
Proximal Blade Twist Feedback Control for Heliogyro Solar

Sails

by

Sarah Mitchell Smith

B.S., University of Colorado at Boulder, 2013

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Aerospace Engineering Sciences

2015



This thesis entitled:
Proximal Blade Twist Feedback Control for Heliogyro Solar Sails

written by Sarah Mitchell Smith
has been approved for the Department of Aerospace Engineering Sciences

Dr. Dale Lawrence

Dr. Eric Frew

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



Smith, Sarah Mitchell (M.S., Aerospace Engineering)

Proximal Blade Twist Feedback Control for Heliogyro Solar Sails

Thesis directed by Dr. Dale Lawrence

A heliogyro spacecraft is a specific type of solar sail that generates thrust from the reflection

of solar photons. It consists of multiple long (200 to 600 meters), thin blades, similar to a helicopter.

The heliogyro’s blades remain in tension by spinning around the central hub of the spacecraft. The

individual blades are pitched collectively or cyclically to produce the desired maneuver profile. The

propellant-free heliogyro is a long-duration sustainable spacecraft whose maneuverability allows it

to attain previously inaccessible orbits for traditional spacecraft. The blades are constructed from

thin Mylar sheets, approximately 2.5 µm thick, which have very little inherent damping making it

necessary to include some other way of attenuating blade vibration caused by maneuvering. The

most common approach is to incorporate damping through the root pitch actuator. However, due

to the small root pitch control torques required, on the order of 2 µNm, compared to the large

friction torques associated with a root pitch actuator, it is challenging to design a root control

system that takes friction into account and can still add damping to the blade.

The purpose of this research is to address the limitations of current control designs for a heli-

ogyro spacecraft and to develop a physically realizable root pitch controller that effectively damps

the torsional structural modes of a single heliogyro blade. Classical control theory in conjunction

with impedance control techniques are used to design a position-source root pitch controller to

dominate friction with high gains, wrapped with an outer loop that adds damping to the blade by

sensing differential twist outboard of the blade root.

First, modal parameter characterization experiments were performed on a small-scale heli-

ogyro blade in a high vacuum chamber to determine a how much inherent damping is present in

the blade, which drove the selection of the damping constant used in the membrane ladder finite

element model of the blade. The experimental damping ratio of the lowest frequency torsional
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mode is on the order of 0.005%, meaning there is almost no inherent damping in the blade. Next,

the proximal blade twist feedback control design was successful in overcoming friction in the root

actuator and added damping to the blade. The damping ratio for the lowest frequency torsional

mode was increased from 0.001% to 0.09%, which is a significant amount for a heliogyro space-

craft. Finally, the camera sensor used for the proximal differential twist measurement proved to be

feasible and quantization from these measurements only decreased the damping ratio to 0.075%.

This research provides the first indication that a physically realizable blade root controller

can deal with friction in an effective way, thus taking a step towards advancing the technology

readiness level of the heliogyro spacecraft.
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Chapter 1

Introduction and Literature Review

The concept of solar sailing as a means to travel through space was first conceived by the

astronomer Johannes Kepler some 400 years ago. His concept utilized a solar “breeze” to move the

sail through space [1]. Since then it has been shown that solar photons, reflecting off the sail’s large

mirrored surface, can transfer their momentum to the sail, thus producing an acceleration on the

spacecraft. When a photon impacts a perfectly specular reflective sail, it results in incident and

reaction forces exerted on the sail, as shown in Figure 1.1. The sum of the forces yields a total force

Figure 1.1: Transfer of momentum to a solar sail by photons [2]
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acting normal to the sail. The sail pitch angle, α, defines the orientation of the sail and total force,

or thrust, vector relative to the Sun-line. By adjusting the sail’s orientation relative to the Sun-

line, the direction and magnitude of the thrust changes, thus allowing the sail to change orientation

and acceleration [2]. Solar sail technology is beneficial for missions that require a large change

in velocity, such as longer interplanetary missions and space weather warning systems between

the Earth and Sun. The large amounts of fuel together with mass restrictions have been limiting

factors for using traditional chemical propulsion on these missions. In addition, the sail experiences

constant thrust, that allows it to reach larger velocities over time, making solar sails ideal for longer

duration missions.

The first solar sail to be flown in space was the Japanese Aerospace Exploration Agency’s

(JAXA) Interplanetary Kite-craft Accelerated by Radiation of the Sun (IKAROS), in 2010. The

mission demonstrated that a solar sail is capable of producing a small, but extant, 0.007 mm/s2

characteristic acceleration on a spacecraft [3]. The characteristic acceleration is a universal metric

for solar sails “defined as the solar radiation pressure acceleration experienced by a solar sail facing

the Sun at a distance of one astronomical unit (au), the mean distance of the Earth from the Sun”

[2]. IKAROS is a spinning square sail, meaning it uses the centrifugal forces caused by spinning

to flatten the sail [4]. This sail configuration is one of three main ideas for solar sail design. The

spinning square or disc sail configuration does not require structural booms to tension the sail. The

attitude of the spinning sail is controlled by changing the center of mass relative to the constant

center of pressure, which produces a torque on the spacecraft that precesses the spin axis of the sail.

The other traditional sail design is the non-spinning square sail that uses four structural booms to

deploy and flatten four sail quadrants. Unlike the spinning sail, the booms add complexity to the

deployment and storage of the sail. Again, the attitude can be controlled by moving the center of

mass or by tilting reflective vanes located at each corner of the sail [2].

The third solar sail configuration, known as the heliogyro, was first introduced by Richard

MacNeal in the 1960s as a proposed spacecraft to rendezvous with Halley’s Comet. The heliogyro

consists of multiple long and thin blades rotating about the central hub of the spacecraft as seen in
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Figure 1.2. The blade material is made from aluminized Mylar sheets that can be as small as 2.5

Figure 1.2: Artist’s depiction of a heliogyro in orbit [5]

µm thick. The heliogyro concept requires less support structure than a traditional solar sail since

the centrifugal forces help to deploy and maintain a rigid blade shape [6]. The individual blades

are pitched collectively or cyclically to produce forces and moments on the sailcraft to achieve a

desired maneuver profile [7]. The three basic pitch profiles consist of collective, cyclic and half-p

maneuvers. A collective maneuver holds all the blades at the same pitch angle, allowing the sailcraft

to produce spin up or down moments and a spin-averaged thrust normal to the sail plane, again

assuming perfectly specular reflection. A cyclic maneuver commands each blade to follow a sine

curve with a period equal to one revolution of the spinning sailcraft, which produces a significant

amount of in-plane thrust, something a flat solar sail cannot do. The half-p maneuver is a cyclic

maneuver over the period of two revolutions. The half-p produces an in-plane moment used to

precess the spin axis of the heliogyro thus controlling the orientation. In addition, it generates

thrust normal to the sail plane [3]. Due to the large scale of the heliogyro concept—some have

blades designed to be 600 meters long—together with the difficulty of working with the thin blade

material, much of the heliogyro research has focussed on understanding blade structural dynamics,
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along with methods for packaging and deployment of the blades.

Relatively little work has been done to address the problem of heliogyro blade control. When

the heliogyro was first considered for the mission to Halley’s Comet, MacNeal studied the blade’s

structural dynamics and intrinsic damping. Using previous knowledge from helicopter dynamics,

he derived uncoupled, one-dimensional equations of motion for the blade’s twist (pitch), θ, vertical

(out-plane or flap) deflection, ω, and in-plane (lead-lag) deflection, u. The boundary conditions

used for the partial differential equations assume no concentrated forces or moments are applied at

the outboard end of the blade. The boundary condition at the root of the blade assumes the pitch

angle, θ, follows the motion designated by the root control actuator [8].

From these uncoupled equations of motion, MacNeal determined the blade’s natural modes

and response to vibrational excitation. It was shown that the dimensionless homogenous equations

of motion have solutions in the form of Legendre polynomials, and the vibrational mode frequencies

for twist, vertical displacement and in-plane displacement were found. Table 1.1 shows the modal

frequencies for the first four modes of each type of motion for a zero displacement boundary

condition at the root, meaning that the parameter n in the Legendre polynomial is an odd integer

[8].

Table 1.1: Uncoupled blade frequencies [8]

n Twist Vertical Inplane

1
√

2 = 1.414 1.0 0

3
√

7 = 2.646
√

6 = 2.449
√

5 = 2.236

5
√

16 = 4.000
√

15 = 3.873
√

14 = 3.742

7
√

29 = 5.385
√

28 = 5.291
√

26 = 5.099

It is important to note that the values in the table are the scaled vibration frequencies in

cycles per revolution, given by ω̄ = ω
Ω .

