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Thesis directed by Prof. Jeffrey P. Thayer

Determining the polarization scattering properties of sub micron size particles through inter-

actions with transmitted visible wavelengths requires the capability to detect polarization effects

on the order of a few percent. Such small changes in polarization can easily be overwhelmed by

the intrinsic polarization properties of the instrument. When applied to lidar remote sensing tech-

niques, additional environmental factors such as background noise, volume content of scatterers,

range to the scatterer, and temporal variations in the scattering medium result in degradation of

the instrument’s SNR. Furthermore, present approaches in polarization lidar are often confined

to measurement of a single parameter which provides no distinction between different scattering

and instrumentation polarization effects, limiting the possible interpretations of the measurement.

These issues confronting polarization lidar present an opportunity for a novel approach in lidar

polarization studies through expansion of system measurement capabilities and instrument perfor-

mance optimization.

In this work, I discuss how these issues may be addressed for the purpose of characterizing

particle properties through polarization. Instrument retarding effects are reduced by measuring

the optical system Mueller matrix and implementing a hardware polarization compensator which

also increases system SNR by improving rejection of the polarized sky noise component. We have

developed a calibration algorithm which then removes residual phase shifts, depolarization, and

misalignment of transmitter and receiver polarization planes. These techniques are proven through

polarization data from atmospheric aerosols measured by the ARCLITE lidar in Kangerlussuaq,

Greenland.

By recognizing that a scattering phase matrix is a Mueller matrix, the polarization effects

of scatterers can be decomposed and described as a combination of depolarizers, retarders, and
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diattenuators. Furthermore, the polarization attributes of scatterers can be directly related to

their physical properties. While it is well established that depolarizing effects can distinguish

between thermodynamic phase of tropospheric clouds, diattenuation can be used as an indicator

for the presence of horizontally oriented ice crystals which are known to impact Earth’s radiative

budget. We have developed techniques for making this new and novel polarization measurement

in the atmosphere. A NOAA lidar has been designed to detect diattenuation in the troposphere

and has begun a campaign to detect oriented scatterers over Summit Camp, Greenland. The lidar

was tilted by 11◦ off zenith in late April 2011 and initial results of this campaign are shown. These

results appear promising in demonstrating the lidar’s ability to perform this novel measurement

for detection of horizontally oriented ice crystals.
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Chapter 1

Polarization In Lidar

Changes in electro-magnetic waves imposed by the atmosphere are used in remote sensing to

determine the properties of the propagation medium. These changes may include the wave’s prop-

agation direction, frequency, phase or polarization. In atmospheric Light Detection and Ranging

(lidar) an optical wave is transmitted, scattered, received and analyzed. The most basic form of

lidar measures only total backscatter intensity which provides the most basic information about

atmospheric density and the presence of aerosol scatterers. By adding wavelength sensitivity, the

lidar may be used to measure the concentrations of certain species [29], wind and temperature

[79]. The introduction of polarization measurements is a logical extension to existing lidar de-

signs, conceptually only requiring the addition of a polarizer or polarizing beam splitter to quantify

how scatterers change polarization. This polarization information provides another data product,

adding further accuracy to the “signature” of clouds and aerosols for identification, classification,

and characterization.

1.1 Polarization Characterization of Scatterers

The first lidar polarization measurements of the atmosphere were published in 1971 [76].

These measurements were an analog to polarization radar measurements of the time. Unlike radar,

however, tropospheric aerosols and hydrometeors are too large to be strictly described by Rayleigh

scattering [71]. As a result, the extremely small depolarizations caused by particle asphericity at

radar wavelengths proved to be substantial in lidar [70]. Because of the large polarization changes
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observed, lidar instruments were easily designed and adapted to resolve atmospheric depolarization.

Since 1971, polarization has become a common, useful and nearly standard lidar parameter along

with backscatter and extinction for aerosol characterization studies ranging from the troposphere

to the mesopause. Studies have included measurement of water phase, dust characterization, polar

stratospheric cloud studies, polar mesospheric cloud studies, volcanic ash detection and quantifica-

tion, detection of oriented ice crystals and many other applications.

Owing to the fact that liquid water drops are spherical, their single backscattering matrix

preserves the incident polarization [71]. By contrast, ice crystals are highly aspherical and their

backscattered signals scramble the polarization causing it to be significantly depolarized. Thus

polarization lidar can characterize the thermodynamic phase of clouds [71, 16]. Characterization

of liquid and solid phase clouds continues to be a major application of polarization lidar. It is this

mission that was the primary driver for the deployment of a new lidar system called CAPABL (see

Chapter 7) to Summit Camp, Greenland.

Storms over large deserts are known to distribute dust over large regions [36], providing nuclei

for formation of cirrus cloud ice crystals [37] and impacting radiative balance. Depolarization is a

useful tool for identifying dust due to the sharp edged crystalline shape of the particles that have

a size parameter on the order of one [57, 73]. The particle size parameter defines the relative size

of a particle to the optical wavelength and is written [87]

x =
2πa
λ
, (1.1)

where x is the size parameter, a is the particle radius and λ is the incident wavelength. Generally

Rayleigh scattering is an acceptable approximation for describing particle wave interaction when

x� 1.

Polar stratospheric clouds (PSC) come in two varieties, differing in chemical makeup. Type

I clouds are made up of nitric acid trihydrate, while Type II are composed of water [24]. These

two cloud types can be distinguished based on their relative backscatter intensities [60]. However,

Type I clouds are further classified into Type Ia where particles are spherical with radii near 0.5µm
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and Ib where particles are aspherical with volume equivalent radii near 1.0µm [86]. The distinction

between these two clouds are related to ambient temperature and cooling rates. Classifying Type

I PSCs is commonly done by detecting the depolarizing properties of the cloud. If depolarization

is large, aspherical particles must be present and the cloud is classified as Type Ib.

Polar mesospheric clouds (PMC) are high altitude clouds that form in the summer months

at the high latitudes. These clouds form at a centroid altitude of 83 km and are made up of ice

particles [34] with radii on the order of 50nm [89]. The particle shape impacts the surface-area-to-

volume ratio, and therefore the fall rate of the ice particles through the region of supersaturation

where growth occurs [64]. Particle shape has important implications for microphysical models

that attempt to explain the behavior of these high altitude clouds. Polarization measurements are

sensitive to particle shape and have been used to determine if PMC particles are spherical [7].

Volcanic ash consists of aspherical minerals that come in a variety of sizes. The largest of

these quickly settle out of the atmosphere while leaving behind other products of volcanic eruption,

such as SO2 in the stratosphere, that can linger for weeks. In the troposphere, these ashes have

been shown to pose a threat to aircraft [48], highlighting the importance of identifying the presence

of such atmospheric scatterers. Polarization lidar has been used to detect the depolarizing volcanic

ash [74]. Advances in polarization techniques have improved the ability of scientists to evaluate air

travel safety following volcanic eruptions.

When ice crystals orient within a common plane, they can cause an increase in planetary

albedo [17, 83]. Scanning polarization lidar has been applied to detect oriented ice crystals [56].

Oriented ice crystals, unlike randomly oriented, have very low apparent depolarization if the lidar

operates along zenith. However, when the lidar is tilted off zenith, apparent depolarization occurs.

Thus, through this scanning polarization technique, the presence of oriented scatterers is marked by

a sudden decrease in depolarization when the lidar is tilted near zenith. We will discuss how polar-

ization characteristics of oriented scatterers are different from their randomly oriented counterparts

in Chapter 3. This difference in polarization properties can then be exploited for the purpose of

identifying oriented scatterers with a new polarization lidar technique introduced in Chapter 4.
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The above descriptions of polarization lidar applications are by no means exhaustive. Other

applications have included detection of honey bees [78], bioaersol plumes [45], drop size from mul-

tiple scattering signals [65] and fish detection [21].

1.2 Conventional Lidar Theory

Direct detection lidar generally operates by transmitting a laser pulse and collecting the

resulting backscattered light. Since the speed of light in a vacuum is known, the range of a

particular backscattered signal can be determined using time of flight [47]

R =
c

2∆t
, (1.2)

where ∆t is the time of flight and c is the speed of light in a vacuum. In the optical regime

where the atmosphere is the medium of propagation and range resolution is on the order of meters

(time resolution is on the order of several ns), the index of refraction may be regarded as 1. This

ranging technique requires that optical signals under consideration are only attributable to single

scattering. In most atmospheric cases, this is a valid assumption. However, in the case of optically

dense clouds, multiple scattering cannot be ignored [12], causing inaccuracy in ranging through

time of flight. Photons that are multiply scattered may traverse paths substantially longer than

that of the single scattering event. In such cases, it becomes difficult to determine what attributes

imposed on the wave correspond to a particular range.

Conventional non-polarization lidar is described through the Scalar Lidar Equation, which

relates the transmitted and received intensity or photons through the atmospheric medium [47]

NS(R, λs) = NL(λi) [β(λi, λs, R)∆R]
A

R2
T (λs)T (λi) [ηRXηTXG(R)] +NB, (1.3)

whereNS(R, λ) is the number of received photons at rangeR and wavelength λ, NL(λ) is the number

of transmitted photons at wavelength λ, β(λi, λs, R) is the total volume backscatter coefficient

from incident wavelength λi into scattered wavelength λs, ∆R is the range bin resolution, A is

the receiver effective aperture, R is the range to the scattering target, T (λ) is the transmission of
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the atmosphere at wavelength λ, ηTX and ηRX are the transmitter and receiver system efficiencies

respectively, G(R) is the geometrical overlap accounting for low altitude returns that may not pass

through the receiver field stop with the same efficiency as high altitude returns, and NB(λ) is the

background noise at wavelength λ.

For most lidar applications, Eq. (1.3) provides sufficient free variables to give full description

to system operation. Because all terms are scalars, their grouping is arbitrary.

Absolute backscatter signals NS are often difficult to calibrate and quantify. This is due, in

part, to uncertainty in system efficiencies. The make-up and extinction of the troposphere is subject

to frequent variation, further complicating the exact meaning of absolute backscatter. Instead we

often quantify backscatter using a ratio to molecular returns. This is defined [20]

RBS ≡
βtot

βmol
, (1.4)

where βtot is the total volume backscatter coefficient and βmol is only the molecular volume

backscatter coefficient. The volume backscatter coefficients are proportional to the received back-

ground subtracted photon counts, so the backscatter ratio is determined from lidar signals using

RBS =
N tot
S −N tot

B

Nmol
S −Nmol

B

, (1.5)

where the superscript denotes the photon counts attributed to the total medium backscatter or

molecular backscatter. The actual process of determining molecular backscatter components varies

depending on system capability. In some cases the system can spectrally separate molecular and

aerosol returns [80, 30]. Raman returns can also be used to determine molecular density as a

function of altitude [3]. Often Rayleigh lidar use higher altitude signals attributed strictly to

molecular returns to seed a numerical inversion that solves for the backscatter ratio [40].

1.2.1 Polarization Lidar Conventions

The theory developed for conventional polarization lidar can be traced to radiative transfer

theory using modified Stokes vectors and Mueller matrices [26]. Over time however, polarization
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lidar convention has lost this connection and is typically described using two independent scalar lidar

equations. The vast majority of polarization lidars operate by transmitting a single polarization

and measuring the subsequent return power parallel and perpendicular to the original polarization

[71]. Because this optical technique cannot measure phase, it does not fully characterize a the

received polarization. As a result, this measurement cannot provide a general connection to the

scattering phase (or Mueller) matrix. This measurement technique gives description to how much

the polarization changed, but it is ambiguous as to how the polarization changed.

Conventional polarization lidar theory strictly conforms to the polarization technique de-

scribed above. Thus the description for photons detected on the channel parallel to the transmit-

ted polarization is nearly identical to Eq. (1.3), except that the volume backscatter coefficient now

only describes the propensity of the scatterer to maintain the original polarization and is written

β‖ [71]. A second scalar equation is then used to describe the perpendicular channel. In this equa-

tion, the backscatter coefficient describes the propensity of the scatterer to couple optical power

into the orthogonal polarization mode and is written β⊥. To reflect the possibility that atmo-

spheric transmission may be polarization dependent, the return atmospheric transmission term in

the perpendicular equation is given the ⊥ subscript. Thus the two scalar equations describing the

measured quantities of conventional polarization lidar systems are

NS||(R) = NLβ||(R)∆R
A

R2
T 2
||ηRX||ηTXG(R) +NB||

NS⊥(R) = NLβ⊥(R)∆R
A

R2
T||T⊥ηRX⊥ηTXG(R) +NB⊥,

(1.6)

where the dependence on wavelength has been dropped to assume that elastic scattering processes

are detected. The perpendicular channel will read zero as long as the scattering processes in the

atmosphere are polarization preserving (β⊥ = 0). A normalized measure of the polarization change

in the atmosphere is then defined by the ratio of the two polarization backscatter coefficients and

called the polarization ratio (sometimes depolarization ratio) [71]

δ ≡ β⊥
β‖
. (1.7)

Note that the polarization ratio is very nearly the ratio of the two detection channel photon counts.
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The polarization dependence of atmospheric transmission and system efficiency are folded into a

single calibration constant to give the polarization ratio in terms of signal counts [75, 10, 46]

δ =
T||ηRX||

T⊥ηRX⊥

N⊥
N||

= K
N⊥
N||

. (1.8)

The polarization ratio, based on Eq. (1.6), appears to give complete description to all polarization

scattering processes. However, we shall see that conventional polarization lidar descriptions are

based on the system’s mode of operation, not actual scattering processes. While the polarization

ratio gives complete description to polarization properties that can be ascertained via conventional

operation, it by no means fully describes the polarization processes exhibited by all atmospheric

scatterers.

Despite the fact that ηRX|| and ηRX⊥ are the only optical system effects described by Eq.

(1.6), there have been additional relations suggested to account for other systematic error sources.

The polarizer in the receiver may not perfectly align to the transmitted polarization, yet there is no

description for this error or how it may impact polarization measurements [72]. The fact that this

obvious source of system error has no description in the polarization lidar equation demonstrates

the limiting nature of Eq. (1.6). Nevertheless, this polarization lidar equation has continued to be

used with little modification.

1.3 New Polarization Lidar Developments

Conventional polarization lidar theory has recently received some criticism for its use of the

polarization ratio as a complete description for atmospheric scattering [26]. In electro-magnetic

theory, incoherent scattering is typically described by 16 element Mueller matrices [87, 52]. While

these matrices can sometimes be reduced to scalar quantities (β‖, β⊥, δ) based on polarizations used

in the lidar system, their exact values are a function of incident polarization [25].

Some researchers, in recognition of the complexities of scattering, have extended their polar-

ization lidar capabilities to measure the full received Stokes vector [31]. While this work represents

a definite step forward, the received Stokes vector is still a function of the transmitted polarization.
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Unfortunately, the transmit polarization is often not reported, so relating measurements to the

actual scatterer becomes difficult. It is important to note that a four element Stokes vector does

not provide a complete characterization of the 16 element Mueller matrix, also called a scattering

phase matrix, that describes the scattering volume.

In some of the most complete atmospheric polarization research to date, [39] fully measures

all 16 elements of the scattering phase matrix for the purpose of studying oriented scatterers. The

approach used in this lidar system is thorough, and provides a useful baseline for future polarization

lidar design. The drawbacks largely come from practical issues. The Mueller matrices of oriented

scatterers have a known form, where eight elements are zero. While physically measuring all terms

is a useful exercise for validating scattering theory, signal integration time is better spent only

measuring elements that may be non-zero. Also the complexity of these measurements may prove

too much for widespread use, which require six intensity measurements for each of four transmit

polarizations. In a research environment where study of oriented scatterers is only one of many

mission objectives, full polarimetric capability may be too focused for common use.

1.3.1 Correction of System Effects

Polarization corrupting effects in the optical system, such as retardance, diattenuation and

depolarization, present a concern for polarization data accuracy. For this reason, a number of

techniques have been attempted to determine the polarization measurement accuracy of a lidar

receiver. In [77], three methods are employed where the cross polarized rejection of the initially

polarized input is measured: A laser is expanded to fill the telescope aperture but is not collimated,

collimated lasers with narrow beams are directed into the telescope at a variety of points in the

telescope aperture, and a sheet polarizer is placed on the telescope aperture thus polarizing the sky-

light. Similar to the third technique, LCD monitors on laptops have also been used [Witt,personal

communication, 2009] to measure cross polarized rejection of the receiver. From these rejection

measurements, a baseline instrument error is assumed.

To calibrate out system effects, a number of techniques have been developed to determine the
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calibration constant in Eq. (1.8) [75, 10, 46]. From Eq. (1.6) and (1.8) it would appear that the

calibration constant accounts for all polarization corruption potential of the instrument. However

in [72], with limited explanation and no derivation, an equation and technique are presented for

correcting polarization misalignment of the transmitter and receiver by adding an additional term

δ = K
N⊥
N||
− χ. (1.9)

It is difficult to know how the above correction was developed since polarization misalignment has

no description in Eq. (1.6). Furthermore, it is not clear whether the authors are aware that this

calibration technique is not accurate in the presence of non-depolarizing scatterers.

We will show how thorough polarization theory presents opportunities for instrument char-

acterization and polarization lidar measurements even when optical system effects are substantial

(see Chapter 5). Correction schemes using hardware and software have a demonstrated use at

the Arctic Lidar Technology (ARCLITE) facility in Greenland for the purpose of studying PMCs,

PSCs, stratospheric aerosols, and cirrus clouds. Furthermore, error sensitives of polarization lidar

can be determined to greater accuracy through the use of optical polarization theory. This defines

limitations on polarization accuracy of a system, and in some cases, allows polarization measure-

ment techniques to be developed so they are entirely insensitive to the instrument’s polarization

effects.

1.3.2 Expanded Sensing Capabilities

The scattering phase matrix is the angle dependent Mueller matrix that fully describes the

polarization attributes of the scattering volume. It is the only scattering description sufficiently

general to encompass all polarization effects exhibited by atmospheric scatterers. The expanded use

of Mueller matrices in polarization lidar descriptions opens the possibility of additional phase matrix

measurement techniques. These techniques are developed for the purpose of augmenting lidar

mission objectives through simple modifications that are practical for remote sensing campaigns

with broad objectives.
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For the purpose of identifying oriented scatterers I will present polarization methods I have

developed to detect scattering matrix diattenuation. Randomly oriented scatterers cannot exhibit

this polarization effect, making it a unique marker for oriented scatterers. The techniques developed

for this purpose are specific to two lidar systems with different operating objectives, polarization

effects and capabilities. While it is unlikely that detection of oriented scatterers is the only new

opportunity in polarization sensing, it represents a significant step in the approach to polarization

in lidar. Conventional techniques are neither rejected nor are they allowed to confine the approach

and possibilities of lidar operation and design.

1.3.3 Lidar System Development

ARCLITE and CAPABL are the two lidar systems presented in Chapters 6 and 7 that

have benefited from the polarization theory I have developed in this work. The ARCLITE lidar

in Kangerlussuaq, Greenland (67.0◦N, 50.9◦W ) has been in operation since 1992 with a research

focus on the stratosphere and mesosphere [84]. This instrument has benefited substantially from

my development of system polarization mitigation techniques including hardware compensation

to cancel phase shifts in the optical system [33] thereby providing improved solar background

rejection and SNR. Also post processing software correction was developed to remove residual

retarding and depolarizing effects from polarization measurements [32]. Additional polarization

capability has been suggested in the form of diattenuation measurements that have been designed

and demonstrated on this system with very little modification.

The Cloud Aerosol Polarization and Backscatter Lidar (CAPABL) is a refurbished NOAA

lidar system, with polarization redesign. It was deployed to Summit Camp, Greenland (72.6◦N ,

38.5◦W ) in the spring of 2010 as part of the Integrated Characterization of Energy, Clouds, At-

mospheric State, and Precipitation over Summit (ICECAPS) project. I collaborated with Ryan

Neely III in redesigning the lidar to minimize polarization error from the instrument and expand

its capability to identify oriented scatterers through a three-polarization detection scheme. For

the past year, CAPABL has been operating in zenith pointing mode for the purpose of identifying
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cloud and precipitating particle phase through depolarization measurements and exploring possible

conditions of false positives in oriented scatterer detection. The lidar was tilted off zenith by 11◦ on

April 23, 2011 to begin a campaign of identifying oriented scatterers above Summit Camp. After

tilting the lidar, we have identified a number of lidar profiles that may be attributed to the presence

of oriented scatterers in atmosphere.



Chapter 2

The Stokes Vector Lidar Equation

2.1 Framework for Polarization in Lidar

Because polarization lidar was initially developed as an extension of traditional lidar, re-

searchers often incorrectly assume that its description should be derived from the lidar equation

given by Eq. (1.3). However, a scalar description of electro-magnetic wave propagation only exists

when polarization effects are irrelevant to measured quantities. Any instance where this is not the

case mandates reversion to the more general vector description of wave propagation.

Likewise, Eq. (1.3) can be derived from the polarization lidar equation under the assumption

that there is no polarization dependence in the total optical path (transmission to detection). The

description of a polarization lidar must be developed from the traditional optical description of

polarization. The polarization state of the electro-magnetic field is specified and fully propagated

through the entire optical path to obtain a rigorous description for polarization lidar. Operators in

the equation must also be described by polarization theory with effects more diverse and compli-

cated than simply scaling the intensities in the two measured polarization modes. With this more

fundamental description, polarization modes can be coupled, attenuated, and rotated in a variety

of ways which may make parameters like the depolarization ratio appear disconnected from actual

scattering theory. Some researchers have devoted some level of consideration to these polarization

effects, but they have no derivable basis when using Eq. (1.6) as a system description.

We use Stokes vectors to represent the polarization state of an electro-magnetic field and

Mueller matrices to describe their interactions with all elements along the optical path including
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transmitter, scatterer and receiver. Generally atmospheric polarization lidars measure parameters

of randomly distributed scatterers in a volume. The integration time of the lidar measurement

exceeds the decorrelation time of the medium. Thus the light is regarded as incoherent and system

descriptions are linear in intensity with light being fully, partially, or unpolarized [14]. Polarization

lidar should be described more completely in a form called the Stokes Vector Lidar Equation (SVLE)

which is written

~SRX = MRX

[(
G(R)

A

R2
∆R

)
Tatm(~ks, R)F(~ki,~ks, R)Tatm(~ki, R)MTX

~STX + ~SB

]
, (2.1)

where ~SRX is the received Stokes vector, ~STX is the Stokes vector describing the laser polarization

state, MTX is the Mueller matrix description of the transmitter, Tatm(~ki, R) is the Mueller matrix

description of the atmospheric transmission to the scatterer along incident wave vector ~ki over the

range R, F(~ki,~ks, R) is the scattering phase matrix (or Mueller matrix) of the scattering medium at

range R for incident and scattered wave vectors ~ki and ~ks respectively, ∆R is the integration range

bin, A is the collection aperture, G(R) is the geometrical overlap function, MRX is the Mueller

matrix description of the receiver, and ~SB is the Stokes vector of the background at the input of the

receiver. In all cases, the Stokes vectors and Mueller matrices are not normalized so that overall

scattering and system efficiencies may be found in the (1,1) element of their respective Mueller

matrix and intensity or photon counts is carried in the first element of the Stokes vector. Thus, we

will be using the unmodified Stokes vector representation in this work.

The transmitted polarization is propagated through the entire optical path, allowing for in-

teractions with multiple matrices before it is finally analyzed and measured in the receiver. This

description is fully general for direct detection lidar and allows for complete analysis and under-

standing of polarization effects along the optical path that otherwise may not have description

using conventional polarization lidar theory.
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2.2 Mueller Matrix Decomposition

The possible descriptions of instrument and scatterer polarization effects described by a

Mueller matrix are more diverse than those derived from the polarization lidar equation described

in Eq. (1.6). A Mueller matrix will transform and couple polarization rather than simply attenuate

modes corresponding to the measured channels.

The components of any realizable Mueller matrix can be described as a combination of

retarders, diattenuators and depolarizers [42]. This description is not limited to matrices in the lidar

instrument and can be extended to the atmospheric transmission and scattering phase matrices.

All three realizable components of a Mueller matrix have the capacity to couple polarization

modes. Most often system effects are consolidated into a single error term in polarization ratio

data. However, the ability to calibrate, compensate or ignore these effects strongly depends on

which attributes both the lidar and scatterer exhibit.

In this section we will provide a brief description of the three passive Mueller matrix compo-

nents.

2.2.1 Diattenuator

A diattenuator may conceptually be described as a weak polarizer. It is fully described by

transmission of unpolarized light Tu and its diattenuation vector ~D, taking the form [42],

MD = Tu

 1 ~DT

~D mD

 , (2.2)

where ~D is the the diattenuation vector and describes the eigen polarization of the matrix and mD

is a 3x3 submatrix fully described by the diattenuation vector through [42]

mD =
√

1−D2I +
(

1−
√

1−D2
)
D̂D̂T , (2.3)

where D is the magnitude of the diattenuation vector, D̂ is the normalized diattenuation vector

and I is a 3x3 identity matrix.
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Figure 2.1: Graphical representation of a diattenuator in Poincaré space. The incident Stokes
vector (Green) is shortened (decrease in intensity) and is projected toward the diattenuation vector
(modifies the polarization state).

Each element of ~D describes the preferential efficiency of the system along horizontal/vertical,

±45◦, and right/left hand circular polarizations. A value of zero indicates no preferential efficiency.

A value of one in the first element indicates transmission of horizontal polarization and total

rejection of vertical as in an ideal horizontal polarizer.

In Poincaré space, a diattenuator will project the incident Stokes vector onto the Diattenu-

ation vector (see Figure 2.1). Unless the incident Stokes vector points the same direction as the

diattenuator, this results in a shorter outgoing Stokes vector. However, the radius of the Poincaré

sphere simultaneously decreases so there is no reduction in degree-of-polarization (DOP). The pro-

jection also results in a change in outgoing polarization state. The amount of change in intensity

and polarization is dictated by the magnitude of the diattenuation vector. Larger | ~D| results in

reduced transmission of input polarizations misaligned to ~D and exit polarizations states that more

closely resemble the diattenuation vector.
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Diattenuators tend to manifest themselves in filters with non-normal incidence angles, folding

mirrors, beam samplers using Fresnel reflections, and polarizers. Because the diattenuation vector

of most elements in a polarization lidar system are linear, one might assume that the system

diattenuation vector always corresponds to linear polarizations. However, when a diattenuator is

combined with retarding elements, the vector can point in any arbitrary direction within the three

element Stokes vector subspace called the Poincaré Sphere, and often corresponds to elliptical

polarizations.

A strict intensity description of diattenuation is polarization dependent efficiency, so it is

the closest polarization effect to that originally described in Eq. (1.6) with system efficiencies

ηRX|| and ηRX⊥. Though those efficiencies fail to fully account for the capacity of a diattenuator

to modify both the polarized and unpolarized components of incident light, it means that many

lidar designs have succeeded in reducing this effect in the optical system. In the scattering phase

matrix, diattenuation is manifested in non backscattering, multiple scattering and oriented scatterer

conditions.

2.2.2 Retarder

A retarder is a wave plate with an arbitrary fast axis that imposes a phase shift Γ on incident

polarization modes. This causes a rotation of the Stokes vector on the Poincaré Sphere about

retardance vector R̂. Like the diattenuator, the retardance vector does not necessarily correspond

to linear polarization.

The retarder Mueller matrix takes the form [42]

MR =

 1 ~0T

~0 mR

 , (2.4)

where ~0 is a three element zero vector and mR is a 3x3 submatrix of MR acting as a rotation matrix

of angle Γ about the axis of its eigenvector R̂. This rotation matrix may be generally written [42]

mR = δij cos Γ + εijkRk sin Γ +RiRj(1− cos Γ), (2.5)
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Figure 2.2: Graphical representation of a retarder in Poincaré space. The incident Stokes vector
(Green) is rotated about the retarder fast axis (red). The angle of rotation is given by the phase
shift between fast and slow axes of the retarder.

where δij is the Kronecker delta, εijk is the Levi-Cervitá permutation symbol, Ri is the ith element

of the eigenvector R̂ and Γ is the retarder phase delay.

The eigenvector of the Mueller matrix corresponds to the eigen polarization of the optic or

system, where the total intensity may be scaled, but the polarization state is unchanged.

