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DIFFERENTIATION OF SURFACE INTEGRALS

S Maley

Abstract

1t 48 sometimes necessary to digferentiate a surngace integral with
nebpedt to a parameter of the integrand, on of the suwrface, on of the
vcohtoun bounding the surface o of any combination of these. Differen-
tiation aften the integral has been evaluated presents no digficulties,
but occasionally it 4is desirnable, 4in computdtion on, more often, in
theornetical desrivations, to intenchange the onden oﬁ'integnazion and
difperentiation. This nepork presents itheorems concerning such
Antenchange.



N

INTRODUCTION
Let Q be defined as a surface integral over surface S bounded

by contour C, Q is initially assumed to be of the form
Q=[ F-dS

the results will be extended tésother types of surface integrals in a later
section. Suppose the integrand, F, the surface, S, and the contour, C,
are functions of a parameter ‘t. They need not all be functions of t,
but the procedure to be presented will be based on the assumption that
they are, and fhe resu]ts'wi]] be applicable whether they are or not.

The symbol, t, can be any parameter but, in this discussion, it will
be considered as time. The function F may be a function of t, and
the surface, S, may be a function of t, that is the surface, S, may
be in motion. Such motion may involve motion 6f the contour C which
bounds the surface S.

The motion of the suffacé can be characterized in terms of a velocity,
v, of each pdint on the surface. v is a function of position on the
surface S. The motion, at each point, can be resolved into a component,
V&;
The velocity, V, can be expressed as

tangent to the surface, and a component, Vh, normal to the surface.

The motion of the surface is characterized in terms of a fixed
(unmoving) coordinate system. At any instant of time, the integral can be
evaluated. Its value is a function of time because, at different times,
the integrand, F, can be different, the surface can be different and

the countour bounding the surfdte can be different.
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It is sometimesvnecessary to differentiate the integral Q. The
integration may be performed resulting in an expression for Q as a
function of t. This expression may then be differentiated, in a straight-
forward manner to give %%-._ It is occasionally desired to intérchange the
order of differentiation'and;integration, Such an interchange is sometimes
needed in theoretical‘derivatidns and sometimes even in computational pro-
cedures. The procedure for_interchange of integration and differentiation
is well known for an integral in a one-dimensional space. It is giVen by the
well-known Lefbnitz Theorem (or Leibnitz rule). However, the case of a
surface integral, jn two or three dimensional space requires an extension
of the principle involved inbthe Leibnitz rule. This report is concerned

with that extension.

As mentioned above, the velocity of each point on the surface is

resolved into normal and tangential components. The reason for doing so

concerns the fact that tangential motion of points within a surface does

not inflﬁende an integral over‘that’surface un1e$s the boundary is in motion.
Such tangential motion is simply a stretching or contraction of the surface,
in a fixed coordinate system, without changing its position. Such motion,
therefore, doés,not influence the value of the integral, except along the

contour (the boundary of the Surface) where the tangential motion will be

taken into consideration. On the basis of these observations, it may be
expected that the derivative, with respect to time, of a surface integral
could be expressed in terms of the normal component of the velocity over
the surface and the tangential component of the velocity on the contour.

This, in fact, is so as is discussed in the next section.

THEORY
The procedure for interchanging integration and differentiation is

given by the following theorem.



Theorem S1 |
Let Q be the surface ihtegral

Q- f F-3S

S

over the surface S which ‘is bounded by the contour C. Assume
that the Qector function, F, 1is a function of time, Aﬁ. Also
assume the surface S, s in motion with respect to the frame
of reference with reﬁpect fb which F is defined. Further assume
the contour, C, bounding surface S 1is in motion. Let the
motion, with respect to the frame of reference,be defined by
velocity, v, which js a‘function of position on surface, S.

The derivative of Q ‘with respect to t can be expressed as

@.: "Exv -do .io_ Ay . —.——
FoOFV W | e d ) (VVF S

L]

| F‘-[(Eﬁx V)x Vh]ds
_ S ,
where Vi' and Vh are the tangential and normal components of

velocity, Vv, with respect to surface S. The operator Vh -V

is a scalar operator which in a general orthogonal coordinate system,
with coordinates Ups U and Us and with metric coefficients

h], h2, and h3 is given by

Vo = (@Vny Yagvnp *3gv3) - (0 5y

' 9 Yn2 8, Yn3 s
ny au] h2 au2 h3 au3




where 5}, Eé and Eé are unit vectors for the coordinate system

u1, u2, u3. The vector Eﬁ is a unit vector normal to surface S

and is in the direction of dS. The operator Eh x V is a vector
operator which in a general orthogonal coordinate system with

coordinates Ups Uy and u3 and with metric coefficients h], h, and

2
h3 is given by

a. A a
— = 1 9 2 9 3 9
a xV=a X(+— =+ = =— + == —)
n n h] au] h2, 8u2 h3 8u3
ST s, W% o8 W% s
h] au]_ h2 U, h3 3u3

The direction of 1ntegfation in the line integral is related to
the direction of dS by the right hand rule.

A proof of the above theorem is given in Appendix 1.

If the surface S s a closed surface the line integral

vanishes giving the following result.

Corollary S1

If the surface S is closed

o w0 - TG T e

n
S S S

It may be noted that Eh is the unit»norma1 to surface S and it
is in the same direction as dS. Since the product of 5;' and dS

occurs in the last term of the éxpression for %%—, the single factor

S = Eg'ds may be used instead. The expression for g%— may thus be

written
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This notation is slightly more concise, but it may be more confusing

than that used in the original statement of the theorem.

EXAMPLE

-An example ofvthe use of the differentiation theorem will be given
in thié section. This examp]é involves the use ofvthe theorem in a
theoretical derivation.

Consider the expression

Fw--4( 5.5
T E-dU = - J B -dS
C S

which is one of Méxwe]l's équations. The contour, C, 1is the boundary
of surface, S. This relationship is valid for any choice of the surface
S. The direction of integration along contour C is related to the
direction of dS by the right hand rule.

Suppose that B is not a function of time but that the contour C
is in motion. Since Maxwell's equation is valid for all choices of the
surface, S, the éukface can be chosen such that the motion of the
contour, C, is>tangent1a1 to the surface. Then the velocity of the
contour 1is V£ in the theorem on differentiation of surface integrals,
and Vh can be chosen to be zero (because of the arbitrariness of the
choice of S). For such é choice df the surface, S, the theorem on

differentiation of surface integrals shows that
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The other three integrals on the right hand side vanish'because
Vh = 0 or because %%—= 0. Using this result it is seen that

|

where v s simply the velocity of the contour. An alternative and probably

m
=
P
"
1
O
ol
X
<]
=

more common form of this relation is obtained by reversing the order of

the factors in the vector product and by changing the sign. Thus

E 37[= VvxB.de .
This well known relation foilows in a straightforward manner from Maxwell's
equation using the theorem on differentiation of surface integrals. This
is not a new result. It has Tong been known that |
{E-dz = %R'E.TE

- c
can be derived from Maxwell's equation; but, without the use of the:theorem
on differentiation of surface integrals, the &erivation requires
clever and intricate argument. (Ref. Engineering Electromagnetic Fields
and Waves, Carl T.A. Johnk, John Wiley and Sons 1975, pp. 293-295).