A key characteristic of the heliogyro is that the modal frequencies have a fixed relationship

to the rotor speed even if the blade’s size or material properties change. The modal frequencies

will shift slightly if tip weights or tapering of the blade is added. Due to the relationship between



5

frequency and rotor speed, MacNeal noted that the twist mode at
√

2/rev could cause issues with

resonant excitation: root motions could deposit energy into this mode, and if no damping were

present, blade deflections could grow to unacceptable amplitudes. MacNeal recognized that there

is likely not enough inherent damping in the blade, and he suggested that the pitch (twist), in-

plane (lead-lag) and vertical (out-plane or flap) modes should be damped passively with mechanical

damping devices [8]. His design used a spring and dashpot in parallel, situated in series between

the root control actuator and the blade, as shown in Figure 1.3.

Figure 1.3: MacNeal’s idealized model blade pitch control and damping [8]

To address the structural dynamics concern of unbounded blade vibration due to root motion

excitation (away from the structural resonance frequency), a parametric study was performed to

determine the optimum physical magnitude of the spring and damper, denoted as the control

stiffness, Kd, and control damping, Bd, respectively. In order to determine the effect of the passive

control system on the torsional damping, MacNeal analyzed the blade’s response to a collective

pitch input denoted θco, which is formulated as a ramp input that reaches its final pitch amplitude

at half a revolution [8]. The blade’s response at the root and tip, both normalized by θco, are shown

in Figure 1.4 and Figure 1.5.

As expected, the blade’s root is more responsive than the tip to the control input. The pitch

oscillations at the root settle faster than the oscillations at the tip but both locations still show

the lowest frequency mode at
√

2 cycles per revolution in the response. The effects of the damper
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Figure 1.4: Blade’s torsional root response to collective input [8]

Figure 1.5: Blade’s torsional tip response to collective input [8]
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on the torsional vibration modal frequencies are depicted in Table 1.2. The frequency of the two

Table 1.2: Frequencies for blade twist modes with and without a control damper [8]

n Twist Frequency without
Control Damper (cycles/rev.)

Twist Frequency with Control
Damper (cycles/rev.)

1
√

2 = 1.414
√

2 = 1.368

3
√

7 = 2.646
√

7 = 2.618

5
√

16 = 4.000
√

16 = 4.022

7
√

29 = 5.385
√

29 = 5.455

lowest torsional modes are reduced with the addition of the control damper. MacNeal attributes

the increase in frequency of the two higher modes to the finite element approximation [8].

Through the design of the pitch damping mechanism, MacNeal concluded that the control

moment is extremely small due to the low frequency of blade pitch actuation [8]. He recognized

that the root pitch actuator will be extremely sensitive to friction in this mechanism, but did not

suggest any mitigating strategies. Together with the difficulty of implementing passive mechanical

damping on a spacecraft in general, but even more so at the very low damping constants required

here, the practicality of this passive damping approach is dubious.

An alternative would be to provide active damping at the root, where sensed motions are

applied in a feedback control system to the root actuator to produce a damping effect. Daniel Guer-

rant performed a preliminary study on an idealized feedback control system based on MacNeal’s

spring-damper design at the root. He derived uncoupled, one-dimensional equations of motion for

the blade twist using a membrane ladder finite element model. Guerrant’s idealized controller uses

proportional/derivative/feed-forward compensation with a torque-source motor at the root. The

goal of the controller is for the root to track the reference blade pitch maneuver and to add damping

to the blade [3].

A baseline control law was used for easy comparison to MacNeal’s passive damping mecha-

nism and for establishing the maximum performance levels of the controller. The baseline design

assumes a simplified plant with no material damping and an ideal controller, meaning it has infi-
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nite bandwidth, introduces no additional dynamics into the system and uses an exactly accurate

differentiator. The control law is given by the following equation,

Mroot = Kp(θref1 − θ1) +Kd(θ̇ref1 − θ̇1) +Kffθref1 (1.1)

where Kp, Kd, Kff are the controller’s proportional, derivative and feed-forward gains, respectively.

The reference pitch input at the root (rad) and it’s angular velocity (rad/s) are given by θref1 and

θ̇ref1 . The actual pitch angle at the root (rad) and the root’s angular velocity (rad/s) are denoted

as θ1 and θ̇1. The proportional gain is set to the root impedance at the reference input frequency.

By setting Kp to this value, the root actuator stiffness (or real part of the controller impedance)

is matched to the steady-state blade impedance at the root. This impedance matching will allow

the root to extract the maximum energy from waves traveling along the blade caused by maneuver

changes. MacNeal’s passive damper cannot implement a feed forward term, therefore, Kff is an

immediate improvement on the previous design. By matching Kff to the root impedance the

steady-state root tracking error is eliminated for reference pitch frequencies below the frequency of

the blade’s first mode. Finally, the derivative gain is determined empirically by simulating a cyclic

maneuver and observing which Kd value results in the fastest settling time [3]. The following table

shows the optimized controller parameters used by Guerrant for each maneuver type.

Table 1.3: Summary of Guerrant’s optimized controller parameters [3]

Maneuver Kp,Kff (Nm/rad) Kd(Nm/rad)

Collective 2.62e-5 9e-4

Half-p 2.12e-5 9e-4

Cyclic 0 9e-4

Figure 1.6 depicts the the pitch profile of the entire blade (left sub-figures) and the reference,

root and tip pitch (right sub-figure). Guerrant also indicates the settling time on all figures. With

Guerrant’s idealized controller the blade settles within one revolution of the heliogyro’s spinning

hub for all three maneuvers, which is five times faster than MacNeal’s design. This improvement

in settling time shows that damping is actively added to the blade with a feedback control system
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!

Figure 1.6: Guerrant’s baseline root controller performance for collective, half-p and cyclic maneu-
vers [3]
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and torque-source actuator at the root. In addition, the feed-forward term eliminates the steady-

state error in contrast to MacNeal’s design that experienced a 25% steady-state error for collective

maneuvers. However, this performance is achieved with an idealized controller. Guerrant went

on to simulate the phase loss experienced by a realistic controller by adding a lag block to his

simulation. He found that an actuator bandwidth of 3 cycles/rev (0.017 Hz) is required to achieve

a settling time under four revolutions. Guerrant’s initial study into active root control improved

upon MacNeal’s passive damping mechanism but did not focus on the concern to overcome friction

in the root actuator [3].

Richard Blomquist also explored the idea of root pitch control for a heliogyro. Blomquist’s

goal for his blade pitch control design was to minimize the differential twist between the blade root

and tip while ensuring the root tracks the reference input. Despite his acknowledgment that the

force required to pitch the blade is far below the friction forces in a root actuator, he neglects to

solve the problem directly. Blomquist advocates for a collocated sensor at the root to detect blade

pitch since any sensors placed along the thin blade material would be complicated to integrate. His

proposed controller design, shown in Figure 1.7, uses dual root actuators in series [9].

Figure 1.7: Blomquist’s dual actuator root pitch controller [9]
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The main actuator consists of a 10:1 geared motor connected in series to a coupler, spiral

spring, secondary actuator, and blade root holder followed by the blade. The gear ratio used

with the first motor is to prevent any backdriving but still allow the motor to respond quickly to

changing input commands. The main actuator should follow the reference input closely, while the

spiral spring and secondary actuator are used to extract energy from the blade and damp unwanted

modes. When steady state is reached, the secondary actuator should follow the main actuator [9].

Results from Blomquist’s control design are shown in Figure 1.8.

Blomquist designed his controller to have zero steady-state error, which is achieved by both

the main and secondary actuators [9]. The main actuator settles within one-third a revolution of

the central hub for all three maneuvers with the secondary actuator taking only slightly longer

to settle. The blade lags behind the motion of the actuators but all higher frequency modes are

damped. Blomquist’s dual actuator root pitch controller successfully adds damping to the blade

and provides redundancy with two actuators, in case one should fail. However, the control design

is not physically realizable because it lacks the means to overcome friction in both actuators.

The ways to add blade damping do not have to be confined to the root. In fact, JAXA’s

IKAROS mission used a spinning square sail with reflectivity control devices (RCDs) on the sail.

Guerrant explored a similar concept for heliogyros by using a RCD damping control system. Specif-

ically, he looked at using liquid crystals RCDs, similar to ones used on IKAROS. These flexible

substrates are mounted to the blade tip, covering 10% of the blade’s reflective surface. When ap-

plied with a voltage, their reflectivity state switches from primarily diffuse to specular reflection

and vice versa [4]. A diagram of the blade and RCD configuration is shown in Figure 1.9.

