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Abstract

We describe a method for introducing variations into predefined dance se-
quences using a chaotic mapping. A symbol sequence representing a dance
piece is mapped onto a chaotic trajectory, establishing a symbolic dynamics
that links the dance sequence and the attractor structure. A choreographic
wvariation on the original piece is created by generating a trajectory with
slightly different initial conditions, inverting the mapping, and using special
corpus-based interpolation schemes to smooth any abrupt transitions. Sen-
sitive dependence guarantees that the variation is different from the original;
the attractor structure and the symbolic dynamics guarantee that the two
resemble one another in both esthetic and mathematical senses.

1 Introduction

This paper describes a chaotic mapping technique that creates variations on predefined
dance sequences. A sequence of specialized symbols representing the body positions
in a dance piece is mapped onto a chaotic attractor, establishing a symbolic dynamics
that links the dance progression and the attractor geometry. We then use this mapping
to create a choreographic variation by generating a new trajectory — with the same
dynamic system and slightly different initial conditions — and then inverting the map-
ping. Sensitive dependence guarantees that the variation is different from the original;
the attractor structure and the symbolic dynamics guarantee that the two resemble one
another in both the esthetic and the mathematical senses.

To establish the mapping between an N-move dance sequence, like the one shown
in figure 1, and a chaotic attractor, we first integrate a chaotic ODE system =
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Iigure 1: A seven-position ballet jump sequence

f(z), z(t) € R™ numerically from some initial condition zo. We then use a Voronoi
diagram to partition the state-space region occupied by the w-limit set @, (2o) of this
trajectory into IV cells. Finally, we label the itinerary of cells traced out by @, (=) with
special symbols that represent the sequence of body positions in a predefined dance
piece. To create a variation, we then generate a new trajectory ¢(z’) from an initial
condition z’ near the attractor and invert the mapping: at each timestep, the dance
move corresponding to the cell in which ¢(z’) falls is sent to an animation tool.

This work was catalyzed by a similar scheme, proposed by Diana Dabby|[2, 3], that
uses a related mapping to generate musical variations. The core idea here is the same,
but many of the issues and tactics — together with much of the mathematics — are very
different. The symbol set is one obvious distinction. There is a simple, well-established
notational scheme for music, but body positions are much harder to represent; we use
representational techniques from rigid-body mechanics to solve this problem. The math-
ematics of the mapping is also very different; Dabby uses a simple metric on a projection
of a transient trajectory to define cells, whereas we work with a full, formal symbolic
dynamics on the attractor, derived using computational geometry techniques. Finally,
while musical instruments can play arbitrary pitch sequences, kinesiology and dance
style impose a variety of constraints on consecutive body postures. To address this
problem and smooth any abrupt transitions introduced by the chaotic mapping, we
have developed a class of corpus-based interpolation schemes that capture and enforce
the dynamics of a given dance genre.

The results produced by these mapping and interpolation algorithms have intrigued
both dynamicists and dancers. The chaotic variations bear an obvious resemblance to
the originals®, and yet they are also clearly different; broadly speaking, the variations re-
semble the originals with some shuffling of coherent subsequences. When contrasted with
random shuffles of the same sequences, the properties of this scheme become even more
apparent: the randomized “variations” bear no temporal resemblance to the original
whatsoever. It is impossible to appreciate these results from a textual description; please
see the animations at http://www.cs.colorado.edu/~1lizb/chaotic-dance.html.

2A well-known dynamicist opined “It looks like Al Gore doing the macarena.”



{pelvis, 0.37187, 0, 0, 0.92823;
atlantal, -0.16417, 0, 0.00012, 0.98626;
cervical_1, 0, 0, 0, 1;

left_toes, 0, 0, 0, 1}

(a) | (b)

Figure 2: Symbolic representation of the human body: (a) the descriptor/quaternion
symbol, which specifies a vector and an angle of rotation around it for each of the 44
main joints in the body (b) the corresponding graphical representation used by the Life
Forms animation tool. '

2 Linking Attractor Geometry and Dance Struc-
ture

2.1 Symbolic Dynamics and Body Positions

A point in a state-space trajectory of a dynamic system can be described at different
precisions, ranging from a tuple of real numbers to a symbol that identifies a large
state-space region. Though the coarse-grained nature of the latter abstracts away much
detailed information about the dynamics, it preserves many of its invariant properties;
see, e.g., Hao[7] for details. Establishing such a symbolic dynamics[10] presents two
problems: the partition and the ordering. This paper offers novel and unusual solutions
to both: we use computational geometry techniques on points of a trajectory to obtain a
good partition, and we use the natural progression of body positions in a dance sequence
to induce the symbol order.