In Poincaré space, the retarder causes a rotation of the input Stokes vector about the retarder

fast axis, R̂ (see Figure 2.2). The angle of rotation is given by the retardance or phase shift between

the fast and slow axes of the retarder.

In polarization lidar systems, retardance will modify the polarized state of incident light,

but unlike the diattenuator, it will preserve the degree-of-polarization. Generally a retarder will

convert linear polarizations into elliptical, making complete acceptance or rejection of polarization

modes impossible with a linear polarizer. Such effects are incorrectly described as “depolarization”

by some lidar researchers. A retarder is a fundamentally different operator than a depolarizer and
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can be corrected in many instances.

Retardance commonly appears when lidar systems use folding mirrors to steer ray paths in

their system. Newtonian telescopes are notorious for demonstrating this behavior due to the folding

secondary mirror. Beam steering mirrors can also introduce retardance to transmit polarizations.

Avoiding large angles of incidence on mirrors will reduce this effect in a polarization lidar system.

Low phase shift mirrors can also be employed, but it is often difficult to obtain retardance specifi-

cations from suppliers. Wave plate configurations can be used to cancel these effects by imposing

the opposite phase shift of the system (see Chapter 5). Such configurations are easily realized using

techniques described in [82, 4]. For strictly depolarizing scatterers retardance in a lidar receiver can

be removed in post processing via calibration techniques as long as there is negligible diattenuation

in the system[32].

In a homogeneous Mueller matrix, the effects of diattenuation and retardance are indicated

by non-zero positions in the matrix [19]

2 a b c

a 2 −f −e

b f 2 −d

c e d 2


, (2.6)

where 2 represents matrix terms that are not attributable to a single polarization effect and the

symmetric terms a, b, and c indicate diattenuation along horizontal/vertical, ±45◦, and right and

left circular polarizations respectively. The antisymmetric terms d, e, and f indicate retardance

about horizontal/vertical, ±45◦, and right/left circular polarizations respectively. Loss of symmetry

in the diattenuation terms or loss of antisymmetry in retarding terms indicates the presence of

depolarization or inhomogeneity.

2.2.3 Depolarizer

Depolarization matrices are Mueller matrices describing nondeterministic polarization sys-

tems [81]. Included in the general set of these matrices are what we would more commonly think
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of as the depolarizers that decrease the degree-of-polarization of incident light. In simple instances,

depolarizers take the form of a diagonalized matrix

M∆ =



1 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c


, (2.7)

where a, b, and c are the tendency of horizontal/vertical, ±45◦, and right/left circular polarizations

to remain polarized respectively. The backscattering matrix of randomly oriented axially symmetric

particles strictly conforms to a depolarizing matrix of this form. If a matrix decomposition of non

backscattering conditions is performed, the depolarization matrix will generally exhibit polarizance

as well and may not necessarily be in a diagonalized form. Instead the most general form for a

depolarizer is written

M∆ =

 1 ~0T

~P m∆

 , (2.8)

where ~P is the polarizance vector describing the exit polarization state of unpolarized incident light

and m∆ is a 3x3 submatrix of the matrix M∆. In the most general case, a depolarizer has nine

independent terms, making it difficult to generalize. Three terms define the polarizance vector.

Three define the depolarization or eigen values of the submatrix m∆. Finally three terms define

the 3-dimensional orthonormal basis set of the depolarization terms or eigen vectors of m∆.

In Poincaré space the m∆ terms of a depolarizer shorten the incident Stokes vector while

maintaining a constant radius on the sphere. When all nonzero elements of m∆ are on the diagonal

and equal, the depolarizer is isotropic and the remaining outgoing polarized light maintains the

same state as the input (see Figure 2.3). However, more general anisotropic depolarization and the

presence of polarizance ~P can cause the outgoing polarization state to change. Thus, the effect of

a depolarizer is difficult to generalize.

Depolarization of the form in Eq. (2.7) can exist in optical systems such as a receiver where

mirrors reflect a range of incident angles. This range of angles results in variation of phase shift
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Figure 2.3: Graphical representation of an isotropic depolarizer in Poincaré space. The incident
Stokes vector (Green) shortened while the surface of the sphere maintains constant radius. The
outgoing light maintains the same polarized state, but some of the original power has been coupled
into an unpolarized state.
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upon reflection, and the detected light will have a distribution of polarization states. In these

cases, the total received Stokes vector is the sum of all individual Stokes vectors and the degree of

polarization will likely be reduced [18].

Depolarization in the optical system is much more difficult to remove with hardware than

retardance. However, when the backscatter matrix under measurement is strictly depolarizing, and

the optical system exhibits little or no diattenuation this effect can be removed in post processing

[32].

2.3 The Scattering Medium

The scattering medium in the Stokes Vector Lidar Equation (SVLE) is described by a Mueller

matrix called the scattering phase matrix. In the most general sense, this matrix is dependent on the

incident and scattered wave vectors. However, when particles are much larger than a wavelength,

the matrix is no longer dependent on wavelength. When particles are spherical, or randomly

oriented, the medium is macroscopically isotropic so the specific incident and scattered directions

are no longer needed. When both of these conditions are true, only the scattering angle between

the two vectors is needed.

The scattering phase matrix contains information about both the scattering coefficient and

the polarization properties of the medium. The (1,1) element of this matrix (where matrix indices

begin at 1) is the volume scattering coefficient β(~ki,~ks, R) from the scalar lidar equation. If this

is factored out of F(~ki,~ks, R), the remaining normalized matrix strictly describes the polarization

properties of the scattering medium. Very often we describe polarization data products in relation

to the normalized scattering matrix, allowing us to remove the backscatter dependence of the

medium.

Because the phase matrix describes the scatterer, it is this term in the SVLE that must be

measured to characterize a scatterer. Often we do not fully measure this matrix. Assumptions

about the form of the matrix allow us to assume certain terms are zero. In other cases, measur-

ing additional polarization terms may not provide any additional information about the physical
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attributes of the medium. The exact method employed to determine these elements inevitably

depends on what assumptions can be made about the form of the scattering matrix. The specific

forms of the scattering matrix will be described in more detail in Chapter 3.

2.4 The Lidar Instrument

The Stokes Vector Lidar Equation gives full consideration to the instrument’s ability to

modify polarization states. Otherwise benign optical elements such as mirrors and beam samplers

are notorious for corrupting polarization states. In order to mitigate and minimize error sources,

full consideration must be given to the optical effects exhibited by the system.

While specifications are often given by manufacturers for different reflectivity of s- and p-

polarization modes, the phase shift upon reflection is rarely reported. As multiple mirrors are

combined in an optical system, the more arbitrary the polarization effects become. Frequently

after two or three mirrors the eigen polarization states of the optical system are no longer linear

polarizations.

In Figures 2.4 and 2.5 the calculated diattenuation and phase shift of a typical aluminum

mirror is plotted as a function of incidence angle. At incidence angles below 10◦ these effects are

typically small enough they do not significantly alter the receiver polarization. However at high

angles of incidence the effects, if unaccounted for, will skew polarization data.

Mirrors can also depolarize light when it is made up of multiple angular modes. The depo-

larization then depends on the angular width of the incident beam where the different polarization

effects do not add constructively over all incidence angles. This will tend to cancel off diagonal

elements in the Mueller matrix and reduce the diagonal elements.

Because the optical systems used to measure polarization in the atmosphere have the ability

to modify polarization, they must be included in the polarization lidar description. The polarization

effects introduced by instruments have the potential to be far more complicated than those described

in conventional theory.

The impact of polarization effects on measurements techniques described in this work will be
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Figure 2.4: Simulated diattenuation of an aluminum mirror as a function of incidence angle.

Figure 2.5: Simulated phase shift of an aluminum mirror as a function of incidence angle.
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discussed in Chapter 5.

2.5 Transmit Polarization

The laser output is described by a Stokes vector with the form

~STX =



S0

S1

S2

S3


, (2.9)

where S0 is the total total power, photons, or intensity, S1 is the total power in the horizon-

tal/vertical linear polarization, S2 is the power in the ±45◦ linear polarization, and S3 is the power

in the circular polarizations. The relationship between all of these terms can also be written given

in terms of physical parameters of the polarization

~STX = NTX



1

PTX cos 2φTX cos ΓTX

PTX sin 2φTX cos ΓTX

PTX sin ΓTX


, (2.10)

where NTX is the total photons in the outgoing laser, PTX is the laser degree-of-polarization (DOP),

φTX is the linear rotation angle of the polarization, and ΓTX is twice the ellipticity angle such that

ΓTX = π
2 makes ~STX left hand circularly polarized.

Knowing the detection technique’s sensitivity to error in the outgoing polarization is often

critical. Some issues may be corrected using software, while others will require wave plates or a

polarizer in the transmitter system to clean up the outgoing beam.

After the laser is emitted, it must pass through a transmitter optical system MTX often

consisting of steering mirrors, wave plates and beam expanders. Some of the optical elements have

the potential to corrupt the polarization state of the outgoing laser light. Thus it is often necessary

to cancel the polarization effects or only operate in the eigen polarization of MTX.
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2.6 Polarization Measurement

Stokes vectors cannot be measured directly, so the process of detecting the polarization ~SRX

requires the vector be projected onto various axes of the the Poincaré sphere. Each projection then

generates a resultant photon counts or intensity that could be used to reconstruct ~SRX .

In order to determine the number of photon counts received on a projection channel, an

output description must be formed to accommodate Eq. (2.1). Thus the full description of the

measured photon counts would be given by

~N = OMRX

[(
G(R)

A

R2
∆R

)
Tatm(~ks, R)F(~ki,~ks, R)Tatm(~ki, R)MTX

~STX + ~SB

]
, (2.11)

where all but the measurement terms are from Eq. (2.1) and

~N =


N1

N2

...

 , (2.12)

where Nn is the photon counts on the nth channel and O is the output projection matrix corre-

sponding to those measurements (generally polarizer matrices) and written

O = o


P1

P2

...

 , (2.13)

where Pn is the nth projection corresponding to the nth channel and

o =


η1 0 0 0 0 0 0 0

0 0 0 0 η2 0 0 0 · · ·
...

 , (2.14)

where ηn is the nth channel detector efficiency. This matrix o denotes that after projection, only

the first element of the Stokes vector is measured. For N measurements, o is Nx4N . In the case

of scalar lidar, O simplifies to
[
η 0 0 0

]
.
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It is important to note that the scattering matrix is the term under investigation, not neces-

sarily the received Stokes vector. For this reason, it is not always necessary to perform projections

and characterize ~SRX . As will be shown later with the Alternating Cross Polarized technique,

some phase matrix elements can be determined without polarization analysis of the received light

by capturing phase matrix information in the S0 element of the returned Stokes vector.

2.7 Atmospheric Transmission

For media where higher order scattering effects are weak, single scattering may be assumed

so that the polarization state of the transmitted laser light is described by a single volume element

between transmitter and scatterer

Tatm(~ki) = Fcol(~k,~k,R) +
(
I−Ecol(~k,R)

)
, (2.15)

where Fcol(~k,~k,R) is the column integrated volume forward scattering matrix of the propagation

medium through distance R for wave vector ~k, Ecol(~k,R) is the column extinction matrix of the path

to or from the scatterer and I is an identity Mueller matrix. For common atmospheric applications of

single scattering where extinction is polarization independent and the forward scattering coefficient

is small compared to the unextinguished light

f col11 (~k,~k,R)�
(

1− ecol11 (~k,R)
)
, (2.16)

the polarization effects of the atmosphere on the transmitted and received path may be ignored.

This assumption is generally applied to most atmospheric applications [38] except optically dense

clouds. This assumption will be generally applied to all applications discussed in this work.

In cases where we cannot assume the forward scattering coefficient of the column f col11 is small,

the transmission matrix from lidar to scatterer must be determined using two stream, polarized,

radiative transfer [41]. This is done by solving a differential equation describing the population of

forward and backward propagating photons within a volume. In this case, forward and backscat-

tering may occur multiple times, and due to the extended propagation distance, the laser light
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is further extinguished by the time it reaches the target. Also, due to the increased propagation

distance, time of flight cannot be used to determine the range to a particular scattering event.

If the radiative transfer solution from the lidar transmitter to target and back can be obtained,

the resulting transmission matrices may be plugged into Eq. (2.1) as Tatm(~ki) and Tatm(~ks) to

account for polarization effects in the propagation medium.



Chapter 3

Scattering Phase Matrix

In most atmospheric sensing applications, the scattering phase matrix contains the informa-

tion desired for scatterer characterization. For this reason, knowing and understanding the form of

the phase matrix is critical, both for understanding what physical information the matrix elements

can provide and devising effective techniques for estimating these characteristics.

The number of independent parameters in a scattering matrix depends on what assumptions

may be applied to the scattering medium. In the case of randomly oriented, axially symmetric

scatterers, the backscatter matrix reduces to one independent term with only a depolarizing effect.

Instances of oriented scatterers and multiple scattering will introduce additional independent terms

with both retarding and diattenuating effects in addition to depolarization.

3.1 Randomly Oriented Particles

Due to a general lack of orienting forces and common presence of turbulence, the vast majority

of particles in the atmosphere are randomly oriented. The volume backscatter coefficient relates the

transmitted and total received intensity through the medium properties while, for these randomly

oriented scatterers, depolarization gives how that intensity splits between polarization channels.

The scattering phase matrix is a Mueller matrix with elements that are dependent on the

incident and scattered wave vectors. When the scattering medium consists of well mixed randomly

oriented, axially symmetric scatterers, it is macroscopically isotropic so that the specific incident

and scattered wave vectors are no longer uniquely needed to determine the phase matrix. Instead,



29

Figure 3.1: Scattering angle definitions for scattering in media that is macroscopically isotropic.
The scattering angle Θ is the angle between the incident and scattered wave vectors and Φ is the
azimuthal angle of the scattered wave vector in the defined coordinate system.

only the relative angles between the incident and scattered vectors are important. Figure 3.1 shows

how the scattering angles Θ and Φ are defined in relation to the incident and scattered wave vectors.

The scattering angle Θ is the angle between the two wave vectors, while Φ is an azimuthal scattering

angle. Note that under backscattering conditions Θ = π and there is no dependence on Φ. In such

cases Φ will be omitted from the argument of the scattering phase matrix. However, in the case of

multiple scattering, this angle is an important quantity.

The phase matrix of randomly oriented, axially symmetric scatterers, may be written as a
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function of the scattering angle [87]

F(Θ,Φ = 0) =



f11(Θ) f12(Θ) 0 0

f12(Θ) f22(Θ) 0 0

0 0 f33(Θ) f34(Θ)

0 0 −f34(Θ) f44(Θ)


. (3.1)

If we decompose the above matrix, we find the total backscatter coefficient of the matrix is given

by f11(Θ), f12(Θ) gives the linear diattenuation, and f34(Θ) must contain a term related to lin-

ear retardance. All other elements may consist of a combination of retarding, diattenuating and

depolarizing terms.

Because we assume single scattering we can arbitrarily choose any vector orthogonal to ~ki

from which to measure Φ. Thus for simplicity we choose this axis to lie in the plane with ~ki and

~ks so that the Φ = 0. Generally we assume that atmospheric scatterers have axial symmetry. In

such cases a particle is its own mirror resulting in a zero value for the (4,1) and (1,4) elements of

the phase matrix [87].

Here we consider a monostatic lidar system (co-located transmitter and receiver) so the

scattering angle is Θ = π. In this case the following relations apply to the elements of the phase

matrix[50]:

f22(π) = −f33(π), (3.2)

f12(π) = f34(π) = 0, (3.3)

f44(π) = f11(π)− 2f22(π). (3.4)

Applying the relationships in Eq. (3.2), (3.3), and (3.4) for Θ = π to Eq. (3.1) results in the

following definition for the normalized backscatter phase matrix exhibited by randomly oriented
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scatterers[25]

F(π) =



1 0 0 0

0 1− d 0 0

0 0 d− 1 0

0 0 0 2d− 1


(3.5)

where d is referred to as the depolarization of the scattering medium. If the incident polarization

is linear, d is the fraction of polarized light that is depolarized by the scattering process.

According to Mie theory, when a particle is spherical it does not depolarize in back or for-

ward scattering (d = 0) [87]. If the medium is not optically dense (only single scattering occurs)

measuring depolarization is an effective indicator of asphericity, refractive index, and size parame-

ter of these particles [50]. This relationship between asphericity and depolarization is the basis of

nearly all depolarization measurements in atmospheric lidar. While liquid droplets are very close

to spherical, ice is highly aspherical. Thus liquid and solid phase clouds can be categorized by

depolarization [16]. The attribute of shape is also shown to be connected to aerosol chemical com-

position in polar stratospheric clouds [86]. For the purpose of more definitively identifying aerosol

make up, the species in question must have unique combinations of backscatter and depolarization.

In this way, dust, ice and biological aerosols can be distinguished [71, 73, 45].

3.1.1 T-Matrix Method

For the purpose of simulating small, randomly oriented particles we use the T-Matrix method

developed in and provided by [51, 52]. The basic concepts of this algorithm are reviewed here to

provide clarity on how these scattering matrices are determined for randomly oriented particles

in the Mie regime. Publicly available FORTRAN code is provided by Mishchenko on the web1 .

This code is later applied to simulate polar mesospheric cloud particles in Chapter 6 and determine

the expected cloud particle depolarization and backscatter coefficient as a function of incident

wavelength.
1 http://www.giss.nasa.gov/∼crmim
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The T-Matrix method is similar to Mie theory. Unlike Mie theory, however, the complex

coefficients of the vector spherical wave functions (VSWF) used to describe the the electric field do

not necessarily have analytic solutions. For each particle, there exists a matrix which relates the

incident and scattered VSWF coefficients. This T-Matrix is determined numerically by equating

boundary conditions on the particle.

The incident and scattered electric field of a single particle can be expanded into the vector

spherical wave functions (VSWFs) [52]

Einc(R) =
∞∑
n=1

n∑
m=−n

[amnRgMmn(kR) + bmnRgNmn(kR)] , (3.6)

Esca(R) =
∞∑
n=1

n∑
m=−n

[pmnMmn(kR) + qmnNmn(kR)] , (3.7)

where Mmn(kR) and Nmn(kR) are VSWFs defined in Appendix A, the expressions for

RgMmn(kR) and RgNmn(kR) may be found by substituting the spherical Bessel function jn for

the spherical Hankel function h
(1)
n in the respective equations for the Mmn(kR) and Nmn(kR)

VSWFs defined in Appendix A, amn and bmn are the complex VWSF coefficients of the incident

field, and pmn and qmn are the complex VWSF coefficients of the scattered field.

When the incident field is a plane wave, the coefficients of the incident field are written [52]

amn = 4π(−1)mindnC∗mn(ϑinc)Einc
0 exp(−imϕinc), (3.8)

bmn = 4π(−1)min−1dnB∗mn(ϑinc)Einc
0 exp(−imϕinc), (3.9)

where Cmn and Bmn are components of the VSWFs defined in Appendix A, ϑinc is the zenith angle

and ϕinc is the azimuthal angle corresponding to the direction of incidence, and Einc
0 is the complex

amplitude and polarization of the incident plane wave.

Due to the linearity of Maxwell’s equations, the scattered fields may be described by a

weighted sum of the incident fields. Thus a transformation matrix (or T matrix), between the

incident field coefficients and the resulting scattered field coefficients may be developed. In [52] the
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relationship is written  p

q

 = T

 a

b

 =

 T11 T12

T21 T22


 a

b

 (3.10)

which may also be written

pmn =
∞∑
n′=1

n′∑
m′=−n′

[
T 11
mnm′n′am′n′ + T 12

mnm′n′bm′n′
]
, (3.11)

qmn =
∞∑
n′=1

n′∑
m′=−n′

[
T 21
mnm′n′am′n′ + T 22

mnm′n′bm′n′
]
. (3.12)

Note that an exact solution of the scattered field requires an infinite sum over an infinite series

of incident field coefficients. In actual application of the T-Matrix method, this sum must be

truncated at some value of n′. The number of coefficients required to accurately represent the

scattered field depends on the asphericity and size of the particle in relation to the wavelength.

Generally particles that are more aspherical or larger require more coefficients.

The sub matrix T11 relates the RgMmn modes to the corresponding scattered Mmn modes,

T12 describes how RgMmn modes couple into Nmn modes, T21 describes how RgNmn modes couple

into Mmn modes, and T22 relates the RgNmn modes to the corresponding scattered Nmn modes.

Since we are observing the scattered electric fields in the far field, we make the large argument

approximation for the spherical Hankel function to obtain an expression for the scattering amplitude

matrix[52].

S(nsca,ninc) =
4π
k

∑
mnm′n′

in
′−n−1(−1)m+m′dndn′ exp

[
i(mϕsca −m′ϕinc)

]
× {

[
T 11
mnm′n′Cmn(ϑsca) + T 21

mnm′n′iBmn(ϑsca)
]
C∗m′n′(ϑ

inc)

+
[
T 12
mnm′n′Cmn(ϑsca) + T 22

mnm′n′iBmn(ϑsca)
]
B∗m′n′(ϑ

inc)/i}.

(3.13)

where S is the amplitude scattering matrix, nsca and ninc are the unit vectors denoting the direc-

tions of scatter and incidence respectively.

The amplitude scattering matrix is a Jones matrix that relates the incident and scattered

electric field for a particular incident and scattered k vector. Obtaining the phase matrix or Mueller

matrix of the individual particle, which relates the incident and scattered intensity then becomes
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relatively simple once the amplitude matrix is obtained. Here only the parameters relevant for the

backscatter case are shown (see Eq. (3.50) or [52] Chapter 1 for total equations relating elements

of the phase and amplitude matrices)

fp11 =
1
2
(
|S11|2 + |S12|2 + |S21|2 + |S22|2

)
(3.14)

fp22 =
1
2
(
|S11|2 − |S12|2 − |S21|2 + |S22|2

)
(3.15)

fp33 = Re (S11S
∗
22 + S12S

∗
21) (3.16)

fp44 = Re (S22S
∗
11 − S12S

∗
21) . (3.17)

where fpmn and Smn are the mth and nth terms in the particle scattering phase and amplitude

matrices respectively.

If the scattering medium consists of randomly oriented particles, the total phase matrix is the

average of the single particle phase matrix over all possible orientations. In this process, retarding

and diattenuating terms average out and so the only remaining polarization effect is depolarization.

F(Θ) =
∫ 2π

0

∫ π

0

∫ 2π

0
Fp(Θ, α, β, γ)dα sinβdβdγ (3.18)

where α, β, and γ are the angles of orientation for the particle in a lab frame. In practice however,

this integration is computationally intensive, as the phase matrix must be recalculated for each

step of integration. The T-matrix, however, need only be rotated by the respective angles. Thus

the T-matrix of the particulate constituents should be averaged over all orientations.

Any one element in the average T-matrix becomes [52]

〈
T klmnm′n′

〉
=

1
8π2

∫ 2π

0
dα

∫ π

0
dβ sinβ

∫ 2π

0
dγT klmnm′n′(α, β, γ) (3.19)

where α, β, and γ are the angles representing the particle’s orientation relative to the lab frame.

We can then take advantage of an orthogonality property of the Wigner D functions[88] that make

up the T-matrix elements (see Appendix A for Wigner D function definition and Chapter 6 in
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[52] for a derivation of T-matrix orthogonality) to determine the orientationally averaged T-matrix

without the requirement of full numerical integration

〈
T klmnm′n′

〉
=

1
2n+ 1

δmm′δnn′
n∑

m1=−n
T klm1nm1n (3.20)

where T klm1nm1n has no argument because it is defined in the particle’s reference frame. The pro-

cess of determining the phase matrix from the orientationally averaged T-matrix requires several

intermediate coefficients to obtain the final result. These steps offer little insight for understanding

scattering by nonspherical particles and have been omitted. Readers interested in algorithms for

orientation averaging of axially symmetric scatterers are referred to [49].

3.2 Oriented Particles

Though randomly oriented scatterers are common, ice crystals are known to orient due to

drag forces overcoming the forces of Brownian motion in the atmosphere [69]. These occurrences

can sometimes be identified visually by the presence of sun dogs and sun pillars, which are only

observable under conditions where scatterers have a preferential orientation. These oriented ice

crystals are known to have different radiative transfer properties from their randomly oriented

counterparts [17, 83]. More extensive data is needed on the occurrence frequency of such clouds

and the conditions under which they form for accurate climate modeling.

The scattering matrix of oriented scatterers is fundamentally different from that of randomly

oriented particles. While randomly oriented scatterers are strictly depolarizing, oriented particles,

due to their common geometry also have diattenuating and retarding effects. Thus, by observing

the different polarization properties of the atmosphere, we can identify the presence of oriented

scatterers.

3.2.1 Oriented Scattering Matrix

Unlike their randomly oriented counterparts, oriented scatterers may exhibit a variety of po-

larization effects under backscattering conditions. The backscatter matrix of horizontally oriented
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scatterers, such as those sometimes observed in cirrus clouds has the form [39]

F(~ki,−~ki) =



f11 f12 0 0

f12 f22 0 0

0 0 f33 f34

0 0 −f34 f44


, (3.21)

where the scattering medium is not macroscopically isotropic so the backscattering matrix is a

function of the incident wave vector. The scattering matrix shown above has the same form as Eq.

(3.1) for randomly oriented particles of arbitrary scattering angle. The distinction here is that the

backscatter matrix of oriented particles does not simplify to the diagonalized depolarizing matrix

in Eq. (3.5).

The scattering matrix in Eq. (3.21) applies to any oriented scatterer including platelets,

columns or bullets. If we assume particles will orient within the horizontal plane and the lidar is

pointing along zenith/nadir (~ki is parallel to the vertical z-axis), scattering symmetry between all

polarization planes gives a scattering matrix that simplifies to the depolarizing form in Eq. (3.5).

In this case there is no distinction between the phase matrix form representing horizontally oriented

scatterers and randomly oriented scatterers.

For a geometric representation of a tilted lidar with horizontally oriented scatterers, see

Figure 3.2. The scatterers are aligned with the horizontal plane depicted. In this work, all linear

polarization angles, φf , are measured with reference to the s-polarization (the linear polarization

that is in the horizontal plane). The directional cosine between the vertical z-axis and the incident

wave vector ~ki is the lidar tilt angle α.

With the scattering matrix expressed in Eq. (3.21), the circular polarization ratio takes the

form

δc =
f11 − f44

f11 + f44
. (3.22)

An arbitrary linear transmit polarization is described

~STX = S0

[
1 cos 2φf sin 2φf 0

]T
(3.23)
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Figure 3.2: Graphical depiction of angular terms for scatterers oriented in the horizontal plane. The
lidar tilt angle α is measured relative to zenith (z axis) and the polarization angle φf is measured
relative to the linear polarization that lies in the horizontal plane (s axis).
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where S0 is the total transmitted intensity and φf is the transmitted linear polarization angle

measured with respect to the s-polarization in the horizontal. Polarizers in the receiver are rotated

according to the transmit polarization angle to measure parallel and perpendicular signals.

Using Eq. (2.11), (3.21) and (3.23), the linear polarization ratio is a function of several

elements in the phase matrix, the angle φf and is given as

δl =
f11 − f22 cos2 2φf − f33 sin2 2φf

f11 + 2f12 cos 2φf + f22 cos2 2φf + f33 sin2 2φf
. (3.24)

Note that the linear polarization ratio is a function of linear diattenuation (f12) and possible

retarding and depolarizing terms (f33 and f22) [42]. Also, the circular polarization ratio may contain

depolarizing and retarding terms (f44). Thus, although δ is often referred to as the “depolarization

ratio”, in the case of oriented scatterers, it is not necessarily related to the scatterer’s effect on the

degree of polarization.

A notable conclusion from Eq. (3.22) and (3.24) is that the polarization ratio does not

make any distinction between scattering matrix types. Nor can it distinguish polarization effects

exhibited by the matrix. It only allows us to determine if the polarization changed. Where with

randomly oriented scatterers, the depolarization ratio is only dependent on the ellipticity of the the

incident and detected polarizations, oriented scatterers also give dependence on the lidar’s linear

polarization plane, φf . Though sometimes useful, the polarization ratio becomes an ambiguous

term in the presence of variation in scattering properties and incident polarization.