Each RCD segment shown in the diagram is controlled independently. There is an RCD

on the leading and trailing edge, separated by a thin film solar cell, which is used to power the

control system. By switching on and off the specular and diffuse reflectivity states of the RCDs, a

difference in solar radiation pressure is generated, thus producing a torsional moment on the blade.

The blade pitch control is still implemented with a root controller but the RCDs allow damping

of unwanted torsional motions at the tip. However, the use of RCDs double the spacecraft’s mass,
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Figure 1.8: Blomquist’s dual actuator root pitch controller tracking reference input. (a) and (b)
are collective to cyclic transition, (c) and (d) are cyclic maneuvers and (e) and (f) are step inputs
[9].
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Figure 1.9: Configuration of a heliogyro blade with reflectivity control devices [4]

thus reducing the characteristic acceleration. By decreasing the RCD’s thickness and increasing

the difference between the diffuse and specular reflectivity states, the overall control performance

could be improved by 200%. The difference in reflectivity states have a large affect on maneuver

settling times. For instance, settling times decrease by 50% by doubling the difference in on/off

reflectivity states and the characteristic acceleration increases by 63%. On the other hand, halving

the RCD thickness reduces maneuver settling time by 35% percent but increases the characteristic

acceleration by 127%. If advancements in technology improve upon current RCDs’ thickness and

on/off reflectivity differences, using RCDs simultaneously with a root feedback control system could

be beneficial. However, at the current stage, the benefits from using RCDs do not outweigh their

negative aspects, such as added mass and power requirements and the complexity of integration

[4].

1.1 Research Questions

Although the groundwork for heliogyro control theory has been laid by MacNeal, Blomquist

and Guerrant, the critical practical problems of friction are overlooked. This master’s thesis uses

Guerrant’s linear rope ladder model for twist motion to design and simulate a physically realizable

root pitch controller that damps twist structural modes of a single blade heliogyro. The approach

taken to accomplish this begins with the linearized damping constant in the blade dynamics model.



14

In order to have a realistic and representative model for the blade’s behavior in space, the damping

constant was selected based on the modal parameter characterization experiments for a small scale

heliogyro blade. Then, the control system is designed using classical control theory and impedance

control techniques. A position-source root controller is developed that shows friction associated

with a typical root pitch actuator can be ameliorated through high gain feedback control. Damping

must still be added to the blade, which is implemented with the root actuator and a camera sensor

in order to avoid added integration complexities with outboard damping mechanisms. An outer

control loop is implemented around the high gain inner loop to add damping by sensing and feeding

back the differential twist at a proximal point on the blade. A camera mounted to the root senses

the differential twist and a photogrammetry model ensures the camera sensor has enough resolution

to measure substantial differential twist.

The specific research questions addressed by this master’s thesis include:

• What type of root control is needed to effectively damp the torsional structural modes of

a single heliogyro blade and how can it be made physically realizable?

• Is it possible to use a position-source root pitch controller to dominate friction with

high gains, wrapped with an outer loop that adds damping to the blade by sens-

ing differential twist outboard of the blade root and reinstating a “soft” mechanical

impedance?

• What are the limits of performance of this technique?

First, the analytical model used for the blade dynamics will be discussed along with a descrip-

tion of the blade’s modal parameter characterization, which focused on experimentally determining

the intrinsic damping in a heliogyro blade. Next, the controller design and simulation results will

be analyzed followed by the implementation of outboard sensing with the photogrammetry model.



Chapter 2

Analytical Model

2.1 Membrane Ladder Finite Element Model

Guerrant derived the analytical model for blade dynamics used in this research. He devel-

oped a membrane-ladder finite element model that represents the blade as a series of connected

segments or elements. Each element is composed of mass-less membranes connect by rigid rungs.

The rungs contain the mass and moment of inertia for the blade element. The membrane-ladder

has zero torsional stiffness, meaning it will not flatten once twisted, unless placed under tension.

Guerrant’s model differs from MacNeal’s equations in that it includes the material damping term.

The assumptions used for this model are:

• twist motions are uncoupled from flap and in-plane motions,

• cross-sections are uniform throughout the blade, meaning there is no camber in the blade,

• due to the magnitude of centrifugal stiffening effects, elastic stiffness is negligible,

• and the model is linearized using small angle approximations [3].

In order to develop the equations of motion for the blade, Guerrant began with a free-body diagram

for a single element, or rung, n, of the blade, as shown in Figure 2.1. Applying Newton’s law in

rotation form, M=Jα, yields three different moments acting on the blade: gyroscopic, centrifugal

and the moment due to material damping. The differential blade twist between elements, δθn,
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Figure 2.1: Free-body diagram of a single rung, n [3]
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shown in Figure 2.1, is relatively small, therefore small-angle linearization is used in the equations

of motion [3].

First, the gyroscopic moment, Mgyro is due to the centrifugal force that flattens the blade

into the rotation plane to keep it from twisting, as shown in Equation 2.1,

Mgyron = −JnΩ2 sin θn cos θn ∼= −JnΩ2θn = −Kgyronθn. (2.1)

In helicopter dynamics this is sometimes referred to as the tennis-racquet effect. The variable Ω

(rad/s) signifies the heliogyro spin rate and θn (rad) is the twist or pitch of the element. Once

small-angle linearization occurs, the equation consists of Kgyron (Nm/rad), which is the gyroscopic

stiffness linearized about zero twist. The term Jn (kgm2) is the mass moment of inertia for a single

element, and is given by,

Jn =
∆x

12
ρsailhsailc

3. (2.2)

∆x (m) is the element’s span. The blade’s density (kg/m3) and thickness (m) are given by ρsail

and hsail, respectively. The total blade chord (m) is represented by c [3].

Next, the centrifugal moment, Mcent, is found by integrating the centrifugal tension force,

Fxn = Ω2[
1

2
ρsailAn(R2 − x2

n) +mtipR] (2.3)

σxn =
Fxn
An

(2.4)

The force, Fxn , is due to the blade stress, σxn , acting primarily along the x-direction (spanwise) but

when the blade is twisted, there is a component in the z-direction (out-of-plane) as well, which acts

to flatten the membrane. The spanwise position is defined by xn (m) and the tip mass is defined

by mtip (kg). An (m2) is the elemental cross-sectional area and R (m) is the total blade span. The

integral over the blade chord is shown in the following equation,

Mcentn =

∫ c/2

−c/2
σxnhy sinφn dy (2.5)

and with the following small-angle linearization,

z = y tan δθn = ∆x sinφn (2.6)
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sinφn ∼=
y · δθn

∆x
(2.7)

the integral is evaluated as,

Mcentn =
σxnhc

3

12∆x
(θn+1 − θn) =

σxnIn
∆x

(θn+1 − θn) = Kcentn((θn+1 − θn). (2.8)

These equations include the in-plane chordwise position from the centerline, y (m), and the vertical

membrane element deflection, φn (rad). The linearized centrifugal stiffness, Kcent (Nm/rad) is a

product of the small-angle linearization. The area moment of inertia for an element about x is In

(m4),

In =
hsailc

3

12
. (2.9)

Since each element is attached at either end to another element (except for the first and last

elements), the total centrifugal moment consists of the components at n− 1, n, and n+ 1:

Mcentn = Kcentn(θn+1 − θn)−Kcentn−1(θn − θn−1) (2.10)

When compared to the gyroscopic moment, Guerrant found that the centrifugal moment is two

to three orders of magnitude greater, meaning it dominates the blade dynamics. Since Equation

2.10 is in terms of the differential twist between elements, which, as stated earlier, is small, the

linearization is justified again [3].

Lastly, the material damping moment is defined in the following equation,

Mdamp = d
1

∆x
[(θ̇n+1 − θ̇n)− (θ̇n − θ̇n−1)] = d

1

∆x
(θ̇n+1 − 2θ̇n + θ̇n−1) (2.11)

which is caused by the stretching of the membrane elements. The linearized damping constant, d

(Nm2/rad), is determined experimentally and will be discussed in the next section. Similar to the

centrifugal moment, Mdamp has two components except for the root and tip elements [3].

By combining the moment equations, the final twist equation is obtained,

∑
Mx = Jnθ̈n = −Kgyronθn+Kcentn(θn+1−θn)−Kcentn−1(θn−θn−1)+d

1

∆x
(θ̇n+1−2θ̇n+θ̇n−1)+Mextn

(2.12)
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The only external torque in the equation is Mext, which can be considered a control torque. The

moment due to solar radiation pressure is zero since the forces act about the centerline, causing

the moment to sum to zero for a twist only blade. This linear, time invariant equation can be

converted to the following state-space model,

Ẋ = AX +Bu

Y = CX +Du (2.13)

X =

 θ

θ̇

 Y =



θ1

θ6

θ̇1

θtip


(2.14)

A =

 [0]N+1×N+1 [I]N+1×N+1

A∗ D∗



A∗ =



− (Kgyro1+Kcent1 )
J1

Kcent1
J1

. . .
. . .

