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Abstract. We describe the implementation of a fluid dynamical benchmark on the 256 node
SUPRENUM-1 parallel computer. The benchmark, the Shallow Water Equations, is frequently
used as a model for both oceanographic and atmospheric circulation. We describe the steps
involved in implementing the algorithm on the SUPRENUM-1 and we provide details of perfor-
mance. We have measured 4.95 Mflops (64-bit arithmetic) for single node performance, and 1200
Mflops aggregate performance with 256 nodes, at efficiencies up to 96%. This compares well with
vector and MIMD supercomputers. Performance of 1530 Mflops was measured for the same algo-
rithm on the CRAY YMP/8, and 543 Mflops was measured on the 128-node Intel iPSC/860. The
SIMD Thinking Machines CM-200 delivers 5.25 Gflops (64-bit) and 8.09 Gflops (32-bit) for the
benchmark.
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1. INTRODUCTION

The Shallow Water Equations are a standard model for atmospheric and oceano-
graphic processes. Implementations of the algorithm have been used as benchmarks for
vector and parallel supercomputer performance for many years!>. The Shallow Water
code is very memory intensive, involving 14 variables per grid point, and accesses these
using nine-point stencils, non-linear expressions and essential divisions. The combined
effect provides a decidedly non-trivial test of any computer system. We have recently
implemented the benchmark on the 256 node SUPRENUM-1 MIMD parallel supercom-
puter and report on the results in this paper.

The tests were run on the SUPRENUM-1 hardware at the GMD in St-Augustin, Ger-
many, which was running the Peace 3.0 operating system software. The Shallow Water
code ran on a single node using 64-bit arithmetic at 4.95 Mflops and on a 256 node system
at up to 1200 Mflops. Performance of over 4.95 Mflops per node was quite impressive,
especially as the code was not explicitly vectorized in any way.

In fact this single-node performance exceeds the typical performance we have seen
for the same algorithm on the current iPSC/860 systems, despite the fact that the latter
system’s nodes have several times the peak performance of SUPRENUM’s. We conclude
that the SUPRENUM compiler is doing an excellent job of locating vectorizable state-
ments, and in generating efficient pipelined vector instructions to implement such state-
ments. Numerical results agreed to high precision with those from other machines. We
expect that even higher per-node performance could be achieved by utilizing explicit
optimizations, and by coding computationally intensive segments using SUPRENUM

Fortran’s array extensions (Fortran 90).

The multi-node performance compares well with the iPSC/860 hypercube where an
optimized Fortran version of the Shallow Water Equations runs at 543 Mflops (64-bit pre-
cision) on 128 processors’, with the CRAY XMP which solves the equations at a rate of
560 Mflops on 4 processors, and with the CRAY YMP where 1530 Mflops has been
attained using 8 processors. The SIMD Thinking Machines CM-200 however is substan-
tially faster, delivering 5.25 Gflops (64-bit) and 8.09 Gflops (32-bit)®. Some single-node
SUPRENUM measurements reported here are slightly different from those reported a year
ago’. This is because of variations due to compiler or operating system changes.

2. THE SUPRENUM-1 SUPERCOMPUTER

The German SUPRENUM-1 computer couples up to 16 processor clusters with a net-
work of 200 Mbit/sec busses. The busses are arranged as a rectangular grid with 4 hor-
izontal and 4 vertical busses (global busses). Each cluster consists of 16 processors con-
nected by a fast bus, along with I/O devices for communication to the global bus grid and
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to disk and host computers. There can be a dedicated disk for each cluster. Individual
processors can deliver up to 20 Mflops (64-bit chained) or 10 Mflops (64-bit unchained) of
computing power and support § Mbytes of memory, upgradable to 32 Mbytes. The high
bandwidth of the bus network makes this an interesting machine for a wide range of appli-
cations, including those requiring long-range communication. No more than three com-
munication steps are ever required between remote nodes.