If the same derivation is considered but the vector field, B, is

allowed to be a function of time, then the theorem gives the result

{E-?ﬂh-[éﬁ- 'ds+§ VxE - T

C S C
which is another well known result.



Other examples of the use of the differentiation theorem are given

in Appendix 2.



EXTENSIONS TO OTHER TYPES OF SURFACE INTEGRALS

Theorem S1 and Corollary S1 are app]icabTe'to’a common type of surface
integral. There are other types of surface integrals which can be differ-
entiated by procedures similar to those given in Theorem S1. Theorems
applicable to several other types of surfaée integrals are presented in
this section. Proofs of these theorems are discussed in Appendix 3 and
examples of their use are gjvenfin Appendix 4.

Theorem S2

Let a surface integral Q be defined by

=[Fx—s“.
S

The derivative, %%-, of Q with respect to t can be expressed

O

as
7] TG | @ [ LGRS Fxi@, <) <7 o
5 S

where the symbols have the same meaning as discussed in Theorem S1.
The first term, which is a line 1ntegra1; can be expressed in an

alternative form which is sometimes preferable; it is given by

j( Fx(V, <) $ V,(F @) f v, -F)aE
c c

If the surface S  is closed, the theorem simplifies.
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Corollary S2

ol
|l

If S is a closed surface
dq © V. -V)F]1xdS - ¢ Fx[(3 v,
a%_= § «TS + f[(vn -V)F] xdS - f F'x[(anx V)vxvn]ds

S S >

>Another type of surface integral 'is covered by the next theorem.

Theorem S3.
Let a surface integral, Q, be defined by
aﬁp—s“
S

where F s a scalar function of position. The derivative,

%%~, with respect to t is expressed‘by'

S
The case in which the surface, S, is closed is covered by the

following:

Corollary S3

If S fs a closed surface

dq _ [ oF = — —
- f 3% ds + % (vn .V)F dS f F[(an xV) xvn]dS .
S S S
Another type of surface integral is that in which the integrand is a

vector function of position but the differential of area is scalar. It

is treated by the following theorem.
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Theorem S4

Let a surface integral, Q, be defined by

Q—=[Fds
' S

The derivative of q with respect to t is given by

A {rrm. @xayias [ Ease (G vFas

Tt F [an (vt xa;)]dz f 5% dsS + (vn V)F dS
' S S
—.J_F{an- [(an xV) xvn]} ds

S

where at

direction of integration.

is the unit vector, tangent to contour C, in the

The case in which the surface, S, is closed is covered by the

following:

Corollary S4

If S 1s‘a closed surface
@. = AF:: » —. I
&t ds + (vn V)F dS
S S

-0 F {an '[(an xV) xvn]}ds
S
The final type of surface integral to be considered is that in which
both the integrand and the differentia] of area are scalars. The following

theorem is applicable to that case.

Theorem S5

Let a surface integral, Q, be defined by

Q= l FdS .
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The derivative of Q with respect to t 1is given by

€ ip (3, - (v, x3,) Tt + J 3F 4s + J[(vn - V)F1ds
c | s s

- i Fa, - [(3@ x7) x ¥, Jds

where 5£ is a unit vector tangent to contour C in the direction

of integration.

The case in which the surface, S, is closed is covered by the following

Corollary.

Corollary S5

If S dis a closed surface

dQ _ [ 3F 4o, [ = .
& f ot ds + f (vn V)F dS
S S
. f Fla, - [(@ x7) <7 11
5
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LIMITATIONS

Nothing has been said concerning restrictions on the functions involved
in the integrals treated by the foregoing theorems. Sufficient conditions
for the validity of the theorems will be given in this section.

It is assumed that the surface of integration, S, is a two-sided
surface having a unit normal which is a continuous function of position on
the surfaceT Surfaces having an edge, that is a Tine along which the unit
normal is discontinuous, can be handled by considering the surface as two
surfaces which are joined along the edge. The theorems can then be
applied to each individual surface. This procedure of placing edges along
the bounding contours of‘surfaces can be extended to any number of edges.

It is assumed that the integrand, denoted by F or F in the state-
ments of the theorems, 15 contihuous and has continuous derivatives with
respect to t and spacia] coordinates at all points on the éurface S.
Integrands not meeting these conditions can still be treated if it is
possible to express the integra] as a sum of surface integrals ovef sub-
divisions of the surface, the integrand meeting the continuity requirements
on each of the subdivisions. The theorems can then be applied to each of
the integrals in the sum. This procedure can be described as placing dis-
continuities on the bounding contours of surfaces where they do not prevent
the application of the theorems. |

It is assumed that the normal component, &h, of the velocity of
surface S is continuous and has continuous derivatives in directions tangent
to the surface. If these conditions are not met, the theorems can still be
applied if it is possible to express the integral as a sum of integrals over

subdivisions of the surface, S, the continuity conditions on Vh being
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satisfied on each of the'subdivisions. This procedure also amounts to
placing the discontinuities on the bounding contours of surfaces such

that the theorems can be applied.
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COMPILATION OF RESULTS

The five theorems and five corollaries given in this report are

listed below in concise notation. This involves the following replacements

where appropriate:

{3
(=5
Uy

1]
o
w

Theorem S1

S
then g—%_': § ?xvt-7+l gi - dS
c '
o[ 1@, 0T+ [ FLE x0) <)
S S

Corollary Sl

- If S 1is a closed surface.

then g%f= iv ai'-33'+ §.[(Vh *V)F] - dS
R S

T L x7) <7,
S
Theorem S2

Q- { Fr e + | Fuas
then ‘ F ><(vt xdg) + 5t % ds



Corollary S2

If S 1is a closed surface

dq . oF 7 <V)F1 xdS
then @ - § % xdS + § [(vn V)F] xdS
S

v § Fx[(-TSx7) x7, ]
1

Theorem S3

Corollary S3

' If, S 1is a closed surface

dQ . [ F o= . [ r/o —
then a%-— § ‘5%-ds + % [(Vn - V)F]dS
g ¢

! i FL(-35 xV) xV, ]
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Theorem sS4
If Q= J F dS
s
then &l < ¢ I3 @ a1+ [ Las
C S
o L@, Fls + [ FE, - L ) v, T
s S '

Corollary S4
If S 1is a closed surface
‘ ﬂ = _a—F n [} =
then 0t ot ds + [(vn V)F]dS
S _ S

+i Fiay » [(-35 xv) %V, 1}

Theorem S5

If Q=des
¥ F
daQ _ (v xdo oF
then = Fla (vt xdg)] + 5% ds

Fla, - [(-dS xV) xv_1}

N

s l [(V *9)Flds +

Corollary S5

If S 1is a closed surface

then %% - § —g% ds + § [(¥, -V)FIds

+ 4 Fia - (5 %) <7, 1)
S
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APPENDIX 1

Proof of Theorem SI1

Q s defined by

It is assumed that surface S .is in motion and that the motion is
described in terms of its velocity, v, which is a function of position
on surface S. It is further assumed that the integrand F 1is a function

of time, t, and of position in space}. Q is therefore a function of
time. The derivative, %%— of Q with respect to time will have con-
tributions due to the motion of the contour C which bounds surface S,
due to the variation of F with time, due to the variation of F

caused by the motion of surface S and due to the variation of dS

caused by the motion of surface S. An expression for %%— must take all

of these contributions into consideration.