Kcentn−1

Jn
− (Kgyron+Kcentn+Kcentn−1 )

Jn

Kcentn
Jn

. . .
. . .

. . .

KcentN
JN+1

− (KgyroN+1
+KcentN

)

JN+1



D∗ = d
1

∆x



− 1
J1

1
J1

. . .
. . .

. . .

1
Jn
− 2
Jn

1
Jn

. . .
. . .

. . .

1
JN+1

− 1
JN+1



B =

 [0]N+1×1

B∗

 u = Mroot (2.15)
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C =



1 [0]1×N−1 0 0 [0]1×N

[0]1×5 1 [0]1×N−5 0 [0]1×N

0 [0]1×N−1 0 1 [0]1×N

0 [0]1×N−1 1 0 [0]1×N


D = [0] (2.16)

The subscript n corresponds to the element index while N is the total number of segments

in the model [3]. It is important to note that the output includes θ6 because this is the proximal

point on the blade where differential twist is sensed and used in the feedback control law. The

state-space form allows for easy integration into Simulink where the controller can be designed

and time histories can be produced. The parameters used in the simulations are provided in the

following table.

Table 2.1: Heliogyro blade simulation parameters

Number of elements (N) 19

Spin rate (Ω) 1/3 RPM

Blade span (R) 200 m

Blade chord (c) 0.75 m

Blade tip mass (mtip) 100 g

Sail thickness (hsail) 2.5 µm

Sail density (ρsail) 1.5 g/cm3

Linearized damping constant (d) 2e-6 Nm2s/rad

Guerrant validated his membrane-ladder finite element model by comparing the twist blade

frequencies to those MacNeal found, previously shown in Table 1.1. The zeros of the linear time

invariant system correspond to the frequencies where root torque, Mroot, causes no motion at the

root but twists the blade elsewhere. These zeros also correspond to the modes in MacNeal’s model.

The comparison of the twist mode frequencies is shown in Table 2.2 [3].

The mode frequencies match closely for a larger number of elements but the 200 element case

still accurately depicts the lower frequency modes. Due to the added complexity and computation

time to run a simulation with a large number of elements, this research used 19 elements to prove
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Table 2.2: Comparison of twist mode frequencies for Guerrent’s membrane-ladder FEM and Mac-
Neal’s differential equations [3]

Mode MacNeal N = 200 N = 1000

ω1

√
2 = 1.414 1.416 1.414

ω2

√
7 = 2.646 2.661 2.649

ω3

√
16 = 4.000 4.039 4.009

ω4

√
29 = 5.385 5.457 5.402

a valid control design for a simplified model.

2.2 Modal Parameter Characterization for a Small Scale Heliogyro Blade

It turns out that all practical control systems actually reduce damping at high frequencies,

so that some natural blade damping is needed to overcome this deficiency in control to result in

a stable system. A physically realizable controller is subject to finite bandwidth and quantization

of sensor measurements, which will cause phase loss in the system. This phase loss will reduce the

blade damping. In addition, the controller cannot have control authority over all frequencies and

has to “give up” at some point, which is where the intrinsic damping in the blade is important. The

lower frequency twist modes have the largest amplitudes and therefore, are the ones the controller

will damp. At the higher frequencies, when the controller no longer has authority, inherent damping

in the blade is needed to reduce the amplitude of the higher frequency modes. This is especially

critical for the specific control system designed in this research. By sensing at an outboard point on

the blade and actuating at the root of the blade, a non-collocated controls problem is developed. In

a traditional collocated problem the actuator and sensor are at the same location and for a lightly

damped flexible structure, the poles and zeros of the system alternate along the imaginary axis as

shown in Figure 2.2(a). However, with the non-collocation, a pole and zero are flipped, producing

two poles in a row. The back to back poles result in a 180 degree phase loss and cause the Nyquist

plot to have circles in both the positive and negative parts of the imaginary axis. The pole-zero

map and Nyquist plot for the non-collocated case is depicted in Figure 2.2(b) and 2.2(d). When
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Figure 2.2: Pole-zero map for (a) collocated system (b) non-collocated system (c) plant with desired
natural damping in the heliogyro blade and (d) non-collocated system Nyquist plot

designing the control system, a gain can be used to shrink the size of these circles but the amplitude

of the low frequency modes will be quite large, making the circles along the negative imaginary

axis close to the critical point. Therefore, some form of lead or lag compensation will be needed to

rotate these circles away from the critical point, but this will also cause the top circles to rotate in

the opposite direction, closer to the critical point. Some damping must already be present in the

blade so the size of the top circles are smaller, meaning they will not encircle the critical point when

rotated from some form of compensation. Figure 2.2(c) shows the specific pole zero map desired

for the heliogyro blade dynamics plant. The poles at the higher frequencies are more damped than

the lower frequency poles. This topic will be discussed more in Chapter 3.

The linearized damping constant is determined experimentally since it is effected by many

variables, such as temperature [3]. Experiments performed at NASA Langley’s Structural Dynamics

Branch during an internship were used to characterize the modal parameters of a small-scale blade,

specifically the natural frequencies of the mode shapes and their corresponding damping ratios.

Previous summer interns worked with a small-scale heliogyro blade to characterize its modal

parameters in a vacuum chamber, which was used to simulate its behavior in a realistic space

environment. Specifically, one prior student was investigating the relationship between the modal

parameters and the pressure inside the vacuum chamber. In order to characterize this relationship,

two test facilities were used to generate a wide range of pressures. The first was an eight-foot

vacuum sphere shown in Figure 2.3 and the second was the high vacuum chamber in Figure 2.4

[10].
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Figure 2.3: NASA Langley Structural Dynamics Branch’s eight-foot vacuum sphere [10]
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Figure 2.4: NASA Langley Structural Dynamics Branch’s high vacuum chamber
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The previous experiments showed there was a combined flap and twist mode at 0.57 Hz with

a corresponding damping ratio of 0.024%. Tests performed at different pressures revealed that

there was negligible change in the frequency of the combined mode for varying pressures, however,

the percent damping ratio for the combined mode decreased as the pressure decreased, as seen in

Figure 2.5. The experiments performed during my internship are the two data points from 2014.
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Figure 2.5: Pressure versus damping for small scale heliogyro blade

Due to time and facility limitations, only two experiments were performed in the high vacuum

chamber at pressures around 10−7 torr. From the few experiments, it is uncertain whether the

percent damping ratio is leveling off and no longer decreasing in value. More thorough experiments

are needed to solidify confidence in the value of inherent damping in the blade.

The objectives for my research at NASA Langley included three main tasks. First, was to

refine the testing procedure to collect the best possible data on the blade’s free decay motion. This

included understanding the signal generator, laser vibrometer, data acquisition parameters and

system identification software. The second task was to characterize the new flap and twist actuator

in the hopes to separate the combined flap and twist mode at 0.57 Hz into two distinct modes.

Thirdly, experimental testing in the high vacuum chamber was to be performed on a rope ladder
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and Mylar membrane blade to determine their modal parameters. Again, the most important

question to answer was whether or not a more confident bound on the damping could be achieved

through the blade characterization tests to be used in future analytical models.

2.2.1 Modal Parameter Characterization Experimental Procedure

There were two main experimental tests performed in order to complete the objectives, one

being the actuator characterization and the other being the blade characterization test. The newest

version of the flap and twist actuator is shown in Figure 2.6. The actuator was mounted on the test

bench, outside of the high vacuum chamber. A Polytec Scanning Laser Vibrometer was used for this

experiment along with a piezo amplifier. The concept of operations for this test is depicted in Figure

2.7. The Polytec software generated an excitation input signal, in this case a sine sweep from 0.1 Hz

to 20 Hz at 3 volts amplitude. The signal then gets amplified by the piezo amplifier from 3 volts to

around 300 volts, before being fed to the piezoelectric actuator. The input voltage transfers through

the piezoelectric and causes the actuator to vibrate. The scanning laser vibrometer measures the

velocity of two predefined scan points on the actuator, which is then recorded by the Polytec

software and exported as a universal file. The time history of the actuator’s velocity is loaded into

MATLAB for post processing (i.e. filtering the data). In order to obtain the modal parameters

from the experimental data, a system identification toolbox in MATLAB was used. Specifically,

the System/Observer/Controller Identification Toolbox (SOCIT) created by Juang and Horta was

used for system identification [11].

