder
large portions of the configuration space that cannot possibly lead of this section is devoted to background information on path
to better solutions, and increases speed by enabling trees to pren planning and related work. In Section V we perform a series
obsolete nodes. The current best solution is also passed betweerbf experiments comparing the performance of various sized
trees, so that it may be improved by any tree in the forest. Given . .

the potential of super linear speedup, we additionally propose a forests to single tregs. Both the parallel and'sequentra.Im
sequential version of the forest algorithm that works by dividing Of the forest algorithm are evaluated using two different
computation time between each ofl" trees. We perform a series state-of-the-art random trees. Discussion and conclasioea

of experiments and find that both the parallel and sequential presented in Sections VI and VII, respectively.
versions of the forest algorithm perform well in practice (e.g.,

vs. a single tree or smaller forests). To demonstrate that our A, Background
algorithm is generally applicable, experiments are performed . . Lo
using two different state-of-the-art random tree algorithms for The path planning problem is that of finding a sequence
the underlying random trees. Theoretical analysis suggest that of actions that cause a system to transition from an initial
these results can be duplicated for any random tree path planning state to a goal state. While efficient complete grid-based
algorithm that meets a few requirements stated in the paper. methods exist for the 2D and 3D cases (Dijkstra [4], Hart
et al. [9], Stentz [21], Koenig and Likhachev [12], Ferguson
and Stentz| [5]), the PSPACE-hardness of complete planning
We present a new technique for single-query higltauses complete algorithms to be impractical in higher dime
dimensional path planning. The basic idea is to use a fofestsions (Reif [18], Hopcroft et al! [10]). Current algorithno$
random trees instead of a single tree. The forest is speaifbice for planning in higher-dimensions work by randomly
in the sense that both the random sampling and pruniegmpling the environment to create a random graph that is
mechanisms of all trees are coupled. That is, they are definhdn searched using standard graph techniques. In general,
in terms of the length of the current best solution known tihese algorithms are probabilistically complete—the ckanc
any tree in the forest. This allows all trees to prune thewesel that they find a solution (if one exists) approaches one as tim
based on the current best path, and also to avoid samplagproaches infinity. Unlike low-dimensional grid methods,
new points from portions of the configuration space thabost of the computational effort is spent on graph creation
cannot possibly produce better solutions. This reduces ttws. graph search for a path). Depending on the application,
time required to insert new nodes into the tree, and inceeasegh-dimensional graph based planners tend to come in one
the chances new points produce better solutions, respactivof two flavors: multi-query and single-query.
Additionally, the current best solution is shared througttbe Multi-query planners are used when many searches are
forest so that all trees have a chance to improve it direlrtly. expected to be performed in the same environment. A detailed
section 1l we show that using a forest of random trees camaph through the configuration space is created, storetl, an
lead to super linear efficiency vs. number of trees in thesforepossibly improved over time. Paths are calculated by cannec
That is, withT" trees, we can expect solutions of a particulang start and goal states to the graph and then searching for
quality to be found in less thaih/T" the time required by a a path between them (Overmars and Svestka [17], Koga and
single tree. This is also known as having efficieneyl. Latombe [13], Sanchez and Latombe [19, 20], Clark et al. [3])
In Sections Il and IV we propose two similar but different Single-queryplanners are used when a planner is expected
forest algorithms: a parallel version where each compurtati to encounter a different environment every time it plans. A
unit grows a single tree, and a sequential version whedetailed graph is not saved, since each graph will only bd use

I. INTRODUCTION



once. Instead, the planner builds the best graph it canmwitldestroyed. In contrast, our forest idea builds all treesukim
the allotted planning time. Single-query planners usuille taneously. Since multiple trees exist at one time, coofmerat
the form of random tree algorithms that fuse the graph aeatibetween them contributes to search progress.

and search operations. Newly sampled points are inserted in Any-Com ISS (Otte and Correll [16]) is the most closely
the tree as soon as they can be connected to the existing graglated work to our own. In that work, the authors present
Points that cannot be connected to the graph are ignoredmulti-robot search algorithm that is solved in a distréglit
The forest algorithms presented in this paper build diyectmanner by a six robot team. The specific algorithm is similar
on single-query random trees. to the distributed version of forests of random trees that we