The velocity, v, can be expressed in terms of components tangential,

Voo and normal, v_, to the surface. Thus

n’
TeT +v .
VEve Ty,

The tangential component at an interior point of the surface (i.e. any

point other than one on the bounding contour C) causes relative motion
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of the points within the surface but causes no motion of the surface
itself; and, therefore, has no effect upon the surface integral. For
this reason only the normal component Vﬁ of velocity need be considered
at an interior point of the surface. However, the tangential component,
Vé, on the bounding contour, C, does influence the surface integral
because it inf]uehcesithe area of surface S. It is apparent that the
influence of the motion of surface S, on Q is the sum of cdntributions
due to the normal component, v_ of velocity over the surface and due to

n
the tangential component on the bounding contoeur C.

To éva]uate the contribution due to the tangential component, Vis
on the bounding contour C, assume that Vh = 0 and -%; = 0. Next
assume the integral is formulated in terms of a set of orthogohal coordi-
nates u;, U, on surface S. The coordinates are selected such that
ds = dﬁ]du2 and such that the bounding countour C coincides with a
1ine‘défined by ui»= constant. Next a third coordinate, uss is
introduced in a direction‘norha] to surface S such that the differential
of vq]ume is dv = du]duzdu37 Let 51, 52 and Eé be the unit vectors in
this right handed orthogonalicoordinate system. 55 may also be denoted
by 5n’ the unit normal to surface S. Expanding the integrand in the
coordinate system Ups Uy, Ug “gives

Q= L F3du]du2

At t = 0, Q may be expressed as

Q0)=] Fycuyu,
5(0)



where S(0) simply means surface S at t=0. At t =0 + dt,

Q may be expressed as -

Q(0 + dt) = I F3du]du2 + § (vt cos 6 dt) F3du2
S(0) C

where v, s the magnitude of 'Vi, and & is the angle between V£

-and ay- Let v, = v.a, where a, s a unit vector. It is tangent

to surface § along contour - C. It can be expressed as

g£ = 5}5cog 6 + Eé:sin 6. Now consider the expression ?'XEE- 5& ;

it can be manipulated as follows:

Fxa, 3, = (aF) + 3,F, + a5F5) x (8 c0s & + ,sin 8) +3,

cos 0 F3 .
Substitution of this result into the expression for Q(0 + dt) gives

Q(O-+dt)}=(J) F3 du,du, + dt i v (Fxa.- a,)du,
S(0

- or -

Q(0 + dt) = [ _F3du1du? + dt
0
J F3dq]du2 + dt F xvt- dz.}
0

Or—— O ——

where dg = 'é'zdu2 is the vector differential length along contour C.
The first integra1 in this expression is independent of time; there-

fore the derivative, %%-,' can be expressed as
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dq _ ExT a1
ot F XV ds
C

This is the contribution to %%— due to the tangent1a1 component of the
motion of the bounding contour C.

The contribution to %%- due to the explicit dependence of F on
t s of the same form as for other types of integrals. It will simp]&

be stated without further discussion; it is

oF o<
Jat ds .

S

To complete the proof of Theorem S1, it is necessary to add terms
resulting from non-zero v, .

" The normal component, Vh, of the velocity is a measure of the
transverse movement of each point on the surface. As a point on the
surface moves, the function, ?}‘ evaluated at that point, changes.

The rate of change of F can be expressed as the product of the mag-
nitude, Ve "of the normal component of the velocity and the directional

derivative of F in the direction of Vh. Llet a be distancé in the

direction of v_ (that is in the direction normal to the surface); then

n —
the directional derivative needed is %g— . Letting Eh be a unit
normal to surface S, the differentiation operator 2 can be

oa,
expressed as
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Therefore
oF _ — \F
V. 3a © Vn(an V)F
= (v -V)F
dq

and the contribution to,’af- resulting from the variation of F,

caused by the transverse motion of surface S, s

f (¥, -7)F] - TS
S
A11 contributions to %%- have now been evaluated except that due

to the change of dS with time; so %%- can be written

Q- frxv,-@m v [Loase| (@ -0f -5+ ] 7l

C S S ' S

[oN[a]
[ (%2}

The last térm in this expression, at first glance, seems surprising
since differentials, in simple-integrals, are usually not functions of
parameters. However, surface integrals are frequently formulated such
that d5 is a function of position;  then, if the surface if integra-
tion is in motion, Q%gg). will be non-zero.

The Tast term of the above relation is in a form that is somewhat

awkward to use. A much more satisfactory result can be obtained by

fdrmu]atjng it in terms of the normal component, v_

n° of velocity. To

do this, first express dS in the form
ds = a, du1du2
using the coordinate system Uys U, and us introduced earlier in this

section. Since Eh = Eé, it can be expressed as



Thus dS now becomes

dS = a;x a, du,du

1 2 127
Next note that 5} and Eé can be expressed 1nwterms of the position
vector, R .
a =R
1oy
— _9R
a —r
2 8u2

-~ These expressions are valid regardless of the location of the origin
of the coordinate system in which the position vector, R, 1is defined.

The differential of area, dS, can now be written

<= R 3R

ds = 3u. ~ ou du1du2 ?
I B

and - —

3R 9R

= 3M5E) v am OEE

d(ds) _ [ ot” R L 3R '3t 1 d
= Xt — X—=—] du,du
It is not necessary to consider the variation of du] .or du2 with

time because any such variation of du]du2 in the numerator will cancel
the variation of au] and au2 in the denominator.

Since, in this analysis, only the normal component, Vh, of

velocity is being considered, %%- may be replaced by Vh;

@l
+|>0|
1

<

Using this, it is seen that
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d(ds) . Zn, R LR nq 4
= — — Xe— u,du
dt au] | 3u2_‘ Uy au2 1772
8‘\71".,l _ Vn
= 57 % 8 + 3y 53] dujdu,
1 2
Next it is observed that:
T = = 9 T .9 T 9
an x v a3 % (a] 2u * a2 au * a3 ou )
1 2 3
- 3, 3
P —— a, —
1 au2 2 au]
and
v v
= v o= -3 _n _n
(an XV) xvn 4 x auz * a2 X au1
QVh
= (—Xaz"’a]X auz)s
SO
ddgs = - (Ehx V) x Vhds R

where dS = du]du2 is the scalar differential of area. Finally %%

can be written

q. W?‘Vt‘ ax + f-g% as + J [(7, - 7)F] S - JrT:--[('a—nxV)an'de
C : S S S

This completes thevproof of Theorem S1.
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APPENDIX 2

Examples of the Use of Theorem Sl

As an example of the use of the more general expression for %%
consider the surface sketched below. It is a semicylindrical surface
with elements parallel to the z-axis,

» 5‘ ’ defined by p = 1, and extending from

1. Assume it is in

z=0 to z

x motion with velocity Vv = 5;. Let

F be given by

o= 2
F = ax 4xy~z .

