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STRUCTURE OF THE ELECTROMAGNETIC FIELD OF A
VERTICAL ELECTRIC DIPOLE AND OF VERTICAL ANTENNAS

IN THE SPACE ABOVE A PLANE EARTH*

By
G. N. Krylov and G. I. Makarov
INTRODUCTION

At the present time, great interest has arisen in the theory of radiowave
propagation in determining the structure of the electromagnetic fields of
radiators distributed over the surface of the earth. At small distances, the
curvature of the earth does not yet influence radiowave pfopagation and the
earth can be taken as planar.** An investigation of this probiem with all
factors taken into account is an extraordinarily difficult task, therefore
we have to limit our considerations only to those factors which exert the
strongest influence on the solution of the physical problem. In this paper,
the influence of the finite conductivity of the earth on the structure of
the electromagnetic field of a vertical electric dipole (VED) and of vertical

antennas will be investigated.

The classical statement of the problem of the field of a VED was made by

A. Sommerfeld as early as 1909 [2]. Since that time many authors have ad-
dressed themselves to this problem, and it is appropriate for us to discuss
here the following investigations, the closest in theme to ours of which we

are aware: those of K. A. Norton and P. A. Ryazin [3,4].

¥ Vestnik Leningrad. Univ. (ser. Fiz. Khim.}, No. 16, vyp. 3 (1960),
pp. 42-66. Translated from the Russian by E. F. Kuester, Dept. of Elec.
Eng., University of Colorado, Boulder. :

*% In the paper of Yu. K. Kalinin and E. A. Feinberg [1] it is shown that
this is valid for distances up to 100-150 km.
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In Norton's work, the most complete investigation of the electromagnetic field
structure of a VED in space was done using an approximate expression for the
Hertz vector, borrowed from the work of van der Pol [5], from the very beginning.
In his work, this approximate expression is improvéd so that the first teris of
the asymptotic éXpansions of. the exact and approximate Hertz vectors coincidec.
In later studies, additional approximations were made which were equivalent to
assuming i) that the earth constants were such that the problem could be solved
by the im;edance method [6], ii) that the distance from the dipole to the obser-
vation point was large compared to a-wavelength. Norton also considered the
electromagnetic field of a vertical antenna, which he obtained by integrating

a source function with the approximate expression for the Hertz vector of a
vertical dipole; in doing so, only one approximation was used to obtain compu-
tational formulas: that the heights of the ahtenna and of the observation
point were small compared to the distance between them. These indicated 1imita-
tions have a profound effect on the region of applicability of the expansions

he obtained and on the accuracy of his computations; thus, they are ill-suited
for computations in cases when the source or observation point is elevated,

but above all there is no way of checking the accuracy of these computations.

In P. A. Ryazin's paper, a study and systematization of rigorous expansions for
the Hertz vector obtained by a number of authors [7-10] was carried out, but
these expansions dealt only with one particular case - when the dipole and the
observation point are located on the surface of the earth. The expansions ob-
tained allow computations to be carried out only for the vertical component of
electric field; for the horizontal components it is then necessary to diffeven-

tiate with respect to the height, which does not appear in the expansions.
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Ryazin relied entirely on Norton's results to investigate the fields in space,
and therefore his investigations suffer from the same inadequacies indicated

above.

We also note the recently published paper of G. A. Zuikina [11] in which the
Hertz vector is studied both in the case of a plane and in the case of a spherical
earth. This work is of a purely numerical character and is concerned with a
study of the 1ong-kndwn attenuation function of a vertical dipole, and the
accuracy of computations using the attenuation function is not studied. The
concepts of “relative ground" and "mean phase velocity" introduced by the
author, in our opinion, hardly have any meaning. The concept of "mean phase
velocity" can have meaning for particular earth parameters and distances be-
tween receiver and transmitter, but the variation of this "mean phase velocity"
is of the same order as that of the distance or of the properties of the ground.
Moreover, the author makes a number of erroneous assertions, in particular
having to do with the final values of 4r and 4¢ maximum which do not agree

with the already long-known limiting phase relationships {121, however, since -
the author does not indicate how these quantities were computed, we must limit

ourselves only to commenting upon and not to discussing details.

The goal of this paper will be to obtain and study exact and asymptotic expan-
sions for the electromagnetic field components of a VED and of vertical antennas
located in an arbitrary fashion over the earth's surface, which will allow
field computations to be made at an arbitrary point in space. Primary attention
was paid to the problems of convergence of the expansions obtained and to the
accuracy of the calculations. Field patterns are investigated in the farfield
which allows the disturbance of the electromagnetic field structure in space

due to the finite conductivity of the earth to be determined, and the influence
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of other basic factors in the present problem, for instance the ionosphere, to

be gauged.

1. Formulation Qf the Prob]em

We will assume that a VED is situated at the point (h,o0), while the observation
point is located at (z', ) (in a cylindrical coordinate system). In studying
the vertical antenna problem, we will assume that the antenna is located at
p=o0 fromz =hy toz= h2 and that current in the antenna is sinusoidally

d1str1buted j = kj.sin ¢» where ¢ = k(h+ b) and b is some phase constant

o
(F1gure '1).

‘@ﬁi

I
(p9)

Figure 1 - Positions of Dipoles, Antennas, and Observation Points

As a startingvpoint for our investigations, we take the rigorous solution of
the_boundary»problem for the VED, wherein the Hertz vector is represented in

the form [3,14]1: ,
ikR . -
1 1 kH (xp) _
mo= o, + S -£ f—3—————enzxdx, (1)
k3n+ k m )

-~ Q0

inwhich z=2'+ h; n° = 1" - k2; m2 = 12 - k%; Re n;O; Re m;O.*

For the following investigations, it is convenient to subject the integrand of

the function o to some identity transformations:

2 @ @
T, = —El—:—:wié I, = _?Eﬂﬂﬁgf;, e Mada, 1 _?Tﬂgfgié “NZ,da (2)
z0 1 -1 P J n"+ kTa, 2" o k3ay

* The numbers k and k, refer to the wave numbers in air and in the earth
respectively (Trans?ator s note).
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where a, = (1+ 12)-]/2; T = k/k3; ay = g Re a, > 0; Re ay > 0, which turns
out to be suitable for obtaining rigorous expansions for computing the electro-
magnetic fields, while for obtaining approximate and asymptotic expansions it is

convenient to perform a somewhat different splitting of the initial integrai:

-y, T Hhee™ a Holrode ™™
s S Il M i | <R A | —w kg, A (3)

Having carried out the formulation of the problem, it is appropriate to say a

few words on the splitting of the initial form of solution into spaée wave,
surface wave, and earth wave. We must agree completely with the review paper

of T. Kahan and C. Eckart that the surface wave is not contained in the radiation
of the dipole, and only in viéw of the arbitrariness with which the cuts are
drawn is one allowed to split the initial form of solution into a branch cut
integral around r» = k, a residue, and a branch cut integral around x = K3,

which are usually identified with the three‘indicated waves [15]. However, in
this splitting of the integral, the residue comes into the expansion of the

space wave with opposite sign, so that their combination has no logarithmic

singularity at o = 0, which will be clear from the rigorous expansions to be

obtained herein.

It is useful to note that fok z # 0 the values of the integrals I, and Ig

will bring in a large contribution to the final solution with increasing z.