SUPRENUM software is characterized by the best support for scientific applications
to be found among the various distributed memory MIMD vendors. The effort invested in
development of libraries of high-level grid and communication primitives greatly eases the
effort of moving applications to the computer, and also provides substantial high-level por-
tability to other systems, since the communication library can be implemented in terms of
low level primitives on any distributed system.

The first 16-processor prototype system was delivered in 1989 and the first opera-
tional 256 processor system became available in November 1991. The full system has a 5
Gflops peak rating and should have high realizable efficiency in appropriate applications,
namely those where communication is predominately local.

3. THE SHALLOW WATER EQUATIONS BENCHMARK

As an example of the current capabilities of the SUPRENUM system we describe the
implementation of a standard two-dimensional atmospheric model - the Shallow Water
Equations - on the SUPRENUMS-1. These equations provide a primitive but useful model
of the dynamics of the atmosphere. Because the model is simple, yet captures features
typical of more complex codes, the model is frequently used in the atmospheric sciences
community to benchmark computersl’2. Furthermore, the model has been extensively
analyzed mathematically and numerically’- 8,

The Shallow Water Equations, without a Coriolis force term, take the form

ou oH _
o~ =0,
v oH _
or ~u+ 55 =0,
9P ., 9Pu , oPv _
ot Ty =0

where u and v are the velocity components in the x and y directions, P is pressure, C is

¢ = ov _ Ju

the vorticity: =0 "y and H, related to the height field, is given by:

H=P+@2+v2/2. Tt is required to solve these equations in a rectangle
a <x <b,c £y £d. Periodic boundary conditions are imposed on u#, v, and P, each of
which satisfies f (x+b,y)=f (x+a.,y), f (x,y+d)=f (x,y+c).
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A scaling of the equations results in a slightly simpler format. Introduce mass fluxes
U=Pu and V=Pv and the potential velocity Z={/P, in terms of which the equations
reduce to:

ou oH

o V=0
av aH

ap U av_
ot oty =0

4. DISCRETIZATION

We have discretized the above equations on a rectangular staggered grid with
periodic boundary conditions. The variables P and H have integer subscripts, Z has half-
integer subscripts, U has integer and half-integer subscripts, and V has half-integer and
integer subscripts respectively.

Initial conditions are chosen to satisfy V¥ =0 at all times. We time difference using
the Leap-frog method. We then apply a time filter to avoid weak instabilities inherent in
the Leap-frog scheme:

F)=fn) 4 g (f(n+1)_2f ()4 f (n=1)y |

where o is a filtering parameter. The filtered values of the variables at the previous time-
step are used in computing new values at the next time-step. For a complete description of

the discretization we refer tol.

5. SERIAL FORTRAN IMPLEMENTATION

The Fortran code implementing the above algorithm involves a 2D rectangular grid
with variables: u(i,j),v(i.j),pG.j), z(i,j), psi(i,j), h(i,j). There are three main loops,
two corresponding to the Leap-frog time propagation of various quantities, and one for the
filtering step. Execution of these three loops completes a single time step, which is then
repeated until the desired temporal simulation interval has been achieved. A typical code
sequence, used in the updating of the U, V and P variables, is:



do 200 j=1,n
do 200 i=1,m
unew(i+1,j) = uold(i+1j)
+ tdts8* (z(i+1,j+1)+z(i+1,j))*(cv(i+1 j+1)+cv(ij+1)+cv(ij)+ev(i+l,f))
- tdtsdx*(h(i+1 j)-h(ij))
vrew(ij+1) = vold(i,j+1)
- tdts8*(z(i+1 j+1)+z(ij+1))*(cu(i+1 j+1)+cu(i,j+1 )+cu(ij)+cu(i+l j))
- tdtsdy*(h(ij+1)-h(ij))
prew(i,j) = pold(ij) - tdtsdx*(cu(i+1 j)-cu(ij)) - tdtsdy*(cv(i j+1)-cv(i,j))
200 continue

Each such loop is followed by code to implement the periodic boundary conditions.
In the above case, the corresponding boundary code takes the form:

do 210 j=1,n
unew(1,j) = unew(m+1,j)
vuew(m+1,j+1) = vuew(l j+1)
prew(m+1j) = pnew(1 j)

210 continue

Note that there are such loops for both the horizontal and vertical boundaries, and in addi-
tion some corner values are copied as single items.