The symbol set used in our algorithms represents the position of each of the 44
primary joints in the human body with a quaternion — a standard representation in
rigid-body dynamics, dating back to Hamilton[6]. ' A quaternion @)(r,) consists of a
three-space vector @ and a scalar r that specifies the angle of rotation around that
vector. Thus, a body position symbol is quite complicated: 44 descriptors (pelvis,
right-wrist, etc.), 176 floating-point numbers (four for each joint), and a variety of
information about the position and orientation of the center of mass. See figure 2 for
an example. This complexity is simply a reflection of the representational task involved;
Labanotation[8], the graphically intricate system used by professional dance notators, is
even more baroque: attaining proficiency in its use requires years of practice.



Figure 3: A Réssler trajectory for a 300-move dance sequence and the associated Voronoi-
diagram partition of the attractor. The perpendicular bisectors of the circled trajectory
points in (a) yield the Voronoi diagram in (b). Line segments that extend beyond the
bounding box of part (b) have been omitted from this plot.

2.2 Tiling the Attractor

Creating a partition for the purposes of re-mapping a dance sequence requires tiling the
state-space region occupied by the attractor with N nonoverlapping cells, where N is the
number of moves in the sequence. To accomplish this, we first integrate a chaotic ODE
system & = f(z), z(t) € R with 4"*-order Runge-Kutta[12] from some initial condition
zo and let the transient die out. The requirements of the mapping limit the number of
cells to N, but the partition requires that the collection of cells cover the attractor, and
spurious numerical effects preclude simply increasing the time step until a fixed-length
(N-point) trajectory covers a given attractor. We address this by fixing the timestep
and trajectory length® and using a “skip” parameter, m, to control the spacing of the
trajectory points that are actually used to construct the cells. In figure 3, for instance,
m = 10, so every tenth trajectory point (shown circled) generates a cell. The specific
algorithm that we use to actually construct the cells, the Voronoi diagram[11], is drawn
from computational geometry; in it, one constructs the perpendicular bisector of every
adjacent pair of points and intersects them, as shown in figure 3. Note that a Voronoi
diagram is essentially the dual of a Delaunay triangulation. The actual implementation
uses K-D trees[5], rather than the usual Voronoi diagram construction algorithm, to
reduce the computational complexity of the nearest-neighbor step in the algorithm from

O(N?) to O(Nlog N).

3We choose values for these parameters that assure that the transient has died out, the attractor is
covered, and the dynamics include no spurious numerical effects.



Figure 4: Part of the chaotic mapping that links a longer version of the jump sequence
of figure 1 and the Rossler attractor geometry of figure 3.

2.3 Establishing and Using the Mapping

Given an N-move dance sequence, expressed in terms of the quaternion-based symbol
set described in section 2.1, and an N-cell Voronoi tiling of a chaotic attractor — like the
N = 300 example shown in figure 3 — establishing a mapping that links the attractor
geometry and the dance structure simply amounts to equating indices: the first entry in
the itinerary of cells traversed by the trajectory ¢, (zo) is labeled with the symbol that
describes the first position in the dance sequence, and so on?, as depicted schematically
in figure 4. Using this mapping to create a variation is equally simple, but slightly
more computationally expensive: we generate another trajectory ¢(z’) from an initial
condition 2’ near the attractor, use the K-D tree to determine the Voronoi cell in which
its first point falls, output the associated body-position symbol to an animation tool, skip
m points, and repeat to the desired variation length. For a 1000-position dance sequence,
the entire re-mapping procedure requires 18 milliseconds on a PowerMac running MacOS
7.5.5; without the K-D tree, it takes 30.2 milliseconds. The K-D tree advantage grows
with the sequence length: for a 9000-move sequence, the times are 156.2 and 2324.2,
respectively.