The blade characterization tests followed the same procedure as the actuator characterization

except the velocity of the blades was measured and a different input signal was used. Two small-

scale blades were tested, each 34.75 inches long and 1 inch wide. The first was the rope ladder

blade. The edges of the rope ladder were fabricated from two pieces of sewing thread. There were

four paper battens super glued to the sewing thread at the quarter points along the length of the

blade. Two white dots were taped to the bottom batten of the blade at each corner to provide

large scan points for the laser. The total weight of the rope ladder blade measured 0.164 grams.
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Figure 2.6: Flap and twist actuator

Figure 2.7: Actuator characterization procedure
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A finite element model of the rope ladder blade was generated in Abaqus. The analytical model

predicated the blade to have a flap and twist mode at 0.57 Hz. In addition, there were larger flap

and twist modes at 1.73 Hz.

The second specimen was the Mylar membrane blade. The body of the blade was fabricated

from aluminized Mylar. Four strips of paper were super glued to the blade to act as stiffening

battens. Again, the battens were placed at the quarter points along the length of the blade. Two

white dots, used as scanning targets were taped to the bottom batten. Just above the last batten,

two lead split shot weights (used in fly fishing) were clasped to each edge of the blade. The extra

weights were added to simulate a scaled down version of the force that a full-scale blade would

experience during flight. The weight of the Mylar membrane blade was 5.45 grams. A finite

element model was generated for the Mylar membrane blade as well. It predicated a flap and twist

mode at 0.53 Hz.

Figure 2.8 depicts the MATLAB generated 0.57 Hz sine impulse signal at 3.5 volts used for

the excitation input in the blade characterization tests. The input signal was amplified to around
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Figure 2.8: User defined sine impulse for blade characterization tests
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350 volts before going into the actuator. The actuator was mounted to the lid of the high vacuum

chamber, with the blade secured onto the end and left free to hang. The blade was installed so it

did not touch the sides of the chamber. A viewing window on the high vacuum chamber allows the

laser to scan the two points on the bottom batten of the blade. As stated previously, the velocity

histories were exported as universal files and post processed in MATLAB using the SOCIT toolbox.

It should be noted that multiple tests were conducted in order to determine the best input

signal to use as well as the best way to post process the experimental data. Initially, a sine sweep

was used as the input signal for the blade characterization tests. However, it was found that not

much was needed to excited the blade and that the free decay data produced the best results.

Therefore, a user defined sine impulse was used for final testing where the blade was only excited

for a short time period (0.167 seconds) but free decay data was recorded for longer periods of

time (17 minutes). The amount of time free decay data could be logged was limited by the data

acquisition hardware and software, making 17 minutes the maximum length of time for each test.

Originally, the time history data was filtered through a bandpass filter to eliminate frequencies

below 0.2 Hz and above 1 Hz. It was found that less filtering of the data yielded more reliable

results from SOCIT.

2.2.2 Modal Parameter Characterization Experimental Results

The actuator characterization test gave insight into two different areas. First, it was found

that the natural frequencies of the actuator itself were far above any frequencies expected from

the blade. This was a good discovery because the input signal from the actuator would not be

interfering with the blade’s natural motion. Second, the actuator bench test showed the dual input

piezoelectric would not be able to produce separate flap and twist motions. Due to the restricted

time frame of the summer research, it was decided to continue the testing with the actuator but

only supply power to the flap piezoelectric since the motions could not be separated.

The rope ladder blade was tested first. Again, the input signal in Figure 2.8 was used for

the blade characterization tests. Figure 2.9 shows the raw velocity data and the decimated velocity
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data for the first scan point on the rope ladder. The raw velocity data was decimated because the
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Figure 2.9: Rope ladder velocity data

original sampling frequency was 256 Hz. For optimum results, SOCIT requires that the input data

be decimated such that the frequency range of interest is higher than 10% and lower than 75% of

Nyquist frequency. For these tests the frequency range of interest was 0.1 to 2 Hz so the number

of samples was reduced by a factor of 64 to get the decimated velocity data. Next the built-in

MATLAB Fast Fourier transform function (fft.m) was used to take the FFT of the decimated

velocity data, allowing the time domain data to be mapped into the frequency domain. The FFT

of the rope ladder’s decimated velocity data can be seen in Figure 2.10. By plotting the FFT, the

dominant frequencies become visible making it easier for SOCIT to identify the 0.582 Hz and 1.742

Hz frequencies for the rope ladder.

It was found that SOCIT’s modal parameter identification function in the frequency domain

(modidfd.m) was better at identifying the real modes than the time domain function (modid.m).

Tables 2.3 and 2.4 list the results from SOCIT and the finite element predictions previously men-

tioned.

SOCIT’s frequencies match the analytical FEM frequencies with a 2% error for the lowest
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Table 2.3: Finite element predictions for rope ladder blade

Frequency (Hz) Mode Shape

0.57 1st Flap Mode

0.57 1st Twist Mode

1.73 2nd Flap Mode

1.73 2nd Twist Mode

mode, which provides even more confidence that these are true natural frequencies for the rope

ladder blade. The percent damping ratio was more variable, depending on the inputs into SOCIT

but remained on the order of 0.01% to 0.001% damping. Therefore, the experiments showed the

lowest frequency torsional mode’s damping ratio to be small but non-zero, meaning a small amount

of energy can be dissipated from the blade [12]. This small damping ratio also justifies the need

for added blade damping.

Although not shown here, the same analysis was performed on the tests involving the Mylar

membrane blade. Its FFT showed a strong peak at 0.535 Hz and SOCIT reported a mode at 0.534

Hz with 0.005% damping ratio. These results match the flap and twist mode of the finite element

prediction for the blade membrane at 0.53 Hz.

As shown in Table 2.1, the linearized damping constant, d, used in the simulations is 2e-6

Nm2s/rad. This value for d was chosen based on the experimental results and is far less than the

previous value used in Guerrant’s model. By choosing a lower damping constant, the controller

design will have an added factor of safety in case the damping ratio keeps decreasing with pressure.

Overall, the modal parameter characterization experiments drove the selection for the damp-

ing constant used in the simulations for the control design. The experimental testing procedure

Table 2.4: SOCIT results for rope ladder blade

Frequency (Hz) Damping (%)

0.582 0.004

1.743 0.012
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was refined by determining the best input signal to use with the hardware and software available.

A user defined sine impulse yielded clean free decay data over long, continuous durations of time.

However, changes in the data acquisition hardware and software could be made to allow for a de-

caying exponential envelope to determine the damping constant instead of relying on SOCIT. In

addition, more time could be devoted to the actuator design to produce separate flap and twist

motion. In the future, two independent (not attached) piezoelectrics could be located at each cor-

ner of the blade, where their in-phase vibrations could produce flap motion and their out-of-phase

vibrations could produce twist motion. Ultimately, the modal parameters for a combined flap and

twist mode were determined for both blade types but these changes in the experimental process

could yield more confident results.



Chapter 3

Proximal Blade Twist Feedback Control Design

As discussed earlier, the control systems proposed by MacNeal, Guerrant and Blomquist do

not account for the friction in their systems. Since the blade only needs small control torques, on

the order of 2 µNm, the friction torque dominates, causing no root motion and therefore, no blade

twist. The following diagrams, Figures 3.1 - 3.3, show the mechanical configurations of each idea

(without the control laws) and highlight the friction in each system. In theory, the systems will
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Figure 3.1: Lumped parameter model of MacNeal’s passive controller with friction

add damping to the blade if friction is ignored but in practice, these systems will not be able to

overcome friction.

MacNeal’s passive controller, in Figure 3.1, consists of a mechanical damping device comprised

of a spring and damper in parallel, Kd and Bd, respectively. Following the diagram from left to right,
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Figure 3.2: Lumped parameter model of Guerrant’s active controller with friction
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the spacecraft’s mass is denoted by Ms and twist by θs. A position source generates the reference

twist input, θref , which is grounded to the spacecraft structure along with the the damping device.

The friction in the system acts across the damping device, labeled Bfric. There must be something

limiting its degrees of freedom since it only needs to damp the unwanted twist motions in the

blade. Therefore, any mechanical device used to mount the passive damping mechanism to the

spacecraft structure, while allowing the blade to rotate freely, will add friction to the system. θ1 is

the root blade twist and the blade is represented by lumped mass and spring parameters for each

element, MBn, Kcent,n and Kgryo,n. More specifically, the centrifugal tension between elements is

represented by Kcent,n and the gyroscopic stiffness that causes the blade to be flat in the rotation

plane is Kgyro,n. The spanwise distance between each element is given by ∆y.