One of the earliest and most widely used single-query plapresent here, except that the underlying trees are asswmed t
ners is theapidly exploring random treer RRT(LaValle and be a unique type described in that work. Otte and Correll [16]
Kuffner [14,/15]). Re-planning versions also exist (Femus note that their experimental results show super-lineaedype,
et al. [8], Ferguson and Stentz [7]). While RRT provides nideowever no theoretical explanation is given. In contrastain
probabilistic coverage guarantees, the resulting pathd te contribution of our paper is the theoretical proof that para
wander—for instance, Karaman and Frazzoli [11] prove thklizing search in a coupled forest of random trees can lead
RRT will almost surly converge to a sub-optimal solution. Ao super linear speedup for many different types of random
number of attempts have been made to eliminate wanderinges. Another difference is that we show how to harness the
by finding increasingly optimal solutions as time permiay- super linear speedup to improve non-distributed path jrann
Time RRTworks by building new trees while time remainsOne final difference is that we perform experiments using
such that each subsequent tree is guaranteed to be betier fbrests with many more than six trees, and multiple undeglyi
its predecessor (Ferguson and Stentz [6, RRT* carefully random tree algorithms.
chooses a set of candidate nodes such that the resulting algat is also worth mentioning that, in the field of machine
rithm almost surly converges to the optimal solution (Kaaam |earning, forests of decision trees have proven to be much
and Frazzoli [11]). TheAny-Com ISSandom tree described more powerful than a single decision tree for the problems of
by Otte and Correll [16] attaches new nodes in a way thalassification and regression (Breiman [2]). While the tasks
minimizes cost given the current tree, and ongoing remogeliregression and classification are quite different from ththp
guarantees convergence to the optimal solution. In Sestionplanning problem we are concerned with, this body of work
we evaluate forests that use both RRT* and the Any-Com 1$San interesting analogue.
random tree.

Given that recent breakthroughs have provided algorithms Il. PARALLEL FORESTALGORITHM
with optimal convergence, it is clear that future advances i
path planning will focus on increasing the rate of conveagen The parallel version of the forest algorithm is displayed
We believe that distributed computation is a natural way to Figure 1-top. The best solutioR,,, is initialized to the
achieve this type of acceleration, and that forests areegrapt empty set and its length is initialized to (lines 1-2). Next,
way to achieve distribution. On the other hand, given tHE trees are started, each on their own process or computhationa
potential for super linear speedup, we also believe thaister unit (lines 3). The subroutin@imeLeft() returns true while
of random trees can benefit search in non-distributed gettinplanning time remains, otherwise it returns false. Once the

allotted planning time has been exhausted, the forestn®tur
B. Related work the best solution found by any tree (lines 5-7).

Probabilistic road-maps, a popular multi-query plannaveh  The bulk of the algorithm takes place within each individual
been shown to be ‘embarrassingly parallel’ (Amato and Daleee (Figurel 1-bottom). Each tree begins by initializing it
[1]). Here parallelization is achieved by having each prdsest known solution to the empty set and its length isdo
cess randomly sample new points to connect to the graglnes 1-2). Search happens by picking a random poiftom
Results show approximately linear speedup vs. the numitke configuration space witlRandomPoint(L) and then
of processors. While it seems reasonable that single-quérgerting it into the tree usinfnsert(v) (lines 4-5). Random
planners could be parallelized in the same way, this foreampling happens in a special way that depends.pithe
of distributed algorithm requires each process to havecdirdength of the best solution know to all trees; however, we
access to a single tree stored in memory. In contrast, eeeh fpostpone a full discussion on this topic until lathtisert(v)
in our forest algorithm maintains its own memory footprint—is assumed incorporate any specific logic required by the
knowledge transfer is achieved via exchanging small messagnderlying random tree. If the new node leads to a (globally)
between processes. The latter framework allows the focesthietter path, then the new solution is distributed to the rothe
be distributed between processes that do not necessavidy hiaees (lines 7-8). This can be accomplished in shared memory
access to a shared global memory structure (e.g., betweervia messaging over a network. If a better solution has been
multiple machines connected by a network). found by another tree, then it is added to the local tree using

The Any-Time RRT algorithm builds multiple trees sequenAddPath(P,,;) (lines 10-12), taking care to avoid point
tially (Ferguson and Stentz [6]). However, the next tree duplication. Finally, the local tree is pruned based on tbba
not started until the previous tree has been completed aralue of L usingprune(L) (lines 9 and 12).