Each of these integrals describes a wave progressing along the paths AA' and

B'B in medium I and along the path A'B' in medium II (Fig. 2). As will be shown,
the influence of medium II on the magnitude of these integrals falls off
exponentiaily with increasing z, leading to an increase in the influence of
medium I. Because of this, the values of the integra]é I, and Ig cannot

be assumed small as z increases, and these must be computed in what follows.



Fig. 2. Influence of the field
of the earth wave on the field in space.

2. Transformation of the Initial Solution

Before proceeding with the investigation, we carry out an integral transfor-
mation on the integrals introduced in section 1; which leads to a representation
of the Hertz vector as a superposition of sphérical waves. A similar method

has been applied previouslj to a study of the case z = 0[7,4], but even for

z = 0, only one, vertical, electric field component of the dipole can be

calculated by known metheds.
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Fig. 3. Deformation of the Original Contour
of Integration to Carry out the Integral Transformation

Let us first consider the integral I]. The denominator of the integrand can

be expanded in a series in the neighborhood of the point at infinity in terms
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of negative powers of n. In order to obtain the final expansions it is
necessary to change the grder of summation and integration. To justify
this change we note that under the condition n > [ka,| the series can
be dominated by a geometric progression, amd therefore it is sufficient
to show that fhis condition is fulfilled over the entire contour. The
boundary of convergence of the expansion in inverse powers of n is deter-
mined by the equation |nj - LT These are curves of fourth order,
which afe obtained if a conformal transformation, putting a = kzx (Fig. 3},
is carried out on a circle of radius |a]|2 centered at x = 1 in the
x-plane. Based on Cauchy's theorem it can be verified that the original
contour can be deformed so that the condition |n| > |kay| is satisfied

over the entire contour, whence we obtain

(-]

- - . 2 _f -nz_-
I —Z: (1ka1) "szﬂ, Xv -f Ho(xp)e n Vada
\)‘0 o0
If now we use an alternative integral representation for the coefficients Xv,
obtained by Sommerfeld [2, p. 713],

1k* 1kR 2

2 2 2
T‘—?TTf_R‘** da Ry = ¥ (2405
0

as well as a representation of the r- function as a contour integral (16, p. 279]
and interchange the order of the integrations, we obtain a convenient represen-
tation for these coefficients
wik* 1kR + X
=1 dyd > 2,
'_'__“T J/. '__TT'——_'_ AQXs v 7

i X
™% 0

where the contour c is a circle centered at the origin with radius (1-¢)k and
¢ > O(Fig. 4). The interchange of the integrations is valid since |x] < (K|

and consequently the j)-integrais converge exponentially for any x.
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Fig. 4. Contours of Integration for the Inner Integrals
After Carrying out the Integral Transformations

If we now substitute the indicated expressions for the Xv into the summation
in (4) and change the order of summation and integration (over x), we arrive

at the desired integral representation for I].

k2a2 =ik* kR, + Ax

ikR
2e1 1 1 e
g =2 1 1 e drdx. | (5)
1 R ™ A x? N K2a$ o Rx

Let us now show that the interchange of summation and integration is valid. In
expression (5) under the x integral is an analytic function which has two singu-
larities of pole type at x = jﬁka1, whence one can conclude that the expansion
in inverse powers of x for this function will converge absolutely over the entire
contour under the condition that |[x]| > Ika]I, which is valid since Ia]i< 1. If
after this the order of summation and integration {over x) is changed and the
new expansion compared with the old one, then we become convinced of their
identity. To obtain the final representation it remains to change the order
of the integrations in formula (5), which has already been justified once, and
we obtain

@ik 2.2 XX

..

: 2Kk e‘ka/ k%ade o
= - — dxdA

1" - W fo R X2+k2a$
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By completely analogous arguments a transformation of the integral I? could
also be performed, and would give

ojk*
ikR

kR AX
I? =2 _lf eR ' / ka]?k dxd A | (7)
R i o 2 c X -1 a]

We now address the problem of obtaining a similar transformation for the inte-
grals 12 and Ig- Wé note that final representations of the integrals I]

and I? could have been obtained by following the known methods of [7,4] instead
of performing these transformations, but the former lead to a more cumbersome
derivation. However, it was not possible to obtain expansions for the integra}s
I2 and Ig by applying any method known to us up to now, since for z #0

there is a multivalued function in the exponent, which cannot be expanded in the
neighborhood of the point at infinity. In obtaining the integral representation
for the integral I, the explicit form of the coefficients in the expansion (&)
was of no essential significance, since the series was summed in closed form;

this opens up the possibility that transformations for the integrals 1, and Ig

can be performed using only the fact that similar expansions do exist.

We consider first the integral 12, which it is convenient to write in the

following form:

® - me2(m=n)
12 zf Ho()\p)e F(x)ada, F(x) = > 77 *
m o+ k3a2

-0

If we realize that the contour of integration is so positioned that as x » «
the arguments of both square roots in the function F(x) become identical, then
it can be shown that the maximum of |m-n| on the upper sheet of the Riemann
surface is reached when A coincides with one of the branch points, and its
magnitude is |k3 1 - 1219 Thus we conclude that the exponential factor

can be expanded into a series which is absolutely convergent over the entire



=-10-

contour, and upon doing so we obtain a series of integrals

[s -}

Ho(kp)(m—ﬂ)v

_ N zV - [
12 Z Vi Yv’ Y\) —/ ? 2.2 myda.
V=0

/. m o+ k3a2

Let us concentrate on calculating the coefficients Yv. First, the denominator
of the integrand of Y can be expanded as a series in negative powers of m
which will be absolutely convergent over the entire contour if the condition
lag|< 1 is satisfied, as in the case of the integral I,. Secondly, the

factor (m-n)¥ can be expanded into a series in negative powers of m which will
be absolutely convergent over the entire contour if the condition |1-¢2 <1 is
satisfied. Having carried out the indicated operations and using the represen-
tation for the coefficients Xv (with k=k3), a new representation for the
coefficients Yv can be obtained analogously to the case of the integral I?.

If we then carry out the summation over v, we obtain a final representation

for the integral I, (Fig. 4),

- - * -
1k3R m1k3 1k3R)‘ 2 Z(X-nl)
1, =2+ e I | N (8"
2 ni R 1 ' °
0 A c |x  + k3a2

where n' = Vx% + k2 - k§ ; ¢ =c/|t].