Since the surface is in motion parallel to the x-axis at a velocity of

unity, the relations among x, y, ¢ and t are

x-t=cos ¢

and _ y = sin ¢
The expression for Q can be evaluated to give

Q= J F.dS= J 5¥4xy22 -o(a cos ¢ +5& sin ¢)d¢ dz
S S

where the differential of area has been taken to be
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S = p(ax cos ¢ + ay sin ¢)d¢ dz

and p , in this example, is unity. Thus

1 /2
Q=4 J z dz f xy2 cos ¢ d¢.
0 -T/2

Evaluating the integral over z and substituting for x and y in

terms of - ¢ gives
/2
Q=2 f (t + cos ¢)sin2¢ cos ¢ do

-m/2
/2 /2

= 2t f sin2¢ cos ¢pdp + 2 J sin2¢ cos%pd¢ .
B A -/2

These integrals may be evaluated to give

.3 /2
Q=2‘ts—"'3ii +2(g =2t%+2£—
-m/2
or

Now g%- will be found from

oo
+ O

A oFF == v o =
-§ Fxy, eds+ fat -dS +f (v, *V)F-dS -[ F-[(a, xv) xv_1ds
c S S S
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to verify that the same result is obtained. The normal component of the

velocity, v, is

Ve TV, (aX cos ¢ + a, sin ¢)

where

= cos ¢.
vn 0]

The operator Vh + V is given by

- _ 2, 3 . 9
vn V =cos ¢ X + cos ¢ sin¢ 3y

AY

and

(Vh «V)F = (4y22 c032¢ + 8xyz cos ¢ sin ¢)5; .

From this, the following integral can be evaluated

/2 /2
J(Vh *V)F +dS = 4 [ z dz J y2 cosz¢ cosd do + ZJ Xy cosd sind cosd do
o) =T/2 -m/2
. T|'/2 11'/2
=2 J' sin2¢ cos3¢ dp + 4 J (t + cos ¢)sin2¢ cosz¢ do.
T -mf2 - -m/2
This simplifies to give
/2 /2 v /2
J (Vh «V)F+dS =2 J sin2¢ cos3¢ do + 4t f sin2¢ cosz¢ do + 4 J sin2¢ c053¢ do.
S -n/2 -1/2 -T/2

The integrals are easily evaluated to give

SE!
‘—'-
+

oo

l (v, 9)F -3 =
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The tangential component of velocity on the surface edges parallel
to the z-axis is V£ = 5;; it is zero on the ends of the cylindrical

surface. Therefore

§ Fxv, «dx =0

since F and V} are in the same direction at all points at which V£ is
nonzero.

The opérator Eh x V is given by

3 3 < 7 L +37 O3 9
(aX cos ¢ + a, sin b) x(ax 5%t 3y 3y ta, 57

a x
nV

3 sind-o- - 9 .7 9 _ &
a, sin¢s> aycosq;BZ +a,(cos ¢ay sin ¢

9
9X ).

Operating on Vh gives

(a, xV) XV (Eh xV) X (5; co§2¢ + 5& cos ¢ sin ¢ )

2

(3 x 1) x Eyt)? + 3, yix-t)

5;[- cos ¢ (x-t) + sin ¢y] + 3& [- sin¢2(x-t)]

a, [sin2¢ - c052¢] + 5&[-2 sin ¢cos ¢ ] -
From this result it is seen that

F - [ xv) xv]-= 4xyzz(sin2¢ - cosz¢)

and
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1 /2
J F’-[(Eh xV) xVh]dS =4 J zdz J (t +cos ¢)sin2¢(sin2¢ -cosz¢)d¢
S , 0 -m/2 |
/2 /2 /2 m/2
. 4 .2 2 L4 3. .2
= 2t J sin'¢ d¢p - 2t J sin“¢ cos ¢ d¢o +2 [ cos ¢sin'¢ d¢-2f cos™ 9 sin"¢p d¢.

-T/2 -/2 -m/2 -n/2

These integrals can be evaluated to give

2t(3) - 2t(f) + 2(3) - 2(:H)

f F-.[(Eh xV) XVh]dS 5 15
S

A
15

This is the same result as obtained by integration for Q followed by
differentiation.with respeét tb t. |

The above example suggests that the differentiation formulae herein
presented invo]ve'more time consuming analytical evaluation than the more
straightforward evaluation of the integral followed by differentiation.
This, in fact, is tkue.for most integrals; indeed the primary utility
of the theorem on differentiation of surface integrals presented here is

in theoretical derivations rather than 1in evaluation of derivatives.
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To gain greater understanding of the use of the theorem on differen-
tiation of surface integrals, another example will be presented.
Consider the same cylindrical surface having the same motion as in

the previous example but let the vector field, ?}' be given by

F= 5;"4xyz cos wt.

The following relations are the same as in the previous problem.

X =-t=cos 9,

<
i

sin ¢‘,

Vv.=1¢c0S ¢ ,

Vo =V, (ax cos ¢ + a, sin ¢ ),

V£ = a_ (on the parallel edges of the cylinder),

V£ =0 (on the ends of the cylinder),

<|
<
i

2, 9 . 3.
— 4 =
Ccos ¢ sx T sin $ cos ¢ay ’

dS = p(Ex cos ¢ + Ey sin ¢)do dz (with p = 1),

Q
o
ot

|

€cos ¢(5; cos ¢+ El sin ¢ )d¢ dz (since 9 = cos ).

N ot

Q
+

First %%- will be evaluated by integration to obtain Q followed

by differentiation with respect to t.



31

1 /2
Q= J F+dS = 4 cos wt J z dz J xy sin ¢do

0 -1/2
/2

2 cos wt J (t + cos ¢)sin2¢ do
=T, / 2

_ : /2
JT/2 5 . 2
2(cos wt)t J sin“¢ d¢ + 2 cos wt J cos ¢sin"¢ do

n/2 | -T1/2

i

2(cos wt)t = + 2(cos ﬂt)'ga
2 3

Tt cos wt +‘%-cos wt.

The derivative with respect to t s

dqQ _ R S
at mcos wt - 7wt sin wt 3w sin wt.
To demonstrate the use of the theorem five integrals must
be evaluated. First consider |
o o 1
§ F XVt *dg = J’ F(ts'] ,Z) X&X °azdz + J F(t,],Z)' Xax °aZdZ
¢ 1 0 ° 1
= 4t cos wt [ z dz - 4t cos wt J z dz = -4t cos wt.
1 0

Next consider

J (Vh- v)F «dS = 4 cos wt J [yz c052¢ + xz sin ¢cos ¢Jlsin ¢pd¢ dz
S ' S
] /2
= 4 cos wt J.z dz f [sin2¢ cosz¢ + (t +cos ¢)sin2¢ cos ¢ldo
o -2
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2 ‘ﬂ']

2 cos wt [g-+ tstyg

_T L4
—2coswt+3t cos wt.

Just as in the previous example
(En %V) ><'\7n =3 (s1n ¢ - cos ¢) +37 [ 2 sin¢cos ¢] .