Unlike randomly oriented particles, the behavior of the oriented backscatter matrix cannot

be attributed to any single polarization effect. However, we can apply Lu-Chipman Mueller decom-

position to the matrix in Eq. (3.21) to determine how different polarization effects contribute to

the scattering matrix terms [42]. This means that the scattering phase matrix must be composed

of a combination of diattenuating, retarding and depolarizing terms

F(~ki,−~ki) = f11MF
∆MF

RMF
D, (3.25)

where f11 denotes that all decomposed matrices are normalized and MF
∆, MF

R, and MF
D are the

depolarizing, retarding and diattenuating matrices of the backscatter phase matrix. Comparing the
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form of the scattering matrix in Eq. (3.21) to that shown in Eq. (2.6), we see that the retarding and

diattenuating axes are aligned (f12 corresponds to diattenuation between s- and p-polarizations,

f34 corresponds to retardance with s- and p-polarization axes). Thus, by applying the matrix forms

in Eq. (2.2) and (2.3), the scatterer diattenuation matrix is given by

MF
D =



1 f ′12 0 0

f ′12 (1− f ′12)
√

1− f ′12
2 + f ′12 0 0

0 0
√

1− f ′12
2 0

0 0 0
√

1− f ′12
2


, (3.26)

where f ′12 is the normalized (1,2) element of the scattering matrix and also its diattenuation.

The retarder component of the scattering matrix is then given by Eq. (2.4) and (2.5) of a

linear wave plate with axes along s- and p-polarizations. The matrix evaluates to

MF
R =



1 0 0 0

0 1 0 0

0 0 cos ΓF − sin ΓF

0 0 sin ΓF cos ΓF


, (3.27)

where ΓF is the phase shift imposed by the scatterer’s retarding matrix.

The diattenuation and retardance matrix combine to define a homogeneous scattering matrix.

In the presence of a single scatterer, there is no depolarizing effect. However, because the volume

matrix is typically a sum of several scattering matrices, depolarizing effects must generally be

included. The depolarization matrix from Eq. (2.8) can be reduced to contain five independent

terms. In order to maintain symmetry between the (1,2) and (2,1) terms, polarizance must exist

along s- or p-polarizations. This means the (2,1) element of the depolarization matrix is not

necessarily zero. Because depolarization within a volume is caused by distributed orientation about

a mean, depolarization in s- and p-polarizations is caused by canceling diattenuation terms. The

volume phase matrix in Eq. (3.21) contains no coupling terms between s- and p-polarizations and

the other two Stokes elements. As a result, there is no cross coupling between these terms in the
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depolarization matrix and [ 1 0 0 ]T must be an eigenvector of m∆. There is, however, cross

coupling in Eq. (3.21) between the circular and ±45◦ Stokes vector terms, so we must account

for this possibility in the assumed form of the depolarization matrix. This results in symmetric,

non-zero (3,4) and (4,3) elements in the depolarization matrix. Thus the general assumed form of

the depolarization matrix becomes

MF
∆ =



1 0 0 0

P1 1− d1 0 0

0 0 1− (d3 − dx cos2 θx)
dx
2

sin 2θx

0 0
dx
2

sin 2θx 1− (d2 + dx cos2 θx)


, (3.28)

where P1 is the polarizance of the depolarization matrix along s- and p-polarizations, d1 is the

depolarization of along s- and p-polarizations, d2 is the depolarization along the eigenvector closest

to ±45◦, d3 is the depolarization along the eigenvector closest to circular polarizations, and θx is

the angle in Poincaré space between the eigenvectors of m∆ and the basis vectors along ±45◦ and

circular polarizations. Thus when θx is not an integer multiple of zero or π, there are depolarization

cross talk terms. Finally dx is a depolarization cross talk term that is strictly a function of the

other depolarizations and is given by

dx = d3 − d2. (3.29)

By evaluating Eq. (3.25) and imposing the symmetry requirement between the (1,2) and (2,1)

elements exhibited by the total volume phase matrix in Eq. (3.21), we find the polarizance in Eq.

(3.28) is not independent and is given as

P1 = d1f
′
12. (3.30)

We then also apply the requirement for antisymmetry between the (3,4) and (4,3) elements

(f34 = −f43) shown in (3.21). By imposing this requirement, we find that the angle of the eigen

axes in the depolarizer θx has a simple relation to the retardance of the scattering matrix ΓF given

by

θx =
ΓF
2
. (3.31)
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The volume scattering phase matrix given in Eq. (3.21) for oriented scatterers has six in-

dependent terms. Thus, Lu-Chipman Mueller decomposition also gives six independent terms

corresponding to physical polarization effects: f11 (related only to backscatter intensity), f ′12, ΓF ,

d1, d2, and d3.

3.2.2 Geometric Scattering of Hexagonal Ice Crystals

Owing to the large size of oriented ice crystals (on the order of 100µm), T-Matrix calculations

will not converge without very high orders of VWSF complex coefficients. Instead we must use

geometric scattering calculations to simulate the properties of these scatterers. This is done by

breaking up an incident plane wave (PW) into small, finite elements, ray tracing them in the

crystal geometry, then diffracting the outgoing PW element to evaluate the resulting electric field

on the detector [92]. The PW elements must be large enough so diffraction is negligible within the

crystal. After exiting the crystal, diffraction is included in propagating back to the detector. The

total electric field observed by the detector is then the sum of all electric fields ray traced from the

incident PW. For simplicity, the detected electric field is most easily described in a common lab

frame, avoiding the need to track the relative transformations between local coordinate frames such

as those used in Jones vectors. This process of ray tracing in a 3-dimensional coordinate frame is

called polarization ray tracing (PRT) [18] and greatly simplifies the process of summing electric

field components from each PW element. The corresponding 3x3 matrix for PRT is thus called the

PRT matrix.

The PW element starts with a wave vector k̂i along the z-axis at (xn, yn, z0) where xn and

yn are the x-y coordinates of the nth PW element and z0 is the initial starting position of the wave

along the z-axis. We then determine the next crystal face the ray will intersect by calculating the

distance to intersection of each surface. The closest surface of intersection is the next interface.

The position of the ray is then updated to the point of intersection between the crystal face and

ray. The polarization effects of reflection or transmission are imposed on the ray. These effects are

given by Fresnel coefficients [14]. Fresnel coefficients, however, are defined in the basis set of s- and
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Figure 3.3: Graphical depiction of the coordinate frames used in this polarization ray tracing
(PRT) discussion. The lab frame xyz is independent of the interface, the interface frame x′y′z′ is
determined by the surface normal and s-polarization (as convention), and the Fresnel frames are
dictated by the corresponding wave vector, s- and p-polarizations. The Fresnel frames are broken
up by incident spiki, reflected sprkr and transmitted frames sptkt.

p-polarizations incident on the surface (see Figure 3.3 for a graphical description of the coordinate

frames used for polarization ray tracing of a surface interface). Thus the polarization ray tracing

matrix for reflection in the Fresnel coordinate frame is given by [18]

Rf
F(θF ) =


rs(θF ) 0 0

0 rp(θF ) 0

0 0 0

 , (3.32)

where the superscript F denotes that the matrix is in the Fresnel coordinate frame, θF is the angle

of incidence, rs is the complex s-polarized reflection coefficient and rp is the complex p-polarized

reflection coefficient. The transmission PRT matrix is identical to that of reflection, where the

transmission coefficients ts and tp are substituted for the reflection coefficients. The transmission

matrix is then Tf
F(θF ). Note that θF is related to the dot product of the incident ray and the

surface normal

cos θF = k̂i · n̂s. (3.33)

Because the polarization in Fresnel coefficients is defined by s- and p-polarizations, we must perform

a transformation between the lab x-y-z coordinate frame and the interface coordinate frame. The
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transformation matrix from the lab frame to the incident Fresnel frame is given by

Q1 =


ŝT

p̂Ti

k̂Ti

 , (3.34)

where ŝ is the normalized vector of s-polarization in the lab frame and given by the cross product

between the incident ray and surface normal

ŝ =
k̂i × n̂s
|k̂i × n̂s|

, (3.35)

p̂i is the p-polarization vector for the incident ray in the lab frame given by

p̂i =
k̂i × ŝ
|k̂i × ŝ|

, (3.36)

and T denotes a transpose operation.

The transformation matrix from the reflected or transmitted ray back into the lab frame is

then given by

Q2r,t =
[
ŝ p̂r,t k̂r,t

]
, (3.37)

where all vectors are again written in the lab frame and p̂r,t is the vector description of the outgoing

p-polarization for reflection or transmission and k̂r,t is the outgoing ray direction for reflection or

transmission. For reflection, the outgoing ray is determined by converting to the interface frame

(x′y′z′ where z′ is along the surface normal), negating the resulting z component of the ray, and

returning to the lab frame

k̂r = Qx′y′z′
−1


1 0 0

0 1 0

0 0 −1

Qx′y′z′ , (3.38)

Where Qx′y′z′ is the transformation matrix from the lab to interface frame and given by

Qx′y′z′ =


ŝT

ŷ′
T

n̂Ts

 . (3.39)
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The selection of the x′ and y′ vectors are arbitrary, but by convention x′ is chosen to align to the

s-polarization so that y′ is given by

ŷ′ =
n̂s × ŝ
|n̂s × ŝ|

. (3.40)

If we are considering transmission, the ray will refract. Again, the operation is most easily

performed in the interface frame so we obtain

~k′t =


kix′

kiy′√(
nt
ni

)2
|k̂i|2 − (kix′)

2 −
(
kiy′
)2

 , (3.41)

where the subscript x′ denotes the component along the x’-axis in the interface frame, ni is the

index of refraction in the incident medium and nt is the index of refraction in the transmitted

medium. Note that in Eq. (3.41) the transmitted ray vector in the interface coordinate frame is

not normalized.

With the outgoing ray direction determined, we can then obtain the outgoing p-polarization,

again using cross products

p̂r,t =
k̂r,t × ŝ
|k̂r,t × ŝ|

. (3.42)

The reflection PRT matrix description of an interface is then described

RF(k̂i, n̂s) = Q2Rf
F(θF)Q1. (3.43)

The total path of the PW element is then described by the product of all PRT matrices along

the ray path. For all instances other than the first reflection off crystal face this is given by

PN = TF(k̂Ni , n̂
N
s )

(
N−1∏
n=2

RF(k̂ni , n̂
n
s )

)
TF(k̂1

i , n̂
1
s), (3.44)

where the superscript denotes the interface interaction number for the particular PW element and

N is the total number of interfaces observed by the PW element.

To determine how the outgoing electric field maps onto the detector we diffract the electric

field [92]. For simplicity, we assume the square elements may be approximated as circular for
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diffraction calculations [92]. The PW element is much smaller than the propagation distance to

the lidar, so the Fraunhofer approximation may be applied [28]. The observed PRT matrix is then

given by [92]

PN
d = ∆σp

2J1

[
|~kN |(∆σp/π)

1
2 sin θd

]
|~kN |(∆σp/π)

1
2 sin θd

Qd(r̂d, k̂N )PN , (3.45)

where ∆σp is the area of the PW element, J1 is the first-order Bessel function, ~kN is the outgoing

wave vector from the last surface, r̂d is the scattering direction (vector pointing to the detector), θd

is the angle between the outgoing wave vector and r̂d, PN is polarization ray tracing matrix for the

outgoing ray and given by Eq. (3.44) and Qd(r̂d, k̂N ) is the transformation matrix accounting for

the fact that the electric field must be orthogonal to the wave vector after diffraction. This matrix

is similar to the transformation matrices into the Fresnel interface and is given by

Qd(r̂d, k̂N ) =
[
ŝd p̂d r̂d

]

ŝTd

p̂TN

k̂TN

 , (3.46)

where the vectorial components are given by

ŝd =
k̂N × r̂d
|k̂N × r̂d|

, (3.47)

p̂N =
k̂N × ŝd
|k̂N × ŝd|

, (3.48)

and

p̂d =
r̂d × ŝd
|r̂d × ŝd|

. (3.49)

The total electric field observed by the detector is then related to the incident field through

the sum of all PW element PRT matrices obtained in Eq. (3.45). The amplitude scattering (Jones)

matrix of the crystal is defined for a 2D coordinate frame normal to the wave vector. Because we

are considering only backscatter, the scattering wave vector points along the z-axis. The amplitude

matrix is thus given by the 2x2 block in the upper left corner of the PRT. This complex amplitude

matrix can then be converted to a phase matrix using standard Jones to Mueller matrix relations
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given by [19]

M = U (J⊗ J∗) U−1, (3.50)

were M is the Mueller matrix corresponding to the Jones matrix J, ⊗ represents the tensor product

and U is the Jones/Mueller transformation matrix given [19]

U =



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


=
(
U−1

)†
. (3.51)

.

3.3 Multiple Scattering by Spherical Particles

When scatterers have sufficiently high scattering cross section and number density, incident

laser light may be scattered more than once before exiting the scattering medium. This process of

multiple scattering will cause the laser light to diffuse radially through the medium (away from the

beam). Also, due to multiple forward and backward scattering events, time-of-flight may not be

able to provide accurate range information. For this reason, optically dense clouds frequently have

profiles that decay in range, past the physical dimension of the cloud.

It is well understood that polarization effects of multiple scattering are dependent on the

lidar’s field-of-view (FOV). For very narrow FOV, only forward and backward scattering events

are detected. So if the cloud consists of spherical droplets, no total depolarizing effect is observed.

By contrast, a wide FOV observing multiple scattering sees a depolarizing effect described by the

depolarizing phase matrix in Eq. (3.5)‘[65]. While both of these descriptions of multiple scattering

are true, they gloss over the complexities of multiple scattering.

For a well mixed scattering medium, the total phase matrix describing a multiply scattered

path becomes the product of the average single scattering matrix at each scattering angle

F =
N∏
n=1

Fs(Θn,Φn), (3.52)
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Figure 3.4: Image plane of camera recording multiple scattering patters. The (0,0) pixel corresponds
to the transmitted beam, so it is the only pixel containing first order scattering returns. All pixels
of equal radius rc have, within a rotation, the same scattering matrix.

where Fs(Θn,Φn) is the single scattering phase matrix of the medium at the nth scattering angles

Θn, the angle between the incident wave vector and scattered wave vector, and Φn, the azimuthal

scattering angle (See Figure 3.1) and N is the the total number of scattering events.

It has been found in multiply scattered simulations and measurements that forward and back

scattering peaks are substantially stronger than radially scattered directions [62]. For this reason,

scattering with order higher than 2 are only weakly contributing to the received radiation patterns

and polarization. These higher order terms have been shown to only smooth the cusps of the

received patterns [15]. For this reason, we will only focus on second order scattering in this work.

If, instead of using a single detector, we were to focus the scattering patterns onto a camera,

each pixel would measure a unique phase matrix defined by the total sum of scattering events

imaged onto the pixel. Let a pixel at radius rc from the center of the intensity pattern, along the

x-axis (see Figure 3.4), observe the scattering matrix F(rc, 0). If the medium is macroscopically

isotropic, by argument of symmetry, another pixel at the same radius rc, but at angle φc to the

x-axis, must be related to the first pixel by a rotation matrix

F(rc, φc) = R(φc)F(rc, 0)R(−φc), (3.53)

where R(φ) is a rotation matrix of angle φ. Thus for a constant value of rc, the fundamental

elements of the scattering matrix are identical.

In its most general form, the scattering matrix of each pixel will have sixteen independent
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elements. However for the purpose of this discussion, let us assume the probability of scattering in

the volume remains much less than 1, so that second order scattering effects dominate the multiply

scattered return. The form of the scattering matrix for each pixel along the x-axis is then the same

as that in Eq. (3.21) where the matrix for all pixels off the x-axis may be determined using Eq.

(3.53).

When we integrate the backscatter matrix F(rc, φc) over all φc, the total phase matrix at

each radius has no off diagonal elements thus making it strictly depolarizing. For each off diagonal

element in the scattering matrix, there exists another angle, where the same element is equal and

opposite in sign. Thus when we sum over all the diattenuating and retarding effects in the FOV

(as with a single detector), their net polarization effects cancel, and only appear as depolarization.

Though each individual pixel may observe diattenuating and retarding effects in multiply scattered

returns, the total integrated field still conforms to the depolarizing matrix in Eq. (3.5).

3.3.1 Simulation of Second Order Scattering Radiation Patterns

If a single pulse is transmitted through an optically dense medium, we can calculate the

backscattered radiation pattern from second order scattering recorded by a camera. The center pixel

of the camera is assumed to contain the single scattered and multiply forward and backscattered

returns. On each other pixel, the scattering matrix can be determined by integrating over all second

order ray paths allowed by the detector integration time.

Let the range to the first scattering event be Rs (see Figure 3.5). The first scattering event

occurs at the angle Θ1, after which the scattered light propagates a distance ∆R1 before it is

scattered by a second particle at the angle Θ2. Assuming Rs � ∆R1 sin Θ1 the sum of the scattering

angles must be 180◦ for the light to be received by the lidar.

Θ1 + Θ2 = π. (3.54)

In addition to the attenuation observed in single scattering, there is also loss due to the additional

propagation lengths ∆R1 and ∆R2 in the scattering volume. Thus the backscatter phase matrix
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Figure 3.5: Relevant geometric parameters for calculating second order scattering in a medium.
It is assumed that Rs � x so that Θ1 + Θ2 ≈ 180◦. The transverse displacement of the second
scattering event, x, is mapped onto the image plane by the detector optic with some transverse
displacement x′ where x′ = Mx and M is the magnification of the imaging system.
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of an individual optical path from second order scattering is

F2(π) =
R2
s

∆R2
1(∆R2 +Rs)2

exp [−κ(∆R1 + ∆R2)] F1(Θ2)F1(Θ1), (3.55)

where F2(π) is the second order backscatter phase matrix of the path, F1(Θ) is the first order

scattering matrix of the particles in the medium for a scattering angle Θ and κ is the extinction of

the medium given by

κ =
∫ ∞

0
σe(rp)nd(rp)drp, (3.56)

where nd(rp) is the number density of particles of radius rd and σe(rd) is the corresponding extinc-

tion coefficient of the particles related to the scattering phase matrix of a single particle by

σe(rd) = σa(rd) +
∫ 2π

0

∫ π

0
fp11(Θ,Φ, rd) sin ΘdΘdΦ, (3.57)

where σa(rd) is the absorption cross section of the particle of radius rd and fp11 is the (1,1) element

of the scattering phase matrix of a single particle Fp.

The scattering paths we must integrate for a single pixel are dictated by the detection inte-

gration time ∆TD. The following condition must be satisfied for a second order scattering effect to

be registered in the same time bin as the single scattered return

∆TD >
∆R1 + ∆R2

c
. (3.58)

From the geometry shown in Figure 3.5 we obtain

∆R2 = ∆R1 cos Θ1, (3.59)

which allows us to rewrite the above condition to give the integration limits as a function of the

first scattering angle and path length

∆R1(1 + cos Θ1) > c∆TD. (3.60)

The transverse displacement of the the resulting backscattered light is

x = sin Θ1. (3.61)
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If c∆TD � Rs or the depth of the scattering medium is much less than Rs, this transverse displace-

ment means the total backscatter angle is slightly off 180◦ for light collected by the receiver. When

focused by an imaging lens, the backscatter angle is imaged onto a transverse displacement in the

detector plane. Thus, the transverse displacement of the second scattering event proportionally

maps to an off axis pixel on the detector. We can then write the integration limits in terms of x

and Θ1

1
sin Θ1

+
1

tan Θ1
<
c∆TD
x

. (3.62)

The inequality above is transcendental when solving for Θ1, so no analytic solution exists. However,

this equation is easily solved numerically. Let ΘM
1 be the maximum value of Θ1 that satisfies the

above inequality.

We can then use the solution to Eq. (3.62) and previously defined relations in Eq. (3.54),

(3.55), (3.59) and (3.61) to write the total backscatter phase matrix observed by a pixel corre-

sponding to transverse displacement x

F2(x, π) =
∫ ΘM1

−ΘM1

R2
s sin2 Θ1

x2(Rs + x cot Θ1)2
exp

(
−κx1 + cos Θ1

sin Θ1

)
F1(π −Θ1)F1(Θ1)dΘ1. (3.63)

The matrix F2 may then be used as the scattering phase matrix in the SVLE to solve for the

expected receive polarization and photon counts.

The matrix calculation in Eq. (3.63) gives the scattering matrix along one transverse dis-

placement axis x. This axis corresponds to the azimuthal angle φc = 0. However, once all matrices

along the x-axis are determined, Eq. (3.53) can be used to determine the phase matrix observed

by pixels of arbitrary φc.

We now simulate the recorded backscattered intensity patterns on a camera with a polarizer

using the SVLE. Mie theory is used to determine the single scattering matrix of a spherical particle

and the second order scattering matrix of each pixel is determined using Eq. (3.63). The parameters

for simulation are matched to experimental data recorded by [58] using a 633 nm source. The two

simulations shown use particles of radius 0.085µm and 0.75µm and index of refraction of 1.3. The

range bin is assumed to be large so that ΘM
1 approaches π. In all Figures, the incident polarization is
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(a) Experiment (b) Simulation

Figure 3.6: Qualitative comparison of (a) published experimentally measured intensity patterns
from all orders of multiple scattering by [58] and (b) simulated intensity patterns of second order
scattering for spherical particle of radius rp. The experimental data was recorded with a polarizer
in front of the film in both positions parallel and perpendicular to the incident polarization. The
same measurement method is duplicated for the simulations.

vertical and the scatterers are assumed spherical. The intensity patterns are recorded and simulated

with a polarizer parallel to the transmit polarization then perpendicular. The experimentally

recorded intensity patterns from [58] are reprinted here for qualitative comparison.

In both simulated and experimental data, the sensitivity of the detector and FOV are ar-

bitrary. However, the patterns are qualitatively very similar. The particle with radius 0.085µm

radiates very little along the direction of the incident polarization (vertical), while the particle with

radius 0.75µm has a radiation lobe in the vertical direction. This means that smaller particles

exhibit more diattenuation in second order scattering than large particles. While it is known that

the particle scattering cross-section increases with particle radius, this total backscatter is also

dependent on particle density. However, diattenuation is a polarization effect that can be normal-
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ized, making it independent of particle density. Thus diattenuation might offer a useful means for

characterizing particle size.



Chapter 4

Polarization Techniques

The ability to discern polarization in the scattering medium provides an additional data

product for atmospheric characterization. However, the process of actually measuring polarization

effects in the phase matrix is dependent on the technique employed.

For full characterization of an arbitrary scatterer, the entire phase matrix must be measured.

To do so, four Stokes vectors, that span the Poincaré Sphere, are measured. Each full Stokes vector

requires a minimum of four intensity measurements [18, 44, 14] thus requiring a total of 16 separate

measurements. Clearly the most general approach for characterizing the scattering phase matrix

places heavy demands on the lidar system. Each intensity measurement must either be acquired

by splitting the return signal or polling individual polarizations in time. In both cases, redundant

and zero elements are unnecessarily measured causing SNR to suffer while integration times and

instrument complexity increase.

Fortunately, in most instances we can make assumptions about the form of the scattering

phase matrix. This allows us to assume some of the elements in the phase matrix are zero. In

addition to the zero elements in the matrix, there are often relationships between the different

elements, thereby reducing the number of independent terms in the scattering matrix. Polarization

techniques for measuring these reduced matrices have the benefit of improved SNR and shorter

integration times due to the reduced number of irrelevant measurements (i.e. measuring a matrix

element known to be zero). However the validity of the implied assumptions relates directly to

the validity of the data and its interpretation. It is important to be conscious of this fact when
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deriving meaning from polarization data. If the scattering medium does not conform to the as-

sumed matrices, the measured quantities cannot be accurately linked to actual manifestation in

the scatterer.

The sections below discuss the measurement of depolarization from randomly oriented par-

ticles, the impact and measurement of oriented particles and the use of altered polarization for

improved lidar ranging.

The depolarization technique commonly employed in polarization lidar requires only the

collection of parallel and perpendicular polarized backscatter intensity. This technique proves useful

for measuring depolarization of scatterers that are randomly oriented, but the actual definitions of

the scattering and detection techniques and their acceptable applications are largely unexplored.

If lidar systems do not employ the same transmit polarizations (i.e. linear, circular, elliptical),

the polarization ratio δ cannot be used as a common term for comparison between instruments.

Furthermore, the depolarization technique is often employed for arbitrary atmospheric scattering

problems, resulting in ambiguity as to how the collected data relates to polarization properties of

the medium and therefore its physical attributes.

The depolarization technique generally applied to randomly oriented scatterers produces am-

biguous results if used to characterize oriented scatterers. Due to the limited and confining tech-

niques presently available for detecting oriented scatterers, very little is known about atmospheric

oriented scatterer occurrence frequency and scattering attributes. We present here, two techniques

for identifying the presence of oriented scatterers, by measuring the diattenuation of the scattering

medium.

Polarization may also be used in ranging problems to separate returns from different surfaces.

This technique capitalizes on polarization differences between the targets, but also, due to its very

high level of temporal resolution, introduces new issues for ranging of two hard targets. In this

case, the purpose of the polarization technique is not to characterize the targets, but to suppress

signal originating from one of the targets. This allows the detector to effectively multiplex between

two targets and enables sub-pulse length range resolution.
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4.1 Depolarization

Owing to the fact that most scatterers in the atmosphere are randomly oriented, the most

common polarization effect observed in the atmosphere is depolarization. In these circumstances,

the scattering phase matrix is strictly depolarizing, given by Eq. (3.5), and has only one independent

polarization term d for which allowable values only exist between zero and one [25, 26]. This fact

makes the entire scattering phase matrix easy to characterize using the two measurements commonly

employed in conventional polarization lidar.

In conventional polarization lidar operation, parallel and perpendicular components of the

backscattered light are measured. The resulting photon counts are given by

~N =

 N||

N⊥

 , (4.1)

and the output matrix is

O = o

 P||

P⊥

 (4.2)

where P|| and P⊥ are 4x4 Mueller matrix descriptions of parallel and perpendicular polarizers in

the receiver respectively and o transforms the resulting eight element Stokes vector into the two

measured photon counts,

o =

 ηD|| 0 0 0 0 0 0 0

0 0 0 0 ηD⊥ 0 0 0

 , (4.3)

where ηD|| and ηD⊥ are the detector efficiencies of the parallel and perpendicular channels.

If we evaluate the SVLE (Eq. (2.11)) using the definitions provided above and assuming

there are no polarization effects in the lidar instrument or in atmospheric transmission, we find the

depolarization of the scattering medium is calculated for linear transmit and detection polarizations

[25, 26]

d =
2N⊥

N⊥ +N||
, (4.4)
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and for transmitted and received circular polarization

d =
N⊥

N⊥ +N||
. (4.5)

In the general case where the transmitted Stokes vector is

~STX ∝



1

cos Γf

0

sin Γf


, (4.6)

where Γf is twice the ellipticity angle of the outgoing polarization [93]. The receiver detects in the

polarization planes parallel and orthogonal to the transmitted mode. The receiver polarizers in Eq.

(4.2) are thus fully described by their diattenuation vectors

~D‖ =


cos Γf

0

− sin Γf

 , (4.7)

and

~D⊥ =


− cos Γf

0

sin Γf

 . (4.8)

Note that the scattering matrix negates the polarized component of S3, so Γf is negated in the

parallel polarizer. The depolarization is then given by

d =
4N⊥(

N⊥ +N||
)

(3− cos 2Γf )
. (4.9)

Thus, in the common case where the scattering medium consists of randomly oriented axially

symmetric particles the full scattering matrix can be characterized through only two polarization

measurements.

Because this polarization technique is common in lidar, it has been applied to a number

of aerosol characterization applications [71, 75, 10, 46]. However, results are most commonly
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reported in terms of the polarization ratio δ defined in Eq. (1.7). The polarization ratio derives its

meaning from the measurement technique employed, not the scattering phase matrix. Thus, the

quantity technically has no inherent assumptions about the form of the scattering matrix. This

fact proves convenient, though ambiguous, when the form of the scattering matrix is not known.