Ana]ogous'arguments could also be made for the integral Ig, and we have

finally:
. wik® .
1k3R 3 'Ik3R>\ ,’ Z(X'n') ‘
13 = ZEP”—— + 4 € T = K - 1] eMdxds, ‘ (v
| il S [ x - ikja,

In obtaining the integral representations the conditions |a;|< LNEPIN 1 and
|1~12{< 1 were used, which always hold if k is real and kg is compiex and
Re k3 > Re k. However, inasmuch as the integrals are analytic functions of .

the identities obtained will be valid for those values of t where the integrals

make sense.
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3. Rigorous Calculation of the Integral I,

“We turn now to obtaining rigorous expansions for computing the Hertz vector,
beginrning with the integral I,. On the basis of the residue theorem the
x-integration in expression (6) is equal to sin (kalx), so that after a

change of variables I1 can be represented in the form

. oik* L

1 = EE;EE. - %ka, , Eéig—-sin[kal(x - z)]dx, R' = YC?TZT;?i_ (10)
We now show that if the condition |aj| <1 is satisfied, sin (ka1X) and

cos (kalx), which are obtained upon expansion of sin [kél(x-z)], can be
expanded into series aﬁd the order of summation and integration with respect
to i with infinite limits can be interchanged. To do this it suffices to
justify the interchange for integration between 0 and »ik*, since it is always
justified for the integration from 0 to z. For the justification we consider
only the integral with sin(kalx); clearly we have:

Qik* 2, + 1 Qik*

e1kR' (ika;}
U sin kalx)dx "2 v v? V\)= F(2y + 1)1 o _-R—'_—)‘

0
where the integration from 0 to Qik* is valid. Estimating each of the integrals

of this sum,
1211 22y + 1 2y + 1
IV\)I S 12\) + 1T Oe * ’ di = Ala].! Y

where A is independent of Q and v; consequently an N can be chosen such that the
remainder of the series for v > N is smaller than any ¢ > 0, independent of Q, if
lag] < 1. In view of the uniform covergence of the series the 1imiting transicion
Q + « can be performed under the summation sign, so that all integrals make sense,
which demonstrates the validity of the change of order of integration and

summation.
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Carrying out the indicated expansions, we obtain an expression for the inte-

gral 11 in the form of a series
. )\)+] mik*
1

eikR (ika o
I] =2 R ZA\:Y\) Ay T T e—”‘;ﬁ— 2 Vda, (11)
, o :

Z

where yo = -i sin(ka]z) and vy, .4 = cos(ka]z).

Convenient recurrence relations can be obtained for computing the coefficients

. 1 » ]

A by integrating twice by parts, twice putting du - ikde1kR and u = e‘kR
va% ‘ (kpa$)2 . 2 o
Av+2 VIR Av Ty ¥ 2) A\,-Z + M\,[1kR(V +1) + (kz)7], (e

M, = ika?(ika]z)"“e"kR/(v + )

Thus, to finally compute the series, the first four coefficients of the series

must be known. The odd coefficients can be obtained in closed form

Ay = - ikale'®R, ag = ka?[i(kz)z - 2i - 2kR1e R/,

The even coefficients can be evaluated in terms of certain integrals which will
be studied in one of the succeeding sections:

. . 3 .
A, = ikajalkz; ko), A, = ka]B(kz; kp)/2i,

where
eiv§?_::i;? > E>iVy2 + 22
a{x;y) = J/‘ e da; =(x3y) = — 2
X ,/yZ + AZ X ,/yZ + 12
To obtain the horizontal field components it is necessary to differentiate

zdx. a°

the Hertz vector with respect to p; it is therefore convenient to obtain an
expansion to calculate Uy =D Iy, where D = (1/k)(s/ap). Denoting D A = C_,

then an expansion for U, can be obtained as follows:

ikR >
= e 9 __l. 2
Uy R (‘ - kR) R "Z Covols
= (1¢
v=0
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where .
va% (kpa2)2C + Zkoa?Av_z
C\H’Z =.\_)T2. C\)"- \)(\)+ 2) +

MO+ (- KR) + k)]
The starting values for this recurrence relation are:
Co = iay[8(kz; ko) + kze R(I/KR = 111703 €y = 1 6h/R;
¢, = ikaskelze R/R + alkz; ko) 1725 C3 = in(Ag - ah/3)R.

A direct analysis of the behavior of the coefficients A and C on the basis

of recurrence relations {12) and (15) shows that for Ikpa% > v and lkzay| > v
they increase; in.this case the terms furthest right in the recurrence relations
dominate. When the opposite inequality ho]ds the coefficients A and C begin
to decrease, and starting with some v the relations |A ,,| 1Ava$l‘and 1C 4ol
< lea%I will hold, i.e., the series is dominated by a geometric progression
with ratio la%l. The indicated expansion is suitable for computations when

the magnitude Ikpa$I is not too large, so that no loss of significant figures
will arise. In the opposite situation one can pass over to computing via asymp-
totic expansions.

4. Rigorous Calculation of the Integral I,

We now address ourselves to the exact computation of the integral I,, for
which we must evaluate the inner integral in expression (8) as a prelude.
Besides the two residues, a branch cut integral also appears in the evaluation

of this integral, whence (Fig. 4)

« e {x=n')z+ix o A 2 ex(z+x)
?—f dx=—“—1rf ———Z——Sh( 1 + x“)dx
-1

* k3a2

+ k3apsinlkga(a + z - 122)],

where 6 = k3ﬁl-rz ; Re\h’-:é‘; 0; b = kgzay/e.

{15)

(16)
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If the solution is written in two parts corresponding to the latter terms of

expression (16), then having first performed a change of variable, we obtain

ik4R oiky* k3R’ :
Iz = Ié + 15, Ié = g_e_R__ - 2k3a2 e—Rﬂ—— sin [k3a2(x - Tzz)]dx° (17;
z

Comparing expression (17) with the initial expression for the expansion of
the integral I] from {10), it is seen that they can be obtained from one
another by exchanging k and kg3, and x-z and A-tzZ. This circumstance
allows us to assert that all the expansions for I, can be obtained if,

in the expansions for Iy we put k = kg, but leave the values of vy, un-
changed. In the following, we will denote the coefficients Av and C in
which k and k3 have been so exchanged by A; and C$. The expansions for

the integral I, will clearly be valid under the condition |a,]| < 1.

We turn now to evaluating the second term (I5), whose appearance is inti-
mately connected with the introduction of two branch points into the original
integral 12 and which vanishes if we put z = 0. Performing the change of

exx'

variable z + A » A', then expanding the factor e into a series under the

integral sign and interchanging summation and integration, we obtain:

(1

i ]
I =2 E Al B (-1’ xzv * 2on(oz V1 + x%)
2 2v-v?

Vgl

B, = dx.
v T X% + b

Interchanging the order of summation and integration over x turns out to
be justified because the limits of the x-integral are finite. If we argue
analogously to that for the evaluation of the integral I], then it can be

shown that fnterchanging the summation with the i-integration with infinite
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Timits is valid if the condition ]1-r2I < 1 is satisfied. Since the Aév

have already been considered, it remains only to evaluate the Bv.

2v

If the equation 2927 (x2p2) = x20 - p2x2%/(x%p2) is used, a recurrence

relation for the coefficients Bv can be obtained:

B = i(ZV' ])ll
AY (BZ)vb2v+]

I,4y(ze) +B 4.

The free term of this recurrence relation is calculated by integration of
the expansion for sh(ezvq:;ES, and Iv is the Bessel function of imaginary

argument.

To evaluate the initial term of this recurrence relation (B_]), sh(GZ\/;:;ES

must be expanded into a series, as a result of which a final expression of the

form
2y + 1 '
- . (GZ) v ' . 1 - - 2imi (2\)‘*‘])”
B_] = - ib vg —mTTﬂ_M\) + QOs M\)+] (] b )M\) +-(-2—v—+——2-)—!—!- N
is obtained, where .
=2\, Mt
¢O= 'YO(] I )a MO - 0-

Differentiation of the integral I, with respect to o is obviously accom-

plished by a simple change from the expansion coefficients A; into C;
ikaR iksR

and e 3 /R into Dpe 3 /R, which gives the final answer to the question

of how to compute I, and U, = DpIZ.