From this it is seen that

F '[(3'n>< v) X_\'—n]

-2 sin ¢ cos ¢ (4xyz cos wt)

-8 (t + cos ¢)s1‘n2¢ COS ¢ Z COS Wt

and :
: T /2
J F- [(En xV) xvn]ds = -8 J z dz f (t +cos <1>.<)s1'n2¢ cos¢ cos wt do
0 -T/2
/2 /2
= -4(cos wt)t f sinzg) cos¢ dd -4 cos wt f sin2¢ cesz¢ do
-1T/2 /2

-4(cos- wt) t(g—) -4 cos- wt(—)
The next 1ntegra1 to be evaluated is

oF | 2
J 3% +dS = -4 wsin wt |z dz (t +cos ¢)sind sing do

C 0 -T/2

-2u(sin wt)t(g) - 2u(sin ut)(2)

-mwt sin wt - %-wsin wt

Collecting these results it is seen that
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T, W+ [ L.a 4 @, -0F T
| |
5

- J ?--[(Ehx V) xVh]dS
S

(?4t.. cos wt) + (-mwt sin wt - g—wsih wt)

+ (g-cos wt + %-tcos wt) - (-%—tcos wt - %-cos wt)

m cos wt - mwt sin wt - —g—wsin wt .

This result agrees,with that obtained by integration to find Q followed
by differentiation with respect to t.
It seems desirable to present one example involving a surface having

curvature in two dimensions. Consider

Q= f?-"s‘
S
where
= 272 —
F=4x"y"z a,

and(]et S be a hemisphericél sﬁrface of unit'fadius. More specifically,
at t=0, S is the hemisphere, for which z >0, having unit radius,
centered at‘the‘origin and moving, undistorted, in the direction of 5;
with unit ve]ocity.- Thds"‘]- |

V=Ez’

and on surface S
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z=1t+cos b
x = sin@ cos ¢
y = sin® sin ¢

where © and ¢ are coordihates in a spherical coordinate system having
an origin at the center of the spherical surface moving at the same

velocity as the surface.

Q can be evaluated as follows:

S =3, dosine dg,

where

fe 1}
i

5; $inbcos ¢ + E& sin 6sin ¢ + Eécos 0-

So Q can be written

w2 2w |
= A . :

Q= 4x"y~z cos & sin 6 deo d¢
6=0 ¢=0 '

‘ w2 2w o

= ’ . 2 2, 25 22 .

=4 N ~(t +cos e)s1n B cos ¢ sin"0@ sin"¢ cos6 sind db d¢
60 =0
2m - /2 /2

= 4 J"éosg¢ Sin2¢ dp| t { sin% cos & do + J‘ sin’6 cose de

) .

0 ¢

1, 8 8
=4 () [t's‘*ﬁ]: &t 705

From this, it is seen that

(S E]
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Next g—% will be evaluated from

@ui Fxv ._“i gi-amf @ -VF -3
S

- [ Fer <« s
S

It is noted that F x Vt

so' the first integral on the right hand side vanishes. The second
integral vanishes because -2—5— =-0. The normal component of the

= 0 at all points on the contou'r bounding S;

ve10c1ty is

2
Z o,

Vn = Ercos'e = Exsin § Cos o cos ¢ + Eysin 6cos 6 sing¢+ a,cos
)

N . = i 5 ‘j—
Vi v cos © sin® C°S¢8x

+ cosb siné sin ¢ 5%,-+ coszq; ;6-32—
and

(Vn V)F = (sinecos 6cos ¢ 8xy22 +sin 6 cos 0 sin ¢ 8x_2yz +cosze 4x2y2)52

SO

e 2m
J (Vn «V)F -dS =8 f sin 6 cos 6¢os ¢psin §cos ¢ sinze sin2¢(t+cos g)cos g'sin6d6 do

/2 0 6=0 ¢=0
+8 | sind cos6 sing sine cosz¢ sing sing (t +cos 6)cos® sin6-dode
=0 ¢=0
/2 2%
+ 4 -cosze sinzecosch sinze sin2¢ cos 6sin g do d¢

6=0 $p=0
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2m /2

J cosz¢ sin2¢ do J sinse cos2

0 0

2 ?/2
2, .2 .

J cos ¢ sin"¢ do J sin

0 ’ 0

16t

8 de

5 2

+ 20 B cos™8 do

32
105

bm
+ 5T -

wt

The operator Eh,xv is easily expanded in terms of coordinates

6 and ¢.
a_' .
T oAy T oxy-. 8 3,z 3
VXV S - Sne e T % 36
and _
- - % 3 .- 9 —
(B )V = (- sy g * % 39 X 3 cos @

1]

- Zar!cos 6 - ae sin ©

where the relations

and

have been used. In rectangular coordinates this is

_ - — . iz s ? 2
(a, xv)x v, = -a 3sin egos o cos ¢-a, sinpcos osin¢ ta (sin"e -2 cos“ ),
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j F -[(@, x7) V. 1ds = i 4xPy%z(sin -2 cos?e)ds
s

/2 2rm '
= J 4 sinze cos% sinze sin2¢(t+cos e)(sinze -2 cosze)sine d$ dé
8=0 ¢=0

2m /2

=4 J cos ¢ sin ¢d¢ f sin e t +cos 6)do
0 o 0 o2
-8 j cos ¢ s1n2¢ d¢ f s1n56 cosze(t +cos 6)de
0 : 0 '

< a@EedE + 1 - sty + 41 = 1t Lk T

Finally

- l F L&, x7) xV, 1ds

32 5 2
f%g-nt #2) _ (it 2+ L) =

=0+0+( 05 * 74

T
6

This result agrees with that obtained by differentiation of the expression

for Q.

Consider next an example for which

= 2
E = 4xy~z ay
and the surface is a plane extending from z =0 to z =1. At time

= 0 the plane extends from the line x =1, y=-1 to the Tine x=1, y=1.

Thus the surface is a rectangle of 2 units on one side and one on the other.
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It is assumed the rectangular, plane surface rotates about the axis
x =1, y =0 such that the upper edge has a velocity of 5& and the
lower edge has velocity -5;. The surface remains a planar rectangle,
of unit Tength in the z direction, as it rotates, but its width

éf v
Ji

increases as it rotates. The surface is

sketched below. The sketch shows the

position of the surface at t = 0, t =-%

and t = 1. The relation between x and y

-l on the surface can be expressed as

; x =1+ yt.
If ¢ denotes the angle through which the planar surface has been rotated,

the differential of area can be written

= (7 -y 1 d
ds (achs ¢ a sin ¢) EB%"@ dz

and the surface integral can be written
i 1

Q=fF-ds=4 J xy%z dy dz .
S ' z=Q y= -1

Substituting for x in terms of y this becomes

1 1

]
N

™~ o—
<

From this



39

Now the derivative g%- will be found by evaluating the expression

o

gg: —_o Fo —o —o
T Fxvy dg + 5 ds + (vn V)F -dS
C ' S S
- l F -[(an XV) XVnJ ds .
The tangential and normal components of the velocity can be expressed as

= (axcos ) -ay sin¢ )y cos ¢

v, =
V£ = (Egsin b+ 5&cos ¢ )sin ¢ (on upper edge)
Vi T - (aXs1n ¢ + aycos ¢ )sin ¢ (on lower edge)

From these expressions

?.XVE 4(1 + t)z sin ¢cosq>5;

on the upper edge and

F xv

+ -4(1-t)z sin ¢cos ¢az

on the Tower edge.