However, in order to fit the collected data to scattering models, assumptions must be made about

the form of the matrix which is often unstated and unjustified in publications. By contrast, data

reported as depolarization d is unambiguous. Without adding additional content, the assumed

form of the scattering matrix is clearly communicated as that in Eq. (3.5). It leaves no room

for misinterpretation of the author’s assumptions about the medium, but the quantity cannot be

applied to other scattering matrices.

The polarization ratio is dependent on the particular plane of operation for the lidar. When

the lidar operates in linear polarizations, the polarization ratio is given by

δl =
N⊥
N‖

=
d

2− d
, (4.10)

but if the system uses circular polarization, the lidar will measure a polarization ratio given by

δc =
N⊥
N‖

=
d

1− d
. (4.11)

A notable consequence of these equations is that the circular polarization ratio may be any

number from zero to infinity, while linear polarization ratios are confined on the same interval as

d (zero to one). When lidar data products are reported in terms of d, there can be no confusing

lidar operating parameters with the scattering characteristics of the atmosphere. Thus, using

depolarization instead of polarization ratio offers an additional reduction in ambiguity, by removing

dependence on the instrument’s polarization mode of operation.

In this work, the polarization ratio is still used in cases where the scattering matrix is either

unknown, or may be a composition of more than one independent matrix element. However, use

of this data product proves to be limiting without additional polarization measurements.

If we apply the polarization technique discussed here to the more general scattering matrix
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of oriented scatterers in Eq. (3.21) and let lidar operate in an arbitrary polarization

~STX =



1

cos 2φf cos Γf

sin 2φf cos Γf

sin Γf


, (4.12)

where φf is the inclination angle and Γf is twice the ellipticity angle of the outgoing polarization

[93]. We can evaluate Eq. (2.11) to find the general form of the polarization ratio is

δ (φf ,Γf ,F) =
−f11 + f22 cos2 2φf cos2 Γf + f33 sin2 2φf cos2 Γf + f44 sin2 Γf

f11 + 2f12 cos 2φf cos Γf + f22 cos2 2φf cos2 Γf + f33 sin2 φf cos2 Γf + f44 sin2 Γf
.

(4.13)

As complexity of the scattering matrix increases, the polarization ratio becomes increasingly depen-

dent on the lidar’s operating polarization. More importantly, because the elements of the matrix

cannot be uniquely determined from Eq. (4.13), these data products cannot be compared between

instruments using different polarizations. Thus, it is important to understand how the polariza-

tion technique covered here has limited practical benefit when we cannot assume the scattering

medium’s phase matrix conforms to the depolarizer described in Eq. (3.5). In such instances, other

polarization techniques are required to both identify the presence of non-depolarizing effects and

characterize the medium.

4.2 Diattenuation

In atmospheric cases such as multiple scattering and scattering by oriented ice crystals, the

phase matrix does not conform to Eq. (3.5). The depolarization d has no meaning because it

is not directly related to the medium’s scattering matrix. Though perpendicular and parallel

polarization components can still be measured, the polarization ratio cannot distinguish between

different scattering matrices, nor is it strictly related to a depolarizing effect in the scattering

medium.

The ability to detect the presence of oriented scatterers has been a subject of inquiry with
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limited success. Though a common technique has been developed to look for oriented scatterers

[56], the measurement fails to work well with other atmospheric measurements. In order to gather

information on occurrence frequency of oriented scatterers, the Cloud-Aerosol Lidar with Orthogo-

nal Polarization (CALIOP) on CALIPSO was pointed near nadir for one year to look for specular

scattering from oriented platelets. This measurement, however, came at a price. When specular

returns are present, the high intensity signal overwhelms detectors, thus preventing simultaneous

study of other aerosol and cloud polarization and backscatter ratios [35]. As a result, the study

of oriented scatterers and aerosol characteristics were somewhat mutually exclusive during the

CALIPSO mission, and data collection on oriented platelets was limited to a run of only eighteen

months.

CALIPSO and [56] identified oriented scatterers by their strong specular returns and low

polarization ratios for lidars operating near nadir or zenith respectively. This method has the

limitation of only identifying oriented platelets, not necessarily columns or bullets oriented in the

horizontal plane. Due to the narrow solid angle where specular returns can be expected, it is difficult

to determine if scatterers may have been misclassified as randomly oriented in cases where their

angular distributions are narrow. Indeed after tilting CALIOP 3◦ off nadir for the remainder of

the CALIPSO mission, clouds containing oriented scatterers had the same backscatter/polarization

ratio signatures as randomly oriented ice crystals [55], thus demonstrating the substantial sensitivity

to the pointing direction of the lidar relative to platelet orientation. Because CALIOP is not a

scanning lidar and only probes one point of the angular phase function, it is difficult to definitively

claim the measurement was able to accurately determine oriented scatterer concentrations. This

may account for the substantial discrepancy in oriented ice crystal concentration estimates between

[55] and [54] (< 5% and < 21% respectively). As previously discussed, this mode of lidar operation

also largely prevents simultaneous aerosol studies and cloud characterization due to the relative

difference in signal levels between specular and non-specular returns.

The work published by Kaul [39, 44] has been some of the most comprehensive scatterer

characterization work, where the lidar measures all 16 elements of the phase matrix. Measuring



61

the full phase matrix leaves little uncertainty about the polarization effects of the scatterer, however

the complexity of such a system for design and deployment is perhaps too great for widespread use.

Other researchers have used the functional relationship between circular and linear polariza-

tion ratios in Eq. (4.10) and (4.11) for randomly oriented scatterers as a criteria for identifying

the presence of preferential orientation in the scatterer [31, 5]. However, there is no requirement

that volumes containing oriented scatterers cannot have a similar functional relationship between

linear and circular polarization ratios. Thus this technique cannot misclassify randomly oriented

scatterers as oriented, but oriented scatterers may be misclassified as randomly oriented. This

may tend to underestimate the occurrence frequency of oriented scatterers. Also, researchers using

this method have been hesitant to assert the relationship between linear/circular polarization ratio

and orientation. This is because randomly oriented scatterers without axial symmetry can theo-

retically exhibit circular diattenuation (non-zero (1,4) and (4,1) terms in the scattering matrix).

The presence of circular diattenuation would nullify the assumed functional relationship between

polarization ratios.

For practical identification of oriented scatterers, detection techniques must be simple, robust

and accommodating of other aerosol studies. To identify the presence of oriented scatterers, we note

that linear diattenuation is exhibited in the oriented scattering phase matrix [39] when the lidar is

operating off zenith. By contrast, randomly oriented scatterers exhibit no linear diattenuation in

their scattering matrix. Thus measuring a non-zero linear diattenuation while the lidar is pointed

off zenith indicates the presence of oriented scatterers.

4.2.1 Parallel-45-Perpendicular

For the greatest versatility in polarization measurement, we would like to be able to measure

both polarization ratio and diattenuation simultaneously. The Parallel-45-Perpendicular (P45P)

technique achieves this objective by transmitting a linear polarization and adding an additional

receiver polarization channel at 45◦ to the conventional parallel-perpendicular polarization lidar.
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Thus the new measurements are given by

~N =


N||

N45

N⊥

 , (4.14)

where the subscript indicates the receiver polarizer position relative to the transmit polarization

and thus O is now given by

O = o


P(0◦ + φf )

P(45◦ + φf )

P(90◦ + φf )

 , (4.15)

where φf is the transmit polarization angle, P(θ) is the Mueller matrix of a linear polarizer at

orientation θ and

o =


ηD 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ηD 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ηD 0 0 0

 . (4.16)

We define the polarization coordinate frame such that the Stokes vector
[

1 1 0 0

]T
represents

s-polarization in the horizontal plane in Figure 3.2. For this coordinate frame the scattering matrix

in the SVLE is given by Eq. (3.21). The term f12 accounts for the total linear diattenuation of the

scatterer, and a nonzero value in this position indicates the scatterer is not randomly oriented. We

now define a qualitative assessment of this linear diattenuation

Dq =
2N45

N|| +N⊥
− 1 =

f12 sin 2φf + 1
2(f22 + f33) sin 4φf

f11 + f12 cos 2φf
. (4.17)

If f12 is zero, the scattering matrix will take the form in Eq. (3.5) where f22 = −f33 [87] and the

numerator evaluates to zero. Note again, that φf is the relative angle between the s-polarization

in the horizontal plane and incident polarization. Thus, if we set the linear polarization angle to

φf = 45◦,

Dq =
f12

f11
= f ′12, (4.18)

which is the normalized linear diattenuation of the scattering matrix from Eq. (3.21).
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From Eq. (4.17) we determine the measurement sensitivity to misalignment of φf

∂Dq

∂φf

∣∣∣∣
φf=π

4

= 2D2
q − 2

(
f22 + f33

f11

)
. (4.19)

Note that Eq. (4.19) is a function of scatterer diattenuation. For no diattenuation, the sensitivity

to misalignment is zero. It is difficult to assert any specific relationship between f22 and f33 for

an oriented scatterer, as they are functions of the matrix diattenuation and retardance respec-

tively. However, because |Dq| ≤ 1 and
f22 + f33

f11
≤ 2 [52], we can bound the error introduced by

polarization misalignment ∆φf as

∆Dq ≤ 4∆φf . (4.20)

In addition to this assessment of linear diattenuation in the scatterer, when φf = 45◦, we can

also obtain the normalized (3,3) element of the scattering matrix.

f33

f11
= f ′33 =

N‖ −N⊥
N‖ +N⊥

. (4.21)

When the scatterer is randomly oriented, we can use the notation of [26] and write, independent

of φf ,

f ′33 = d− 1. (4.22)

In the case of randomly oriented scatterers, this measurement fully characterizes the depolarizing

effect of the scattering volume. When scatterers are not randomly oriented (as indicated by a

nonzero Dq signature), the f ′33 element contains multiple polarization terms. We apply the Lu-

Chipman decomposition performed in Chapter 3, multiplying the polarization matrices according

to Eq. (3.25). This reveals the measured f ′33 element has the following relationship to the matrix

polarization terms:

f ′33 =
√

1− f ′12
2

(
cos ΓF − d2 cos2 ΓF

2
+ d3 sin2 ΓF

2

)
, (4.23)

where f ′12 = f12
f11

and is the normalized diattenuation of the scattering matrix, ΓF is the retar-

dance of the scattering matrix, d2 is the depolarization for the depolarizer basis vector nearest

±45◦ polarizations and d3 is the depolarization for the depolarizer basis vector nearest circular
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polarizations. Note that f ′12 is calculated in the diattenuation measurement Dq, but the remainder

of Eq. (4.23) still contains three independent polarization terms. Thus, when oriented scatterers

are present, this measurement provides some insight into additional scattering parameters, but the

physical polarization effect, in the general case, cannot be strictly attributed to retardance and

depolarization.

Note that use of P45P, allows us to test our assumption that scatterers in the volume are

randomly oriented. The presence of a diattenuation signature, tells us that the polarization data

cannot be reported in terms of d because the scattering volume does not have the correct matrix

form. We can still report data in terms of the polarization ratio, but it will not uniquely depend on

one scattering matrix term. The best way of reporting this data is in terms of the normalized (3,3)

component f ′33 because it unambiguously identifies an element of the scatterer’s matrix description

regardless of orientation.

4.2.1.1 Simulation of P45P

The polarization ray tracing code described in Section 3.2 is run to evaluate the polarization

scattering properties of oriented ice platelets at different lidar tilt angles. This is then used in a lidar

simulation to determine optimal lidar tilt angles for system performance. We consider a typical

tropospheric polarization lidar operating at 532 nm performing the polarization measurements

required for the P45P technique to identify oriented ice crystals.

Figure 4.1: Relevant dimensions for simulation of hexagonal ice crystals. Crystal length is marked
L and the crystal base radius is marked W.
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Figure 4.2: Simulated backscatter as a function of tilt angle for hexagonal platelets using polariza-
tion ray tracing described in Chapter 3. The platelets have a Gaussian angular distribution width
of 3◦.

We consider the backscatter phase matrix of oriented hexagonal ice platelets with crystal

length (L) of 120µm and base radius (W) of 160µm [31] (see Figure 4.1). We assume they are

oriented so the large crystal faces point downward and the distribution of crystal tilt out of the

horizontal plane (flutter) is Gaussian such that the first null in the lobe from specular reflection

occurs at 3◦. In most cases oriented ice crystals have a specular reflection width of less than 3◦

[54]. The PW elements are broken into squares 30λx30λ and contributions from up to 5 internal

reflections are calculated.

The simulation results for backscattering intensity and diattenuation are plotted as a function

of lidar tilt angle in Figures 4.2 and 4.3. In Figure 4.2 we see the narrow, high intensity peak for

instances where the lidar is pointing zenith or nadir. This peak rapidly falls off, so that even a slight

deviation in angle will significantly reduce the observed intensity. This peak width is a function of

particle size (due to diffraction) and the ice crystal tilt angle distribution.
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Figure 4.3: Simulated diattenuation as a function of tilt angle for hexagonal platelets using po-
larization ray tracing described in Chapter 3. The platelets have a Gaussian angular distribution
width of 3◦. Oscillations on the overall curve would likely average out if a distribution of crystal
sizes is considered. The reader’s focus should be on the overall functional shape.
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At higher tilt angles, the backscatter signal is several orders of magnitude weaker than the

specular returns. At these intensities the signals are less likely to overwhelm or saturate detection

systems designed for randomly oriented aerosol studies. Thus lower backscatter may be a desirable

characteristic. By controlling the tilt angle we can engineer the system for simultaneous cloud and

aerosol characterization while identifying oriented scatterers. Figure 4.3 illustrates that diattenu-

ation is zero for a zenith pointing lidar, but becomes larger as the lidar tilt angle approaches 40◦.

Thus one can trade required dynamic range of the lidar system with the diattenuation measure-

ment sensitivity to shot noise and system error contributions to determine the optimal tilt angle

for detecting oriented scatterers.

In general, the value of Dq within a measurement volume is not given exclusively by the single

particle scattering matrix. Rayleigh scattering from molecules as well as the scattering matrix of

randomly oriented cloud particles must be considered. The total scattering matrix is therefore

the sum of all contributing scattering matrices, weighted by their relative contributions to the

backscattered signal

F(~ki,−~ki) = NcpoFo(~ki,−~ki) +Nc(1− po)Fr(π) +NmolFmol(π). (4.24)

The term Nc is the total scatterer number density of the cloud, po is the fraction of scatterers in

the cloud that are oriented, Fo(~ki,−~ki) is the backscatter matrix of the oriented scatterers which is

a function of tilt angle, Fr(π) is the backscatter matrix of randomly oriented cloud particles, Nmol

is the molecular scatterer number density and Fmol(π) is the scattering matrix of the molecular

scatterers. Note that for the randomly oriented cloud and molecular contributors, their matrices

will have the form shown in Eq. (3.5). Thus for low concentrations of oriented particles, randomly

oriented scatterers will “dilute” the diattenuation of the total backscatter phase matrix.

Due to the presence of the randomly oriented scatterers in Eq. (4.24), the volume diattenua-

tion as a function of tilt angle may not be the same as the individual crystal diattenuation in Figure

4.3. As tilt angle increases to 40◦, diattenuation in the crystal scattering matrix increases. But at

angles where the diattenuation is large, the oriented ice crystals contribute less signal to volume



68

Figure 4.4: Simulated volume diattenuation of hexagonal platelets with flutter distribution width
of 3◦ as a function of lidar tilt angle. The cloud has an oriented scatterer concentration of po and
altitude of 10 km. The density of the cloud is determined by assuming the backscatter ratio RBS
is 50 when po = 0 .

backscatter causing greater dilution of diattenuation. Figure 4.4 shows the volume diattenuation

as a function of lidar tilt angle for a variety of oriented scatterer concentrations po. The total

number density of ice crystals is determined by assuming a randomly oriented cloud (po = 0) has a

backscatter ratio of 50 where the backscatter ratio is defined in Eq. (1.4) and for this specific case

may be written [47]

RBS =
βmol + βc
βmol

=
fmol11 + f c11

fmol11

, (4.25)

where βm is the volume backscatter coefficient of the molecular scatterers and is also the fmol11 term

of the molecular scattering matrix and βc is the volume backscatter coefficient of the cloud and is

also the f c11 term of the total cloud scattering matrix in Eq. (4.24).

As the population density of oriented scatterers increases, the volume backscatter diattenua-

tion more closely resembles that of the oriented ice crystal. The peak value of diattenuation changes
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as a function of the oriented scatterer concentration po. Current data suggests oriented scatterers

are generally low in concentration, ranging from po = 0.05 [55] to po = 0.2 [54]. However, the

space-based instruments that determined these concentrations integrated over areas much larger

than those of a typical terrestrial based lidar system. It is difficult to know if oriented scatterers

tend to concentrate in pockets or are evenly distributed within the cloud. Thus for a typical ter-

restrial lidar with a much smaller integrated area, po could take any value from 0.05 to 1.00 when

oriented ice crystals are present.

Backscatter ratio also plays a role in determining how molecular scattering dilutes the oriented

ice crystal matrix. As the backscatter ratio increases, larger volume diattenuation may be possible

at higher tilt angles. Thus we consider the cloud’s maximum diattenuation as a function of the

cloud’s equivalent randomly oriented backscatter ratio and po. The results are plotted in Figure 4.5

where it is clear that peak values of diattenuation level off asymptotically, resulting in diminishing

returns for higher backscatter ratios. The angles corresponding to those peak diattenuation values

are plotted in Figure 4.6.

The scattering volume diattenuation determines tolerable error in measured signals. In order

to accurately resolve the presence of diattenuation, we wish to have Dq � σDq + ∆Dq where

σDq is the diattenuation error due to shot noise and ∆Dq is error introduced by the optical system

(discussed in further detail in Chapter 5). The shot noise uncertainty of diattenuation measurements

using P45P is determined using propagation of error:

σ2
Dq =

4
N2
RX

[
σ2

45 + σ2
NRX

(
N45

NRX

)2
]

(4.26)

where σx is the standard deviation of x, NRX is the sum of the total photons detected on the

perpendicular and parallel channels during the integration time, and N45 are the photons received

during the integration time on the 45◦ polarization measurement.
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Figure 4.5: Simulation using polarization ray tracing in Section 3.2 of maximum volume diattenua-
tion as a function of non-specular backscatter ratio at various concentrations of oriented scatterers.
Here the oriented scatterers are diluted by both molecular scatterers and randomly oriented ice
crystals.
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Figure 4.6: Tilt angle corresponding to maximum volume diattenuation as a function of non-
specular backscatter ratio at various concentrations of oriented scatterers. Optimal tilt angles are
nearly constant for most concentrations and make discrete hops as a function of concentration. The
weakest clouds (po < 0.25) are ideally probed at angles between 10◦ and 20◦.
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4.2.2 Alternating Cross Polarized

While P45P offers the benefit of measuring both polarization ratio and diattenuation simul-

taneously, it is not always practical for implementation in existing lidar. The Alternating Cross

Polarized (ACP) technique more directly measures diattenuation by measuring the polarization

dependence of the volume scattering coefficient. This is done by transmitting alternating, orthog-

onal polarizations and measuring the difference in backscatter. Though the technique does not

allow for simultaneous measurement of polarization ratio, the ARCLITE lidar is easily modified

for this technique. Also, as will be shown in Chapter 5, this technique is unaffected by retarding

and depolarizing effects in the receiver.

ACP transmits two orthogonal polarizations and measures the resulting backscatter photon

counts from the medium. Diattenuation in the medium can be determined by the relative dif-

ference in backscatter amplitudes. If the scattering matrix takes the form shown in Eq. (3.21),

the normalized diattenuation can be directly measured by transmitting orthogonal polarizations

corresponding to the nonzero diattenuating element. Thus, we transmit alternating orthogonal

polarizations,

~STX1 = NTX



1

cos 2φf

sin 2φf

0


, (4.27)

and

~STX2 = NTX



1

− cos 2φf

− sin 2φf

0


, (4.28)

where transmit photons NTX are the same for both modes. We then measure the received intensity

corresponding to each transmit polarization. Thus the output matrix is

O =
[
ηD 0 0 0

]
. (4.29)



73

The measured diattenuation of the scatterer along the transmitted Stokes vectors is then

given by
f12

f11
cos 2φf =

NRX1 −NRX2

NRX1 +NRX2

, (4.30)

where NRX1 is the intensity received when transmitting ~STX1 and NRX2 is the intensity received

when transmitting ~STX2 .

By selecting φf = 0 (see Figure 3.2) the normalized diattenuation f ′12 is fully measured using

Eq. (4.30). Likewise, when φf is 45◦, diattenuation cannot be accurately measured through the

two transmit polarizations. Thus care must be taken in how the operator orients the transmit

polarizations relative to the lidar tilt angle.

4.3 Intrapulse Phase Modification Induced by Scattering

Intrapulse Phase Modification Induced by Scattering (INPHAMIS) is a polarization technique

for hard target lidar that can be used to suppress signals from one or more surfaces. This, in effect,

allows the lidar to multiplex between surfaces using polarization, changing the two-target ranging

problem into two one-target range problems. One target range problems can then be solved using

the same techniques as conventional laser altimeters, that can obtain centimeter range accuracy,

independent of laser pulse length.

The driving requirement for this technique is that surface 1 and surface 2 cannot have the

same polarization properties. In general, however, there are no specific requirements imposed on

the scattering matrices of the first and second surfaces, F1 and F2 respectively. The fundamental

requirement to resolve the position of the second surface is that its SNR must be greater than one.

SNR2(t, t+ ∆t) =
N2(t, t+ ∆t)√

N2(t, t+ ∆t) +N1(t, t+ ∆t) +NB(∆t)
, (4.31)

where N2(t, t+ ∆t) are the mean photon counts from the second surface over the detection interval

from time t to t + ∆t, N1(t, t + ∆t) are the mean photon counts from the first surface over the

same interval which are regarded as noise in this case, and NB(t, t+ ∆t) are the mean background

counts received during the detection interval.
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The use of the SVLE becomes critical in this scenario, because it provides the theory defini-

tions necessary to optimize SNR in the presence of arbitrary scattering effects.

The transmitter is already defined in the most general terms in Eq. (4.12). For an arbitrary

scattering problem, four parameters can be optimized: The transmitted polarization angle φf , the

transmitted ellipticity angle Γf , the analyzer polarization angle φRX and the analyzer ellipticity

angle Γf . This optimization assumes that the instrument can achieve any possible transmitted and

detected polarization state. If we wish to confine the allowed solutions to strictly linear transmit

and receive polarizations the terms Γf and ΓRX can be set to zero. More generally, the variables

optimized may be parameters of the specific system elements (i.e. wave plate angles and phase).

Never-the-less, the optimization problem is basically unchanged.

The SNR of the second surface should be maximized in the instrument’s available parameters

space. Though not explicitly stated in Eq. (4.31), all of the photon count terms are naturally

dependent on the transmit and receiver polarization states φf , Γf , φRX and ΓRX . Thus optimal

operation of INPHAMIS is given by maximizing SNR2.

4.3.1 Example Application of INPHAMIS

In the simplest case where INPHAMIS may be applied, one surface is polarization preserving

with a scattering matrix

F1(π) = β1



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, (4.32)
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while the second surface isotropically depolarizes by an amount d2 so that its scattering matrix is

given by

F2(π) = β2



1 0 0 0

0 1− d2 0 0

0 0 d2 − 1 0

0 0 0 d2 − 1


, (4.33)

If β1 � β2, strict intensity detection will make it difficult to see the presence of backscatter signal

from the second surface. However, the signal from the first surface can be fully suppressed by

orienting a polarizer in the receiver to reject the transmitted polarization [53]. In this case, signals

from the first surface will not be received by the detector. If range to the first surface is desired, the

polarizer can be reoriented to allow some light from the first surface onto the detector. Thus the

two target ranging problem becomes two single target problems. Because the problem is ranging

of a single return, the resolution of the measurement is independent of the laser pulse width and

detector speed and instead is driven strictly by the clock rate on the detection electronics.

4.3.2 Background Light

In the example above, any polarization may be chosen to operate the lidar. However the

presence of solar background light may still result in a unique optimum polarization. The shot

noise limited SNR of the weaker second surface is given in Eq. (4.31). The background count

contribution is determined using the SVLE, and is the product of the background Stokes vector

and the receiver projection matrix. The background Stokes vector is most generally described

~SB(∆t) = NB0(∆t)



1

PB cos 2φB cos ΓB

PB sin 2φB cos ΓB

PB sin ΓB


, (4.34)

where NB0(∆t) is the total photons incident on the detector over the interval ∆t when no polarizer

PRX is present, PB is the DOP of the background light, φB is the orientation of the polarization
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component of background light, and ΓB is twice the ellipticity angle of the background.

The projection matrix is here assumed to be a polarizer PRX for an arbitrary polarization.

In the general case, it is a diattenuator with unit magnitude diattenuation vector

~DPRX =


cos 2φRX cos ΓRX

sin 2φRX cos ΓRX

sin ΓRX

 (4.35)

where φRX is the linear rotation, and ΓRX twice the ellipticity angle of the the polarization accepted

by the polarizer. From the diattenuation vector in Eq. (4.35), Eq. (2.2) can be used to determine

the total polarizer matrix.

When the background light is passed through PRX , the total background photon counts are

then given by the product of the Stokes vector in Eq. (4.34) with the projection matrix defined by

Eq. (4.35) giving

NB(∆t) =
NB0(∆t)

2
(1 + PB cos 2φB cos 2φRX cos ΓB cos ΓRX

+PB sin 2φB sin 2φRX cos ΓB cos ΓRX

+PB sin ΓB sin ΓRX) .

(4.36)

Thus, even though the signal from the first surface can be fully rejected for any polarization of

operation, the presence of polarized background suggests for maximum SNR we should transmit

the same polarization as the background, and detect in the polarization orthogonal to it. The

effectiveness of this technique is dependent on the background DOP.

In this case, we see how the presence of polarized background can drive the system operation

of INPHAMIS to a unique optimization. As more complicated polarization effects are considered,

optimal solutions generally do not have analytic solutions. Furthermore full suppression of the

signal from the first surface and polarized background can be mutually exclusive, so that optimal

SNR will depend on the levels of each noise source.
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4.3.3 Hard Target Photon Count Distributions

Ranging hard targets down to centimeter (70 ps) accuracy with longer pulse lengths means

that photon returns from a single target will be distributed over multiple range bins. Practical

factors independent of the system’s ability to range using INPHAMIS such as the laser pulse

distribution in time, PMT timing jitter caused by variable traversal times of the dynode chain,

and the timing and shape of PMT pulses all contribute to a return signal that is wider than the

electronic bin resolution. In order to accurately deconvolve these timing signals to the resolution

of the timing electronics, we must understand how these signal distributions are impacted by

the operating parameters of the system. In particular, how does detection accuracy change as a

function of discriminator threshold (the voltage or current level that must be exceeded for the data

acquisition board to count a PMT pulse), background level, and the number of photons incident

on the detector?

We assume the laser transmits a Gaussian pulse so that it is described in time by

NL(t) = NL0
1√

2πσ2
L

exp
(
−(t− tR)2

2σ2
L

)
, (4.37)

where NL0 is the total number of photons in the pulse incident on the detector, σL is the width of

the pulse and tR is the range time representing the propagation time of the pulse. Because it only

represents an offset in timing, this analysis will set tR to zero.

The timing jitter of the PMT is also Gaussian where the delay between an incident photon

on the cathode and the resulting output current pulse of the PMT is a random variable given by

the probability distribution function

PPMT (t) =
1√

2πσ2
PMT

exp
(
−(t− tPMT )2

2σ2
PMT

)
, (4.38)

where tPMT is the average time delay and σPMT is the standard deviation or timing jitter of the

PMT.

Finally the PMT current pulse shape is described as a piecewise function to approximate
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that observed at the PMT output

IPMT (t) =


1− exp

(
−t
τR

)
for t ≤ 4τR[

1− exp
(
−t
τR

)]
exp

(
−(t− 4τR)2

(τF /
√

2ln2)2

)
for t > 4τR

(4.39)

where τR and τF are the rise and fall times of the pulse respectively. Note that this function

is defined based on the observed behavior of PMT pulses and has no fundamental mathematical

basis. The function above can also be scaled by the mean PMT current per photon, however in this

analysis we normalize IPMT (t) so its integral is one. This makes computation of the photon count

distribution easier. Conversion between photon counts, current or voltage is most easily applied

later, when setting the discriminator threshold.