ParallelForest/() v = RandomPoint (L)

1. L =00 La=(L-|s—g|)/2
2: Ppst =10 2: b = max {min{s, g} — a, MinBounds()}
3:for t=1toT do 3: ¢ = min {max{s, g} + ¢, MaxBounds()}
4: RandomTree(t) on its own process 4: repeat
5: while TimeLeft() do 5: s = (Rand(0,1) x (c—0))+b
6: sleep 6: until hs(v) + he(v) < L
7: Return (L, Pyg) Insert(v)
RandomTree(t) 1: calculatep,,, the prospective parent ef according to the
1 t.L =00 particular tree algorithm that is being used
2: t.Pps =0 20 if dg(py) + h(pw,v) + hg(v) < L then
3: while TimeLeft() do 3 continue to inserv according to the tree algorithm
4: v = t. RandomPoint(L)
5: t.Insert(v) prune(L)
6: if t.I < L then 1: for n = each node in the trego
7: Py = t.Ppa 2: if hs(n)+ hy(n) > L then
g: L=tL 3 removen and all of its descendants
% . t.prune(L) Fig. 3. Subroutines used in the forest of random trees dlgos.
10 if L <t.L then MinBounds() and MaxBounds() return the minimum and maximum
11: t. AddPath(Py,;) coordinates of the configuration space along each dimension.
12: t.L=1
13: t.prune(L)

within the ellipsoid be denoted ;. We can ignore all points
Fig. 1. Algorithm for parallel forests of random-trees (tophd forest tree ot in A;, for random sampling RandomPoint(L) line
(bottom). Note that any random tree algorithm can be usedprg &s it . imilarl ' tAi
provides the necessary subroutines. 6, F|gure[$)._ Similarly, we can prune any nodes_ notAIp

(prune(L), line 2). Sampling directly from the ellipsoid can
be difficult in practice. Instead, we perform initial sanmgji
from the hypercube described by (v) + hy(v) = L per each
dimension RandomPoint(L), lines 1-3), and then disregard
points outside the ellipsoid (lines 4-6).

We have also found it useful to disregard any points for

which ds(v) + he(v) > L (Insert(v), line 2). Note this is
a greedy strategy, since it does not account for the fact that
future tree-remodeling may decreasgv) (also note, this is
similar to the priority heap weight used in the A* algorithm)
In another greedy approach, we also prune the descendants of
pruned nodesgrune(L), line 3).
Fig. 2. Boundary of ellipsoid beyond which new points carpmssibly lead ~ Coupling the sampling and pruning mechanisms of all trees
to better solutions (dashed-blue). The space within thipselid is denoted enables the entire forest to grow based on the best solution
Az and s boundary s defined by (v) + hg(v) = L, where L is the  f5nq so far. Sharing the current best solution gives adidre
ength of the current best pail® (red). . .

a chance to improve it.

A few variations on the algorithm are also possible. Often,

Let s and g represent the start and the goal states, respé'&e insertion and pruning operations can be_combined smh th
tively. Let h(v1,v2) be a heuristic function that returns thdrelevant nodes are removed as they are discovered duméng t

distance between two states and v, assuming no obstaclesNSertion operation. If pruning is especially time consogi
are present. Leb,(v) = h(s,v) and hy(v) = h(v,g). Let & similar effe_(;t can be achleved_by deleting trees. with a
d,(v) represent that actual distance from the start torough SMall probability and then regrowing them to contain only
the current tree. Assume that at least one path to the gl current best solution. Obviously, deletion must be done
has been found, and the algorithm is currently working gHdicially, since it removes potentially valuable infortiza
finding better solutions as time remains. The current skortd©m the tree. In practice, we have found small values (e.g.,
path between the start and the goal is dendBedand the probability of deletion 0.01 per 0.01 seconds) to be useful.
distance (or cost) along this path is= d;(g).