The convergence of the expansion for Ié can be studied in precisely the

same way as for I  since their structures are identical. If we turn to
the coefficients B , we see that they fall off as (bZ“v)—] as v increases,
from which it can be concluded that the coefficients in the expansion of I,

can be dominated by a progression with ratio ]1~12], while the factor v-]

19)
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serves only to accelerate the decrease of the terms.

5. Evaluation of the integrals o(x;y) and g{x;y)

For the final evaluation of the Hertz vector, it only remains to obtain
expansions for computing a(x;y) and g{x;y) in terms of which the first
coefficients of the series were obtained. To do this, it is convenient to
make the change of variable in expression (13)

.2 1/2 - iada

. [ 2 2 . iu
u=ily - + %) =1 +1)/ylu + ) B = du.
o AL N v s

We will present the derivation only for a(x;y), after which we will quote
the final result for g(x;y). As a result of the change of variable, we

obtain

el iv?,” 172 _y
a(X; ,Y) = ﬁ—:—.r)_y o (U + -Z-r) e dU,
. =1

where b' = JZf—:i;é - Y.

First of all we note that olx;y) and g(x;y) are closely connected with Hankel
functions. If we put z = 0 in the expressions for I and I,, we obtain

that o(0sy) = i (y)/2 and g(0;y) = wyHy(y)/2i [17, p. 169]. Using this
fact, the contour of integration for aflx;y) can be split into two parts:
from «» to 0 and from -ib' to 0; the integral over the first contour can be
expressed in terms of the Hankel function, while the integral from‘—ib' to

172 44 a binomial series in positive

0 is expanded by developing (1 + iu/2y)
powers of u. The latter will converge absolutely over the entire contour
if the condition |b'} < |2y| is satisfied or, returning to the original geo-
metry, for z < 2 JE_p, i.e., for practically all cases of interest; the

order of integration and summation can then be interchanged. We note that
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for z > 2/2 p, other expansions can be better applied for computing the
Hertz vector which will be obtained a 1ittle later. After carrying out the
indicated operations, we obtain an expression for the coefficient a(x;y)

in series form
. iy
alxs y) = $EH () - &5 D00,
. =0
-ib!

p = Viy(2y - 1)!!_/
Vo 2ult(2iy)Y 2

Uy - V2 gy (21
0

A recurrence relation can be obtained for evaluating the D connecting

successive coefficients by integrating by parts:

2 . 1\ Vv |

(2v - 1) i(- b Y%(2v - 1)1 b [y

D = 8oy D - e e
v vy v=-1 (Z_Y)vz\)!! 25

For a final representation it remains to express the initial coefficient

D, of the series, which after the change of variables x = -u2 can be

represented in the form
od
[ o 2 2
D, = —ﬁz- (1 +14) - JyQ1 - ive'® a(n), a(x) = e’ ylf e dx; n = Vib'.
X

There are tables in the literature for computing e(x) [18,191, so that the

problem of computing «(x;y) is completely solved.

Completely analogous arguments can be applied to evaluating the coefficients

of gl(x;y), as a result of which we obtain

v} = 1Y iy (v +1) (22)
s(iy) = B ) - e 1o

The evaluation of the coeffjicients alx;y) and g{x;y) using the rigorous ex
pansions requires a knowledge of the values of Hankel functions. If the

computation of the Hankel functions must be done by asymptotic expansion,
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expansions. To obtain asymptotic representations for the Hankel functions
from integral representations analogous to (20), (1 + iu/2y), 1/2 must be

expanded as a binomial series in positive powers of u and integrated over

the infinite limits, which gives a series of an asymptotic nature. In ocur

case the lower limit O must be replaced by -ib', and as a result we obtain

iy — i
. e a . ~ iy v + 1] a
als y) ~ B 25 02, alxs y) ~gye 3o 2L R
Y v ¥ v=0 4" -1 vt
where the coefficients Di are related by the same recurrence formula

as Dv except for the éign in front of the free term, and
03 = (1 - 1) Vye™® oln)

Application of the asymptotic expansions to calculate alx;y) and g(x;y) sig-
nificantly simplifies the computations, and turns out to be possible for the
majority of practical cases. We note that, in spite of the fact that the

coefficients a{x;y) and g{x;y) are the initial coefficients in a recurrence

relation for computing the Hertz vector, they can be computed to the same

accuracy (not greater) as the Hertz vector itself. This can be shown from first

principles, since it can be verified that an approximate calculation of alx;y)

and g(x;y) for exact values of x and y is an exact calculation for some differ-

ent values, the difference being of the same order as the accuracy of the
calculation.

6. Evaluation of the electric field components

In order to finally obtain the electromagnetic field components, it remains
to find expressions for them in terms of the Hertz vector. In the general
case the electric and magnetic field components can be obtained by differen-

tiations of the Hertz vector:

E = mu(l + kZVV)'n'Z-E’Z, .ﬁ = -i{V,nZ-éz].

(o8]

S~
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Before proceediﬁg any further it is appropriate to show that the operations:
D,, Dp, and integration over h with a source function j = kj0 sin ¢ can be
performed on expressions (2) and (3) under the integral sign. Using Jordan's
lemma and Cauchy's theorem, it can be shown that the original contour of in-
tegration in \» for (2) and (3) can be deformed so that both endpoints will
approach + i=, but on different sheets of the Riemann surface of the X-plane.
If an estimate is then made of the integrand of either of these integrals, for

p, where A is

sufficiently large a1, they can be dominated by the quantity A'e'l
independent of h. From this it foliows that both integrais converge exponen-
tially for o > O for any h, which allows the indicated operations to be apﬁ]ied
under the integral sign any finite number of times. In what follows, we shall

only evaluate the electric field vector, which has only the two components

'_ 2 2
EZ = ou(l + Dz)nz, Ep = mquZnZ,

where D, = (1/k)(a/2z').

Operating with (1 + Dz) under the integral sign of I, from (2) and perform-

ing an identity transformation, we obtain

2 _ .2 2 ikR
(1 + DZ)I] = 3,1y + ZDZe /R.
An analogous relation can be obtained for the integral Ié, by operating
with (1 + Dg) on expression (17), whence

v L 2y
)12 = a212 + ZDZe /R + ﬂﬁ(h),

2

(1+DZ
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where y,{h) = 2a,[a,(«" - cose'z) + D_sing'zle /R
1 2-%1 Z

) = 329 ] - T20

This allows a final representation for the vertical component of electric

field of the dipole to be gbtained:

ikR 4 kR 2
Y 2 2 ™1 1+ e T
E, = wuem, - 41,0 + D, <'R * I R >‘ ] z X

1 1 -1 -1

iK.R
(02 + a2) 1" + D? e + 3 (h) (24)
PR Y R S S ) .

A1l the expansions necessary to calculate EZ have been obtained in previous
sections except for the term Di I",. To obtain an expansion for this term,
we need only apply the operation Dg to the series (18) termwise, which
is valid since for |1 - 12| <1 the series can be dominated by a geometric
progression; it must be noted that both coefficients Aév and Bv depend on z
and that

Dti =[( - Tz)Bv - ang + ]]/42; DZA‘v = a2(1k3a22)”e1k3R/iTRv!