The mean number of PMT pulses are then given by the convolution of the photon counts

incident on the detector, PMT jitter and normalized PMT pulse shape

〈ND(t)〉 = ηQE (NL(t) +NB(t)) ∗ PPMT (t) ∗ IPMT (t), (4.40)

where ηQE is the detector quantum efficiency and NB(t) is the background photon counts.

Here we can easily convert between a discriminator voltage setting to a more practical quan-

tity of pulse counts so that the discriminator threshold used in calculations is given by

NTH =
VTH

RL〈IPMT 〉
, (4.41)

where NTH is the discriminator threshold in PMT pulse counts, VTH is the voltage setting of the

discriminator threshold, RL is the load resistance of the pulse counting electronics, and 〈IPMT 〉 is

the average PMT current per photon incident on the PMT cathode.

The number of current pulses exiting the PMT is a random variable described by a Poisson

distribution with PDF

PND(t)(n) =
〈ND(t)〉ne−〈ND(t)〉

n!
. (4.42)

As 〈ND(t)〉 becomes large, the Poisson distribution becomes difficult to numerically calculate due to

the finite bits available for binary representation of large numbers. While the Poisson distribution
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still exists for large 〈ND(t)〉, it requires the computer to calculate the ratio of rapidly growing

factorial and exponential functions. In such cases the PDF is approximated as Gaussian, allowing

us to consider a large number of photons incident on the detector

PND(t)(n) ≈ 1√
2π〈ND(t)〉

exp
(
−(t− tPMT )2

2〈ND(t)〉

)
. (4.43)

The probability that a pulse from the PMT is counted by the timing electronics is then given by

the probability that the signal output from the PMT exceeds the discriminator threshold

PC(t)(NTH) =
∞∑

n=NTH

PND(t)(n). (4.44)

Once a pulse from the PMT is counted, the timing electronics may have a dead time τD

during which they cannot register another pulse. This dead time is often longer than the laser

pulse, resulting in an additional term deciding whether or not a pulse may be counted by the

data acquisition board. It is dependent on both the probability that the PMT current exceeds the

discriminator threshold as well as the probability that no PMT pulses were previously counted in

the preceding time interval τD. Thus the probability that a pulse is registered is given by

PR(t) = PC(t)(NTH)
∫ t

t−τD

(
1− PR(τ)

)
dτ. (4.45)

While PR(t) is dependent on its own integral, this presents little issue for numerical computation.

Note that as the probability of detecting a pulse on the time interval τD approaches one, the

integral term begins to dominate PR(t), driving the PDF to zero. Since the integral term includes

the pulse distribution over a relatively large time frame, it suppresses the variance of the pulse

counting statistics. This makes the trailing edge of the photon count histogram particularly useful

for timing comparisons in cases of large return signals, due to the low signal uncertainty from shot

noise.

Once the probability of detecting a PMT pulse is determined, we then tailor the distribution

for the particular timing bins of the data acquisition board. The board has a timing bin width

of ∆t so that the time stamp of the kth bin is given by tk = k∆t. The probability of counting a
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photon in the kth bin is then given by

PB[k] =
∫ tk

tk−1

PR(τ)dτ. (4.46)

4.3.3.1 Photon Count Histogram Simulations

Let us consider a single hard target using a high resolution data acquisition board with timing

resolution of 27 ps and dead time of 8 ns after registering a pulse. These timing figures are given by

the specifications of the HRM-Time data acquisition boards used in the first INPHAMIS prototype.

We assume that 2× 105 photons scattered from the target are incident on the detector after every

transmitted pulse. This quantity may be traded with the discriminator threshold settings with

some approximate equivalence, though higher photon concentrations serve to reduce variance of

shot noise distributions, offering some impact in Eq. (4.42) or (4.43). A detector QE of 0.4 is

used with a photon pulse shape described by Eq. (4.39) with τR = 0.25 ns and τF = 2.5 ns and

a timing jitter of 0.35 ns. These PMT characteristics are based on those of the Hammamatsu

H7422PA-40. The laser pulse width is 0.45 ns. We then determine the timing board PDF as a

function of discriminator threshold (here defined in terms of number of NTH). The resulting PDF

of some of these discriminator thresholds are shown in Figure 4.7.

The data shown in Figure 4.7 demonstrates that the photon count PDF is dependent, both

in shape and timing, on the relative discriminator threshold/incident photons relationship. When

the discriminator threshold is low, the PDF appears to be approximately Gaussian near the front

edge. This is expected because the distribution of photons incident on the detector should be

approximately Gaussian in time. However, the distribution rapidly falls off on the trailing edge,

resulting in an asymmetry in histograms recorded by the HRM-Time. Actual data reflecting this

behavior is reported in [53]. Because the discriminator threshold is set low, the probability of

counting a photon on the 8 ns dead time interval approaches one. Thus the integral term in Eq.

(4.45) dominates the distribution and drives it to zero near the front end of the laser pulse. However,

as the discriminator threshold is increased, the integral dominates less. This results in a reduction

in photon counting probability at each bin and causes the falling edge to move back in time. The
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Figure 4.7: Probability distribution function of HRM-Time timing bins as a function of discrimi-
nator threshold. As the discriminator threshold increases, the distribution both shifts in time and
changes shape.
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Figure 4.8: Probability distribution function of photon counts in timing bins as a function of
discriminator threshold. The shift in timing of the PDF can clearly be seen by the shift in its peak
as discriminator threshold changes.

photon count PDF shifts back in time and appears shorter. At high values of NTH , the integral in

Eq. (4.45) no longer plays a significant role in the PDF, and the resulting photon PDF reflects the

shape of 〈ND(t)〉.

A more complete picture of the photon count PDF for this data acquisition board is shown

for the described scenario in Figure 4.9. There it can clearly be seen how the photon count PDF

shifts in time as a function of discriminator threshold. Indeed the peak of the PDF not only shifts

in time, but also this shift is non-linear near the extremes. Thus, the shift is most easily corrected

by operating in a restricted dynamic range.

If the lidar system is expected to operate during daytime, we must also consider the effects of

background radiation. Due to the unique timing behaviors of the high resolution timing electronics

used for the INPHAMIS technique, we should consider its impact. Since Eq. (4.40) makes allowance

for the presence of background radiation, we modify the above analysis to include a constant
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Figure 4.9: Probability distribution function of HRM-Time timing bins as a function of discrimi-
nator threshold when with constant background radiation included. Low discriminator thresholds
now result in timing histograms that repeat every 8 ns (data acquisition board dead time). As
the discriminator threshold increases, the background is suppressed and the signal from the target
becomes resolvable.

background radiation arrival rate of 3 × 1016 photons/ns. This specific background arrival rate is

exceptionally high (approximately 107W ) but is selected here purely for illustrative purposes. This

background level allows us to demonstrate the different effects of background versus discriminator

threshold.

The total photon PDF of the timing bins with background as a function of the selected

discriminator thresholds are shown in Figure 4.10 and for all integer thresholds from 1 to 50 in

Figure 4.8. When the discriminator threshold is low, the probability of registering a pulse from

background is one before the end of the board dead time. Thus only backgrounds counts can

appear in the photon histogram, and do so every 8 ns. When the discriminator threshold exceeds

25, the periodic histogram from background radiation is sufficiently suppressed so that the photon

distribution from the target is now visible. Thus it is clear that discriminator threshold settings
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Figure 4.10: Probability distribution function of photon counts in timing bins as a function of
discriminator threshold including background. One of the periodic distributions resulting from
large background is shown in the bottom right of the plot. When the discriminator threshold
exceeds 25, the target signal is resolvable. Again the shift in timing of the PDF can clearly be seen
by the shift in its peak as discriminator threshold changes.

should be dictated in part by background radiation levels. Because of the dead time on the data

acquisition board, improper setting of the discriminator threshold can result in missing returns

from the target entirely. It should be noted that this simulation assumes the background signal

levels are less than the return signal. In instances where the background dwarfs return signals, it

is unlikely the target’s signal can be resolved through adjustment of the discriminator threshold.

The simulations above only considered the presence of a DC background. However, in the two

target ranging problem using INPHAMIS, signal from the first target may leak onto the detector

while attempting to range to the second target. The most general case where this becomes an issue

is when the first target is partially depolarizing. We can regard this first signal as background, only

now with time dependence. The ability of the system to resolve the second surface will be driven

by suppression of signal from the first surface. Again, through adjusting discriminator threshold,
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Figure 4.11: PMT current pulse distribution from two targets separated by 30 cm (2 ns temporal
separation). The return from the first target is suppressed so that it contains half as many photons
as the return from the second surface.

we should be able to optimally detect the second surface. In these cases the discriminator must be

set high enough, that the integral term in Eq. (4.45) does not dominate before the arrival of the

laser pulse from the second target.

Consider a case where two surfaces are separated by 30 cm (2 ns by time of flight) and

the received photons from the first surface are suppressed to half of the photons from the second

surface. In Figure 4.11 we show the resulting PMT output current pulse distribution. The two

distributions distinctively overlap. If the discriminator threshold is not set sufficiently high, the

timing electronics will always trigger on the first surface, so that no photons would be counted from

the second surface. The resulting photon count distributions are shown for a selected discriminator

thresholds in Figure 4.12 and for all simulated thresholds in Figure 4.13. The return from the

second surface is only visible when the discriminator is set high enough to miss most of the returns

from the first surface.
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Figure 4.12: Photon count distribution of two targets for various discriminator threshold settings.
As the threshold is raised, returns from the second target become visible. At NTH = 30, contribu-
tions from both targets can be seen in the distribution.



87

Figure 4.13: Photon count distribution of two targets as a function of discriminator threshold
settings. Only after the threshold exceeds 26 pulses is the second target visible in the photon count
PDF.
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As direct detection lidar pushes to shorter timing resolution, it becomes clear that new

issues must be considered. When dynamic range of signals or discriminator threshold change,

the photon distribution will shift later in time. We must consider the level of the discriminator

threshold needed to ignore background and ensure photons from targets are registered by the data

acquisition electronics. The specifics of this problem invariably must be known to obtain optimal

system solutions, but the above theory provides a useful baseline for solving these problems.



Chapter 5

Polarization Effects in Lidar Instruments

While measurement techniques can be developed for any number of polarization measure-

ments, the technique’s ability to resolve its desired data product is limited by the polarization

corrupting effects of the instrument. In some cases, these effects can be corrected with additional

hardware and post processing, while others require thorough and careful system design to ensure

the instrument meets the accuracy requirements of the mission.

5.1 Characterizing the Instrument

The most complete information about the polarization performance of an instrument is given

in its Mueller matrix. The process of measuring a Mueller matrix requires transmission of four

polarization states and measurement of the resulting exit polarization state

~Sout = Msys
~Sin. (5.1)

The necessary input polarization states for this measurement are not unique. The method employed

here uses input states of horizontal, vertical, 45◦ and left-hand circular polarization. The system

Mueller matrix is then given by [18]

~C1 =
1
2

(
~Shout + ~Svout

)
, (5.2)

~C2 =
1
2

(
~Shout − ~Svout

)
, (5.3)

~C3 = ~S45
out − ~C1, (5.4)

~C4 = ~Slhcout − ~C1, (5.5)
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where ~Ci is the ith column in the 4x4 system Mueller matrix and the superscripts h, v, 45, and lhc

on the Stokes vectors denote the corresponding input polarization state to the system.

Applying the above method to characterize lidar transmitters is relatively straight-forward.

However, characterizing an optical system with large optics such as a telescope, presents a substan-

tial problem for most lidars. The most accurate way to characterize the receiver system is to do so

through the lidar operation. The scattering matrix of atmospheric molecules is well known. This

matrix is nearly polarization preserving, described by the matrix in Eq. (3.5) with d = 0.00727

for the central Cabannes line at 532 nm. We then operate the lidar system by transmitting four

polarization states described above and measure the resulting Stokes vectors in the receiver. The

Mueller matrix measurement process is described

~Sout = MsysFmol
~Sin. (5.6)

The system Mueller matrix Msys can be determined independent of the molecular scattering matrix

Fmol by adapting the relations in Eq. (5.2) to account for the depolarizing effect of the molecular

return

~C1 =
1
2

(
~Shout + ~Svout

)
, (5.7)

~C2 =
1

2(1− dmol)

(
~Shout − ~Svout

)
, (5.8)

~C3 =
1

1− dmol

(
~S45
out − ~C1

)
, (5.9)

~C4 =
1

1− 2dmol

(
~Slhcout − ~C1

)
, (5.10)

To avoid uncertainty in the scattering depolarization caused by aerosols, we use returns in the lower

stratosphere. Also this characterization is only performed under clear sky conditions since clouds

tend to introduce variable extinction between and within Stokes vector measurements.

5.1.1 Cloude Filtering

When the optical system Mueller matrix is measured through the above process, the mea-

surement inevitably contains noise. Generally this means the resultant matrix is not a true Mueller
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matrix. A Cloude filter determines the closest realizable Mueller matrix to the measured matrix

using unique properties of the covariance matrix [27].

In common coherent sensors such as radar and coherent lidar, the covariance matrix is used to

express the coherency of the received radiation. However, we also find that the unique properties of

the covariance matrix also allow us to find the closest true Mueller matrix to a noisy measurement.

The covariance matrix Tc of a true Mueller matrix M must be Hermitian and positive semi

definite, so that all eigen values of Tc are real and positive or zero. The covariance matrix of the

measured Mueller matrix is given in compact form by [22]

Tc =
1
2

4∑
i=1

4∑
j=1

Mijσi−1 ⊗ σ∗j−1, (5.11)

where Tc is the covariance matrix of the measured Mueller matrix M composed of elements Mij

The terms σi where i = 0, 1, 2, 3 are Pauli Matrices. This compact formula may also be written in

terms of individual matrix elements which are given incorrectly in [27]. The correct formulas are

given below.
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Tc11 =
1
2

(M11 +M22 +M33 +M44) , (5.12)

Tc12 =
1
2

(M12 +M21 − i(M34 −M43)) , (5.13)

Tc13 =
1
2

(M13 +M31 + i(M24 −M42)) , (5.14)

Tc14 =
1
2

(M14 +M41 − i(M23 −M32)) , (5.15)

Tc21 = T ∗c12, (5.16)

Tc22 =
1
2

(M11 +M22 −M33 −M44) , (5.17)

Tc23 =
1
2

(M23 +M32 + i(M14 −M41)) , (5.18)

Tc24 =
1
2

(M24 +M42 − i(M13 −M31)) , (5.19)

Tc31 = T ∗c13, (5.20)

Tc32 = T ∗c23, (5.21)

Tc33 =
1
2

(M11 −M22 +M33 −M44) , (5.22)

Tc34 =
1
2

(M34 +M43 + i(M12 −M21)) , (5.23)

Tc41 = T ∗c14, (5.24)

Tc42 = T ∗c24, (5.25)

Tc43 = T ∗c34, (5.26)

Tc44 =
1
2

(M11 −M22 −M33 +M44) , (5.27)

The covariance matrix may then be decomposed into the form [66]

Tc = WΛW†, (5.28)

where W is a matrix of the eigen vectors of Tc and Λ is a diagonalized matrix of eigen values of

Tc. If any eigen value λi is negative, it is set to zero giving the filtered eigen value matrix Λ̃ which

is positive semidefinite. The filtered covariance matrix is then obtained by substituting Λ̃ into Eq.

(5.28) for Λ
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The closeness of the measured matrix to a true Mueller matrix is given by the magnitude of

the ratio of the most negative and most positive covariance matrix eigenvalues.

Finally the filtered Mueller matrix may be obtained by converting back from the filtered

covariance matrix

M̃11 =
1
2

(T̃c11 + T̃c22 + T̃c33 + T̃c44), (5.29)

M̃12 = Re(T̃c12) + Im(T̃c34), (5.30)

M̃13 = Re(T̃c13) + Im(T̃c24), (5.31)

M̃14 = Re(T̃c14) + Im(T̃c23), (5.32)

M̃21 = Re(T̃c21)− Im(T̃c34), (5.33)

M̃22 =
1
2

(T̃c11 + T̃c22 − T̃c33 − T̃c44), (5.34)

M̃23 = Re(T̃c23) + Im(T̃c41), (5.35)

M̃24 = Re(T̃c24) + Im(T̃c13), (5.36)

M̃31 = Re(T̃c31)− Im(T̃c42), (5.37)

M̃32 = Re(T̃c32)− Im(T̃c41), (5.38)

M̃33 =
1
2

(T̃c11 − T̃c22 + T̃c33 − T̃c44), (5.39)

M̃34 = Re(T̃c34) + Im(T̃c21), (5.40)

M̃41 = Re(T̃c41)− Im(T̃c23), (5.41)

M̃42 = Re(T̃c42)− Im(T̃c13), (5.42)

M̃43 = Re(T̃c43)− Im(T̃c21), (5.43)

M̃44 =
1
2

(T̃c11 − T̃c22 − T̃c33 + T̃c44). (5.44)

5.2 Hardware Compensation

After we obtain an optical system Mueller matrix, it can be decomposed into its fundamental

polarization effects [42]. Retarding effects are common in lidar systems, often skewing depolar-
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ization estimates and coupling polarized solar background into the detector channel. In order to

minimize these effects, a compensator may be constructed to cancel the phase shift imposed by the

optical system. The improved polarized background rejection and reduced signal corrupting effects

result in improved SNR and better instrument accuracy.

To improve the polarization performance of a lidar, matrices representing compensators are

added before the transmitter and after the receiver optics

~SRX = MRXcompMRXFMTXMTXcomp
~STX . (5.45)

The system Mueller matrices may be decomposed into depolarizing, diattenuating and re-

tarding Mueller matrices [42]. To cancel retarding effects in the optical system, the compensator

must be the inverse of the optical system retarder matrix MR. Equivalently, the compensator is

a retarder with its fast axis aligned to that of the system retarder but with the opposite phase

shift. This realization generally requires a combination of two quarter wave plates and one half

wave plate. This combination can be used to construct any arbitrary retarder [82, 4].

A general, arbitrary, elliptical retarder may be described as the combination of a linear wave

plate of orientation ϕ and phase shift Γ and a linear rotator of angle ϑ [4]

MR = MWP (ϕ,Γ) R (ϑ) . (5.46)

This description effectively decomposes the total retarder into a linear retarding effect, MWP (ϕ,Γ),

which is a rotation about a linear polarization, and a circular retarding effect, R (ϑ), which is strictly

a linear rotation. Note that this decomposition can be performed so the matrices are in the opposite

order, but the arguments of the matrices will not be identical between the two decompositions.

To cancel the effect of a retarder, we insert an optical component whose Mueller matrix is the

inverse of the retarder in the optical system. Equivalently, the element must perform the opposite

operations of the linear wave plate and rotator, in the opposite order.

Mcomp = M−1
R = R (−ϑ) MWP (ϕ,−Γ) (5.47)
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An arbitrary retarder constructed using a combination of two quarter-wave plates and one

half-wave plate is given by [82, 4].

MWP (ϕ,Γ) R (ϑ) = Q
(
ϕ+

π

4

)
Q
(
ϕ+

π

4
+

Γ
2

)
H
(
ϕ+

π + Γ
4
− ϑ

2

)
(5.48)

where Q and H are quarter-wave and half-wave plates respectively and their arguments are the

orientation of the wave plates’ fast axes.

Using Eq. (5.47) and (5.48), we can then write the inverse retarder matrix as a combination

of wave plates.

M−1
R = H

(
ϕ+

π − Γ
4
− ϑ

2

)
Q
(
ϕ+

π

4
− Γ

2

)
Q
(
ϕ+

π

4

)
, (5.49)

which can be derived using the communitive properties below[4].

M (ϕ,Γ) = Q
(
ϕ+

π

4

)
Q
(
ϕ+

π

4
+

Γ
2

)
H
(
ϕ+

π + Γ
4

)
(5.50)

R (α) H (γ) = H
(
γ +

α

2

)
(5.51)

H (γ) R (α) = H
(
γ − α

2

)
(5.52)

Q (α) H (γ) = H (γ) Q (γ − α) (5.53)

H (γ) Q (α) = Q (γ − α) H (γ) (5.54)

(5.55)

The compensator design in Eq. (5.48) works well for the lidar receiver system because the

HWP, as the last element, can be used to provide a linear rotation adjustment for alignment of

incoming polarizations to the polarizer. For the transmitter, the compensator precedes the optical

system. We would like to use the HWP to rotate the outgoing linear polarization. The relationships

defined above in Eq. (5.50) can then be used with the inverse retarder definition in Eq. (5.49) to

give the transmitter compensator design as follows:

Mcomp = Q
(
ϕ+

π

4
− ϑ

)
Q
(
ϕ+

π

4
− Γ

2
− ϑ

)
H
(
ϕ+

π − Γ
4
− ϑ

2

)
(5.56)
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Figure 5.1: Optical setup for compensator optimization on the transmit side. Initially the two
QWPs are omitted to find LiLo of the optical system. The QWPs should be mounted in such a
way to rotate Q1 independently and Q1 and Q2 in unison.

5.2.1 Compensation Optimization Technique

While measuring the optical system Mueller matrix provides useful information about system

polarization effects, the practice of measuring a Mueller matrix can be time consuming. Further-

more, compensator design from the measured matrix rarely results in precise alignment. For actual

implementation, we require an optimization technique that can be employed in the field.

The procedure developed for compensator optimization here uses the setup described in

Figure 5.1. Initially, a laser passes through a polarizer P1 (which remains fixed and is used to
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Figure 5.2: Poincarè Sphere for the output of optical system Msys. The red line indicates the
how the equator (linear polarizations) is transformed by the system. The blue dashed meridian
corresponds the S1 horizontal direction (horizontal linear polarization is where the blue meridian
meets the equator). The circle is the resulting output polarization for an input of horizontal linear
polarization. The solid black line is the LiLo axis for Msys.

ensure the light is linearly polarized) and HWP to control the linear polarization angle. It then

passes through the optical system, through a polarizer P2 and onto a detector. As a visual guide

for this process, the resulting output polarizations from linearly polarized inputs after the HWP

are shown on the output on the Poincarè Sphere. In Figure 5.2 the resulting output polarizations

from the equator (linear inputs) are shown in red. The output polarization corresponding to linear

horizontal input (where the blue meridian crosses the equator) is shown as a circle. In Figure 5.2

Setup 1 is used.

The first task requires that we find the linear input polarization that gives a linear output

polarization (referred to here as LiLo) in the optical system. Note that LiLo is not necessarily

the eigen polarization of the system, as the linear output may be rotated relative to the input

polarization. To find LiLo we rotate the HWP and P2 to find the HWP angle that allows maximum
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Figure 5.3: Poincarè Sphere for the output of the 2 QWP compensator and optical system Msys.
The red line indicates the resulting output Stokes vectors of linear input polarizations. The solid
black line is still the LiLo axis for Msys but does not correspond to LiLo for the total system.

rejection by P2. On the Poincarè Sphere, this polarization is where the red output crosses the

equator. It is marked by the black line in Figure 5.2.

Once LiLo is achieved, the two QWPs Q1 and Q2 are inserted into the system as shown

in Setup 2 of 5.1. The compensator design uses two cage system mounts so that rotating the

Q2 mount rotates both QWPs, but Q1 may be rotated independently in its mount. When the

compensator is inserted into the optical system, the two QWPs should be configured so that their

fast axes neither align (causing the compensator to act as a HWP) nor offset by 90◦ (causing their

phase shifts to cancel). Once the QWPs are inserted, the total Mueller matrix changes. This is

shown for randomized QWP angles in Figure 5.3. At this point, the previously determined LiLo

axis of Msys is not the same as the total system. To obtain a total system with the same LiLo axis

as before, we must adjust the two QWPs so that their LiLo output polarization is the same as the
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Figure 5.4: Poincarè Sphere for the output of the 2 QWP compensator and optical system Msys

after aligning the QWP rotation angles in unison. The red line indicates the resulting output Stokes
vectors of linear input polarizations. The solid black line is now the LiLo axis for both Msys the
total system.

LiLo input on Msys. In Eq. (5.56) we see that the orientation of the linear wave plate is defined

by the offset of the the two QWPs in the compensator. Thus we re-achieve LiLo by rotating Q1

and Q2 together, while adjusting the HWP to maximize rejection. This returns us to the same

linear output polarization as in the previous step. The Poincarè Sphere is then shown for this

configuration in Figure 5.4.

Once LiLo of the QWPs and system has been aligned, we want to use the QWPs to impose

an equal and opposite phase shift. On the Poincarè Sphere, this rotates the red outputs back onto

the equator. In Eq. (5.56) the argument of Q1 contains the phase shift term Γ, so we adjust this

by rotating Q1. In practice, this results in the output polarization walking off LiLo, so initially,

intensity through P2 should increase. As Q1 is rotated, P2 should continue to be adjusted to

minimize the intensity on the detector. As the compensator gets close to optimized, the minimized
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Figure 5.5: Minimum transmission through P2 as a function of Q1 rotation angle. Initially the
cross polarized signal increases as the input polarization departs from LiLo, but when the phases of
the compensator and optical system cancel enough, all linear input polarizations give linear output
polarizations and the rejection by the polarizer is zero again.

signal through P2 will begin to decrease, resulting in the signal shown in Figure 5.5 for the simulated

system. When the signal is zero, the compensator is optimized. This results in a Poincarè Sphere

shown in 5.6 where the red output polarizations resulting from linear inputs now lie on the equator.

Note that the circle corresponding to horizontal input polarization is not on the blue meridian.

This means that there is still a linear rotation from the optical system that has not been canceled.

However, the HWP can adjust for this rotational offset. After adjusting the HWP, any input

polarization will now exit the total system without changing state.

In addition to making compensators easier to implement in the field this procedure can be

used to characterize the system retarding effects. By reading off the orientations of the two QWPs
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Figure 5.6: Poincarè Sphere for the output of the 2 QWP compensator and optical system Msys

after aligning Q1 rotation angle. The red line indicates the resulting output Stokes vectors of
linear input polarizations. These outputs are now all linear polarizations (on the equator) and only
modified in rotation angle.

and the HWP the system parameters can be determined using (5.56) and are given by

Γ = 2 (Q2 −Q1) , (5.57)

ϑ = 2
(
H −Q1 −

Γ
4

)
, (5.58)

ϕ = Q2 + ϑ− π

4
, (5.59)

where Q1, Q2 and H are the rotation angles of the first and second QWPs and the HWP in Setup

2 of Figure 5.1.

5.3 Instrument Error in Depolarization

Instrument effects of depolarization, diattenuation and retardance all have the potential to

introduce error to depolarization measurements. Providing the analytic expressions for the impact
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of all polarization effects on this measurement is impractical. Additional terms will arise with the

addition of each polarization effect, making the expression difficult to interpret. It is generally

more practical to evaluate a system numerically using the SVLE to provide a picture of polariza-

tion sensitives. For the purpose of illustrating sensitivity to polarization effects in depolarization

measurements, we consider a receiver with a folding mirror that exhibits retardance.

Consider a conventional polarization lidar where a single linear polarization is transmitted

and the parallel and perpendicular polarization channels are detected. The instrument description

for the system is given in Chapter 4 by Eq. (4.1), (4.2) and (4.3). Let us assume that the scatterers

under investigation are randomly oriented and axially symmetric so that the scattering matrix is

given by (3.5) and that the lidar operates in a linear transmit polarization state.

After scattering, the degree of polarization (DOP) is scaled by a factor (1 − d) so that the

Stokes vector has the normalized form

~SF =



1

(1− d)

0

0


, (5.60)

where the subscript F indicates this is the polarization state immediately after scattering in Eq.