Using these expressions

0 1
é'Fx'V; .dy = -4 f (1-t)z sin¢ cos ¢dz +4 f (1+t)z sin¢ cos¢ dz
C 1 0

= 4 sin ¢cos ¢.

Next it is seen that
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= 2 _8__ 1 __8_.
vn v ycosq)ax ys1n¢cos¢ay

and
(Vh «V)F = (y cosz¢ 4y22 - y sin ¢cos ¢8xyz)5%
Therefore .
1 1 1
f (V; *V)F +dS = J f cos’ ¢ y dy -8 [ z dz J sin ¢ cos ¢(]+yt)y2dy
S - 0 -1
=-4s1n¢cos¢L' -—§s1n¢cos¢

The .operator Eh xV s given by

T XU = -3 sine o3 cos 6L+ T (coe gD 4 <ar s D
a xv a, sing 5y -aycos ¢az + az(cos ¢ay + sin ¢8x )

and
— - _ - 2. . — 3
(an xV) x Vp =8, €0sT¢ sing + ay cos™¢ .

Finally the last of the required integrals is
1 1

—_— — — - 2
f F -[an xV) xvn] dS = 4 [ z dz j Xy cos ¢ sin ¢EE%TF
S ] 0 -1

=2 j (1 +yt)y2cos ¢sin ¢pdy
-1 1

=2 cos ¢sin ¢¥§- = %-cos osin ¢ .

-1
Collecting these results it is seen that
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'-f F-[(a, xv)x v, 1ds
S

(4 sin ¢cos ¢)‘+v0 + (= %-sin ¢cos ¢) - (%-cos ¢sin¢)
=0..

This is the same result as thained by integration for Q followed

by differentiation with respect to t.
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APPENDIX 3
PROOFS OF THEOREMS S2,S3, S4 and S5

Theorem S1 has been proved in Appendix 1. The proof of theorems
S2, 53; S4 and S5 are mehe]y slight modifications of that proof. Only
the modifications will be discussed in this Appendix. Two of these
theorems involve an'expression for g§%§lu This can be evaluated by

first writing dS in terms of the position vector R. Thus
ds = 3R] |eR
ds = lBU]l |8u2| duydu,

where U and u2' are the orthogonal, rectangular coordinates introduced
in Appendix 1 and éﬂi = a, and R 3,. This seems a surprising

u, 1 auz 2 ‘
starting point since both of the terms involving magnitude brackets are

unity and, of course,: du]du2 = dS. Nevertheless, this will lead to a

useful formulation. In this relation, R can be expressed as
R=ax+ay+a
R L8 X ayy az

where X, y and z are the coordinates of points on surface S. They
are functions of the position coordinates Uy and U, on S. From

this it is seen that

E—'ax+—§l

— 9z
a + a. —
Bu] X u] y Bu] Z 3u

1
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and

R _ = 9%,z dy .z 0z
auz. ax au2 * ay au2 * az ou, °

From these expressions it is clear that

o 2 2 2
OR | =[x oy 9z
'Bu]l /(Bu]) ¥ (Bu]) ¥ (au])

and

2 2
) )
l ) // ) (Buz) * (Sﬁé) .

Using these results dS can be written

2 2 2 2 2 2
ds=/(§—§]) +<§5]) +(32) /(%’32) +<—§—5—2—) +(§—§2) du, du

From this

. ) o
3P a( %) , oz 3(57)

‘d(dS) ; au] Bu] au] Bu] au] au] /an )2 +(§X_)2+ (EE_

dt
/( X 2, (X ) + (327
' ] ] !
2(2%) sy 260 5, 23D

X
2 2 2 ou ou du, dus, ou ou
d

.

> 2 2
/( ) G G

In obtaining-this resu]t the order of differentiation, with respect to

time and with respect to spacial coordinates has been interchanged.
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The motion under consideration in this expression is motion in the direction

of the normal to surface S having velocity, V;} which can be written

v o3 M,z dy,z 3z
Vn axt+a +azt.

Using this, the above expression can be written

R M R Mn
d(gs) _ | M % lgﬁ, . 'aﬁ e T 2 DR
dt Ia_—R—_ 8u2 BU]I I.E_)_-R: 1772
Bu] 8u2
Next, using the relations (see Appendix 1)
3R _ —
—— = a N
au1 1
R _ =
3u, %2>
3R |
up T
and _
_OR |-
}3u2»
It follows that
- v,
oV n
dds) _ [z . n .= . 55— du,du, .
dt T R 12

In order to express this result so that it does not involve a

coordinate system, note that
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- - — 5 .= 3
a, * V.= ag X (a] TR I I I TR )
1 2 3
— o
=5 0 -aym >
D) au] 1 8u2
and
i a"; _ a’v‘;
(apx V) x vy = a, x 5= - a4y xg-
1 2
From this, it is seen that
_ _ _ vy o av
a, [(an x V) x v ]= ag + a,x 55;3- ay* ax SUE'
vy
TagX dy gy T 3% 3 " 5y
1 2
_— .avn s avn
1 8u] 2 8u2

Using this result and using du

1
Q§%§L can be written ‘

du2 = dS, the desired expression for

ddS) - 5 - [(3, xv) x 7 1ds

Now theorem S2 will be considered. The integral in this theorem
differs from that in theorem S1 only in the presence of a vector product
in place of the scalar product in the integral of theorem S1. Theorem S2
can, therefore, be obtained from theorem S1 by replacing scalar products

by vector products; the result is



46

[oaRfal
-n

= AT T ofF . s= - . <_|F = -
Q.- § Fx(Vyx W) + j a5+ J [(V, ~9)F] x T f F [ (@, xv) <V _]ds .
C S S S :
The integral in theorem S3 has a scalar integrand, F, but a vector
differential of area, Hgl .The theorem can be obtained from theorem S1 by

replacing scalar products by ordinary products and by replacing F by F.

The result is

fefr e[ e L 0P = | LG =) <5

C : S

The 1ntegra1 in theorem S4 has a scalar differential of area, dS, for
which the derivative, with respect to time, is as given above. Using this
result and replacing scalar multiplication by ordinary multiplication

gives the desired result.

|
ot}

g_g= —. v 3 _. T
It 'F[an (vt xat)]dz + ds + [(vn v)FdsS
C S '
- J Fla, « [(a, xv) xv _]}dS .
S _
The first term on the right hand side in the above expression is seen,
from a review of Appendix 1 to be a line integral along thekclosed
contour C of"l':'vt sing d& where ¢ 1is the angle between V& and
the unit vector tangent to C. This can be written as ?1(V£ XE%)Idz;
but v, xa, is normal to the surface; so |(v€< a,)| =a, - (v xay).

This leads to the above expression.
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The integral in theorem S5 involves no vector functions. The
modifications needed, in this case, are a combination of those used in

theorems S3 and S4; the result is

d . § Fla, (7, x3,)1de + l 3 gs +f [(V -v)Flds
_f F@a, -[(@, xv)x ¥ JHds.