2

Thus, to calculate DZ

1"2 it is only necessary to have the values of DZ Bv,
for which the operation DZ can be applied to the recurrence relation (19),
in which only the free term changes, and to the initial term B_], in which only

8z and 00 depend on z.

If we put z = 0 in (24), then we obtain the known expression for the vertical
electric field component of the dipole in terms of the Hertz vector [4, p. 881.
For z40 the field EZ is expressed in terms of the Hertz vector differing

from the previous case only in the operations Dg.
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We now turn to obtaining the horizontal electric field component of the dipole,
and obtain at once: '

Ry ] o, (U - <2U,)
o= 02 e _e A 2 (25
P uH Zp R] R q ‘ !

1 -«

g~ 8

In applying the operation DZ to Uy and U,, it must be remembered that v,» O s
C and B depend on z and that D, C and D_C' are expressible in

v v Z v Z v

elementary functions, and also that Dsz was already evaluated in obtaining

the vertical component.

The rigorous expansions obtained here for the horizontal field component appear
to be new, even for z = 0. Only rigorous expansions for m,at z = 0 exist in
the literature, and in view of the absence of the parameter z, the passage from

the Hertz vector to Ep cannot be made using the operation DZ[4].

Turning now to obtaining tﬁe field components of a vertical antenna, we find

it necessary to integrate the Hertz vector for a vertical dipole with the source
function j = kj, sing in order to obtain the Hertz vector for such an antenna.

We consider first how to obtain the vertical electric field component Eg of

the antenna. First of all we obtain those terms of E; yhich are obtained

from the terms of expression (1} which are outside the integral; we get

hy

hy
2 kR4 ikR
k(1 + Dz{}r single /Ry - e /Rldh = - vp(h)
hy h

1

where

ikR

. ikR
yp(h) = singd (e /Ry + eR/R) + cosele |

Ry - e Ry,
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We are Teft with finding the other terms of the expression for Eg. Now
only the exponential factor in the integrals I; and I, of (2) depends on h;

its integration with the source function between h] and h2 gives

h | hy
j‘ sin¢e'nhdh = - e'nh(kcos¢ + nsirb)/xz .
h hy

To find Eg the operator (1 + Di) must be applied under the integral sign,
and an expression for the vertical field component of the antenna can be
obtained as

h
. L 1
Eg = wuly {wz(h) + COS¢m,, - s1nﬁDszo}

h,

has already been treated in previous

The problem of -computing LI and DZ1TZO

sections. The rigorous expressions obtained here for computing Eg allow
field values to be found at any point of space, and are free from all the

limitations of those épp1ied for similar purposes by K. A. Norton [3]. -

It turned out to be possible to obtain such a convenient formula for computing

2’?% the numerator and denominator of I1 and 12 cancellted. This

Eg because 1
does not occur for the horizontal field component of the antenna; thus, a more
appropriate method for obtaining this component using the present expansions
is to numerically integrate the corresponding field components of the dipole

with the source function.

7. Rigorous Evaluation of the Integral I?

A study of the convergence of integrais Ié and 15 shows that the series for
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computing them converge as progressions with ratic lagl or 11 - 72|, and

thus for small [t| a large number of terms of the series must be taken. On

the other hand, a study of the terms A} and C, has established that they
increase as long as the inequality 2v < Ik3oa§ is satisfied. This.

limits the possible application of the expansions obtained in Section 6

when large distances, lkgel >>1, or good conductivities, It] << 1, are invoived.
Presently, we will obtain other expansions for the Hertz vector based on the
alternative splitting (3) of the original formula instead of (2), whose compu-
tational accuracy increases with increasing |k3ol or decreasing Itl. To obtain
rigorous expansions, we will first of all consider the exact, and then the
asymptotic computation of the integral I?. Only an asymptotic expansion

will be obtained for the second integral Ig in the general case.

First of all, we show that for small values of kz the computation of the integral

I? can be performed by adding a certain correction to the value of this

integral at z = 0. To do this, the x-integral in expression (7) must be evaluated,

and after an identity transformation, a part of the solution must be again

written as an integral

y4

ikR ikop ik (R'+a4 )
a_ o, |e e L2 - i e 1 A
I-I = 2 [T— - Y ) - } + YI.I IZ=O,L 1ka17 J R’ d 3
where Y= e . 4

This representation of I? for z#o turns out to be convenient if its value at
z=0 is known and if kz is not very large, so that an approximate quadrature

formula can be profitably applied to the computation of L. If the calculation

(28
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of L is performed by expansions, which will be completely analogous to those
obtained for the computation of I?, then it can be seen that the numerical
difficulties in this case will be twice as great as for the computation of the
original integral I?. The computation of U? = Dpl? can be done immediately

by differentiating the expression for I?-

Let us address ourselves to obtaining rigorous expansions of this integral
at once from a know]edge'of the initial parameters. In this case we must
expand the factor e1ka A, which is obtained after evaluating the x~-integral
in (7), as a series and 6hange the order of summation and the integration
with infinite limits; expression (7), as in the case of I], turns out to be
valid if la]| < 1. 1If the coefficients A and C are used, which have
already been considered previously, then we obtain:

ikR ot kR Iy
a e a _ e
13 =2 [‘r‘ + Y\?:o: Av] U3 =2 [Dp S Y\,§=o" cv}. (29)

The given representations for the integrals I? and U? turn out to be convenient

1

if the initial coefficients of the series (29) can be computed sufficiently
simply, but we note that if z = 2p, the error in calculating a(x;y) and 8(x;y)
by the asymptotic formulas is rather large, and most importantly it increases
with growing z, and application of the same exact expansions for the computation

of these coefficients as in {21) and (22) is somewhat cumbersome.

Based upon a different principle, we will now obtain a rigorous expansion for
the integral I? whose convergence improves as z grows, and which then allows
an asymptotic expansion for I? to be found. To obtain this expansion we

make a change of variable after evaluating the inner x-integral in (7):
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u = k(R' + a1x),VLF - kzagpzdx = R'du,

and then I?, can be obtained in the form

joo .

a 2eikR v ey

=g+ z’kaﬂy VZ &2 k(R + a,z). (30)
1 2

In view of the fact that the condition jul| > lkeay | is satisfied over the
entire contour, the radical under the integral sign can be expanded into a
series, and the order of summation and integration reversed. To do this, it

is convenient to use the formula

jeo 2v-1 iy joo
iu v 1. iu
e “du _ (-1) E e j! _.}r e
pava il T [Ei(y1) t ol — | H =)
yl u J=0 (1_Y") X

which is obtained by integrating by parts, and then interchanging the summa--

tions, as a result of which we obtain a final representation for the integral I?

2 = 225 e [agtka, olE, (v, + iy‘Zm L K (31)
17 TR T ST gtk N T T L (79T T Ty, v}
where the o are related by the recurrence relation
2v + 2
C(2v+ 3)(2v + 2) (2v + 1)!!(a2kp) . ) Jo(kazp) -1
Por1 T 2 2 ¥ . Zv + 1 s % T 1y ’
(iy1) (2v + 2) 114y 1

and Jo is the Bessel function.

A direct estimate of the convergence of the expansion obtained here shows

that the series (31) can be dominated by a geometrical progression with ratio

’kazo/y1], which can be used to determine the number of terms necessary

for a given computational accuracy.
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8. Asymptotic Computation of the Integral I?