(2.1). The light is then collected and as it passes through the optical system, reflects off the mirror

in question. A phase shift occurs between eigen polarizations of the mirror. In general, the incident

linear polarization becomes elliptical. Also, the linear orientation angle will change. The mirror

acts as a linear retarder of phase shift ΓR with fast axis φR. After reflection, the initially linearly

polarized light will have a circular polarization component given by the last element of the Stokes

vector

S3 = (1− d) sin 2φR sin ΓR. (5.61)

Because both the S1 and S2 terms of the Stokes vector correspond to linear polarizations,

there is always some coordinate frame q′ related to the previous coordinate frame q through linear
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rotation such that S′2 is zero. Thus we will describe the Stokes vector after reflection off the mirror

in the frame q′ which is given as

~S′m =



1

(1− d) cos Γ

0

(1− d) sin Γ


, (5.62)

where Γ is twice the polarization ellipticity angle of the polarization in the q′ coordinate frame. Be-

cause of this change in coordinate frames, the parallel and perpendicular polarization measurements

are made by a horizontal and vertical polarizer respectively so that N||

N⊥

 ∝
 1 + S′1

1− S′1

 =

 1 + (1− d) cos Γ

1− (1− d) cos Γ

 . (5.63)

Absent of system effects, the depolarization of randomly oriented scatterers can be determined

using only this two channel measurement and is given by [26]

dM =
2N⊥

N⊥ +N‖
, (5.64)

where the subscript M indicates measured depolarization.

When we evaluate the results given in Eq. (5.63) we find the measured depolarization has

an error dependency given by the ellipticity of the polarization after reflection off the mirror

dM = 1− cos Γ + d cos Γ. (5.65)

In order to relate this error back to the polarization effects exhibited by the mirror, we equate the

S3 terms of the Stokes vector after reflecting off the mirror Eq. (5.61) and (5.62). This gives Γ as

a function of the mirror polarization parameters.

sin Γ = sin 2φR sin ΓR. (5.66)

Depolarization estimates can clearly be skewed by polarization effects in the receiver. The

fact that the mirror in this example transforms the linearly polarized state to elliptical, means

there is no polarizer rotation angle that will fully reject or accept the polarized state. The circular

polarization component appears to be unpolarized using this polarization technique.
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5.3.1 Software Correction

Software correction of polarization effects in the lidar is an attractive solution since it is

affordable and can be applied to old data. When the scattering medium is strictly depolarizing,

this software post processing algorithm can be used to remove error from receiver depolarization,

receiver retardance, polarization plane misalignment between transmitter and receiver, and partial

polarization of the transmitted laser[32].

The optical path from transmitter to detector is given by the SVLE in Eq. (2.11) and the

description of depolarization lidar operation in Chapter 4.

For our analysis, modification of polarization by atmospheric transmission will be ignored,

and the transmitter is assumed to be properly designed or compensated to ensure the outgoing

polarization state is linear. We also assume linear polarization is transmitted with a misalignment

α to the parallel receiver channel with degree of polarization PTX and thus write the transmitted

Stokes vector

~STX =



1

PTX cos 2α

PTX sin 2α

0


. (5.67)

We will assume that all scatterers studied here are randomly oriented and axially symmetric

so the backscattered light is partially polarized according to the single scattering matrix below[25].

F(π, z) =



1 0 0 0

0 1− da(z) 0 0

0 0 da(z)− 1 0

0 0 0 2da(z)− 1


(5.68)

The subscript a denotes that this depolarization term is strictly the result of atmospheric scattering

and the argument z indicates the altitude of the scattering event.

The measured depolarization, dM may be calculated from the detected parallel and perpen-

dicular polarization signals and is given in Eq. (5.64) [26] which is equal to da when MRX is an
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identity.

Here we assume the signals have been properly scaled to account for detector mismatch. The

terms N⊥(z) and N‖(z) are the first elements of the perpendicular and parallel channel Stokes

vectors, and thus are the received photon counts on the respective channels.

A single ray path through the receiver will accumulate phase shifts specific to its particular

path. When the phases of all the optical paths add coherently, a net phase shift results and is

described in the system as a retarder. When the phases of all paths add incoherently, they result

in depolarization. Thus the system can then be described as a combination depolarizer M∆ with

form given in Eq. (2.7) and retarder of form given in Eq. (2.4) which is described by its general

eigen vector R̂ and phase shift ΓR.

MRX = M∆(d1, d2, d3)MR(R̂,ΓR) (5.69)

The arguments of the depolarization matrix d1, d2, d3 are the depolarization terms for each Stokes

vector component. Thus, the amount of depolarization imposed by the receiver may be polarization

dependent.

By evaluating the Mueller matrices in Eq. (2.11) we find the received intensities of each

channel can be written

N‖(z) = N0(z)
2

[
1 + ε(R̂,ΓR, PTX , α, d1, d2, d3) (1− da(z))

]
N⊥(z) = N0(z)

2

[
1− ε(R̂,ΓR, PTX , α, d1, d2, d3) (1− da(z))

] (5.70)

whereN0(z) is the total received backscattered intensity from altitude z and ε(R̂,ΓR, PTXα, d1, d2, d3)

is a single term accounting for all cross talk components discussed above except depolarization from

atmospheric scattering, which has been separated out for analysis. For simplicity, the arguments

of ε(R̂,ΓR, PTX , α, d1, d2, d3) will be dropped in all subsequent reference to the term.

The measured depolarization can then be written using Eq. (5.64) and (5.70) and rearranged

to solve for ε.

ε =
1− dM (z)
1− da(z)

(5.71)
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Here dM (z) is the depolarization directly calculated from Eq. (5.64), da(z) is the total depolariza-

tion from atmospheric scattering and z is the altitude under analysis. Note that ε is not altitude

dependent as it accounts only for system effects.

The coupling effects induced by the receiver may be determined through use of a calibration

altitude where da is well known. A calibration altitude is chosen where we assume the scattering is

entirely due to Rayleigh scatter, and thus have a known depolarization (d = 0.00727 on the central

Cabannes line at 532 nm[11]). We solve for ε using Eq. (5.71).

We then rewrite Eq. (5.71) as shown below.

da(z) = 1− 1− dM (z)
ε

(5.72)

Thus da may be determined directly from the received perpendicular and parallel polarization

intensity data by using a calibration altitude to solve for ε.

Note that molecular depolarization used for calibration is dependent on the transmitted

wavelength and bandwidth of the receiver. If rotational Raman lines are passed in the receiver, they

will not only change the depolarization but also cause it to have some temperature dependence[9].

This software algorithm proves to be an effective tool for removing polarization system effects

while still preserving atmospheric information. The depolarization data shown in Figure 5.7 is taken

from a lidar with significant retarding and depolarizing effects. The depolarization is shown for

a fixed altitude as a function of time. As time progresses, the polarization plane of operation is

rotated, thus giving the cos2 θ shape to the depolarization estimate. Near the end of the dataset,

an ice cloud comes into view, resulting in depolarization. The software algorithm described here

removes the system effects, but preserves the atmospheric depolarization data. By comparison,

the commonly employed calibration constants method [10] appears to remove system effects, but

because it improperly describes system polarization effects, the atmospheric cloud depolarization

is significantly skewed.

An error analysis of the above algorithm was performed using propagation of error. The

result of this error analysis is shown below. The uncertainty, σda(z), in estimation of da(z) is given
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Figure 5.7: Estimated depolarization at a fixed altitude as a function of time by a lidar with
substantial polarization effects using no software correction (blue), the software correction described
here [32] (red) and calibration constants [10]. As time progresses the polarization plane of operation
rotates, resulting in differing polarization effects. At the end of the data set a depolarizing ice cloud
is present.

by

σda(z)2 =
4 (da(zc)− 1)2(

N‖(z) + I⊥(z)
)2 (

N‖(zc)− I⊥(zc)
)2

×

[(
σ⊥(z)2N‖(z)

2 + σ‖(z)
2N⊥(z)2

)(N‖(zc) +N⊥(zc)
N‖(z) +N⊥(z)

)2

+
(
σ⊥(zc)2N‖(zc)

2 + σ‖(zc)
2N⊥(zc)2

)( N‖(z)−N⊥(z)
N‖(zc)−N⊥(zc)

)2
]
, (5.73)

where the term σda is the standard deviation of the derived depolarization from atmospheric scat-

tering, zc is the calibration altitude used to solve for ε, σ⊥(z) and σ‖(z) are the standard deviations

of the respective polarization photon count measurements. Here uncertainty in the detected signals

is assumed to be the result of shot noise obeying Poisson statistics, where each polarization channel
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is uncorrelated.

5.4 Instrument Error in Diattenuation

The two diattenuation measurement techniques proposed in Chapter 4 provided different

phase matrix measurement capabilities. Likewise, they each have different error susceptibilities to

instrument effects, which we will cover here.

5.4.1 Parallel-45-Perpendicular

I developed and proposed the P45P technique for identifying oriented scatterers in Chapter

4 by resolving a non-zero diattenuation in the scattering matrix. Thus, of particular concern in

this technique are polarization effects that may result in false positive identification of oriented ice

crystals.

Here we analyze the impact on P45P for each independent polarization effect. When these

effects compound in the receiver, the analytical expressions become intricate and complicated. At

this point, simulations are run numerically to determine the system sensitivities.

To consider the effects of retardance on diattenuation measurements using P45P, let the

receiver have the general form of a retarding Mueller matrix so that its eigen polarization is given

by the following vector in Poincaré space

R̂RX =


R1

R2

R3

 . (5.74)

where

R2
1 +R2

2 +R2
3 = 1. (5.75)

The retarder imposes a phase shift ΓRX on the received light resulting in a rotation by the

corresponding angle around R̂RX in Poincaré space. Because we are concerned with false positives in

identifying oriented scatterers, we let the scattering matrix represent randomly oriented scatterers
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as given in Eq. (3.5). The measured diattenuation is then given by Eq. (4.17). When we evaluate

the SVLE for this measurement technique with retarding effects in the receiver we obtain

Dq = (1− d) [R1R2 (cos ΓRX − 1)−R3 sin ΓRX ] . (5.76)

Thus retarding effects in the receiver can cause diattenuation measurements to shift off zero.

If the entire profile shifts uniformly due to system polarization effects, it is unlikely to result

in a false positive in identifying oriented scatterers. However, the dependence on atmospheric

depolarization in Eq. (5.76) means that highly depolarizing scatterers would deviate from the

overall shift in the profile. Thus retarding effects in the receiver can seriously impact confidence

in the P45P measurement and it is important that these effects are avoided for the purpose of

identifying oriented scatterers.

To analyze the effects of depolarization on P45P we allow the receiver depolarization to be

polarization dependent, its matrix has the form

M∆RX =



1 0 0 0

0 1− dRX1 0 0

0 0 1− dRX2 0

0 0 0 1− dRX3


, (5.77)

where dRX1 , dRX2 , and dRX3 are the receiver depolarizations for horizontal/vertical, ±45◦ and

circular polarizations respectively. Independent of any other effects in the receiver and assuming

the scatterer consists of randomly oriented particles, the measured diattenuation evaluates to zero.

If we then allow the scattering matrix to assume the form of oriented scatterers given in Eq. (3.21),

we see the receiver depolarization scales linear diattenuation measurements

Dq =
(1− dRX1)f12

f11
. (5.78)

Thus, if the depolarization of the receiver is already known, a correction can be applied to Dq to

reduce its effect. More importantly, the presence of depolarization in the receiver will not result

in false positives for oriented scatterers, because when scatterer diattenuation is zero, Dq remains

zero independent of depolarization.
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Now let the receiver exhibit diattenuation described by its diattenuation vector and Eq. (2.2)

~DRX =


D1

D2

D3

 , (5.79)

where the magnitude of diattenuation is given by

| ~DRX | =
√
D2

1 +D2
2 +D2

3. (5.80)

We can then evaluate the SVLE for P45P assuming the scattering medium consists of randomly

oriented particles and obtain the measured diattenuation

Dq = D1

D2

(
1−

√
1− | ~DRX |2

)
(1− d)− | ~DRX |

[1−D2(1− d)] | ~DRX |
. (5.81)

It is not surprising that diattenuation in the receiver can result in false positives in detection

of oriented scatterers. The overall effect will be a shift in the mean diattenuation profile. It is

unlikely that this would be interpreted as a diattenuation signature. However, the dependence on

depolarization in Eq. (5.81) means that depolarizing effects can cause the measured diattenuation

to shift off the mean. As a result, depolarizating clouds could appear to be diattenuating due to

their deviation from the profile mean. Thus, false positive detection of oriented scatterers could

occur if substantial diattenuation exists in the receiver.

5.4.1.1 P45P Simulation of System Effects

While larger integration times, higher laser power and larger receiver apertures can be used

to reduce shot noise, polarization effects in the lidar system dictate a fixed baseline in the instru-

ment’s polarization resolution. In Figures 4.4 and 4.5, even very high densities and concentrations

of oriented scatterers are expected to produce diattenuation values of less than 0.3. Thus it is

important that system error in this measurement ∆Dq is reduced well below this limit.

Consider a receiver with depolarization dRX1 = dRX2 = dRX3 = 0.05 and diattenuation

is linear with | ~DRX | < 0.001. These polarization effects in the receiver are evaluated using the
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Figure 5.8: Simulated diattenuation measurement of cirrus cloud at an altitude of 10 km as a
function of linear diattenuation angle in the receiver. Diattenuation uncertainty due to shot noise
is contained between the red (dashed) lines and the black (dotted) line is the actual linear diatten-
uation of the scatterer. The receiver is assumed to demonstrate a depolarization of 0.05 and linear
diattenuation of 0.001.

SVLE during interrogation of a cirrus cloud with po = 0.12 and RBS = 50 at an optimal lidar tilt

angle of 12◦. The resulting measured diattenuation is plotted in Figure 5.8 as a function of linear

diattenuation angle φD = arctan
(
D2

D1

)
. We also perform shot noise error calculations assuming

the lidar has a telescope diameter of 35 cm, 20% instrument efficiency, 80 mW laser and 2 minute

integration per polarization channel. The scatterers under interrogation are at an altitude of 10

km.

The results in the Figure 5.8 show the combination of depolarizing and diattenuating effects

result in an instrument error of approximately ∆Dq = 0.003 when the diattenuation of the scattering

medium is near 0.03. Clearly if the angle φD is known, the known error may be less than 0.003.

Instrument effects can skew P45P diattenuation measurement accuracy in a variety of ways.

As these polarization effects compound they become more complicated. Also the error introduced by
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the instrument is generally a function of the scattering matrix under interrogation. This highlights

the importance of understanding a full polarization design and analysis through the SVLE as

polarization lidar becomes more advanced.

5.4.2 Alternating Cross Polarized

While P45P is sensitive to polarization effects in the receiver, ACP offers a more attractive

alternative for lidar systems with retardance and depolarizing effects in the receiver. Rather than

perform polarization analysis of the received light, ACP only detects the polarization dependence

of the volume backscatter coefficient, which does not require a polarizer in the receiver.

If the lidar receiver demonstrates substantial retardance and depolarization but negligible

diattenuation the Mueller matrix of the total optical path is given by

Mpath = M∆MRF(~ki,~ks), (5.82)

where Mpath is the total Mueller matrix observed by the transmit light, M∆ is the depolarizing

term of the receiver system, MR is the retarding term of the receiver system, and F(~ki,~ks) is the

scattering phase matrix which exhibits a combination of polarization effects including diattenuation

and is described by Eq. (3.21). We assume the outgoing polarization is known to be linear. The

phase matrix has the block description

F(~ki,~ks) =

 1 ~DT
sca

~Psca msca

 , (5.83)

where ~P is the polarizance, ~D is the diattenuation, m is an arbitrary 3x3 matrix and the subscript

sca indicates the block element is solely a component of the scattering phase matrix. If we evaluate

after substituting Eq. (5.83) into Eq. (5.82) the total path Mueller matrix has the form

Mpath =

 1 ~DT
sca

~P m

 . (5.84)

Both ~P and m have been contaminated by effects of the receiver optical system and drop the sca

subscript, but because F(~ki,~ks) is the only matrix exhibiting diattenuation, ~Dsca is the original
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diattenuation vector of the scattering phase matrix. Thus direct measurement of diattenuating

terms can be done without system error contribution regardless of the magnitude of depolarization

or retardance in the receiver.

ACP is still sensitive to diattenuating effects in the receiver. If we assume the receiver

diattenuation is the general form given by the diattenuation vector in Eq. (5.79), the measured

diattenuation calculated using Eq. (4.30) is given

DACP =
f12 +D1f22

f11 +D1f12
. (5.85)

Thus ACP is only sensitive to the receiver diattenuation component along the transmitted polar-

izations.

The advantage of measuring diattenuation with ACP lies in its insensitivity to retarding and

depolarizing effects in the receiver. Additionally, the two measured signals have identical intensities

for randomly oriented scatterers, so this technique is less likely to produce false positives of oriented

scatterers due to detector nonlinearity.

5.5 Instrument Error in Non-Polarization Lidar

The presence of diattenuation is a problem for lidar systems even when they do not measure

polarization. Because diattenuation is polarization dependent system efficiency, different backscat-

tered signals will experience different system attenuation depending on the scatterer’s polarization

properties.

Consider an instance where all atmospheric scatterers are randomly oriented and axially

symmetric so their phase matrices take the form in (3.5). For a common backscatter lidar, there is

no polarizer, so the projection matrix O simply becomes

O =
[
η 0 0 0

]
(5.86)

where η is the detector efficiency. Assume the receiver exhibits diattenuating effects so that the
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diattenuation vector is

~DRX = |DRX |


cos 2φD cos ΓD

sin 2φD cos ΓD

sin ΓD

 , (5.87)

where the angle φD is the linear rotation angle of the diattenuation vector and ΓD is twice the

vector’s ellipticity angle. For linear diattenuation vectors, ΓD is zero or π and for circular diatten-

uation, ΓD = ±π
2 .

The primary data product of backscatter lidar is the backscatter ratio. This is a useful

quantity because it avoids the necessity to measure absolute return signals. Instead, the total

return signal is normalized to the generally stable molecular return. The backscatter ratio is

defined in Eq. (1.4) where it may be regarded as the ratio of the total signal counts to only the

counts attributable to molecular scatterers.

If we evaluate the SVLE for the above scenario, allowing that the total depolarization of

the medium dT is generally different than the depolarization of the molecular scatterers dm, the

backscatter ratio, using Eq.(1.4) is measured

RMBS =
1 + (1− dT )D‖
1 + (1− dm)D‖

βtot

βmol
, (5.88)

where D‖ is the diattenuation of the receiver along the transmit polarization. The measured

backscatter ratio clearly has an error factor that is dependent on the depolarization of the medium

under investigation.

This issue has been investigated by [43] using conventional polarization lidar theory, where

it was concluded that folding mirrors and beamsplitters required polarization coatings to make the

backscatter measurements polarization independent. However, we consider here a more affordable

solution. For a transmitted polarization given in Eq. (4.12), the diattenuation term in Eq. (5.88)

is given as

D‖ = |DRX | cos(2φD − 2φf ) cos(ΓD − Γf ). (5.89)

If we linearly rotate the outgoing polarization so that 2φD − 2φf = π
2 (STX is perpendicular to
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the linear diattenuation component in the equatorial plane in the Poincaré Sphere), D‖ becomes

zero and RMBS = RBS . Thus, the use of a half wave plate negates the need for costly polarization

coatings on the lidar system optical components.

This example demonstrates the importance of considering polarization effects in lidar even

when the lidar does not measure polarization. It also demonstrates how simple solutions are easily

missed when using the incomplete polarization theory common to conventional polarization lidar

analysis.



Chapter 6

Arctic Lidar Technology Facility

The Arctic Lidar Technology Facility (ARCLITE) lidar located in Kangerlussuaq, Greenland

(67.0◦N, 309.1◦E) consists of two transmitting lasers at 532 nm. The receiver detects at three

different wavelengths, but for this work, we will only address the 532 nm receiver channel.

The transmitter layout is shown in Figure 6.1 where the SpectraPhysics Laser (560 mJ/pulse

at 30 Hz) is used for high altitude studies (25-90 km) and the BigSky lasers (50 mJ/pulse 15 Hz

on each of the two orthogonal polarization modes) transmit alternating horizontal and vertical

polarizations for study of the troposphere and stratosphere (0-35 km). The SpectraPhysics trans-

mit path contains a motorized HWP to incrementally rotate the outgoing laser polarization, and

alternatingly flip the polarization by 90◦ every minute. A polarization compensator consisting of

two QWPs, as described in Section 5.2, immediately follows the HWP to cancel retarding effects in

the SpectraPhysics transmitter path. A 5x Beam expander is used to achieve lower than 0.1 mrad

divergence in the beam.

The BigSky lasers have a fixed HWP to set the outgoing linear polarization angles of the

alternating cross polarized output. Immediately following the HWP is the compensator for this

outgoing channel, then a 5x beam expander to reduce beam divergence. A neutral density filter

wheel is inserted into the transmit path. Even at their lower powers, attenuation of the BigSky

laser is often required to avoid detector nonlinearity from low altitude returns (below 10 km). A

multimode optical fiber follows the last folding mirror in the BigSky path. Some residual optical

power leaks through this mirror and is coupled into the fiber. The fiber is then fed into the receiver
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Figure 6.1: ARCLITE transmitter with the high powered SpectraPhysics laser (solid) and lower
power cross polarized BigSky lasers (dashed). FM stands for folding mirror.
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Figure 6.2: ARCLITE receiver with an 92 cm aperture Newtonian telescope filtering and polariza-
tion optics. FM stands for folding mirror and FS stands for field stop.

PMT to provide a time zero pulse for the BigSky lasers and a measure of relative transmit power

between the two polarizations. This relative transmit power is then used as a correction factor

when calculating polarization effects.
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The receiver layout is shown in Figure 6.2 where all backscattered light is collected by a 92

cm aperture Newtonian telescope. This light is coupled into a lens tube to bring the light onto

on optical breadboard. The receiver has a polarization compensator for canceling retarding effects

and a motorized HWP for incrementally changing the received polarization. After a field stop,

used to reduce solar background, the light is passed through a fixed Glan-Thompson polarizer.

The light is then filtered through a Daystar 0.08 nm solid mica etalon (used only during daytime

conditions to reduce solar background). A chopper is in place to block low altitude returns from the

SpectraPhysics laser. These low altitude signals are strong enough to cause signal induced noise

(afterpulsing) on the photomultiplier tube (PMT) if they are not blocked. The signal is finally

passed through a 532 nm interference filter with a 0.5 nm bandwidth before being focused onto the

PMT cathode. The fiber collecting leaked optical power from the BigSky laser in the transmitter

is also fed near the PMT. Fiber alignment is not particularly important here. It is sufficiently

misaligned so the signal on the PMT is within the linear dynamic range of the detector.

ARCLITE uses a single polarization detection channel with two possible transmit polariza-

tions. The receiver motorized half wave plate is aligned for maximum rejection of partially polarized

solar background by the Glan-Thompson polarizer. In the SpectraPhysics transmitter, the outgoing

polarization plane is then aligned for maximum transmission through the receiver polarizer. This

produces the parallel polarization measurement used in conventional polarization lidar. On the

next dataset, the outgoing polarization is rotated by 90◦ by the motorized HWP in the transmitter

for minimum transmission through the receiver polarizer, thus providing the perpendicular polar-

ization measurement. Every minute the transmit half wave plate rotates the polarization by 90◦ to

produce a sequence of parallel and perpendicular measurements. Although the perpendicular plane

will be extinguished by the receiver Glan-Thompson, half of the depolarized signal will pass through

with minimal background. Thus this method provides a measure of N⊥ and N|| (see Figure 6.3)

and is equivalent to the two receiver channel method when F is diagonalized. This method provides

an estimate of d with minimal solar background contamination in both polarization measurements.

This polarization technique has achieved an improvement in the signal-to-noise ratio (SNR) by as
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much as a factor of five during summer operations and has been in use for many years at the site

[84].

As measurements are made throughout the day, the polarization plane of the receiver is ad-

justed by its rotating half-wave plate to track the sun and maintain rejection of the linearly polarized

solar background component by the Glan-Thompson polarizer. The SpectraPhysics transmitted

polarization also uses a rotating half-wave plate to maintain optimal transmission through the re-

ceiver. Consequently, when in sun tracking mode to reject polarized background, the system optics

experience all planes of linear polarization throughout the course of the day. The need to use

all linear polarizations result in variable polarization effects throughout the lidar run. Significant

retardance and depolarization impact the instrument’s ability to estimate depolarization.

The BigSky transmitter operates similar to the SpectraPhysics, but instead of using a mo-

torized HWP, the laser pulses are alternated between two orthogonal polarizations. The outgoing

polarizations can be rotated together by a fixed angle using the HWP at the laser output. However,

this HWP is not motorized, so it does not track the receiver polarization plane in sun tracking mode.

Though the BigSky polarization planes may not align to the receiver during daytime operation,

software correction still allows depolarization estimates for BigSky laser returns [32].

6.1 Characterization and Mitigation of ARCLITE Polarization Effects

To characterize the ARCLITE receiver, the transmitter must first be compensated. Accurate

knowledge of the outgoing polarization is essential to properly characterize the receiver during

lidar operation. The transmitter exhibited relatively low polarization effects with no detected

diattenuation or depolarization, and linear retardance of approximately 0.10 radians (the output for

a linearly polarized input has a maximum S3 circular Stokes term of 0.10). The transmitter layout

for the high altitude SpectraPhysics Laser has two folding mirrors. The first mirror folds the beam

path in the horizontal plane, while the second folds the beam vertically, out of the horizontal plane.

Less some small misalignment, the s-polarization of one mirror becomes the p-polarization on the

second, and any phase shift or diattenuating effect is applied equally to both modes. The residual
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Figure 6.3: Polarization operation of ARCLITE. The half wave plate in the receiver is aligned
to minimize solar background. The transmitter half wave plate is then aligned to the receiver
polarization plane for parallel measurements, and orthogonal to the receiver for perpendicular
measurements [33].
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difference in phase between the two modes was eliminated using the compensator optimization

technique described in Chapter 5.

The receiver in the ARCLITE system was then characterized according to the method de-

scribed in Eq. (5.7) in Chapter 5. The half wave plate (HWP) in the transmitter is used to rotate

the outgoing linear polarization to achieve horizontal, vertical and 45◦ polarizations. A quarter

wave plate (QWP) is also added to the transmitter to obtain the required circular polarization.

In the receiver, the fixed analyzer is removed from the system and a rotating analyzer is inserted

prior to the motorized HWP, where the compensator will be installed. Also there is room to insert

a QWP before the polarizer to measure the circular S3 Stokes term. After the analyzer, retarding

and depolarizing effects are not a concern. However, diattenuation will impact the efficiency of the

different measured polarizations. The folding dichroic filter exhibits some diattenuation and its

polarization preference is thus accounted for when measuring horizontal and vertical polarizations.

The polarization matrix of ARCLITE is then determined by measuring two profiles for each

Stokes term, using altitudes above 25 km to avoid depolarizing aerosol contamination. The mea-

sured matrix for the ARCLITE receiver is within −11.7dB of a realizable Mueller matrix. The

normalized Cloude filtered receiver Mueller matrix is

MRX =



1 −0.004 −0.013 −0.013

−0.075 0.850 −0.024 0.026

−0.013 0.007 −0.377 0.808

−0.022 0.044 −0.695 −0.311


, (6.1)

and the error of each matrix term is dominated by shot noise and given as

σMrx =



0.009 0.009 0.023 0.017

0.01 0.01 0.024 0.017

0.009 0.009 0.023 0.017

0.009 0.009 0.022 0.014


. (6.2)

In Eq. (6.1) and (6.2) we see the values in the top row are less than their corresponding

uncertainty. Thus ARCLITE has low diattenuation that is not resolvable in this experiment. The
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Figure 6.4: Apparent depolarization resulting from ARCLITE receiver system based on the Mueller
matrix measured in operation shown in Eq. (6.1) (green). The effects are decomposed into those
attributed to depolarization (blue) which is not correctable in hardware and retardance (red) which
is correctable.

receiver matrix is then decomposed to determine the relative contributions to error in polarization

measurements contributed by the depolarizing and retarding terms [42]. The error here is termed

apparent depolarization. This is the measured depolarization due to system effects when the scat-

tering medium is polarization preserving. The total and individual contributions of retarding and

depolarizing terms to apparent depolarization are plotted as a function of linear input polarization

angle in Figure 6.4. Retarding contributions to apparent depolarization can be canceled through

installation of a compensator consisting of two QWP that impose an equal and opposite phase

shift to that of the receiver system. However, depolarization cannot be canceled with hardware

solutions. After installation of the compensator, the apparent depolarization of the system should

track that contribution of the depolarizing matrix in the receiver.