Any point v for which hg(v) + hy(v) > L cannot possibly
lead to a betteP. Geometricallyh;(v)+hy(v) = L describes  There are two subspaces withiy, that are relevaniAp,,
an ellipsoid in the search space (see figure 2). Let the spée¢he union of all points not in the tree that, if added, would

IIl. ANALYSIS



for a constant, since attaching new nodes in a useful way

requires performing a search of the tree. Assuming thatyever

sampled point is added to the tree, the expected time to find
a better path is:

E= z_:l [(1 —p)'p (;f(nﬂ'))

Where (1 — p)?~!p is the probability thej-th node insertion
leads to a better path, a {;01 f(n 4+ 1) is the cumulative
time required to insertj nodes into the tree. Assuming
limy,—oo (1 —p)™f(n+m —1) =0 (that is, f(n) = o(c™),

)

Fig. 4. The relationship between the subspades (dashed-green),

Ap,.,.. (dashed-red)A; (dashed-blue), ana . (dashed-black). note the little ‘0"), Equation 1 can be reduced to:
o0
E=Y (1-p)f(n+i) )
immediately result in a better solutioAp,,, ., . is the union i=0

of all points not in the tree that, if eventually added, would aAssyme that we build a forest &f random trees, such
eventually enable a better patAp,,, < Ap;,... @0d that all trees simultaneously search for a path between the
Ap,,,... C Ar. Verification ofv € Ap,, is €asy, assuming same start and goal locations in the configuration space. Let
we are alerted when better solutions are found. p: denote the probability an insertion into tredeads to a
Ap;,.... Can be broken into two disjoint subspacesetter solution. If all trees simultaneously add a new point

AP ypure e CONMAINS poiNts that are also within the visibilitythen the probability at least one tree finds a better path is:
region of the current tree, andlp,,,. .., contains points

that cannot see the tree due to collisions. If sampled, point P =1 1 3
from Ap,,,...... Will be added to the tree, while those in r=1-1[0-p) ®)
APfutuTe,blind WI” nOt NOte APnow g APfuture,see' . = . .

We assumeAp,,. . .. cannot be calculated in practicallf all trees require the same amount of time to insert a new
time—if it could, then better planning algorithms exist (e.gnode (i.e., they are all the same size), then the expectedeum
gradient decent). LefA, denote the space we actually us®f iterations until a better path is found 1gPr. In practice,
for sampling. In practiceA, O A;. Figure/4 depicts the different trees may have differemt and different values for
relationship betweerp,,,, Ap,,,..., A, andA,. f(n). We can calculate an upper bound on the expected time

Let the volume of a subspace be denofed|. Assuming t0 @ new better path, if we use the maximuftn) over ¢
points are sampled uniformly at random from,, and a Per each iteration. Assuming the insertion function is non-
subspaceA C A, it is possible to express the probabilitydecreasingf(n+1) > f(n) for all n > 0, then it follows that
of choosing a point inA as P(v € A) = |A|/[|A,|l. The J(max;(n:)+ i) = max; f(ne +14). L€t npax = max; (ng).
probability a point sampled uniformly at random leads to &he upper bound on the expected time until the discovery of

T

better solution iP(v € Ap,,.) = |Ap,.. ||/|Asl.- a better forest path is given by:

If the sizes of the subspaces were not tied to the structure 00 j—1
qf the tree, then the expected number of samples needed to £, < Z [(1 —Pr) Py (Z F(mas + Z-)) 4)
find a better path would b&p = ||A|//||Ap,,, |- How- =1 im0

ever, since adding new points changes the sizeapf_ - m B .
and Ap,,,....... we cannot do this. However, we knowﬁssum'ighmngs‘;tél _”ET " (?NJF mbt_ iln)'_ 0 (again, that
that if Ap,,,. ... Changes due to a node insertion that f(n) =o(c") a litte "0’), we obtain:

does not result in a better path being found (i.e., the node > ) .