Carrying out calculations ba;ed on the expansions obtained in the previous
sections requires an increasing number of terms for larger and larger values
of the parameters z or ,, thus it is appropriate to study the problem of how
to obtain an asymptotic expansion for the integral I?. To do this, we

expand the exponential integral function as an asymptotic series, and then
group together terms of identical order in Yys SO that we obtain an expression
for I? in a form convenient for computation:

a L kR [z e o
I} ~2e Y3 <'R" N 2 Av)’

v=0

~ ! 1. ,+2 o\’
A=y F [Py Y 1 ; (32

+

where y, = k(a;R + 2); yg = y2'1.

To compute the coefficients A one can use the relations between hypergeometric
v

functions [13, s 9.137] after which, noting that the coefficients Av can be

expressed linearly in terms of Legendre polynomials [20, p. 12], a recurrence

relation for the Av suitable for computation can be obtained:

~ s ~ 2y ~ o .2 a2 2
A = y3liy, (0 - 20)A q+ (v = TITA 50, Ay = - iygyg, Ay = 3AY 4+ g
To obtain an asymptotic expansion for U?, it is clearly necessary to apply
the operator D, to the asymptotic expansion of the integral I?, however,
this same result can be obtained by applying this operator to the rigorous ex-
pansion (31) for I? and subsequently obtaining an asymptotic expansion;

thence
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22y, . - ~
a_ep - a 3 kR _ ikR c .
U-‘ 'F‘z‘ (1 a]y3)1-| k—RZ— e 2a1y3e \)Z‘_'O v

~

C, = ¥3liy, (1 - 200C,_ + (v - 1

\

2 ~ . ~ ~
) C _2 - 1(2\’ - ])A\)—]] = za")’3A\’,

\Y

Tl 5,2 PO 3

If we put z=o0 in the asymptotic expansion for I? and multiply by (1-14)'],
then we obtain the asymptotic expansion for 0° + p° quoted in the paper of

P. A. Ryazin [4]. The asymptotic expansion obtained by Ryazin turned out to
be possible thanks to a transformation of the original integral for z=o0 due to
van der Pol, for which the equa]ity z=0 is crucial [9]. In our case a more

general asymptotic expansion was obtained by going a different route.

The asymptotic expansion for I? could have been obtained by starting not

from the rigorous expansion (3}), but directly from (30), if an integration

by parts were carried out an infinite number bf times, always taking dv = eiudu
and v = -ieiu. Naturally, both results are the same. The method presented here

serves to emphasize that the asymptotic nature of the expansion is completely

determined by that of the exponential integral function.

The asymptotic expansions of I? and U? obtained here essentially compliement
the rigorous expansions of these integrals and allow their computation by

efficient methods over all space.

9. A New Representation of the Electric Field Components

Applying the new splitting of the original Hertz vector in the form (3) compels

us once again to consider the question of how to compute the electric fielc
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components using the Hertz vector. As already noted, I? forms the basic
component of the value of the field, and at the same time Ig is usually

small and, as a rule, is neglected. Thus it appears to be convenient to con-
sider this question from the start, and then to estimate the magnitude of the
earth wave and compute it approximately. If the operation DZ is applied in-
side the integral I?, and then an identity transform done and the expression

for the incident excitation used, then we obtain

kR

a _ . a i :
DZI] = - 1a]I] + ZDZe /R, (34

as a result of which, the final expression for the vertical field component of

the dipole can be represented in the form

R L T A N I IR AR LU Y S
Bz =ou J01# D7) p—+ 7 x gt gt My (39
] ] - T ] - T }
- 2 2,.a 4 '
where N] = -1 (] + DZ)IZ/(1 - T ).
If now the operation Dp is applied to (34), then an analogous form for the
horizontal field component of the dipole can be obtained
e Jpz [ 4 ] el \
o (V1] pz —R]_-+ T4 R - i + wz s (36
] . o ] I .
where

B 2~2 :a 4
N2 I o szlz/(] I )-
We now address ourselves to obtaining the horizontal and vertical field compon-

ents of an antenna. To obtain the vertical field component, expression (27)

can be used, along with relation (34), after which we obtain
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h
. 3 . 1
cosd + iaysing 25ingD ikR
a _ . 1 a Z e
EZ = (:)L(JO fﬂ)z(h) + 4 I] - 4 R - W3 . (37)
] - T ] - T hz
where
Wy = ?(cose - sing DZ)IS/(I - h.
Now it remains to obtain the horizontal field component. First of all we
obtain that part of E: which corresponds to the terms outside of the
integral in expression (1), whence we have
ha hy ikR
kR e [z -nm
kDZp ) sinpe . dh/R] = w3(h) . . ¢3(h) =D, 5 R] sing + icose].
1 1

To obtain the analogous terms with R in place of Ry it suffices 'to replace R]
by R and z' by - z' and denote the right side of the equation by ¢4(h).

Now we deal with the term corresponding to the integral I?:

h2 . h2
kDfZ}[ Sin¢1?dh = ws(h) + (ia]cos¢ - a%sin¢)U?/a§ .

1 1
only postulating for the time being that such a representation might exist.

To obtain this relation, all integral and differential operations are carried
out under the integral sign.. If the denominator of the integral thus obtained
is considered, then as a function of the variable n it has zeroes at + ik and
at ika1, which permits it to be expanded into simple partial fractions. Rela-

tion (38) can be proven as a result, and v5(h) turns out to be equal to

ws(h).= kDp{cos¢ + iaysine - {sine - ia}cos¢)DZ]13/a§,

oo

- A
I =j{“ H(Ap)e nz.?_ .

(38)
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To compute the integral I3 we use equation (30), which we equate to I? in
the form of (3)f If in the resulting identity we let first 1 tend to =, a
to 1 and a, to 0, and then ™ + ==, ay * -1 and ay > 0, and finally subtract

the first result from the gecond and apply D , we obtain

p’
kD, I3 = 22e1kR/pR, 39

from which a final expression for the horizontal field component of the antenna
can be written down

Eg = wno {¥3(h) = ug(h) +
hy
[vc(h) + ia,U%(cose + ia;sine)1/(1 - 14) + W ' : (40"
5 11 1 4 h
1
where

kzrzD2 (cos¢ - siné¢ D._) H (xp)e "2
w = Zp Z 0 < d)\.
4 = " 4 A(m - 1k3a2)

1 -1 e

To compute the fields of a dipole or an antenna it remains to evaluate the

integrals wi or to estimate them, which we shall now proceed to do.

10. Evaluation of the Integral Ig

Before obfaining the asymptotic expansion for Ig, one special case can be
indicated where this integral can be represented as a raﬁid]y convergent
series - the case z = 0. For z = 0, the expansions for I? and Ig are

obtained from one another simply by interchanging k and k3, and expansion

(31) will be more convenient from a computational viewpoint, with k = k3,
since for z = 0 a similar expansion can be dominated by a progression with
ratio q = Ia]I, and almost always q << 1. The indicated expansion converges
rapidly for all cases of pfactica] importance, while the expansions for this
case of which we are aware, obtained, it is true, from other splittings .7 the

original Hertz vector, converge as progressions with ratio la,|, and la,l~ 1.
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Consequently, for small |t|, they are practically useless for computatioﬁ
[4, p.68]. An asymptotic expansion could be obtained at once for Ig if

zZ =0 and k = k3 in (32), however, we will presently obtain a more general
asymptotic expansion fgr Ig for z # O, and the agreement of the result
for z = 0 will clearly be a good check on the intervening arguments. Be-
cause of the rather cumberéome intermediate computations, we will outline

here only the course of the arguments and quote at once the final resuilt.