Based on the decomposition of the receiver matrix, the angular positions of the QWPs in
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the receiver can be determined to cancel the system retarding effects. In practice however, we use

the optimization technique described in Chapter 5. The apparent depolarization of the system

is estimated before and after installation of the compensator using signals from an altitude of

strictly molecular scatterers. The results are shown in Figure 6.5. The apparent depolarization is

a good qualitative fit to that predicted by the system Mueller matrix. However, we notice that

the maximum in apparent depolarization without compensation is less than that predicted by the

matrix simulation.

Figure 6.5: Apparent depolarization resulting from ARCLITE receiver system as measured in op-
eration for an uncompensated receiver (blue), compensated receiver (green) and software corrected
(red) [33].

In addition to reducing signal cross talk, the compensator in the receiver also improves

polarized solar background rejection. Retarding effects cause linearly polarized solar background

to be elliptical. Though the receiver HWP is aligned for maximum rejection of the background, it

cannot fully reject the now elliptically polarized light. The compensator ensures that the linearly

polarized light remains linearly polarized, and thus ARCLITE experiences lower background levels
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Figure 6.6: Solar background counts experienced by ARCLITE as a function of solar zenith angle
(SZA) with no polarizer (green), with a polarizer (red) and with compensation and polarizer (blue).
As SZA approaches 90◦, the solar background from Rayleigh scattering increases in DOP, allowing
better background rejection through polarization [33].

during daytime operation (see Figure 6.6).

After hardware compensation is implemented in ARCLITE, the remaining system effect is de-

polarization. If this system contribution is not reduced it will directly bias depolarization estimates.

The software correction discussed in Chapter 5 [32] is applied to the recorded data to remove re-

ceiver system depolarization, residual receiver retardance, partial polarization of the transmit laser,

and misalignment of the transmitter and receiver polarization planes. The Rayleigh backscatter

signal at 35 km is used to determine the system bias error, ε. This software correction is applied

to the compensated depolarization data in Figure 6.5. The combination of hardware and software

compensation approaches the expected limit of Rayleigh depolarization allowing the ARCLITE

lidar to make polarization measurements of aerosols and clouds from troposphere to the mesopause

(80 km).
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6.2 Polar Mesospheric Cloud Particle Shape

Polar mesospheric clouds (PMCs), also called noctilucent clouds (NLCs), are high altitude

ice particles that form over the polar regions in the mesopause at a centroid altitude of 83 km.

During the summer months, adiabatic cooling causes the mesopause to cool sufficiently for water

to condense and freeze at these high altitudes[34], resulting in formation of these clouds.

PMCs have a strong influence on the mesopause environment by redistributing trace gases[90].

Depletion of mesosphere/lower thermosphere (MLT) metals has been observed in the presence of

PMCs[59] and the reaction rates of this heterogeneous chemistry are driven by the surface area of

the particles present[61].

Many properties of the PMCs have been established. They are made up of condensed water

vapor[34]. Study of scattering brightness has established a volume equivalent standard radius of 50

nm for PMC particle sizes[85, 67, 89]. Probes into the particles sizes have are found to be relatively

insensitive to variations in the asphericity of the particles[8] allowing the problem of particle shape

and size to be decoupled.

Owing to the sub-micron size of PMC particles and the visible wavelengths used to probe

them, Mie-Rayleigh scattering theory has predominantly been applied. However, the common prac-

tice of using Mie theory to analyze light scattered by PMCs makes the unfounded assumption that

the particles are spherical. This has far-reaching implications for the interpretation of observations

and modeling of the growth-sedimentation-sublimation aspects of PMCs. A non-spherical particle

has a greater surface area-to-volume (mass) ratio than a spherical particle of the same linear di-

mension. In [64] it is suggested the settling speed of a mesospheric cloud particle will depend on its

shape as well as its size. Slower falling non-spherical particles would experience more time in the

region of supersaturation which may enhance its potential for growth. Also, the lesser volume of a

non-spherical particle will require less water vapor to provide the same scattering cross-section as a

spherical particle. This can have important implications on the growth of PMCs because the water

vapor concentration in the mesosphere is limited to only a few parts per million. Recently, [63]
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have demonstrated theoretically the utility of applying non-spherical PMC particles to improve the

agreement between microphysical cloud models and space-based and ground-based observations.

Furthermore, [23] has provided space-based spectral data suggesting PMC particles are not spher-

ical. However, further observational evidence is needed to conclude whether the clouds are made

of non-spherical particles.

Lidar observations can contribute to this work by observing the polarization effects of back

scattered laser signals from PMCs. The ALOMAR RMR-Lidar has reported the only known

depolarization measurement of a PMC occurrence [7] which suggests that PMC particles can be

non-spherical. This measurement suggested needle like scatterers with axial ratios varying between

1/2 and 1/10. In addition to this discovery, it also became apparent that the structure of PMCs

can vary both temporally and spatially. The peak in depolarization did not correspond to the

peak in backscatter from the PMC suggesting that PMC particles change shape as they settle and

eventually sublimate. PMC properties may vary depending on any number of conditions under

which they are observed so the one depolarization observation is not sufficient to generalize PMC

particle shape. Thus further, independent PMC depolarization measurements are needed. These

lidar polarization measurements of PMCs enable a new view of PMC light scattering. However, it is

expected that the depolarization will only be a few percent and will require sensitive measurements.

For polarization measurements of PMC backscatter, stringent requirements are placed on

the lidar system to minimize any altering effects to the backscatter polarization. If polarization

coupling in the lidar receiver is small compared to the expected depolarization by the scatterer,

certain approximations may be applied to reduce contamination of polarization data due to system

polarization effects [11, 1, 2]. However, the expected change in polarization due to PMC particles is

only a few percent so system effects must be reduced to below 1% in order to give confidence in the

estimated depolarization by PMC particles. This can be accomplished by applying sophisticated

and expensive optical coatings on all reflective surfaces to preserve the incoming polarization - an

approach used by the ALOMAR RMR-Lidar [Baumgarten, personal communication, 2010]. Here,

the techniques from Chapter 5 are applied to ARCLITE and used to evaluate the instrument’s
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Figure 6.7: Size parameter of PMC particles with an average radius of 50 nm for incident wave-
lengths in the optical spectrum.

ability to study and estimate PMC depolarization.

The size parameter of a particle is defined

x =
2πa
λ

(6.3)

where a is the particle radius and λ is the incident wavelength. For a PMC particle of average radius

50 nm[7] and optical wavelengths incident, this size parameter is on the edge of the Rayleigh/Mie

region (see Figure 6.7). This means that backscatter is relatively weak compared to some aerosols

and exhibits a frequency dependence.

Study of PMC depolarization is difficult due to the high altitude of the clouds and small par-

ticle size relative to optical wavelengths. Thus returns are often shot noise limited. These clouds

only form during the summer months at high latitudes, so that solar background is constant and

persistent. As a result, signal to noise becomes a critical component in lidar system design. Invari-

ably, the designer must have definite numbers to trade possible expense with detection capability,
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as well as performance of other optical components.

6.2.1 PMC Particle Simulation

The two parameters under analysis in this report are the depolarization d and the scattering

cross section Csca for PMCs. T-matrix FORTRAN code is publicly available on the web1 which

utilizes the theory described in [49, 52] to produce the orientationally averaged T-matrix, scattering

cross section, and phase matrix of a rotationally symmetric randomly oriented scatterer [51].

The PMC particles are assumed to have an average radius of 50 nm. In the case of aspherical

particles, this radius defines the size of an equivalent volume sphere. The scattering cross section

of PMC particles is determined to be relatively invariant with asphericity when the particle is

characterized in terms of volume equivalent spheres[6].

PMC particles are reported to be “needle like” and may be analyzed either as prolate finite

cylinders or prolate spheroids with axial ratios in the range of 1/2-1/10 [7]. An axial ratio of 1/6

is chosen for this analysis. The particles are assumed to be randomly oriented due to the effects of

Brownian motion [13]. The values for the index of refraction of ice are taken from [91].

Table 6.1: PMC Scattering Input Simulation Parameters

Volume Equivalent Radius 50 nm
Particle Geometry Prolate Spheroid
Axial Ratio 1/6
Index of Refraction see [91]
Incident Wavelength 350-1100 nm
Scattering Angle π

The T-matrix code is run with the particle parameters described in Table 6.1 for incident

wavelengths 350 nm to 1100 nm.

At optical wavelengths, PMC particles are on the edge of the Mie/Rayleigh boundary (see

Figure 6.7). Thus it should come as little surprise that their scattering cross sections increase as

the incident wavelength decreases (see Figure 6.8). We also find that depolarization increases with
1 http://www.giss.nasa.gov/∼crmim
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Figure 6.8: Scattering cross section of randomly oriented PMC particles at various wavelengths
simulated using publicly available T-Matrix code [51, 52].

Figure 6.9: Depolarization of randomly oriented PMC particles using Mishchenko’s FORTRAN
T-Matrix code [51, 52] at different incident wavelengths.
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decreasing wavelength (see Figure 6.9). As aspheric features on the particles become larger relative

to the wavelength, we would expect their effects to be more pronounced.

6.2.2 Lidar Observations

PMC experiments were performed with the ARCLITE system using polarization calibration

methods discussed in Chapter 5, during the summer months of 2009. The data presented here

corresponds to a particular PMC event that occurred on July 26, 2009.

6.2.2.1 System Polarization Calibration

During this experiment, hardware and software compensation were applied to the data. The

perpendicular and parallel lidar signals were integrated temporally for 150 minutes, spatially for

1.1 km, and background subtracted before performing the depolarization analysis. In the first step

of the analysis the bias error is estimated using Rayleigh signals from 30-40km. The depolarization

is calculated for each 1.1 km range-resolution increment and illustrated in Figure 6.10.

As no aerosols are present in the middle atmosphere, the estimate of d should have a value

near 0.0088 owing to a Rayleigh depolarization ratio of δ = 0.0044 which results from the receiver

bandwidth being limited by a 532 nm interference filter with a 0.5 nm passband [9]. Because the

lidar receiver bandwidth is wide enough to pass some rotational Raman lines in the molecular

spectrum, this depolarization is slightly larger than that reported for the central Cabannes line

(d = 0.00727 at 532 nm [11]). The noise with increasing altitude is due to increasing statistical

uncertainty in signal. The error estimate σd(z) reflects the shot-noise dominance in the signal, with

exponential increase in uncertainty with altitude. This verifies the compensation methods shown

here eliminate system biases to produce a nearly bias-free, well below 1%, estimate of depolarization.

This is important in PMC studies as it is expected the clouds will produce single-digit percentages

of depolarization.
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Figure 6.10: A vertical profile of the depolarization estimate from Rayleigh scattering (solid) with
the computed error (dashed).



133

6.2.2.2 PMC Depolarization Measurements

The depolarization analysis is now applied to the lidar data for the same day as Figure

6.10 but at PMC altitudes. This PMC is relatively strong, with a Rayleigh backscatter equivalent

altitude of 59 km. The depolarization estimate and profile are illustrated in Figure 6.11. The

PMC was detected and integrated for 150 minutes (3:04-5:34 AM GMT, SZA 93.4◦-90.2◦) and the

observation has an altitude resolution of 336 m. The average total backscatter profile is illustrated

by the red, dashed line in Figure 6.11. The estimate of d is on the threshold of those expected for

non-spherical PMCs but of significant uncertainty. Upon careful implementation and evaluation

to remove systematic biases, the error in d is now dominated by statistical uncertainty associated

with limited signal counts and elevated background counts. A further improvement in SNR by

a factor of ten would suppress the statistical uncertainty to below 1% and enable non-spherical

estimates to be more definitive. The reader should be aware that due to the long integration times

associated with PMC depolarization measurements, the particles sampled may vary substantially

in size, shape, and altitude. Thus any conclusions drawn from these integrated PMC polarization

measurements apply to the cloud only in a long term average sense.

6.2.3 Error and Resolution

Due to low signal levels in terrestrial based PMC studies, shot noise dominates depolarization

uncertainty. In such a case, the random arrival of photons within a specific time bin is governed

by a Poisson distribution [93] so the probability of recording N counts is given by

p(N ;α) =
αNe−α

N !
, (6.4)

where α is the mean photon counts recorded. The variance of the photon counts is equal to the

number of the counts.

σ2
N = N (6.5)

Since depolarization of the PMC is calculated using Eq. (4.4), error in the depolarization
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Figure 6.11: A PMC observation by the ARCLITE lidar July 26, 2009. The depolarization mea-
surement is shown in blue (solid), uncertainty in green (dotted), and relative backscatter profile in
red (dashed).
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estimate can be calculated by propagation of error [68].

σ2
d = σ2

N||

(
∂d

∂N||

)2

+ σ2
N⊥

(
∂d

∂N⊥

)2

(6.6)

Using the definition of d in Eq. (4.4) and the definition of variance for a Poisson random variables,

Eq. (6.6) may be written

σ2
d =

4N||N⊥(
N|| +N⊥

)3 (6.7)

where N|| and N⊥ are the parallel and perpendicular channel received photon counts respectively.

This equations provides an easy means of determining the error in depolarization estimates from

a specific PMC data sample, but we can also look at how it relates to the scattering and design

parameters. Substituting the measurements described by Eq. (4.1), (4.2) and (4.3) into Eq. (6.7)

yields depolarization variance as a function of the total received photons and depolarization

σ2
d =

NRX

2

(
d− d2

2

)
(6.8)

where NRX is the sum of received photons on both polarization channels. We then define the

depolarization resolution as

Rd =
d

σd
(6.9)

which defines our ability to resolve depolarization, and therefore resolve the asphericity of the

PMC particles. Large values of Rd are desirable for determining the asphericity of PMC particles.

Substituting Eq. (6.8) into Eq. (6.9) gives the depolarization resolution as a function of the received

photons and depolarization.

Rd = d

√√√√ NRX

2
(
d− d2

2

) (6.10)

which for small d may be written

Rd ≈
√
NRXd

2
(6.11)

Thus it becomes apparent that achieving low error in depolarization estimates requires large signal.

Also, larger depolarization provides higher resolution. To measure a depolarization of 0.01 with a

minimum resolution of Rd = 10 requires at least 2× 105 photons.
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From Eq. (2.1) the total received photons are proportional to the total transmitted photons

NL, receiver aperture area A, and scattering cross section Csca(λ) which is a function of wavelength.

We can also write the total transmitted photons as a function of the laser pulse energy

NL =
Epλ

hc
r∆t (6.12)

where Ep is the energy in each laser pulse, λ is the transmit wavelength, h is Planck’s constant, c is

the speed of light, r is the laser pulse repetition rate, and ∆t is the detection integration time which

is an integer multiple of the repetition period. Thus we may write a proportionality relationship

between the depolarization resolution, fundamental system design parameters and the wavelength

dependent scattering characteristics of the PMC.

Rd ∝
√
Epr∆tAλd(λ)Csca(λ) (6.13)

When the product of d(λ) and Csca(λ) decrease, the laser power, integration time, laser repetition

rate or some combination of the three must increase to maintain the same depolarization resolution.

The design parameters of the instrument are held constant and this proportionality is plotted as

a function of wavelength in Figure 6.12, where the values have been normalized to a transmission

wavelength of 1.1µm. Thus, when operating at 1.1µm, design parameters must be improved by a

factor of 7.6 to achieve the same depolarization resolution at 0.35µm.

In the case of a Nd:YAG laser, the fundamental wavelength is 1.064µm. Since the square of

the relative depolarization resolution is proportional to the pulse energy, we determine the second

harmonic generation at 0.532µm must have a conversion efficiency of greater than 9% to produce

depolarization resolution better than that achieved by operation at the fundamental. Additionally,

to achieve comparable results by going to the third harmonic at 0.355µm, the total conversion

efficiency must be better than 2%. It is clear that higher harmonics will likely produce better

depolarization results than the fundamental.

For the purpose of achieving a measurable depolarization from PMCs, we have considered

using the third harmonic of the Nd:YAG laser at 355 nm. Using Figure 6.12 it is clear that the
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Figure 6.12: Relative depolarization resolution for lidar systems operating in or near the visible.
The resolution has been normalized to the value at 0.532µm.
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depolarization resolution would improve by roughly a factor of 2. Assuming filter transmission and

detector efficiencies are comparable between the two wavelengths, the conversion efficiency to 355

nm must be better than 50% from the 532 nm second harmonic to achieve depolarization resolution

equal to our present second harmonic configuration. When we consider that solar background will

also likely be larger at this shorter wavelength due to increasing molecular Rayleigh scattering, it

is unlikely that a ground based system such as ARCLITE will benefit substantially in the area of

PMC depolarization by operating a 355 nm channel. Instead, ARCLITE will most likely see the

greatest improvement in PMC depolarization resolution through increased system optical efficiency,

higher detector quantum efficiency, and improved spectral filtering for background reduction.

Note that in this analysis, background noise terms have been omitted. These terms will

serve to increase the shot noise term, while making no contribution to signal, further decreasing

depolarization resolution. Such background terms can become significant drivers in PMC analysis

since the clouds form in the summer months over the polar regions where sunlight conditions persist

during the entire day. These terms should also be considered in lidar design. Background noise

parameters would depend on receiver field of view, bandwidth and aperture size along with several

other natural considerations such as solar spectrum, Fraunhofer lines and Rayleigh scattering cross

sections of the molecular atmosphere.

6.3 Tropospheric and Stratospheric Aerosols

The improvements to the ARCLITE lidar’s polarization retrieval capabilities have bettered

the lidar’s research capabilities for tropospheric and stratospheric aerosols. In early January, 2011,

several successive lidar runs occurred when a PSC was observed. Figures 6.13 and 6.14 show

time resolved log backscatter counts and software corrected depolarization using the BigSky lasers.

The total integrated depolarization profile is also shown in Figure 6.15. The PSC has a clear

depolarization signature at approximately 25 km suggesting, on January 7, this is a Type Ib PSC.

In addition to the PSC, there is a layer of tropospheric aerosol that is faintly visible in the

depolarization profile in Figure 6.14. The integrated profile in Figure 6.15 shows the layer has a
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Figure 6.13: Log backscatter photon counts on January 7, 2011 as a function of time. The PSC is
clearly visible throughout the data set at 25 km. Each record is one minute long.

peak depolarization of approximately 0.03. This serves as demonstration that the ARCLITE lidar

is capable of resolving small depolarizations when sufficient signal is available. Thus with greater

backscattered signal, PMC depolarization should be resolvable.

A PSC is also observed in another lidar run on January 6. Included in the data set are also

cirrus clouds and tropospheric aerosols. The time resolved log backscatter counts and software

corrected depolarization are shown in Figures 6.16 and 6.17. In this data set, the PSC is not

substantially depolarizing, but continues to persist in the backscatter count data.

A thin layer of tropospheric aerosol is only visible in the depolarization profile between 5 and

6 km through the run. This helps illustrate the utility of depolarization measurements, which may

register the presence of aerosols not easily observed using backscatter.

An isolated cirrus cloud is weakly resolvable at 10 km in the backscatter profile near record

250. The depolarization profile registers a depolarization of 1. We believe the high depolarization
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Figure 6.14: Depolarization on January 7, 2011 as a function of time. While the cloud backscatter
intensity is relatively uniform, it has occasional streaks of substantial depolarization. Also, an
aerosol layer can be seen in this profile between 5 and 10 km starting near record 300.
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Figure 6.15: Integrated depolarization of PSC observed on January 7, 2011. The streaks of depo-
larization observed in Figure 6.14 result in a substantial depolarizing signature in the cloud. The
tropospheric aerosol layer is clearly visible in this profile, demonstrating the level of polarization
sensitivity of this instrument after correction of polarization effects.



142

Figure 6.16: Backscatter profile of a PSC, cirrus cloud and tropospheric aerosol observed on January
6, 2011. The PSC persists at approximately 25 km while a cirrus cloud is only briefly visible at 10
km near record 250. The aerosol layer near 5 km cannot be seen in the backscatter profile.

is attributable to substantial detector nonlinearity. The lidar return from this cloud is likely due

to specular reflections from oriented ice crystals. Though the actual return light should have little

or no depolarization, detector saturation causes the calculated depolarization to approach 1.

Diattenuation data was also recorded for the PSC on January 4, 2011 using ACP. The

BigSky lasers already transmit cross polarization laser pulses so this modification only requires

that we remove the polarizer in the receiver. The resulting data is shown in Figures 6.18 and 6.19.

Since the lidar is zenith pointing we observe no diattenuating signatures. However, this shows that

diattenuation profiles can be measured without false positives using ACP on ARCLITE. Future

experiments with ARCLITE may involve tilting the lidar off zenith to look for oriented scatterers.
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Figure 6.17: Depolarization profile of a PSC (25-27 km throughout the dataset), cirrus cloud (9
km near Record 250) and tropospheric aerosol (6-7 km, most apparent between records 350 and
500) observed on January 6, 2011. The PSC has little or no depolarizing signature while the
cirrus cloud appears to be completely depolarizing. We believe this is the result of very detector
saturation due to specular reflections from oriented scatterers. The aerosol layer is much easier to
see in depolarization than backscatter.
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Figure 6.18: Backscatter profile of a PSC observed on January 4, 2011 during diattenuation mea-
surements using ACP.

Figure 6.19: Diattenuation profile of a PSC observed on January 4, 2011. The profile was measured
using ACP and demonstrates the expected zero diattenuation for a zenith pointing lidar.



Chapter 7

Cloud Aerosol and Backscatter Lidar

As part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Pre-

cipitation over Summit (ICECAPS) program a decommissioned NOAA lidar was redesigned and

deployed to Summit Camp, Greenland (72.6◦N, 38.5◦W ) in spring of 2010. The lidar was named

the Cloud Aerosol and Backscatter Lidar (CAPABL) and has a primary objective to identify tro-

pospheric cloud phase above the camp. Two secondary goals were also added, to interrogate of

stratospheric aerosols and identify oriented ice crystals. Because the mission’s primary objective

requires conventional polarization lidar operation, CAPABL needed to offer all the standard ca-

pabilities of conventional polarization lidar. Thus the P45P polarization technique was an ideal

solution, providing depolarization measurements with the additional diattenuation data product

for detection of oriented scatterers.

CAPABL is a refurbished version of NOAA’s Depolarization and Backscatter Unattended

Lidar (DABUL). All hardware modifications were identified and implemented within a six month

time frame and largely confined, with the exception of the purchase of a liquid crystal variable wave

plate, to existing DABUL components.

7.1 System Layout

The CAPABL lidar system uses a frequency doubled diode pumped Nd:YLF operating at

523.5 nm from its predecessor system. The laser is first passed through a HWP and polarizer with

1000:1 extinction to ensure maximum power and linearly polarized output (see Figure 7.1). Because
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Figure 7.1: Layout of CAPABL transmitter and receiver. The lidar transmits a single linear
polarization, then using a QWP and variable retarder, detects linear polarizations parallel, 45◦ and
perpendicular to the transmit polarization.
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the transmitter uses several mirrors and budgetary and time constraints prevented the acquisition

of additional QWPs to build a compensator, the linear polarization is aligned to LiLo (the linear

input polarization that produces a linear output polarization) of the transmitter. This defines the

polarization basis of the system operation. After the polarizer, the laser is beam expanded by 80

times for low divergence. The beam is then sampled by a photodiode to time stamp the laser

pulse transmission time. Finally two folding mirrors align the transmitted beam to the receiver

secondary. This allows for a full overlap with the receiver field-of-view (FOV) at low altitudes

(below 100 m) for tropospheric boundary layer studies.

The receiver uses an F/14.3 Dall-Kirkham telescope with 508 cm focal length and 35.6 cm

aperture to minimize polarization effects (see Table 7.1 for full system specifications). This telescope

uses a spherical primary and elliptical secondary mirror in a Cassigrain configuration which results

in high coma. In lidar we only intend to collect on axis light, so this coma does not present an

issue. The collected light is then collimated by a 30 mm lens and passed through a horizontally

oriented QWP with a Meadowlark liquid crystal variable retarder oriented at 45◦ and a horizontal

polarizer. The combination of these polarization elements act as a rotating analyzer. After the

polarizer, 10% of the signal is passed to the low altitude PMT with low gain to avoid saturation

from high intensity signals below 1 km in altitude. The remaining 90% of the signal is passed to

the high gain channel for upper tropospheric and lower stratospheric data collection.

The overall lidar control and data acquisition is run by a Labview program on a PC with in-

ternet connection. The lidar, in its present configuration can be remotely controlled, only requiring

an operator for hardware maintenance and modifications.

7.1.1 Polarization Operation

CAPABL uses a Meadowlark liquid crystal variable retarder (VWP) in the receiver to perform

the three polarization measurements necessary for the P45P technique. The VWP is aligned to 45◦
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Table 7.1: CAPABL System Specifications

Wavelength 523.5 nm
Laser Pulse Energy 40 µJ
Laser Repetition Freq. 2 kHz
Laser Pulse Length 10 ns
Telescope Type Ag Coated Dall-Kirkham
Telescope Focal Length 508 cm
Telescope Aperture 35.6 cm
Telescope F/# 14.3
Field of View < 0.3 µrad

so its Mueller matrix is

V(Γwp, 45◦) =



1 0 0 0

0 cos Γwp 0 sin Γwp

0 0 1 0

0 − sin Γwp 0 cos Γwp


, (7.1)

where Γ is the voltage controlled phase shift of the VWP. The VWP in series with the horizontal

polarizer allows the polarizer to select any polarization along the horizontal meridian of the Poincarè

sphere by adjusting Γ. However, we wish to have the polarizer select any polarization component

along the equator to act as a linear polarizer. To accomplish this, we must transform all linear

polarization components on the equator to the meridian passing through horizontal polarization.

This can be achieved by placing a horizontal QWP in front of the VWP and polarizer. The

polarization analyzer Mueller matrix is then given as follows:

A
(

Γwp
2

)
= P(0)V(Γwp, 45◦)Q(0) =

1
2



1 cos Γwp sin Γwp 0

1 cos Γwp sin Γwp 0

0 0 0 0

0 0 0 0


, (7.2)

where P(θ) is a polarizer oriented at angle θ, V(Γwp, θ) is a VWP of phase shift Γ and orientation

θ and Q(θ) is a QWP of orientation θ. The total analyzer matrix in Eq. (7.2) is qualitatively

different from a rotated linear polarizer only in the fact that its polarizance is always horizontal.
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Figure 7.2: Initial schematic of optics for analyzer optimization. First polarizers P1 and P2 must
be aligned to be horizontal relative to the VWP that defines 45◦.

The diattenuation (polarization transmission efficiency) of the analyzer matrix is a function of the

VWP phase shift Γwp so that the transmitted efficiency is identical to that of a linear polarizer

at angle
Γwp

2
. However, the polarization after the analyzer will always be linear horizontal. This

single exiting polarization is desirable, because it means optical components following the polarizer

will always see the same polarization allowing us to ignore polarization effects after the analyzer.

7.1.1.1 Analyzer Optics Optimization

It is important that we are able to properly align all the components in CAPABL’s polar-

ization analyzer to obtain the high polarization accuracy required for diattenuation measurements

of oriented scatterers. For this purpose, an alignment procedure was developed for the polarizer,

VWP and QWP that make up the polarization analyzer.