vEAP, . dAp,..), then Ap, . will not get Er = (1-Pr)'f(n+1) ®)
smaller (andAp,,,... ... Will not get bigger). Similarly, =0

Ap, . wil not get smaller until a better path is found. Comparing Equations 2 and 5 shows how the parallelized

Thus, the probability of picking a node iAp__, will not multi-tree version of the forest is expected to perform vs. a
decrease until a better path is found, and an upper boundsingle search tree, respectively. The expected time red|ti

the expected number of insertions required to find a betfiand a better path is less for the forest than for a single tree,
solution is given byEp < ||A||/||Ap,.. |- as long asl — ]'[tT:1 (1—pt) > p, sinced < py < 1 and

Letp=P(v € Ap, ). We assume that a better path ca < p <1, andT > 1.

actually be found. Thud) < p < 1. Let f(n) represent the If we assume thap, = p for all ¢ (that is, the probability a
insertion time required to add a new node to a tree, assumingew node leads to a better path is the same for all forest trees
nodes are already in the treg(n) is a stand-in for something and the single tree), then we see that the forest With 1 is

like log(n) or n. In all non-trivial random treeg(n) = Q(c), always expected to find a better path before a single tres. Thi



T=100

is intuitive, since more samples from a random distribution i
increases the probability of finding what we are looking for.
Note limp .o 1 —[[_, (1 —p;) = 1, and as a result, the
expected time to a new solution decreases to 0 as the number
of trees in the forest approaches infinity.

We would like to investigate what conditions, if any, allow ~_ °¢

0.7

super linear speedup. Namely, when is the following true: Fos

0.4

Er < E/T. (6) .

In general, super linear speedup is rare, showing when it can oz

happen is a delightful treat. This is also of particular iest 01

because it tells us when we would theoretically do bettest u o
a forest instead of a single tree when using a single processo R 10

(e.g., splitting computation time between each tree).

In particular, we want to see when Equation 6 holds fafig. 5. Linear insertion functionf(n) super linear speedup range. The
popular search-tree algorithms (e.g., whéfn) is linear, Vvertical axis displays the maximum ratio,q./n that allows super linear

: : P : . speedup vsT', given the values of:, 7', and p. Different colors indicate

Iogarlthrr_nc, etc.)._The basic idea is to assume that eaehidre e b - o e
equally likely to find a better solutiop = p;, and then solve
for a relation betweem,,,,, andn.

Given that the expected time to a solution is less for the
forest (regardless of super linear speedup or not), the eumb

T=100

1

0.9

of nodes in a forest tree is likely to be less than that in adstan 08
alone tree 1., < n), especially after a few solutions have 07
already been found (e.g., due to pruning and reduced sample s
space). Smaller tree size translates into a smaller iosetithe % 05

per new node, which helps reduce the expected time to a better <
path. Hence, we would like to know how large forest trees
can get(n.qz), relative to a stand-alone trée), while still
facilitating super linear speedup.

The assumptionp = p, is fair if we assume that all 01
trees have the samg, and that the size of the subspaces 0
depicted in Figure 2 are dependent éngiven a particular
environment (recall that all trees in the forest have theesam

L), and/or that the search space is sufficiently populatet sudg. 6. Logarithmic insertion functioyf(n) super linear speedup range. The

. vertical axis displays the maximum ratio,,../n that allows super-linear
tha_t APfutwm_ee >> A'Pfutu're.blind (so helpful points _a_re efficiency inT, given the values o, T', and p. Different colors indicate
unlikely to be ignored due to unnecessary obstacle callijio different values of.