First of all we evaluate the inner x-integral in expression (9), as the
residue at the point ikja, and a branch cut integral. (As for the exact
evaluation of I,, it is convenient to justify this just as in (16), by a
change of variable). We denote the term corresponding to the residue by Igz,
and the multiple integral by 123. The second step is to change the order
of integrations in 133, which turns out to be valid for |1 - r2]< 1, when
the i-integral converges exponentially for all x. After this, we perform
the change of variable u = k3(R‘ + azx) in the integral Igz, and then
integrate by parts on both u-integrals .an infinite number of times, always
putting eiudu =dvand v = - ieiu, as was done to obtain the asymptotic
expansion for I?. Having integrated by parts, we have to evaluate a

series of contour integrals in the expression for 133. Their integrands
have pole-type singularities for x = o = k3z/eR, for x = b, as well as at
the point at infinity. Here it turns out that the term outside the integral
in (9) cancels with the residue of the first term of 133 at the point at

infinity (the other terms of Ig3have no residue at the point at infinity).

Secondly, the terms outside the integral of I8, cancel with those of 134

if in calculating the x-integral only the residue at x = b is taken, after

which the integral Ig can be represented in the form:
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12 :£: 2v - 1Y e1k3R [:ff] vi(- ])J(zv +1 - 2j)1! Iv_ZJ
2 (ik R)v+] & 23TT(2v + 1)1 (v = 2301 2v+1-2j’
where

Iv-‘Zj - 21k3 <d )2\"2*5662 (‘1'x—\/1—x2 ) X

2v+1-2j dx

v-j

2y “(x - b).

(1 + 22x/R%2) "4 (2 - 20101 -
Direct analysis-of the asymptotic expansion shows that it can be useful at
least in three cases: first, to obtain the limiting characteristics as ¢ > =
for any finite z; second, to obtain an asymptotic expansion for Ig at z=o;
third, an asymptotic expansion for Dng at z=o, which is needed to calculate
the horizontal field component and which cannot be obtained by any known method
since, as already noted, the integrand of D 12, even for z=0, has two sets
of branch points. For the special case z=0 the computations simplify consider-

ably, and we have

 Sal AR p 1Y%
2u2jHl  dab A Y 2v-2§+1 -
] -3
\)-J =1
2k3 Z(ZG_ Q- 12 N i
i 201201252000 5 VATT)
=0
where we have denoted (-1)!! =1 and (-3)!! = -1 for brevity. If the first

expression from (42) is substituted into (41) and compared with the already
known asymptotic expansion of Ig for z=o0, then it can easily be seen that

they are completely equivaient [4].

(42)
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After obtaining the asymptotic expansion for Ig and considering how it may be
applied, it is clear that the expansion thus obtained can be used only for suffi-
ciently small |kyz|. We thus proceed next to obtain asymptotic expansions valid

for arbitrary z which will allow the integrals wi to be evaluated.

11. Asymptotic Evaluation of the Integrals Along the Cut 3 = k

Upon investigation of the integrands of these integrals it can be seen at once
that on the upper sheet of the Riemann surface, where the original contour of
integrafion is taken, there are only two (sets of) branch points among all the
singularities. If the branch cuts are taken so that Re n = const and Re m =
const, then each of these integrals can be split into two: w%, which are ob-
tained by integrating around the cut » = k, and w;, by integrating around the

cut x = kg, and W; = w; +-W$. We deform the contour of integration for

these integrals as shown in Figure 5.

A

Ak
Figure 5 - Deformation of the Integration Contour to
Obtain the Asymptotic Expansion

First of all we must obtain the asymptotic expansion for the integral w;, for
which it is useful to study some properties of the integrands of these integrals.
The function Ho(kp) can already for k, > 2 be replaced by its asymptotic expan-
sion at least to an accuracy of ten percent; this contains a rapidly osci]!ating

exponential part. Hence, it is clear that in the vicinity of , = k the integrands
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of these integrals can be represented as the product of a rapidly varying

functlon of the order of e ipd *nz

» Where the plus sign corresponds to the

part of the contour'y] and the minus sign to yz for Re n > 0, and a s]owly
varying function. Clearly one can always take the original contours of inte-
gration vy and Y, that Im (ipd + nz) = p; then the exponential factor will
decrease most rapidly on the given contour, and the integral can profitably ue
eva1uéted using the method of steepest.descent [16,21]; The integral in the
vicinity of the point where the real part of the exponent is maximum is conven-
iently reduced for this phrposé to an expression fof an incident exéitation and

its derivatives. We note that the asymptotic éxpansion for Ho(lo) is necessaiy

only to establish the possibility of applying the steepest descent technique.

In view of the specific singularities of the integrands of these integrals, it
is considerably more convenient to expand the slowly varying function not about

the point =k, but = kas, and almost always a, ~ 1. Clearly, we have:

2 ® (n + k2a25V ' TZV t 2, (2v - 1)1}
—— 2 G, 2\)+} G, = g . (43)
(m - ik3a2)(T~ -1) Vo | k i1 -1 + 2)!!a2

whence it follows immediately that wi can be represented in the form

w] ~ - C 2 AV] vV V= ] N
V=0 v =0 _

The iﬁfegra]s Wé and W§ can likewise be expressed in terms of the coef-

ficients Sél) and their derivatives, and are equal to

W) VZ__:O e,si3, w0y (sins{?) - cosesiM,

V=0

where 552) = Dzsv (3) = D S(Z)
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The computation of w& is somewhat more complicated For this calculation
we must use the, identity (n + k ay )/’\-2 1 - a2 /lg, after which, using
the expression already obtained for the first terms of the asymptotic expansion

in the form of (39), we obtain

waﬁgg: Cylsiné N, - cos¢ L), where
0

=3y _ 2 ., (4). n (3). = gl4) _ 2
Luq = SV =gty Ly = - k0,05 o=, s Ny = st c AN = oL,

Thus, to obtain the final asymptotic expansions for these integrals it remains

(1)

to compute the S, ', which are expressed as derivatives of an incident ex-

citation:
v|a2v.2cr
(1) _ ] (1) ;o
Sv Z STTwo)T %2041, ¢3” = 2D~;e‘kR/R, ¢§.2) = DpJ(”. (44)
0=q
The value of 5(2) is obtained from S(]) if ¢221% is replaced by ¢2£1% in

(2)

(44), and 5(3) and S&4) by replacing it with & ..,

and ¢20+3 respectively.

Therefore it remains to give an expansion to compute ¢(]) and ¢( )

(1) (2)

By induction it can be shown that ¢, ° and ¢ " can be given in the form

p(1) )

(1 _ o
¢ =
(kR)20

: p{2) (2) .
2e1kR ¢(2) ) U+] + kRQ o+] 2e1kR (45)

R > o (kR)20+2 R 2

+ kro!!

where Pg1) and Q£1) are some polynomials connected by recurrence relations.

The asymptotic expansions obtained in this section allow a rather simple esti-
mate to be made of the values of these integrals and calculations to be made

with great accuracy in a number of cases of interest.