The VWP has no capability to rotate in its mount, so its orientation defines 45◦ in the

analyzer setup. All other components must be aligned to it. To start, the configuration shown in

Figure 7.2 is used where an arbitrarily polarized laser is passed through a polarizer P1, the VWP

and then a second polarizer P2 after which the laser light is detected. Both polarizers are roughly

aligned to pass horizontally polarized light. In this configuration, P1 is not a permanent part of

the setup and will be removed after optimization takes place. The Mueller matrix description of
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the setup in Figure 7.2 is

Idet(θ1,Γwp, θ2) = ~oP(θ2)V(Γwp, 45◦)P(θ1)~Sin, (7.3)

where Idet(θ1,Γ, θ2) is the received intensity on the detector which is a function of polarizer angles

θ1 and θ2 and the VWP phase shift Γ. The output column vector denotes that only intensity is

measured

~o =
[

1 0 0 0

]
, (7.4)

and ~Sin is the input Stokes vector of the laser light. For simplicity, we will assume the input laser

light is unpolarized and of intensity 1. Evaluating Eq. (7.3) we find the detected intensity is given

by

Idet(θ1,Γwp, θ2) =
1
4

(1 + cos Γwp cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2) . (7.5)

A relatively simple Labview program is written to modulate the phase shift Γwp on the VWP so

that it passes through all values from 0 to π. In Eq. (7.5) we see that the maximum and minimum

detected intensities of this modulation will correspond to Γ = 0 and Γ = π respectively. Recalling

that the polarizers are set near horizontal, the maximum intensity is

Idet(θ1, 0, θ2) =
1
2

cos2 (θ1 − θ2) , (7.6)

and the minimum is

Idet(θ1, π, θ2) =
1
2

sin2 (θ1 + θ2) . (7.7)

If we measure the peak-to-peak intensity as a function of polarizer angle, it is given by

Ipp(θ1, θ2) = Idet(θ1, 0, θ2)− Idet(θ1, π, θ2) =
1
2

cos 2θ1 cos 2θ2. (7.8)

Thus, each polarizer may be independently set to horizontal (rotation angle of 0◦) by maximizing

the peak-to-peak intensity. The peak-to-peak intensity should be maximized by rotating P2 for

proper alignment of the optic in the analyzer. The polarizer P1 should also be aligned to horizontal

through the same procedure to ensure proper alignment of the QWP in the next step.
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Figure 7.3: Final schematic of optics for analyzer optimization. With P1 and P2 horizontal, the
QWP is added and aligned to horizontal. After optimization is complete P1 is removed.

We now insert the QWP between P1 and the VWP as shown in Figure 7.3 so that its fast

axis is roughly horizontal. Through the previous steps, the orientations of the two polarizers have

already been set to 0◦ and the detected intensity is now

Idet(Γwp, θq) = ~oP(0◦)V(Γwp, 45◦)Q(θq)P(0◦)~Sin (7.9)

where the orientation of the QWP fast axis is θq. Eq. (7.9) then simplifies to

Idet(Γwp, θq) =
1
4
(
1 + cos Γwp cos2 2θq − sin Γwp sin 2θq

)
. (7.10)

We continue to modulate the phase of the VWP and the maximum detected intensity will either

correspond to (Γ = 0, θq = 0) or
(
Γ = −π

2 , θq = 45◦
)
. Because the QWP was inserted near hori-

zontal, the closest maximum in intensity corresponds to a horizontal fast axis. This means there

should not be a significant phase shift in the modulated intensity when optimizing the QWP. The

incorrect maximum would result in a phase shift of π
2 .

If the alignment angle of the QWP is not known when it is inserted into the setup, it is

possible to determine this by observing the change in intensity maximum as a function of QWP

rotation. Acceptable orientations exist at θq = m45◦ where m is an even integer including zero.

Undesirable orientations exist where m is an odd integer. If a maximum in intensity is found,

the QWP can be rotated by 90◦. If this rotation does not cause a π phase shift in the intensity

waveform, the correct (even) m was chosen. If this rotation causes a π phase shift in the modulated
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intensity waveform, wrong (odd) m was chosen.

Once the QWP in the analyzer is aligned to horizontal, the polarizer P1 is removed. The

remaining optics make up the polarization analyzer as described before.

This optical configuration can also be used when m is odd to determine the fast axis of a

QWP. If we know the fast axis is either aligned to 45◦ or −45◦, the cosine term in Eq. (7.9) becomes

zero. If the fast axis is aligned to 45◦, the detected intensity will modulate π out of phase with the

VWP phase shift. However, if the fast axis is aligned to −45◦, the intensity will modulate in phase

with the VWP phase shift.

7.2 VWP Control

The Meadowlark Variable Retarder imposes a voltage controlled phase shift between polar-

ization modes. However the exact phase shift drifts as a function of wavelength and temperature.

CAPABL is contained in a temperature controlled room at Summit. However, some temperature

drift does occur in the room. A sensitivity analysis of diattenuation measurements for a relative

phase shift error of ∆Γwp is performed. For a depolarizing medium, the received photon counts as

a function of phase shift on the VWP are given by

NRX(Γwp) =
N0

2
[1 + (d− 1) cos Γwp] , (7.11)

where d is the medium depolarization for axially symmetric randomly oriented scatterers given

by the scattering matrix in Eq. (3.5) and Γwp is the phase shift of the VWP. The objective of

diattenuation measurements with CAPABL is to identify oriented scatterers. Thus, the primary

concern is avoiding false positives in the presence of strictly randomly oriented scatterers.

Let error in VWP retardance due to temperature changes be approximately the same for

all measurements. Because the room where CAPABL operates is heated through standard HVAC

systems, this error is generally small. The received photon counts for a target phase shift Γwp and

phase shift error ∆Γwp is expanded to first order

NRX(Γwp) ≈
N0

2
[1 + (d− 1) cos Γwp]−

N0

2
(1− d)(sin Γwp)∆Γwp. (7.12)
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In the above equation, the second term corresponds to error in the detected photon counts. The first

order error sensitivity of the perpendicular and parallel measurements at Γwp = 0 and Γwp = π are

zero. Also, if we evaluate the higher order expansion terms, they will always be equal and opposite.

Since the two terms are summed in diattenuation calculations, their error terms will cancel. Thus,

diattenuation measurements are relatively insensitive to VWP phase error in the perpendicular and

parallel channels. Instead of employing active feedback, we can periodically recalibrate the VWP

voltage settings and still maintain accurate measurements.

The 45◦ polarization measurement is made at Γwp = π
2 where Eq. (7.12) has maximum

sensitivity to ∆Γwp. If we evaluate the measured diattenuation using Eq. (7.12) we find

Dq = (1− d)∆Γwp. (7.13)

Because we are only considering randomly oriented scatterers here, Dq is strictly related to error.

Thus, non-diattenuating scatterers can be used to determine the phase error of the VWP. This

error, in turn, can be used in a feedback loop to control the VWP voltage for 45◦ polarization

measurements.

To avoid costly additions to CAPABL’s hardware, we close the feedback loop for VWP control

in the control software using part of the lidar profile. However, to make precise corrections to the

VWP voltage, the shot noise uncertainty must be low. Low altitude signals are used to close the

feedback loop, where signals are strong and therefore have high SNR. To obtain a diattenuation

uncertainty less than 0.01, however, we still must integrate the profiles in the feedback loop. Longer

integration has the effect of reducing the control bandwidth. Phase shift drift caused by temperature

fluctuations are expected to be slow, so system bandwidth is only a concern with regard to settling

time when first closing the loop.

The total feedback control loop is shown in Figure 7.4. The input control signal is zero,

because for non-diattenuating scatterers, we want to drive the detected diattenuation to zero.

The control loop gain H is a constant determined through control system design. It includes

conversion from VWP phase error to VWP voltage error, as well as the necessary gain for maximum
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Figure 7.4: Block diagram of VWP feedback control for the 45◦ polarization measurement. More
integration in G(z) reduces uncertainty in the error estimate, but also slows down the feedback
loop. The loop controls the measured diattenuation of the closed loop altitude to zero.

convergence speed while maintaining stability. The calculated correction is added to the previous

VWP voltage. The new VWP voltage is applied to the 45◦ polarization measurement, denoted

by C which converts VWP voltage back to phase shift. This VWP setting is used to detect the

diattenuation of the atmospheric phase matrix F and receiver matrix MRX. Note that the result of

this scattering problem is dependent on number of photons entering the receiver N0, depolarization

of the scatterer d and the VWP phase Γwp. From this Mueller matrix calculation, the N45 photon

counts are determined. Since this scattering problem is well defined, the function can be simplified

to

N45 =
N0

2

[
1− (1− d)(Γwp −

π

2
)
]
, (7.14)

where π
2 is the ideal phase shift for the 45◦ polarization measurement.

The resulting N45 signal is then fed into the integrator G(z) which is designed to reduce shot

noise uncertainty in the calculated error signal and is given by

G(z) =
1

K + 1

K∑
k=0

z−k, (7.15)

where K is the total number of integrations needed to sufficiently suppress shot noise. The last

block, calculates the scatterer diattenuation using the measured polarization channel photon counts
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at the feedback altitude.

The total transfer function from measured photon counts N45 to measured diattenuation is

given by
Dq(z)
N45(z)

=
(G(z)− 1) (z − 1)

z − 1 + zH(1− d)G(z)C
. (7.16)

Figure 7.5: Largest pole magnitude of CAPABL feedback transfer function as a function of loop
gain H. For this analysis the integrator G(z) performs 100 integrations. For the VWP control loop
to be stable, the magnitude of all poles must be less than one.

The poles of this transfer function determine the stability of the system. A discrete time

system is stable when all poles are inside the unit circle. Thus we first choose the number of

integrations in G(z) to obtain a sufficiently low diattenuation resolution for the system. We then

select H so that all poles are in the unit circle. Figure 7.5 shows the maximum magnitude pole in

Eq. (7.16) for K = 100 integrations. In this case, the feedback loop is stable for feedback gain less

than 0.007. However, the rate at which the VWP reaches steady state is determined by the slowest

pole which converges as

∆Γwp[n] = |pmax|n, (7.17)

where n is the discrete time step and pmax is the pole with the largest amplitude. As the largest
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Figure 7.6: Diattenuation error of CAPABL determined by calculating diattenuation of the feedback
altitude where the scattering matrix diattenuation is assumed to be zero. The feedback loop is closed
at time zero where the error begins to fall. After 10 minutes the error stabilizes to less than the
shot noise limited diattenuation resolution at the feedback altitude (red dashed lines) of ±0.0015.
This defines the diattenuation measurement accuracy of the system.

pole approaches 1, the rate of convergence will become infinite. For this reason, when K = 100 we

want to choose H = 0.002 where the rate of convergence is maximum (the magnitude of the largest

pole is minimized).

CAPABL was run with a 100 dataset integrator (K = 100) using scattering data from 0.1

to 0.7 km to close the feedback loop. Each dataset integrated 1000 shots from the 2kHz laser.

The gain was set to H = 0.004 and the diattenuation of the feedback altitudes was observed. The

result is shown in Figure 7.6. The starting VWP voltage for the 45◦ polarization measurement was

significantly off the desired phase shift, resulting in an erroneous diattenuation measurement larger

than 0.4. With the feedback loop active, the diattenuation converges toward zero, dropping below

the resolvable diattenuation of the feedback loop after approximately 10 minutes. The diattenuation

of the feedback altitude then remains at zero for the remainder of the run.
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Figure 7.7: Total log backscatter detected by the CAPABL high altitude channel on June 14, 2010.

7.3 Preliminary Data

CAPABLE has run nearly continuously since May 2010, collecting polarization data using

the P45P technique outlined in Chapter 4. For the first year of operation, the lidar is pointing

near zenith (2◦ off zenith). In this configuration, horizontally oriented ice crystals do not exhibit

diattenuation. Because horizontally oriented ice crystals are the only oriented scatterer events

known to be regularly observed, it is regarded as unlikely that any data should show diattenuation

signatures from oriented scatterers when the lidar is in this configuration. This expectation is used

as a diagnostic to understand potential false positives in oriented scatterer detection.

Detector nonlinearity has been identified as the most significant contributor to error in CA-

PABL’s diattenuation measurements. If the parallel measurement has lower photon count gain due

to detector nonlinearity than the 45◦ or perpendicular measurements, diattenuation estimates will

be biased. For diattenuation to be measured as zero, N45 must be exactly half of the total received

power. Thus when the parallel channel reports less than the actual number of received photons,
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Figure 7.8: Diattenuation detected by the CAPABL high altitude on June 14, 2010. Detector
nonlinearities result in false positives for oriented scatterers.
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Figure 7.9: Diattenuation detected by the CAPABL low altitude on June 14, 2010. Note the non-
zero diattenuation signature of the cloud near the end of the data set in Figure 7.8 is observed as
zero on this lower gain channel.
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the measured diattenuation shifts positive. Figures 7.7 and 7.8 show the log backscatter and diat-

tenuation profiles of the high altitude data channel taken on June 14, 2010. Between times 20:00

and 0:00 UT a cloud descends from 2000 to 1000 m. The cloud appears to exhibit a significant

diattenuation of approximately 0.2. We also analyze the corresponding low altitude data where the

diattenuation profile is shown in Figure 7.9. Due to the reduced efficiency on the the low altitude

channel, the detector stays linear for higher backscatter signals. Here we clearly see that the cloud

exhibits no diattenuating effects. Nonlinearity does however occur in the low altitude channel from

returns below 200 m between 00:00 and 06:00 UT. Thus detector nonlinearity presents an issue for

false positives in detection of oriented scatterers. To test our confidence in cloud data, we check

the corresponding photon count rate of diattenuating signals to determine if they are within the

linear range of the detectors. Also, we check for consistency in diattenuation calculations from the

lower and upper altitude detection channels.

A second issue relating to detector nonlinearity arises when low altitude fogs and aerosols

are present. These events result in very high backscatter levels at low altitudes as well as high

extinction, so backscatter data cannot be retrieved above the fog. In these cases, saturation effects

corrupt the feedback signal of the VWP controller. When this happens, the feedback loop controls

the profile to cancel the apparent positive diattenuation induced by detector nonlinearity. This

effect is most easily seen in Figure 7.9 though the high altitude channel is also subject to this effect.

The mean diattenuation profile is shifted by -0.2 due to a saturated feedback loop signal between

00:00 and 06:00 UT. We have attempted to turn off the feedback loop when low altitude clouds

that may corrupt the feedback signal are present. However, drift in the VWP phase shift can

occur and it is difficult to support findings of oriented scatterers under these conditions. For this

reason, diattenuation data is generally ignored when the feedback signals are corrupted by strongly

backscattering clouds.

On July 10, 2010, there was substantial cloud cover and precipitation over Summit Camp.

The backscatter, diattenuation and linear polarization ratio measurements performed by CAPABL

are shown in Figures 7.10, 7.12 and 7.11. Because CAPABL can determine if scatterers are oriented,
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Figure 7.10: Log backscatter profile recorded by CAPABL on July 10, 2010. Clouds are present
throughout the day with frequent precipitation.

we can accurately determine the meaning of the parallel and perpendicular signals. Thus, we have

a built in check for when it is appropriate to report data as d or the f33 matrix element. Since no

diattenuation signature is found in the July 10 data, depolarization is reported.

During this dataset collection, the VWP feedback loop is turned off when low altitude clouds

are present. This is why diattenuation data drifts off zero between 15:00 and 16:00 UT. This drift

does not affect the depolarization estimate since the perpendicular and parallel measurements are

not controlled by the feedback loop.

The depolarization data from CAPABL indicates that the clouds above the lidar consist of

liquid water due to their low depolarization. However, before 7:00 UT the precipitation below the

clouds is strongly depolarizing. It appears that the precipitate is freezing as it falls, then melting

back to liquid water below 500 m where it ceases to depolarize. After 7:00 UT, the depolarization

signature of the precipitation decreases substantially, suggesting that it remains in liquid phase
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Figure 7.11: Depolarization profile recorded by CAPABL on July 10, 2010. While the clouds are
not depolarizing, some precipitation is. This suggests the precipitation may be freezing as it falls.
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Figure 7.12: Diattenuation profile recorded by CAPABL on July 10, 2010. Because the diat-
tenuation signatures of the clouds are zero, we can reliably assume their scattering matrices are
depolarizing. Between approximately 16:00 and 17:00 UT the feedback loop for the VWP is turned
off due to low altitude cloud presence.
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throughout its fall.

7.4 Detection of Horizontally Oriented Ice Crystals

Over the course of the past year, we have been able to establish the necessary conditions

to reliably measure diattenuation with CAPABL, ensuring confidence that detection of a non-zero

diattenuation signature is attributable to oriented scatterers. On April 23, 2011, CAPABL was

tilted 11◦ off zenith and a HWP was added to above the last steering mirror in the transmitter.

The selected tilt angle coincides with the maximum diattenuation resolution determined by the

system simulation using P45P in Chapter 4. The HWP was used to rotate the outgoing linear

polarization angle to φf = π
4 .

After tilting the lidar, we were able to identify several non-oriented scattering occurrences.

Depolarizing clouds and precipitation and non-depolarizing clouds were observed without diatten-

uation signatures (see Figure 7.13). However, on several days in early May we also observed events

not previously seen when the lidar was pointing along zenith.

On May 7, 2011, CAPABL observed a diattenuation signature that appeared to coincide

with a cloud at an altitude of 500 m (see Figures 7.14 and 7.15 for time integrated backscatter and

diattenuation and 1−f ′33 profiles respectively). During that same time, a higher altitude cloud with

no diattenuation, low depolarization and stronger backscatter (presumably a liquid water cloud)

was observed at an altitude of 700 m. Also, persistent depolarizing ice precipitation was observed

by the instrument below this 700 m cloud. The occurrence of ice precipitation from liquid clouds

has been observed by CAPABL many times above Summit including the data shown in Figures

7.10, 7.12 and 7.11 from July 10, 2010 in the previous section.

At 500 m, corresponding to the diattenuating cloud layer, 1 − f ′33 distinctively approaches

0 which suggests a decrease in depolarization (f ′33 = d − 1 in the presence of nondiattenuating

scatterers) and low retardance. There are two facts supporting that the cloud diattenuation is

not caused by the detector nonlinearity previously responsible for false diattenuation signatures.

First, the depolarization calculations contain the stronger parallel signal in the denominator. If
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Figure 7.13: Collected polarization data of a nondepolarizing cloud at an altitude of 700 m with
depolarizing precipitation below it. No diattenuation signatures are recorded for cloud or precipi-
tation.
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detector nonlinearity is occurring, this would cause the denominator to be smaller than its actual

value and result in increased depolarization and 1 − f ′33 estimates. The fact that the 1 − f ′33

profile approaches 0 where diattenuation is observed presents a circumstantial argument in favor of

actual atmospheric diattenuation because this behavior is counter to that expected due to detector

nonlinearity. Second, we observe some detector nonlinearity in the diattenuation profiles below 200

m and the cloud at 700 m. Both have photon count arrival rates higher than that observed in the

cloud at 500 m but neither produces a diattenuation signature as large as that observed at 500 m.

Thus it is unlikely that detector nonlinearity is responsible for the diattenuation signature observed

at 500 m on May 7. The profiles described and shown here where integrated between the times of

18:40 and 18:53 UT.

Unfortunately, the low altitude channel has not been operating properly since tilting the lidar

instrument, so we cannot compare diattenuation measurements from the two channels to further

validate this measurement.

This early data suggests that CAPABL can detect horizontally oriented ice crystals using their

unique polarization signatures. A successful campaign detecting oriented scatterers may have broad

implications. Diattenuation measurement enables lidar systems to detect oriented scatterers within

the same dynamic range as other aerosols. This may make collection of data on oriented scatterers

more prevalent and finally allow for comprehensive climatological studies on this subject.
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Figure 7.14: Backscatter profiles from May 7, 2011 integrated from 18:40-18:53 UT. The backscatter
profiles are presented as the sum of the perpendicular and parallel channels, which is the total
backscattered photons, and 2× the 45◦ channel. If no diattenuation is present, the two profiles
should be equal. Also included is the shot noise error of the measurements. Two clouds are observed
at 500 and 700 m with precipitation below 700 m. The cloud at 700 m has no diattenuation signature
and low depolarization suggesting it is composed of liquid water. The precipitation below the cloud
has no diattenuation signature but is strongly depolarizing suggesting it is ice precipitation. The
second cloud at 500 m has a strong diattenuation signature and low 1− f ′33, suggesting it may be
composed of oriented ice crystals. Note that the cloud at 700 m has slightly higher backscatter
than that at 500 m and the low altitude returns at 190 m are approximately an order of magnitude
greater than the diattenuating cloud. If detector nonlinearity were responsible for the signature at
500 m, the measured diattenuation at the layers of higher signal should be even greater.
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Figure 7.15: Diattenuation and normalized 1 − f ′33 profiles from May 7, 2011 integrated from
18:40-18:53 UT (same data as in 7.14). When no diattenuation is observed, 1 − f ′33 = d, thus
giving depolarization except where the diattenuating cloud is present. Note the reduction in 1−f ′33

observed at approximately the same altitude as the diattenuation signature.



Chapter 8

Conclusion

In my graduate work I have shown that a Mueller matrix approach to polarization lidar pro-

vides a comprehensive description of all terms along the optical path and improved clarity for the

measured polarization quantities. While the scalar equations often used to describe polarization

lidar cannot fully account for polarization effects in the optical system, a Mueller matrix approach

allows for a complete understanding of how system retardance, diattenuation and depolarization

impact polarization and backscatter measurements. Thus through Mueller analysis, error contri-

butions of these optical system effects can often be mitigated or avoided.

Current polarization lidar theory assumes the lidar measures only perpendicular and parallel

polarizations relative to the original transmit polarizations. This this limits the development of

new measurement techniques that may be better suited to a particular sensing objective, such as

identification of horizontally oriented ice crystals.

It is not clear how conventional polarization scattering descriptions β⊥ and β‖ relate to

scattering theory which uses a sixteen element phase matrix for polarization descriptions. As a

result, the data product commonly used to describe polarization results, the polarization ratio δ, is

not uniquely related to the phase matrix of an arbitrary scatterer. When scatterers are randomly

oriented and axially symmetric, we can fairly easily assume the scattering matrix form. However,

in some cases, such as oriented ice crystals, it is unclear what matrix terms are contributing to

the measured polarization ratio. In such a case, the data product is a function of the incident

polarization. This means that two lidars interrogating the same scattering volume could measure
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different polarization ratios if they do not use the same polarizations.

As part of my graduate work I have developed the Stokes Vector Lidar Equation (SVLE),

which is a fully general polarimetric description of polarization lidar. Through this theoretical

development I have been able to perform a full error analysis on all polarization sensing techniques

used in this work. This general approach to polarization error has helped us identify particular

cases of atmospheric scattering that may be problematic for our instruments. It also allows us

to ensure that data is recorded to properly check the instrument performance. In CAPABL, we

record the data used by the feedback loop to control the variable wave plate. This allows us to

check the polarization performance of the instrument, rather than blindly assume all recorded data

is accurate.

Using the SVLE, I also developed error mitigation techniques. I developed a general tech-

nique for canceling retardance in an optical system using a compensator consisting of two quarter

wave plates (QWP). However, implementation of this technique often proved to be time consuming

because the full system Mueller matrix had to be measured to correctly configure the compen-

sator. I was able to make implementation of compensation significantly easier by developing a

laboratory technique to set the QWP angles in the compensator without ever measuring the opti-

cal system Mueller matrix. That compensation optimization technique was subsequently used to

cancel retardance in ARCLITE’s transmitter and receiver.

Though I was able to cancel ARCLITE’s retarding effects, depolarization in the receiver

still presented a significant problem for polarization measurements. However, again aided by the

SVLE, I was able to develop a software correction technique that drastically improved the accuracy

of ARCLITE’s polarization measurements. This software correction was able to remove a num-

ber of polarization effects from ARCLITE’s measurements including retardance in the receiver,

depolarization in the transmitter and receiver, and misalignment of the transmitter and receiver

polarization planes. While this software correction is confined only to scattering cases where the

volume consists of randomly oriented axially symmetric particles, we find this is generally the case

for ARCLITE measurements.
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The scattering matrix of oriented ice crystals do not conform to the same simple form exhib-

ited by their randomly oriented counter parts. Never-the-less, almost every polarization measure-

ment performed on oriented scatterers is that of the polarization ratio, which offers little distinction

between randomly oriented and oriented ice crystals. Using the SVLE, I was able to incorporate

full scattering descriptions of oriented ice crystals and give full consideration to how we can use

polarization to identify them. The distinguishing characteristic in oriented scattering matrices is

the presence of nonzero off diagonal terms. To identify these terms however, it became quite ob-

vious that a different kind of polarization lidar would be needed. By applying the SVLE to this

scattering problem, I designed a new polarization measurement for the diattenuating properties of

the scatterer.

To perform this measurement I developed two techniques. The Parallel-45-Perpendicular

(P45P) technique was used in CAPABL and allowed the instrument to still measure the conventional

parallel and perpendicular polarizations. However the addition of a 45◦ polarization measurement

also allows the lidar to measure the (1,2) diattenuation element of the scattering matrix.

The Alternating Cross Polarized (ACP) technique measures only the (1,2) element of the

scattering matrix. However it has the benefit of being insensitive to retarding and depolarizing

effects in the lidar receiver, because it does not use an analyzer. Thus the ACP technique disproves

a common misconception that polarization lidar must have a polarizer in the receiver.

Through application of polarization effect mitigation, I applied ARCLITE’s high altitude

sensing capabilities to the problem of polar mesospheric cloud (PMC) particle shape through de-

polarization measurements. Unfortunately, even with ARCLITE’s substantial transmit power and

receiver aperture, the signal-to-noise on all PMC detections was not sufficient to resolve the PMC

depolarization. However I was able to contribute further analysis to the necessary modifications

for ARCLITE to achieve this objective.

Since its deployment the Cloud Aerosol Polarization and Backscatter Lidar (CAPABL) has

been tested for possible issues in oriented scatterer detection. To assess the possible contributers

to false positives, CAPABL collected data while pointed only 2◦ off zenith for a year. In this mode
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of operation, horizontally oriented ice crystals (presumably the most common form of oriented ice

crystals) would not produce diattenuation signatures. Thus all instances of nonzero diattenuation

were investigated to determine their cause. These cases allowed us to either implement solutions

to prevent incorrect measurements or ignore instances where CAPABL does not have established

accuracy. On April 23, 2011, CAPABL was tilted 11◦ off zenith to begin a campaign to look for

oriented ice crystals. In early May, a number of promising profiles were observed.

Since until now, this diattenuation measurement has never performed, we did not previously

know if the selected tilt angle would be sufficient for detecting horizontally oriented ice crystals.

Also, given the possibility that oriented ice crystals are diluted by randomly oriented crystals,

we did not know if the instrument would have sufficient resolution to detect any diattenuating

signatures at any tilt angle. The diattenuation profiles measured by CAPABL in May appear to

vindicate this approach to detecting oriented ice crystals. This may help to establish the Stokes

Vector Lidar Equation as a theoretical standard for polarization lidar, by demonstrating the power

of full polarization optical theory when applied to atmospheric remote sensing.
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Appendix A

T-Matrix Function Definitions

Function definitions of for VWSF in T-matrix calculations[52]:

Mmn(kR) = (−1)mdnh(1)
n (kR)Cmn(ϑ) exp(imϕ) (A.1)

Nmn(kR) = (−1)mdn

{
n(n+ 1)
kR

h(1)
n (kR)Pmn(ϑ) +

1
kR

[
kRh(1)

n (kR)
]′

Bmn(ϑ)
}

exp(imϕ) (A.2)

Bmn(ϑ) = ϑ
d

dϑ
dn0m(ϑ) + ϕ

im

sinϑ
dn0m(ϑ) (A.3)

Cmn(ϑ) = ϑ
im

sinϑ
dn0m(ϑ)−ϕ

d

dϑ
dn0m(ϑ) (A.4)

Pmn(ϑ) = R
dn0m(ϑ)
R

(A.5)

dn =
[

2n+ 1
4πn(n+ 1)

]
. (A.6)

h
(1)
n is the spherical Hankel function.

R is the coordinate of observation in the particle coordinate frame.

R is the distance from the origin in the particle coordinate frame.

k is the incident wave number.

ϑ is the zenith angle of observation in the particle coordinate frame.

ϑ is zenith angle unit vector.

ϕ is the azmuthal angle of observation in the particle coordinate frame.

ϕ is the azmuthal angle unit vector.
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Wigner d amd D functions definitions[88].

dnlm(ϑ) = Anlm(1− cosϑ)(l−m)/2(1 + cosϑ)−(l+m)/2

× dn−m

(d cosϑ)n−m
[(1− cosϑ)n−l(1 + cosϑ)n+l]

(A.7)

Anlm =
(−1)n−m

2n

[
(n+m)!

(n− l)!(n+ 1)!(n−m)!

]1/2

(A.8)

Dn
m′m(α, β, γ) = exp(−im′α)dnm′m(β) exp(−imγ). (A.9)