In place of the position source and passive damping device, Guerrant uses a root actuator or

motor, shown in Figure 3.2. The actuator is a torque source that generates the root input torque to

the blade, τroot. In a traditional DC brushless motor, which would be used for space applications,

there are permanent magnets located in the motor. The mass of the motor casing is given by Mc

and is grounded to the spacecraft structure. Inside the casing, there is a spinning electromagnetic

armature that torques the output shaft, which is connected to the blade. The mass associated with

the armature is Ma. The friction at the root actuator is due to the bearing system that allows the

armature to spin and magnetic hysteresis between the casing and armature.

Figure 3.3 shows Blomquist’s dual actuator control system. The main and secondary actu-

ators are modeled the same way as Guerrant’s root actuator. However, the first is connected to

the second with a coupler, Mcp, and a spiral spring, Kspiralspring. Friction is present in both the

actuators, labeled Bfric1 and Bfric2. There is a third friction term, similar to the one in Mac-

Neal’s model, that is due to the restriction of motion of the spiral spring and secondary actuator,

depending on if these would be connected to the primary actuator and spacecraft structure.

As mentioned earlier, damping control does not have to be implemented at the root, as

shown by Guerrant’s research into RCD tip actuators. However, with the long span and the thin

and flexible properties of the sail material, it would be difficult to integrate any actuator or damping
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mechanism on the blade itself. For this reason, the proposed control design uses a root actuator

for active feedback control. Mechanically, it is the same as Guerrant’s root actuator control system

shown in Figure 3.2 but instead of only feeding back a signal of blade root twist, θ1, the differential

twist at a proximal point on the blade, θ6−θ1, is also sampled and fed back to the controller. Figure

3.4 shows a simplified block diagram of the proximal blade twist feedback control design. The inner
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Figure 3.4: Simplified block diagram of the proximal blade twist feedback control design

control loop, that feeds back θ1, uses a high gain controller to dominate the large friction torque,

τfric, and provide good root tracking, meaning θ1 follows the reference input θref with minimal

error. The outer feedback control loop adds blade damping by “softening” the root impedance.

The following section will discuss how the large friction torques are handled as well as how the

friction model was implemented in the simulations.

3.1 Friction Model

To reiterate, the active control approach still suffers from sensitivity to friction at the root

mechanism. This can be addressed in three ways. First, the friction can be eliminated with magnetic

(non-contact) bearings, depicted in Figure 3.5 but adds complexity to the integration of the root

actuator to the blade. Second, a friction model can be used to estimate and “cancel” friction

torques, shown in Figure 3.6. This method works well for linear viscous friction but could cause

huge destabilizing gains if used with other kinds of friction. In addition, modeling errors could

cause instabilities. Thirdly, Figure 3.7 uses high gain feedback control to “swamp out” friction
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torques with feedback torque corrections. The third method is the approach taken in the control
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Figure 3.5: Eliminating friction with magnetic bearings

system. The inner feedback control loop uses a high gain, k, that enlarges the root input torque,

τroot. By using a feedback signal, τroot keeps growing in magnitude until it dominates the friction

torque, τfric, and is able to move the root. However, this approach does not allow active damping

to be added to the blade, which is the responsibility of the outer control loop and will be discussed

later in the chapter.

Nonlinear friction consists of static, kinetic and viscous friction, all shown as a function of

velocity in Figure 3.8. Static friction, or stiction, is the friction between two solid objects that

prevents them from moving relative to one another until some threshold of force parallel to the

objects is overcome. As shown by the figure, the velocity remains zero until the force is large

enough, allowing the object to move. Once the object begins sliding along the surface, kinetic, or

sliding, friction ensues. The magnitude of kinetic friction remains constant as velocity increases.

When kinetic friction is present, energy dissipation occurs in the form of Coulomb damping. The

linear viscous friction force can act between two lubricated solids, a solid and a liquid, or two

liquids. Its magnitude is linearly proportional to the relative velocity between two substances [14].

This friction model is not compatible with the numerical integration techniques used by

Simulink to generate the time simulations. Therefore, a simplified model was developed using the

specifications for the root actuator used at NASA Langley for blade characterization tests, which is

similar to the root actuator used in the HELIOS (High-Performance, Enabling, Low-cost, Innova-

tive, Operational Solar Sail) design. HELIOS is a collaborative small scale heliogyro demonstrator



39

τroot
+
−
 +
−
 +
−

plant  (linear  


blade  dynamics)

θref


τfric


τfriction  model


root  actuator  

friction


root  actuator  

friction  model


θ1
actuator  

dynamics


  friction

  cancels  out


Figure 3.6: Canceling friction with friction model

τroot

+
−
 +
−


Plant  (linear  

blade  dynamics)


θref
 k


τfric
 root  actuator  

friction


θ1
actuator  

dynamics


large  gain,  k,  makes  

τroot  >  τfric  ,


  swamping  out  the  friction


Figure 3.7: Swamping out friction with high gains

static  

friction

threshold


kinetic  

friction


viscous  

friction


Force


Velocity


nonlinear


Figure 3.8: Nonlinear friction [13]



40

between NASA Langley, JPL and the University of Colorado at Boulder. The MAXON EC32

brushless motor specifications are shown in Table 3.1.

Table 3.1: Root actuator (MAXON EC32 brushless motor) parameters [15]

Terminal resistance (Rm) 13.7 Ω

Torque constant (kτ ) 26 Nm/A

Gear head ratio (N) 531:1

No load current (I0) 36.9 mA

Rotor (armature) inertia (Ja) 0.16 kgcm2

Mechanical time constant (τm) 20 ms

Viscous Friction Coefficient (Bm) 7.85 Nms/rad

It is important to note that the motor has a 531:1 gear ratio. The motor shaft, located before

the gear, will have less torque and be spinning faster. After the gear, the torque will be 531 times

greater and the shaft will be spinning 531 times slower.

Figure 3.9 shows the simplified friction model used in the simulations. To avoid the nonlin-

earity in Figure 3.8, the linear viscous damping from the motor is assumed to be present for small

angular velocities. Since the model of the friction torque at the blade root, τfR, is desired, and not

the motor friction torque, τfM , the viscous friction coefficient, Bm, must be multiplied by the gear

ratio squared, N2, to generate the slope for the friction torque at the root. Once the blade starts

moving with larger angular velocities, the limits for the kinetic friction at the root are given by the

motor friction torque multiplied by the gear ratio. The motor friction torque is calculated with the

equation τfM = kτI0 and the parameters listed in in Table 3.1. Although the simplified friction

model ignores the affect of stiction, it still incorporates realistic magnitudes of friction into the

simulation for the root actuator. The simplified model can now be used to design and implement

the proximal blade twist feedback control design to show the concept has merit before proceeding

with a more complex friction model. The next section describes the inner feedback control loop

design and illustrates how the friction model and motor dynamics are incorporated into the full

system block diagram.
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3.2 Inner Control Loop Design

The design of the control system began with the inner feedback control loop, designed to

overcome the friction in the root actuator and to provide good root tracking. Previously shown

in Figure 3.4, the inner control loop consists of the blade dynamics plant, the actuator or motor

dynamics and the high gain controller. The blade dynamics, as discussed in section 2.1, take a root

torque input and produces θ1, θ6, θ̇1, and θtip. The motor dynamics are modeled for the direct

current brushless motor, whose parameters are specified in Table 3.1. As mentioned earlier, the

root actuator system is mechanically the same as Guerrant’s root actuator in Figure 3.2, except for

the gear head. The mechnical diagram, with some modifications, is presented again in Figure 3.10

to explain the motor dynamics model. The electromagnetic torque, τa, is given by the equation,
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Figure 3.10: Lumped parameter model for inner control loop

τa = kτIm, (3.1)

where Im is the motor current. τ1 is the torque due to the rotational acceleration of the rotor

armature inertia and is shown in Equation 3.2.

τ1 = Jaθ̈1 (3.2)
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The torque, τ2, and the torque of the mechanical load, τ3, are given in the following equations,

τ2 = Bmθ̇1 (3.3)

τ3 = G(s)Θ′(s). (3.4)

G(s) is the transfer function for the blade plant, without the gear, specifically
Θ′1(s)
T3(s) . Finally, all

the torques are related through the equation,

τa = τ1 + τ2 + τ3 (3.5)

The motor driver is not shown in Figure 3.10. For the simulation, the motor is current controlled,

thus producing a linear effect on the motor torque[14]. By taking the Laplace transforms of Equa-

tions 3.1-3.5, transfer functions of the motor dynamics can be used in the Simulink model.