Excluding the boundary computations, the three major loops in a time step involve 65
arithmetic operations per grid point. Furthermore 14 physical variables must be stored per
grid point, which significantly limits the largest grid size that can be accommodated in a
single node.

6. SUPRENUM IMPLEMENTATION

To speed the implementation effort we decided to test the idea of porting a generic
MIMD parallel version of the Shallow Water Equations to the SUPRENUM-1. The work
was based on a parallel code developed by McBryan and Pozo? 10, The code was
developed for a generic class of MIMD parallel computers, based on the assumption of a
single process per node model. The code was developed and tested using a simulator for
the generic model developed previously!l:12, The simulator supports versions of the Intel
iPSC communication protocols.
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SUPRENUM supports a library interface allowing both Intel iPSC1 and iPSC2 com-
munication interfaces to be utilized. It suffices to declare the main program of both the
host and node processes to be SUPRENUM tasks, while the rest of each program may
remain as a pure Intel iPSC program. This approach greatly eased code modifications that
would have been required to develop a complete SUPRENUM-1 implementation from
scratch. In fact the code was ported and fully working within hours. The program ran
immediately and gave correct results on the first try. This demonstrates the advantages of
developing MIMD codes initially using simulators, and transferring to hardware only
when the simulations are running correctly.

Since the code involves rectangular grid arrays, and a nine-point stencil, the paralleli-
zation of the code is straightforward. A logical mapping of the processors to a two dimen-
sional array is selected. Thus if P =p,py, is a factorization of the number of processors
P, then we regard the processors as arranged in a p,Xxp, logical grid. The large arrays
representing physical variables (u,v, etc.) are then decomposed into equal sized blocks,
with one block assigned to each processor. For simplicity we assume that the x and y grid
dimensions are exact multiples of the corresponding processor numbers p, and p,. Each
such block is then stored in an array of the same shape, but which has an extra boundary
row or column provided on each of the four sides. These extra boundary points are used to
maintain copies of the true (i.e. interior) boundary points of the four neighboring proces-
sors. The three main loops of the time step are decomposed into equivalent loops per-
formed by each processor on the interior points of the block assigned to that processor.
Prior to each loop, the boundary values are updated by exchanging appropriate values
between neighboring processors, following a synchronization to ensure that all neighbors
have completed changes. Such exchanging generally requires communication which was
implemented by communicating large packets for each of the four sides of a block.

There is an essential simplification that occurs in the case that either p, or py is 1 - in
which case the logical rectangular processor array reduces to a line of processors. In this
case two of the four communications required within each main loop are not needed,
reducing substantially the communication overhead. As mentioned previously, the Shal-
low Water code uses periodic boundary conditions in each dimension. Normally periodic
boundary conditions require copying data between processors at opposite edges of the pro-
cessor array. In the case that one or other of p, or p, is 1, the periodic boundary condition
in the corresponding dimension may be implemented by in-memory copying, rather than
by communication.

A final optimization of the communication structure was required to get the peak per-
formance. Before each of the main loops in the algorithm, the boundary data for the vari-
ous physical variables (P,U,V,Z ,H ) used in that loop need to be copied from neighboring
processors. Typically two or three variables are needed from a specific direction, although
the number needed may depend on the direction. Because of the high communication
startup cost of SUPRENUM-1 (at least 3 msecs), it is essential to limit the number of
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individual communication requests. This was accomplished by packaging several com-
munications of different physical variables in a single direction into one large communica-
tion package. For some steps this reduced startup overhead by a factor of three. In the
final implementation we also replaced the Intel iPSC communication calls for this one
exchange operation by explicit calls to SUPRENUM Fortran equivalents, thereby saving
an extra copying of each data array to a communication buffer. SUPRENUM Fortran sup-
ports explicit communication operations using a standard Fortran I/O control list syntax.