-36-

12. Asymptotic Evaluation of the Integrals along the Cut A = k3

Now let us proceed to stUdy the Tast problem in obtaining rigorous expansions
for the Hertz vector: the computation of the integrals wg. These integrals
can also be computed using the method of steepest descent, but again not in
the usual sense. This is similar to the case of w;, where\/'x2 - k2 was not
expanded into a series at the branch point, and consequently the usual path

was avoided.

If numerator and denominator in wv are multiplied by m + ik3a2, and remembering
that m has a different sign on the different Riemann sdrfaces, then using an
identity transformation these integrals can be represented in the form

o ZrF,/A + k3va(x)

WL |(l'k). - ;F(A)‘:
wv-_{; Fo(neY V3VA - Tkodx Tot M (Az_kzalzm_rzt) e

L1}

where

f](l) = - AZHO(Ap)/kZ; f3(x) = « k(kcos ¢ + nsin¢)f](x)/x2;
C 7. ) 2.
Y "19-Z/ ]‘T;fz(k)“"AnH'I()\p)/ks

f4(x) = - k(kcos¢ + nsin¢)f2(x)/xz; Y= y‘(k3 + 1) - zn.

If the asymptotic representation for the Hankel function, which will be valid
over the whole contour of integration, is used, then it can be seen at once
that the function Fv(x) is slowly varying over the whole contour and thus

can be expanded into a series about the point i = k3, and the usual steepest

descent method employed to evaluate w;:

4]

] 1 3
vt ' v
W Z gob, ¢ = / u z e Ydu/k 2 (2n+ ) (46)
n de c o o 3
0=0 (o) 2v+1(_ kv')v +‘.2.



-37-

For the final solution to the problem it remains to calculate the coefficients
g: which determine the expansion of F,(X) in the neighborhood of » = k3.

Since F,(}) has a rather complicated form, differentiating it analytically is
considerably difficult, and it is most reasonable to do so numerically, o do
which we must know its value at several points [21]. It is convenient to cizose
all these points to lie on the contour, with * = ky + kjs, where § = - p/ky',
and p is some positive number. It is most convenient to choose p from the
condition that the rapidly varying function eYi(l'k3) has decreased by e-jp

at these points, i.e., such a value of p must be chosen that all points lie in
the vicinity of * = kg in the most important range of integration. Applying

Newton's formula for forward extrapolation [21], we obtain an expression for

F,(2) in terms of central differences [22]:

(A=k3) (A-kg-k$)

A -k L
)] 3 (1) (2)
F.(x) = & + A + A e,
v v Tk v 2!(5(6)2 v
a
27 -Z (1977 ¢F, tkg + ko),
. J=0

%
-from which an expression for ¥ (%] and its derivatives can be immediately
obtained in terms of central differences. If we now express the coefficients
gy in terms of central differences and regroup terms with identical central

differences, then we obtain a simple expression for computing the integrals W,

2(-kv')¥/% 5%

where the first few coefficients c; are equal to:

—_ T e AT ‘:__-_r_:/r ,i__. 2
cé =1; cy = 3/2; Cy = 13/8 = 38/4; C3 = 7/3 - 158/8 + 6 /2
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and if other coefficients are needed they can be calculated without difficulty.
Thus, the asymptotic expansions obtained here for the integrals ws completely
solve the prob1em of computing the electric fields of a dipole or an antenna in

space.

13. Limiting Electromagnetic Field Patterns

The rigorous expansions constructed in the foregoing sections to evaluate the
electromagnetic field allow this to be done in all space; however these compu-
tations can be considerably simplified if the observation point is allowed to
tend to infinity in some fixed direction. The limiting field patterns thus

obtained can be used in many cases to predict the possible disturbance to the

field characteristics, due to the finife conductivity of the earth.

First of-all, let us consider the case when z + «» and sin ¢y = z/R + const # O.
}In this case it should be noted that the field pattern has only one component
each of electric and magnetic field, if we deal in spherical coordinates, namely

E6 and H If the contour of integration is split into four as shown in

¢.
Figure.6,
"oz =/ ¢(2)da +f o(a)da +/ o (a)da +/ ¢(x)da,
jo Eq E, [k3]

then it can be shown that as z + = for Im 1 # 0, the first term and the last
two terms vanish for arbitrary E] > 0 and E2 > 0, in which the contour frqm
E] to E2 can intersect the real axis on the interval from x = 0o to » = k. If
the asymptotic representation for the Hankel function is used, then it can be
shown that the saddie point lies on a segment of the real axis at A = k cos ¥,

which corresponds physically to the angle of the reflected ray according to



A=K
Figure 6 - Deformation of the Integration Contour to Obtain
the Limiting Field Patterns

geometrical optics. Carrying out the intermediate arguments, we obtain limit-

ing directivity patterns for the vertical dipcle to within the constant:

ikRo/Ro, where R0 = sz + zz,

ikh]sinw
- [H¢] = [cos(kh]sinw) + e elcos vy, (48)

2uwpe

[E,]

where
1 4 a r3sinw

R A [ N '
1 - rcos™ ¢ + a,

The directivity pattern of a vertical antenna is obtained in analogous fashion:

[Eg] = - [Hi]_= cos(kh siny)cos¢e + sin(kh siny)sinesing +
eikhSinw(cos - i sin¢siny) @/cos "
¢ psInY Y Ih, . (49)

If we substitute z = const and p + =« in these limiting relations, we obtain to a
first approximation that [E¢] and [Eg] are zero. To perform the limit along the
surface of the earth, it must be recognized that the field is of different order,
and the electric field vector will consist of both horizontal and vertical com-
ponents. To obtain the limiting pattern in this case it is not sufficient to

put v = 0, since in the derivation of (48) and (49) terms of order 1/kp2 wWeoe
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neglected. In this case only the first two terms from the first equation
of this section give non-vanishing terms in the 1imit, which allows us to write

'down a final limiting pattern for the dipole to within a factqr of mue1k°/kpz:

(E,) = i1 - kh kz' 21 = &) - ik(z' + n) V1 - VA0 - )

(Ep) = i[1 - ikht Vvl - 1 ]/‘rm

and an analogous relation for the vertical antenna:

(Eg) = i{(] - ikz' rvq_:_:?3cos¢ + (khcos¢ - sin¢) x
h
[- kZ'TZ(] - 12) - T m‘{/tz(l - TZ) ,h]
2 s
i
(Ei) = i{cos¢ - it Vq—:—;ikkhcos¢ - sin¢)}/rvﬁ—ijizr h2 .

A study of these 1imiting patterns allows the possible disturbance to the phase

structure of the electro-magnetic field above a real path to be determined.

Conclusion

In concluding this study we should mention the effects which are to be expected
in a study of the field of a vertical antenna as compared to the field of a
dipole. If the length of the antenna is chosen to guarantee radiation directed
along the surface of the earth, then in view of the change in the directivity
diagram, such an antenna will be less able to receive energy from the upper
regions of space to the earth's surface than will the dipole. The phase struc-
ture of the field of such an antenna will depend more strongly on the conductiv-
ity of the earth, i.e., the vertical antenna will possess a more clearly d.fined

“phase memory".
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At present, the authors have carried out calculations of the limiting patterns
of dipoles and antennas and performed calculations of the electromagnetic field

structure on a computer. The results of these computations have already been

partially published [23].
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