“This representation — a symbolic dynamics induced by that dance sequence — is conjugate to
the R" dynamics of ¢,,(z¢), which is interesting in that it implies that the animations are formally
equivalent, in a precise mathematical sense, to the “real” dynamics[7, 9]



3 Interpolation

The re-mapping scheme described in the previous section introduces abrupt transitions in
the chaotic variation — places where consecutive body positions would require physically
impossible or stylistically illegal moves. The interpolation scheme described in this
section inserts new body postures into these gaps in order to smooth the progression.
A simple and obvious way to do this would be to use splines or some other purely
mathematical technique on the quaternion data to manufacture new body positions
to span the transition. This does not, however, address the problem of stylistic or
kinesiological illegality; a spline-based interpolation may not, for instance, adhere to the
requirement that ballet motion is linear or that the elbow only bends 180 degrees. To
solve these problems, we use a corpus of human movement (e.g., ten Balanchine ballets)
to select a sequence of postures that would naturally occur between the two positions
that frame the abrupt transition. '

To this end, we use the corpus to build a labeled, directed graph G(V,E) that
captures the dance sequence. Each body position in the corpus is represented by one
vertex v; and each transition between successive postures is represented by an edge e;;
between the corresponding vertices. Figure 5 shows an example of such a graph. In
this formulation, an illegal transition — defined as one that is not present in the corpus
— is a pair of vertices v; and v, that are not linked by a single edge ¢, such as the
postures labeled a and ¢ in figure 5. When such a transition is encountered in the chaotic
variation, we use G(V, F) to compute an interpolation subsequence that starts with v,
ends with v,, and is consistent with the corpus. Specifically, we use a forward-backward
modified Dijkstra’s algorithm to find the shortest path in G between v; and v,,, and then
insert the body positions corresponding to the vertices traversed by that path into the
gap in the original sequence. In figure 5, for example, there are two two-edge paths that
link postures a and'c: {a = b — ¢} and { a — e — ¢ } . The abrupt transition { a
— ¢ } could be patched with either of these two subsequences. Dijkstra’s algorithm[4]
finds the shortest path from a single source vertex to all other vertices in a graph; if
more than one “shortest” path exists, as in figure 5, it returns the first one it encounters.
For the forward version, v; is used as the source vertex. For the backward version, v,
is used as the source and the orientations of the edges in (& are reversed. The forward
and backward algorithms are invoked simultaneously; each one progressively deepens its
search until a common vertex v,, is encountered. The paths from v, to v,, and from v,,
to v, are then merged to give the desired shortest path from v; to v,. The worst case
total running time of this algorithm is O((V + E)log, V)[1]. k

To better model and enforce the nuances of a particular movement style, we are im-
proving this scheme in two ways. The first involves finer-grained physical representation
and interpolation. Currently, the atomic representational unit is a full body position; the
next version will perform joint-wise interpolation instead — e.g., bridging a gap by mov-
ing the arm from its quaternion position in v; to its quaternion position in v, according
to the rules for arm movement implicit in the corpus, and so on, rather than searching
for and patching in full body positions. The second improvement involves probabilistic



Figure 5: A labeled, directed graph representing a small corpus of human movement.
Vertices represent postures observed in the corpus and edges depict movement sequences
between those postures. ‘



analysis of the transitions in the corpus. G(V, E) is currently a simple labeled, directed
graph, where transition legality is represented by the presence or absence of an edge;
to this, we are adding edge weights that represent a measure of the probability of each
inter-move transition. One logical choice for these weights is the negative log-likelihood:

w;; = —log(f:) + log(f;) — log(fi;),

where f; and f; are the frequencies of postures 7 and j and f;; is the frequency with
which posture j follows posture ¢. Small values for w;; correspond to transitions that are
more likely to occur. With this addition, the interpolation scheme finds more-natural
subsequences with which to smooth abrupt transitions. For instance, a five-edge path
may have a much higher probability than a two-edge path if the latter is only observed
rarely in the corpus, and adding edge weights to ¢ allows the interpolation scheme to
enforce that constraint.