Also, if we assume that the tree is sufficiently populated
such that adding new points does not significantly change the . ) ) ]
size of Ap, , then we can assume thatis a static value Figurel 5 displays the maximum ratio of,,,,. /n for which the

independent ofj. For computational ease, we lgt= 1 — p, inequality holds, given various values of T, andp = 1 —g.
where0 < ¢ < 1. Substituting into Equation 6 gives: The area beneath a curve represents the region in which the

expected speedup is super linear. For example, given10
trees ang = 107!, if a single tree would have = 10® nodes
given a particularL, then super linear speedup is expected
when forest trees have less than ab@gi nodes. Recall that
We start with the linear casg¢(n) = cin, wherec; is a forest trees tend to require fewer nodes pdrecause they are
constant greater than 0. Note thatcancels from either side. expected to find solutions faster—regardless of super linear
0o s speedup or not. A approaches infinity, the ratia, .. /n
ZqTi (Nmaz +1) < = Zqi (n+1) (8) approachesl — ¢”)/(Tp). This is represented by the black
i=0 T = dashed line in Figure]5.
Solving for the limit of the sum as the number of terms The next case we examine is whetin) is logarithmic

approaches infinity, we are able to obtain the following etbs / ")) = c21082(n), wherec, is a constant greater than 0.
form solution: Note thatcy cancels from either side.

T T A . 1<, .
Nmazr < (1 — q,l,)(fn + CI) - 1 q (9) Z qu 10g2 (nmam + Z) < T Z q logg (TL + Z) (10)
p —q i=0 i=0

ST (s 1) < S d f (ki) (D)
=0

=0




We are unable to find a closed-form solution, however it i stForest()

possible to evaluate the inequality numerically usingiphrt 1 L =00
summations to obtain an estimate that is arbitrarily adeura 2: Pust =0

Note that the size of the terms rapidly decreases due to th for ¢ =1to 7" do
exponentiationy’ vs. the slow growth ofog, (n +1). Figure 6 4  t.L =00
displays the the maximum ratio of,,../n for which the > tPyss =0

logarithmic inequality holds. 6: While TimeLeft() do
The final case we examine is the insertion function used: for t=1to T do
by RRT*. In RRT* all nodes within a particulad-ball are & RandomTree(t)

evaluated for possible connection to a new node, wideie 9 Return (L, Py)

the dimensionality of the configuration space. The radius of

the d-ball is calculated asnin {c5((logn)/n)*/%, cs}, where RandomTree(t)

c3 andcy are constants defined in termsdfsee Karaman and 1 if L < +.L then

Frazzoli [11] for more details). This means that the volurfie o, t. AddPath(Py,,)

the d-ball is Ay, = min {c5((logyn)/n),c6}, wherecs and 5. ‘L=

ce are constants dependent @énlf we assume that nodes are . t.prune(L)

evenly distributed inA, then the expected number of nodesg. \hile TreeTimeLeft() and TimeLeft() do
evaluated per insertion isr||Apaul|/||Asll, wherer is the ¢ o RandomPoint(L)

ratio between the number of nodes Ay, and the number of 7 ¢ Insert(s)
nodes in the tree. We can assumis a constant if most nodes 8 if +.I < L then
are inA,, andr = 1 if the tree is pruned as described/in 1. 9 Py = Py
This gives an expected node insertion time of: 10: L—=tI
f(n) = min {c7logy(n), csn} (11) Return

Wherec; andcg are constants. While it is possible to substitutBig. 7.  Sequential forests of random-trees algorithm (tapy individual

this result into Equation’8 and then solve numerically as viE® bator):Note et any randon-te aigortm can be metbng o ¢

have done before, we note that logarithmic case wins asHctior 1.

wheneverlog,(n) < con andlogs(Nmaz) < CoNmaz, Where

co = cg/c7. Therefore, results for the logarithmjf¢n) can be

used for RRT*, assuming trees are sufficiently big. space at the beginning of the search has positive effects tha
Although we have only shown that the forest can be bettefopagate through the rest of the runtime.

for a single iteration, it is easy to see that this can extend t

the entire run of the algorithm by induction. Each new value

of L significantly affects via A, and a particular path length We perform five experiments to evaluate the performance

reduction reduce$A | by an amount exponential it Since Of forests of random trees vs. stand-alone trees. Two difter

|A,| correlates directly to random sampling and prunindype of trees are used: Any-Com ISS trees [16], which have

we expect forests of random trees to become more and marénear node insertion function, and RRT* trees [11], which