S v
This comp]etes the proofs of theorems S2, S3, S4 and S5.
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APPENDIX 4

EXAMPLES OF.THE_USE 0F THEOREMS S2, S3, S4 and S5

Example involving Theorem SZ
Consider an example in which the surface $ is semicylindrical of
unit radius and length as sketched below. Let the surface dee, without

changing shape, with velocity Vv = 5;. Let F = 4xyz'5¥ be a vector field

y 0 <z <] . and define Q by

>y T [P
] X o >

Coordinates x and y can be expressed in terms of ¢ and t.

X =.t + (of03Y0]
y = sing
Q can be evaluated to give
] /2 ,
Q=4 f zdz I Xy a, X(axcos¢ + aysin¢)d¢
0 - =T/2
m/2
= 25% f (t-+cos¢)sin2¢ do
-/ 2

22,[t(3) + 51 = 3, [nt + ]
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From this it is seen that

=y
"
o
3

Now %%— will be evaluated using Theorem S2.

1
§ F x (v xd2) = 4a, x (EX xgy) ft(] )zdz
0

0o
+ i x (5 x () [ el-1)z(-d2)
1

. — 1y =
-4azt(§) + 4azt(-§) = -4taz .

The operator Vn -V is given by

Vy *V = [(_a—xcos<p + Eysimp)coscp] Y
= c052q> :a—a)? + cos¢ sing 5—%

S0 | ] /
J l}‘(Vh -V)F] xdS =4 f zdz J (cosz-q>y +cos¢ sinq)x)Ex X (_cfxcosd) +_a—ys1'n¢)d¢
S 0 ~T/2 ’

/2 !

= 25; [ (c052¢ sin2¢ + cos¢ sin2¢(t-+cos¢))d¢
-mf2

T+ t@) + -7 L+4d
2alg+ t(3) + gl =a,l+3t].
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NeXt, it is noted that
(Eh xV) th = E;[sin2¢ -c052¢] + 5&[-2 ?os¢ sing]

from this

J Fx[(a, V) v, 1ds
S

1 /2
=4 [ zdz J Xy 5; X[E;(sin2¢ —cosz¢) +E&(-2cos¢ sing)]de
o -/ 2

2
-4a, J/(t +cos¢)sin2¢ cosd do

m/

A2 leg) + gl - - a3 gl

=0 and coi]ecting the above results, it is seen that

2%

Observing that

§fx(-\7t xdg) +
C

Urt——
%%,

TS + | 1T, +OF1 G - [ Fx[(, x0) <7, 1ds
5 S
= -4ta_ + 0 + a_[=2 + it]- [-a. (§’t +)]=am
z z“2 " 3 rAK) 2 z

This result verifies the correctness of Theorem S2 for this particular

probliem.
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Example involving Theorem S3.

Consider an example in which the surface S 1is semicylindrical,

of unit radius and Tength one as sketched pelow. Let the surface move,

without changing shape, with velocity Vv = 5; .
y 0<z <]} , 2

Q as
| .
X — —
)/1 Q'JFdS
S

Coordinates x and y can be expressed in terms of ¢ and t.

Y and define

X =1 + cos¢
y = sing
Q can be evaluated to give
1 m/2
Q=141 zdz j Xyz(Ekcos¢ + E&Sin¢)d¢
0 -T/2
m/2
_ L2 = — .
=2 f (t +cosd)sin ¢(axcos¢ + ays1n¢)d¢
-T/2 '

22, (t8) + ) + 28, (x(0) + (0)

Tl

It follows from this that

alo.
Ol

= 5;(%?‘.

Let F = 4xy“z be a scalar field
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The derivative will now be evaluated using Theorem S3. The tan-
gential component of the velocity is v, = a  on the edges of the surface

at x=0 ‘and y =+1. v, =0 on the remainder of the boundary. Thus

t
0
i F v, xdt = 4 j 1};(2)22:(—Ey)dz 4 lt(Z)zz(Ey)(—dz)
)

=0.

The operator Vh «V 1is given by

Vh--v = [(E&cos¢ + E&sin¢)cos¢] .V

_ 2, 93 . 3
= cos ¢'3x + sin¢ coso 3y

)
] /2
l (Vh «V)FdS= 4 jz dzJ (c052¢,y2+2 sing coso xy)(E;cos¢ +5&sin¢)d¢

0 /2
/2

2a, f (cos3¢ sin2¢ +2 sin2¢(t-+cos¢ cosz¢)d¢

I

X
-1/ 2
/2
+ 25& { (c052¢ sin3¢ + 2 sin3¢cos¢(t-+cos¢)d¢
-7/2

2
22, [(3) 523 + 26(F)] + 23, [0 + 2£(0) + 2(0)]

1]

[+)
| o
+
|

Next, it js seen that

(Eh xV) XVh = Eg(sin2¢ —c052¢) + 5&(-2 sin¢g cos¢)
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o)
1 'IT/2
f F[(Eh xV) xVh]dS = 4 [z dzJ Xyz[E%(sin2¢ -cosz¢) +5&(-2 singcoso)]deo
> 0o -m/2
/2 m/2
= 25& J (t-+cos¢)sin2¢(sin2¢ —cosz¢)d¢ -85& f (t-+cos¢)sin3¢ cos¢ do
/2 | -T/2
ey . 2 ﬁ%lzym - 8a,[t(0) + (0)]
T g T8 T E T35 y
-zt 4
- ax[ 2 ¥ 15
Assembling these results and observing that %£-= 0, it is seen that

n
C S S : S

§F7tx55+f %%E+f (v, -V)EHS'-JF[Enx v) an]dS

R 2 e R P |
=ls+ 5l -5+ sl =a,(3) .

This verifies the correctness of Theorem S3 fort this particular example.

Example involving Theorem S3.

Consider an example in which the surface S is semicylindrical,
of radius one, and length one as sketched below. Let the surface move,
without changing shape,.with velocity, v =a.,. Let F = 4xyz be a

X
scalar field and define Q as
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\\\\ - _Q— = J F a‘s—

_/;;7/1 Coordinates x and y can be expressed

in terms of ¢ and t.

X =t + cos¢
Y = sin¢
Q can be evaluated to give
1 /2
Q=4 zdz J xy(a_cos¢ + a,sing)do
J X y
0 -1/2
/2 /2
= 25;[ (t +cosd)sing cosp do + 25& J (t-+cos¢)sin2¢ d¢
-1/2 -m/2

— — T 21 _ —, 4
ZaX[O + O] + Zay[t(g) + '3—] = ay('th + -3—) .
From this,,it is seen that

aq _ -
dt " "

&S

Now the derivative, » will be eva]uated using Theorem S3.

t(- 1)(a ) (~dz)

% F v xdg
C

]-—"-———.O

|

]
4Jt1)z(a)dz+

(0]

t

= =2 -2t a, = -4t

y y y

Qv
Qv

The operator v -V 1is given by
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Vo +V = L(a,cos¢ + a sing)coso] - ¥
o2y B4 o 3
= C0S ¢ X + sind cos¢ 3y
SO
1 /2

J (Vh «V)FdS = 4 Jz dz f (y c052¢ + X sin¢cos¢)(5&cos¢ + 5&5in¢)d¢
S 0 -1/ 2
/2

25; f (sing cos3¢ + (t +cosd)sing c052¢)d¢
-1/2 ' v
m/2

2a f (sin2¢ cosz¢ + (t-+cos¢)$1n2¢ cos$ )do

Yy
-/2

1

4

2a [0 + t(0) + (0)] + zsy[-’glwt(%) + gl

A LeE) +F =a G+ 5]

Next, since

(Eh xV) XVh = 5;(51n2¢ —c052¢) + 5&(—2 sing coso)
1 /2
[ F[(En +V) XVh]dS = 4 J z dzJ xy[5¥(51n2¢ —c052¢) +5&(-2 singcosd)]de
S 0 -m/2

/2 ‘
= 25*[ (t +cos¢)(sin¢)(sin2¢ —c052¢)d¢
-/ 2
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/2

-45& J (t fcos<@$jn2¢ cosp d
-T/2

72,[6(0) + £(0) + (0) + ()] - 4a,[t(3) + g

-ay['3—t + 2] .