Fine-grained, jointwise interpolation with log-likelihood edge weights, as described in
the previous paragraph, is theoretically a good solution for the problem at hand, but its
computational complexity is prohibitive. For example, if each joint can be in one of only
ten possible orientations, then G could contain O(10%®) vertices. One way to manage
this complexity is to use a hierarchical data structure that exploits the structure and
physics of the human body — the notion, for example, that the position of the wrist
strongly affects the position of the fingers but has little effect on the toes. The physical
structure of the human body is depicted graphically in part (a) of figure 6. We use a
tree to represent this structure in the form of dependency relationships between joints,
as shown in part (b) of the figure. The pelvis is the root of this tree; three branches lead
from this root to nodes corresponding to the right thigh/hip joint, the left thigh /hip
joint, and a joint representing the lower spine®. Each hip joint is the parent node to a
knee (n), and so on. Associated with each node of this tree is a graph that contains a
vertex for each observed state of the corresponding joint, together with a set of edges
that define how that joint reacts to movements of its parent joint. Figure 6(c) shows
an example: the graph associated with the lumbar-spine node [ in a tree built from a
corpus where that joint takes on two orientations l1, 13 and the pelvis takes on three:
p1, p2, ps. If the lumbar spine is in position /; and the pelvis moves from p; to ps,
then the lumbar spine will move to position I, with the probability associated with the
p1 — p3 edge from the node /4 in the graph in part (c)®. One can view this hierarchical
graph structure as a set of first-order Markov chains, in which a single chain represents
the orientation of each joint in the body. Each Markov chain contains a different set .of
state transitions and transition probabilities for each transition pair in the joint’s parent
node.

Many of the techniques in this section, as well as others on which we are currently
working, were inspired by solutions to similar problems that arise in molecular biology
(DNA sequencing) and computational linguistics (learning a grammar from a corpus and
then using it to construct meaningful sentences).

*The sacrum and the five lumbar vertebrae are lumped together; thls replesentatlon sacrifices some
back suppleness for lowered complexity.
SThese probabilities have been omitted from the figure for clarity.
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Figure 6: A hierarchical representation of the human body. The shaded ellipse is the
head; toes and fingers have been omitted for clarity. Part (a) depicts the body, with
all joints labeled. Bilateral joints are identified with subscripts according to the side of
the body on which they fall (e.g., right and left elbows e, and ¢;). Part (b) shows the
dependencies induced by the connectivity of the body: for instance, the position of the
pelvis influences the positions of both hips h, and h; and the lumbar spine I. The graph
in part (¢c), associated with the lumbar spine node [, captures how that joint reacts to
movements of its parent joint p, the pelvis.
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Figure 7: A ballet jump: the original sequence (above), a chaotic variation on. that
~original (middle), and an interpolated version of that variation (below). The moves
identified by arrows in the lower sequence were inserted by the interpolation scheme to

smooth an abrupt transition between the third and fourth moves in the chaotic variation
above it.

4 Results

Figure 7 shows the simple ballet jump sequence of figure 1, a chaotic variation of that
jump generated with the Lorenz system, and a smoothed version of that variation. The
sequence shown in the middle row of figure 7 was derived from the original using the
re-mapping scheme described in section 2. An abrupt transition is visible between the
third and fourth moves of this variation; the corpus-based graph-theoretic interpolation
scheme described in section 3 inserted two new moves to produce the smoothed sequence
shown at the bottom of the figure. Note that the inserted moves define a very natural
way to move between the two body positions that frame the abrupt transition.

While it is clear from the figure that the jump positions are indeed shuffled and
that the interpolated version is indeed smoother, it is impossible to appreciate these
results from a static portrayal of such a short sequence; please see the web site listed
at the end of the introduction for a variety of animated variations — the jump shown
above, a popular dance progression (the macarena), a martial arts “form” drawn from
the discipline of kenpo karate, and a medley of all three of these movement sequences.
Variations were constructed on each piece using two different chaotic systems (Lorenz
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and Rossler) in order to show how the attractor geometry affects the variation. Loosely
speaking, the variations resemble the originals with some shuffling of coherent subse-
quences; this is most obvious in the medley, where the variation clearly shifts back and
forth between genres. Where there is an obvious genre, such as the karate sequence,
the variation fits that genre. In fact, the point of using this sequence was the distinct,
well-defined structure of individual martial arts genres, and the goal was to determine
whether variations generated on kenpo karate sequences still looked, to the expert eye,
like kenpo — and not like shokotan karate or tae kwon do. We also present randomly
shuffled versions of each of the four pieces in order to demonstrate, by contrast, how
much structure is retained by the chaotic variation scheme. Perhaps the most telling
comparison is between the chaotic and randomized versions of the medley; segments of
the individual dances are clearly visible in the former and utterly absent in the latter.