V. EXPERIMENTS

useful with increasingj. have a logarithmic insertion function in most cases.
The first two experiments use the parallel forest algorithm
IV. SEQUENTIAL FORESTALGORITHM with Any-Com ISS trees and RRT* trees, respectively. In

Given the potential for super linear speedup ¥5.we Experiment 1, robots are given the centralized multi-robot
propose a sequential version of the forest algorithm thas uplanning task of navigation in an office environment. In
1/T-th of computation time on a single processor for each of Experiment 2, a single robot is given the task of navigation
trees. The algorithm is presented in Figure 7. The subreutithrough a maze-like environment. Both experiments are run o
TreeTimeLeft() returns true if there is still time for this a simulated cluster of 7' computers forT’ = [1...64]. Results
tree to plan during the current planning iteration. The amtouare displayed in Figurie 8-top and -bottom, respectively.
of time allotted to each tree per iteration is small (e.g., on Plots show mean and standard deviation of solution quality
the order of0.01 second), so that many loops through thever 20 runs vs. number of trees in the forest (note the
forest occur over the course of the search. Note that Jagarithmic scale used on the horizontal axis). Differevibcs
move on to the next tree as soon as the previous tree has

found a solution, even if time still remains for the previous “We hope to rerun this experiment on an actual cluster in fut. The
simulation works by running each of tl#e simulated computational units for

tree. RandomTree(?), line 11). We h_ave found this to helpy smail amount of time in a sequence, rewinding the global clockefich
during early phases of search, since it enables the nextdreanit. Messages sent from each computational unit are not medalae until

focus a disproportional amount of its effort on improvinga thafter all units have finished calculation per the currentiien, and message
t best soluti This effect is diminished thigr passing is included in the time calculation. Since a realtefusould not limit
current best solution. This efiect Is diminished once &N .ommunication in this way, we expect a real cluster to margiriatiprove

forest is established. However, quickly reducing the dearesults.
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Fig. 8. Experiments 1 and 2. Parallel forests of Any-Com IS&dgr 5
robots in an office environment (top). Parallel forests of RRfees, 1 robot
planning in a maze environment (bottom). Results show solugigadity vs.
forest size. Color denotes planning time. Data-points shoama&éd standard
deviation over 20 runs. Note the log scale of the horizontéd.a
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Fig. 9. Experiments 3 and 4. Sequential forests of Any-Com ti®8s,
5 robots in an office environment (top). Sequential forestRBT* Trees,
1 robot planning in a maze environment (bottom). Results shdwtiso

quality vs. forest size. Color denotes planning time. Datadg show mean
and standard deviation over 50 runs. Note the log scale diidheontal axis.

represent different planning times. Assumiig and 75 rep-
resent two different forest sizes, afy and P, represent two

Sequential forest of RRT* trees
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Fig. 10. Experiment 5, Sequential forests of RRT* Trees, Jotalanning
in a simple 2D environment with random obstacles. Results sbawtion
quality vs. forest size. Color denotes planning time. Daigrs show mean
and standard deviation over 20 runs. Note the log scale ohdfieontal axis.

-bottom, respectively. In this case, super linear speedup i
observable as a decrease in solution length7vs.

In Experiment 5 we hope to provide an example of an
environment in which the single-processor forest does aot h
super linear speedup for arlf. According to the analysis
in section_Ill, this should happen in environments that are
relatively easy to plan through (i.en,is relatively large). The
RRT* algorithm is used, since logarithmic insertion fuocis
tend to shrink the super-linear range ks. T'. Planning is
performed in a simple 2D environment with random obstacles,
and results are displayed in Figure 10.