There is potential in the Shallow Water Equations to overlap communication with
computation, provided the underlying hardware supports asynchronous communication
modes. In this case one would begin each major loop by an asynchronous exchange of
boundary data. Following this one executes the main body of the loop, however iterating
only over the "interior points" of the subgrid. It is then necessary to await completion of
the exchange operation, after which the the loop iteration may be completed on the outer-
most rows and columns. In principle such an approach can yield 100% computational
efficiency - i.e. communication effects become negligible. We implemented such an algo-
rithm on SUPRENUM-1. However due to inherent design aspects of the PEACE operat-
ing system we were unable to effectively use asynchronous communication in the current
version of PEACE.

7. PERFORMANCE RESULTS: SUPRENUM-1

All measurements were performed on a 256-processor SUPRENUM-1 system at the
GMD, in Schloss Berlinghoven, Germany. The Shallow Water Code was exactly the stan-
dard sequential code, modified only to take account of communication. No attempt was
made to introduce Fortran 90 vectorization constructs, or to otherwise adapt the code to
known features of the SUPRENUM compiler. The code was compiled with both the vec-
torizer and optimizer switches on.

Because SUPRENUM nodes are vector processors, there is a substantial advantage to
arranging the subgrids in each node such that the grid columns are as long as possible. In
practice, Fortran columns longer than about 1024 words are not an advantage. This is
because the vector registers are limited to a total of 7K words, and Shallow Water requires
7 registers for efficient code generation. In order to maximize computational efficiency
(by minimizing communication words sent per Mflop), it is desirable to solve as large a
problem as will fit in each node. This turns out to be a problem with 32K grid points
which consumes approximately 6 MBytes of node memory. All measurements presented
here utilize subgrids of maximal size, although their rectangular shape may vary. We
maximize both vector performance and computational efficiency on a node by using a
32x1024 subgrid in each processor. To indicate the importance of preserving a long vec-
tor length we note that performance on a single node goes from 2.50 Mflops on a 128x256
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grid to 4.95 Mflops on a 32x1024 grid, essentially a factor 2 improvement (see Table 1
below).

As discussed earlier, the number of communications per node can be reduced by a
factor of two by chosing a one-dimensional processor grid, which may be aligned with
either the X or ¥ axes. If the processors are in a line in the X direction, then the commun-
ication packets will be of size 1024 words (Y dimension of the subgrids) per variable,
while if aligned along the Y axis, only 32 words are communicated per physical variable.

More generally we can expect lower performance as the subgrids tend towards a
square shape, such as 128x256, due to the shorter vector lengths. Also using fully two-
dimensional processor grids such as a 16x16 grid will double the number of communica-
tions per node, resulting in poorer performance. All of these phenomena are illustrated in
the measured results.

We present the measured results in Tables 1-4. The tables indicate the number of
processors P, their arrangement as a logical Px xPy rectangular processor array, the com-
putational domain size Mx XMy, the resulting computational efficiency and the Mflops
generated. The computational efficiency in all cases is defined as

E = Tpeu(1)/T(P),

where T (P) is the solution time with P processors and T, (1) is the best possible single-
node performance with a subgrid of the same size but optimal shape.

Table 1 presents the effect of varying the grid shape in a single node. This demon-
strates clearly the importance of maximizing vector length. Indeed the almost square
128x256 grid provides only 50% of the performance of the elongated 32x1024 grid with
the same number of grid points.