These results set off a variety of interesting questions. For instance, a shorter dance
sequence implies larger cells and hence a “coarser” symbolic dynamics; this has interest-
ing effects on how smoothly the cell itinerary of ¢(z’) moves and shifts along the original
attractor, with corresponding implications for the animation and its resemblance to the
original piece. The attractor geometry plays a mathematically and visually obvious role
in the character of the variation; note the differences between the Lorenz and Rossler
pieces on the web site. It appears that the latter contains longer coherent original subse-
quences than the former, which is consistent with the Mbius-band nature of the Rossler
attractor, in comparison to the bilaterally symmetric two-lobed Lorenz geometry. We
are in the process of performing a statistical analysis on the two pieces in order to
determine whether these patterns are real or illusory.

Besides the animations and the associated explanation and analysis, the web site also
contains a simple animation package and the re-mapping code itself. We encourage the
readers (and their students) to create new animations and /or try different ODE systems,
initial conditions, and so on. New animations are particularly useful and extremely
welcome; the dance world has not yet embraced the notion of computer animation, so
the current critical limitation in this project is the inadequacy of the existing corpus —
on which our interpolation scheme depends”.

5 Conclusion

Evaluation of these results is necessarily subjective. We have shown these animations
to hundreds of people, including dozens of dancers. The consensus is that the variations
not only resemble the original pieces, but also are in some sense pleasing to the eye.
They are both different from the originals and faithful to the dynamics of the dance
genre: there are no jarring transitions or out-of-character moves. This is a non-trivial
accomplishment. A previous attempt to use mathematics to generate choreographic

“The remapping code does not yet handle center-of-mass interpolation smoothly, so movement se-
quences where the body moves from place to place will appear choppy. We are currently working on
this, but the issues involved — kinesiology, in particular — make it quite difficult.
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variations — a subsequence randomization scheme used by the well-known choreographer
Merce Cunningham — met with an extremely negative reception in the dance world.

From a scientific viewpoint, this scheme is interesting for several reasons. It involves
a formal (albeit unusual) application of symbolic dynamics, the properties of chaotic
attractors, and rigid-body mechanics: the partition for the symbolic dynamics is gen-
erated automatically using computational geometry techniques and the natural order
of the dance sequence, and the symbol set relies on a representational device invented
by Hamilton himself. By applying methods from graph theory, statistics, and com-
putational linguistics to a corpus of dances from a particular genre, the interpolation
scheme proposed here smooths awkward transitions in a physically and stylistically co-
herent fashion. Last, but certainly not least, showing these results in a classroom is an
enormously effective way to motivate students to learn the mathematics of rigid-body
dynamics and chaos.

Acknowledgements: Apollo Hogan contributed the K-D tree code and a variety
of good ideas to this project and Meenakshy Chakravorty helped set up the website and
write the associated animation code. The authors would like to thank both David Capps
of the University of Colorado Department of Theater and Dance and Dan Jurafsky of the
University of Colorado Department of Linguistics for helpful conversations, and Margo
Seltzer of Harvard University for suggesting and demonstrating the karate sequences.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1990. pp 527-531. '

[2] D. S. Dabby. Musical variations from a chaotic mapping. Chaos, 6:95-107, 1996.

(3] D. S. Dabby. A chaotic mapping for musical and image variation. In Proceedings
of the Fourth Experimental Chaos Conference, 1997.

4] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269-271, 1959.

(5] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Soft-
ware, 3:209-226, 1977.

[6] H. Goldstein. Classical Mechanics. Addison Wesley, Reading MA, 1980.

[7] B.-L. Hao. Symbolic dynamics and characterization of complexity. Physica D,
51:161-176, 1991.

(8] A. Hutchinson. Labanotation. The Dance Notation Bureau, NY, NY, 1970.

12



[9] D. Lind and B. Marcus An Introduction to Symbolic Dynamzcs and Coding. Cam-
bridge University Press, 1995.

[10] M. Morse and G. A. Hedlund. Symbolic dynamics. Am. J. Math., 60:815, 1938.

[11] F. P. Preparata and M. I. Shanos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985. ‘

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge
U.K., 1988.

13