VI. DISCUSSION OF RESULTS

Overall, we find that planning with forests of random
trees works exceptionally well. The parallel forest altori
gives significantly better results vs. a single tree—morestre
correlate to better solutions, regardless of the type eflieing
used. We observe super-linear speedup in the Any-Com ISS
tree, in general, and super linear speedup for small numbers
of trees with RRT*. Recall that Figurés 5 and 6 in Section Il
show that the range gf conducive to super linear speedup
stabilizes vsT for linear insertion functions but decreases with
T for logarithmic insertion functions. Thus, the experinant
results agree well with the theoretical analysis, sincefthg-
Com ISS tree has a linear order insertion function and foncti
and RRT*'s is essentially logarithmic.

Results are similar for the sequential forest algorithmsTh
algorithm is only useful when speedup is super linear vs.
T. As with the parallel forest, the number of trees that
produced super-linear efficiency tended to be small for RRT*
(logarithmic insertion function), especially for shoraphing
times. The Any-Com ISS tree (linear insertion function) was
observed to perform better with a large numbers of trees. It
is important to note that super linear speedup is observed fo
someT in forests using either type of tree.

Forests of random trees tend to work well in challenging

different planning times, super linear speedup can be veder environments, where the probability a new node produces a

by comparing data-points for which, P, = T5 Ps.

better solution is relatively low. In very easy environnmsent

Experiments 3 and 4 are similar to 1 and 2, respectively, single tree may outperform a forest in the non-distributed
except that the sequential version of the forest is useddgtorversion of the algorithm, especially when the insertiorction
sizeT = [1...128]. Results are displayed in Figure 9-top ands logarithmic and planning time is short (e.g., Experiment



five). However, when parallelization is available (and solu IEEE International Conference on Robotics and Automa-

quality per clock-time is the most important evaluation megt tion, pages 1310-1315, 2007.
it is always better to use more trees. [8] Dave Ferguson, N Kalra, and A Stentz. Replanning with
rrts. In IEEE International Conference on Robotics and
VIl. CONCLUSIONS Automation 2006.

We present a new approach to single-query path plannin®] P Hart, N Nilsson, and B Raphael. A formal basis for the
that uses forests of random trees. Forests are coupled such heuristic determination of minimum cost paths.Rroc.
that they sample new random nodes, and prune existing ones, IEEE Transactions On System Science and Cybernetics
based on the best solution known to any tree in the forest. The (SSC-4)pages 100-107, 1968.
current best solution is also shared between trees so that{H)] J E Hopcroft, J T Schwartz, and M Sharir. On the

trees have a chance to improve it. complexity of motion planning for multiple independent

A significant contribution of this work is the theoretical objects; pspace-hardness of the warehouseman’s prob-
analysis that shows forests can achieve super linear speedu lem. The International Journal of Robotics Researgh
vs. their number of trees (that is, efficiency can-bé). Super 76-88, 1984.
linear speedup is very rare. When it exists, it is possible fdl] S. Karaman and E. Frazzoli. Incremental sampling-thase
design faster non-distributed algorithms by dividing @®sing algorithms for optimal motion planning. IRroceedings

time between each sub-problem (i.e. instead of devoting a of Robotics: Science and Systemaragoza, Spain, June

unique cpu to each sub-problem). Therefore, we also propose 2010.

a non-distributed sequential forest of random trees dlgori [12] Sven Koenig and Maxim Likhachev. Improved fast

that operates according to this concept. replanning for robot navigation in unknown terrain. In
We perform experiments using two different state-of-ttte ar ~ Proc. IEEE International Conference on Robotics and

underlying random trees. The experiments show that péaralle Automation (ICRA’02)2002.

forests always out-perform a stand-alone tree, often with3] Yoshihito Koga and Jean-Claude Latombe. On multi-

super linear speedup. Likewise, sequential forests diaipera arm manipulation planning. IRroc. IEEE International

stand-alone tree in many circumstances (implying supeafin Conference on Robotics and Automatiomlume 2,

speedup). In general, forests of random trees work especial  pages 945-952, 1994.

well for difficult problems—when the probability of finding a[14] S M LaValle and J J Kuffner. Randomized kinodynamic

better path is small. planning. InIEEE International Conference on Robotics
and Automationpages 473-479, 1999.
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