Figure 3.11 shows the Simulink model for the inner control loop, which is a more detailed

version of the block diagram shown in Figure 3.4. The actuator friction and dynamics blocks include
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Figure 3.11: Simulink model of inner control loop

the term den(s), which is a fictitious low pass filter used to make the transfer functions proper. It

is fictitious in the sense that it is not physically in the system but is a product of the simulation.

The denominator has the form 1
ω2
n
s2 + 1

ωn
s+1 and the cutoff frequency for the low pass filter, ωn, is

set well above any natural modes in the system, at 100 rad/s. The actuator friction block takes the

derivative of θ1 to get ω1 (θ̇1) and then multiplies it by N2Bm to get the linear approximation of

friction in the root actuator. The kinetic friction torque limits, given by τfR, were not implemented
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in the simulation because they are unnecessary. The root friction torque remains between ±0.04

Nm while the limits in the friction model are set to ±0.9 Nm.

The reference input used for the simulations is a half-p sine wave with an amplitude of 15

degrees (0.26 rad) and a frequency of Ω/2 (0.0175 rad/s). Since a cyclic maneuver has the property

that the entire blade pitches uniformly, the half-p was used instead so the blade’s behavior was less

uniform due to the difference in gyroscopic stiffness and inertia torques [3]. This research did not

focus on tailoring the reference input to obtain a better pitch response from the blade.

The frequency response of the blade dynamics, the transfer function Θ1(s)/Troot(s), is shown

in Figure 3.12, along with the pole-zero map of this blade dynamics plant. One interesting charac-
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Figure 3.12: Blade dynamics frequency response and pole-zero map

teristic of the blade dynamics is that there is a visible “kink” in the trajectory of the poles and zeros

of the system at 0.678 rad/s. This “kink” was discovered to be an artifact of the model because

it increases in frequency as the number of elements in the model are increased. Therefore, it was

assumed that the model could be trusted up to 0.678 rad/s (well above the frequency of the lower

frequency blade modes) but not past it.

The blade dynamics model, uses 19 elements (20 nodes) meaning there are N + 1 modes in

the system, shown in bode plot. The magnitude of the modes reduces as the frequency increases,
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which is a product of some inherent damping in the blade. The “pinch off” of these higher frequency

modes will be important in the outer control loop design.

From Figure 3.11, the mechanical/friction closed loop transfer function, Θ1(s)/Vc(s) re-

sembles a dominant first order system, shown by the following bode plot. This closed mechan-

10-2 10-1 100 101 102

M
ag

ni
tu

de
 (d

B)

-100

-50

0

50

Frequency (rad/s)
10-2 10-1 100 101 102

Ph
as

e 
(d

eg
)

-180
-160
-140
-120
-100

-80
-60

-­‐20  dB/decade


90  deg  phase  margin

at  0.12  rad/s


Figure 3.13: Combined blade and motor dynamics frequency response

ical/friction loop transfer function can also be referred to as the uncompensated loop gain and has

infinite gain margin and a phase margin of 90 degrees at a crossover frequency of 0.12 rad/s.

When the inner feedback control loop is closed it results in the entire closed loop system,

represented by the transfer function Θ1(s)/Θref (s). The time simulation is implemented for 100

minutes, which is about 33 revolutions for the blade, with a gain of one for the inner control gain

block. The following figure shows the θ1,error, or θref−θ1, over one-fourth the duration of simulation

for easier viewing capability. The root pitch tracks the reference input fairly well but points further

out on the blade, such as θ6 and θtip, are effected by higher frequency modes and have a hard time

tracking the root. The exact error at θ1 is shown in Figure 3.15. Here, there is a steady error of

0.037 radians.

With the large gear reduction, the root actuator’s torques are amplified and are able to pitch
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Figure 3.15: Inner control loop θ1,error with unity inner control gain block



47

the blade, even in the presence of friction. There is no strict requirement on root tracking, although

it is known that a larger inner control gain will improve root tracking. However, it will also effect

the outer feedback control loop once added. For this reason the outer feedback control loop was

designed in parallel with the inner control gain.

So far, the inner feedback control loop with unity gain provides good root tracking perfor-

mance while managing root friction torques but it does not supply the blade with damping. The

root actuator and position feedback control law essentially create a position source at the blade

root. For this reason, the impedance is very high from the blade looking back at the root, meaning

it takes a lot of effort, or torque, for little to no motion. High impedance makes the root actuator

“stiff” meaning it cannot extract, or dissipate, any energy from the blade as excitation waves travel

towards the root. Instead, those waves will bounce off the root actuator. However, by sensing and

feeding back the differential twist at a proximal point on the blade, the root impedance can be

reduced, allowing energy to be dissipated and thus adding damping to the blade.

3.3 Outer Control Loop Design

The purpose of the outer feedback control loop is to add damping to the blade while main-

taining good root tracking. The Simulink model of the full system, with both the inner and outer

feedback control loops is shown in Figure 3.16. The outer control loop feeds back the the differential

twist measurement, which causes the non-collocated issue discussed in Chapter 2. The uncompen-

sated outer loop gain, Θ̇6 − Θ̇1(s)/Θdiff,error(s), illustrates the nature of the non-collocated prob-

lem, shown in Figure 3.17 Nyquist plot. The higher frequency circles along the positive imaginary

axis are due to the non-collocated sensing and make the controller design challenging. Both the

higher frequency circles and the lower frequency circles, along the negative imaginary axis, must

be managed by the controller simultaneously.

The uncompensated loop gain gives insight into the behavior of the closed loop system.

Without some form of compensation, the blade will become unstable. Ways to add stability include

reducing the size of the circles through the proper gain or rotating the circles through some form
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of lead or lag compensation. In this case, both of these methods were used to yield the stable

compensated outer loop gain whose Nyquist plot is shown in Figure 3.18. On the left, the full plot
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Figure 3.18: Compensated outer loop gain

is shown with all the circles. The outermost circles for the lower frequencies are only jagged due

to the number of points plotted over the frequencies. The general outline is apparent but they will

become more circular as the data points are increased. The right plot depicts a zoomed in view of

the Nyquist plot with the unit circle drawn for reference. A gain of 0.4 was used to shrink the size

of the circles and a lag compensator was used to rotate the circles clockwise. This provides infinite

gain margin and a phase margin of approximately 10◦.

Next, the performance of the full closed loop system is analyzed with the time histories. With

the outer feedback control loop, the root tracking remains the same as the inner feedback control

loop on its own. Figure 3.19 shows the same steady state root tracking error of 0.037 radians.

To illustrate the dominance of friction in the control design, Figure 3.20 compares the root

friction torque, τfR, to the root torque, τroot. When both are shown on the same scale it appears

as though τroot is zero, however Figure 3.20(b) shows the true scale of τroot to be around 10 µNm.

To overcome the large friction torques, the root actuator requires a certain amount of power to

generate the root torques desired by the control system. The average power consumption can be
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Figure 3.19: Outer control loop θ1,error
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calculated as,

Pavg =

∫ t

t0

V I dt (3.6)

With only the inner control loop implemented, the average power is 0.232 W compared to 0.237 W

consumed with both the inner and outer control loops functioning. The overall power consumption

of the root actuator control system will need to be considered and proven to be reasonable for a

real heliogyro mission.

The most encouraging result is the time history of θtip, seen in Figure 3.21. As mentioned
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Figure 3.21: Blade tip pitch response with (a) inner feedback control loop only and (b) outer
feedback control loop

earlier and depicted here, the inner feedback control loop cannot provide blade damping. However,

with the proximal differential twist measurement, the damping ratio of the lowest frequency twist

mode increases from 0.001% to 0.09%, which is two orders of magnitude greater. The added

damping may still seem minor but when compared to a realistic heliogyro mission, the added

damping is greatly beneficial. If a simple sun synchronous orbit at an altitude of 1100 km is

considered for a heliogyro mission, then the orbital period is approximately 6427 seconds. The

time constant associated with the lowest frequency twist mode is 318 seconds. Therefore, the rate

of decay for that mode is only about 5% of the total orbital period, proving that for the long
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duration missions of the heliogyro, this is a substantial amount of damping. In addition, it is also

the first sign that friction in the root actuator can be addressed in a successful way. With more

time to spend optimizing the controller design and the proximal sensing position along the blade,

the added damping could be increased further.

It has been shown that it is possible to use a position-source root pitch controller to “swamp

out” the friction in the root actuator and then wrap an outer loop to add damping to the blade by

sensing differential twist outboard of the blade root. In order to instill confidence that this control

design is physically realizable, the idea for the proximal differential twist sensor must be feasible.

The feasibility of this sensor and measurement will be addressed in the following chapter.