Observing that %%-= 0 and collecting these results it is seen that

— = [ F o= - — - -
% Fovg xdi + J 5¥-d$ + J (vn V)F dS - J F[(anx V) xvn]dS
C S S S

S Peru ol 1 SRR & B Sl < PR iy B
which verifies the theorem (S3) for this example.

Example Involving Theorem S4.

Consider an example in which the surface S 1is semicylindrical of

unit radius and length as sketched below. Suppose the surface is moving

- 0<z <] - -
Y v with velocity r =a,. Let a vector
S 6 . field, F, be defined by
_ ~ )
X =
F=4xy z a,

!

Let the vector surface integral Q be defined by
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To evaluate Q, note that x and y can be expressed in terms of ¢ .

1]

X =t + cos¢

y = sin¢ .

The normal component of the velocity is
Vo = (axcos¢ + ays1n¢)cos¢ .

The tangential component of the velocity is non-zero only on the parts

of the}contour parallel to the z_axis. Along

the line x =0, y =1, it is v, =a, and it has the same value along the
line x =0, y =-1.

First the integral for § will be evaluated.

1 e 1w
Q= 5;4 J z dz J xy2d¢ = 5;4 Iz dz[ (t-+cos¢)sin2¢ do
220 ¢=-3 0 -m2
m/2 /2
= 3&(4)(%&[t I sin2¢ do+ J sin2¢ cos¢ do]
-1/ 2 -1/ 2

T Ty 2
2a [t 5 + 3]

3 [nt + 4] .
From this it follows that

—axvr .

oln
13

Theorem S4 will now be appligd to this integral.
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First the line integral around the contour bounding the surface will

be evaluated.
1

-0
[ Flay- ¥ xa e = - [ 400022 dz- [ a0)(1)P(-d2),
C 0 1

-t -4t DTE, - an)T

Next evaluate the operator Vo - V.

- (T 2 T s (= S 9, = 3
VeV (axcos ¢ + aijn¢‘§os¢) (aX + a + a v)

n

2, 9 . 9
cos ¢ ™ + s1n¢ Ccoso 3y

From this it is seen that

(Vh? V)F = (c052¢ 4y22 + sing cos¢ 8xyz)5¥

and ,
1 /2
45% f z dz J (c052¢ y2-+cos¢ sing 2xy)do
0 -/2 '
m/2 /2
25% [J cosz¢ sin2¢ do +2 J sin2¢(t-+cos¢)cos¢ d¢]
-/ 2 ~7/2

caE 2%t + M7 =7 (8 + 30 -
= 2ax[8 + 2(3t + 8)] ax(3t t 3 ) .

U
) Py
<|
L]
<]
o
=
[a N
w
I

Next note that

(Eh.xv) xVh = 5%(51h2¢ -c052¢) +5&[-2 sing cosé]
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and
— — -9 _ . 2 3 . 2
a, + [(a, xv) xv 1= cos¢ sin“ - cos™¢ - 2sin"¢ cos¢
= - cos3¢ —sin2¢ Cosd = ~-C0So;
so
1 /2
— _ — _ — 2
J Fla, -[(an xV) xvn] }dS = --4aX J z dz [ Xy“-cos¢ do
S ' 0 -m/2
/2 |
= -25% J (t +cos¢)sin2¢ coso do
-7/ 2

]

— 2 m _ — 4 g
-2a [t(3) + gl = -a,[3t + 7] .
Assembling these results, it is seen that

- _ oF —
f F[an Ve xat]dz + [ ot ds + [ (Vn v )F dS

T [ xv) <7135 - a7, + 7,8t +
-J F{an -[(an xV) xvn]}ds = -4taX + ax(3t + 4)
S
_4 Ty _ —
+ax(§-t+z) —aX'IT

which agrees with the result obtained by integrating first then differ-

entiating. This verifies Theorem S4 for this particular case.

Example involving Theorem S5

Consider an example in which the surface S is semicylindrical, of

unit radius and length as sketched below. Let the surface move, without
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changing shape, with velocity

y; 0<z <1 o
y = ax-
o Let F = 4xy22 be a scalar field
X
\)/] and define Q by
| Q =l Fds
X and y can be expressed in terms of ¢ .
x =t + cos¢
y = sing
The normal component of velocity is
Vg = (axcos¢ f aysin¢)cos¢‘
Q as a function of t 1is easily evaluated.
] m/2
Q=4 J z dz J (t-+cos¢)sin2¢ do
0 -1/ 2
- Ty 4 27 = 4
= 2[t(2) +.3] =mt+ 3.
From this
daq _
gt "
Theorem S5 will now be applied to this problem
1 0
§ Fa, - (7 xT)de = 4 [ e()P2(-)az 44 [ 6(-1)%2(-1) (-a2)

Y 1
-2t - 2t = -4t .
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The operator vV is given by

vV *V = [(axcos¢ + aysin¢)cos¢] oV

= cos2e &+ sing coss
= COS ¢ X + sin¢ coso 3y

SO

. 1 ra
J (Vh +V)FdS =4 J z dz f (c052¢ y2-+sin¢ cosd 2xy)dé
S ) -1/2
/2 o v
=2 J_(c052¢ sin2¢ + 2 sin2¢ cosd(t +cose))do
-1/2

T 2 i _ 8 3
2L §'+ 2t(§) * 2(§)] "3 t+ Eﬂ
"Next note that

(Eh xV) XVh = Eg(sin2¢ - cosz¢) + 5&(—2 sin¢g coso)

and
Eh .[(Eh x7) xVh] = (3%cos¢ + 5&sin¢) -[5%(sin2¢ -c052¢}+5&(—2 sin¢cose)]
= C0So sin2¢ - c053¢ -2 sin2¢cos¢
= - cOS¢ .
Therefore

| P&, - L@, <o)« 13ds
S

=-4 fz dz [ xyzcos¢ d¢
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/2
(t +cos¢)sin2¢ coso do
_m/2

n

2t rH=-% -7

Noting,that 5%—= O and co]]ect1ng the above results, it is seen

that

i Loy (7 xa)lde+ [ 2as s i (v, *V)F dS—l FGa - [(3x V) xV_13ds
' S

.=-4t+0+(—§-vt+%ﬂ) - (-3t -7

which verifies the correctness of Theorem S5 for this particular example.