Table 2 describes the performance of Shallow Water on grids of optimal shape for the
system. Each node contains an optimal 32x1024 grid and the processors are arranged in a
line parallel to the Y direction in order to minimize communication. Table 3 is similar
except that the processors are arranged in a line parallel to the X axis, resulting in more
square grids, and slightly increased communication cost.

In Table 4, we compare the effect of varying the shape of the processor grid for 256
node computations. Each node is maintained at the optimal 32x1024 grid. The almost
square 4096x2048 grid on a 128x2 processor array is seen to deliver 1036 Mflops. The
alternative of creating a near square global grid from 256 near square subgrids would have
yielded almost 50% less performance as indicated by Table 1.



TABLE 1: SINGLE NODE PERFORMANCE AS FUNCTION OF SHAPE

P Px Py Mx My Efficiency Mflops
1 1 1 128 256 0.506 2.504
1 1 1 64 512 0.753 3.726
1 1 1 32 1024 1.000 4.951

TABLE 2: PROCESSOR GRID ALIGNED WITH Y AXIS
P Px Py Mx My Efficiency Mflops

1 1 1 32 1024 1.000 4951

2 1 2 32 2048 0.956 9.461

4 1 4 32 4096 0.955 18.907

8 1 8 32 8192 0.954 37.781

16 1 16 32 16384 0.952 75.400

32 1 32 32 32768 0.951 150.743

64 1 64 32 65536 0.951 301.245

128 1 128 32 131072 0.948 600.969

256 1 256 32 262144 0.947 1200.308

TABLE 3: PROCESSOR GRID ALIGNED WITH X AXIS

P Px Py Mx My  Efficiency Mflops

1 1 1 32 1024 1.000 4.951

2 2 1 64 1024 0.945 9.360

4 4 1 128 1024 0.940 18.612

8 8 1 256 1024 0.938 37.141
16 16 1 512 1024 0.918 72.735
32 32 1 1024 1024 0.917 145.287
64 64 1 2048 1024 0.916 290.304
128 128 1 4096 1024 0914 579.438
256 256 1 8192 1024 0.916 1161.276
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TABLE 4: 256-NODE PERFORMANCE AS FUNCTION OF PROCESSOR GRID
P Px Py Mx My Efficiency Mflops
256 256 1 8192 1024 0916 1161.276
256 128 2 4096 2048 0.818 1036.179
256 64 4 2048 4096 0.750 950.487
256 32 8 1024 8192 0.398 504.813
256 16 16 512 16384 0.752 953.668
256 8 32 256 32768 0.800 1013.658
256 4 64 128 65536 0.841 1065.941
256 2 128 64 131072 0.852 1079.844
256 1 256 32 262144 0.947 1200.308

8. A COMPARISON OF CRAY, CM-200, iPSC/860 AND SUPRENUM-1

We have compared the SUPRENUM performance with that on the CRAY XMP and
YMP computers, on the Thinking Machines CM-200 and on the Intel iPSC/860 hypercube.
Results are presented in Table 5.

The performance on a single processor of a CRAY-XMP was 148 Mflops. The
CRAY-XMP4/8 executed the Shallow Water Equations at 560 Mflops using 4 processors
on a 512x512 grid, the largest that could be handled directly (i.e without SSD coding).
The CRAY-YMP with 8 processors runs the Shallow Water Equations at 1,530 Mflops on
a 512x512 grid.” The Connection Machine CM-200 results are described in more detail

in®, while the Intel iPSC/860 results are reported in more detail in% 10,

TABLE 5: COMPARISON TO OTHER ARCHITECTURES

Machine Processors Grid Size Mflops
CM-200 (64-bit) 2048 16M 5249
CM-200 (32-bit) 2048 32M 8086
CRAY-XMP 4 256K 560
CRAY-YMP 8 256K 1530
Intel iPSC/860 128 M 543
SUPRENUM-1 256 8M 1200

T CRAY measurements were performed by Dr. R. Sato, National Center for Atmospheric
Research, Boulder, CO.
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