Chapter 4

Photogrammetry Model for Proximal Differential Twist Sensor

Sensing differential twist at a proximal point on the blade allows damping to be added to

the blade through feedback control of this measurement. Since the main goal for this research is

to design a physically realizable control system, the sensing of this differential twist must also be

physically realizable. Therefore, a photogrammetry model is developed to prove differential twist

can be measured outboard of the blade root and the resolution of the differential twist measurement

will not hinder the control system performance. In addition, the physical system will have a sensor

to measure root pitch angle, most likely a rotary encoder located on the root actuator. Due to

the prevalence of these sensors in space applications, the implementation of the root actuator pitch

sensor will not be addressed in this master’s thesis.

Figure 4.1 conceptualizes the layout of the camera sensor relative to the blade and defines

the coordinate systems used in the model. The camera is mounted to the blade root and will pitch
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Figure 4.1: Photogrammetry model setup
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as the blade pitches, thus measuring the differential twist between an outboard point and the root,

θi − θ1. It is located above the blade, by distance d, and angled down, with a tilt angle of −α,

so the camera’s field of view encompasses the blade. The blade’s frame, designated the N frame,

is centered at the root, the end attached to the central hub of the spacecraft. The camera’s body

frame, B frame, has its origin at the lens of the camera. The desired result from feeding back the

differential twist measurement is that the mechanical impedances, z1 or zi, are “softened” allowing

energy to be extracted from the blade and thereby adding damping to the blade.

The specific camera used in the photogrammetry model is the GomSpace NanoCam C1U. This

camera is used at NASA Langley for ground testing of preliminary twist controllers for a hanging

blade in 1g. The camera is a modular, space-rated subsystem for nano-satellite applications, making

it a realistic sensor to launch onboard a heliogyro spacecraft [16]. The specifications of the camera

are listed in Table 4.1.

Table 4.1: GomSpace NanoCam C1U simulation parameters [16]

Focal length (f) 35 mm

Field of view (FOV ) 9.22◦

Image size 2048 × 1536 pixels

Pixel size 3.1 × 3.1 µm

First, a 200 meter three dimensional blade is defined in the N frame, shown in Figure 4.2.

The blade is modeled with 51 elements, allowing the differential twist to be calculated for each

element. The entire width of the flat blade is visible in the camera’s large field of view from eight

meters away from the root until the blade tip. For the photogrammetry model, the camera is

sensing the differential twist a quarter of the way down the blade span at approximately 52 meters.

The camera will have better resolution closer to the blade root but there will be less differential

twist. If the measurement is taken further out, the resolution will be worse but there will be more

differential twist. This proximal measurement point is chosen as a starting place and has not been

optimized to enhance the blade damping but could be in the future.

The blade shape will not remain flat in the camera’s field of view. The two forms of blade
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Figure 4.2: 3D blade model with camera’s 2D field of view in N frame
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deflection considered in the photogrammetry model are vertical deflection and blade twist. The

vertical (flapwise) blade deflection, denoted as w, is caused by solar radiation pressure normal to

the blade surface. It is a function of local coning angle, β, given in the following equation.

β =
∂w

∂r
=

1

σr

∫ R

r

pn
t
dr =

2pn
tρΩ2(R+ r)

(4.1)

The variable r (m) is the spanwise distance from the axis of rotation. σr (Pa) and pn (Pa) represent

the spanwise stress and normal pressure, respectively. The blade thickness and density are denoted

t (m) and ρ (kg/m3). Ω (rad/s) is the heliogyro spin rate [7]. By integrating Equation 4.1, the

vertical deflection of the blade is obtained, depicted in Figure 4.3. The coning angle results in a
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Figure 4.3: Deflection due to solar radiation pressure

tip deflection of 0.28 meters.

Next, the blade twist is considered in the photogrammetry model. Collective and cyclic

maneuver twist profiles are generated for the blade. The maneuver profiles in Figure 4.4 show the

worst case nonlinear blade twist without added tip mass or edge reinforcement, which is why the

cyclic profiles do not follow the same trend for all amplitudes. The twist profiles are implemented

in the photogrammetry model with a rotation matrix. In Figure 4.5, ~r is the position vector in

the N frame from the origin to any point on the edge of the blade. The differential twist, defined
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Figure 4.4: Collective (a) and cyclic (b) maneuver twist profiles [17]
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as θ = θi − θ1, is also depicted for each rung of the blade. The differential twist is applied to the

position vector through the following transformation.

~rtwist =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

~r (4.2)

Figure 4.6 shows a blade experiencing both differential twist and coning angle. These blade deflec-
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Figure 4.6: 3D blade in differential twist with coning angle

tions drastically change the camera’s 2D image, making them critical for model accuracy.

A flowchart of the photogrammetry model is shown in Figure 4.7. First, the coning angle

is applied to the blade in the N frame followed by the differential twist using Equation 4.2. Once

these blade deflections are present in the N frame, the transformation from the 3D blade image to

the 2D sensor image takes place in the function BNtrans.m.

The transformation from the N frame to the B frame begins with the offset between their

origins, defined as,

~DN =


0

0

200

 (4.3)
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in millimeters. If starting with a vector in the N frame, N~r, the offset is subtracted before applying

the rotation matrix to yield the vector in the B frame, seen in Equation 4.4.

B~r =


1 0 0

0 cosα − sinα

0 sinα cosα

 (N~r − ~DN ) (4.4)

Finally, the thin lens approximation is used to project the 3D image onto the 2D sensor plane,

described in Figures 4.8 and 4.9. The boxed equations are used in the function BNtrans.m. The
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Figure 4.8: Top down view in B frame of 3D to 2D projection

equation tan (γ12) = dr1
f (or the equation for tan (γ23)) can be used to calculate the resolution of

the camera. From Table 4.1, a pixel is 3.1 × 3.1 µm (0.0031 × 0.0031 mm) and the focal length,

f , is 35 mm. To find how many degrees a single pixel can resolve, γ12 is solved for, given that

dr1 is the width of a pixel. The calculation shows the camera can resolve down to 0.0051◦. This

resolution can be used to find the differential twist resolution at the proximal point on the blade.

At the 52 meter spanwise measurement point on the blade, 0.0051◦ of resolution corresponds to

a vertical blade displacement, r52, of 4.6 mm. Therefore, the differential twist is calculated as

θdiff = arctan r52
c/2 . The differential twist resolution is 0.71◦ at the proximal measurement point 52
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meters away from the blade root.

Figure 4.10 shows the sensor image for a collective maneuver at a 45◦ amplitude. The
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Figure 4.10: Camera’s 2D view of 45◦ collective maneuver

measurement point at 52 meters is marked by the larger “X” markers. This 2D image shows that

a camera sensor at the root can view differential twist at a proximal point on the blade. More

specifically, it can resolve that differential twist measurement to 0.71◦.

The affect of this sensor measurement on the control system can be analyzed by adding a

quantizer block to the simulation, set to the 0.71◦ (0.0124 rad) resolution. Upon doing so, the

controller performed well with only a slight decrease in blade damping due to the quantization.

Figure 4.11 shows the decay curve, with 0.075% damping ratio, fitted to the blade tip pitch profile.

The decay curve fit with no quantization present was shown in Figure 3.21. There, a damping

ratio of 0.09% was used, meaning there is a 0.015% decrease in percent damping with quantization.

However, even with this slight decrease, damping is still added to the blade, proving the proximal

differential twist sensor in the outer feedback control loop is feasible. Again, the location of the

differential twist measurement has not yet been optimized.
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Chapter 5

Conclusions

5.1 Impact and Significance

With very little inherent damping present in the blade, an active controller is used to damp

the torsional structural modes of a single heliogyro blade. The inner feedback control loop showed

it works well in the presence of friction but cannot provide any blade damping. The outer feedback

control loop was able to add damping, specifically it increased the damping ratio of the lowest

frequency torsional mode from 0.001% to 0.09%, two orders of magnitude greater. The photogram-

metry model proved that proximal differential twist sensing with a camera at the root is feasible

and not detrimental to the controller’s performance. Again, this research is the first indication that

a physically realizable blade root controller can deal with friction in an effective way, thus taking

a step towards advancing the technology readiness level of the heliogyro spacecraft.

5.2 Future Work

The non-collocated dynamics are the key limitation of this control design. Again, the con-

troller was not optimized to add maximum damping but could be with adjustments to the location

of the differential twist measurement and other forms of compensation in the outer feedback control

loop. In addition, a more complete friction model can be incorporated in future designs to instill

more confidence in the practicality of the control design. Finally, future work could include a de-

tailed analysis into the robustness of the control design to changes in the inherent blade damping

and reference pitch profiles.
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